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1
SYSTEM AND METHOD FOR
CONTROLLING EXCESSIVE PARALLELISM
IN MULTIPROCESSOR SYSTEMS

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT

This invention was made with government support under
0963737 awarded by the National Science Foundation. The
government has certain rights in the invention.

BACKGROUND

The present invention relates to the execution of computer
programs in parallel on multiple processors and in particular
to a system controlling parallelization of computer programs.

Improvements in software performance have been realized
by improved processor designs, for example, faster clock
speeds, multiple instruction issue, and speculative execution
techniques. Such performance improvements have the advan-
tage of being completely transparent to the program generator
(for example, a human programmer, compiler, or other pro-
gram translator). However, achieving these benefits depends
on the continuing availability of improved processors.

Parallelization offers another avenue for software perfor-
mance improvement by dividing the execution of a software
program amongst multiple processors that can run simulta-
neously. As more performance is required, more processors
may be added to the system, ideally resulting in attendant
performance improvement. Computer manufacturers have
turned to designing processors composed of multiple cores,
each core comprising circuitry (e.g., a CPU) necessary to
independently perform arithmetic and logical operations. In
many cases, the cores also support multiple execution con-
texts, allowing more than one program to run simultaneously
on a single core (these cores are often referred to as multi-
threaded cores and should not be confused with the software
programming technique of multi-threading). The term “pro-
cessor” as used herein will generally refer to an execution
context of a core.

A core is typically associated with a cache and an intercon-
nection network allowing the sharing of common memory
among the cores; however, other “shared memory” architec-
tures may be used, for example those providing exclusive
memories for each processor with a communication struc-
ture. These multi-core processors often implement a multi-
processor on a single chip and multiple chips of multi-core
processors are typically used to build a larger multiprocessor
computer. Due to the shift toward multi-core processors, par-
allelization is supplanting improved single processor perfor-
mance as the primary method for improving software perfor-
mance.

Improved execution speed of a program using a multipro-
cessor computer depends on the ability to divide a program
into portions that may be executed in parallel on the different
processors. Parallel execution in this context requires identi-
fying portions of the program that are independent such that
they do not simultaneously operate on the same data. Of
principal concern are portions of the program that may write
to the same data, “write-write” dependency, and portions of
the program that may implement a reading of data subsequent
to awriting of that data, “read-write” dependency, or a writing
of data subsequent to a reading of the data, “write-read”
dependency. Errors can result if any of these reads and writes
change in order as a result of parallel execution.

Some computer programs are relatively simple to execute
in parallel, for example those which have portions which can
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2

be ensured to always operate on completely disjoint data sets,
for example as occurs in some server applications and types
of scientific computation. During execution, these different
portions may be assigned to different queues for different
processors by a master thread evaluating the relative work
load of each processor and pending program threads.

A broader class of programs cannot be divided into por-
tions statically known to operate on disjoint data. Many cur-
rent programs are written using a sequential programming
model, expressed as a series of steps operating on data. This
model provides a simple, intuitive programming interface
because, at each step, the generator of the program (for
example, the programmer, compiler, and/or some other form
of translator) can assume the previous steps have been com-
pleted and the results are available for use. However, the
implicit dependence between each step obscures possible
independence among instructions needed for parallel execu-
tion. To statically parallelize a program written using the
sequential programming model, the program generator must
analyze all possible inputs to different portions of the pro-
gram to establish their independence. Such automatic static
parallelization works for programs which operate on regu-
larly structured data, but has proven difficult for general pro-
grams. In addition, such static analysis cannot identify oppor-
tunities for parallelization that can be determined only at the
time of execution when the data being read from or written to
can be positively identified.

U.S. patent application Ser. No. 12/543,354 filed Aug. 18,
2009; U.S. patent application Ser. No. 12/858,907 filed Aug.
18, 2010; and U.S. patent application Ser. No. 12/882,892
filed Sep. 15, 2010 (henceforth the “Serialization” patents) all
assigned to the same assignee as the present invention and all
hereby incorporated by reference, describe systems for par-
allelizing programs, written using a sequential program
model, during an execution of that program.

In these inventions, a master thread takes each computa-
tional operation and assigns it to a different processor queue
according to a set of rules intended to prevent data access
conflicts. By performing the parallelization during execution
of the program, many additional opportunities for parallel-
ization may be exploited beyond those which may be identi-
fied statically.

BRIEF SUMMARY

In certain cases, increased parallel execution of a program
can decrease the program execution speed, for example, as
the result of contention between different threads for scarce
resources such as memory, interconnection bandwidth, locks,
or the like. This can be a particular problem for programs that
may be executed on a wide variety of different hardware
platforms that cannot be accommodated at the time of pro-
gram generation. The present invention provides a system and
method for controlling parallel execution based on a measure-
ment of an execution of at least a portion of the program to
evaluate the functional relationship between execution speed
and parallelism. By controlling the amount of dynamic par-
allelism, program execution time, program execution
throughput, energy or power consumed, usage of cache,
memory, or interconnection resources, or other such metrics
related to program execution speed, can be optimized.

In one embodiment, the invention provides a method of
executing a program on a computer having multiple proces-
sors capable of executing portions of the program in parallel.
This embodiment may include the steps of: (a) measuring the
execution of a portion of the program with a different num-
bers of processors executing the program in parallel to pro-
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vide at least one value related to a speed of execution of the
program on a computer; and (b) adjusting the number of
processors executing the program in parallel according to at
least one value, including, at times, reducing the number of
processors executing the program to change the value.

It is thus a feature of at least one embodiment of the inven-
tion to provide a method of controlling the parallel execution
of'a program on a multiprocessor system that may be suscep-
tible to excess parallelism. It is another object of the invention
to operate with an arbitrary hardware platform by adaptively
adjusting parallelism according to actual measured perfor-
mance.

The measure of execution of the program may determine a
speed of execution of at least a portion of the program.

It is thus a feature of at least one embodiment of the inven-
tion to provide a simple method of assessing program execu-
tion speed. Measurement of execution speed of a portion of
the program may serve as a proxy for the entire program
having multiple different portions or may be used to optimize
only the measured portion.

The derived value may be a function of a number of pro-
cessors executing the program in parallel.

It is thus a feature of at least one embodiment of the inven-
tion to provide a control variable that can be used to balance
execution speed against possible cost of using additional pro-
CeSSOrs.

The derived value may be a function of time of the mea-
surement.

It is thus a feature of at least one embodiment of the inven-
tion to provide a control variable that reacts to trends in
execution speed.

The method may include the step of associating computa-
tional operations of the program with processors during an
execution of the program and steps (a) and (b) may occur
during the execution of the program.

It is thus a feature of at least one embodiment of the inven-
tion to accommodate a variety of different types of resource
contention, in a variety of different types of processors with-
out prior knowledge.

The method may repeat (a) and (b) during execution of the
program.

It is thus a feature of at least one embodiment of the inven-
tion to provide a system that may adapt to changes in the
contention over time as the program is subject to different
environmental conditions or executed with different other
program elements.

The program may include at least one computational
operation that may be executed in parallel on the processors
and the step of measuring execution of the program may
measure an execution of the computational operation on at
least one processor.

It is thus a feature of at least one embodiment of the inven-
tion to provide a simple method of measuring processor speed
that measures as little as a single parallelizable program ele-
ment.

The computational operation may be measured as it is
executed on at least two different numbers of processors in
parallel.

It is thus a feature of at least one embodiment of the inven-
tion to use multiple data points to provide more sophisticated
control of processor number limits.

The timing of the execution of the computational operation
may monitor an instruction counter near the start and comple-
tion of the computational operation.

It is thus a feature of at least one embodiment of the inven-
tion to provide a simple and rapid method of timing compu-
tational operations using standard hardware.
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4

The value may indicate a trend in execution time of the
task.

It is thus a feature of at least one embodiment of the inven-
tion to provide an anticipation of possible contention prob-
lems before they result in performance degradation permit-
ting improved real time, dynamic control.

The program may include multiple different computational
operations that may be executed in parallel on the processors
and the monitoring may measure the execution of a given
computational operation on at least one processor when the
given computational operation is executed in parallel with
different numbers of other computational operations.

It is thus a feature of at least one embodiment of the inven-
tion to provide an ability to optimize the execution of multiple
different computational operations.

The monitoring may include the steps of: (i) executing a
computational operation on only a single processor to obtain
a baseline measure; (ii) comparing an execution measure of
the computational operation during execution on more than
one processor to the baseline measure.

It is thus a feature of at least one embodiment of the inven-
tion to automatically identify thresholds for detecting pro-
gram speed degradation. Establishing a baseline for a com-
putational operation allows the system to work freely with a
variety of different computational operations that have other-
wise not been pre-characterized.

The adjusting of the number of processors may compare
the value related to the speed of execution to at least two
ranges to: (1) increase the number of processors executing the
program when the value is in the first range, and (2) decrease
the number of processors executing the program when the
value is in the second range.

It is thus a feature of at least one embodiment of the inven-
tion to provide a simple control algorithm that can be easily
designed to ensure stable control of processor numbers.

The adjusting of the processor numbers may further com-
pare the value to a third range to leave the number of proces-
sors executing the program unchanged when the value is in
the third range.

It is thus a feature of at least one embodiment of the inven-
tion to limit unnecessary “hunting” in the selection of the
number of processors that may cause the process to operate in
a non-optimal manner for a significant fraction of time.

These particular features and advantages may apply to only
some embodiments falling within the claims and thus do not
define the scope of the invention. The following description
and figures illustrate a preferred embodiment of the invention.
Such an embodiment does not necessarily represent the full
scope of the invention, however. Furthermore, some embodi-
ments may include only parts of a preferred embodiment.
Therefore, reference must be made to the claims for interpret-
ing the scope of the invention.

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1 is a simplified representation of the physical archi-
tecture of a multiprocessor system having four processors and
being one type of multiprocessor system suitable for imple-
mentation of the present application;

FIG. 2 is a simplified representation of the software ele-
ments of one embodiment of the present invention including
a modified sequential model program, associated libraries
and queue structures;

FIG. 3 is a logical diagram of one embodiment of a system
executing the sequential model program of FIG. 2 comprised
of computational operations each including groups of instruc-
tions identified for parallel execution and the allocation of the
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computational operations to different queues in a queue order
by a master thread for execution on different processors;

FIG. 4 is a flow chart showing steps implemented by an
embodiment of the present invention in controlling the num-
ber of processors used for parallel processing;

FIG. 5 is a chart showing results of an experiment of
program performance as a function of the number of parallel
threads showing a decrease in program execution speed as the
number of threads rises above approximately six and showing
an elimination of this decline in an execution with an embodi-
ment of the present invention;

FIG. 6 is a fragmentary view of the sequential model pro-
gram of FIG. 3 instrumented to detect lock contention prob-
lems; and

FIG. 7 is a figure similar to that of FIG. 6 showing the
sequential program model instrumented to detect memory or
interconnect bandwidth contention problems.

DETAILED DESCRIPTION

Referring now to FIG. 1, a multiprocessor system 10 may
include, for example, four processors 12a-12d each associ-
ated with a local memory 14 and communicating on an inter-
connection network structure 16 with shared memory 18. It
will be understood that the present application applies to
cases where the local memory 14 and shared memory 18 are
managed automatically by hardware (i.e., local memory 14 is
a cache), as well as cases where software must explicitly
perform transfers among shared memory 18 and local memo-
ries 14. It will be further understood that shared memory 18
may in turn communicate with additional external memory
(not shown) or in fact may be comprised totally of local
memories 14 through communication protocols. Each of the
processors 12 may also communicate with common control
circuitry 24 providing coordination of the processors 12 as is
understood in the art.

Although the present application is described with respect
to a multiprocessor implemented as separate processors com-
municating with shared memory, it will be understood that the
term multiprocessor includes any type of computer system
providing multiple execution contexts, including, but not lim-
ited to, systems composed of multi-threaded processors,
multi-core processors, heterogeneous computational units, or
any combination thereof.

Referring now to FIG. 2, the shared memory 18 may hold
one or more sequential model programs 20, modified accord-
ingly for parallel execution, and program data 22 accessed via
the program 20 during execution. Shared memory 18 may
further include runtime library 25 possibly providing class
specifications (i.e., object prototypes), pre-defined serializers
(when serialization is used), generators for ordered commu-
nication structures (e.g., queues), and code to implement the
runtime operations of a master thread and a performance
monitoring system, described in further detail herein below.
The shared memory 18 may also include queues 26 as will be
described below, and an operating system 28 providing
execution context for the above as will generally be under-
stood in the art.

Referring now to FIG. 3, in one embodiment, a sequential
model program 20 may comprise multiple computer execut-
able instructions 30 collected in computational operations 32.
The sequential model program 20 thus may represent a pro-
gram prepared using standard languages to logically execute
serially on a single processor. The computational operations
32 may be, for example, program functions operating on
particular data or software objects that may be instantiated
with an instance number to execute on data associated with
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that object and instance number. Such methods can be iden-
tified for parallelization during run time. The invention also
contemplates that the methods may be statically paralleliz-
able functions or the like or may be different software appli-
cations.

The sequential model program 20 may be read by a master
thread 34 having allocation routine 35 allocating the compu-
tational operations 32 to different execution queues 26a-26f
each associated with a different processor 12a-12f. This allo-
cation can be performed based on determinations made dur-
ing run-time as described in any of the above-cited Serializa-
tion cases (referring to corresponding queues 26 in those
cases). In this embodiment, each computational operation 32
may be delimited with serialization instructions 36 which
identify the computational operation 32 as being amenable to
parallel execution and optionally provide instructions as to
how that allocation to different queues 26 should be per-
formed as described in the above referenced Serialization
patents. The master thread 34 may use these instructions and
their location to perform the allocation process.

Alternatively, the master thread 34 may allocate the com-
putational operations 32 according to static or ex ante deci-
sions about executing computational operations 32 known to
be conditionally or unconditionally parallelizable, dividing
them among the queues 26 in some fashion. In either case, the
number of computational operations that are assigned to the
processors for parallel execution at a given time may be less
than, equal to, or greater than the number of available proces-
SOIS.

In either case, in a first embodiment, the present invention
may also provide for execution-monitoring operations 38
before and after the instructions of the computational opera-
tion 32. It will be understood that these execution-monitoring
operations 38 like the serialization instructions 36 need not be
physically in-line with the computational operations 32 but
are effectively executed as if that were the case. It will be
further understood that these execution-monitoring opera-
tions 38 may be implemented in a variety of ways such as
software instructions or firmware/hardware operations or
combinations thereof.

The execution-monitoring operations 38 may invoke a per-
formance benchmarking routine 40 that, in one embodiment,
may read and store a processor cycle counter 42 of the mul-
tiprocessor system 10 at the beginning and end of the com-
putational operation 32. The difference between these values
thus reflects the time it takes to execute the instructions of the
computational operation. As will be understood to those of
ordinary skill in the art, a processor cycle counter 42 is a
standard hardware element that increments substantially
monotonically with each processor clock cycle of the multi-
processor system 10. In this respect, it measures time and thus
the time it takes to complete the instructions executed by each
of the processors 12. The benchmarking routine 40 may be
triggered or executed by the processor 12 executing the
instrumented computational operations 32 and thus measures
actual processing time and not the time it takes for the master
thread 34 to allocate these computational operations 32 to a
particular queue 26 or other overhead of the parallelization
process.

As noted, the difference between the values of the proces-
sor cycle counter 42 taken by the benchmarking routine 40
provides a good approximation of the time necessary to
execute the computational operation 32 on a processor 12 and
may be output directly as a measure 41 reflecting generally
the performance of the multiprocessor system 10. The present
inventors have determined that this measurement is reason-
ably accurate even if the multiprocessor system 10 allows out
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of order instruction execution (for example speculative
execution) and, generally, despite time slicing operations of
the operating system which are far coarser than the times
deduced by the benchmarking routine 40.

In other embodiments, the benchmarking routine 40 may
read and store other values to measure program execution
performance, including, but not limited to, values related to
cache misses, cache usage, memory traffic, resource utiliza-
tion, and the like. Such values could be maintained in
counters in hardware, in memory, or in combinations thereof.

The benchmarking routine 40 provides its measures 41
indicating the performance of the multiprocessor system 10
in executing the computational operation 32 to a thread con-
troller 46. The thread controller 46 may use this measure 41 to
derive a control value that may be used to control the number
of different queues 26 that will be available to the master
thread 34 and the allocation routine 35 via a processor limit
value 43 communicated to the master thread 34. Thus, for
example, if there are six possible execution queues 26a-26f
each associated with a processor 12a-12f available for paral-
lel execution, the thread controller 46 may limit the available
processors 12 and queues 26 to three queues 26a-26¢ and
processors 12a-12¢ only.

Generally, the thread controller 46 may increase or
decrease the processor limit value 43 and hence the number of
processors 12 that may be used for parallel execution (within
the limitations imposed by the available number of processors
12) according to the measures 41 received from the bench-
marking routine 40. In this way the degree to which parallel
execution is permitted may be linked to actual performance
increases in the multiprocessor system 10 caused by parallel
execution. In this regard, a single processor limit value 43
may apply to all computational operations 32; however, the
present invention also contemplates that different processor
limit values 43 may be associated with different computa-
tional operations 32 or groupings of computational opera-
tions 32, for example.

Referring now to FIG. 4, more specifically, the benchmark-
ing routine 40 and thread controller 46 may operate to execute
a sequence of steps 50 (implemented as software, firmware,
or the like) that may first obtain a baseline task measure for a
given computational operation 32 as indicated by process
block 52. During this benchmarking procedure, the thread
controller 46 may provide a processor limit value 43 of one
for this and all other potentially interfering computational
operations 32, limiting the number of available queues 26 and
processors 12 to a single queue 26 and processor 12, essen-
tially reverting to a serial execution architecture. The mea-
sures provided by the benchmarking routine 40 thus represent
a largely contention free execution of the computational
operation 32 without interference from other computational
operations 32 of the same program 20 (though there may be
contention from other programs being simultaneously
executed on the multiprocessor). Multiple benchmarking
executions of a computational operation 32 may be com-
pleted to develop an average benchmarking value if desired.
This benchmarking value may be stored as a baseline value
identified to the particular computational operation 32 in a
table or the like.

At succeeding process block 54, the number of processors
12 that will be made available for execution of the computa-
tional operation 32 by the allocation routine 35 may be
adjusted. This adjustment may initially be to increase the
number of available processors 12 by one so that the particu-
lar computational operation 32 may be executed in parallel by
two processors 12. At later executions of process block 54, the
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processor limit value 43 may be adjusted up or down depend-
ing on program execution performance.

At succeeding process block 56 additional measures of the
execution of a computational operation 32 may be made by
the benchmarking routine 40 recording new execution dura-
tion measures 41 for the computational operation 32 under
different degrees of parallel execution. The relative time of
the measurement of the executions (in absolute time or rela-
tive to previous and later measurements of that computational
operation), and the number of processors 12 actively process-
ing the particular computational operation 32 or other com-
putational operations 32 at the time of measurement, or the
relative change in this number of processors 12 since the
previous measurement, or other like measures or combina-
tions thereof may also be recorded.

At process block 59 this recorded data may be used to
calculate a performance control value reflecting the overall
performance of the multiprocessor system 10. In the case
where only a single computational operation 32 is being
parallelized, the control value directly indicates program per-
formance, otherwise this execution measure serves as a proxy
for that performance, for example, in the case where there are
other unmeasured computational operations, or a part of the
measure of processor performance where there are multiple
different computational operations 32 that are being mea-
sured and optimized. The control value computed at process
block 59 may combine the data collected from multiple mea-
sures 41 from multiple computational operations 32 to obtain
a better understanding of the overall processor performance
of the multiprocessor system 10.

The control value may be applied against a threshold to
produce the processor limit value 43 (indicated by dashed
line) to process block 54 to control the number of processors
12. Generally, so long as the aggregate performance of the
multiprocessor system 10 in executing the program is increas-
ing, the processor limit value 43 can increase; otherwise, the
processor limit value 43 may be held the same or decreased as
will be described below.

The process 50 may then return to process block 54 for that
adjustment process and occasionally, or optionally, to process
block 52 to repeat the benchmarking operation periodically.

In one embodiment, the calculation of control value at
process block 59 may use the following equations calculated
at successive times t,:

( actual_execution measure(z;) — ] (1)
baseline_execution measure

ANum_tasks(z; —7;_y)

rate_of_increase(s;) =

where ANum_tasks(t,—t, ;) is the dynamic number of com-
putational tasks executed between successive times,
actual_execution_measure(t,) is the current measure 41 pro-
vided by the benchmarking routine 40, and baseline_execu-
tion_measure is the baseline also provided by the benchmark-
ing routine 40.

differential_ratdz;) = rate_of_increase(z;) — rate_of increase(z;_;) 2)
rate_of increase(z;) 3)
rate_factor(f;) = —————
rate_of_increase(s;_; )
differential _ratdz;) 4)

diff factoff;)) = —————
ML factou(s;) differential ratgz;_;)
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Therate_factor(t;) and cliff_factor(t,) may be used to adjust
the processor limit value 43 used for parallel execution
according to the following Table I:

TABLE I

rate__factor(t;) diff_factor(t;) Processor Limit Value

Low Low Increment the number of
processors aggressively
High Low Increment number of
processors conservatively
Low High Increment number of
processors conservatively
High High Decrement number of

processors

In the above Table 1, the values of High and Low are with
respect to a predetermined threshold value (e.g., 1). Aggres-
sive incrementing of the number of processors may be imple-
mented by changing the increment size, for example incre-
menting by two or more processors at a time, while the
conservative incrementing of the number of processors may
use an increment size of one. Alternatively, aggressive incre-
menting of the number of processors may be implemented by
adjusting on a quicker cycle than the cycle used with conser-
vative incrementing.

EXAMPLE I

Referring now to FIG. 5, an experiment without the inven-
tion and with an embodiment of the present invention was
performed with a memcpy( ) application which copied a
block of memory from one location to another. Solid plot line
62 shows performance on a machine having 8 processor sock-
ets with a 4-core processor in each socket, for a total of
4x8=32 total processing cores, or processors, without imple-
mentation of the parallelism controlling of the present inven-
tion while dashed plot line 64 shows performance on the same
machine with the parallelism controlling of an embodiment
of the present invention.

Referring now to FIG. 6, the benchmarking routine 40 need
not be limited to measurement of execution of the computa-
tional operations 32 but may alternatively or in addition look
at other proxies for performance ofthe multiprocessor system
10 in executing the program 20. For example, execution-
monitoring operations 38 may be placed before and after a
lock acquire instruction 66 for programs using locks for
accessing data shared with other threads or computational
operations 32. A value deduced from the difference between
the processor cycle counter values captured in this embodi-
ment may indicate lock contention time 68 (e.g. the time
required to acquire the lock) and a high value may indicate
detrimental competition between threads.

Alternatively, and referring to FIG. 7, execution-monitor-
ing operations 38 may be placed before and after a remote
request instruction 70 indicating completion of the instruc-
tion 70 to determine the time 72 required to satisfy the remote
request. This approach may allow the value to reflect memory
bottlenecks or other resource limitations such as cache size
bottlenecks or interconnection bandwidth limitations.

It will be understood that different embodiments of the
benchmarking routine 40 may collect different values for a
measure of execution, for example, minimum, maximum,
average, or instantaneous values, or combinations thereof.

The environment in which a particular computational
operation 32 will execute may be constantly changing in
many applications where multiple different computational
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operations 32 from the same program 20 may be run concur-
rently and/or multiple different programs may be run concur-
rently. In these cases, repetition of the steps of 54, 56, and 59
of FIG. 4 can be used to create a constantly evolving adjust-
ment of the processor limit value 43 linked to each computa-
tional instruction.

It will be understood that more sophisticated prediction
and control loops may be developed to address this dynamic
environment limited primarily by the amount of memory
dedicated to storing the necessary historical measurements 41
needed for such techniques or to accurately characterize dif-
ferent combinations of executed computational operations
32.

It will be understood that different computational opera-
tions may be independently or collectively monitored accord-
ing to the techniques described above to provide identical or
different processor limit values used to execute a computa-
tional operation using the techniques described above. To a
first approximation, this may be done by considering that the
number of processors used in equation (1) to include proces-
sors dedicated to any other computational operation under an
assumption that the mix of computational operations will
remain relatively static for short periods of time.

The measures derived from the benchmarking routine of an
embodiment of the present invention may be used not only to
optimize the speed of the execution of the program but to
affect other trade-offs in that execution, for example, opti-
mizing a product of processor speed and energy savings,
execution throughput, resource usage, or the like, or combi-
nations thereof.

The phrase “serial execution order” refers to the order the
parallelized program would execute if not parallelized, and
the term “queue” is intended to cover any ordered communi-
cation structure including a hardware stack, a linked list, a set
of address sequential data, etc. The term “program” is
intended to describe collectively all or part of the application
programs executing on the computer and should not be con-
strued to suggest a single commercial product but may col-
lectively include multiple programs from different manufac-
turers, for example.

It is specifically intended that the present invention not be
limited to the embodiments and illustrations contained herein
and the claims should be understood to include modified
forms of those embodiments including portions of the
embodiments and combinations of elements of different
embodiments as come within the scope of the following
claims. All of the publications described herein, including
patents and non-patent publications, are hereby incorporated
herein by reference in their entireties.

We claim:

1. A method of executing a program on a multiprocessor
computer with shared memory, the program comprised at
least in part of computational operations of program instruc-
tions wherein data accessed by at least one computational
operation affects data written by at least one other computa-
tional operation, the method comprising steps of:

(a) measuring a parallel execution of at least a portion of the
program with different number of processors executing
the program in parallel to provide at least one value
related to a speed of execution of the program on a
computer,

(b) adjusting the number of processors executing the pro-
gram in parallel according to the at least one value; and

wherein the method includes a step of allocating compu-
tational operations of the program to different proces-
sors during the parallel execution of the program accord-
ing to rules preventing conflicts caused by data accesses
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among the computational operations caused by their
parallel execution and wherein step (b) operates during
the parallel execution to adjust the number of processors
to which the computational operations may be allocated;

wherein the program includes at least one computational
operation that may be executed in parallel on the number
of processors and a step of measuring execution of the
program measures an execution of at least a portion of
the computational operations on at least one processor;

wherein the measuring of the parallel execution of the at
least a portion of the program monitors a counter near a
start and completion of the at least a portion of the
program;

wherein the adjusting compares the at least one value to at
least two ranges to increase the number of processors
executing different portions of the program when at least
one value is within first range and decrease the number
of processors executing the different portions of the
program when at least one value is within second range.

2. The method of claim 1 wherein step (b) includes, at
times, reducing the number of processors executing the pro-
gram to change the at least one value based on a decline of the
at least one value.

3. The method of claim 1 wherein the at least one value is
at least in part a function of a number of processors executing
different computational operations of the program in parallel.

4. The method of claim 3 wherein the at least one value is
further a function of a time of the measurement.

5. The method of claim 1 wherein the measuring of a
parallel execution and the adjusting of the number of proces-
sors is repeated during execution of the program.

6. The method of claim 1 wherein the measuring of a
parallel execution measures an execution of the at least a
portion of the program on at least one processor when the at
least a portion of the program is executed on at least two
different numbers of processors in parallel.

7. The method of claim 1 wherein the measuring of a
parallel execution of the program derives speed of execution
of the program from data selected from the group consisting
of data related to cache misses, data related to cache usage,
data related to memory traffic, and data related to resource
utilization of at least one processor.

8. The method of claim 1 wherein the at least one value
indicates a trend in execution time of the at least a portion of
the program.

9. The method of claim 1 wherein the measuring of a
parallel execution of the program includes the steps of:

(1) executing the at least a portion of the program on only a
single processor to obtain a baseline measure for the
portion; and

(ii) comparing execution measures of the at least a portion
of the program during execution on more than one pro-
cessor to the baseline measure.

10. The method of claim 1 wherein the adjusting further
compares the at least one value to a third range to leave the
number of processors executing the program unchanged
when the at least one value is in the third range.

11. The method of claim 1 wherein the program includes
multiple different computational operations that may be
executed in parallel on the computer and wherein the mea-
suring an execution of the program measures an execution of
a given computational operation on at least one processor

20

25

30

35

40

45

50

55

60

12

when the given computational operation is executed in par-
allel with different numbers of other computational opera-
tions.

12. A computer having multiple processors and shared
memory that may execute a stored program in parallel, the
stored program comprised at least in part of computational
operations of program instructions wherein data accessed by
at least one computational operation affects data written by at
least one other computational operation, the computer
executing an operating program stored in non-transient
memory to:

(a) execute the stored program on different numbers of

processors in parallel during a parallel execution;

(b) measure the execution of at least a portion of the stored
program with the different numbers of processors during
the parallel execution to provide at least one value
related to a speed of execution of the stored program on
the computer; and

(c) adjust the number of processors executing the stored
program in parallel according to the at least one value;

wherein the computer further executes the operating pro-
gram to allocate computational operations of the stored
program to different processors during the parallel
execution of the program according to rules preventing
conflicts caused by data accesses among the computa-
tional operations caused by their parallel execution and
wherein the operating program operates step (b) during
the parallel execution to adjust the number of processors
to which computational operations may be allocated
according to the measure of the execution;

wherein when the stored program includes at least one
computational operation that may be executed in paral-
lel on the number of processors, the computer executes
the operating program to measure an execution of at
least a portion of the at least one computational opera-
tion on at least one processor;

wherein the computer executes the operating program to
measure the execution of the at least a portion of the
stored program by monitoring a counter near a start and
completion of the at least a portion of the stored pro-
gram; and

wherein the computer executes the operating program to
adjust the number of processors by comparing the at
least one value to at least two ranges to increase the
number of processors executing different portions of the
stored program when at least one value is within first
range and decrease the number of processors executing
the different portions of the stored program when at least
one value is within second range.

13. The computer of claim 12 wherein the computer
executes the operating program to at times, reduce the num-
ber of processors executing the stored program to change the
at least one value based on a decline of the at least one value.

14. The computer of claim 12 wherein the measure of
execution of the stored program measures a speed of execu-
tion of at least a portion of the stored program and a number
of processors executing the stored program in parallel.

15. The computer of claim 12 wherein the computer further
operates to repeat the execution of the at least a portion of the
stored program with the different numbers of processors and
to repeat the adjusting of the number of processor executing
the stored program in parallel during the execution of the
stored program.
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