US009244772B2

a2z United States Patent (10) Patent No.: US 9,244,772 B2
Sankaralingam et al. (45) Date of Patent: Jan. 26, 2016
(54) COMPUTER PROCESSOR PROVIDING OTHER PUBLICATIONS
ERROR RECOVERY WITH IDEMPOTENT . w . . .
REGIONS Kruijf et al., “The Design, Modeling, and Evaluation of the Relax
Architectural Framework”, Apr. 2010, University of Wisconsin
. . . . Madison, Technical Report #1672, pp. 1-30.*
(75) Inventors: Karthikeyan Sankarallngam,.l.\/ladlson, Kim et al., “reference idempotency analysis: a framework for opti-
WI (US); Marc Asher De Kruijf, mizing speculative execution”, Jul. 2001, ACM SIGPLAN Notices,
Madison, WI (US); Chen-Han Ho, vol. 36 Issue 7, pp. 2-11.*
Madison, WI (US) Hennessy et al, “Computer Arc_hitecture A Quantitative Approach”,
1996, Morgan Kaufmann Publishers, Inc., 2nd ed., p. 273,335.*
. Chen, S-K, et al., Compiler-Assisted Multiple Instruction Word
(73) Assignee: Natflonal Science Foundation, Retry for VLIW Architectures, IEEE Transactions on Parallel and
Arlington, VA (US) Distributed Systems, vol. 12, Issue 12, Dec. 2001, 1293-1304, 12
(12), IEEE Computer Society, Washington, DC, USA.
(*) Notice: Subject to any disclaimer, the term of this Li, C-CJ, etal,, Compiler-Based Multiple Instruction Retry, IEEE
patent is extended or adjusted under 35 g)ﬁ;ﬁgfgigﬁzgo\nx}gs}tﬁzzo}jg"UI;SXG L, 1995, pp. 35-46, [EEE
U.S.C. 154(b) by 672 days. S. Mahlke, et al.,],Effective Co,mpil’er Support for Predicated Execu-
tion Using the Hyperblock, Proceedings of the 25" Annual Interna-
(21) Appl. No.: 13/100,517 tional Symposium on Microarchitecture, 1992, 45-54, IEEE,
Piscataway, NJ, USA.
(22) Filed: May 4, 2011 W.-M. W. Hwu, et al., The Superblock: An Effective Technique for
VLIW and Superscalar Compilation, The Journal of Supercomput-
(65) Prior Publication Data E%E;JAS, vol. 7, No. 1-2,, pp. 229-248, 1993, Springer, New York,
US 2012/0284562 A1l Nov. 8, 2012 S. Melvin, et al. Enhan_cing Instruction Scheduling with a Block-
Structured ISA, International Journal of Parallel Programming, Jun.
51) Int. Cl 1995, vol. 23, Issue 3, pp. 221-243, Kluwer Academic Publisher,
(51) Int. CL Norwell, MA, USA.
GO6F 9/30 (2006.01) (Continued)
GO6F 11/14 (2006.01)
GO6k 9738 (2006.01) Primary Examiner — Andrew Caldwell
o ssistant Examiner — Yuqing X1ao
(52) US.Cl . Assi E . Yuging Xi
CPC GOGF 11/1405 (2013.01); Go(ﬁ(goi/gl‘(})tﬁll) (74) Attorney, Agent, or Firm — Boyle Fredrickson, S.C.
(58) Field of Classification Search 1)) ABSTRACT
ICJIS)SC """"""""""""" GO6F 9/;?3/12’ 25}02631: 9.1 ;/ll ‘3(1)2 A computer architecture allows for simplified recovery after
leatiot e g | h il > mis-speculation during speculative execution by controlling
See application file for complete search history. speculation to occur within idempotent regions that may be
56 Ref Cited recovered by re-execution of the region without the need for
(56) eferences Cite restoring complex state information from checkpoints. A
U.S. PATENT DOCUMENTS cgmpiler for increasing the size of idempotent regions is also
disclosed.
6,988,183 B1* 1/2006 Wongc..ccecvvvvvveenenn. 712/208
2008/0244544 A1* 10/2008 Neelakantametal. 717/147 16 Claims, 4 Drawing Sheets
10
J i 0 3
=7 2{| = = 3 38
14 = 26_1 i\ - |/
= D= lu /] 40
— 1—6 N [~~~ a d I'_Ll
1= 24 [=24] s ooo| | e
f— — - Z R N 42
j— 26—1_:5 20 18 I,I \\\ 32
—_—— —_——) \
/ AY
34— =46
44 | =1—56
| —52
50| 53
481+ 54

US 9,244,772 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

H. Akkary, et al., Checkpoint Processing and Recovery: Towards
Scalable Large Instruction Window Processors, MICRO 36, 36"
Annual International Symposium on Microarchitecture, 2003, pp.
423-434, IEEE, Piscataway, NJ, USA.

J. Martinez, et al., Cherry: Checkpointed Early Resource Recycling
in Out-Of-Order Microprocessors, 35” Annual International Sympo-
sium on Microarchitecture, 2002, pp. 3-14, IEEE, Piscataway, NJ,
USA.

O. Mutlu, et al. Runahead Execution: An Alternative to Very Large
Instruction Windows for Out-Of-Order Processors, HPCA ’03 Pro-
ceedings of the 9 International Symposium on High Performance
Computer Architecture, 2003, pp. 20-25, IEEE Computer Society,
Washington, DC, USA.

J. Chang, et al., Automatic instruction-level software-only recovery,
International Conference of Dependable Systems and Networks, Jun.
25-28, 2006, pp. 83-92, IEEE, Piscataway, NJ, USA.

Borin, E., et al., Software-Based Transparent and Comprehensive
Control-Flow Error Detection, CGO ’06 Proceedings of the Interna-
tional Symposium on Code Generation and Optimization, Mar.
26-29, 2006, pp. 1-13; IEEE Computer Society Washington, DC,
USA.

Dehnert, J. C., et al., The Transmeta Code Morphing™ Software:
Using Speculation, Recovery, and Adaptive Retranslation to Address
Real-Life Challenges, CGO ’03 Proceedings of the International
Symposium on Code Generation and Optimization: Feedback-Di-
rected and Runtime Optimization, Mar. 27-29, 2003, pp. 1-10; IEEE
Computer Society Washington, DC, USA.

* cited by examiner

U.S. Patent Jan. 26, 2016 Sheet 1 of 4 US 9,244,772 B2

10
e 28 29 0 36
_7‘12 { /)
— 38
14{ _———/ = ljf/% 'rfo
— Q 16 E ad L:/
144 |— — D\l:ll:l\ $
{ — N 42
f—— / 32
J Sem— ’/ 5
e s B T:
44 5:56
1 L—52
50 353
FlG 1 48—+ —54
/29
60 62~ OVERFLOW
N st N ST
64—TBUF |0 ®4~[BUF |0
SIZE |14 SIZE |4
CAP | 8 CAP | 8
BUF » BUF
SIZE »=
SIZE »
CAP »- CAP »

FIG. 2

US 9,244,772 B2

Sheet 2 of 4

Jan. 26, 2016

U.S. Patent

€ Ol

E1=(r + N wan @)

371 INIWRMONI 7/ 1 +€1=E1QD) |

ISI_MOT3U3A0
40 TSH 404
X3ANI LNIWTHON

8.

3

ININTTT MIN La3sNE /7 Ty =[81+ Cinan ())

3218 av3d / (v + Onwan = €1 (8) —
Lav1S 4dng avad/ Lo+ 0Nnan =<1 Q) |

ISIT_MO1443A0
40 ISF 40 ON3 Ly
INIWIT MIN LY3SNI

9.

151 moT3A0 = 91(9)
(L) dr 0 < €3 109

(E1==C) =61 () __—

1SIT MOT443IA0 OL
JAON ‘MOTFH3A0 Al

~¢L

dvd Qv /18 + Onman =1 (%)

7S av /'ty + Onnan =61 (@))

1SIT ¥04 INIWIT3
MIN 3AIFD3Y

[~0L

NI MmN =T @D
oS ©

U.S. Patent Jan. 26, 2016 Sheet 3 of 4 US 9,244,772 B2

16
80 rd
- IDENTIFY CLOBBER
ANTI-DEPENDENCIES
84
FORM REGIONS TO
CUT CLOBBER ANTI-DEPENDENCIES
86
. _ MARK REGIONS WITH
: INSTRUCTION
90
DETECT
IDEMPOTENT FIG. 4
REGION
?
92
SPECULATION L/
94
ROLLBACK PC

MIS-SPECULATION

I

i 97

1

: FIG. 7

|

1

1

1

1

:

|

1

1

)

| M SPECULATION

L Ml

o STALL

100

COMMIT OUTPUT |00
BUFFER
]

U.S. Patent Jan. 26, 2016 Sheet 4 of 4 US 9,244,772 B2

Y mweniigs a1) Y ta - Mimltg<8l) 18
2 = MEMIt J 3 = MEMItg+8] | -
e .
4 . FIG. 5
tg = [ty==13] (tg = OVERFLOW UST}
< —
R — ;
>0 aw (1o = wEMIg) B
H
.w-"“"'"”-‘ B e e e ian on g i
¥ X g
\{ ty = MEM [ty + 4]) :{ MEM [t +13] =1 }-’
H
e e o o v o o I
o N] e
0 { |
\{ tg =1tg+1
1

(MEM [tg+ 4] =15 }/

2{ ty = MEMItg + 4] }\{ MEMHO+8} } 8

I FIG. 6
{ ty = tp==ty } 65=¢>(t00vgm:mw us*ri}
1 L P .
. ! AR ,
\{ ity > 0 } L ;(tg = MEM[ts + 0] }/
g T ~’E ’’’’’’’’ 3 ’
{ t7 = MEM [tg + 4] } :(MEM [t +171=t) }’
r', 5
H

US 9,244,772 B2

1
COMPUTER PROCESSOR PROVIDING
ERROR RECOVERY WITH IDEMPOTENT
REGIONS

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT

This invention was made with government support under
0845751 and 0917238 awarded by the National Science
Foundation. The government has certain rights in the inven-
tion.

BACKGROUND OF THE INVENTION

The present invention relates to a computer architecture
and in particular to an architecture that may recover from
faults or errors during the execution of program instructions,
for example from speculative execution, and having reduced
circuit complexity.

The effective execution speed of computer processors may
be increased by “speculative execution” in which computer
instructions are executed before the data necessary for that
execution is available. An example of speculative execution is
branch prediction. In branch prediction, the processor pre-
dicts which path of a program branch to take before the data
necessary to resolve the branch direction has been fetched or
computed. Other types of speculation include value predic-
tion (predicting the value of a variable used by an arithmetic
operation before it has been fetched or computed) and load-
store dependence prediction (predicting that a variable value
will not change from the execution of earlier instructions).

Provided that the prediction inherent in speculative execu-
tion is reasonably accurate, idle time of the processor is
reduced, and an increased instruction execution rate obtained.
Speculation is particularly useful in pipeline architectures
which largely require that later instructions be inserted into
the pipeline before earlier instructions have exited, even
though the later instructions depend on the earlier instruc-
tions.

In the event that the speculation is in error (mis-specula-
tion), the speculatively executed instructions must be undone
or “squashed” and the execution “recovered”. This process is
done by returning the processor to the same state it had before
execution of the speculative instructions so that the correct
instructions can be executed. This squashing process is facili-
tated by buffering all stores or writes performed by the specu-
latively executed instructions (which may then be erased in
the event of mis-speculation) and flushing the mis-speculated
executions from the pipeline. The squashing process relies
upon a “checkpoint” created at the beginning of the specula-
tion which accurately records state of the processor in terms
of'its registers, load store queue, rename table, etc. so that in
the event of mis-speculation the speculatively executed
instructions may be re-executed as if for the first time.

The circuitry necessary to create and maintain these check-
points at points of speculation is complex and consumes
substantial energy. Some processors having a large number of
cores, such as graphic processor units, do not employ specu-
lation at all because of the circuitry overhead.

SUMMARY OF THE INVENTION

The present invention provides a processor that can recover
from an erroneous instruction execution, such as occurs dur-
ing mis-speculation, by simply re-executing a block of con-
structions including the erroneous instructions without
reloading a conventional checkpoint. This is possible by lim-

20

25

30

35

40

45

50

55

60

65

2

iting speculation to occur in “idempotent regions™ which can
be executed repeatedly with the same effect on variables as if
executed once.

The ability to recognize and exploit idempotent regions
eliminates much of the circuitry and energy consumption
required for recovering from mis-speculation or hardware
failure. A compiler may be developed which increases the
size of idempotent regions within a program.

Specifically, the present invention provides a processor
unit having a region detector detecting an idempotent region,
being a region of sequentially executed instructions of the
program that may be executed multiple times while having
the same effect on variables used in the idempotent region and
later in the program as if the idempotent region were executed
a single time. An execution error detector communicates with
the region detector to detect an error in execution of at least
one instruction of the idempotent region and a recovery cir-
cuit communicates with the execution error detector and
responds to an error in the execution of instructions of the
idempotent region by restarting execution of instructions in
the idempotent region before an instruction of the error with-
out resetting variables used in the idempotent region.

It is thus a feature of at least one embodiment of the inven-
tion to permit recovery from instruction errors without the
need for complex checkpoint circuitry.

The processor unit may include a speculation circuit for
executing instructions in the idempotent region speculatively
and the execution error detector may detect mis-speculation
in the speculatively executed instructions to indicate an error
in the execution of the instructions.

It is thus a feature of at least one embodiment of the inven-
tion to provide a simpler method of handling speculation
reducing circuit energy consumption and cost. It is a feature
of at least one embodiment of the invention to permit specu-
lation in processors that normally would not support specu-
lation circuitry such as graphic processors.

The speculation circuit may be a branch-speculation circuit
speculatively executing instructions following a branch con-
dition and the processor unit may further include a stall circuit
stalling execution of the program at the end of an identified
idempotent region until branch speculation in the idempotent
region is complete.

It is thus a feature of at least one embodiment of the inven-
tion to prevent transition out of the idempotent region such as
might permit overwriting of the data necessary for the idem-
potent region.

The processor unit may include a write buffer buffering all
stores by instructions of the idempotent region until all specu-
lation of instructions relating to the stores is complete.

It is thus a feature of at least one embodiment of the inven-
tion to prevent mis-speculative overwriting of regions outside
of the idempotent region such as cannot be recovered simply
by re-executing the idempotent region.

The speculation circuit may be a memory dependence
speculation circuit speculatively executing instructions read-
ing a variable following an instruction writing to the variable.
The processor unit may further include a stall circuit stalling
execution of the program at the end of an identified idempo-
tent region until memory dependence speculation in the
idempotent region is complete.

It is thus a feature of at least one embodiment of the inven-
tion to preserve the ability of the memory dependence to be
correctly resolved simply by re-executing the idempotent
region. Moving out of the idempotent region before this
dependence is resolved could result in the overwriting of
critical data necessary to this resolution.

US 9,244,772 B2

3

The processor unit may include an out-of-order execution
circuit for executing instructions out of normal control flow
order and a stall circuit stalling execution of the program at
the end of an identified idempotent region until all instruc-
tions executed out-of-order have been completed.

It is thus a feature of at least one embodiment of the inven-
tion to provide a system compatible with out-of-order execu-
tion.

The execution error detector may be a hardware fault
detector detecting an error or likelihood of error in an execu-
tion of at least one instruction from a hardware fault in the
processor unit.

It is thus a feature of at least one embodiment of the inven-
tion to provide a system equally adept at handling hardware
execution errors per sample caused by intermittent thermal or
electrical problems likely to increase with advanced proces-
sors and smaller device line widths.

The region detector may detect regions by marker instruc-
tion inserted into the program.

It is thus a feature of at least one embodiment of the inven-
tion to permit compiler-based identification of idempotent
regions.

In this regard, the present invention also contemplates a
compiler for the above-described processor unit which may
review instructions of a program for execution on the proces-
sor unit to identify at least two idempotent regions within the
program. The compiler may then provide markers of the
beginnings and ends of the idempotent regions readable by
the processor unit during execution.

It is thus a feature of at least one embodiment of the inven-
tion to permit sophisticated analysis of the program for idem-
potent regions such as may not be possible in run time.

The compiler may further execute to control assignment of
variables to memory to increase a contiguous size of at least
one idempotent region.

It is thus a feature of at least one embodiment of the inven-
tion to employ the compiler to practically enlarge the idem-
potent regions to increase the effectiveness of the processor
unit.

The compiler may identify idempotent regions by analyz-
ing anti-dependencies in which there is a reading of a variable
followed by a writing of the variable without a writing of the
variable preceding the reading of the variable, and forms
idempotent regions by separating regions between instruc-
tions performing the reading of the variable and the succeed-
ing writing of the variable.

It is thus a feature of at least one embodiment of the inven-
tion to provide a simple method of identifying idempotent
regions.

The compiler may further execute prior to forming the
idempotent regions to convert the program to static single
assignment form to remove artificial anti-dependencies.

It is thus a feature of at least one embodiment of the inven-
tion to control register and stack assignments to increase the
size of idempotent regions.

The compiler may further execute prior to forming the
idempotent regions to perform a redundancy elimination
transformation on the program reducing reads of memory
locations not controlled by the compiler.

It is thus a feature of at least one embodiment of the inven-
tion to refine the anti-dependencies to eliminate those unnec-
essary for proper program execution.

These particular objects and advantages may apply to only
some embodiments falling within the claims and thus do not
define the scope of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a process diagram showing the compilation of a
program to increase idempotent regions and the loading of the

20

25

30

35

40

45

50

55

60

65

4

compiled program into memory of a computer having pro-
cessors providing elements for fault detection and specula-
tion;

FIG. 2 is a representation of data structures of a list and
overflow list used in an example program explaining idem-
potent regions and the compilation process;

FIG. 3 is a flow chart of the program using the data struc-
tures of FIG. 2 and showing simplified machine code for
implementing those instructions;

FIG. 4 is a flow chart of steps of a compiler identifying
regions of idempotency;

FIG. 5 is a control flow diagram of the instructions of FI1G.
3 showing clobber anti-dependencies that prevent a region
from being idempotent;

FIG. 6 is control flow diagram similar to that of FIG. 5§
compiled to increase the size of idempotent regions; and

FIG. 7 is a flow chart showing execution of the compiled
program by the processor of FIG. 1.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENT

Referring now to FIG. 1, a source code program 10 may
include multiple sequentially executed instructions 12
arranged in functions 14 or the like, the functional divisions
logically related to a given task performed by the program 10.
Such source code programs 10 may be written in a variety of
languages including, for example, C and its variants.

The present invention may provide a compiler 16 serving to
convert the source code 10 to a compiled program 18 having
object instructions 20 of the functions 14 divided into idem-
potent regions 22. In one embodiment, each idempotent
region 22 may be preceded by a region start token 24 and a
region conclusion token 26, being specialized instructions
providing an indication to the executing processor 34 of the
extent of the idempotent regions 22.

As will be discussed in more detail below, each idempotent
region 22 consists of a set of instructions 20 that, when
executed multiple times (the last time to completion), have
the same effects on variables used in the idempotent regions
22 and used later in the compiled program 18 as if the idem-
potent region 22 were executed a single time. More generally,
each idempotent region 22 does not overwrite its live-in vari-
ables. The concept of the idempotent region 22 will be
described in more detail below.

Referring still to FIG. 1, the compiled program 18 may be
loaded into a memory 28 of a computer 30. The memory 28
may also hold various data values 29 and may communicate
with a processor system 32 including one or more processors
34 for execution of the compiled program 18. Computer 30
may connect to external devices, for example, a programming
terminal 36 providing: display 38 for the display of informa-
tion, a separate processor 40, and user input devices 42 such
as a keyboard or mouse.

Referring still to FIG. 1, each processor 34 may include an
arithmetic logic unit 44 with or without a pipeline (not shown)
and including various registers 46 including a program
counter 48 as well as standard operating and flag registers.
The processors 34 may also include speculation circuitry 50
including elements such as predictors and the like according
to techniques known in the art but excluding standard check-
point circuitry used for squashing mis-speculated instruc-
tions. The processors 34 may also include out-of-order execu-
tion circuitry 52 allowing instructions to be executed out of
their program order by the arithmetic logic unit 44 according
to techniques known in the art but excluding a reorder buffer.
The processors 34 may also include output write buffers 53

US 9,244,772 B2

5

holding values to be output by instructions that are being
speculatively executed until completion of that execution.

The processor 34 may also provide for error state circuitry
54 for detecting error states in the operation of the processor
34 representing likely errors by the processor 34. For
example, the error state detecting circuitry 54 may detect
under-voltage, over-temperature, clock frequency perturba-
tions or the like which suggests temporary error conditions by
the processor 34, or may check calculation results using hard-
ware error checking systems such as parity checking circuits,
watchdog timers or the like. Generally, the error state cir-
cuitry 54 will detect a “mis-execution” of one or more instruc-
tions, the mis-execution indicating a probable error in pro-
gram execution that is detected either directly or indirectly by
detection of an underlying fault. Mis-execution should be
understood to broadly cover conditions likely to lead to erro-
neous execution of the program for any reason.

Significantly, the present invention includes simple idem-
potency processing circuitry 56 as will be described below
which executes firmware whose operation will be discussed
below with respect to FIG. 7. As noted above, the processor
34 may exclude checkpoint storage circuitry (for example, a
restore stack) for handling mis-speculations or a reorder
buffer (ROB) normally required for out-of-order processing,
or a load-store queue (L.SQ) normally associated with
memory dependence prediction.

Generally, the invention operates to identify idempotent
regions 22 and to permit speculation during those regions or
simple recovery from hardware errors. In the event of mis-
speculation or hardware errors, the program counter is simply
restored to a point before the mis-speculation (typically the
beginning of the idempotent region 22) without the need to
restore a state checkpoint.

Referring now to FIG. 2, the concept of the idempotent
region 22 may be demonstrated in a simple program that adds
elements to a “list” 60 or if that list is full, to an “overflow list”
62 each represented by a data structure in memory. Each data
structure of the list 60 and overflow list 62 may include a
starting address 64 in memory 28 and, at known offsets of 0,
4 and 8 memory words, variables holding a pointer to the
address of the beginning of the list (BUF), an index pointing
to the last filled item in the list (SIZE) indicating the list’s
current size, and the address of the end of the list (CAP)
indicating the list’s maximum capacity. As elements are
added to the list (or overflow list) the SIZE variable is incre-
mented until it reaches the value of the CAP variable at which
time an overflow condition occurs and new elements are
added to the overflow list 62 instead of the list 60.

Referring now also to FIG. 3, the process of adding an
element to the list 60 may be implemented as a function 14 as
shown in FIG. 1 and may begin as indicated by process block
70 with receipt of the new element for the list. This step may
berepresented in compiled program 18 (depicted as assembly
language instructions for clarity) in which at line 1 a tempo-
rary register t; receives the value of the new element to be
added.

At next process block 72, the list 60 is examined to see if
adding a new element would cause an overflow. This process
(atline 2) loads into a second register t, the value of SIZE held
at the memory address of [t,+4] and (at line 3) loads into third
register t; the value of CAP held at the memory address of
[t,+8]. These operations require a memory read to a value of
the register t, previously loaded with the starting address 64
of'the list buffer (not shown) added to the necessary offset of
4 or 8.

Atline 4, register t; is set to 1 if SIZE equals CAP indicat-
ing that the list is full. If at line 5, register t; has a value of 1

—

0

20

25

30

35

40

45

50

55

60

65

6

indicating that the list is full, then the address in t, is changed
from the address of the list 60 to the address of the overflow
list 62 so that all subsequent operations will affect the over-
flow list 62 rather than the list 60.

At process block 76, the new element is inserted at the end
of'the list or of the overflow list depending on the result of line
5. This process loads the values of BUF (at the memory
address of [t,+0]) and SIZE (at the memory address of [t,+4])
from either the list 60 or overflow list 62 into registers t, and
t; respectively (at lines 7 and 8, and adds these values together
to load the value of register t; (holding the new element) into
the memory location [t,+t;] pointed to by the sum of BUF and
SIZE at line 9

At process box 78, the value of SIZE is incremented (in
either the list 60 or overtlow list 62 as is appropriate) by
adding one to register t, at line 9 and loading this register into
the SIZE field at the memory address of [t,+4] of the list 60 or
overflow list 62.

The compiled program 18 is not idempotent because the
process of incrementing the SIZE variable changes the SIZE
variable by one after each execution of the compiled program
18. For this reason, multiple executions of the program will
not provide the same results as the first execution of the
program. The present invention provides a method of identi-
fying portions of programs that are idempotent and compiling
the programs 10 to maximize the continuous idempotent
regions in the compiled program 18.

Referring now to FIG. 5, the control flow of the program of
FIG. 3 is depicted so as to illustrate relationships between the
instructions that may affect whether a particular program is
idempotent. In FIG. 5, general “flow” dependencies between
instructions are shown by dotted lines, “anti-dependencies”,
as will be described, are shown by solid lines. Within the
anti-dependencies, “clobber” anti-dependencies are shown in
a thick solid line and anti-dependencies that are not clobber
anti-dependencies are shown with a thin solid line. These
distinctions are used to identify contiguous idempotent
regions and further to manipulate the compilation of the pro-
gram to maximize the size of contiguous idempotent regions.
Contiguous in this context refers to the execution sequence of
the instructions rather than their place in the program or in
computer memory. In summary, idempotent regions 22 are
formed by collecting instructions that do not include both
instructions on either side of a clobber anti-dependency.

Continuing to refer to FIG. 5, flow dependencies are read-
after-write data dependencies in which a first instruction
writes to a data value and then is followed by a second instruc-
tion that reads from the same data value. Flow dependencies
generally do not create a problem for idempotency because on
repetition of the flow dependency instructions, the first write
instruction returns the program to an identical state for each
subsequent execution.

Anti-dependencies, in contrast, are “write-after-read”
dependencies in which an instruction that reads a variable is
followed by an instruction that writes the same variable. It
will be understood that this second writing of the variable can
create a problem for idempotency because it changes the
variable so if the instructions including the dependency bar
are repeated, that variable will have a changed value.

Not all anti-dependencies destroy idempotency. If an anti-
dependency is preceded by a writing of the variable at issue
then, like a flow dependency, re-executing the program
restores the program to its initial state of that first writing.
This preceding write permits idempotency even with a fol-
lowing anti-dependency.

If the anti-dependency is not preceded by a writing of the
variable (a flow dependency), it will be termed a “clobber”

US 9,244,772 B2

7

anti-dependency which is generally fatal to idempotency.
Thus, regions of idempotent may be defined in terms of the
presence or absence of clobber anti-dependencies. The fol-
lowing chart summarizes this general principle:

Operation Sequence Dependency Type Idempotent?
Write x, Read x Flow Dependency Yes
Write x, Read x, Write x Anti-Dependency Yes
Read x, Write x Clobber Anti-Dependency No

Referring again to FIG. 5, it can be seen that instruction 4
is flow dependent on instruction 3 because instruction 3
writes to register t; before that register is read at instruction 4.
Similarly, instruction 6 is clobber anti-dependent on instruc-
tion 2 because instruction 6 reads register t, then writes to
register t, without there having been a writing to register t,
before instruction 2. Finally, instruction 7 is anti-dependent
on instruction 4 (but not clobber anti-dependent) because
there is a writing after a reading of register t, but there has
been a previous writing to register t, at instruction 2. It will be
seen in FIG. 5 that there are clobber anti-dependencies
between the following instruction pairs: 2-6, 3-6, 2-11, and
8-11.

While the invention may be implemented simply by iden-
tifying idempotent regions as those not containing any clob-
ber anti-dependencies, it is possible to reduce the number of
clobber anti-dependencies by certain compiler techniques.
Generally, clobber anti-dependencies that may be eliminated
by compilation will be termed “artificial” clobber anti-depen-
dencies, whereas clobber anti-dependencies that are inherent
in the program function will be termed “semantic” clobber
anti-dependencies.

Whether a anti-dependency is semantic depends on the
storage location of the relevant variable as within either (1)
program controlled memory (global memory or heap
memory) or (2) compiler controlled memory (registers and
stack). Generally, memory anti-dependencies related to vari-
ables stored in compiler-controlled memory will be “artifi-
cial” and can be removed by compilation techniques. These
distinctions are summarized below:

Dependent
Dependent variable Clobber anti- Can be eliminated by
variable type location dependency type compiler?
Memory anti- Memory Semantic No
dependency Heap Semantic No

Stack Artificial Yes

Register Artificial (Mostly)

Referring now to FIG. 6, the clobber anti-dependencies
between instructions 2-11, 3-6 and 2-6 can be eliminated by
reassigning memory controlled by the compiler (e.g. regis-
ters) at instructions 5', 7', 8', 9' and 10' and the use of a
¢-function at instruction 6'. As will be understood in art, a
¢-function defectively chooses a value (t, or overtlow list)
depending on the control flow. This reassignment of register
values leaves only a single clobber anti-dependency between
instructions 8' and 11' (being the equivalent of instructions 8
and 11 with adjusted registers). An idempotent region 22 may
thus be developed by simply dividing the compiled program
18 at idempotency region boundary 82 between instruction
10" and 11' per process block 84 of FIG. 4. This division
ensures that the input variables to the compiled program 18'

20

25

35

40

45

50

55

60

65

8

are not modified in the region before the idempotency region
boundary 82 which remains idempotent.

Referring again to FIG. 4, at process block 86 demarcating
instructions or the like may be placed on the idempotent
regions to show the idempotency region boundary 82.

Generally, the process described above may be imple-
mented in the compiler 16 by converting all of the register
assignments in the uncompiled code 10 to a static single
assignment form (SSA) as is understood in the art and speci-
fying that all live-in variables in the region 22 be maintained
live regardless of the use of those live-in variables. This will
produce a compiled program 18' free of artificial anti-depen-
dencies meaning that the remaining anti-dependencies are
semantic. This will not determine whether the remaining
anti-dependencies which are semantics are clobber anti-de-
pendencies, but will permit the identification of idempotent
regions 22 that are arguably sub optimal simply by observing
the remaining anti-dependencies and breaking idempotent
regions between the instructions of the remaining anti-depen-
dencies.

An improved demarcation of idempotent regions 22 can be
obtained through the use of a redundancy eliminating trans-
formation which eliminates some remaining artificial anti-
dependencies increasing the likelihood that any remaining
memory anti-dependencies are clobber anti-dependencies.
An example of'this transformation is shown below and results
in the elimination of an anti-dependency that is artificial.

Before transformation After transformation

1.mem[x]=a
2.b=a
3. mem[x]=c

This transformation reduces unnecessary reads of memory
locations not controlled by the compiler and can be imple-
mented by techniques well understood in the art.

As noted, the redundancy eliminating transformation
increases the likelihood that any remaining anti-dependen-
cies are clobber anti-dependencies. After this transformation
it may be assumed that the remaining memory anti-depen-
dencies are either clobber anti-dependencies or indistinguish-
able from clobber anti-dependencies.

As noted, after these transformations, the idempotent
regions are produced by cutting all semantic clobber anti-
dependencies (separating the instructions forming the clob-
ber anti-dependencies into different idempotent regions) to
form boundaries between idempotent regions. This cutting
process may be implemented to maximize the idempotent
regions by casting the problem in terms of the NP-complete
vertex multi-cut problem and using approximation algo-
rithms to define the minimum set of cuts or by other similar
techniques.

Referring now to FIGS. 1 and 7, the compiled program 18
may be executed by the processor 34 using rules implemented
in the idempotency processing circuitry 56. Following the
steps of these rules, at decision block 90, the beginning of an
idempotent region 22 may be detected and the value of the
program counter 48 stored. This detection may be by means
of'the special instruction embedded in the compiled program
18 by the compiler 16 or by a table of addresses or other
similar mechanisms prepared by the compiler.

Speculative execution of instructions and out-of-order
instruction execution may be performed during execution of
the instructions of the idempotent region 22 as indicated by
process block 92.

US 9,244,772 B2

9

In the event of a mis-speculation or hardware error, as
detected at decision block 94, such as may render the
executed portion of the idempotent region 22 erroneous or
suspect, the erroneous or suspect portion of the idempotent
region 22 may simply be re-executed by rolling back the value
of the program counter 48 per process block 97 to that value
stored at decision block 90.

Decision block 96 detects the end of the idempotent region
22 and at that time halts further speculation and proceeds to
decision block 98 where the current speculation is assessed to
see if it is complete. Generally, the speculation is complete if
the variables subject to speculation have been fetched and
determined to match the values used for the speculation (in
branch and value speculation) or a determination has been
made that a dependency did not exist (in memory dependence
speculation). If not, the program stalls at process block 100
until the speculation is complete and until all out-of-order
instructions have been retired, or branches to decision block
94 if the completion indicates a mis-speculation.

If the speculation has successfully completed, then at pro-
cess block 102, any optional output bufter holding outputs
from the speculation is committed (by writing these output
values to memory) and the processor 34 proceeds for further
execution of the program after the idempotent region 22
(without speculation) until the detection of a new idempotent
region at decision block 90 again.

Generally, the idempotency processing circuitry 56
enforces the following rules: A.

A. Execution may not proceed across an idempotent region
boundary until all outstanding speculation has been verified;
and

B. For all instructions that write to memory locations that
are not compiler controlled such as the heap or global
memory,

(1) the memory location of the write must be verified
correct and either

(2a) the write must be reached through correct control flow
inside the containing idempotent region, or

(2b) the write must be buffered until the containing region
terminates successfully as described above with respect to
process block 102.

This first condition results from the fact that mis-specula-
tion may not be recovered, using the present invention’s use
of idempotent regions, after the boundary of idempotent
region.

The second requirement arises from the need to ensure that
program semantics are observed. Memory not controlled by
the program (e.g. memory other than registers and stack
memory) is thus protected by buffering stores to the memory
until it is verified that the write destinations and control flow
is correct. Other approaches such as modifying the idempo-
tent region to ensure this condition is statically guaranteed are
also possible.

Certain terminology is used herein for purposes of refer-
ence only, and thus is not intended to be limiting. For
example, terms such as “upper”, “lower”, “above”, and
“below” refer to directions in the drawings to which reference
is made. Terms such as “front”, “back”, “rear”, “bottom” and
“side”, describe the orientation of portions of the component
within a consistent but arbitrary frame of reference which is
made clear by reference to the text and the associated draw-
ings describing the component under discussion. Such termi-
nology may include the words specifically mentioned above,
derivatives thereof, and words of similar import. Similarly,
the terms “first”, “second” and other such numerical terms
referring to structures do not imply a sequence or order unless
clearly indicated by the context.

20

25

30

35

40

45

50

55

60

65

10

When introducing elements or features of the present dis-
closure and the exemplary embodiments, the articles “a”,
“an”, “the” and *“said” are intended to mean that there are one
or more of such elements or features. The terms “compris-
ing”, “including” and “having” are intended to be inclusive
and mean that there may be additional elements or features
other than those specifically noted. It is further to be under-
stood that the method steps, processes, and operations
described herein are not to be construed as necessarily requir-
ing their performance in the particular order discussed or
illustrated, unless specifically identified as an order of perfor-
mance. It is also to be understood that additional or alternative
steps may be employed.

The terms “hardware fault” or “hardware error” refer gen-
erally to faults in the execution of a program by the computer
and their effect on architecture state caused by hardware
operation, as opposed to software design, whether as a result
of component failure, over temperature, electromagnetic
interference, supply voltage interruptions or noise, or high-
energy particle interference, or the like.

References to “a microprocessor” and “a processor” or
“the microprocessor” and “the processor,” can be understood
to include one or more microprocessors that can communi-
cate in a stand-alone and/or a distributed environment(s), and
can thus be configured to communicate via wired or wireless
communications with other processors, where such one or
more processor can be configured to operate on one or more
processor-controlled devices that can be similar or different
devices. Furthermore, references to memory, unless other-
wise specified, can include one or more processor-readable
and accessible memory elements and/or components that can
be internal to the processor-controlled device, external to the
processor-controlled device, and can be accessed via a wired
or wireless network.

It is specifically intended that the present invention not be
limited to the embodiments and illustrations contained herein
and the claims should be understood to include modified
forms of those embodiments including portions of the
embodiments and combinations of elements of different
embodiments as come within the scope of the following
claims. All of the publications described herein, including
patents and non-patent publications, are hereby incorporated
herein by reference in their entireties.

What we claim is:

1. A processor unit for an electronic computer executing

instructions of a program, the processor unit comprising:

a region detector detecting an idempotent region during
execution of the instructions being a region of sequen-
tially executed instructions of the program that may be
executed multiple times while having a same effect on
variables used in the idempotent region and later in the
program as if the idempotent region were executed a
single time;

an execution error detector communicating with the region
detector to detect a mis-speculation of at least one
instruction of the idempotent region;

a recovery circuit communicating with the execution error
detector and responding to the mis-speculation by
restarting execution of instructions in the idempotent
region without restoring variables from an earlier vari-
able checkpoint; and

a speculation circuit for executing instructions in the idem-
potent region speculatively before data necessary for the
execution is available and wherein the execution error
detector detects mis-speculation in the speculatively
executed instructions in the absence of a hardware fault

US 9,244,772 B2

11

in the operating processing unit to indicate the mis-
speculation and to trigger the recovery circuit;

wherein the processor unit does not include variable check-

point storage circuitry for restoring variable values after
mis-speculation.

2. The processor unit of claim 1 wherein the speculation
circuit is a branch-speculation circuit speculatively executing
instructions following a branch condition; and

further including a stall circuit stalling execution of the

program at an end of an identified idempotent region
until branch speculation in the idempotent region is
complete.

3. The processor unit of claim 2 further including a write
buffer buffering all stores by instructions of the idempotent
region until all speculation of instructions relating to the
stores is complete.

4. The processor unit of claim 1 wherein the speculation
circuit is a memory dependence speculation circuit specula-
tively executing instructions reading a variable following an
instruction writing to the variable; and

further including a stall circuit stalling execution of the

program at the end of an identified idempotent region
until memory dependence speculation in the idempotent
region is complete.

5. The processor unit of claim 1 wherein the speculation
circuit is an out-of-order execution circuit for executing
instructions out of normal control flow order; and

further including a stall circuit stalling execution of the

program at an end of an identified idempotent region
until all instructions executed out-of-order have been
completed; and

wherein the processor does not include a reorder buffer.

6. The processorunit of claim 1 wherein the region detector
detects regions by marker instructions inserted into the pro-
gram.

7. A compiler for a processor unit executing a program, the
processor unit being of a type including:

aregion detector detecting an idempotent region according

to a marking of the regions, each idempotent region

being a region of sequentially executed instructions of

the program that may be executed multiple times while
having a same effect on variables used in the idempotent
region and later in the program as if the idempotent
region were executed a single time;

an execution error detector communicating with the region
detector to detect a mis-speculation of at least one
instruction of the idempotent region; and

arecovery circuit communicating with the execution error
detector and responding to the mis-speculation by
restarting execution of instructions in the idempotent
region;

the compiler comprising:

a program embodied in a non-transitory computer-read-
able medium and executing on a computer to:

(a) review instructions of a program for execution on the
processor unit to identify at least two idempotent regions
within the program based on an analysis of dependen-
cies of the instructions of the program; and

(b) based on the review, provide markers of beginnings and
ends of the idempotent regions readable by the processor
unit during execution indicating that the idempotent
region is idempotent;

wherein the compiler further executes to control assign-
ment of variables to memory to increase a contiguous
size of at least one idempotent region; and

wherein the compiler further executes to identify idempo-
tent regions by analyzing clobber anti-dependencies

25

30

35

40

45

50

55

60

65

12

which occur only in states in which there is a reading of
a variable followed by a writing of the variable without
a writing of the variable preceding the reading of the
variable, and forms idempotent regions by separating
regions between instructions performing the reading of
the variable and the succeeding writing of the variable.

8. The compiler of claim 7 wherein the compiler further
executes prior to forming the idempotent regions to convert
the program to a static single assignment form to remove
artificial anti-dependencies.

9. The compiler of claim 7 wherein the compiler further
executes prior to forming the idempotent regions to perform
a redundancy elimination transformation on the program
reducing reads of memory locations not controlled by the
compiler.

10. A method of executing a program including instruc-
tions on an electronic computer, the method comprising the
steps of}

(a) using at least one electronic computer to identify an
idempotent region in the program being a region of
sequentially executed instructions of the program that
may be executed multiple times while having a same
effect on variables used in the idempotent region and
later in the program as if the idempotent region were
executed a single time by an analysis of dependencies of
the instructions of the program;

(b) detecting a mis-speculation of at least one instruction of
the idempotent region based on the identification of step
(a); and

(c) responding to the mis-speculation by restarting execu-
tion of instructions in the idempotent region without
loading variables from a variable checkpoint storage
circuit;

wherein the mis-speculation is an error within the idempo-
tent region in speculative execution of at least one
instruction before data necessary for the execution ofthe
at least one instruction is available in the absence of a
hardware fault in the electronic computer.

11. The method of claim 10 wherein the speculation is a
branch-speculation speculatively executing instructions fol-
lowing a branch condition and further including the step of
stalling execution of the program at the end of an identified
idempotent region until branch speculation in the idempotent
region is complete.

12. The method of claim 11 further including the step of
buffering all stores by instructions of the idempotent region
until all speculation of instructions relating to the stores is
complete.

13. The method of claim 10 wherein the speculation is a
memory dependence speculation circuit speculatively
executing instructions using a variable following an instruc-
tion writing to the variable and further including the step of
stalling execution of the program at the end of an identified
idempotent region until memory dependence speculation in
the idempotent region is complete.

14. The method of claim 10 further including the step of
executing instructions out of normal control flow order; and
further including the step of stalling execution of the program
at the end of an identified idempotent region until all instruc-
tions executed out-of-order have been completed.

15. A computer system comprising:

an electronic computer executing a program stored in non-
transitory medium to:

identify an idempotent region being a region of sequen-
tially executed instructions of the program that may be
executed multiple times while having a same effect on

US 9,244,772 B2
13

variables used in the idempotent region and later in the
program as if the idempotent region were executed a
single time;

wherein the identification of a given idempotent region
analyzes dependencies between instructions and locates 5
ending boundaries of a given idempotent region so that
the boundaries separate an earlier and later instruction
related in a clobber anti-dependency, wherein the earlier
and later instruction are related in a clobber anti-depen-
dency only when the earlier instruction in the given 10
idempotent region reads a given memory variable and
the later instruction writes the given memory variable
and the earlier instruction is not preceded by another
instruction in the given idempotent region that writes the
given memory variable. 15

16. A processor unit for an electronic computer executing

instructions of a program, the processor unit comprising:

a region detector detecting an idempotent region being a
region of sequentially executed instructions of the pro-
gram that may be executed multiple times while having 20
a same effect on variables used in the idempotent region
and later in the program as if the idempotent region were
executed a single time;

a speculation circuit permitting speculation only in idem-
potent regions and detecting a mis-speculation of at least 25
one instruction of the idempotent region; and

arecovery circuit communicating with the execution error
detector and responding to the mis-speculation in the
absence of a hardware fault in the electronic computer
by restarting execution of instructions in the idempotent 30
region.

	Bibliography
	Abstract
	Drawings
	Description
	Claims

