US009208203B2

a2 United States Patent

Ré et al.

US 9,208,203 B2
Dec. 8, 2015

(10) Patent No.:
(45) Date of Patent:

(54) HIGH-SPEED STATISTICAL PROCESSING IN
A DATABASE

(76) Inventors: Christopher M. Ré, Madison, WI (US);

Benjamin H. Recht, Madison, WI (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 378 days.
(21) Appl. No.: 13/253,635
(22) Filed: Oct. 5,2011
(65) Prior Publication Data
US 2013/0091160 A1 Apr. 11, 2013
(51) Imt.ClL
GO6F 17/30 (2006.01)
(52) US.CL
CPC ..o, GO6F 17/30539 (2013.01)
(58) Field of Classification Search
USPC ittt 707/769

See application file for complete search history.
(56) References Cited

U.S. PATENT DOCUMENTS

7,849,032 B1* 12/2010 Camposetal. 706/25
2004/0088405 Al* 5/2004 Aggarwal ... 709/224
2005/0080979 Al* 4/2005 Wuetal. ... 7111
2007/0087756 Al* 4/2007 Hoffberg 455/450
2009/0040054 Al* 2/2009 Wangetal. .. 340/576
2009/0138463 Al* 5/2009 Chapellecccocvevvninn. 707/5

OTHER PUBLICATIONS

Chu, Ceng-Tao et al. (Map-Reduce for Machine Learning on
Multicore, Conference Paper, NIPS Conference 2006, Neural Infor-
mation Processing Systems, Vancouver, Canada).*

Ghoting, Amol et al. (Proceedings of the 27th International Confer-

50

N

80~

RECEIVE PROBLEM
DEFINITION FROM USER

LOAD GRADIENT
FUNCTION

84\/\| LOAD INITIAL VALU ESJ /

’/

82 _~

/

86 ISSUE QUERY
~"__ ToRoBMS
|
88~ oureutresur |

A
N

Ve

=

ence on Data Engineering, ICDE 2011, Apr. 11-16, 2011, Hannover,
Germany).*

Zhang et al. Boolean + ranking: querying a database by k-constrained
optimization. 2006. In Proceedings of the 2006 ACM SIGMOD
international conference on Management of data(SIGMOD °06).
ACM, New York, NY, USA, pp. 359-370.*

Xu et al. Integrating Hadoop and Parallel DBMS. 2010. Proceedings
of the 2010 ACM SIGMOD International Conference on Manage-
ment of data. pp. 969-974.*

Laurini et al. Dealing with geographic continuous fields: the way to
a visual GIS environment. 2004. In Proceedings of the working
conference on Advanced visual interfaces (AVI *04). ACM, New
York, NY, USA, pp. 336-343.*

Laurini et al. A Spatial SQL Extension for Continuous Field Query-
ing. 2004. In Proceedings of the 28th Annual International Computer
Software and Applications Conference (COMPSAC’04). IEEE, 4
pages.*

Dong et al. (Mining Constrained Gradients in Large Databases. 2004.
In IEEE Transactions on Knowledge and Data Engineering, vol. 16,
No. 8, pp. 922-938.*

Chu, Ceng-Tao, et al., Map-Reduce for Machine Learning on
Milticore, Conference Paper, NIPS Conference 2006, Neural Infor-
mation Processing Systems, Vancouver, Canada.

Ghoting, Amol, et al., Proceedings of the 27th International Confer-
ence on Data Engineering, ICDE 2011, Apr. 11-16, 2011, Hannover,
Germany.

* cited by examiner

Primary Examiner — James E Richardson
(74) Attorney, Agent, or Firm — Boyle Fredrickson, S.C.

(57) ABSTRACT

Numerically intensive statistical processing of data is imple-
mented as an incremental gradient method within the engine
of a database system. Small user-defined functions in the
database system calculate an approximate gradient from one
term of a linearly separable defined cost resolvable from a
single tuple of the database. In this way the optimized data
access of the database may be exploited for rapid statistical
processing.

13 Claims, 7 Drawing Sheets

62

\

/T NmALZEVARIABLE | ~_%°

I/\/92

/\/96

/ I

FOR EACH TUPLE
I
COMPUTE INCREMENTAL
GRADIENT
1
[upDATEVARIABLES [\ 98

| TtesTcompLenion [\ 100

NEXTTUPLE

\ |
= [~

U.S. Patent Dec. 8, 2015 Sheet 1 of 7 US 9,208,203 B2

PRIOR ART
/10
14 ’\< _
12\ \ g
NUMERIC
PROCESSING 16
SOFTWARE
a8
/’__’V
FIG. 1
PRIOR ART
14 26 24 18
12\ 1 {
NUMERIC
PROCESSING | rDBM
SOFTWARE —| l— 20
167 _|
13/\/

FIG. 2

U.S. Patent Dec. 8, 2015

Sheet 2 of 7 US 9,208,203 B2
30
32 36
g 5
24
52 / /__/ 18
W 42
- ﬁ\/
i 22
EEFFERED —I 20
%;‘) \))
54 56 gl 34 41

U.S. Patent

12

64

62

Dec. 8, 2015 Sheet 3 of 7 US 9,208,203 B2
Yoo -
RDBM
20
I/' ‘\
4 \
, 24 \
S/ 60 \ ' \
, ‘
- S : 20
72
QUERY T>78 /
PROCESSOR - \\
4 | 1 7 ,%70
74 | | DATABASE
A :HANDLER N
y | (1 .
RN e | [—

U.S. Patent Dec. 8, 2015
50\
80 RECEIVE PROBLEM
~""] DEFINITION FROM USER
|
82~ LOAD GRADIENT
FUNCTION
84._~" LOAD INITIAL VALUES
86 ISSUE QUERY
~ T0 RDBMS
88 _~[outPuTRESULT
104

FIG. 6

Sheet 4 of 7 US 9,208,203 B2
62\
/T INTALIZEVARBLE | ~_*°
/ |
/| FOREACHTUPLE [.92
Ve
.]
o COMPUTE INCREMENTAL |~ 96
GRADIENT
|
\ UPDATE VARIABLES |98
AY
|
TESTCOMPLETION 100
. \ I
- NEXT TUPLE ~_9%4
FIG. 5
68

U.S. Patent

Dec. 8, 2015 Sheet 5 of 7

US 9,208,203 B2

dt(a,b) Jf(a,b)

da ob

/‘76

FIG. 8

U.S. Patent Dec. 8, 2015 Sheet 6 of 7 US 9,208,203 B2

111 fa,, by) —”/

FIG. 9

U.S. Patent

Dec. 8, 2015 Sheet 7 of 7

72 20

FIG. 10

US 9,208,203 B2

US 9,208,203 B2

1
HIGH-SPEED STATISTICAL PROCESSING IN
A DATABASE

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH

CROSS-REFERENCE TO RELATED
APPLICATIONS

BACKGROUND OF THE INVENTION

The present invention relates to computer programs for
solving statistical problems related to large amounts of data
and in particular to a computer program and method imple-
menting incremental gradient methods within a relational
database management program.

Numeric analysis programs such as, MatLab and Math-
ematica, have been developed to assist users in performing
time consuming and complex numeric computations, such as
statistical analysis, on user-supplied data. Typically such
numeric analysis programs provide highly optimized
numeric calculations accessing relatively small data files
holding the user-supplied data in simple, static data structures
loaded in random access memory on the computer running
the program.

For large user-supplied data sets, it is known to link a
numeric analysis program to a relational database manage-
ment program that may handle access to the user data stored
in a database. As is generally understood in the art, relational
database management programs are programs that provide a
set of optimized functions for accessing and manipulating
large sets of dynamic data. Relational relational database
management programs typically provide standard functions
for counting, summing, averaging, sorting, grouping, data
that operate efficiently at high speed. Generally relational
database management programs also provide mechanisms to
ensure the integrity security and recoverability of the data in
an environment where the data may be readily updated and
changed. The relational database management program typi-
cally enforces a particular data structure or grouping of data
on the physical storage media to improve data access speed
and compactness.

Connecting numeric analysis programs to relational data-
base management programs can be relatively inefficient and
may require exporting of the needed data from the database
into a static datafile, piece-by-piece for execution on the
numeric analysis program and then a re-importing of the data
back into the database. This approach may be error-prone,
difficult, and slow.

SUMMARY OF THE INVENTION

The present invention provides for high-speed numeric
analysis of large sets of data by performing the numeric
analysis inside the relational database management program
using standard database structures. In this way, the numeric
analysis and the incident data access may be combined to be
performed by the relational relational database management
program with very little speed penalty.

Specifically, the present invention provides a method of
implementing an incremental gradient method on an elec-
tronic computer holding a database having multiple tuples,
the incremental gradient method using a cost function com-

20

25

30

35

40

45

50

55

60

65

2

prised of linearly separable terms. The method includes the
steps of loading a gradient function into a user-defined func-
tion of a relational database management program associated
with the database, the gradient function providing a gradient
of the cost function simplified to a linearly separable term
related to a single tuple. An initial argument for the cost
function is selected and a query constructed for the relational
database management program providing for a tuple-by-tuple
application of the gradient function to tuples of the database,
and modifying the initial arguments according to the gradient.
The query is then executed on the relational database man-
agement program, and data based on the modified initial
arguments after execution of the query, is output.

It is thus a feature of at least one embodiment of the inven-
tion to provide a method of implementing sophisticated sta-
tistical techniques within the pre-existing “machinery” of a
relational database management program, thereby reducing
unnecessary data transfer and exploiting the optimization of
data access developed for relational database management
programs.

The query may have a termination condition of completing
review of all tuples in a predefined set of tuples in the database
at least once.

It is thus a feature of at least one embodiment of the inven-
tion to provide for a well bounded termination condition for
the statistical technique.

Alternatively, or in addition, the query may have a termi-
nation condition of reaching a gradient magnitude below a
predetermined value.

It is thus a feature of at least one embodiment of the inven-
tion to provide for dynamic termination condition, indicative
of convergence to a solution, that may be readily extracted
from the gradient function used for this process.

The query may provide for a randomized tuple-by-tuple
application of the gradient function moving by through the
database in a pseudo random pattern.

It is thus a feature of at least one embodiment of the inven-
tion to exploit common native functions within a relational
database management program for randomizing returned
tuples to provide faster convergence.

The initial arguments may be modified according to a step
size being a function of the gradient and optionally of the
number of tuples reviewed or iterations.

It is thus a feature of at least one object of the invention to
implement an incremental gradient method in a database
manager which provides variables and functions readily
implementing these options.

The query may employ terms of a Standard Query Lan-
guage.

It is thus a feature of at least one object of the invention to
permit the use of pre-processor programs that may implement
the present invention with a variety of different proprietary
database systems with minimal modification.

The cost function may relate to any of a support vector
machine, a logical regression, conditional random fields, hid-
den Markov models, and Kalman filters.

It is thus a feature released one embodiment of the inven-
tion to provide a technique broadly applicable to important
classes of statistical problems.

The database may be selected from any of: PostgreSQL;
MySQL; Access, DB2.

Itis thus an object of the invention to leverage considerable
effort existing in current commercial relational database man-
agement programs for sophisticated statistical processing.

These particular objects and advantages may apply to only
some embodiments falling within the claims, and thus do not
define the scope of the invention.

US 9,208,203 B2

3
BRIEF DESCRIPTION OF THE FIGURES

FIG. 1 is a block diagram of a prior art numerical analysis
program communicating with a user terminal and data stored
in a simple data structure;

FIG. 2 is a figure similar to FIG. 1 showing a prior art
joining of a numeric analysis program to a relational database
management program communicating with a database;

FIG. 3 is a simplified block diagram of a computer system
for suitable for implementing the present invention having a
processor and memory, the latter holding a database, a rela-
tional database management program, and a pre-processor
program being one embodiment of the present invention;

FIG. 4 is a block diagram similar to that of FIGS. 1 and 2
showing implementation of numeric analysis within a rela-
tional database management program per the present inven-
tion, further showing an expanded functional diagram of the
relational database management program;

FIG. 5 is a flow chart of the principle steps of the present
invention;

FIG. 6 is an example graph illustrating a statistical problem
of linear regression together with a logical diagram of a
database to be operated on by the present invention in the
solution of this problem;

FIG. 7 is a perspective view of a cost function that may be
used with the statistical problem of FIG. 6;

FIG. 8 is a representation of a user-defined function regis-
tered with the relational database management program that
may be implemented in the solving of the statistical problem
of FIG. 6;

FIG. 9 is a diagram of the cost function of FIG. 7 showing
multiple iterations of an incremental gradient method for the
solution of the problem of FIG. 6 and successive approxima-
tions of a linear fit of data points of the database in graphs
similar to that of FIG. 6; and

FIG. 10 is a logical representation of the tuples of the
database showing a random progression through the tuples
per one embodiment of the present invention.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENT

Prior Art Context

Referring now to FIG. 1, a prior art numeric analysis pro-
gram 10 provide for communication with a user through a
user terminal 12, for example, including: a graphic or text
display, and a keyboard and cursor control device or the like,
as is generally understood in the art. Commands received
from the user through the user terminal 12, typically in a
proprietary language unique to the numeric processing soft-
ware 14, may be received by the numeric processing software
14 to cause the processing of data in a data file 16. Generally,
the numeric processing software 14 contains algorithmic pro-
grams optimized for certain types of numeric calculations.

The data file 16 may hold user-supplied data and may be
stored in random access memory 18, for example, being a
combination of logically integrated solid-state memory and
one or more one or more disk drives. Generally memory 18 is
logically integrated by the operating system on the computer
together with memory management hardware to appear to the
numeric processing software 14 as a simple ordered list of
data or the like accessible by a logical address.

Referring now to FIG. 2, the numeric processing software
14 may work with substantially larger amounts of data stored
in a database 20 managed by a relational database manage-
ment program 24. Typically, the data of the database 20 is not

20

25

30

35

40

45

50

55

60

65

4

accessed using data addresses but by variables in a database
attribute. The numeric processing software 14 may provide
requests for data from the relational database management
program 24 through query formulating middleware 26 and
the data may be returned for temporary storage, for example,
as a data file 16 in random access memory 18 to be accessed
by the numeric processing software 14 per conventional
operation. Other interfaces between the numeric processing
software 14 and the relational database management program
24 for exchanging information may also be implemented. The
separate steps of accessing the data and returning it for stor-
age can substantially increase the processing time for any
numeric calculation.

Overview of the Hardware System

Referring now to FIG. 3, the present invention may be
implemented on a computer system 30 providing one or more
processors 32 (possibly including memory cache structures,
not shown) communicating on a common bus 34 with a local
memory 36 (typically solid-state random access memory)
and external memory 22, for example, a disk array or the like
communicating with the local bus 34 through a disk controller
41 or the like.

The local memory 36 and external memory 22 may appear
as a logical unity of memory 18 to the operation of operating
system 42 held in one of local memory 36 and external
memory 22. One of the local memory 36 and external
memory 22 may also hold a relational database management
program 24 and a database 20 which will be discussed below.
A pre-processor program 50 of the present invention may also
be held in local memory 36 and/or external memory 22.

Local bus 34 may also communicate with one or more
interfaces 51 providing communication with the terminal 12,
including, for example, graphics screen 52 keyboard 54 and
mouse 56 of the type well known in the art.

Overview of the Present Invention

Referring now to FIG. 4, pre-processor program 50 of the
present invention may communicate directly with the termi-
nal 12 and with the relational database management program
24 to act as an interface between the two (as shown) or may
serve as a component to a numeric processing software 14.
Generally, the pre-processor program 50 will receive infor-
mation derived from a user about a numeric processing prob-
lem and will formulate necessary instructions to the relational
database management program 24 to execute internal opera-
tions to solve the numeric processing problem.

In this regard, relational database management program 24
may be a general commercially available or open-source rela-
tional database management program such as those described
above. Such relational database management programs 24
generally include a query processor 60 receiving a standard
query language query 62 as well as other commands 64 such
as registration commands to load user-defined functions. The
query processor 60 will then provide low-level instructions to
a database handler 66 responding to the low-level instructions
from the query processor 60, two implement the necessary
data access for processing for the query 62. Generally the
database handler 66 will control the physical structure of
database 20 (e.g. how the data of the database 20 is organized
on physical media) to provide a logical set of tables 68 com-
posed of a set of tuples 70 (shown as rows) each having one or
more attributes 72 (shown as columns). The database handler
66 will further control grouping of the data for optimized
access and manage the level routines to the integrity of the

US 9,208,203 B2

5

data (for example with error checking and redundancy) and
provide data security to the extent required.

In implementing the query, the database handler 66 may
employ optimized database functions 74, for example, spe-
cialized functions for counting, summing, averaging, sorting,
grouping, data. In addition the database handler 66 may use
one or more user-defined functions 76 which may be regis-
tered with the relational database management program 24 by
commands 64.

In implementing the query 62, the query processor 60 may
also have access to scratchpad memory 78 for holding inter-
mediate values or output values (for example averages,
counts, sums, etc.) as is generally understood in the art.

Program Flowchart

Referring now to FIGS. 4 and 5, as noted above, the pre-
processor program 50 may execute to receive from a user, via
terminal 12, as indicated by process block 80, a definition of
a statistical task solvable via incremental gradient methods
using the data of the database 20.

Based on this information, as indicated by process block
82, the pre-processor program 50 will formulate a gradient
function that may be registered with the relational database
management program 24, using commands 64, as a user-
defined function 76 of the relational database management
program 24 per process block 84. This user-defined function
76 will be applied by the relational database management
program 24 in solving the statistical task.

The pre-processor program 50 may then formulate and
issue a query 62 as indicated by process block 86 to the
relational database management program 24.

When the query 62 is completed by the relational database
management program 24, the pre-processor program 50 will
receive the solution to the statistical problem to output at
process block 88.

The query 62 generated by the pre-processor program 50
will generally cause the database system to execute a series of
steps applying the user-defined functions 76 on a tuple-by-
tuple basis to the data of the database 20. In a first of these
steps, shown in process block 90, one or more of variables to
be iterated are set to initial values, for example, chosen by the
user, as stored in the scratchpad memory 78. These variables
will ultimately provide the output or answer to the statistical
problem.

As indicated by a loop formed by process box 92 and 94,
the pre-processor program 50 will then review the tuples 70 of
the database 20 within a predefined set (defined in the query).
In this loop each tuple 70 is processed, preferably one at a
time, as indicated by process block 96. The processing applies
to the data of the tuple 70 a gradient function for the statistical
problem previously registered in the user-defined functions
76.

At process block 98 within the loop, the gradient derived
from this gradient function, for each given tuple 70, is used to
update variables for one iteration.

At process block 100, a test is performed to see if the
iterative process is complete and if not the process blocks
96-100 of the loop are repeated for the next tuple 70, each
time updating the variables in the scratchpad memory 78.
Once the test of process block 100 indicates that the iterative
process is complete, the variables of the scratchpad memory
78 may be output to the user as a solution to the statistical
problem.

Example |

Referring now to FIG. 6, this process can be illustrated with
respect to the statistical problem of finding a best fit line 102

20

25

30

35

40

45

50

55

60

65

6

(represented by the function y=ax+b) that provides a linear
regression to a set of points 104 (x,, y,) where each set of
points 104 may have coordinates stored as a single tuple 70 in
one or more tables 68 of the database 20.

A cost function may be input by the user that may be used
to minimize a least square error between the points 104 and
the line 102, for example, along perpendiculars 106 between
the points 104 and the lines 102. This cost function accepts an
argument the variables (a, b) of the line 102 (being the param-
eters of the equation of the line 102) and may be expressed as
follows:

f(a,b):((axl;b)—yl)2+((ab+b)—yz)2—yz)2+ - ((ax+

b)=¥) @

where the subscripts 1-n indicate particular tuples in the
database 20.

This cost function will be recognized a sum of the square of
the errors represented by perpendiculars 106 and, when mini-
mized, will represent a least square fit of the line 102 to the
points 104. Importantly, this cost function f(a, b) is linearly
separable, being a sum of a large number of independent
terms. This property of linear separability means that the
gradient will be linear and that one can aggressively approxi-
mate the gradient by examining the data of only a single term
(i.e. ((ax+b)=y,)?) of this cost function at a time, and thus
using the data of only a single tuple 70 at a time.

Referring now to FIG. 7, the cost function 108 (i.e. f(a,b))
will be a generally convex function that may be visualized as
anupwardly concave surface over a plane representing values
of the argument variables (a,b). In this case, two dimensions
argument allow simple visualization of the cost function and
optimization process, however, the present invention is not
limited to a two-dimensional cost function as will be under-
stood in the art.

Referring to FIGS. 5 and 7, per process block 84, an initial
value of the argument (a,, b,) may then be selected on the
surface of the cost function 108. This initial value is largely
arbitrary and the initial values may be input by the user or
selected automatically based on the particular type of prob-
lem and a known range of the arguments. For example, for the
linear regression of the present invention a horizontal line
along the median y-value (¢) might be selected the values a=0,
b=c.

As noted above, gradient function generated at process
block 82, will be a simplification of the gradient of the cost
function 108 to a single term that may be applied to a single
tuple 70 at a time. An approximate gradient is then simply:

V((@xrb)-p;) @

which may be evaluated for any given tuple 70 for the then
current values of (a, b).

This approximate gradient function is loaded into a user-
defined function 76 as indicated by FIG. 8.

Referring now to FIG. 9, following process box 96-100, for
each tuple 70 within a preselected subset (possibly all of the
tuples), the approximate gradient of equation (2) is applied to
the given tuple 70 which provides values of x and y for
evaluation of the approximate gradient of the cost function
108.

At process block 98, a fraction of the deduced gradient is
then applied to the arguments a and b to obtain new arguments
that will be used in the next iteration of the loop defined by
process box 92 and 94.

This adjustment of the arguments a and b may be according
to the formula:

a=a-0,8((ax+b)-y,/da 3)

b=b-a;d((ax+b)-y,/db 4

US 9,208,203 B2

7

where o, is a step size variable that may change according
to the number of iterations k (either number of tuples 70
processed or number of loops through the tuples processed)
where o, approaches zero as the number of iterations k rises.

The changing values of the arguments (a, b) may be stored
in the scratchpad memory 78 to ultimately be output from the
database at the conclusion of the query using standard func-
tions built into many relational database management pro-
grams.

Referring now to FIG. 9 it will be seen that the initial values
of the argument (a,, b,) will be successively modified (indi-
cated by the subscripts 0-n) as the cost function 108 moves to
a minimum value at arguments (a,,, b,,). Each of these chang-
ing argument values track a trajectory 111 along the cost
function 108 which reflects a evolving position of a best fit
line 120 generally moving toward a better and better fit with
points 104 as the best fit line 120 is adjusted according to a
cost function evaluated at one perpendiculars 106 at a time.
As was noted above, the iteration through the tuples may be
repeated as desired.

The process of iteration concludes at process block 100, for
example, after a given number of iterations or tuples 20 but
may also or alternatively conclude after an variable number of
iterations or tuples 20 based on a determination of whether
convergence has been reached in the solution. This conver-
gence may be detected by monitoring, for example, the value
of'the approximate gradient per equation (2) to see whether it
is below a particular value. For example, as the value of the
approximate gradient of equation (2) drops below a particular
threshold value, it can be inferred that a local minimum has
been reached. Implementing this variable step size is rela-
tively simple because of the accessibility of the gradient func-
tion and because the number of iterations, can be obtained
using the standard count function of a relational database
management program 24.

Referring now to FIG. 10, preferably the process iterates
through the tuples 70 of the database 20 in a pseudorandom
sequence to avoid any systematic bias caused by a sorting of
the tuples 70 according to some attribute 72 that might oth-
erwise slow the iterative process down. Typical relational
database management program 24 have the ability to deliver
tuples 70 efficiently in a random ordering thus this technique
may further leverage the natural abilities of such relational
database management programs 24.

It will be appreciated, that the statistical processing
described above may be implemented with very low overhead
in the normal database operation of accessing tuples of the
database.

The present invention, working with the incremental gra-
dient method and cost functions that may be linearly sepa-
rated, is applicable to many important data analysis tasks
including state-of-the-art statistical techniques for classifica-
tion (such as support vector machines and logistic regres-
sion), information extraction (for example, conditional ran-
dom fields), and sensor and time series models (for example,
hidden Markov models and common filters) and recommen-
dation (for example, the Netflix approximate low-ranked
matrix factorization).

By implementing the statistical techniques with in the
machinery of the relational database management program
24 not only can pre-existing optimization techniques
designed into such relational database management programs
be fully exploited, but the need to transfer and store data
(time-consuming operations with computer hardware) may
be reduced. While the essential mathematics of the solution is
not changed, problem has been reformulated to be more ame-
nable to physical computational hardware where there is a

20

25

30

35

40

45

50

55

60

65

8

significant time delay in reading and writing large amounts of
data, and additional problems managing the data integrity and
security.

When introducing elements or features of the present dis-
closure and the exemplary embodiments, the articles “a”,
“an”, “the” and *“said” are intended to mean that there are one
or more of such elements or features. The terms “compris-
ing”, “including” and “having” are intended to be inclusive
and mean that there may be additional elements or features
other than those specifically noted. It is further to be under-
stood that the method steps, processes, and operations
described herein are not to be construed as necessarily requir-
ing their performance in the particular order discussed or
illustrated, unless specifically identified as an order of perfor-
mance. It is also to be understood that additional or alternative
steps may be employed.

References to “a computer” and “a processor” can be
understood to include one or more computers or processors
that can communicate in a stand-alone and/or a distributed
environment(s), and can thus be configured to communicate
via wired or wireless communications with other processors,
where such one or more processor can be configured to oper-
ate on one or more processor-controlled devices that can be
similar or different devices. Furthermore, references to
memory, unless otherwise specified, can include one or more
processor-readable and accessible memory elements and/or
components that can be internal to the processor-controlled
device, external to the processor-controlled device, and can
be accessed via a wired or wireless network.

It is specifically intended that the present invention not be
limited to the embodiments and illustrations contained herein
and the claims should be understood to include modified
forms of those embodiments including portions of the
embodiments and combinations of elements of different
embodiments as come within the scope of the following
claims. All of the publications described herein, including
patents and non-patent publications, are hereby incorporated
herein by reference in their entireties.

We claim:

1. A method of improving the operation of an electronic
computer including a hardware processor and hardware
memory implementing an incremental gradient method and
holding a database having multiple tuples, the incremental
gradient method being applied for a cost function comprised
of linearly separable terms comprising the steps of:

(a) loading a gradient function into a user-defined function
of arelational database management program associated
with the database, the relational database system includ-
ing a query processor and a database handler, the query
processor receiving standard query language queries
and the user defined function and a database handler
managing a physical structure of a relational database
and receiving instructions from the query processor to
respond to the queries, the gradient function represent-
ing a gradient of a linearly separable term of a cost
function, the gradient function applicable to a single
tuple at a time;

(b) constructing a standard query language query for the
relational database management program providing for
successive modification of an initial argument by a
tuple-by-tuple application of the gradient function to
each tuple to successively modify the initial argument, a
modification of each successive modification of the ini-
tial argument being according to a gradient of the gra-
dient function related to a current tuple;

(c) providing the standard query language query to the
query processor;

guage query provides for a randomized tuple-by-tuple appli-
cation of the gradient function moving through the database
in a pseudo random pattern.

guage query employs terms of a Standard Query Language.

US 9,208,203 B2

9

(d) executing the standard query language query on the
relational database management program by the query
processor, wherein executing includes identifying suc-
cessive tuples of the database and successively modify-
ing the initial argument by a tuple-by-tuple application 5
of the gradient function to each successive tuple of the
database; and

(e) outputting a result to the user based on modified initial
arguments after execution of the standard query lan-
guage query.

2. The method of claim 1 wherein the standard query lan-

guage query has a termination condition of completing appli-
cation of the gradient function to all tuples in a predefined set
of tuples in the database at least once.

3. The method of claim 1 wherein the standard query lan-

guage query has a termination condition of a magnitude of a
result of the gradient function being applied to a given tuple
being below a predetermined value.

4. The method of claim 1 wherein the standard query lan-
20

5. The method of claim 1 wherein the initial argument is

also modified according to a step size being a function of the
gradient.

25
6. The method of claim 1 wherein the initial argument is

also modified according to a number of tuples to which the
gradient function has been applied.

7. The method of claim 1 wherein the standard query lan-
30
8. The method of claim 1 wherein the cost function relates

to a problem selected from the group consisting of a support
vector machine, a logical regression, conditional random
fields, hidden Markov models, and Kalman filters.

9. The method of claim 1 wherein the database is selected 35

from the group consisting of: PostgreSQL; MySQL; Access,
DB2.

10. A database system implementing an incremental gra-

dient method comprising:

at least one electronic computer including a hardware pro- 40

cessor and hardware memory and comprising:

a database having multiple tuples and an associated
database management program providing a database,
the database management program including a query
processor and a database handler, the query processor
receiving standard query language queries and a user
defined function, wherein the database handler man-

45

10

ages a physical structure of a relational database and
receives instructions from the query processor to
respond to the standard language queries by commu-
nication with the database;

a preprocessor program executing to:

(a) receive from a user a definition of a statistical task
solvable using an incremental gradient method opera-
tion on the tuples;

(b) communicate with the database management pro-
gram and register a gradient function into the user
defined function with the database management pro-
gram, the gradient function providing an approxima-
tion of a gradient of a cost function comprised of
linearly separable terms, the approximation of the
gradient function simplifying the gradient of the cost
function to a linear separable term requiring data of
only a single tuple for calculation;

(c) communicate an initial argument for the cost func-
tion to the database management program;

(d) communicate a standard query language query to the
query processor of the database management program
to identify successive tuples of the database, and
wherein in response to receiving the standard lan-
guage query, the query processor executes to identify
the successive tuples of the database and to perform a
tuple-by-tuple application of the gradient function to
the successive tuples of the database and successively
modifies the initial argument according to the gradi-
ent function applied to each of the successively iden-
tified tuples;

(e) output, to the user, a solution to the statistical task based
on a modified initial argument from the database system
after execution of the standard query language query.

11. The database system of claim 10 wherein the standard
query language query has a termination condition of applying
the gradient function to all tuples in a predefined set of tuples
in the database at least once.

12. The database system of claim 10 wherein the standard
query language query has a termination condition of a mag-
nitude of a result of the gradient function being applied to a
given tuple being below a predetermined value.

13. The database system of claim 10 wherein the standard
query language query provides for a randomized tuple-by-
tuple application of the gradient function moving through the
database in a pseudo random pattern.

#* #* #* #* #*

	Bibliography
	Abstract
	Drawings
	Description
	Claims

