

US008846329B1

(12) United States Patent

Pfleger et al.

(54) MICROORGANISMS FOR PRODUCING ORGANIC ACIDS

- (71) Applicant: Wisconsin Alumni Research Foundation, Madison, WI (US)
- Inventors: Brian Frederick Pfleger, Madison, WI (US); Matthew Brett Begemann, Madison, WI (US)
- (73) Assignee: Wisconsin Alumni Research Foundation, Madison, WI (US)
- (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.

This patent is subject to a terminal disclaimer.

- (21) Appl. No.: 14/200,686
- (22) Filed: Mar. 7, 2014

Related U.S. Application Data

- (63) Continuation-in-part of application No. 13/798,835, filed on Mar. 13, 2013, now Pat. No. 8,715,973.
- (60) Provisional application No. 61/647,001, filed on May 15, 2012.
- (51) Int. Cl.

C12Q 1/26	(2006.01)
C12Q 1/28	(2006.01)
C12Q 1/32	(2006.01)
C12P 7/52	(2006.01)
C12P 7/40	(2006.01)
C12P 7/42	(2006.01)

- (58) Field of Classification Search None

See application file for complete search history.

(56) **References Cited**

U.S. PATENT DOCUMENTS

8,048,624	B1	11/2011	Lynch
2010/0210017	A1	8/2010	Gill et al.
2011/0125118	A1	5/2011	Lynch
2011/0144377	A1*	6/2011	Eliot et al 560/190
2011/0165637	Al	7/2011	Pfleger et al.

OTHER PUBLICATIONS

Altschul et al., Basic Local Alignment Search Tool, J. Mol. Biol. 1990, 215:403-410.

Angermayr et al., Energy biotechnology with cyanobacteria. *Current Opinion in Biotechnology*, 2009, 20(3): p. 257-263.

Ansede et al., Metabolism of Acrylate to beta-Hydroxypropionate and Its Role in Dimethylsulfoniopropionate Lyase Induction by a Salt Marsh Sediment Bacterium, *Alcaligenes faecalis* M3A. *Appl. Environ. Microbiol.*, 1999. 65(11): p. 5075-5081.

Atsumi et al., Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde. *Nat Biotech*, 2009, 27(12): p. 1177-1180.

(10) Patent No.: US 8,846,329 B1 (45) Date of Patent: *Sep. 30, 2014

Balasubramanian et al., Regulatory Roles for IscA and SufA in Iron Homeostasis and Redox Stress Responses in the Cyanobacterium *Synechococcus* sp. Strain PCC 7002. *J. Bacteriol.*, 2006, 188(9): p. 3182-3191.

Bauer, W., Acrylic Acid and Derivatives. Kirk-Othmer Encyclopedia of Chemical Technology. 2000: John Wiley & Sons, Inc.

Boynton et al., Intracellular Concentrations of Coenzyme A and Its Derivatives from *Clostridium acetobutylicum* ATCC 824 and Their Roles in Enzyme Regulation. *Appl. Environ. Microbiol.*, 1994, 60(1): p. 39-44.

Bozell et al., Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy's "Top 10" revisited. *Green Chemistry*, 2010, 12(4): p. 539-554.

Cherrington et al., Organic Acids: Chemistry, Antibacterial Activity and Practical Applications, in Advances in Microbial Physiology, A.H. Rose and D.W. Tempest, Editors. 1991, *Academic Press*. p. 87-108.

Chotani et al., The commercial production of chemicals using pathway engineering. *Biochimica et Biophysica Acta (BBA)*—*Protein Structure and Molecular Enzymology*, 2000, 1543(2): p. 434-455.

Current Protocols in Molecular Biology, F.M. Ausubel et al., eds., Current Protocols, a joint venture between Greene Publishing Associates, Inc. and John Wiley & Sons, Inc., (supplemented through 2008.

Dacey et al., Hydroxide decomposition of dimethylsulfoniopropionate to form dimethylsulfide. *Geophys. Res. Lett.* 1987, 14:1246-1249.

Ducat et al., Engineering cyanobacteria to generate high-value products. *Trends in Biotechnology*, 2011, 29(2): p. 95-103.

Feist et al., Reconstruction of biochemical networks in microorganisms. *Nat Rev Micro*, 2009, 7(2): p. 129-143.

Fridovich et al., Paraquat and the exacerbation of oxygen toxicity. *Trends in Biochemical Sciences*, 1979, 4(5): p. 113-115.

González et al., Genetics and Molecular Features of Bacterial Dimethylsulfoniopropionate (DMSP) and Dimethylsulfide (DMS) Transformations, in *Handbook of Hydrocarbon and Lipid Microbiology*, K.N. Timmis, Editor. 2010, Springer Berlin Heidelberg. p. 1201-1211.

Green et al., *Molecular Cloning: A laboratory Manual*, 4th ed., Cold Spring Harbor Laboratory Press, 2001.

Hashimoto et al., Nitrile Pathway Involving Acyl-CoA Synthetase. Journal of Biological Chemistry, 2005, 280(10): p. 8660-8667.

Henikoff & Henikoff, Amino acid substitution matrices from protein blocks, *Proc. Natl. Acad. Sci. USA*, 1989, 89:10915.

(Continued)

Primary Examiner — Manjunath Rao

Assistant Examiner — Gerard Lacourciere

(74) *Attorney, Agent, or Firm* — Daniel A. Blasiole; Joseph T. Leone, Esq.; DeWitt Ross & Stevens SC

(57) ABSTRACT

Organic acid-producing microorganisms and methods of using same. The organic acid-producing microorganisms comprise modifications that reduce or ablate AcsA activity or AcsA homolog activity. The modifications increase tolerance of the microorganisms to such organic acids as 3-hydroxypropionic acid, acrylic acid, propionic acid, lactic acid, and others. Further modifications to the microorganisms increase production of such organic acids as 3-hydroxypropionic acid, lactate, and others. Methods of producing such organic acids as 3-hydroxypropionic acid, lactate, and others with the modified microorganisms are provided. Methods of using acsA or homologs thereof as counter-selectable markers are also provided.

17 Claims, 12 Drawing Sheets

(56) **References Cited**

OTHER PUBLICATIONS

Holo, H., *Chloroflexus aurantiacus* secretes 3-hydroxypropionate, a possible intermediate in the assimilation of CO² and acetate. Archives of Microbiology, 1989, 151(3): p. 252-256.

Horswill et al., Studies of Propionate Toxicity in Salmonella enterica Identify 2-Methylcitrate as a Potent Inhibitor of Cell Growth. *Journal* of *Biological Chemistry*, 2001, 276(22): p. 19094-19101.

Howard, E.C., et al., Bacterial Taxa That Limit Sulfur Flux from the Ocean. *Science*, 2006. 314(5799): p. 649-652.

Howard et al., Abundant and diverse bacteria involved in DMSP degradation in marine surface waters. *Environmental Microbiology*, 2008, 10(9): p. 2397-2410.

Hugler et al., Malonyl-Coenzyme A Reductase from *Chloroflexus* aurantiacus, a Key Enzyme of the 3-Hydroxypropionate Cycle for Autotrophic CO₂ Fixation. J. Bacteriol., 2002, 184(9): p. 2404-2410. Karlin et al., Application and statistics for multiple high-scoring segments in molecular sequences, *Proc. Natl. Acad. Sci. USA*, 1993, 90:5873-5787.

Kasuya et al.,, Participation of a medium chain acyl-CoA synthetase in glycine conjugation of the benzoic acid derivatives with the electron-donating groups. *Biochemical Pharmacology*, 1996, 51(6): p. 805-809.

Keasling, J.D., Manufacturing Molecules Through Metabolic Engineering. *Science*, 2010, 330(6009): p. 1355-1358.

Kiene et al., Dimethylsulfoniopropionate and Methanethiol Are Important Precursors of Methionine and Protein-Sulfur in Marine Bacterioplankton. *Appl. Environ. Microbiol.*, 1999, 65(10): p. 4549-4558.

Kumar et al., Development of suitable photobioreactors for CO₂ sequestration addressing global warming using green algae and cyanobacteria. *Bioresource Technology*, 2011, 102(8): p. 4945-4953. Latifi et al., Oxidative stress in cyanobacteria. *FEMS Microbiology Reviews*, 2009, 33(2): p. 258-278.

Lindberg et al., Engineering a platform for photosynthetic isoprene production in cyanobacteria, using Synechocystis as the model organism. *Metabolic Engineering*, 2010, 12(1): p. 70-79.

Liu et al., Fatty acid production in genetically modified cyanobacteria. Proceedings of the National Academy of Sciences, 2011.

Malmstrom et al., Dimethylsulfoniopropionate (DMSP) Assimilation by *Synechococcus* in the Gulf of Mexico and Northwest Atlantic Ocean. *Limnology and Oceanography*, 2005, 50(6): p. 1924-1931.

Man et al., The binding of propionyl-CoA and carboxymethyl-CoA to *Escherichia coli* citrate synthase. *Biochimica et Biophysica Acta* (*BBA*)—*Protein Structure and Molecular Enzymology*, 1995, 1250(1): p. 69-75.

Maruyama et al., Mechanisms of Growth Inhibition by Propionate and Restoration of the Growth by Sodium Bicarbonate or Acetate in *Rhodopseudomonas sphaeroides* S. *Journal of Biochemistry*, 1985, 98(3): p. 819-824.

Nakamura et al, Metabolic engineering for the microbial production of 1,3-propanediol. *Current Opinion in Biotechnology*, 2003, 14(5): p. 454-459.

Needleman et al., A General Method Applicable to the Search for Similarities in the Amino Acid Sequence of Two Proteins, J. Mol. Biol. 1970, 48:443.

Niederholtmeyer et al., Engineering Cyanobacteria to Synthesize and Export Hydrophilic Products. *Appl. Environ. Microbiol.*, 2010, 76(11): p. 3462-3466.

Olins et al., A Novel Sequence Element Derived from Bacteriophage T7 mRNA Acts as an Enhancer of Translation of the *lacZ* Gene in *Escherichia coli, Journal of Biological Chemistry*, 1989, 264(29):16973-16976.

OPX nears commercial goal for bio-based acrylic acid Feb. 28, 2011; Available from: http://www.opxbio.com/news/opxbio-rapidly-achieves-bioacrylic-commercial-goals/.

Pearson et al., Improved tools for biological sequence comparison, *Proc. Nat'l. Acad. Sci. USA*, 1988, 85:2444.

Reisch et al., Novel pathway for assimilation of dimethylsulphoniopropionate widespread in marine bacteria. *Nature*, 2011, 473(7346): p. 208-211.

Riddles et al., Ellman's reagent: 5,5'-dithiobis(2-nitrobenzoic acid)—a reexamination, *Analytical Biochemistry*, 1979, 94(1):75-81.

Ross et al., Intraspecific Variation in Stress-Induced Hydrogen Peroxide Scavenging by The Ulvoid Macroalga Ulva Lactucal. *Journal* of *Phycology*, 2007, 43(3): p. 466-474.

Russell, J.B., Another explanation for the toxicity of fermentation acids at low pH: anion accumulation versus uncoupling. *Journal of Applied Microbiology*, 1992, 73(5): p. 363-370.

Sakamoto et al., Growth on Urea Can Trigger Death and Peroxidation of the Cyanobacterium *Synechococcus* sp. Strain PCC 7002. *Appl. Environ. Microbiol.*, 1998, 64(7): p. 2361-2366.

Sambrook et al., *Molecular cloning: A Laboratory Manual*, 3rd ed., Cold Spring Harbor Laboratory Press, 2001.

Simó, R., Production of atmospheric sulfur by oceanic plankton: biogeochemical, ecological and evolutionary links. *Trends in Ecology & Evolution*, 2001, 16(6): p. 287-294.

Simó et al., Coupled Dynamics of Dimethylsulfoniopropionate and Dimethylsulfide Cycling and the Microbial Food Web in Surface Waters of the North Atlantic. *Limnology and Oceanography*, 2002, 47(1): p. 53-61.

Smith et al., Comparison of Biosequences, Adv. Appl. Math. 1981, 2:482-489.

Steinke et al., Determinations of dimethylsulphoniopropionate (DMSP) lyase activity using headspace analysis of dimethylsulphide (DMS). *Journal of Sea Research*, 2000. 43(3-4): p. 233-244.

Straathof, A.J.J., et al., Feasibility of acrylic acid production by fermentation. *Applied Microbiology and Biotechnology*, 2005. 67(6): p. 727-734.

Stefels, J., Physiological aspects of the production and conversion of DMSP in marine algae and higher plants. *Journal of Sea Research*, 2000, 43(3-4): p. 183-197.

Sunda et al., An antioxidant function for DMSP and DMS in marine algae. *Nature*, 2002, 418(6895): p. 317-320.

Thiel, T., Genetic Analysis of Cyanobacteria, in *The Molecular Biology of Cyanobacteria*, D.A. Bryant, Editor. 2004, Springer Netherlands. p. 581-611.

Vila-Costa et al., Dimethylsulfoniopropionate Uptake by Marine Phytoplankton. *Science*, 2006, 314(5799): p. 652-654.

Visscher et al., Production and Consumption of Dimethylsulfoniopropionate in Marine Microbial Mats. *Applied and Environmental Microbiology*, 1991, 57:3237-3242.

Warnecke et al., Rapid dissection of a complex phenotype through genomic-scale mapping of fitness altering genes, *Metabolic Engineering*, 2010, 12:241-250.

Xu et al., Expression of Genes in Cyanobacteria: Adaptation of Endogenous Plasmids as Platforms for High-Level Gene Expression in <i>Synechococcus</i> sp. PCC 7002, in Photosynthesis Research Protocols, R. Carpentier, Editor. 2011, Humana Press. p. 273-293.

Yoch, D.C., Dimethylsulfoniopropionate: Its Sources, Role in the Marine Food Web, and Biological Degradation to Dimethylsulfide. *Appl. Environ. Microbiol.*, 2002, 68(12): p. 5804-5815.

Zaldivar et al., Effect of organic acids on the growth and fermentation of ethanologenic *Escherichia coli* LY01. *Biotechnology and Bioengineering; Journal* vol. 66; Journal Issue: 4; Other Information: PBD: 1999: p. Medium: X; Size: pp. 203-210.

* cited by examiner

FIG. 1B

FIG. 3

- 1. WT PCC 7002
- 2. Spontaneous mutant
- 3. DacsA
- 4. ΔacsA/pAQ1_acsAW49L
- 5. DacsA/pAQ1_acsA

FIG. 7

FIG.8B

FIG. 10

FIG. 11

Lactate dehydrogenase

Transhydrogenase

 $NADPH + NAD^+ \leftrightarrow NADP^+ + NADH$

FIG. 12B

Lactate Production and Growth of PCC 7002 with IPTG-Inducible Idh

Lactate Production and Growth of PCC 7002 with Idh +/- udhA

FIG. 14

MICROORGANISMS FOR PRODUCING ORGANIC ACIDS

CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation-in-part of U.S. patent application Ser. No. 13/798,835, filed Mar. 13, 2013, and claims priority under 35 USC §119(e) to U.S. Provisional Patent Application 61/647,001 filed May 15, 2012, the entire-¹⁰ ties of which are incorporated herein by reference. This application incorporates by reference co-filed U.S. patent application Ser. No. 14,200,747, which is also a continuation in-part of U.S. patent application Ser. No. 13/798,835, filed Mar. 13, 2013, and claim priority under 35 USC §119(e) to U.S. Pro-¹⁵ visional Patent Application 61,647,001 filed May 15, 2012.

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH

This invention was made with government support under FA9550-11-1-0038 awarded by the USAF/AFOSR, DE-FC02-07ER64494 awarded by the US Department of Energy, and 1240268 awarded by the National Science Foundation. The government has certain rights in the invention.²⁵

FIELD OF THE INVENTION

The present invention relates to organic acid-tolerant microorganisms capable of producing organic acids and uses ³⁰ thereof for producing organic acids.

BACKGROUND

Production of industrially useful chemicals has conven- 35 tionally focused on the use of petroleum-like compounds as starting materials. However, various factors have increased interest in the production of such chemicals through microorganism-mediated bioconversion of biomass and other renewable resources. 40

Accordingly, the U.S. Department of Energy (DOE) recently identified several "building block" chemicals to be produced via microorganism consumption of biomass. The identified chemicals include 1,4 succinic acid, fumaric and malic acids, 2,5 furan dicarboxylic acid, 3-hydroxypropionic 45 acid (3HP), aspartic acid, glucaric acid, glutamic acid, ita-conic acid, levulinic acid, 3-hydroxybutyrolactone, glycerol, sorbitol, and xylitol/arabinitol. These chemicals can be converted to high-value, bio-based chemicals or materials.

As an example, 3HP can be readily transformed into a 50 variety of commodity chemicals such as acrylic acid, methyl acrylate, and 1,3-propanediol. These commodity chemicals represent a multi-billion dollar a year industry and are used in the production of plastics, coatings, and fibers. U.S. demand for acrylic acid in particular is growing, exceeding 1×10^9 55 kg/year. The current means of synthesizing acrylic acid include oxidation of propylene. A thermodynamically favorable pathway for microbial production of acrylic acid has not been identified.

One hurdle facing the microbial production of industrially 60 useful chemicals is that many, including 3HP, are toxic to the microbes capable of producing them. Recently, efforts have been made not only to increase microbial output of the chemicals but also to increase microbial tolerance to the chemicals. Some of these efforts have focused on the production of 3HP 65 in the heterotrophic microbe *Escherichia coli*. See, e.g., U.S. Pat. No. 8,048,624 to Lynch, U.S. Pub. 2011/0125118 to

Lynch, U.S. Pub. 2010/0210017 to Gill et al., and Warnecke et al. *Metabolic Engineering* (2010) 12:241-250.

While focusing on chemical production in heterotrophic microorganisms is a valuable strategy, a potential problem is the availability of carbon and energy sources such as food-based commodities and/or sugars derived from lignocellulosic biomass. An attractive alternative is to use phototrophic microorganisms, such as cyanobacteria. These microorganisms can produce chemical products from CO_2 and light energy without relying on consumption of higher-value carbon sources that can be used for other purposes, such as producing food, fuel, or other certain chemicals.

There is a need for microorganisms capable of producing high yields of industrially useful chemicals and having increased tolerance against those chemicals. There is also a need for microorganisms that use non-food-based feedstock in such production.

SUMMARY OF THE INVENTION

The present invention addresses the aforementioned needs by providing microorganisms with increased tolerance to organic acids. The present invention also provides microorganisms modified to produce organic acids. Methods of producing organic acids with the microorganisms described herein are also provided.

A preferred version of the invention comprises an organic acid-tolerant microorganism that includes a modification that reduces or ablates AcsA activity or AcsA homolog activity in the microorganism. The modification confers an increased tolerance to organic acids compared to a corresponding microorganism not comprising the modification.

The modification is preferably a genetic modification. The genetic modification is preferably a genetic modification other than or in addition to one resulting in a W49L substitution in AcsA or a corresponding substitution in an AcsA homolog.

The microorganism is preferably a bacterium, more preferably a cyanobacterium, and most preferably a cyanobactetor ium selected from the group consisting of *Synechococcus* sp., *Prochlorococcus* sp., *Synechocystis* sp., and *Nostoc* sp.

The tolerance to the organic acid is preferably increased at least about 25-fold in the microorganism of the invention compared to a corresponding microorganism.

In preferred versions of the invention, the microorganism is further modified to increase production of an organic acid. The microorganism may be modified to increase production of 3-hydroxypropionic acid, lactic acid, and/or others.

A microorganism of the invention modified to increase production of 3-hydroxyprionic acid preferably comprises one or more recombinant nucleic acids configured to express an enzyme selected from the group consisting of a malonyl-CoA reductase and a malonate semialdehyde reductase, wherein the microorganism produces an increased amount of 3-hydroxypropionic acid compared to a corresponding microorganism not comprising the one or more recombinant nucleic acids.

The malonyl-CoA reductase is preferably a malonyl-CoA reductase from *Sulfolobus tokodaii* or a homolog thereof. The malonyl-CoA reductase from *Sulfolobus tokodaii* or the homolog thereof preferably comprises an amino acid sequence at least about 80% identical, more preferably at least about 90% identical, and most preferably at least about 95% identical to SEQ ID NO:13.

The malonate semialdehyde reductase is preferably a malonate semialdehyde reductase from *Metallosphaera sedula* or a homolog thereof. The malonate semialdehyde reductase

55

60

65

from *Metallosphaera sedula* or the homolog thereof preferably comprises an amino acid sequence at least about 80% identical, more preferably at least about 90% identical, and most preferably at least about 95% identical to SEQ ID NO:16.

A microorganism of the invention modified to increase production of lactic acid preferably comprises one or more recombinant nucleic acids configured to express an enzyme selected from the group consisting of a lactate dehydrogenase and a pyridine nucleotide transhydrogenase, wherein the ¹⁰ microorganism produces an increased amount of lactic acid compared to a corresponding microorganism not comprising the one or more recombinant nucleic acids.

The lactate dehydrogenase is may be a lactate dehydrogenase from *Bacillus subtilis* or a homolog thereof. The lactate 15 dehydrogenase from *Bacillus subtilis* or the homolog thereof preferably comprises an amino acid sequence at least about 80% identical, more preferably at least about 90% identical, and most preferably at least about 95% identical to SEQ ID NO:18. 20

The lactate dehydrogenase is may also or alternatively be a lactate dehydrogenase from *Lactococcus lactis* or a homolog thereof. The lactate dehydrogenase from *Lactococcus lactis* or the homolog thereof preferably comprises an amino acid sequence at least about 80% identical, more preferably at ²⁵ least about 90% identical, and most preferably at least about 95% identical to SEQ ID NO:22.

The pyridine nucleotide transhydrogenase is preferably a soluble pyridine nucleotide transhydrogenase from *Escherichia coli* or a homolog thereof. The soluble pyridine nucle- ³⁰ otide transhydrogenase from *Escherichia coli* or the homolog thereof preferably comprises an amino acid sequence at least about 80% identical, more preferably at least about 90% identical, and most preferably at least about 95% identical to SEQ ID NO:20. ³⁵

The invention further provides methods of producing an organic acid. The methods comprise culturing one of the microorganisms as described herein.

The objects and advantages of the invention will appear more fully from the following detailed description of the ⁴⁰ preferred embodiment of the invention made in conjunction with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1A depicts a schema for using acsA or a homolog thereof as a selection marker for introducing a DNA fragment of interest into the acsA or homolog chromosomal locus.

FIG. 1B depicts a schema for using acsA or a homolog thereof as a selection marker for introducing a DNA fragment 50 of interest into a locus other than the acsA or homolog chromosomal locus.

FIG. **2**A depicts growth of *Synechococcus* sp. PCC 7002 at OD730 as a function of time in the presence of 5 mM dimethylsulfoniopropionate (DMSP).

FIG. **2**B depicts growth of *Synechococcus* sp. PCC 7002 at OD730 as a function of time in the presence of 5 mM acrylic acid.

FIG. **2**C depicts growth of a mutant pool of *Synechococcus* sp. PCC 7002 at OD730 as a function of time in the presence of 5 mM dimethylsulfoniopropionate (DMSP) and 5 mM acrylic acid.

FIG. **3** depicts acrylate production from DMSP as a function of time for *Synechococcus* sp. PCC 7002 and an abiotic control.

FIG. 4A depicts growth of BPSyn_006 (a ΔacsA strain of *Synechococcus* sp. PCC 7002 having a barcode sequence in place of the acsA gene (PCC 7002 acsA::BC)) and pH as a function of time in CO_2 -limited conditions. Cultivation of BPSyn_006 with 5 mM DMSP under CO_2 -limited conditions results in an increase in pH over time.

FIG. 4B depicts acrylic acid accumulation over time from cultivation of BPSyn_006 with 5 mM DMSP and abiotic controls with 5 mM DMSP at pH 8.0, 8.25, and 8.5. The rate of DMSP degradation to acrylic acid increases with an increase in pH.

FIG. **5** depicts plating of wild-type *Synechococcus* sp. PCC 7002, a mutant generated from growth in the presence of acrylic acid, a Δ acsA mutant, a Δ acsA mutant comprising the pAQ1 plasmid containing acsAW49L, and a Δ acsA mutant comprising the pAQ1 plasmid containing acsA on media containing no organic acid, 5 mM acrylic acid, or 30 mM 3-hydroxypropionic acid (3HP).

FIG. 6 depicts relative acyl-CoA ligase activity of AcsA for acetate, acrylate, propionate, and 3-hydroxypropionate (3HP).

FIG. 7 depicts two 3HP-production pathways, wherein 1 represents pyruvate kinase, 2 represents pyruvate dehydrogenase, 3 represents acetyl-CoA carboxylase, 4 represents malonyl-CoA reductase, 5 represents phosphoenolpyruvate carboxylase, 6 represents aspartate aminotransferase, 7 represents aspartate decarboxylase, and 8 represents β -alanine/ α -ketoglutarate aminotransferase.

FIG. **8**A depicts the percent of colonies positive for yellow fluorescent protein (YFP) or a barcode sequence resulting from use of acsA as a counter selection marker upon introducing the YFP or the barcode sequence into the chromosomal acsA locus of *Synechococcus* sp. PCC 7002.

FIG. **8**B depicts levels of YFP expression from cells in which YFP was introduced into the glpK chromosomal locus using acsA as a counter selection marker and cells in which YFP was introduced into the acsA chromosomal locus using acsA as a counter selection marker.

FIG. 9A depicts a schema of the production of 3HP from CO_2 and photons (sunlight) in cyanobacteria. FIG. 9B depicts a schema of the production of 3HP from acetyl-CoA, showing the malonyl-CoA reductase and the malonate semialdehyde reductase steps in detail. "AccABCD" represents acetyl-CoA carboxylase. "MCR" represents malonyl-CoA reductase. "MSR" represents malonate semialdehyde reductase. "AcsA" represents acetyl-CoA synthetase.

FIG. **10** depicts an artificial operon construct configured to express malonyl-CoA reductase and malonate semialdehyde reductase. " $p_{cpc}BLacOO$ " represents a LacI-regulatable promoter based on the cyanobacterial cpcB gene promoter. "RBS" represents a ribosome binding site. "MCR" represents a malonyl-CoA reductase coding sequence. "MSR" represents a malonate semialdehyde reductase coding sequence. "LacI" represents a gene for the lac repressor (Lad).

FIG. **11** depicts growth in the presence and absence of 1 mM IPTG as a function of time for *Synechococcus* sp. PCC 7002 lacking acsA and comprising the construct depicted in FIG. **10**.

FIG. **12**A depicts a schema for the production of lactate from pyruvate as catalyzed by lactate dehydrogenase (Ldh).

FIG. **12**B depicts an equation of the reaction catalyzed by pyridine nucleotide transhydrogenase.

FIG. **13** depicts growth and lactate production in the presence and absence of 1 mM IPTG as a function of time for *Synechococcus* sp. PCC 7002 lacking acsA and comprising an IPTG-inducible lactate dehydrogenase gene with a coding sequence (ldh) from *Bacillus subtilis*.

FIG. **14** depicts growth and lactate production in the presence of 1 mM IPTG as a function of time for *Synechococcus*

sp. PCC 7002 lacking acsA, comprising an IPTG-inducible lactate dehydrogenase gene with a coding sequence (ldh) derived from Bacillus subtilis, and comprising a soluble pyridine nucleotide transhydrogenase gene with a coding sequence (udhA) derived from Escherichia coli.

DETAILED DESCRIPTION OF THE INVENTION

One version of the invention includes a microorganism wherein an acsA gene product or homolog thereof is functionally deleted. The acsA gene product (AcsA) and homologs thereof are acetyl-CoA synthetases classified under Enzyme Commission (EC) number 6.2.1.1. Other names for these acetyl-CoA synthetases include "acetate-CoA ligases," "acetyl-CoA ligases," and "acyl-activating 15 enzymes."

"Functional deletion" or its grammatical equivalents refers to any modification to a microorganism that ablates, reduces, inhibits, or otherwise disrupts production of a gene product, renders the gene product non-functional, or otherwise 20 reduces or ablates the gene product's activity. "Gene product" refers to a protein or polypeptide encoded and produced by a particular gene. "Gene" as used herein refers to a nucleic acid sequence capable of producing a gene product and may include such genetic elements as a coding sequence together with any other genetic elements required for transcription 25 and/or translation of the coding sequence. Such genetic elements may include a promoter, an enhancer, and/or a ribosome binding site (RBS), among others. In some versions of the invention, "functionally deleted acsA gene product or homolog thereof" means that the acsA gene is mutated to an 30 extent that an acsA gene product or homolog thereof is not produced at all.

One of ordinary skill in the art will appreciate that there are many well-known ways to functionally delete a gene product. For example, functional deletion can be accomplished by introducing one or more genetic modifications. As used herein, "genetic modifications" refer to any differences in the nucleic acid composition of a cell, whether in the cell's native chromosome or in endogenous or exogenous non-chromosomal plasmids harbored within the cell. Examples of genetic modifications that may result in a functionally deleted gene product include but are not limited to mutations, partial or complete deletions, insertions, or other variations to a coding sequence or a sequence controlling the transcription or translation of a coding sequence; placing a coding sequence under the control of a less active promoter; blocking transcription of 45 the gene with a trans-acting DNA binding protein such as a TAL effector or CRISPR guided Cas9; and expressing ribozymes or antisense sequences that target the mRNA of the gene of interest, etc. In some versions, a gene or coding sequence can be replaced with a selection marker or screenable marker. Various methods for introducing the genetic modifications described above are well known in the art and include homologous recombination, among other mechanisms. See, e.g., Green et al., *Molecular Cloning: A labora-*tory manual, 4th ed., Cold Spring Harbor Laboratory Press (2012) and Sambrook et al., Molecular Cloning: A Laboratory Manual, 3rd ed., Cold Spring Harbor Laboratory Press (2001). Various other genetic modifications that functionally delete a gene product are described in the examples below. Functional deletion can also be accomplished by inhibiting 60 the activity of the gene product, for example, by chemically inhibiting a gene product with a small molecule inhibitor, by expressing a protein that interferes with the activity of the gene product, or by other means.

In certain versions of the invention, the functionally deleted gene product may have less than about 95%, less than 65 about 90%, less than about 85%, less than about 80%, less than about 75%, less than about 70%, less than about 65%,

less than about 60%, less than about 55%, less than about 50%, less than about 45%, less than about 40%, less than about 35%, less than about 30%, less than about 25%, less than about 20%, less than about 15%, less than about 10%, 5 less than about 5%, less than about 1%, or about 0% of the activity of the non-functionally deleted gene product.

In certain versions of the invention, a cell with a functionally deleted gene product may have less than about 95%, less than about 90%, less than about 85%, less than about 80%, less than about 75%, less than about 70%, less than about 65%, less than about 60%, less than about 55%, less than about 50%, less than about 45%, less than about 40%, less than about 35%, less than about 30%, less than about 25%, less than about 20%, less than about 15%, less than about 10%, less than about 5%, less than about 1%, or about 0% of the activity of the gene product compared to a cell with the non-functionally deleted gene product.

In certain versions of the invention, the functionally deleted gene product may be expressed at an amount less than about 95%, less than about 90%, less than about 85%, less than about 80%, less than about 75%, less than about 70%, less than about 65%, less than about 60%, less than about 55%, less than about 50%, less than about 45%, less than about 40%, less than about 35%, less than about 30%, less than about 25%, less than about 20%, less than about 15%, less than about 10%, less than about 5%, less than about 1%, or about 0% of the amount of the non-functionally deleted gene product.

In certain versions of the invention, the functionally deleted gene product may result from a genetic modification in which at least 1, at least 2, at least 3, at least 4, at least 5, at least 10, at least 20, at least 30, at least 40, at least 50, or more nonsynonymous substitutions are present in the gene or coding sequence of the gene product.

In certain versions of the invention, the functionally deleted gene product may result from a genetic modification in which at least 1, at least 2, at least 3, at least 4, at least 5, at least 10, at least 20, at least 30, at least 40, at least 50, or more bases are inserted in the gene or coding sequence of the gene product.

In certain versions of the invention, the functionally deleted gene product may result from a genetic modification in which at least about 1%, at least about 5%, at least about 10%, at least about 15%, at least about 20%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 50%, at least about 55%, at least about 60%, at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, or about 100% of the gene product's gene or coding sequence is deleted or mutated.

In certain versions of the invention, the functionally deleted gene product may result from a genetic modification in which at least about 1%, at least about 5%, at least about 10%, at least about 15%, at least about 20%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 50%, at least about 55%, at least about 60%, at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, or about 100% of a promoter driving expression of the gene product is deleted or mutated.

In certain versions of the invention, the functionally deleted gene product may result from a genetic modification in which at least about 1%, at least about 5%, at least about 10%, at least about 15%, at least about 20%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 50%, at least about 55%, at least about 60%, at least about 65%, at least about 70%, at least about

55

60

65

75%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, or about 100% of an enhancer controlling transcription of the gene product's gene is deleted or mutated.

In certain versions of the invention, the functionally ⁵ deleted gene product may result from a genetic modification in which at least about 1%, at least about 5%, at least about 10%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 50%, at least about 55%, at least about 75%, at least about 65%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, or about 100% of a sequence controlling translation of gene product's mRNA is deleted or mutated.

In certain versions of the invention, the decreased activity or expression of the functionally deleted gene product is determined with respect to the activity or expression of the gene product in its unaltered state as found in nature. In certain versions of the invention, the decreased activity or 20 expression of the functionally deleted gene product is determined with respect to the activity or expression of the gene product in its form in a corresponding microorganism. In certain versions, the genetic modifications giving rise to a functionally deleted gene product are determined with ²⁵ respect to the gene or coding sequence in its unaltered state as found in nature. In certain versions, the genetic modifications giving rise to a functionally deleted gene product are determined with respect to the gene or coding sequence in its form 30 in a corresponding microorganism.

Some versions of the invention include a plurality of microorganisms, wherein greater than about 1%, about 5%, about 10%, about 15%, about 20%, about 25%, about 30%, about 35%, about 40%, about 50%, about 55%, about 60%, about 65%, about 70%, about 55%, about 80%, about 85%, about 90%, about 95%, or more of the plurality of microorganisms comprise a functionally deleted acsA gene product or homolog thereof. In some versions, the plurality of microorganisms is a microbial culture.

Genetic modifications that can be introduced into the acsA ⁴⁰ gene or homologs thereof to functionally delete the acsA gene product or homologs thereof, such as generating acsA knock-outs, are described in the examples below.

The acsA gene is an acetyl-CoA synthetase gene in the exemplary cyanobacterium *Synechococcus* sp. PCC 7002, the ⁴⁵ coding sequence of which can be found in GenBank under accession number NC_010475.1 and is as follows:

(SEQ ID NO atgtccgaac aaaacattga atccatcctc caggagcagc	: 1)
gccttttttc gcctgcacca gactttgctg ccgaggccca	
gatcaagagc ttagaccagt accaagccct ctacgaccgg	
gcgaaaaatg accccgaagg cttttggggg gaactcgccg	
aacaggaatt ggaatggttt gagaaatggg acaaggtgct	
cgattggcaa ccgcccttcg ccaaatggtt tgtcaacggg	
aaaattaaca tttcctacaa ttgcctcgac cgtcatctca	
aaacctggcg caaaaataaa gccgccctca tctgggaagg	
ggaaccoggt gactocogta cootcacota tgoocagota	
caccacgagg tctgccagtt tgccaatgcg atgaaaaagt	

8

-continued

tgggcgtcaa aaaaggcgat cgcgtcggga tttatatgcc aatgateecg gaageegteg ttgeeeteet egeetgtgee cgcattggtg cgccccatac ggtgatattt ggtggcttta gtgeegaage eeteegeagt egeetegaag aegetgaage caaactggtg atcaccgccg acggggggtt ccgcaaagat aaaqcqqtac ccctcaaqqa tcaaqtaqat qcqqcqatcq ccqatcacca tqcccccaqc qttqaqaatq ttttqqtcqt tcaacgcacc aaagagcctg tccacatgga agccgggcgg gatcactggt ggcatgattt gcaaaaagaa gtctccgctg actqtcccqc cqaqccqatq qatqccqaaq atatqctctt catcetetat accageggea ceaegggtaa acceaaggge gttgtccaca ctacgggcgg ttataatctc tacacccata taacqaccaa qtqqatcttt qatctcaaaq atqatqacqt gtattggtgt ggtgctgatg tgggttggat caccggccac agttacatta cctatggccc tctatctaac ggggcaacgg tettaatgta tgaaggegea eeegteegt etaateeegg ttgctattgg gaaattattc aaaaatatgg tgtcaccatt ttctatacgg cacccacagc gattcgggcc tttatcaaaa tgggtgaagg catccccaat aaatatgaca tgagttccct gcgcctctta ggaaccgtgg gtgaaccgat taacccagaa gcttggatgt ggtaccaccg ggtcattggt ggcgaacgtt gtcccattgt tgatacatgg tggcaaacgg aaaccggtgg tgtgatgatt acgcctttac ccggtgcaac tcccacaaaa cccggctcgg caactcgtcc ttttccgggg attgtggcgg atgtcgttga ccttgatgga aattccgttg gtgacaacga aggeggetae etggtagtga aacaaeeetg geetgggatg atgcqtactq tttacqqcaa tcccqaacqc ttccqqtcta cctattggga gcacatcgcc ccgaaagatg gacaatacct ttatttcgca ggtgacgggg cacgccgtga ccaagatggc tatttttgga ttatgggtcg cgtcgatgat gtcttaaatg tttcqqqcca tcqcctcqqc accatqqaaq tqqaatcqqc cctcqtttcc caccctqccq tcqccqaaqc aqccqtqqtt ggaaagccag atccggttaa gggggaagag gtgtttgcct ttgtcaccct tgagggcacc tacagtccga gcgacgatct cgtaacggaa ctcaaggccc atgtggtgaa agaaattggg gcgatcgccc gtccgggaga aatccgtttt gccgatgtaa tgcccaaaac ccgttctggg aagatcatgc ggcgtttgtt gcgaaaccta gccgcaggtc aggaaattgt gggcgacacc tecaceteg aagaeegeag egteetegat caacteeggg gctaa

The acsA coding sequence in the exemplary organism *Synechococcus* sp. PCC 7002 encodes a protein included in Gen-

Bank under accession number YP_001735082.1, having the following amino acid sequence:

(SEQ ID NO: 2) 5 MSEQNIESIL QEQRLFSPAP DFAAEAQIKS LDQYQALYDR AKNDPEGFWG ELAEQELEWF EKWDKVLDWQ PPFAKWFVNG KINISYNCLD RHLKTWRKNK AALIWEGEPG DSRTLTYAQL HHEVCQFANA MKKLGVKKGD RVGIYMPMIP EAVVALLACA RIGAPHTVIF GGFSAEALRS RLEDAEAKLV ITADGGFRKD KAVPLKDOVD AAIADHHAPS VENVLVVORT KEPVHMEAGR DHWWHDLQKE VSADCPAEPM DAEDMLFILY TSGTTGKPKG VVHTTGGYNL YTHITTKWIF DLKDDDVYWC GADVGWITGH SYLTYGPLSN GATVLMYEGA PRPSNPGCYW ELLOKYGVTI FYTAPTAIRA FIKMGEGIPN KYDMSSLRLL GTVGEPINPE AWMWYHRVIG GERCPIVDTW WQTETGGVMI TPLPGATPTK PGSATRPFPG IVADVVDLDG NSVGDNEGGY LVVKOPWPGM MRTVYGNPER FRSTYWEHIA PKDGOYLYFA GDGARRDODG YFWIMGRVDD VLNVSGHRLG TMEVESALVS HPAVAEAAVV GKPDPVKGEE VFAFVTLEGT YSPSDDLVTE LKAHVVKEIG AIARPGEIRF ADVMPKTRSG KIMRRLLRNL AAGQEIVGDT STLEDRSVLD OLRG

Homologs of acsA include coding sequences, genes, or gene products that are homologous to the acsA coding sequence, acsA gene, or the acsA gene product, respectively. 35 Proteins and/or protein sequences are "homologous" when they are derived, naturally or artificially, from a common ancestral protein or protein sequence. Similarly, nucleic acids and/or nucleic acid sequences are homologous when they are derived, naturally or artificially, from a common ancestral $\ ^{40}$ nucleic acid or nucleic acid sequence. Homology is generally inferred from sequence similarity between two or more nucleic acids or proteins (or sequences thereof). The precise percentage of similarity between sequences that is useful in establishing homology varies with the nucleic acid and protein at issue, but as little as 25% sequence similarity (e.g., identity) over 50, 100, 150 or more residues (nucleotides or amino acids) is routinely used to establish homology (e.g., over the full length of the two sequences to be compared). $_{50}$ Higher levels of sequence similarity (e.g., identity), e.g., 30%, 35% 40%, 45% 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 99% or more, can also be used to establish homology. Accordingly, homologs of the coding sequences, genes, or gene products described herein include coding 55 sequences, genes, or gene products, respectively, having at least about 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 99% identity to the coding sequences, genes, or gene products described herein. Methods for determining sequence similarity percentages 60 (e.g., BLASTP and BLASTN using default parameters) are described herein and are generally available. The homologous proteins should demonstrate comparable activities and, if an enzyme, participate in the same or analogous pathways. "Orthologs" are genes or coding sequences thereof in differ- 65 ent species that evolved from a common ancestral gene by speciation. Normally, orthologs retain the same or similar

function in the course of evolution. As used herein "orthologs" are included in the term "homologs".

For sequence comparison and homology determination, one sequence typically acts as a reference sequence to which test sequences are compared. When using a sequence comparison algorithm, test and reference sequences are input into a computer, subsequence coordinates are designated, if necessary, and sequence algorithm program parameters are designated. The sequence comparison algorithm then calculates

10 the percent sequence identity for the test sequence(s) relative to the reference sequence based on the designated program parameters. A typical reference sequence of the invention is a nucleic acid or amino acid sequence corresponding to acsA or other coding sequences, genes, or gene products described 15 herein.

Optimal alignment of sequences for comparison can be conducted, e.g., by the local homology algorithm of Smith & Waterman, Adv. Appl. Math. 2:482 (1981), by the homology alignment algorithm of Needleman & Wunsch, J. Mol. Biol.

20 48:443 (1970), by the search for similarity method of Pearson & Lipman, Proc. Nat'l. Acad. Sci. USA 85:2444 (1988), by computerized implementations of these algorithms (GAP, BESTFIT, FASTA, and TFASTA in the Wisconsin Genetics Software Package, Genetics Computer Group, 575 Science

5 Dr., Madison, Wis.), or by visual inspection (see Current Protocols in Molecular Biology, F. M. Ausubel et al., eds., Current Protocols, a joint venture between Greene Publishing Associates, Inc. and John Wiley & Sons, Inc., (supplemented through 2008)).

30 One example of an algorithm that is suitable for determining percent sequence identity and sequence similarity for purposes of defining homologs is the BLAST algorithm, which is described in Altschul et al., J. Mol. Biol. 215:403-410 (1990). Software for performing BLAST analyses is publicly available through the National Center for Biotechnology Information. This algorithm involves first identifying high scoring sequence pairs (HSPs) by identifying short words of length W in the query sequence, which either match or satisfy some positive-valued threshold score T when aligned with a word of the same length in a database sequence. T is referred to as the neighborhood word score threshold (Altschul et al., supra). These initial neighborhood word hits act as seeds for initiating searches to find longer HSPs containing them. The word hits are then extended in 45 both directions along each sequence for as far as the cumulative alignment score can be increased. Cumulative scores are calculated using, for nucleotide sequences, the parameters M (reward score for a pair of matching residues; always>0) and N (penalty score for mismatching residues; always<0). For amino acid sequences, a scoring matrix is used to calculate the cumulative score. Extension of the word hits in each direction are halted when: the cumulative alignment score falls off by the quantity X from its maximum achieved value; the cumulative score goes to zero or below, due to the accumulation of one or more negative-scoring residue alignments; or the end of either sequence is reached. The BLAST algorithm parameters W, T, and X determine the sensitivity and speed of the alignment. The BLASTN program (for nucleotide sequences) uses as defaults a wordlength (W) of 11, an expectation (E) of 10, a cutoff of 100, M=5, N=-4, and a comparison of both strands. For amino acid sequences, the BLASTP program uses as defaults a wordlength (W) of 3, an expectation (E) of 10, and the BLOSUM62 scoring matrix (see Henikoff & Henikoff (1989) Proc. Natl. Acad. Sci. USA 89:10915).

In addition to calculating percent sequence identity, the BLAST algorithm also performs a statistical analysis of the similarity between two sequences (see, e.g., Karlin & Altschul, Proc. Natl. Acad. Sci. USA 90:5873-5787 (1993)). One measure of similarity provided by the BLAST algorithm is the smallest sum probability (P(N)), which provides an indication of the probability by which a match between two 5 nucleotide or amino acid sequences would occur by chance. For example, a nucleic acid is considered similar to a reference sequence if the smallest sum probability in a comparison of the test nucleic acid to the reference nucleic acid is less than about 0.1, more preferably less than about 0.01, and most 10 preferably less than about 0.001. The above-described techniques are useful in identifying homologous sequences for use in the methods described herein.

The terms "identical" or "percent identity", in the context of two or more nucleic acid or polypeptide sequences, refer to 15 two or more sequences or subsequences that are the same or have a specified percentage of amino acid residues or nucleotides that are the same, when compared and aligned for maximum correspondence, as measured using one of the sequence comparison algorithms described above (or other 20 algorithms available to persons of skill) or by visual inspection.

The phrase "substantially identical", in the context of two nucleic acids or polypeptides refers to two or more sequences or subsequences that have at least about 60%, about 65%, 25 about 70%, about 75%, about 80%, about 85%, about 90, about 95%, about 98%, or about 99% or more nucleotide or amino acid residue identity, when compared and aligned for maximum correspondence, as measured using a sequence comparison algorithm or by visual inspection. Such "substan- 30 tially identical" sequences are typically considered to be "homologous" without reference to actual ancestry. Preferably, the "substantial identity" exists over a region of the sequences that is at least about 50 residues in length, more preferably over a region of at least about 100 residues, and 35 most preferably, the sequences are substantially identical over at least about 150 residues, at least about 250 residues, or over the full length of the two sequences to be compared.

Homologs of the acsA gene product include enzymes falling under Enzyme Commission (EC) number 6.2.1.1. Non- 40 limiting examples of homologs of the acsA gene product in various microorganisms include the acetyl-coenzyme A synthetase from Fischerella sp. JSC-11 represented by GenBank Accession No. ZP_08986431.1, the acetyl-coenzyme A from Moorea producta 3L synthetase represented by Gen- 45 Bank Accession No. ZP_08425677.1, the acetate/CoA from Cyanothece sp. PCC 7822 ligase represented by GenBank Accession No. YP_003886065.1, the acetyl-CoA from Cyanothece sp. PCC 7424 synthetase represented by Gen-Bank Accession No. YP_002378472.1, the unnamed protein 50 product from Thermosynechococcus elongatus BP-1 represented by GenBank Accession No. NP_681677.1, the unnamed protein product from Anabaena variabilis ATCC 29413 represented by GenBank Accession No. YP_321725.1, the acetate-CoA ligase from Cylindrosper- 55 mopsis raciborskii CS-505 represented by GenBank Accession No. ZP_06308209.1, the acetyl-CoA synthetase from Nostoc punctiforme PCC 73102 represented by GenBank Accession No. YP_001869493.1, the acetate-CoA ligase from Microcoleus chthonoplastes PCC 7420 represented by 60 GenBank Accession No. ZP_05030125.1, the acetyl-coenzyme A synthetase from Nodularia spumigena CCY9414 represented by GenBank Accession No. ZP_01629204.1, the acetyl-CoA synthetase from Microcystis aeruginosa NIESrepresented 843 by GenBank Accession No. 65 YP_001660936.1, the acetate/CoA ligase from 'Nostoc azollae' 0708 represented by GenBank Accession No.

YP_003723268.1, the acsA gene product from Microcystis aeruginosa PCC 7806 represented by GenBank Accession No. CAO86486.1, the acetyl-coenzyme A synthetase from Microcoleus vaginatus FGP-2 represented by GenBank Accession No. ZP_08490634.1, the Acetate-CoA ligase from Raphidiopsis brookii D9 represented by GenBank Accession No. ZP_06304063.1, the acsA gene product from Acaryochloris marina MBIC11017 represented by GenBank Accession No. YP_001517064.1, the acetyl-CoA synthetase from Acaryochloris sp. CCMEE 5410 represented by Gen-Bank Accession No. ZP_09248274.1, the acetyl-CoA synthetase from Oscillatoria sp. PCC 6506 represented by Gen-Bank Accession No. ZP_07113076.1, the acetyl-CoA synthetase from Cyanothece sp. PCC 7425 represented by GenBank Accession No. YP_002484565.1, the Acetate-CoA ligase from Lyngbya sp. PCC 8106 represented by GenBank Accession No. ZP_01623739.1, the unnamed protein product from Trichodesmium erythraeum IMS101 represented by GenBank Accession No. YP_722064.1, the acetyl-CoA synthetase from Arthrospira platensis str. Paraca represented by GenBank Accession No. ZP_06383883.1, the acetate/CoA ligase from Arthrospira maxima CS-328 represented by Gen-Bank Accession No. ZP_03274675.1, the acetyl-coenzyme A synthetase from Arthrospira sp. PCC 8005 represented by GenBank Accession No. ZP_09782650.1, the acetate/CoA ligase from Arthrospira maxima CS-328 represented by Gen-Bank Accession No. EDZ93724.1, the acetyl-coenzyme A synthetase from Arthrospira sp. PCC 8005 represented by GenBank Accession No. CCE18403.1, the unnamed protein product from Cyanothece sp. PCC 8802 represented by Gen-Bank Accession No. YP_003138301.1, the acetate/CoA ligase from Cyanothece sp. PCC 8802 represented by Gen-Bank Accession No. ACV01466.1, the acetyl-CoA synthetase from Cyanothece sp. PCC 8801 represented by Gen-Bank Accession No. YP_002373634.1, the acetyl-coenzyme A synthetase from Cyanothece sp. ATCC 51472 represented by GenBank Accession No. ZP_08974038.1, the unnamed protein product from Synechococcus elongatus PCC 6301 represented by GenBank Accession No. ZP_08974038.1, the acetyl-CoA synthetase from Cyanothece sp. ATCC 51142 represented by GenBank Accession No. YP_001803432.1, the acetyl-coenzyme A synthetase from Cyanothece sp. CCY0110 represented by GenBank Accession No. ZP_01730332.1, the AMP-dependent synthetase and ligase from Crocosphaera watsonii WH 8501 represented by Gen-Bank Accession No. ZP_00514814.1, the acetate-CoA ligase from Synechococcus sp. PCC 7335 represented by GenBank Accession No. ZP_05036109.1, the acetyl-coenzyme A synthetase from Synechococcus sp. WH 8102 represented by GenBank Accession No. NP_897106.1, the acetate-CoA ligase from Synechococcus sp. WH 7805 represented by GenBank Accession No. ZP_01123920.1, the acetate-CoA ligase from Synechococcus sp. WH 8109 represented by GenBank Accession No. ZP_05788236.1, the acetyl-coenzyme A synthetase from Prochlorococcus marinus str. MIT 9313 represented by GenBank Accession No. NP_894222.1, the acetyl-coenzyme A synthetase from Prochlorococcus marinus str. MIT 9303 represented by Gen-Bank Accession No. YP_001017906.1, the acetyl-CoA synthetase from Synechococcus sp. WH 7803 represented by GenBank Accession No. YP_001224763.1, the acetyl-coenzyme A synthetase from Synechococcus sp. RS9917 represented by GenBank Accession No. ZP_01080065.1, the acetyl-coenzyme A synthetase from Synechococcus sp. WH 8016 represented by GenBank Accession No. ZP_08955323.1, the acetate-CoA ligase from Synechococcus sp. CC9311 represented by GenBank Accession No.

YP_730758.1, the acetyl-coenzyme A synthetase from Prochlorococcus marinus str. MIT 9211 represented by Gen-Bank Accession No. YP_001550915.1, the acetate-CoA ligase from Synechococcus sp. CC9902 represented by Gen-Bank Accession No. YP_377326.1, the acetate-CoA ligase from Synechococcus sp. BL107 represented by GenBank Accession No. ZP_01467683.1, the acetyl-coenzyme A synthetase from Synechococcus sp. RS9916 represented by Gen-Bank Accession No. ZP_01471857.1, the acetyl-coenzyme A synthetase from *Synechococcus* sp. CC9605 represented by 10 GenBank Accession No. YP_381449.1, the acetyl-coenzyme A synthetase from Synechococcus sp. CB0205 represented by GenBank Accession No. ZP_07971118.1, the acetyl-CoA synthetase from Synechococcus sp. RCC307 represented by GenBank Accession No. YP_001227601.1, the 15 acetyl-coenzyme A synthetase from Synechococcus sp. CB0101 represented by GenBank Accession No. ZP_07973216.1, the acetate-CoA ligase from Cyanobium sp. PCC 7001 represented by GenBank Accession No. ZP_05043915.1, the acetate-CoA ligase from Synechococ- 20 cus sp. WH 5701 represented by GenBank Accession No. ZP_01085120.1, the acs gene product from *Prochlorococcus* marinus subsp. marinus str. CCMP1375 represented by Gen-Bank Accession No. NP_875433.1, the acetyl-coenzyme A synthetase from *Prochlorococcus marinus* str. NATL2A rep- 25 resented by GenBank Accession No. YP_291252.1, the acetyl-coenzyme A synthetase from Gloeobacter violaceus PCC 7421 represented by GenBank Accession No. NP_923105.1, the acetyl-coenzyme A synthetase from cyanobacterium UCYN-A represented by GenBank Acces- 30 sion No. YP_003421821.1, the acetyl-coenzyme A synthetase from Prochlorococcus marinus str. NATL1A represented by GenBank Accession No. YP_001014503.1, the acetyl-coenzyme A synthetase from Singulisphaera acidiphila DSM 18658 represented by GenBank Accession No. 35 ZP_09573232.1, the acetyl-coenzyme A synthetase from Prochlorococcus marinus subsp. pastoris str. CCMP1986 represented by GenBank Accession No. NP_892737.1, the acetyl-coenzyme A synthetase from Prochlorococcus marinus str. MIT 9312 represented by GenBank Accession No. 40 YP_397116.1, the acetate/CoA ligase from *Meiothermus* ruber DSM 1279 represented by GenBank Accession No. YP_003507084.1, the acetyl-coenzyme A synthetase from Prochlorococcus marinus str. MIT 9215 represented by Gen-Bank Accession No. YP_001483902.1, the acs gene product 45 from Prochlorococcus marinus str. AS9601 represented by GenBank Accession No. YP 001009068.1, the acetyl-coenzyme A synthetase from Prochlorococcus marinus str. MIT 9515 represented by GenBank Accession No. YP_001011000.1, the acetate-CoA ligase from Prochloro- 50 coccus marinus str. MIT 9202 represented by GenBank Accession No. ZP_05137406.1, the acetyl-coenzyme A synthetase from Marinithermus hydrothermalis DSM 14884 represented by GenBank Accession No. YP_004368660.1, the acetyl-coenzyme A synthetase from Prochlorococcus mari- 55 nus str. MIT 9301 represented by GenBank Accession No. YP_001090869.1, the unnamed protein product from Nostoc sp. PCC 7120 represented by GenBank Accession No. NP_488297.1, the acetate/CoA ligase from Truepera radiovictrix DSM 17093 represented by GenBank Accession No. 60 YP 003703935.1, the acetate/CoA ligase from Haliangium ochraceum DSM 14365 represented by GenBank Accession No. YP_003269915.1, the acetyl-coenzyme A synthetase from Gemmata obscuriglobus UQM 2246 represented by GenBank Accession No. ZP_02733777.1, the acetyl-coen- 65 zyme A synthetase from Isosphaera pallida ATCC 43644 represented by GenBank Accession No. YP_004179760.1,

14

the acetyl-CoA synthetase from Chloroherpeton thalassium ATCC 35110 represented by GenBank Accession No. YP_001995147.1, the acetate-CoA ligase from *Planctomy*ces maris DSM 8797 represented by GenBank Accession No. ZP_01856978.1, the acetyl-CoA synthetase from Thermus thermophilus HB8 represented by GenBank Accession No. YP_144514.1, the acetate/CoA ligase from Planctomyces limnophilus DSM 3776 represented by GenBank Accession No.YP_003632128.1, the acetyl-CoA synthetase from Thermus thermophilus HB27 represented by GenBank Accession No. YP_004855.1, the acetyl-coenzyme a synthetase from Oceanithermus profundus DSM 14977 represented by Gen-Bank Accession No. YP_004057553.1, the acetyl-coenzyme A synthetase from Candidatus Koribacter versatilis Ellin345 represented by GenBank Accession No. YP_592595.1, the acetate/CoA ligase from Meiothermus silvanus DSM 9946 represented by GenBank Accession No. YP_003684983.1, the acetate-CoA ligase from Verrucomicrobium spinosum DSM 4136 represented by GenBank Accession No. ZP 02931268.1, the acetate/CoA ligase from Thermus aquaticus Y51MC23 represented by GenBank Accession No. ZP_03496427.1, the acetyl-coenzyme A synthetase from Symbiobacterium thermophilum IAM 14863 represented by GenBank Accession No. YP_074710.1, the acetate/CoA ligase from bacterium Ellin 514 represented by GenBank Accession No. ZP_03630513.1, the acetyl-CoA synthetase from uncultured candidate division OP1 bacterium represented by GenBank Accession No. BAL56248.1, the acetylcoenzyme A synthetase from Blastopirellula marina DSM 3645 represented by GenBank Accession No. ZP_01092728.1, the acs2 gene product from *Thermus scoto*ductus SA-01 represented by GenBank Accession No. YP_004201921.1, the acetyl-coenzyme A synthetase from Archaeoglobus veneficus SNP6 represented by GenBank Accession No. YP_004341076.1, the Acetyl-coenzyme A synthetase from *Desulfitobacterium dehalogenans* ATCC represented by GenBank Accession No. 51507 ZP_09634500.1, the unnamed protein product from Candidatus Chloracidobacterium thermophilum B represented by GenBank Accession No. YP_004864177.1, the acetate-CoA ligase from Acidobacterium capsulatum ATCC 51196 represented by GenBank Accession No. YP_002755829.1, the acetate/CoA ligase from Pirellula stalevi DSM 6068 represented by GenBank Accession No. YP_003369860.1, the acetyl-CoA synthetase from Chlorobium chlorochromatii CaD3 represented by GenBank Accession No. YP 379980.1, the acetate-CoA ligase from Myxococcus xanthus DK 1622 represented by GenBank Accession No. YP_630789.1, the acetate-CoA ligase from Myxococcus fulvus HW-1 represented by GenBank Accession No. YP_004667083.1, the unnamed protein product from Candidatus Solibacter usitatus Ellin 6076 represented by Gen-Bank Accession No. YP_829106.1, the acetyl-coenzyme A synthetase from Planctomyces brasiliensis DSM 5305 represented by GenBank Accession No. YP_004268501.1, the acetyl-CoA synthetase from Escherichia coli UMN026 represented by GenBank Accession No. YP_002415210.1, the acetyl-CoA synthetase from Escherichia coli FVEC1412 represented by GenBank Accession No. ZP_06646805.1, the acetyl-coenzyme A synthetase from Escherichia coli FVEC1302 represented by GenBank Accession No. ZP_06988121.1, the acetate-CoA ligase from Escherichia coli MS198-1 represented by GenBank Accession No. ZP_07115900.1, the acetyl-CoA synthetase from Escherichia coli UMN₀₂₆ represented by GenBank Accession No. CAR15720.1, the Acs2p from Saccharomyces cerevisiae S288c represented by GenBank Accession No. NP_013254.1, the acetyl CoA synthetase from Saccharomyces cerevisiae YJM789 represented by GenBank Accession No. EDN59693.1, the K7_Acs2p from Saccharomyces cerevisiae Kyokai no. 7 represented by GenBank Accession No. GAA25035.1, the acetyl CoA synthetase from Saccharomyces cerevisiae RM11-1a represented by GenBank Accession No. EDV09449.1, the bifunctional acetyl-CoA synthetase and propionyl-CoA synthetase from Escherichia coli str. K12 substr. W3110 represented by GenBank Accession No. BAE78071.1, and the acetyl-coenzyme A synthetase from 10 Pseudomonas fulva 12-X represented by GenBank Accession No.YP_004473024.1, among others. The coding sequences encoding these gene products can be found in GenBank (http://www.ncbi.nlm.nih.gov/GenBank/).

Homologs of acsA and AcsA discussed in the examples 15 include the acetyl-CoA synthetase from Synechocystis sp. PCC 6803 (s110542; GenBank Accession No. NP_442428.1; SEQ ID NOS:3 and 4) and the unnamed protein product from Synechococcus sp. PCC 7942 (SYN-PCC7942_1342; GenBank Accession No. YP_400369.1; 20 ism can grow only in the presence of a lower concentration of SEQ ID NOS:5 and 6)

The microorganism of the present invention preferably includes any microorganism that harbors an acsA gene or homolog thereof or expresses an acsA gene product or homolog thereof that is capable of being functionally deleted 25 to render the microorganism more tolerant of organic acids. The microorganism may be eukaryotic, such as yeast, or prokaryotic, such as bacteria or archaea. Among bacteria, gram-positive, gram-negative, and ungrouped bacteria are suitable. Phototrophs, lithotrophs, and organotrophs are also 30 suitable. In preferred versions of the invention, the microorganism is a phototroph, such as a cyanobacterium. Suitable cyanobacteria include those from the genuses Agmenellum, Anabaena, Aphanocapsa, Arthrosprira, Gloeocapsa, Haplosiphon, Mastigocladus, Nostoc, Oscillatoria, Prochlorococ- 35 cus, Scytonema, Synechococcus, and Synechocystis. Preferred cyanobacteria include those selected from the group consisting of Synechococcus spp., spp., Synechocystis spp., and Nostoc spp. Particularly suitable examples of Synechococcus spp. include Synechococcus sp. PCC 7942 and Syn- 40 rate in the presence of a certain concentration of an organic echococcus sp. PCC 7002. A particularly suitable example of Synechocystis spp. includes Synechocystis sp. PCC 6803. A benefit of phototrophs is that they require only CO₂ as a carbon source and are not dependent on food-based commodities or other types of biomass for which there is a grow-45 ing high demand.

Functional deletion of the acsA gene product or homolog thereof in the microorganism results in increased tolerance of the microorganism to organic acids compared to a corresponding microorganism. As used herein, "corresponding 50 microorganism" refers to a microorganism of the same species having the same or substantially same genetic and proteomic composition as a microorganism of the invention, with the exception of genetic and proteomic differences resulting from the modifications described herein for the microorgan- 55 isms of the invention. Such tolerance is with respect to any organic acid present within the organism or its growth medium, particularly those that may be present in high abundance. Non-limiting examples of organic acids to which the microorganisms of the present invention have increased tol- 60 erance include acetic acid, acrylic acid, aspartic acid, benzoic acid, butyric acid, citric acid, formic acid, fumaric acid, furan dicarboxylic acid (2,5-furandicarboxylic acid), glucaric acid, glutamic acid, heptanoic acid, hexanoic acid, 3-hydroxypropionic acid (3HP), isophthalic acid, itaconic acid, lactic acid, 65 levoascorbic acid, levulinic acid, malic acid, octanoic acid, oxalic acid, pentanoic acid, phosphoric acid, propionic acid,

pyruvic acid, succinic acid (1,4 succinic acid), and terephthalic acid, among others. The examples show various aspects of increased tolerance to exemplary organic acids 3-hydroxypropionic acid (3HP), acrylic acid, and propionic acid.

One aspect of the increased tolerance to organic acids is an increase in the minimal inhibitory concentration (MIC) of a particular organic acid compared to a corresponding microorganism. MIC is the lowest concentration of an agent that will inhibit growth of a microorganism. An MIC can be determined by titrating the agent in the growth medium of the microorganism. The lowest concentration of the agent in which the microorganism is no longer able to grow is the MIC. Methods of culturing microorganisms and of detecting their growth are well known in the art and are not discussed in detail herein. A relative increase in MIC indicates a higher tolerance to an agent and indicates that the microorganism can grow in the presence of a higher concentration of the agent. Conversely, a relative decrease in MIC indicates a lower tolerance to an agent and indicates that the microorganthe agent.

Functional deletion of the acsA gene product or homolog thereof in the microorganism confers an MIC of at least about 10 μM, 25 μM, 50 μM, 75 μM, 100 μM, 250 μM, 500 μM, 1 mM, 25 mM, 50 mM, 70 mM, 100 mM, 125 mM, or 150 mM to acrylic acid; an MIC of at least about 10 mM, 15 mM, 20 mM, 25 mM, 50 mM, 75 mM, 100 mM, 125 mM, 150 mM, 175 mM, 200 mM, 225 mM, 250 mM, 260 mM, 300 mM, 350 mM, or more to 3HP; and/or an MIC of at least about 250 µM, 500 µM, 1 mM, 50 mM, 100 mM, 200 mM, 300 mM, 350 mM, 400 mM, 450 mM, 500 mM, or more to propionic acid. Such MICs occur in at least Synechococcus sp. cyanobacteria, such as Synechococcus sp. PCC 7002 and Synechococcus sp. PCC 7942, when assayed at a pH of about 8. Such MICs also occur in Synechocystis sp., such as Synechocystis sp. PCC 6803, when assayed at a pH of about 8. Such MICs also occur in any other microorganism described herein, such as Prochlorococcus sp., Nostoc sp., or others.

Another aspect of increased tolerance is increased growth acid or an equal growth rate in the presence of an increased concentration of an organic acid compared to a corresponding microorganism.

In various aspects of the invention, functional deletion of the acsA gene product or homolog thereof in the microorganism confers at least about a 1.5-fold, a 5-fold, a 10-fold, a 15-fold, a 25-fold, a 50-fold, a 75-fold, a 100-fold, a 500-fold, a 750-fold, a 1.000-fold, 1.250-fold, a 1.500-fold, a 1.750fold, a 2.000-fold, a 2.250-fold, a 2.500-fold, a 2.750-fold, a 3.000-fold, a 3.250-fold, or a 3.500-fold increase in tolerance against an organic acid. The organic acid to which functional deletion of the acsA gene product confers such MICs may include acrylic acid, 3HP, propionic acid, or lactic acid, among others. In some versions of the invention, for example, functional deletion of the acsA gene product in Synechococcus sp. PCC 7002 confers at least about a 2.800-fold increase in MIC for acrylic acid, at least about a 26-fold increase in MIC for 3HP, and at least about a 100-fold increase in MIC for propionic acid at pH of about 8 (see examples below).

The increased tolerance to organic acids conferred by functional deletion of the acsA gene product or homolog thereof renders the microorganism particularly suited for producing high amounts of organic acids, many of which have industrial utility. Accordingly, the microorganism in some versions of the invention is capable of producing an organic acid that can be isolated for industrial purposes. The microorganism may be able to naturally make the organic acid, may be genetically

modified to make the organic acid, or may be genetically modified to make increased amounts of the organic acid that it already makes. Non-limiting examples of organic acids that the microorganisms of the present invention can produce include acetic acid, aspartic acid, benzoic acid, citric acid, 5 formic acid, fumaric acid, furan dicarboxylic acid (2,5furandicarboxylic acid), glucaric acid, glutamic acid, 3-hydroxypropionic acid (3HP), isophthalic acid, itaconic acid, lactic acid, levoascorbic acid, levulinic acid, malic acid, oxalic acid, phosphoric acid, propionic acid, pyruvic acid, 10 succinic acid (1,4 succinic acid), and terephthalic acid, among others. In preferred versions of the invention, the microorganism is capable of making at least 3HP and or lactic acid.

The microorganism may be modified to express or increase 15 expression of one or more genes involved in the production of the organic acid. Modifying the microorganism to express or increase expression of a gene can be performed using any methods currently known in the art or discovered in the future. Examples include genetically modifying the microor- 20 ganism and culturing the microorganism in the presence of factors that increase expression of the gene. Suitable methods for genetic modification include but are not limited to placing the coding sequence under the control of a more active promoter, increasing the copy number of the gene, and/or intro- 25 ducing a translational enhancer on the gene (see, e.g., Olins et al. Journal of Biological Chemistry, 1989, 264(29):16973-16976). Increasing the copy number of the gene can be performed by introducing additional copies of the gene to the microorganism, i.e., by incorporating one or more exogenous 30 copies of the native gene or a heterologous homolog thereof into the microbial genome, by introducing such copies to the microorganism on a plasmid or other vector, or by other means. "Exogenous" used in reference to a genetic element means the genetic element is introduced to a microorganism 35 by genetic modification. "Heterologous" used in reference to a genetic element means that the genetic element is derived from a different species. A promoter that controls a particular coding sequence is herein described as being "operationally connected" to the coding sequence.

The microorganisms of the invention may include at least one recombinant nucleic acid configured to express or overexpress a particular enzyme. "Recombinant" as used herein with reference to a nucleic acid molecule or polypeptide is one that has a sequence that is not naturally occurring, has a 45 sequence that is made by an artificial combination of two otherwise separated segments of sequence, or both. This artificial combination can be achieved, for example, by chemical synthesis or by the artificial manipulation of isolated segments of nucleic acid molecules or polypeptides, such as 50 genetic engineering techniques. "Recombinant" is also used to describe nucleic acid molecules that have been artificially modified but contain the same regulatory sequences and coding regions that are found in the organism from which the nucleic acid was isolated. A recombinant cell or microorgan- 55 ism is one that contains a recombinant nucleic acid molecule or polypeptide. "Overexpress" as used herein means that a particular gene product is produced at a higher level in one cell, such as a recombinant cell, than in a corresponding cell. For example, a microorganism that includes a recombinant 60 nucleic acid configured to overexpress an enzyme produces the enzyme at a greater amount than a microorganism that does not include the recombinant nucleic acid.

In some versions of the invention, the microorganism is genetically modified to produce or enhance production of 65 3HP. Such a microorganism can be obtained by expressing or increasing expression of a gene for any one or more of the

enzymes catalyzing the various steps in a 3HP-production pathway. Non-limiting examples of suitable enzymes include pyruvate kinase, pyruvate dehydrogenase, acetyl-CoA carboxylase, malonyl-CoA reductase, malonate semialdehyde reductase, phosphoenolpyruvate carboxylase, aspartate aminotransferase, aspartate decarboxylase, and β -alanine/ α -ketoglutarate aminotransferase. See FIGS. **7**, **9**A, and **9**B. See also U.S. Pat. No. 8,048,624 to Lynch, U.S. Pub. 2011/ 0125118 to Lynch, U.S. Pub. 2010/0210017 to Gill et al., and Warnecke et al. *Metabolic Engineering* (2010) 12:241-250 for additional enzymes.

Accordingly, some microorganisms of the invention include at least one recombinant nucleic acid configured to express or overexpress a malonyl-CoA reductase. Malonyl-CoA reductases include the enzymes classified under EC 1.2.1.75. In some versions, the microorganism is modified to harbor a nucleic acid encoding the malonyl-CoA reductase from Chloroflexus aurantiacus or a homolog thereof. The coding sequence for the malonyl-CoA reductase from Chloroflexus aurantiacus is included in GenBank under accession number AY530019 and is represented by SEQ ID NO:7. The Chloroflexus aurantiacus malonyl-CoA reductase gene product is included in GenBank under accession number AAS20429 and has an amino acid sequence represented by SEQ ID NO:8. The malonyl-CoA reductase from Chloroflexus aurantiacus has been shown to be a bi-functional enzyme, having activity that converts malonyl-CoA to malonate semialdehyde in addition to activity that converts malonate semialdehyde to 3HP.

Exemplary homologs of the Chloroflexus aurantiacus malonyl-CoA reductase gene product include but are not limited to the short-chain dehydrogenase/reductase SDR from Chloroflexus aggregans DSM 9485 represented by Gen-Bank Accession No. YP_002462600.1, the short-chain dehydrogenase/reductase SDR from Oscillochloris trichoides represented by DG6 GenBank Accession No. ZP_07684596.1, the short-chain dehydrogenase/reductase SDR from Roseiflexus castenholzii DSM 13941 represented by GenBank Accession No. YP_001433009.1, the short-40 chain dehydrogenase/reductase SDR from Roseiflexus sp. **RS-1** represented by GenBank Accession No. YP_001277512.1, among others. The coding sequences encoding these gene products can be found in GenBank.

Homologs of the *Chloroflexus aurantiacus* malonyl-CoA reductase also include enzymes having an amino acid sequence at least about 80%, 85%, 90%, 95%, 97%, 98%, 99% or more identical to SEQ ID NO:8. Sequences having these percent identities can be obtained by aligning SEQ ID NO:8 to the sequences of the *Chloroflexus aurantiacus* malonyl-CoA reductase homologs listed above or otherwise known in the art to determine which residues are amenable to variation (i.e., substitution, deletion, addition, etc.) and the identities of the suitably substituted or added residues.

In some versions of the invention, the microorganism is modified to harbor a nucleic acid encoding the malonyl-CoA reductase from *Sulfolobus tokodaii* or a homolog thereof. The coding sequence for the malonyl-CoA reductase from *Sulfolobus tokodaii* is included in GenBank under accession number NC_003106.2 (positions 2170729-2171808; Gene ID 1460244) and is represented by SEQ ID NO:11. A truncated, codon-optimized version of the coding sequence preferred for expression in cyanobacteria is represented by SEQ ID NO:12. The gene product of the malonyl-CoA reductase from *Sulfolobus tokodaii* is included in GenBank under accession number NP_378167. A truncated gene product encoded by SEQ ID NO:12 and suitable for use in the present invention has an amino acid sequence represented by SEQ ID NO:13. The malonyl-CoA reductase from *Sulfolobus tokodaii* has been shown to have activity that converts malonyl-CoA to malonate semialdehyde. It does not appear to have activity that converts malonate semialdehyde to 3HP.

Exemplary homologs of the malonyl-CoA reductase from 5 Sulfolobus tokodaii include but are not limited to the aspartate-semialdehyde dehydrogenase from Acidianus hospitalis W1 represented by GenBank Accession No. YP_004459517.1, the aspartate-semialdehyde dehydrogenase from Metallosphaera sedula DSM 5348 represented by 10 GenBank Accession No. YP_001190808.1, the malonyl-/ succinyl-CoA reductase from Metallosphaera cuprina Ar-4 represented by GenBank Accession No. YP_004410014.1, the aspartate-semialdehyde dehydrogenase from Sulfolobales archaeon AZ1 represented by GenBank Accession No. 15 EWG07552.1, the aspartate-semialdehyde dehydrogenase from Sulfolobus solfataricus P2 represented by GenBank Accession No. NP_343563.1, the aspartate-semialdehyde dehydrogenase from Metallosphaera yellowstonensis represented by GenBank Accession No. WP 009071519.1, the 20 aspartate-semialdehyde dehydrogenase from Sulfolobus islandicus M.16.27 represented by GenBank Accession No. YP_002844727.1, the aspartate-semialdehyde dehydrogenase from Sulfolobus islandicus L.S.2.15 represented by GenBank Accession No. YP_002833533.1, the aspartate- 25 semialdehyde dehydrogenase from Sulfolobus islandicus HVE10/4 represented by GenBank Accession No. YP_005647305.1, the aspartate-semialdehyde dehydrogenase from Sulfolobus islandicus Y.N.15.51 represented by GenBank Accession No. YP_002841967.1, the aspartate- 30 semialdehyde dehydrogenase from Sulfolobus acidocaldarius DSM 639 represented by GenBank Accession No. YP_256941.1, the aspartate-semialdehyde dehydrogenase from Sulfolobus islandicus M.14.25 represented by GenBank Accession No. YP_002830795.1, the aspartate-semialde- 35 hyde dehydrogenase from Sulfolobus acidocaldarius SUSAZ represented by GenBank Accession No. YP_008948306.1, the aspartate-semialdehyde dehydrogenase from Sulfolobales archaeon Acd1 represented by GenBank Accession No. WP_020198954.1, the aspartate-semialdehyde dehydroge- 40 nase from Sulfolobus acidocaldarius DSM 639 represented by GenBank Accession No. YP_256733.1, the aspartatesemialdehyde dehydrogenase from Sulfolobus acidocaldarius SUSAZ represented by GenBank Accession No. YP_008948046.1, the aspartate-semialdehyde dehydroge- 45 nase from Archaeoglobus profundus DSM 5631 represented by GenBank Accession No. YP 003401535.1, the aspartatesemialdehyde dehydrogenase from Candidatus Caldiarchaeum subterraneum represented by GenBank Accession No. YP_008797381.1, the aspartate-semialdehyde dehydro- 50 genase from Ferroglobus placidus DSM 10642 represented by GenBank Accession No. YP_003435562.1, the aspartatesemialdehyde dehydrogenase from Methanothermobacter marburgensis str. Marburg represented by GenBank Accession No. YP_003850098.1, the aspartate-semialdehyde 55 dehydrogenase from Methanothermobacter thermautotrophicus CaT2 represented by GenBank Accession No. BAM69964.1, the aspartate-semialdehyde dehydrogenase from Methanothermobacter thermautotrophicus str. Delta H represented by GenBank Accession No. NP_275938.1, the 60 aspartate semialdehyde dehydrogenase from Archaeoglobus sulfaticallidus PM70-1 represented by GenBank Accession No. YP_007906903.1, the aspartate-semialdehyde dehydrogenase from Pyrobaculum arsenaticum DSM 13514 represented by GenBank Accession No. YP_001153189.1, the 65 aspartate semialdehyde dehydrogenase from Methanothermus fervidus DSM 2088 represented by GenBank Accession

No. YP_004004235.1, and the aspartate-semialdehyde dehydrogenase from *Methanopyrus kandleri* AV19 represented by GenBank Accession No. NP_614672.1, among others. The coding sequences encoding these gene products can be found in GenBank.

Homologs of the *Sulfolobus tokodaii* malonyl-CoA reductase also include enzymes having an amino acid sequence at least about 80%, 85%, 90%, 95%, 97%, 98%, 99% or more identical to SEQ ID NO:13. Sequences having these percent identities can be obtained by aligning SEQ ID NO:13 to the sequences of the *Sulfolobus tokodaii* malonyl-CoA reductase homologs listed above or otherwise known in the art to determine which residues are amenable to variation (i.e., substitution, deletion, addition, etc.) and the identities of the suitably substituted or added residues.

In some versions of the invention, the microorganism is modified to express or increase expression of a malonate semialdehyde reductase. Malonate semialdehyde reductase converts malonate semialdehyde to 3HP. Such a modification is preferred in microorganisms modified to express or increase expression of a malonyl-CoA reductase that does not convert malonate semialdehyde to 3HP, such as the malonyl-CoA reductase from Sulfolobus tokodaii. Suitable malonate semialdehyde reductases can use either NADH (EC 1.1.1.59) or NADPH (EC 1.1.1.298) as cofactors. Malonate semialdehyde reductases that use NADPH are preferred. In some versions, the microorganism is modified to harbor a nucleic acid encoding the malonate semialdehyde reductase from Metallosphaera sedula or a homolog thereof. The coding sequence of the malonate semialdehyde reductase from Metallosphaera sedula is included in GenBank under accession number NC_009440.1 (Gene ID 5103380; positions 1929295-1930239) and is represented by SEQ ID NO:14. A codon-optimized version of the coding sequence preferred for expression in cyanobacteria is represented by SEQ ID NO:15. The gene product of the malonate semialdehyde reductase from Metallosphaera sedula is included in Gen-Bank under accession number YP_001192057 and has an amino acid sequence represented by SEQ ID NO:16.

Exemplary homologs of the malonate semialdehyde reductase from Metallosphaera sedula include but are not limited to the 3-hydroxyacyl-CoA dehydrogenase from Metallosphaera sedula DSM 5348 represented by GenBank Accession No. YP_001192057.1, the malonate semialdehyde reductase from Metallosphaera cuprina Ar-4 represented by GenBank Accession No. YP_004408885.1, the 3-hydroxyacvl-CoA dehvdrogenase NAD-binding protein from Acidianus hospitalis W1 represented by GenBank Accession No. YP_004458285.1, the 3-hydroxyacyl-CoA dehydrogenase from Sulfolobales archaeon AZ1 represented by GenBank Accession No. EWG08084.1, the 3-hydroxyacyl-CoA dehydrogenase from Metallosphaera vellowstonensis represented by GenBank Accession No. WP_009075415.1, the 3-hydroxyacyl-CoA dehydrogenase from Sulfolobus solfataricus P2 represented by GenBank Accession No. NP_342162.1, the 3-hydroxyacyl-CoA dehydrogenase NAD-binding protein from Sulfolobus islandicus HVE10/4 represented by GenBank Accession No. YP_005646018.1, the 3-hydroxyacyl-CoA dehydrogenase NAD-binding protein from Sulfolobus islandicus REY15A represented by GenBank Accession No. YP_005648646.1, the 3-hydroxyacyl-CoA dehydrogenase from Sulfolobus islandicus LAL14/1 represented by GenBank Accession No. YP_007865821.1, the 3-hydroxyacyl-CoA dehydrogenase from Sulfolobus islandicus M.14.25 represented by GenBank Accession No. YP_002829538.1, the 3-hydroxyacyl-CoA dehydrogenase from Sulfolobus islandicus represented by GenBank Accession No.

WP_016732252.1, the 3-hydroxyacyl-CoA dehydrogenase from Sulfolobales archaeon Acd1 represented by GenBank Accession No. WP_020199213.1, the 3-hydroxybutyryl-CoA dehydrogenase from Sulfolobus tokodaii str. 7 represented by GenBank Accession No. NP_377470.1, the 3-hy-5 droxyacyl-CoA dehydrogenase from Sulfolobus acidocaldarius SUSAZ represented by GenBank Accession No. YP_008947634.1, the 3-hydroxybutyryl-CoA dehydrogenase from Sulfolobus acidocaldarius DSM 639 represented by GenBank Accession No. YP_256228.1, the 3-hy-10 droxyacyl-CoA dehydrogenase from Archaeoglobus fulgidus DSM 4304 represented by GenBank Accession No. NP_070034.1, the 3-hydroxyacyl-CoA dehydrogenase from Burkholderia sp. H160 represented by GenBank Accession No. WP_008917830.1, the 3-hydroxyacyl-CoA dehydroge- 15 nase represented by hbd-8 from Planctomyces maxis represented by GenBank Accession No. WP_002645585.1, the 3-hydroxybutyryl-CoA dehydrogenase from Megasphaera sp. UPII 199-6 represented by GenBank Accession No. WP 007391670.1. the 3-hydroxyacyl-CoA dehydrogenase 20 modified to harbor a nucleic acid encoding a lactate dehydrofrom Burkholderia pseudomallei 1026b represented by Gen-Bank Accession No. YP_006275221.1, the 3-hydroxyacyl-CoA dehydrogenase from Burkholderia oklahomensis represented by GenBank Accession No. WP_010114811.1, and the 3-hydroxyacyl-CoA dehydrogenase from Burkholderia 25 pseudomallei MSHR305 represented by GenBank Accession No.YP_008340862.1, among others. The coding sequences encoding these gene products can be found in GenBank.

Homologs of the Metallosphaera sedula malonate semialdehyde reductase also include enzymes having an amino acid 30 sequence at least about 80%, 85%, 90%, 95%, 97%, 98%, 99% or more identical to SEQ ID NO:16. Sequences having these percent identities can be obtained by aligning SEQ ID NO:16 to the sequences of the Metallosphaera sedula malonate semialdehyde reductase homologs listed above or oth- 35 erwise known in the art to determine which residues are amenable to variation (i.e., substitution, deletion, addition, etc.) and the identities of the suitably substituted or added residues.

In some versions of the invention, the microorganism is 40 modified to express or increase expression of acetyl-CoA carboxylase, either alone, with a malonyl-CoA reductase, with a malonate semialdehyde reductase, or with other enzymes. Such a microorganism can be obtained by introducing exogenous nucleic acids expressing the acetyl-CoA car- 45 boxylase subunits into the microorganism, by introducing highly expressed promoters in front of the endogenous acetyl-CoA carboxylase subunit coding sequences, by increasing translational efficiency, or by other means. In bacteria, acetyl-CoA carboxylase is a multisubunit enzyme that 50 is encoded by four genes, accA, accB, accC, and accD. Exemplary acetyl-coA carboxylase subunit genes for use in the present invention can be those found in Synechococcus sp. PCC 7002 or homologs thereof. The complete genome of Synechococcus sp. PCC 7002 can be found in GenBank under 55 Accession No. NC_010475. The coding sequence for accA can be found at positions 2536162-2537139 of NC_010475, the gene product of which has a sequence represented by GenBank Accession No. YP_001735676.1. The coding sequence for accB can be found at positions 60707-61204 of 60 NC_010475, the gene product of which has a sequence represented by GenBank Accession No. YP_001733325.1. The coding sequence for accC can be found at positions 2210473-2211819 of NC_010475, the gene product of which has a sequence represented by GenBank Accession No. 65 YP_001735364.1". The coding sequence for accD can be found at positions 64484-65443 of NC_010475, the gene

product of which has a sequence represented by GenBank Accession No. YP 001733331.1. Suitable promoters for increasing expression of these genes are known in the art. In some versions of the invention, an artificial operon comprising the accD, accA, accB, and accC coding sequences from E. coli can be introduced into the microorganism for expression or overexpression of acetyl-CoA carboxylase. See, e.g., US 2011/0165637 to Pfleger et al., which is incorporated herein by reference.

In some versions of the invention, the microorganism is genetically modified to produce or enhance production of lactate. Such a microorganism can be obtained by expressing or increasing expression of lactate dehydrogenase. Lactate dehydrogenase catalyzes the conversion of pyruvate to lactate. See FIG. 12A. Lactate dehydrogenases include the enzymes classified under EC 1.1.1.27 (L-lactate dehydrogenases) and 1.1.1.28 (D-lactate dehydrogenases). L-Lactate dehydrogenases are preferred.

In some versions of the invention, the microorganism is genase from Bacillus subtilis or a homolog thereof. The coding sequence of the lactate dehydrogenase from Bacillus subtilis is included in GenBank under accession number AL009126.3 (positions 329774 to 330739) and is represented by SEQ ID NO:17. The gene product of the lactate dehydrogenase from Bacillus subtilis is included in GenBank under accession number NP_388187 and has an amino acid sequence represented by SEQ ID NO:18.

Exemplary homologs of the lactate dehydrogenase from Bacillus subtilis include but are not limited to the L-lactate dehydrogenase from *Bacillus subtilis* subsp. *subtilis* str. 168 represented by GenBank Accession No. NP_388187.2, the L-lactate dehydrogenase from Bacillus subtilis subsp. natto BEST195 represented by GenBank Accession No. YP_005559471.1, the L-lactate dehydrogenase from Bacillus subtilis BSn5 represented by GenBank Accession No. YP_004206262.1, the L-lactate dehydrogenase from Bacillus subtilis subsp. spizizenii TU-B-10 represented by Gen-Bank Accession No. YP_004875853.1, the lactate dehydrogenase from Bacillus subtilis represented by GenBank Accession No. WP_017696103.1, the lactate dehydrogenase from Bacillus subtilis represented by GenBank Accession No. WP_003224788.1, the L-lactate dehydrogenase from Bacillus subtilis subsp. subtilis str. RO-NN-1 represented by GenBank Accession No. YP_005555343.1, the L-lactate dehydrogenase from Bacillus subtilis XF-1 represented by GenBank Accession No. YP 007425489.1, the L-lactate dehydrogenase from Bacillus subtilis represented by Gen-Bank Accession No. WP_003241205.1, the lactate dehydrogenase from Bacillus subtilis represented by GenBank Accession No. WP_019257406.1, the lactate dehydrogenase from Bacillus mojavensis represented by GenBank Accession No. WP_010332943.1, the lactate dehydrogenase from Bacillus vallismortis represented by GenBank Accession No. WP_010331365.1, the L-lactate dehydrogenase from Bacillus subtilis subsp. spizizenii str. W23 represented by GenBank Accession No. YP_003864678.1, the L-lactate dehydrogenase from Bacillus atrophaeus represented by GenBank Accession No. WP_010787568.1, the lactate dehydrogenase from Bacillus amyloliquefaciens LFB112 represented by GenBank Accession No. YP_008948730.1, the L-lactate dehydrogenase from Bacillus licheniformis 9945A represented by GenBank Accession No. YP_008076533.1, the L-lactate dehydrogenase from Halobacillus halophilus DSM 2266 represented by GenBank Accession No. YP_006181877.1, L-lactate dehydrogenase from Halobacillus sp. BAB-2008 represented by GenBank Accession No. WP_008633175.1, the L-lactate dehydrogenase from *Geobacillus* sp. WCH70 represented by GenBank Accession No. YP_002948666.1, the lactate dehydrogenase from *Geobacillus caldoxylosilyticus represented by GenBank Accession No. WP_*017436539.1, the L-lactate dehydrogenase from *5 Anoxybacillus flavithermus* represented by GenBank Accession No. WP_003394005.1, the lactate dehydrogenase from *Anoxybacillus kamchatkensis* represented by GenBank Accession No. WP_019416922.1, and the lactate dehydrogenase from *Accession No. NP_267487, among others. The coding sequences encoding these gene products can be found in GenBank.*

Homologs of the *Bacillus subtilis* lactate dehydrogenase also include enzymes having an amino acid sequence at least 15 about 80%, 85%, 90%, 95%, 97%, 98%, 99% or more identical to SEQ ID NO:18. Sequences having these percent identities can be obtained by aligning SEQ ID NO:18 to the sequences of the *Bacillus subtilis* lactate dehydrogenase homologs listed above or otherwise known in the art to determine which residues are amenable to variation (i.e., substitution, deletion, addition, etc.) and the identities of the suitably substituted or added residues.

In some versions, the microorganism is modified to harbor a nucleic acid encoding the lactate dehydrogenase from *Lac-* 25 *tococcus lactis* or a homolog thereof. The coding sequence of the lactate dehydrogenase from *Lactococcus lactis* is included in GenBank under accession number NC_002662.1 (Gene ID 1114981, complement of positions 1369224-1370201). A codon-optimized version of the coding sequence 30 preferred for expression in cyanobacteria is represented by SEQ ID NO:21. The gene product of the lactate dehydrogenase from *Lactococcus lactis* is included in GenBank under accession number NP_267487 and has an amino acid sequence represented by SEQ ID NO:22. 35

Exemplary homologs of the lactate dehydrogenase from Lactococcus lactis include but are not limited to the L-lactate dehydrogenase from Lactococcus lactis subsp. cremoris UC509.9 represented by GenBank Accession No. YP_006999682.1, the lactate dehydrogenase from Lacto- 40 coccus lactis represented by GenBank Accession No. WP 021165426.1, the L-lactate dehydrogenase from Lactococcus lactis represented by GenBank Accession No. AAB51677.1, the L-lactate dehydrogenase from Lactococcus lactis represented by GenBank Accession No. 45 AAB51679.1, lactate dehydrogenase from Lactococcus lactis represented by GenBank Accession No. AAA25172.1, the lactate dehydrogenase from Lactococcus lactis subsp. cremoris TIFN6 represented by GenBank Accession No. EQC54698.1, the L-lactate dehydrogenase from Streptococ- 50 cus anginosus C238 represented by GenBank Accession No. YP_008500777.1, the lactate dehydrogenase from Streptococcus anginosus represented by GenBank Accession No. WP_003029659.1, the lactate dehydrogenase from Lactococcus garvieae represented by GenBank Accession No. 55 WP 003135756.1, the lactate dehydrogenase from Streptococcus anginosus represented by GenBank Accession No. WP_003042963.1, the malate/lactate dehydrogenases from Streptococcus anginosus represented by GenBank Accession No. WP_022525868.1, the L-lactate dehydrogenase from 60 Streptococcus intermedius C270 represented by GenBank Accession No. YP_008497003.1, the L-lactate dehydrogenase from Lactococcus garvieae ATCC 49156 represented by GenBank Accession No. YP_004779491.1, the lactate dehydrogenase from Lactococcus garvieae represented by Gen- 65 Bank Accession No. WP_019293709.1, the L-lactate dehydrogenase from Streptococcus uberis 0140J represented by

24

GenBank Accession No. YP_002562208.1, the L-lactate dehydrogenase from Streptococcus parauberis KCTC 11537 represented by GenBank Accession No. YP_004478812.1, the L-lactate dehydrogenase from Streptococcus intermedius represented by GenBank Accession B196 No. YP_008512752.1, the lactate dehydrogenase from Streptococcus pseudoporcinus represented by GenBank Accession No. WP_007891460.1, the L-lactate dehydrogenase from Streptococcus iniae SF1 represented by GenBank Accession No. YP_008056778.1, the L-lactate dehydrogenase from Streptococcus intermedius JTH08 represented by GenBank Accession No. YP_006469731.1, the lactate dehydrogenase from Streptococcus anginosus represented by GenBank Accession No. WP_003069027.1, the lactate dehydrogenase from Streptococcus porcinus represented by GenBank Accession No. WP_003084658.1, the lactate dehydrogenase from Streptococcus didelphis represented by GenBank Accession No. WP_018365941.1, the L-lactate dehydrogenase from Streptococcus pyogenes M1 GAS represented by GenBank Accession No. NP 269302.1, the L-lactate dehvdrogenase from Streptococcus constellatus subsp. pharyngis C1050 represented by GenBank Accession No. YP_008498899.1, the L-lactate dehydrogenase from Streptococcus constellatus subsp. pharyngis C232 represented by GenBank Accession No. YP_008495295.1, the L-lactate dehydrogenase from Streptococcus equi subsp. zooepidemicus MGCS10565 represented by GenBank Accession No. YP_002123389.1, the L-lactate dehydrogenase from Streptococcus dysgalactiae subsp. equisimilis GGS 124 represented by GenBank Accession No. YP_002996624.1, the L-lactate dehydrogenase from Streptococcus equi subsp. equi 4047 represented by GenBank Accession No. YP_002746472.1, the lactate dehydrogenase from Streptococcus marimammalium represented by GenBank Accession No. WP_018369606.1, the lactate dehydrogenase from Streptococcus canis represented by GenBank Accession No. WP_003048552.1, the lactate dehydrogenase from Lactococcus raffinolactis represented by GenBank Accession No. WP_003140351.1, the lactate dehydrogenase from Streptococcus ictaluri represented by GenBank Accession No. WP_008089442.1, the lactate dehydrogenase from Streptococcus iniae represented by GenBank Accession No. WP_017794816.1, the lactate dehydrogenase from Streptococcus merionis represented by GenBank Accession No. WP_018372720.1, the L-lactate dehydrogenase from Streptococcus dysgalactiae subsp. equisimilis 167 represented by GenBank Accession No. YP 008629609.1, and the lactate dehvdrogenase from Bacillus subtilis represented by GenBank Accession No. NP_388187, among others. The coding sequences encoding these gene products can be found in GenBank.

Homologs of the *Lactococcus lactis* lactate dehydrogenase also include enzymes having an amino acid sequence at least about 80%, 85%, 90%, 95%, 97%, 98%, 99% or more identical to SEQ ID NO:22. Sequences having these percent identities can be obtained by aligning SEQ ID NO:22 to the sequences of the *Lactococcus lactis* lactate dehydrogenase homologs listed above or otherwise known in the art to determine which residues are amenable to variation (i.e., substitution, deletion, addition, etc.) and the identities of the suitably substituted or added residues.

In some versions of the invention, the microorganism is modified to express or increase expression of a transhydrogenase. Preferred transhydrogenases are pyridine nucleotide transhydrogenases, including the enzymes classified under EC 1.6.1.1, 1.6.1.2, and 1.6.1.3. Pyridine nucleotide transhydrogenases convert NAD and NADPH to and from NADH and NADP⁺. See FIG. **12**B. Soluble (as opposed to membrane-bound) pyridine nucleotide transhydrogenases are preferred. Other transhydrogenases that produce either NADH or NADPH as a byproduct are also acceptable. Modifying a microorganism to express or increase expression of a transhydrogenase is preferred when the microorganism is modified to express or increase expression of a lactate dehydrogenase. In some versions, the microorganism is modified to harbor a nucleic acid encoding the soluble pyridine nucleotide transhydrogenase from E. coli (particularly E. coli K12 MG1655) or a homolog thereof. The coding sequence of the soluble pyridine nucleotide transhydrogenase from E. coli K12 MG1655 is included in GenBank under accession number U00096.3 (positions 4159390 to 4160790) and is represented by SEQ ID NO:19. The gene product of the soluble pyridine nucleotide transhydrogenase from E. coli K12 15 MG1655 is included in GenBank under accession number NP_418397 and is represented by SEQ ID NO:20.

Exemplary homologs of the soluble pyridine nucleotide transhydrogenase from E. coli K12 MG1655 include but are not limited to the soluble pyridine nucleotide transhydroge- 20 nase from Escherichia coli HS represented by GenBank Accession No. YP_001460757.1, the pyridine nucleotidedisulfide oxidoreductase family protein from Escherichia coli represented by GenBank Accession No. WP_001705589.1, the soluble pyridine nucleotide transhy- 25 drogenase from Escherichia coli represented by GenBank Accession No. WP_001120797.1, the pyridine nucleotide transhydrogenase from Escherichia coli represented by Gen-Bank Accession No. WP 024228022.1, the soluble pyridine nucleotide transhydrogenase from Escherichia coli represented by GenBank Accession No. WP_001120803.1, the soluble pyridine nucleotide transhydrogenase from Shigella flexneri 2a str. 2457T represented by GenBank Accession No. NP_838918.2, the soluble pyridine nucleotide transhydrogenase from Escherichia coli CFT073 represented by GenBank 35 Accession No. NP_756777.1, the soluble pyridine nucleotide transhydrogenase from Escherichia coli represented by GenBank Accession No. WP_023278586.1, the soluble pyridine nucleotide transhydrogenase from Escherichia coli represented by GenBank Accession No. WP_021576626.1, the 40 soluble pyridine nucleotide transhydrogenase from Escherichia coli represented by GenBank Accession No. WP_021541750.1, the soluble pyridine nucleotide transhydrogenase from Escherichia coli represented by GenBank Accession No. WP_001403311.1, the soluble pyridine 45 nucleotide transhydrogenase Escherichia coli represented by GenBank Accession No. WP 001120823.1, soluble pyridine nucleotide transhydrogenase from Escherichia coli represented by GenBank Accession No. WP_001120830.1, the soluble pyridine nucleotide transhydrogenase from Escheri- 50 chia coli represented by GenBank Accession No. WP_021549795.1, the pyridine nucleotide-disulfide oxidoreductase family protein from Escherichia coli represented by GenBank Accession No. WP_001385008.1, soluble pyridine nucleotide transhydrogenase from Escherichia coli rep- 55 resented by GenBank Accession No. WP_001120811.1, the soluble pyridine nucleotide transhydrogenase Escherichia coli 536 represented by GenBank Accession No. YP_672034.1, the soluble pyridine nucleotide transhydrogenase from Escherichia coli represented by GenBank Acces- 60 sion No. WP 001120808.1, the soluble pyridine nucleotide transhydrogenase from Shigella boydii Sb227 represented by GenBank Accession No. YP_410260.2, the soluble pyridine nucleotide transhydrogenase from Escherichia coli represented by GenBank Accession No. WP_021539635.1, the 65 pyridine nucleotide-disulfide oxidoreductase family protein from Escherichia coli represented by GenBank Accession

26

No. WP_001546140.1, the soluble pyridine nucleotide transhydrogenase from Escherichia coli represented by GenBank Accession No. WP_001545096.1, the soluble pyridine nucleotide transhydrogenase from Shigella sonnei Ss046 represented by GenBank Accession No. YP_312883.2, the pyridine nucleotide transhydrogenase from Escherichia coli represented by GenBank Accession No. WP_024197343.1, the pyridine nucleotide transhydrogenase from Escherichia coli represented by GenBank Accession No. WP_024172841.1, the pyridine nucleotide-disulfide oxidoreductase family protein from Escherichia coli represented by GenBank Accession No. WP_001646069.1, the pyridine nucleotide-disulfide oxidoreductase family protein from Escherichia coli represented by GenBank Accession No. WP_001561736.1, the pyridine nucleotide-disulfide oxidoreductase family protein from Escherichia coli represented by GenBank Accession No. WP_001406381.1, the soluble pyridine nucleotide transhydrogenase from Shigella flexneri represented by Gen-Bank Accession No. WP_001120814.1, the soluble pyridine nucleotide transhydrogenase from Shigella flexneri represented by GenBank Accession No. WP_001120826.1, the soluble pyridine nucleotide transhydrogenase from Shigella flexneri 1235-66 represented by GenBank Accession No. EIQ63659.1, the soluble pyridine nucleotide transhydrogenase from Escherichia albertii represented by GenBank Accession No. WP_001120820.1, the soluble pyridine nucleotide transhydrogenase from Shigella flexneri represented by GenBank Accession No. WP_001120827.1, the soluble pyridine nucleotide transhydrogenase from Shigella dysenteriae Sd197 represented by GenBank Accession No. YP_405233.2, the soluble pyridine nucleotide transhydrogenase from Salmonella enterica represented by GenBank Accession No. WP_001120792.1, the soluble pyridine nucleotide transhydrogenase from Citrobacter rodentium ICC168 represented by GenBank Accession No. YP_003367222.1, the soluble pyridine nucleotide transhydrogenase from Salmonella enterica subsp. enterica serovar Choleraesuis str. SC-B67 represented by GenBank Accession No. YP_219002.1, the soluble pyridine nucleotide transhydrogenase from Salmonella enterica subsp. enterica serovar Heidelberg str. SL476 represented by GenBank Accession No. YP_002048124.1, the soluble pyridine nucleotide transhydrogenase from Enterobacter cloacae subsp. dissolvens SDM represented by GenBank Accession No. YP_006479868.1, the soluble pyridine nucleotide transhydrogenase from Citrobacter represented by GenBank Accession No. WP_016155291.1, the soluble pyridine nucleotide transhydrogenase from Shigella flexneri 1235-66 represented by GenBank Accession No. EIQ78768.1, and the pyridine nucleotide transhydrogenase from Enterobacter asburiae LF7a represented by GenBank Accession No. YP_004830801.1, among others. The coding sequences encoding these gene products can be found in GenBank.

Homologs of the *E. coli* K12 MG1655 soluble pyridine nucleotide transhydrogenase also include enzymes having an amino acid sequence at least about 80%, 85%, 90%, 95%, 97%, 98%, 99% or more identical to SEQ ID NO:20. Sequences having these percent identities can be obtained by aligning SEQ ID NO:20 to the sequences of the *E. coli* K12 MG1655 soluble pyridine nucleotide transhydrogenase homologs listed above or otherwise known in the art to determine which residues are amenable to variation (i.e., substitution, deletion, addition, etc.) and the identities of the suitably substituted or added residues.

Other genetic modifications of the microorganism of the present invention include any of those described in U.S. Pat. No. 8,048,624 to Lynch, U.S. Pub. 2011/0125118 to Lynch,

and U.S. Pub. 2010/0210017 to Gill et al., all of which are attached hereto. See also Warnecke et al. Metabolic Engineering (2010) 12:241-250. The genetic modifications in these references may be to enhance organic acid tolerance and/or increase organic acid production. The microorganism of the present invention may also be modified with homologs of any of the genes, constructs, or other nucleic acids discussed in the above references. Non-limiting examples of the genes that may be modified or introduced include tyrA, aroA, aroB, aroC, aroD, aroE, aroF, aroG, aroH, aroK, aroL, aspC, entA, entB, entC, entD, entE, entF, folA, folB, folC, folD, folE, folK, folP, menA, menB, menC, menD, menE, menF, pabA, pabB, pabC, pheA, purN, trpA, trpB, trpC, trpD, trpE, tyrB, ubiA, ubiB, ubiC, ubiD, ubiE, ubiF, ubiG, ubiH, ubiX, and 15 ydiB, or homologs thereof. A non-limiting example of a pathway that may be modified includes the chorismate superpathway. These genes and pathways are primarily but not exclusively related to the production and tolerance of 3HP.

Exogenous, heterologous nucleic acids encoding enzymes 20 to be expressed in the microorganism are preferably codonoptimized for the particular microorganism in which they are introduced. Codon optimization can be performed for any nucleic acid by a number of programs, including "GENEGPS"-brand expression optimization algorithm by 25 DNA 2.0 (Menlo Park, Calif.), "GENEOPTIMIZER"-brand gene optimization software by Life Technologies (Grand Island, N.Y.), and "OPTIMUMGENE"-brand gene design system by GenScript (Piscataway, N.J.). Other codon optimization programs or services are well known and commer- 30 cially available.

In addition to the microorganism itself, other aspects of the present invention include methods of producing organic acids with the microorganisms of the present invention. The methods involve culturing the microorganism in conditions suit- 35 able for growth of the microorganism. The microorganism either directly produces the organic acid or acids of interest or produces organic-acid precursors from which the organic acid or acids of interest are spontaneously converted. Such conditions include providing suitable carbon sources for the 40 particular microorganism along with suitable micronutrients. For eukaryotic microorganisms and heterotrophic bacteria, suitable carbon sources include various carbohydrates. Such carbohydrates may include biomass or other suitable carbon sources known in the art. For phototrophic bacteria, suitable 45 carbon sources include CO2, which is provided together with light energy.

The microorganism of the present invention is capable of being cultured in high concentrations of the organic acid or acids that the organism is configured to produce. This enables 50 increased production of the organic acid or acids of interest. The microorganism can be cultured in the presence of an organic acid in an amount up to the MIC for that organic acid. Various MICs for exemplary organic acids are described herein. Accordingly, the microorganisms of the invention 55 (i.e., Synechococcus sp., Prochlorococcus sp., Synechocystis sp., etc.) can be cultured in the presence of at least about 10 μΜ, 25 μΜ, 50 μΜ, 75 μΜ, 100 μΜ, 250 μΜ, 500 μΜ, 750 µM, 1 mM, 25 mM, 50 mM, 70 mM, 75 mM, 100 mM, 125 mM, or 150 mM acrylic acid; at least about 10 mM, 25 mM, 60 50 mM, 75 mM, 100 mM, 150 mM, 200 mM, 250 mM, 260 mM, 300 mM, or 350 mM 3HP; at least about 250 µM, 500 μM, 750 μM, 1 mM, 25 mM, 50 mM, 75 mM, 100 mM, 150 mM, 200 mM, 250 mM, 300 mM, 350 mM, 400 mM, 450 mM, or 500 mM propionic acid; and/or at least about $10 \,\mu$ M, 65 25 µM, 50 µM, 75 µM, 100 µM, 250 µM, 500 µM, 750 µM, 1 mM, 25 mM, 50 mM, 70 mM, 75 mM, 100 mM, 125 mM, 150

mM, 200 mM, 250 mM, 300 mM, 350 mM, 400 mM, 450 mM, or 500 mM lactic acid. Such culturing preferably occurs at a pH of about 8.

The microorganisms of the invention may be modified as described herein to increase production of any of the organic acids described herein. The term "increase," whether used to refer to an increase in production of an organic acid, an increase in expression of an enzyme, etc., generally refers to an increase from a baseline amount, whether the baseline amount is a positive amount or none at all.

The microorganism of the invention may be configured to produce 3HP to a concentration of at least about $1 \mu M$, $10 \mu M$, 20 µM, 30 µM, 40 µM, 50 µM, 60 µM, 65 µM, 70 µM, 80 µM, 90 μ M, 100 μ M or more and/or up to about 10 μ M, 20 μ M, 30 μΜ, 40 μΜ, 50 μΜ, 60 μΜ, 65 μΜ, 70 μΜ, 80 μΜ, 90 μΜ, 100 µM, 200 µM or more. The microorganism of the invention may be configured to produce 3HP at a rate of at least about 0.01 mg/L/Day, 0.05 mg/L/Day, 0.1 mg/L/Day, 0.25 mg/L/ Day, 0.5 mg/L/Day, 0.75 mg/L/Day, 1 mg/L/Day, 2.5 mg/L/ Day, 5 mg/L/Day, 10 mg/L/Day or more and/or up to about 0.05 mg/L/Day, 0.1 mg/L/Day, 0.25 mg/L/Day, 0.5 mg/L/ Day, 0.75 mg/L/Day, 1 mg/L/Day, 2.5 mg/L/Day, 5 mg/L/ Day, 10 mg/L/Day, 15 mg/L/Day or more. The microorganism of the invention may be configured to convert at least about 0.1%, 0.5%, 1%, 1.5%, 2%, 2.5%, 3%, 4.5%, 5%, 10%, 15% or more of consumed carbon to 3HP and/or convert up to about 0.5%, 1%, 1.5%, 2%, 2.5%, 3%, 4.5%, 5%, 10%, 15%, 20%, 25%, 30% or more of consumed carbon to 3HP.

The microorganism of the invention may be configured to produce lactic acid to a concentration of at least about 0.1 mM, 0.5 mM, 1 mM, 2 mM, 3 mM, 4 mM, 5 mM, 6 mM, 7 mM, 8 mM, 9 mM, 10 mM, 12 mM, 15 mM, 20 mM, or more and/or up to about, 0.5 mM, 1 mM, 2 mM, 3 mM, 4 mM, 5 mM, 6 mM, 7 mM, 8 mM, 9 mM, 10 mM, 12 mM, 15 mM, 20 mM, 30 mM or more. The microorganism of the invention may be configured to produce lactic acid at a rate of at least about 10 mg/L/Day, 50 mg/L/Day, 100 mg/L/Day, 150 mg/L/ Day, 200 mg/L/Day, 250 mg/L/Day, 260 mg/L/Day, 300 mg/L/Day, or more and/or up to about 50 mg/L/Day, 100 mg/L/Day, 150 mg/L/Day, 200 mg/L/Day, 250 mg/L/Day, 260 mg/L/Day, 300 mg/L/Day, 350 mg/L/Day, or more. The microorganism of the invention may be configured to convert at least about 1%, 5%, 10%, 15%, 20%, 25%, 30%, 45%, 50% or more of consumed carbon to lactic acid and/or convert up to about 5%, 10%, 15%, 20%, 25%, 30%, 45%, 50%, 60% or more of consumed carbon to lactic acid.

Some versions of the invention include using acsA or a homolog thereof as a counter selection marker. The acsA or homolog thereof provides sensitivity to the organic acids acrylic acid, 3HP, and propionic acid. By replacing the native copy of acsA or homolog thereof with a gene of interest through double homologous recombination, one can select for cells which have gone through the recombination event by plating on acrylic acid or another organic acid as described herein. Acrylic acid is preferred because it has the lowest MIC value and requires the lowest concentration for selection. Through this method, one can introduce a gene or operon of interest onto a chromosome without the need for antibiotics. Additionally, one can plate on a higher organic acid concentration, i.e., one closer to the MIC value of the acsA mutant strain, to cure the strain of interest of any copies of the wild type chromosome. This is of particular interest because it can be difficult to create a homozygous strain using antibiotics as the selection agent.

One version comprises using acsA or homolog thereof as a counter selection marker for introducing DNA fragments of interest into the acsA or homolog locus. An exemplary ver-

sion is shown in FIG. 1A. A host 10 is transformed with either linear DNA fragments or plasmid DNA comprising a sequence of interest 12 flanked by an upstream homologous sequence 14 and a downstream homologous sequence 16. For introducing the sequence of interest 12 into the acsA locus, 5 the upstream homologous sequence 14 is preferably homologous to a region 15 5' of the acsA or homolog 19 on the host chromosome 18, and the downstream homologous sequence 16 is preferably homologous to a region 17 3' of the ascsA or homolog 19 on the host chromosome 18. The homologous 10 sequences 14,16 are preferably at least about 25-base pairs (bp), about 50-bp, about 100-bp, about 200-bp, about 300-bp, about 400-bp, or about 500-bp long. The transformed culture is then plated in a concentration of an organic acid sufficient to select for transformed cells. In preferred versions, the 15 transformed culture is plated in a sub-MIC concentration of an organic acid, such as a concentration greater than 0% the MIC but less than about 20% the MIC, about 40% the MIC, about 50% the MIC, about 60% the MIC, or about 70% the MIC. After colonies appear, the colonies are then plated on a 20 higher concentration of the organic acid to ensure homozygosity.

Another version comprises using the acsA gene or homolog thereof as a counter selection marker to introduce DNA fragments of interest into loci other than an acsA or 25 homolog locus without leaving an antibiotic resistance marker. An exemplary version is shown in FIG. 1B. The version shown in FIG. 1B is similar to that shown in FIG. 1A except that the acsA or homolog thereof 19 is not at the normal chromosomal locus. In the specific case of FIG. 1B, a 30 homolog of acsA, acsA*, is included on a non-chromosomal plasmid 20. The acsA or homolog thereof 19 can also be at a locus on the chromosome 18 other than the native acsA or homolog locus. The upstream homologous sequence 14 in FIG. 1B is homologous to a region 15 5' of the acsA or 35 homolog 19 on the non-chromosomal plasmid 20, and the downstream homologous sequence 16 is homologous to a region 17 3' of the acsA or homolog 19 on the on the nonchromosomal plasmid 20.

To increase the utility of acsA as a counter selection 40 marker, two point mutations can be made, T144C and G150C. These point mutations maintain the same amino acid sequence but break up a run of base pairs that create a loss of function mutation hot spot. By creating these mutations, the background mutation frequency of this gene is reduced. This 45 mutant version of acsA, acsA*, can be incorporated onto a non-chromosomal plasmid, such as the endogenous plasmid pAQ1 of a Δ acsA strain of PCC 7002. This base strain allows for incorporating a gene or operon of interest onto the pAQ1 plasmid without the use of antibiotics and quickly creating a 50 homozygous strain.

The elements and method steps described herein can be used in any combination whether explicitly described or not.

The singular forms "a," "an," and "the" include plural referents unless the content clearly dictates otherwise.

Numerical ranges as used herein are intended to include every number and subset of numbers contained within that range, whether specifically disclosed or not. Further, these numerical ranges should be construed as providing support for a claim directed to any number or subset of numbers in that 60 range. For example, a disclosure of from 1 to 10 should be construed as supporting a range of from 2 to 8, from 3 to 7, from 5 to 6, from 1 to 9, from 3.6 to 4.6, from 3.5 to 9.9, and so forth.

All patents, patent publications, and peer-reviewed publi-65 cations (i.e., "references") cited herein are expressly incorporated by reference to the same extent as if each individual

reference were specifically and individually indicated as being incorporated by reference. In case of conflict between the present disclosure and the incorporated references, the present disclosure controls.

It is understood that the invention is not confined to the particular construction and arrangement of parts herein illustrated and described, but embraces such modified forms thereof as come within the scope of the following claims.

EXAMPLES

Summary of the Examples

One of the potential applications of metabolic engineering is the use of cyanobacteria to photosynthetically produce commodity chemicals traditionally derived from petroleum. In particular, acrylic acid has been identified as a high-value product that could be biologically derived. Unfortunately, a viable metabolic pathway has not previously been identified for its direct production.

As described in further detail below, a mutation resulting in increased tolerance to 3HP was discovered through investigating the metabolism of a sulfur compound, dimethylsulfoniopropionate (DMSP), by Synechococcus sp. PCC 7002 (PCC 7002). PCC 7002 was grown in the presence of DMSP to determine if it could be metabolized. This surprisingly resulted in the accumulation of acrylic acid, a by-product of DMSP metabolism, showing that Synechococcus sp. can produce acrylic acid. The accumulation of acrylic acid in the growth medium caused a stall in growth of the cyanobacteria, suggesting it had a toxic effect. After an additional incubation period, growth began to resume. It was originally hypothesized that the ability to grow in the presence of acrylic acid was the result of an adaptation to the stress through altered gene regulation. This hypothesis was later invalidated after an experiment was performed involving growing "unadapted" cells on solid medium containing acrylic acid. The number of colonies on the plate relative to a control suggested that a loss of function mutation was occurring that resulted in the ability to grow in the presence of acrylic acid. Additionally, all mutants obtained through growth in the presence of acrylic acid had increased tolerance levels to 3HP. The increase in tolerance caused by the mutation resulted in a strain of cyanobacteria constituting a platform for either 3HP or acrylic acid production.

Steps were taken to identify the site of the mutation. An RNA sequencing experiment was performed to characterize differential gene expression in the presence of either DMSP or acrylic acid. This data set was used to identify genes that had single base pair mutations relative to the wild type strain. Through this analysis, mutations were identified in the gene acsA. In order to determine if acsA was involved in acrylic acid and 3HP toxicity, a strain of PCC 7002 was created that had a deletion of the acsA gene. This strain, PCC 7002 Δ acsA, had increased MIC values compared to wild type PCC 7002. These experiments determined that it is a loss of function of acsA that results in increased tolerance. The gene acsA was annotated as an acetyl-CoA ligase.

In order to demonstrate the utility of the Δ acsA strain, a pathway for producing 3HP was introduced into both the wild type PCC 7002 and Δ acsA strains. Several pathways exist for the production of 3HP from central metabolites. The chosen pathway involves an enzyme from the CO₂ fixation pathway of the thermophilic bacterium *Chloroflexus aurantiacus*. In this pathway, malonyl-CoA is converted to 3HP through a two-step reaction catalyzed by the enzyme malonyl-CoA

reductase. Results have shown that expression of malonyl-CoA reductase confers the ability to produce 3HP on the order of 50 μ M.

The result of these experiments is an engineered strain of PCC 7002 that can produce 3HP and is more tolerant to 3HP -5 than wild type PCC 7002 or other cyanobacterial species. Further work will increase the yield of 3HP. The approach to increasing yield will involve further metabolic engineering and optimizing of culturing conditions. To further engineer this strain, expression of the malonyl-CoA reductase will be 10 optimized and genes related to making malonyl-CoA will be over-expressed. Additionally, the current and further engineered strains will be cultured in a photobioreactor in order to monitor 3HP production under optimal growth conditions, and culture parameters will be adjusted to increase yields. 15 The outcome of this work will be a strain of cyanobacteria with optimized culturing conditions that will result in a competitive yield of 3HP.

Background and Significance of Examples

Engineering Bacteria to Produce Commodity Chemicals

A current focus of metabolic engineering and synthetic 25 biology is the development of new methods for producing commodity chemicals that are traditionally produced from petroleum [1,2]. Demand for methods of bioconversion of renewable resources (biomass or CO_2) to these compounds has increased due to price volatility and reliance on foreign 30 production of oil, concerns of increasing atmospheric CO_2 , and increased consumer demand for "green" and sustainable products. An example of recent commercial success is the production of 1,3-propanediol (a precursor of nylon-like materials) by DuPont via *Escherichia coli* fermentation of 35 corn sugar [3]. Another compound that could be produced from renewable sources is acrylic acid.

Acrylic acid, traditionally produced through the oxidation of propene, is used in coatings, finishes, plastics, and superabsorbent polymers [4]. US demand for acrylic acid contin- 40 ues to grow, exceeding 1×10^9 kg/year, and is outpacing current production [4]. For this reason, non-petroleum based, sustainable methods for producing acrylic acid would be of value. Unfortunately, a thermodynamically favorable pathway for complete biological production of acrylic acid has not 45 been identified [5]. An alternative route would be biological production of 3-hydroxypropionic acid (3HP), followed by a non-biological catalytic conversion to acrylic acid. Additionally, 3HP can be converted to other commodity chemicals including acrylamide and 1,3-propanediol [6]. One company, 50 OPX Biotechnologies, has developed a bio-based technology for producing acrylic acid, via Escherichia coli fermentation of sugars to 3HP [7].

Cyanobacteria as an Alternative to Heterotrophic Bacteria

One of the concerns of using heterotrophic bacteria and 55 yeast for fuel and chemical production is the use of food based commodities as feedstock. As the global population continues to grow and the cost of agricultural commodities continues to rise, an alternative route for biological production of commodity chemicals may be needed. An attractive alternative is to use cyanobacteria to convert CO_2 and light energy directly into chemical products. Using CO_2 rather than organic carbon as an input circumvents the problem of using agricultural commodities and could potentially decrease costs. Species of cyanobacteria are susceptible to genetic 65 modification and have well studied metabolisms [8,9]. Recently, cyanobacteria have been engineered to produce a

variety of chemicals and fuels including ethanol, hydrogen, isobutyraldehyde, isoprene, sugars, and fatty acids [10-14].

In order for cyanobacteria to be effective host systems for chemical production, they will have to produce the compound of interest in high titers and have improved resistance to end product toxicity. As presented below, a mutant strain of cyanobacteria was isolated with dramatically increased tolerance to acrylic acid and 3HP. This mutation was identified through exploring the role cyanobacteria play in metabolism of the marine sulfur compound dimethylsulfoniopropionate (DMSP).

Metabolism of the Sulfur Compound DMSP

DMSP is an organic sulfur compound produced by eukaryotic algae and plants that accounts for 1-10% of primary productivity in the oceans [1,6]. DMSP has been shown to act as an osmoprotectant, antioxidant, predator deterrent, and a sink for reduced sulfur in marine eukaryotic algae [17,18]. Upon its release into the water, DMSP is metabolized by bacterioplankton for use as a carbon and reduced sulfur source [1,9]. The catabolism of DMSP has the potential to supply 1-15% of total carbon demand and nearly all of the sulfur demand for these bacterial communities [20]. Additionally, cyanobacteria have been shown to account for 10-34% of total DMSP assimilation in light-exposed waters 25 [21,22].

DMSP is broken down through two major pathways. These pathways involve either direct cleavage of DMSP into dimethylsulfide (DMS) and acrylic acid or an initial demethylation followed by a cleavage reaction to form methanethiol and acrylic acid [16, 23-25]. Methanethiol is then used as a reduced sulfur source in methionine biosynthesis, while acrylic acid can be further metabolized into 3HP and used as a carbon source [26,27]. Additionally, release of DMS into the atmosphere from marine waters has been identified as a key intermediate in the cycling of terrestrial and marine sulfur pools [28]. While several genes have been identified in DMSP metabolism, none have been found in cyanobacteria.

Recent studies have shown that two different groups of cyanobacteria are involved in the metabolism of DMSP. These studies demonstrated that both *Synechococcus* and *Prochlorococcus* species are capable of assimilating radio labeled DMSP and methanethiol. In addition, four pure strains of *Synechococcus* were analyzed for DMSP assimilation. Two of the four strains were able to transport and assimilate DMSP, while another produced DMS [22]. Of the species of cyanobacteria currently being used in metabolic engineering, only one, *Synechococcus* sp. PCC 7002, is found in marine environments and potentially exposed to DMSP.

Example 1

Acrylic Acid is Produced from Incubation of DMSP with PCC 7002

Metabolism of DMSP can result in the accumulation of several metabolites, including acrylic acid and 3HP, and may alter growth patterns due to its use as a carbon and sulfur source. PCC 7002 was cultured in the presence of 5 mM DMSP and analyzed for the presence of acrylic acid and 3HP. Growth was determined by monitoring OD730 while metabolic byproducts were measured through high pressure liquid chromatography (HPLC) and gas chromatography (GC). During incubation with DMSP, an increase in OD730 similar to a control culture was observed for several doubling events, followed by a delay in increased OD730 (FIG. 2A). HPLC analysis determined that during the initial growth period acrylic acid was being produced, although not at a rate sig-

nificantly beyond an abiotic control (FIG. 3). However, extended incubation of PCC 7002 with DMSP resulted in an increase in acrylic acid concentrations beyond the abiotic control (FIG. 3). PCC 7002 does not contain genes with homology to those known to be involved in DMSP metabo- 5 lism, but DMSP has been previously shown to slowly degrade to dimethylsulfide and acrylic acid at an alkaline pH [48,49]. The data presented in FIGS. 4A-B support a hypothesis that DMSP breakdown is abiotic and is enhanced by the increased pH resulting from cultivation of PCC 7002 under CO₂ limi- ¹⁰ tation. The cultures in this study were not agitated or supplemented with bubbled air, creating a CO₂ limited environment. When grown in the presence of 5 mM acrylic acid, PCC 7002 exhibited a long lag followed by growth at a rate equal to the control (FIG. 2B). Both delays in increasing OD730 were 15 linked by the presence of acrylic acid, suggesting that acrylic acid was causing growth inhibition. The eventual increase in OD730 in both cultures was due to spontaneous mutants within the population which were able to grow without inhibition. Sub-culturing of the mutant pool derived from wild 20 type (WT) PCC 7002 grown with DMSP into medium containing acrylic acid resulted in no delay in growth (FIG. 2C). From these experiments it was concluded that DMSP incubated in the presence of PCC 7002 results in the production of acrylic acid, acrylic acid concentrations less than 5 mM are 25 inhibitory, and spontaneous mutants can arise that are not inhibited by this concentration of acrylic acid.

Example 2

Acrylic Acid and 3HP Cause Toxicity at Low Concentrations

Accumulation of organic acid anions in the cytoplasm of bacteria has been shown to block metabolic pathways and 35 arrest growth [32,33]. In addition to blocking metabolic pathways, high concentrations of organic acids have been shown to reduce the proton motive force through dissociation across the membrane [34]. Because of this, the toxicity of organic acids generally increases with the hydrophobicity of the com- 40 pound [35]. The minimum inhibitory concentrations (MIC) for PCC 7002, Synechococcus sp. PCC 7942, and Synechocystis sp. PCC 6803 were determined for acrylic acid, 3HP, and propionic acid at a pH of about 8 (Table 1). In all three species, acrylic acid was significantly more toxic than 45 propionic acid, which was more toxic than 3HP. Furthermore, the toxicity of acrylic acid (pKa 4.35) to PCC 7002 was shown to be pH dependent, with toxicity increasing with decreasing pH. The low MIC for acrylic acid explains why cultures grown with DMSP become growth inhibited. Cul- 50 tures with DMSP only show growth inhibition when the accumulating acrylic acid concentration reaches inhibitory concentrations. This suggests that acrylic acid and not DMSP causes the inhibition of growth. The eventual increase in OD730 suggests that mutations can arise to overcome this 55 inhibition.

TABLE 1

60

65

Minimum inhibitory concentration of organic acids in three cyanobacteria. Minimum inhibitory concentration is defined as the concentration at which no increase in OD ₇₃₀ was observed. ¹ Strain A ⁺ was isolated from an agar plate containing 5 mM acrylic acid.			
Species	Acrylic Acid	3HP	Propionic Acid
Synechococcus sp. PCC 7942 Synechocystis sp. PCC 6803	3 μM 50 μM	2 mM No Data	250 μM 250 μM

34

TABLE	1-continued

Minimum inhibitory concentration of organic acids				
in three cyanobacteria.	Minimum inhibitor	y concer	ntration is	
defined as the concentration a	t which no increase	in OD ₇₃	30 was observed.	
¹ Strain A ⁺ was isolated from	an agar plate contai	ning 5 n	1M acrylic acid.	
Species	Acrylic Acid	3HP	Propionic Acid	

Species	Acrylic Acid	3HP	Propionic Acid
Synechococcus sp. PCC 7002 ¹ PCC 7002 A ⁺	25 μM 7 mM	10 mM No Data	4 mM No Data

Example 3

A Mutation in an Acetyl-CoA Ligase Gene Increases Tolerance to Acrylic Acid and 3HP

When a dense culture of PCC 7002 was plated onto solid medium containing acrylic acid, colonies resulting from spontaneous mutants uninhibited by acrylic acid were observed. The mutation frequency when selecting for growth on 50 μ M acrylic acid was 7×10^{-6} . When selecting for growth on 5 mM acrylic acid, the mutation frequency was 4×10^{-6} . The mutation frequency is the frequency that a mutant with a given phenotype is found within the population of a culture. For example a mutation frequency of 1×10^{-6} suggests that in a population of 1×10^8 cells, there are 100 mutants. The observed mutation frequencies are suggestive of a loss of function mutation. All mutants obtained from medium containing 50 µM acrylic acid were able to grow on 5 mM acrylic acid. In addition, these colonies were able to grow in media containing concentrations of propionic acid and 3HP that were above the WT PCC 7002 MIC values. One of the mutants, PCC 7002 A⁺, was analyzed to determine to what degree the tolerance to organic acids had increased. MIC values for this strain are presented in Table 1. Tolerance to acrylic acid increased about 280-fold over WT PCC 7002 MIC values. Increased tolerance to 3HP and propionic acid was also observed (data not shown). Due to the increased tolerance to all three organic acids, the mutation may affect a gene that links the metabolism of acrylic acid, 3HP, and propionic acid.

In addition to looking at gene expression levels, the results from the RNA-sequencing experiment were used to identify mutations that resulted in increased tolerance to acrylic acid. An analysis for single nucleotide permutations (SNP) on the data set for each condition was performed. In order to identify potential mutation candidates, two basic assumptions were made. First, growth in cultures containing DMSP and acrylic acid would require the same mutation. Second, the mutation is a base pair change, not a deletion or insertion. From the SNP analysis, mutations in five candidate genes were identified. One of these candidates was annotated as an acetyl-CoA ligase (acsA). The mutation resulted in the change of a highly conserved tryptophan residue to a leucine (W49L) in Synechococcus sp. PCC 7002. The mutation changes an FWGE amino acid sequence in Synechococcus sp. PCC 7002 to an FLGE amino acid sequence. This mutation was a result of a G146T substitution in the acsA coding sequence. The mutation was present in ~60% of reads that aligned to this segment of the open reading frame in both the DMSP and acrylic acid cultures. Manual inspection of control alignment data determined that this allele was only present in cultures containing DMSP and acrylic acid. The correlate of W49 is conserved in the acsA of Escherichia coli (GenBank NP_418493.1) and

Bacillus subtilis (GenBank NP_390846.1), among others, suggesting it is integral to a functional protein See, e.g., Table 2.

TABLE 2

		Inding residues of <u>S</u> A ligases of <u>E. coli</u> K	· 1
Organism	Gene	Protein Sequence	SEQ ID NO:
Synechococcus sp. PCC 7942	acsA	F-W-G-E	Residues 48-51 of SEQ ID NO: 2
E. coli K12	Acetyl-CoA ligase	F-W-G-E	Residues 39-41 of SEQ ID NO: 9
P. fulva	Acetyl-CoA ligase	F-W-G-E	Residues 38-41 of SEQ ID NO: 10

The W49L mutation residue resulted in an insoluble protein (data not shown) and, therefore, a non-functional protein. These data led to the hypothesis that loss of function of acsA would result in the observed increase in organic acid toler- 20 ance

Without being limited by mechanism, it was hypothesized that the AcsA acetyl-CoA ligase may have a substrate specificity that would allow it to add a coenzyme A (CoA) to all three organic acids, and that the CoA bound acids or down- 25 stream metabolism of these CoA bound acids caused toxicity.

This hypothesis was tested by creating a knockout mutant of the acsA gene. This knockout was created by transforming wild type PCC 7002 with a DNA construct that would replace the acsA gene with an antibiotic resistance marker through 30 homologous recombination. The resulting mutant, $\Delta acsA$, was challenged with concentrations of acrylic acid, 3HP, and propionic acid above WT PCC 7002 MIC levels. In each case the $\Delta acsA$ mutant was able to grow without inhibition, including in the presence of >500 mM 3HP. Additionally, the $_{35}$ *BC, 20 base-pair barcode Δ acsA mutant did not show any growth defects relative to wild type. These results show that loss of function of the acyl-CoA ligase increases the tolerance of PCC 7002 to acrylic acid and 3HP.

To confirm this phenotype is the result of the deletion 40 mutation, a complementation mutant was created by integrating a copy of acsA into a plasmid native to PCC 7002 Δ acsA. A corresponding mutant harboring a copy of acsA-W49L was also constructed. In the presence of acrylic acid, no strains harboring wild-type acsA were capable of growing while 45 those harboring the mutant acsA were able to grow (FIG. 5).

In addition, the acsA gene was heterologously expressed in E. coli for protein purification and the substrate specificity was determined for AcsA in vitro (see below).

From these results, several conclusions can be drawn. 50 DMSP is converted to acrylic acid by PCC 7002. Spontaneous mutations occur within the population that results in a drastically increased tolerance to acrylic acid, 3HP, and propionic acid. One mutation that can result in this phenotype is a loss of function or deletion of the acsA gene, which codes 55 for an acetyl-CoA ligase.

Example 4

Deletion and Complementation Studies

Deletion and complementation studies were performed in various Synechococcus spp. and Synechocystis spp. The results are shown in Table 3. Replacement of the gene acsA in Synechococcus sp. PCC 7002 with an antibiotic resistance 65 marker (aadA) resulted in a dramatic increase in tolerance to acrylic acid, 3-hydroxypropionic acid (3HP), and propionic

acid. An identical level of increase was observed when acsA was replaced with a 20 base-pair barcode sequence. This phenotype was complemented in an acsA deletion strain by expression of acsA under the native promoter in another locus on the chromosome (glpK). Complementation resulted in the restored sensitivity to both acrylic acid and 3HP. The phenotype was only partially complemented upon expression of acsAW49L from the glpK locus, showing that the AW49L mutation does not result in a complete loss of AcsA activity.

Homologous genes were identified in the cyanobacteria Synechocystis sp. PCC 6803 (s110542; SEQ ID NOS:3 and 4) and Synechococcus sp. PCC 7942 (SYNPCC7942_1342; SEQ ID NOS:5 and 6). Replacement of the gene s110542 in PCC 6803 with an antibiotic resistance marker resulted in an increase in tolerance to acrylic acid similar to the deletion of acsA in PCC 7002. When selecting for growth of Synechocystis sp. PCC 6803 on 50 µM acrylic acid, the mutation frequency was 2×10^{-6} .

TABLE 3

Species	acrylic acid (mM)	3-HP (mM)	Propionic acid (mM)
Synechococcus sp. PCC 7942	0.003	2	0.25
Synechocystis sp. PCC 6803	0.050	>35	0.25
PCC 6803 sll0542::KmR	70	<50	No Data
Synechococcus sp. PCC 7002	0.025	10	4
PCC 7002 acsA::aadA	70	260	>400
PCC 7002 acsA::BC*	70	260	No Data
PCC 7002 acsA:BC glpK::acsA aadA)	0.015	15	No Data
PCC 7002 acsA::BC glpK::acsAW49L aadA)	7	No Data	No Data

60

Example 5

Substrate Specificity of AcsA

The tolerance of PCC 7002 to acrylic acid and 3HP was dramatically increased by the deletion of the acetyl-CoA ligase gene (acsA). To obtain information regarding the AcsA-dependent toxicity, the substrate specificity of AcsA was determined.

Acyl-CoA ligase purification: Escherichia coli BL21 containing plasmid pET28b with acsA were grown in 50 mL of LB to an OD_{600} nm of 0.6 and induced with 1 mM IPTG. The induced culture was shaken at 37° C. for 3 hrs. The culture was centrifuged and the resulting cell pellet was frozen at -20° C. The cell pellet was processed with Novagen Bug-Buster Protein Extraction Reagent (Part No. 70584-3). The resulting soluble protein fraction was used for His-tag purification using Ni-NTA agarose beads (Qiagen) and Pierce 0.8-mL centrifugation columns (Part No. 89868). Washes were done with 50 mM NaH₂PO₄, 300 mM NaCl, and 30 mM imidizole pH 8.0. The his-tagged protein was eluted with 50 mM NaH₂PO₄, 300 mM NaCl, and 250 mM imidizole pH 8.0. The insoluble fraction from the protein extraction was washed twice with BugBuster reagent followed by incubation with 400 μL 8M urea, 100 mM Tris-HCl, and 100 mM β-mercaptoethanol pH 8.2 for 30 min. The resulting solution was centrifuged at 16,000×g and the supernatant was collected. Protein fractions were run on a SDS-PAGE gel. His-tag purified protein fractions used in the acyl-CoA ligase assay were concentrated and buffered exchanged using an Amicon

Ultra-4 centrifugation column. The buffer used for enzyme storage contained 0.1M NaH₂PO₄, 1 mM EDTA, and 10% v/v glycerol.

Acyl-CoA ligase activity assay: Acyl-CoA ligase activity 5 was determined by measuring the loss of free Coenzyme A (CoA) over time using Ellman's reagent. (Riddles P W, Blakeley R L, & Zerner B (1979) Ellman's reagent: 5,5'dithiobis(2-nitrobenzoic acid)-a reexamination. Analytical Biochemistry 94(1):75-81.) The enzyme reaction contained 10 mM ATP, 8 mM MgCl₂, 3 mM CoA, 0.1 M NaH₂PO₄, 1 mM EDTA, and 2 mM of the organic acid species. The concentration of AcsA in the reaction was 500 nM. Relative activity was determined by the amount of CoA consumed in 4 min relative to an acetate control. As shown in FIG. 6, AcsA 15 has an activity towards acetate, acrylic acid, propionate, and 3HP.

Example 6

Use of acsA as a Counter-Selection Marker

The sensitivity of PCC 7002 to acrylic acid due to the activity of AcsA allows for one to directly integrate DNA fragments into the acsA locus and select for acrylic acid 25 tolerance. This method results in integration into the PCC 7002 without the use of an antibiotic resistance marker. The use of antibiotic resistance markers is limited by the number of markers available and their tendency to result in heterozygous strains. PCC 7002 carries between 4-6 copies of the 30 chromosome and the use of resistance markers can result in strains with a mixture of native and modified chromosomes. Use of acsA as a counter-selection marker can quickly produce homozygous strains.

The acsA gene was used as a counter-selection marker to 35 introduce DNA fragments of interest into the acsA loci on the chromosome, thereby deleting acsA without leaving an antibiotic resistance marker. Wild type PCC 7002 was transformed with barcode DNA or DNA encoding yellow fluorescent protein (YFP), each flanked with 500 base-pair 40 sequences homologous to regions directly 5' and 3' of acsA. The transformed culture was then plated on 50 µM acrylic acid. Colonies appeared after 3 days. The colonies were patched onto plates containing 50 µM acrylic acid and screened for the presence of the sequence of interest. Integra- 45 tion of the various sequences resulted in 30-50% of colonies being positive integrations. See FIG. 8A. Positive clones were streaked onto plates containing 10 mM acrylic acid. Colonies able to grow in the presence of 10 mM acrylic acid were homozygous for the integration. This method allows for fast 50 and homozygous chromosomal integrations.

The acsA gene was also used as a counter selection marker to introduce DNA fragments of interest into other loci on the chromosome without leaving an antibiotic resistance marker. In an acsA deletion strain of PCC 7002, acsA along with an 55 antibiotic resistance marker was introduced onto the chromosome into the gene glpK. See, e.g., PCC 7002 acsA:BC glpK:: acsA aadA in Table 3. glpK was used as an insertion site because it is a pseudogene in PCC 7002 due to a frameshift mutation. The acsA-resistance marker was then replaced with 60 yellow fluorescent protein (YFP) under the expression of a constitutive promoter. This resulted in a strain of PCC 7002 with YFP integrated onto the chromosome without a residual marker. YFP expressed from the glpK locus was shown to have an equal level of expression to YFP expressed from the acsA locus. See FIG. 8B. These experiments demonstrate the one can directly select for integration into the acsA locus and

use acsA as a counter selection tool to make clean integrations elsewhere on the chromosome.

Example 7

Production of 3HP with Engineered PCC 7002

While the ultimate goal is to produce acrylic acid through a single biological catalyst, no complete pathway has previously been demonstrated [5]. As an alternative, 3HP can be biologically derived and then catalytically converted to acrylic acid. A 3HP production pathway was introduced into PCC 7002 Δ acsA and its ability to produce 3HP from CO₂ and light energy was analyzed.

Effect of a Bifunctional Malonyl-CoA Reductase from Chloroflexus aurantiacus on Production of 3HP

FIG. 7 outlines two pathways for synthesizing 3HP from phosphoenolpyruvate (PEP). PEP is derived in cyanobacteria through the oxidation of glyceraldehyde 3-phosphate, a prod-20 uct of CO₂ assimilation. While both pathways would result in a cofactor imbalance, the route via malonyl-CoA balances out the NADPH derived from the light reactions of photosynthesis and results in the net production of 2ATP and 2 NADH per 3HP. In order to introduce this pathway into PCC 7002, a malonyl-CoA reductase gene was heterologously expressed. Malonyl-CoA reductase from Chloroflexus aurantiacus was cloned into PCC 7002 AacsA [44]. C. aurantiacus is a phototrophic bacterium that produces 3HP as an intermediate in CO₂ fixation [45]. The malonyl-CoA reductase from Chloroflexus aurantiacus has been shown to have activity that converts malonyl-CoA to malonate semialdehyde and, in addition, activity that converts malonate semialdehyde to 3HP. The C. aurantiacus malonyl-CoA reductase gene was introduced onto a native plasmid under a highly expressed promoter [46]. Integration onto a native plasmid rather than the chromosome ensured a higher copy number of the gene. The native plasmid is required for growth, ensuring that the plasmid was not lost [46]. After integration was confirmed, the ability of the strain to produce 3HP was determined through HPLC. Preliminary results have shown that expressing malonyl-CoA reductase in wild-type PCC 7002 and PCC 7002 Δ acsA confers the ability to produce 3HP on the order of 50 µM. Further experiments will be performed to determine if the AacsA strain has an advantage with respect to yield and growth rate. We predict that the $\Delta acsA$ strain has an advantage with respect to yield and growth rate.

Effect of a Mono Functional Malonyl-CoA Reductase from Metallosphaera sedula and a Malonate Semialdehyde Reductase from Sulfolobus tokodaii on Production of 3HP

As an alternative to producing 3HP by expressing the malonyl-CoA reductase from Chloroflexus aurantiacus, 3HP was produced by expressing a mono-functional malonyl-CoA reductase (MCR) from Sulfolobus tokodaii and a malonate semialdehyde reductase (MSR) from Metallosphaera sedula. Schemas outlining this strategy are shown in FIGS. 9A and 9B.

The acsA in Synechococcus sp. PCC 7002 was replaced with an artificial operon construct configured to express an N-terminally truncated version of the MCR from *Sulfolobus* tokodaii (SEQ ID NO:13) and the MSR from Metallosphaera sedula (SEQ ID NO:16) under IPTG-inducible conditions. The operon (lacOOI_MCR_MSR), shown in FIG. 10, included a LacI-regulatable promoter based on the cyanobacterial cpcB gene promoter (pcpcBLacOO), a truncated, codon-optimized MCR coding sequence (SEQ ID NO:12), a codon-optimized MSR coding sequence (SEQ ID NO:15), ribosome binding sites (RBSs) upstream of each of the MCR

4∩

45

and MSR coding sequences, and a lad gene. A strain of Synechococcus sp. PCC 7002 with acsA replaced with a barcode sequence (PCC 7002 acsA::BC) was generated as a control. The engineered PCC 7002 was grown in 10-ml volumes at a light intensity of $140 \,\mu\text{E/m}^2/\text{s}$ at 35° C. and bubbled 5 with air. Cell growth was monitored by measuring the optical density at 730 nm (OD₇₃₀) using a Spectrophotometer 20 (Milton Roy). The production of 3HP was determined with each generated strain through HPLC.

As shown in Table 4, the control strain (PCC 7002 acsA:: BC) was incapable of producing 3HP. By contrast, the strain comprising the artificial operon (PCC 7002 acsA::lacOOI_ MCR_MSR) produced 32 µM and 66 µM in the absence and presence, respectively, of 1 mM IPTG.

TABLE 4

Production of 3-HI)		_
Strain	IPTG (mM)	3HP (pM)	
PCC 7002 acsA::BC (Control)	0	0	
PCC 7002 acsA::lacOOI_MCR_MSR	0	32	
PCC 7002 acsA::lacOOI_MCR_MSR	1	66	

The growth of PCC 7002 acsA::lacOOI MCR MSR in both the absence and presence of 1 mM IPTG is shown in FIG. 11.

These data show that PCC 7002 and, more generally, cyanobacteria can be engineered to produce 3HP. Further Engineering to Increase 3HP Titers

Several strategies can be employed to increase 3HP production. For example, flux through the 3HP production pathway can be increased by overexpressing the acetyl-CoA carboxylase genes, thus increasing the pool of malonyl-CoA. See FIG. 9A. Furthermore, a genome-scale metabolic model ³⁵ can be used to predict genetic modifications that would provide additional flux through the pathway and correct cofactor imbalances [47]. These strategies will potentially increase titers of 3HP to be comparable with production systems using heterotrophic bacteria.

Example 8

Production of Lactate with Engineered PCC 7002

A lactate production pathway was enhanced in PCC 7002 $\Delta acsA$ and its ability to produce 3HP from CO₂ and light energy was analyzed.

Effect of Lactase Dehydrogenase on Lactate Production

Lactate dehydrogenase catalyzes the conversion from 50 pyruvate to lactate. See FIG. 12A. The acsA in Synechococcus sp. PCC 7002 was replaced with a construct configured to express the lactate dehydrogenase from B. subtilis (ldh, SEQ ID NOS: 17 and 18) under IPTG-inducible conditions. The resulting strain, PCC 7002 acsA::ldh, was grown in 10-ml 55 volumes with or without 1 mM IPTG at a light intensity of 140 $\mu E/m^2/s$ at 35° C. and bubbled with air containing ambient CO₂. Cell growth was monitored by measuring the optical density at 730 nm (OD730) using a Spectrophotometer 20 (Milton Roy). Lactate production was determined using 60 methods known in the art.

Lactate production from PCC 7002 acsA::ldh in the presence and absence of IPTG is shown in FIG. 13 and Table 5, and the growth of PCC 7002 acsA::ldh in the presence and absence of IPTG is shown in FIG. 13. Increasing expression 65 of lactate dehydrogenase increased production of lactate without significantly compromising growth.

40	
TABLE	5

	121			
Lactate production from PCC 7002 acsA::Idh in the presence and absence of IPTG				
Final Lactate Percent Consumed Lactate Production Carbon Converted IPTG Concentration Rate to Lactate				
- +	0.4 mM (36 mg/L) 0.7 mM (63 mg/L)	12 mg/L/Day 21 mg/L/Day	2.4% 4.5%	

Effect of Lactase Dehydrogenase and a Transhydrogenase on Lactate Production

Pyridine nucleotide transhydrogenases catalyze the con-15 version of the reducing equivalents NADH and NADPH. See FIG. 12B. NADH is a co-factor in the lactate dehydrogenase reaction. The acsA in Synechococcus sp. PCC 7002 was replaced with an artificial operon construct configured to express the lactate dehydrogenase from B. subtilis (ldh, SEQ 20 ID NOS: 17 and 18) and a soluble pyridine nucleotide transhydrogenase from E. coli (udhA, SEQ ID NOS: 19 and 20) under IPTG-inducible conditions. The resulting strain, PCC 7002 acsA::ldh-udhA, and the PCC 7002 strain replacing acsA with the ldh-only construct, PCC 7002 acsA::ldh, were grown as described above except that 1 mM IPTG was used in all cultures and the culures were bubbled with air containing 0.5% CO₂. Cell growth and lactate production was determined as described above.

Lactate production from the PCC 7002 acsA::ldh and PCC 7002 acsA::ldh-udhA strains is shown in FIG. 14 and Table 6, and growth of the strains is shown in FIG. 14. Increasing expression of lactate dehydrogenase increased production of lactate without significantly compromising growth. Expressing the transhydrogenase along with the lactate dehydrogenase was capable of significantly increasing lactate production without significantly compromising growth. Notably, the cells expressing the soluble transhydrogenase in addition to the lactate dehydrogenase were able to produce about 1 g/L lactate after 5 days. In addition, about 22% of the fixed carbon was converted to lactate.

TABLE 6

	Lactate production from PCC 7002 $\Delta acsA$ ldh with and without the udhA soluble transhydrogenase								
	udhA	Final Lactate Concentration	Lactate Production Rate	Percent Consumed Carbon Converted to Lactate					
)	- +	4.4 mM (396 mg/L) 8.9 mM (801 mg/L)	115 mg/L/Day 262 mg/L/Day	8.8% 22%					

Effect of the Lactase Dehydrogenase from Lactococcus lactis on Lactate Production

Expression constructs comprising a codon-optimized coding sequence of the lactase dehydrogenase from Lactococcus lactis (ldhA, SEQ ID NOS: 21 and 22) either alone or with the soluble pyridine nucleotide transhydrogenase from E. coli (udhA, SEQ ID NOS: 19 and 20) were generated. The constructs will be used to replace the acsA in Svnechococcus sp. PCC 7002. The resulting strains will be grown as described above. Cell growth and lactate production will be determined as described above. It is predicted that expression of the lactase dehydrogenase from Lactococcus lactis will increase lactate production as well as or better than expression of the lactate dehydrogenase from B. subtilis.

35

CONCLUSIONS FROM EXAMPLES

Increasing the tolerance to organic acids and engineering the production of commodity chemicals makes biological synthesis of these chemicals from CO₂ with cyanobacteria and other microorganisms a viable option. *to Dimethylsulfide*. Appl. Environ. Microbiol., 2002. 68(12): p. 5804-5815. 20. Simó R., et al., *Coupled Dynamics of Dimethylsulfoniopropionate and Dimethylsulfide Cycling and the Microbial*

REFERENCES

- Keasling, J. D., Manufacturing Molecules Through Meta-10 bolic Engineering. Science, 2010. 330(6009): p. 1355-1358.
- Chotani, G., et al., *The commercial production of chemicals using pathway engineering*. Biochimica et Biophysica Acta (BBA)—Protein Structure and Molecular Enzymol- 15 ogy, 2000. 1543(2): p. 434-455.
- Nakamura, C. E. and G. M. Whited, *Metabolic engineering* for the microbial production of 1,3-propanediol. Current Opinion in Biotechnology, 2003. 14(5): p. 454-459.
- 4. Bauer, W., *Acrylic Acid and Derivatives*. Kirk-Othmer 20 Encyclopedia of Chemical Technology. 2000: John Wiley & Sons, Inc.
- Straathof, A. J. J., et al., *Feasibility of acrylic acid produc*tion by fermentation. Applied Microbiology and Biotechnology, 2005. 67(6): p. 727-734.
- Bozell, J. J. and G. R. Petersen, *Technology development* for the production of biobased products from biorefinery carbohydrates—the US Department of Energy's "Top 10" revisited. Green Chemistry, 2010. 12(4): p. 539-554.
- OPX nears commercial goal for bio-based acrylic acid 30 Feb. 28, 2011; Available from: http://www.opxbiotechnologies.com/press/.
- Thiel, T., Genetic Analysis of Cyanobacteria, in The Molecular Biology of Cyanobacteria, D. A. Bryant, Editor. 2004, Springer Netherlands. p. 581-611.
- 9. Ducat, D. C., J. C. Way, and P. A. Silver, *Engineering cyanobacteria to generate high-value products*. Trends in Biotechnology, 2011. 29(2): p. 95-103.
- Angermayr, S. A., et al., *Energy biotechnology with cyanobacteria. Current Opinion in Biotechnology*, 2009.
 20(3): p. 257-263.
 294.
 29. Ross, C. and K. L. V. Alstyne, *INTRASPECIFIC VARIA-TION IN STRESS-INDUCED HYDROGEN PEROXIDE*
- Atsumi, S., W. Higashide, and J. C. Liao, *Direct photo-synthetic recycling of carbon dioxide to isobutyraldehyde*. Nat Biotech, 2009. 27(12): p. 1177-1180.
- 12. Lindberg, P., S. Park, and A. Melis, *Engineering a plat-* 45 form for photosynthetic isoprene production in cyanobacteria, using Synechocystis as the model organism. Metabolic Engineering, 2010. 12(1): p. 70-79.
- Liu, X., J. Sheng, and R. Curtiss III, *Fatty acid production* in genetically modified cyanobacteria. Proceedings of the 50 National Academy of Sciences, 2011.
- 14. Niederholtmeyer, H., et al., *Engineering Cyanobacteria To Synthesize and Export Hydrophilic Products*. Appl. Environ. Microbiol., 2010. 76(11): p. 3462-3466.
- 15. Kumar, K., et al., Development of suitable photobioreactors for CO₂ sequestration addressing global warming using green algae and cyanobacteria. Bioresource Technology, 2011. 102(8): p. 4945-4953.
- 16. Howard, E. C., et al., *Bacterial Taxa That Limit Sulfur Flux from the Ocean*. Science, 2006. 314(5799): p. 649- 60 652.
- Stefels, J., Physiological aspects of the production and conversion of DMSP in marine algae and higher plants. Journal of Sea Research, 2000. 43(3-4): p. 183-197.
- Sunda, W., et al., An antioxidant function for DMSP and 65 DMS in marine algae. Nature, 2002. 418(6895): p. 317-320.

- Yoch, D. C., Dimethylsulfoniopropionate: Its Sources, Role in the Marine Food Web, and Biological Degradation to Dimethylsulfide. Appl. Environ. Microbiol., 2002. 68(12): p. 5804-5815.
- 20. Simó R., et al., Coupled Dynamics of Dimethylsulfoniopropionate and Dimethylsulfide Cycling and the Microbial Food Web in Surface Waters of the North Atlantic. Limnology and Oceanography, 2002. 47(1): p. 53-61.
- Vila-Costa, M., et al., Dimethylsulfoniopropionate Uptake by Marine Phytoplankton. Science, 2006. 314(5799): p. 652-654.
- Malmstrom, R. R., et al., Dimethylsulfoniopropionate (DMSP) Assimilation by Synechococcus in the Gulf of Mexico and Northwest Atlantic Ocean. Limnology and Oceanography, 2005. 50(6): p. 1924-1931.
- 23. González, J. M., et al., Genetics and Molecular Features of Bacterial Dimethylsulfoniopropionate (DMSP) and Dimethylsulfide (DMS) Transformations, in Handbook of Hydrocarbon and Lipid Microbiology, K. N. Timmis, Editor. 2010, Springer Berlin Heidelberg. p. 1201-1211.
- 24. Howard, E. C., et al., Abundant and diverse bacteria involved in DMSP degradation in marine surface waters. Environmental Microbiology, 2008. 10(9): p. 2397-2410.
- Reisch, C. R., et al., Novel pathway for assimilation of dimethylsulphoniopropionate widespread in marine bacteria. Nature, 2011. 473(7346): p. 208-211.
- Kiene, R. P., et al., Dimethylsulfoniopropionate and Methanethiol Are Important Precursors of Methionine and Protein-Sulfur in Marine Bacterioplankton. Appl. Environ. Microbiol., 1999. 65(10): p. 4549-4558.
- 27. Ansede, J. H., P. J. Pellechia, and D. C. Yoch, Metabolism of Acrylate to beta—Hydroxypropionate and Its Role in Dimethylsulfoniopropionate Lyase Induction by a Salt Marsh Sediment Bacterium, Alcaligenes faecalis M3A. Appl. Environ. Microbiol., 1999. 65(11): p. 5075-5081.
- Simó, R., Production of atmospheric sulfur by oceanic plankton: biogeochemical, ecological and evolutionary links. Trends in Ecology & Evolution, 2001. 16(6): p. 287-294.
- 29. Ross, C. and K. L. V. Alstyne, INTRASPECIFIC VARIA-TION IN STRESS-INDUCED HYDROGEN PEROXIDE SCAVENGING BY THE ULVOID MACROALGA ULVA LACTUCA1. Journal of Phycology, 2007. 43(3): p. 466-474.
- 30. Latifi, A., M. Ruiz, and C.-C. Zhang, *Oxidative stress in cyanobacteria*. FEMS Microbiology Reviews, 2009. 33(2): p. 258-278.
- Balasubramanian, R., et al., Regulatory Roles for IscA and SufA in Iron Homeostasis and Redox Stress Responses in the Cyanobacterium Synechococcus sp. Strain PCC 7002.
 J. Bacteriol., 2006. 188(9): p. 3182-3191.
- 32. Horswill, A. R., A. R. Dudding, and J. C. Escalante-Semerena, *Studies of Propionate Toxicity in Salmonella enterica Identify 2-Methylcitrate as a Potent Inhibitor of Cell Growth.* Journal of Biological Chemistry, 2001. 276 (22): p. 19094-19101.
- Russell, J. B., Another explanation for the toxicity of fermentation acids at low pH: anion accumulation versus uncoupling. Journal of Applied Microbiology, 1992. 73(5): p. 363-370.
- 34. Chemington, C. A., et al., Organic Acids: Chemistry, Antibacterial Activity and Practical Applications, in Advances in Microbial Physiology, A. H. Rose and D. W. Tempest, Editors. 1991, Academic Press. p. 87-108.
- 35. Zaldivar, J. and L. O. Ingram, *Effect of organic acids on* the growth and fermentation of ethanologenic Escherichia coli LY01. Journal Name: Biotechnology and Bioengi-

10

15

neering; Journal Volume: 66; Journal Issue: 4; Other Information: PBD: 1999, 1999: p. Medium: X; Size: page(s) 203-210.

- 36. Fridovich, I. and H. M. Hassan, *Paraquat and the exacerbation of oxygen toxicity*. Trends in Biochemical Sciences, 1979. 4(5): p. 113-115.
- 37. Sakamoto, T., V. B. Delgaizo, and D. A. Bryant, Growth on Urea Can Trigger Death and Peroxidation of the Cyanobacterium Synechococcus sp. Strain PCC 7002. Appl. Environ. Microbiol., 1998. 64(7): p. 2361-2366.
- Steinke, M., et al., Determinations of dimethylsulphoniopropionate (DMSP) lyase activity using headspace analysis of dimethylsulphide (DMS). Journal of Sea Research, 2000. 43(3-4): p. 233-244.
- 39. Hashimoto, Y., et al., *Nitrile Pathway Involving Acyl-CoA Synthetase*. Journal of Biological Chemistry, 2005. 280 (10): p. 8660-8667.
- 40. Kasuya, F., K. Igarashi, and M. Fukui, Participation of a medium chain acyl-CoA synthetase in glycine conjugation of the benzoic acid derivatives with the electron-donating groups. Biochemical Pharmacology, 1996. 51(6): p. 805-809.
- 41. MARUYAMA, K. and H. KITAMURA, Mechanisms of Growth Inhibition by Propionate and Restoration of the Growth by Sodium Bicarbonate or Acetate in 25 Rhodopseudomonas sphaeroides S. Journal of Biochemistry, 1985. 98(3): p. 819-824.
- 42. Man, W.-J., et al., *The binding of propionyl-CoA and carboxymethyl-CoA to Escherichia coli citrate synthase*. Biochimica et Biophysica Acta (BBA)—Protein Structure 30 and Molecular Enzymology, 1995. 1250(1): p. 69-75.
- 43. Boynton, Z. L., G. N. Bennett, and F. B. Rudolph, Intracellular Concentrations of Coenzyme A and Its Derivatives

44

from Clostridium acetobutylicum ATCC 824 and Their Roles in Enzyme Regulation. Appl. Environ. Microbiol., 1994. 60(1): p. 39-44.

- 44. Hugler, M., et al., Malonyl-Coenzyme A Reductase from Chloroflexus aurantiacus, a Key Enzyme of the 3-Hydroxypropionate Cycle for Autotrophic CO₂ Fixation. J. Bacteriol., 2002. 184(9): p. 2404-2410.
- Holo, H., <i>Chloroflexus aurantiacus </i> secretes 3-hydroxypropionate, a possible intermediate in the assimilation of CO<sup>2</sup> and acetate. Archives of Microbiology, 1989. 151(3): p. 252-256.
- 46. Xu, Y., et al., Expression of Genes in Cyanobacteria: Adaptation of Endogenous Plasmids as Platforms for High-Level Gene Expression in <i> Synechococcus</i> sp. PCC 7002, in Photosynthesis Research Protocols, R. Carpentier, Editor. 2011, Humana Press. p. 273-293.
- 47. Feist, A. M., et al., *Reconstruction of biochemical networks in microorganisms*. Nat Rev Micro, 2009. 7(2): p. 129-143.
- 48. Visscher, P. T., and H. van Gemerden. 1991. Production and Consumption of Dimethylsulfoniopropionate in Marine Microbial Mats. *Applied and Environmental Microbiology* 57:3237-3242.
- 49. Dacey, J. W. H., and N. V. Blough. 1987. Hydroxide decomposition of dimethylsulfoniopropionate to form dimethylsulfide. *Geophys. Res. Lett.* 14:1246-1249.
- Begemann M B, Zess E K, Walters E M, Schmitt E F, Markley A L, Pfleger B F. An organic acid based counter selection system for cyanobacteria. *PLoS One.* 2013 Oct. 1; 8(10):e76594.

SEQUENCE LISTING

<160> NUMBER OF SEQ ID NOS: 22

```
<210> SEQ ID NO 1
```

```
<211> LENGTH: 1965
```

```
<212> TYPE: DNA
<213> ORGANISM: Synechococcus PCC7002
```

<400> SEQUENCE: 1

atgtccgaac	aaaacattga	atccatcctc	caggagcagc	gcctttttc	gcctgcacca	60
gactttgctg	ccgaggccca	gatcaagagc	ttagaccagt	accaagccct	ctacgaccgg	120
gcgaaaaatg	accccgaagg	cttttggggg	gaactcgccg	aacaggaatt	ggaatggttt	180
gagaaatggg	acaaggtgct	cgattggcaa	ccgcccttcg	ccaaatggtt	tgtcaacggg	240
aaaattaaca	tttcctacaa	ttgcctcgac	cgtcatctca	aaacctggcg	caaaaataaa	300
gccgccctca	tctgggaagg	ggaacccggt	gactcccgta	ccctcaccta	tgcccagcta	360
caccacgagg	tctgccagtt	tgccaatgcg	atgaaaaagt	tgggcgtcaa	aaaaggcgat	420
cgcgtcggga	tttatatgcc	aatgatcccg	gaagccgtcg	ttgccctcct	cgcctgtgcc	480
cgcattggtg	cgccccatac	ggtgatattt	ggtggcttta	gtgccgaagc	cctccgcagt	540
cgcctcgaag	acgctgaagc	caaactggtg	atcaccgccg	acggggggctt	ccgcaaagat	600
aaagcggtac	ccctcaagga	tcaagtagat	gcggcgatcg	ccgatcacca	tgcccccagc	660
gttgagaatg	ttttggtcgt	tcaacgcacc	aaagagcctg	tccacatgga	agccgggcgg	720
gatcactggt	ggcatgattt	gcaaaaagaa	gtctccgctg	actgtcccgc	cgagccgatg	780
gatgccgaag	atatgctctt	catcctctat	accagcggca	ccacgggtaa	acccaagggc	840
-continued

gttgtccaca c	tacgggcgg	ttataatcto	c tacacccata	taacgaccaa	gtggatcttt	900
gatctcaaag a	tgatgacgt	gtattggtgt	ggtgctgatg	tgggttggat	caccggccac	960
agttacatta c	ctatggccc	tctatctaac	c ggggcaacgg	tcttaatgta	tgaaggcgca	1020
ccccgtccgt c	taatcccgg	ttgctattgg	g gaaattattc	aaaaatatgg	tgtcaccatt	1080
ttctatacgg c	acccacagc	gattcgggco	c tttatcaaaa	tgggtgaagg	catccccaat	1140
aaatatgaca t	gagttccct	gcgcctctta	a ggaaccgtgg	gtgaaccgat	taacccagaa	1200
gcttggatgt g	gtaccaccg	ggtcattggt	ggcgaacgtt	gtcccattgt	tgatacatgg	1260
tggcaaacgg a	aaccggtgg	tgtgatgatt	acgcctttac	ccggtgcaac	tcccacaaaa	1320
cccggctcgg c	aactcgtcc	ttttccgggg	g attgtggcgg	atgtcgttga	ccttgatgga	1380
aattccgttg g	tgacaacga	aggcggctac	c ctggtagtga	aacaaccctg	gcctgggatg	1440
atgcgtactg t	ttacggcaa	tcccgaacgo	c ttccggtcta	cctattggga	gcacatcgcc	1500
ccgaaagatg g	acaatacct	ttatttcgca	a ggtgacgggg	cacgccgtga	ccaagatggc	1560
tatttttgga t	tatgggtcg	cgtcgatgat	: gtcttaaatg	tttcgggcca	tcgcctcggc	1620
accatggaag t	ggaatcggc	cctcgtttcc	c caccctgccg	tcgccgaagc	agccgtggtt	1680
ggaaagccag a	tccggttaa	gggggaagag	g gtgtttgcct	ttgtcaccct	tgagggcacc	1740
tacagtccga g	cgacgatct	cgtaacggaa	a ctcaaggccc	atgtggtgaa	agaaattggg	1800
gcgatcgccc g	tccgggaga	aatccgtttt	: gccgatgtaa	tgcccaaaac	ccgttctggg	1860
aagatcatgc g	gcgtttgtt	gcgaaaccta	a gccgcaggtc	aggaaattgt	gggcgacacc	1920
tccaccctcg a	agaccgcag	cgtcctcgat	caactccggg	gctaa		1965
<210> SEQ ID <211> LENGTH <212> TYPE: <213> ORGANI	: 654 PRT SM: Synech	nococcus PC	207002			
<211> LENGTH <212> TYPE: <213> ORGANI <400> SEQUEN	: 654 PRT SM: Synech CE: 2					
<211> LENGTH <212> TYPE: <213> ORGANI	: 654 PRT SM: Synech CE: 2			Glu Gln Arg	g Leu Phe 15	
<211> LENGTH <212> TYPE: <213> ORGANI <400> SEQUEN Met Ser Glu 1 Ser Pro Ala	: 654 PRT SM: Synech CE: 2 Gln Asn I 5	le Glu Ser	Ile Leu Gln 10		15	
<211> LENGTH <212> TYPE: <213> ORGANI <400> SEQUEN Met Ser Glu 1 Ser Pro Ala	: 654 PRT SM: Synech CE: 2 Gln Asn I: 5 Pro Asp Ph 20	le Glu Ser ne Ala Ala	Ile Leu Gln 10 Glu Ala Gln 25	Ile Lys Sei 30	15 Leu Asp	
<211> LENGTH <212> TYPE: <213> ORGANI <400> SEQUEN Met Ser Glu 1 Ser Pro Ala Gln Tyr Gln	: 654 PRT SM: Synech CE: 2 Gln Asn I 5 Pro Asp Ph 20 Ala Leu Ty	le Glu Ser ne Ala Ala yr Asp Arg 40	Ile Leu Gln 10 Glu Ala Gln 25 Ala Lys Asn	Ile Lys Sen 30 Asp Pro Glu 45	15 Leu Asp Gly Phe	
<pre><211> LENGTH <212> TYPE: <213> ORGANI <400> SEQUEN Met Ser Glu 1 Ser Pro Ala Gln Tyr Gln 35 Trp Gly Glu 50 Lys Val Leu</pre>	: 654 PRT SM: Synech CE: 2 Gln Asn II 5 Pro Asp Pl 20 Ala Leu Ty Leu Ala G Asp Trp G	le Glu Ser ne Ala Ala yr Asp Arg 40 lu Gln Glu 55 ln Pro Pro	Ile Leu Gln 10 Glu Ala Gln 25 Ala Lys Asn Leu Glu Trp Phe Ala Lys	Ile Lys Ser 30 Asp Pro Glu 45 Phe Glu Ly: 60	15 Leu Asp 1 Gly Phe 5 Trp Asp 1 Asn Gly	
<211> LENGTH <212> TYPE: <213> ORGANI <400> SEQUEN Met Ser Glu 1 Ser Pro Ala Gln Tyr Gln 35 Trp Gly Glu 50 Lys Val Leu 65	: 654 PRT SM: Synech CE: 2 Gln Asn I: 5 Pro Asp Pl 20 Ala Leu Ty Leu Ala G: Asp Trp G: 70	le Glu Ser ne Ala Ala yr Asp Arg 40 lu Gln Glu 55 ln Pro Pro	Ile Leu Gln 10 Ala Gln 25 Ala Lys Asn Leu Glu Trp Phe Ala Lys 75	Ile Lys Ser 30 Asp Pro Glu 45 Phe Glu Lys 60 Trp Phe Val	15 Leu Asp Gly Phe Trp Asp Asn Gly 80	
<pre><211> LENGTH <212> TYPE: <213> ORGANI <400> SEQUEN Met Ser Glu 1 Ser Pro Ala Gln Tyr Gln 35 Trp Gly Glu 50 Lys Val Leu</pre>	: 654 PRT SM: Synech CE: 2 Gln Asn I: 5 Pro Asp Pl 20 Ala Leu Ty Leu Ala G: Asp Trp G: 70	le Glu Ser ne Ala Ala yr Asp Arg 40 lu Gln Glu 55 ln Pro Pro	Ile Leu Gln 10 Ala Gln 25 Ala Lys Asn Leu Glu Trp Phe Ala Lys 75	Ile Lys Ser 30 Asp Pro Glu 45 Phe Glu Lys 60 Trp Phe Val	15 Leu Asp Gly Phe Trp Asp Asn Gly 80	
<pre><211> LENGTH <212> TYPE: <213> ORGANI <400> SEQUEN Met Ser Glu 1 Ser Pro Ala Gln Tyr Gln 35 Trp Gly Glu 50 Lys Val Leu 65 Lys Ile Asn Arg Lys Asn</pre>	: 654 PRT SM: Synech CE: 2 Gln Asn II 5 Pro Asp Pl 20 Ala Leu Ty Leu Ala G Asp Trp G 70 Ile Ser Ty 85	le Glu Ser ne Ala Ala yr Asp Arg 40 lu Gln Glu 55 ln Pro Pro 0 yr Asn Cys	Ile Leu Gln 10 Glu Ala Gln 25 Ala Lys Asn Leu Glu Trp Phe Ala Lys 75 Leu Asp Arg 90	Ile Lys Ser 30 Asp Pro Glu 45 Phe Glu Lys 60 Trp Phe Va His Leu Lys	15 Leu Asp Gly Phe Trp Asp Asn Gly 80 Thr Trp 95 V Asp Ser	
<pre><211> LENGTH <212> TYPE: <213> ORGANI <400> SEQUEN Met Ser Glu 1 Ser Pro Ala Gln Tyr Gln 35 Trp Gly Glu 50 Lys Val Leu 65 Lys Ile Asn Arg Lys Asn</pre>	: 654 PRT SM: Synech CE: 2 Gln Asn I: 5 Pro Asp Pl 20 Ala Leu Ty Leu Ala G: Asp Trp G: 7(Ile Ser Ty 85 Lys Ala A: 100	le Glu Ser he Ala Ala yr Asp Arg 40 lu Gln Glu 55 Pro yr Asn Cys la Leu Ile	Ile Leu Gln 10 Ala Gln 25 Ala Lys Asn Leu Glu Trp Phe Ala Lys 75 Leu Asp Arg 90 Glu Gly 105	Ile Lys Ser 30 Asp Pro Glu 45 Phe Glu Lys 60 Trp Phe Va His Leu Lys Glu Pro Gly 110	15 Leu Asp Gly Phe Trp Asp Asn Gly 80 Thr Trp 95 Asp Ser	
<pre><211> LENGTH <212> TYPE: <213> ORGANI <400> SEQUEN Met Ser Glu 1 Ser Pro Ala Gln Tyr Gln Gln Tyr Gly Glu Gly Val Leu 65 Lys Val Leu Arg Lys Asn Arg Lys Asn</pre>	: 654 PRT SM: Synech CE: 2 Gln Asn II 5 Pro Asp Pl 20 Ala Leu Ty Leu Ala G Asp Trp G 70 Ile Ser Ty 85 Lys Ala A 100 Thr Tyr A	le Glu Ser he Ala Ala yr Asp Arg 40 lu Gln Glu 55 ln Pro Pro yr Asn Cys la Leu Ile la Gln Leu 120	Ile Leu Gln 10 Glu Ala Gln 25 Ala Lys Asn Leu Glu Trp Phe Ala Lys 75 Leu Asp Arg 90 Trp Glu Gly 105 His His Glu	Ile Lys Ser 30 Asp Pro Glu 45 Phe Glu Lys 60 Trp Phe Va His Leu Lys Glu Pro Gly 110 Val Cys Glu 125	15 Leu Asp Gly Phe Trp Asp Asn Gly 80 Thr Trp 95 Asp Ser Phe Ala	
<pre><211> LENGTH <212> TYPE: <213> ORGANI <400> SEQUEN Met Ser Glu 1 Ser Pro Ala Gln Tyr Gln 35 Trp Gly Glu Gly Glu G5 Lys Val Leu 65 Lys Ile Asn Arg Lys Asn Arg Thr Leu 115 Asn Ala Met</pre>	: 654 PRT SM: Synech CE: 2 Gln Asn I: 5 Pro Asp Pl 20 Ala Leu Ty Leu Ala G: Asp Trp G: 77 Ile Ser Ty 85 Lys Ala A: 100 Thr Tyr A: Lys Lys Le Met Ile Pr	le Glu Ser he Ala Ala yr Asp Arg 40 lu Gln Glu 55 Pro yr Asn Cys la Leu Ile la Gln Leu 120 eu Gly Val	Ile Leu Gln 10 Ala Gln 25 Ala Lys Asn Leu Glu Trp Phe Ala Lys 75 Leu Asp Arg 90 Glu Gly 105 His Glu Lys Lys Gly	IleLysSer 30AspProGluAspProGluPheGluLysGluProGlyGluProGlyValCysGluL25AspArgVal	15 Leu Asp Gly Phe Trp Asp Asn Gly 80 Thr Trp 95 Asp Ser Phe Ala Gly Ile	
<pre><211> LENGTH <212> TYPE: <213> ORGANI <400> SEQUEN Met Ser Glu 1 Ser Pro Ala Gln Tyr Gln Glr Tyr Gly Glu Gly Val Leu 65 Lys Val Leu Arg Lys Asn Arg Lys Asn Arg Thr Leu 115 Asn Ala Met 130</pre>	: 654 PRT SM: Synech CE: 2 Gln Asn II 5 Pro Asp Pl 20 Ala Leu Ty Leu Ala G: Asp Trp G: 70 Ile Ser Ty 85 Lys Ala A: 100 Thr Tyr A: Lys Lys Le Met Ile Pi 15	le Glu Ser he Ala Ala yr Asp Arg 40 lu Gln Glu 55 h Pro Pro yr Asn Cys la Leu Ile la Gln Leu 120 eu Gly Val 135	IleLeuGlnGluAlaGln25JaaJaaAlaLysAsnLeuGluTrpPheAlaLysPheAlaLysJooGluGluTrpGluGluHisHisGluLysLysGlyValValAlas	Ile Lys Ser 30 Asp Pro Glu 45 Phe Glu Lys 60 Trp Phe Va His Leu Lys Glu Pro Gly 110 Val Cys Glu 125 Asp Arg Va 140	15 Leu Asp Gly Phe Trp Asp Asn Gly So Thr Trp 95 Asp Ser Phe Ala Gly Ile Gly Ile Cys Ala 160	

Ala	Leu	Arg	Ser 180	Arg	Leu	Glu	Asp	Ala 185	Glu	Ala	Lys	Leu	Val 190	Ile	Thr
Ala	Asp	Gly 195	Gly	Phe	Arg	Lys	Asp 200	Lys	Ala	Val	Pro	Leu 205	Lys	Asp	Gln
Val	Asp 210	Ala	Ala	Ile	Ala	Asp 215	His	His	Ala	Pro	Ser 220	Val	Glu	Asn	Val
Leu 225	Val	Val	Gln	Arg	Thr 230	Гла	Glu	Pro	Val	His 235	Met	Glu	Ala	Gly	Arg 240
Asp	His	Trp	Trp	His 245	Asp	Leu	Gln	Lys	Glu 250	Val	Ser	Ala	Asp	Суз 255	Pro
Ala	Glu	Pro	Met 260	Asp	Ala	Glu	Asp	Met 265	Leu	Phe	Ile	Leu	Tyr 270	Thr	Ser
Gly	Thr	Thr 275	Gly	Lys	Pro	Гла	Gly 280	Val	Val	His	Thr	Thr 285	Gly	Gly	Tyr
Asn	Leu 290	Tyr	Thr	His	Ile	Thr 295	Thr	Lys	Trp	Ile	Phe 300	Asp	Leu	Lys	Aap
Asp 305	Asb	Val	Tyr	Trp	Суз 310	Gly	Ala	Asp	Val	Gly 315	Trp	Ile	Thr	Gly	His 320
Ser	Tyr	Ile	Thr	Tyr 325	Gly	Pro	Leu	Ser	Asn 330	Gly	Ala	Thr	Val	Leu 335	Met
Tyr	Glu	Gly	Ala 340	Pro	Arg	Pro	Ser	Asn 345	Pro	Gly	СЛа	Tyr	Trp 350	Glu	Ile
Ile	Gln	Lys 355	Tyr	Gly	Val	Thr	Ile 360	Phe	Tyr	Thr	Ala	Pro 365	Thr	Ala	Ile
Arg	Ala 370	Phe	Ile	Lys	Met	Gly 375	Glu	Gly	Ile	Pro	Asn 380	Lys	Tyr	Asp	Met
Ser 385	Ser	Leu	Arg	Leu	Leu 390	Gly	Thr	Val	Gly	Glu 395	Pro	Ile	Asn	Pro	Glu 400
Ala	Trp	Met	Trp	Tyr 405	His	Arg	Val	Ile	Gly 410	Gly	Glu	Arg	Суз	Pro 415	Ile
Val	Asp	Thr	Trp 420	Trp	Gln	Thr	Glu	Thr 425	Gly	Gly	Val	Met	Ile 430	Thr	Pro
Leu	Pro	Gly 435	Ala	Thr	Pro	Thr	Lys 440	Pro	Gly	Ser	Ala	Thr 445	Arg	Pro	Phe
Pro	Gly 450	Ile	Val	Ala	Asp	Val 455	Val	Asp	Leu	Asp	Gly 460	Asn	Ser	Val	Gly
Asp 465	Asn	Glu	Gly	Gly	Tyr 470	Leu	Val	Val	Lys	Gln 475	Pro	Trp	Pro	Gly	Met 480
Met	Arg	Thr	Val	Tyr 485	Gly	Asn	Pro	Glu	Arg 490	Phe	Arg	Ser	Thr	Tyr 495	Trp
Glu	His	Ile	Ala 500	Pro	Lys	Asp	Gly	Gln 505	Tyr	Leu	Tyr	Phe	Ala 510	Gly	Asp
Gly	Ala	Arg 515	Arg	Asp	Gln	Asp	Gly 520	Tyr	Phe	Trp	Ile	Met 525	Gly	Arg	Val
Asp	Asp 530	Val	Leu	Asn	Val	Ser 535	Gly	His	Arg	Leu	Gly 540	Thr	Met	Glu	Val
Glu 545	Ser	Ala	Leu	Val	Ser 550	His	Pro	Ala	Val	Ala 555	Glu	Ala	Ala	Val	Val 560
Gly	Lys	Pro	Asp	Pro 565	Val	Lys	Gly	Glu	Glu 570	Val	Phe	Ala	Phe	Val 575	Thr
Leu	Glu	Gly	Thr 580	Tyr	Ser	Pro	Ser	Asp 585	Asp	Leu	Val	Thr	Glu 590	Leu	Lys

-continued

tttagtgage gggettacgt gcgtagtggg cgggagttg agcaactgta cagccgggg 120 ggecagcaate cgggagagtt ttggggtgg cggggggt agcaattaca ttggtttaaa 180 aaatgggacc aggttttgg ttggategg ccctttgcga aaggtgttg gggggggtcag 240 ttaaatatt cccataactg tttggategg cacttacca cctggcggc caataaggeg 300 ggecattatt gggaggggga accgggagat tcccgggaa attacctatge caataccg 360 cggggaagtg gtdagttg ccatgccctg aaaagttag gcggaggge 420 gtagcaatt attcgcccat gattcccgaa agggggggg 420 gtagcaatt attcggccat gatgggggggg ccatgttgg ctggtggad 420 gatgggggg ccatagteg ggggggggggg ccatggegg 420 gatggagatg gtdgtttgg gggggggggggggggggggggggggggggggggggg			concinaca	
610615620620Arg Leu Leu Arg Am Leu Ala Ala Gly Gln Glu Ile Val Gly Amp Thr 625630625630Ser Thr Leu Glu Amp Arg Ser Val Leu Anp Gln Leu Arg Gly 645641645642650643650644650644650645650645650646650647645648650649650640850640850640850640850641645642850643850643850644850645850650850650850650850650850650850650850650850650850650850650850650850650 <t< td=""><td></td><td>-</td><td></td><td></td></t<>		-		
Arg Leu Leu Arg Am Leu Ala Ala Gly Gln Glu Ile Val Gly Am Thr 635640Ser Thr Leu Glu Am Arg Ser Val Leu Am Gln Leu Arg Gly 650640<2010 > SEO ID NO 3 (211) = LENGH650<2010 > SEO ID NO 3 (211) = LENGH640<2011 > LENGHT: 1962 (212) > DYRE: DNA (213) > ORGANISM: Synechocystis PCC6803<400 > SEQUENCE: 3adgtcagata ccattgaatc catcctgcag gaagacgac tgtttgatcc ccctacagaa60tttagtgage gggttacgt gegtagtgg cgggagtatg agcaactgta cagcegggg 20ggccagcaatc cggaagatt tggggtggg cactgccgaga aggattaca ttggtttaaaatgggacc aggttttgg ttggcacct cccttgega atggtttg gggggggg 24gggaaggtg gccagtatgg cactggagat tcccggata ttacctatgc caactccatGegggaagtg gccadtatg gatgggga acggggatat cccggata attacctatgc caactccatgggagagtg gccadtatg atggcacat catgtggg caggaacca ggtgtttegggaagatgg cacatagg atgggat acgggagat accgggaagcc gggaagcagggagagtg gccadtatg atggcaca atggcgg gaggaac cacgtggg caggaaccagggagagtg gccadtatg agtggtata gcccggaac acggtgccc cacggggaagggagatgg ctgggaagag atgggatag gcccggaac acggtgccc cacgggaacggagaatatg tgtttatt ctacacagt ggccattat cacaggtag cacaggtaccaggagatatg tgtttatt ctacacagt ggcattag gcagagcac catagacagggagaatag gccctggaa acttacacg gatggaac catagaagg ggtgcccaggagaatag acttatg gtgacagt tgggaga acgggaac catagacagggagaatag gggttacaa cttacacagt gacgagac catagacag aggggagaatag tgtttatg tgtaccg tatgggga accaggaac catagacaggaagaaacg ggggttacaa cttacacagt gacgagaac catagacagggaagatag tgtgttatg tgtaccg tatggaga accattac caacgcaggggaagatag tgtgttatg tgtaccg tatggagag accatagag ggggccac atgatcggggaaga	•			
Ser Thr Leu Glu App Arg Ser Val Leu App Gln Leu Arg Gly 5210 > SEQ ID NO 3 5211 > LENGTH: 1952 5212 > TPE: DNA 5213 > ORGANISM: Synechocystis PCC6803 5400 > SEQUENCE: 3 atgEcagata ccattgaatc catcetgcag gaagagogac tgtttgatcc coctacagaa 600 tttagtgage gggettacgt gegtagtggg egggagtatg ageactgta cageegggg 2 120 gecageaact eggagaagtt ttgggtgag etggeggag aggagtatg eggaggteg gggggtag aaatgggace aggttttgg ttgggtgag etggeggag aggagtatg egggggteg 2 200 gecageaact eggagaagtt ttgggtgag etggeggag atggegge eataageg 300 gecattatt gggagggga acegggagat teceggata ttacetatg ecaacteet 360 egggaagtgt gteagtttge caatgeetg aaagtttag gegtgeaaa aggtgateg 420 gtageaatt atetgeecat gatteega aggeggata teceggata ttacetatge ceaacteet 460 ategggageg eccatagtgt tgtgttggg gggttagg eggagaet ceatgatge 2 gtageaatt atetgeecat gatteega aggeggata ceaggggg egggatea eaggtgge egggatea 600 egggaagtgt gteagtttge caatgeetg aggeggatea eaggtgge eggagaetg 720 gagageaetg teggteaag aatgagee gggggtae eggggaee eggggaee 700 egggaagtag etgageaag atgggataa gecegga egggaee eggggaee 700 eaggegaeg aacteeaae etaaagee gatgtaee tgaeggegg aegggaee 700 eagagatatge tgtttattet etaeacagte gegeataet gaeggegg aegggaee 700 eagagatatge tgtttattet etaeacagte gegeataet gaeggegg aegggaee 700 eagagatatge tgtttatte etaeacgee gagtagea eagagaee eaageeg 700 aaagataegg aegtttattg gtgtaeege gaatgagae eeaatgga etggagaee 700 eaagataegg aegtttattg gtgtaeege gaatgtgge aaaceaaa aggegtgg 6 100 eaagataeg aegtttattg gtgtaeege gaatgtgge aaaceaaa aggegtge 700 eaagataegg aegtttattg gtgtaeege gaatgtgge aaaceaaa aggegtge 700 eatggtgee aceeggteat tggegaea ttgeaggga atggagaee eaageege 700 eatggtaeea eeeggteat tggegaeat tgeeggaga atggagaee eaatgaege 700 eatggaaacag eegttatt geteacee taeeggaga atggagaee eaatgaege 700 eatggaaacg eggettaa geteacea tegeegga aeaeggea eaagegga 200 eeegaeae eeeggeteat tgeeggegg aaeaeggaa atggagaee eaatgaege 700 eaggaaatge gegegtata geteaceae tegeettae eaagegea 200 eaggaaatge gegggtaeea eeeggaga atggaeeaea eaaegeegg aaeaeaeeeg 700 eaggaaaeaeg	Arg Leu Leu Arg Asn L	-	. Ile Val Gly Asp Thr	
645650c210> SEQ ID N0 3c211> LENGTH: 1962c212> TPE: NNAc212> TPE: NNAc212> TPE: NNAc213> ORGANISM: Synechocystis PCC6803c400> SEQUENCE: 3atgtcagata ccattgaatc catcctgcag gaagagcgac tgtttgatcc ccctacagaac00tttagtgage gggcttacgt gcgtagtggg cgggagtatg agcaactgta cagcegggcgggcaagcaatc cggagaagtt ttggggtgag ctggcggage aggaattaca ttggtttaaaaaatgggacc aggttttgg atggcacct ccctttgcga aatggtttg ggggggtcagggcaggagtg gtcagttgc caatgcccg aaaggttag gcgggagta tacctatgc ccaactccatgggagggg gtcagttg ccaatgccg aataggtgg cgggagataggcagaagtg gtcagttgc caatgcccg aaaggtgat cccggataa ttacctatgc ccaactccatggggaagtg gtcagttgc caatgcccg aggggatag gcgggagca caggtggc cgggagagatgggtgcg cccatagtg tgtgtttgg gggtttagt gggaggcc ggggagagggggaagtg gtcagttg ctgaagccaa attggtcat actgccgacg gtggtttt g taagagtaagaaggtaacg aactccaac tcaacagtcg gccattgc caggggaacc cataggcgggaggtacg g actccaacc tcaacagtcg gccattgc caggggaac catagcagtgaagatatg tgtttatt ctcacacct ggcagtact gcaggagca catagcagtgaagatatg gggtttatg ggtgacca catagcagt ggggccc gggaaggtacgg actccaac cccg aggtgac accacagtga accacaca aggcgtgg cacaacacagaagatatg ggggttatg ggtgacca catagcagt gggaaggtacgg acttatt gggagcga accacgtga accacacac caggtgga accacacac aggcgtag accacacacaggagagtatg gcggttattg gtgtaccacac tacacaccac cacaggtga accacacaca aggcgtggggagaactatg tgtgttacaa ccttacacc tacacagtg gcccacacaca aggcgtggaaggtacg ggggttacaa ccttaccc tacacagtga accacagga aggggaccagaagatatg tgtgttattg ggtaccacc tacacacaca cacacacaca acacacaca aggcgtgg ggggccccacacaca </td <td></td> <td></td> <td></td> <td></td>				
<pre>clls_LENGTH: 1962 cll> TPECE NNA cll> Catcatgaate cattectgeag gaagagegae tgtttgatee occtacagaa 600 tttagtgage gggettaegt gegtagtggg egggagtatg ageaactgta cageegggeg 120 gecageaate eggagaagtt ttggggtgag etggeggage aggaattaea ttggtttaaa 1800 aaatgggaee aggttttgg ttggeaeeet occtttgega aatggttgg ggggggteag 240 ttaaatatt eceataactg tttggategg cattaacea cetggegge caataaggeg 300 gecattatt gggagggga acegggagat teeeggata ttaeetatge caacteet 360 geggaagtg decagttge caatgeeeg aateggegate ceatgtege etgateeeg 420 gtageaatt atetgeeat gateeega gggegatat geggegatea ceatgtege etgateeg 420 gegatege eceatagtg tgtgtttgg gggttagg ggggteag 240 ttagtggag (geagetgg tgegggag acegggagat teeega gggegatea eaeggtege feggagegg 420 gggaegga teegageg gggggaga acegggagat teeega gggegatea eaeggtege feggageeg 420 ggggaagtg decagttge caatgeeeg ageggegatea eaeggtege feggageeg 420 gggategee eceatagtg tgtgtttgg gggtttagg eggaageee gegggatega 640 aaeggeaeeg eggagaga atgggataag geeeggaee aeegggegg aegggaeea 720 tggtggaag aceeace teaaeggeg geeettge eaegggaae eagggegga aegggaeea 720 tggtggeaeg aaeteeaaee teaaegteg geeettge eaegggaae eaggeggaee 640 aaagataeg gggttaatg ggtgaeeg ggegttaeg eaegeggae eaegggaee 720 gaagatatge tgtttatte etaaeaete ggeagteeg eaeaeaaa aggegggee 840 aaagataeg aegttatg ggtaeeae caatgaee tegageggaee 640 aaagataeg aegttatg ggtaeeae tagegegaae eaeaggaee 720 ceeeeeeg ggggtaeaa ectttaeee eaeaggeg geaaeeaa aggegggee 720 caaaeaeeee ggggttaeaa ectttaeee caatgaeea tagagegg aegggegeee 720 caaaeaeee ggggttaea ecttaeee tegaeageg geaaeeaa aggegggeee 720 caaaeaeee ggggttaeaa ecttteee teaeegteg aeeaeeae aggeggaee eaeagegg 720 caaaeaeee ggggttaea ecttaeeee tagaeeeee aeggeggaeeeeeeeeeeeeee</pre>	_			
atgtcagata ccattgaatccatcctgcaggaagaggactgttgatccccctacagaa60tttagtgagaggggttacgtgcgtagtgggcgggggggg120ggcagaatccgggaggttttggggtggcggggggg120ggcagaatccgggaggttttgggtggcgggggg120aaatgggacaggttttggttgggtggcggggggaggattacattggtttaagggggggaacggggggggaccggggaatcccttgcggcaataggg300ggcattattgggggggggaccggggaattcccggatattacctatgc360cggggaagtggtagtttgccaatgcctgaaagtttaggcgtgcaaaaaggtgtcgg420gtagcaattatctgcccatgatcccgaagcggggacggggggtcgg420gtaggaatggtagttgtccaatgcctgaaagtttaggcgggaagtcgttacccat360gggggaagtggtagcaattatctcgccatgcgggaaccgcggggggg420gtagcaattatctgcccatgatgcccatccaatgccggcgggggg420gtagcaattatctggccadactcccgacgcgggaaccccatccccd480atcggtgccccaatggcdactgggggcggaagcccgcgggggaaca720ttggtggadgtggggadactcaaccgcagtgggdacggggggacgggggg720ttggtggacagactcaaccgcagtggacgaagtataggcaacca720ttggtggacagactcaaccgcagtacccaacggggaaca720tgggggacagactcaaccgcagtaccgcaggggaca720tgggagaatgtgtttattcttacaccc	<211> LENGTH: 1962 <212> TYPE: DNA	hocystis PCC6803		
tttagtgag gggttacgt gcgtagtgg cggagtatg agcaactgta cagcegggeg 120 gecagcaate cggagaagtt ttgggtgag ctggeggage aggaattaca ttggtttaaa 180 aaatgggaec aggttttgg ttggetgg cegtaacea ectggeggeg caataaggeg 300 gecattatt cecataactg tttggategg cacttaacea ectggeggeg caataaggeg 300 ggecattatt gggaggggg accgggagat teeeggataa ttaeetatge ceaaeteeta 360 egggaaagtg gteagtttge caatgeeetg aaaagtttag gegtgeaaaa aggtgategg 420 gtageaattt atetgeeet gatteeegaa geggegatea ecatgttgge etgtteeegt 430 ateggtgege eccatagtg tgtgttggt gggtttagt gggageeet gegggatega 540 ttagtggagt gteagtttge tagtgettgg gggtttagt eggaageeet gegggatega 540 geggaaegee tgaageeag attggteata actgeegag ggggttteg taaagataag 600 gegategee tgaageeag agtggataag geeetggaae aeggtgeeee caegetggaa 660 aaegteateg tegtgeaaga attggteata actgeegag ggggttteg taaagataag 600 gegategee tgaageeag aatggataag geeetggaae aeggtgeeee caegetggaa 660 aaegteateg tegtgeaaag aaetaaagee gatgtgaeea tgaeggegg aegggaeeae 720 tggtggeeag aaeteeaae teaaeagee gaegtgaeea tgaeggegg aeggggaeeae 720 tggtggeeag aaeteeaae teaaeagee gaegtaeea tgaeggegg aeggggeeeag 780 gaagatatge tgtttatte etaeeet ggeagtaetg geaaaceaa aggegtggt 840 ceaeeeeaeg ggggttaeaa eetttaeee caeatgaeea ceaatggae etttgaeete 900 aaagataeeg aegtttattg gtgtaeegt gatgtggtt ggattaeggg ceaeagetae 960 aatgtttaeeg geeeettt ttgggeget aatgaaggt atggggtga tatttetee 1080 eeeeeeee eeggtegtt ttgggegeg aaaaeeggtaa tgatgagg gggeeeeeg 1120 aatgtgttaee geeeette eeeggegg aaatgeeee ttgeeggeg 1120 aatgtggtaee aeeggteat tgeeggeegg aaatgeeee ttgeegaae eagageetgg 1220 atgtggatee aeeeggteat tgeeggeegg aaatgeeee ttgeegaae eegagettgg 1220 aaggaaaeeg geggeatta geeeaeee ttgeeggae eetataeee egaagettgg 1240 gatgtgtaee aeeeggteat geegeegg aaatgeeeea ttgeegaae eegagettgg 1440 gatgtgtaee aeeeggteat tgeeggeeg tagggeeege gggaaatge 1380 ggeggaeaat teeetteee etaeee etaeeegg aageegeegg eggaaatee 1380 gagggaeaat ateettaet tgeeggeeg eggeeeeee gggaaaaag eggttattt 1560 tegggeaeatg geeeggtgga tgatgtgat aatgeeee gggaaeeeggg aageeggegg egggaeeee 1680 eeegatgaat tgeeeggga ageeattte ee	<400> SEQUENCE: 3			
gecagcaate eggaagatt ttggggtgag etggeggae aggaattaca ttggtttaaa 180 aaatgggaee aggtttgga ttggeaeee eettgega aatggttgt ggggggeeag 240 ttaaatattt eeetaaetg ttggategg eaettaacea eetggeggeg eaataaggeg 300 gecattatt gggagggga aeeggggaat teeeggata ttaeetage eeaateeeta 360 egggaagtgt gteagttge eaatgeeetg aaaagtttag gegtgeaaaa aggtgategg 420 gtageaattt atetgeeeat gateeegaa geggegatea eeatgtegge etgtteeegt 480 ateggtggeg eeeatagtgt tgtgttggt gggttagtg eggaageeet gegggatega 540 ttagtgggtg etgaageeaa attggteata aeegeegaeg geggatee eaggtgge eggggatega 660 aeegteaegt eggaegaga agtggataag geeetgaea eeggeggg aeeggggaee 720 tggtggeaeg aeeteeae eeacaegeeg geeggatee tgaegeggg aeeggegaee 720 tggtggeaeg aeeteeae eeacaegeeg geeettgee eageggaae eaagaeag 780 gaagatatge tgttattet etaeaeete ggeeggateg eaaggeggg aeegggaeeea 720 tggtggeaeg aeeteeae eeacaegeeg geeeattgee eaaggagaeee eaagaeag 780 gaagatatge tgtttattet etaeaeete ggeeggaee eaaggageee eaaggeggeee 900 aaaggtaegg aeggttaeaa eetttaeee eaatggeeg eeaaaggat eettgaeegg 900 aaaggataegg aeggttatag gtgtaeeget gatgtgggt ggataeggg eeaagetae 960 aatgtttaeg geeeetgte eaaegggea aeeaeggaa atgagggg aeeggeege 1020 eeeceeaeee eeggttgtt ttgggaegta attgaaegg agggeeeeg 1020 eeeceeaeee eeggttgtt ttgggegega aeaeeggaa eeaaeggaa tattteee 1080 aeegeeeeee eeggttgtt ttgggegeg aaeeeggaae eeaaeeegg 1140 gattateet eteteegtt aeeggeegg taaaggegg eaegeetge 1220 aatggtgaee aeegggeat ggeegeget aaatgeeeg taggggaae eeaaeeegg 1320 tettgaeea aeeetttee eggeegga aatgeeeea ttgegeeeag eagaeetgg 1220 aatgggaaeeg gegeeatat geeeaeee etaeeegg eagaeatae etggeeeag eagaeeegg 1320 tettgaeea aeeetttee eggeatgg eggaaatg ttgattaga tggegaeaeee 1380 geeggaeaeeg gegeeatat geeeaeee etaeeegg eagaeaee eagaeeegg 1320 tettgaeea aeeetttee eggeatgg eggaaatg ttgattaga tggeaeaeegg 1440 gatgtgtaeg geegaeegg tegattagtg attaaaeae ettggeeeag eagaeeegg 1440 gagggaeaat ateeteatt tgeegggae gggeeeee ggaeaaaga eggttattt 1560 tggggeaeat ateeteatt tgeegggae gggeeeeg ggaeaeattte geettggeeggaeaee 1760 gaaaattgaa eggettggga ageattte geettggeeg aageggegg gg	atgtcagata ccattgaatc	catcctgcag gaagagcgac	tgtttgatcc ccctacagaa	60
aaatgggacc aggttttgga ttggcaacct coctttgcga aatggttgt ggggggtcag 240 ttaaatattt cocataactg ttggatcgg cactaacca cotgggggg caataaggeg 300 gocattattt gggaggggga accgggagat toocggata ttaoctatgo coaactocat 360 ogggaagtgt gtcagtttgc caatgocotg aaaagtttag gogtgcaaaa aggtgatcgg 420 gtagcaattt atotgocoat gattocogaa goggogatca coatgttggc cigttocogt 480 atoggtgag occatagtgt tgtgtttggt gggtttagtg oggaagcoot gogggatcga 540 ttagtggatg otgaagcaa attggtcata actgocgacg gtggttttog taaagataag 600 gogatogooc tgaagcaga agtggataag gocotggaac acggtggcoc cagogtggaa 660 aacgtcatcg togtgcaaag aactaaagoo gatgtgaca tgaoggogg acggggaccac 720 tggtggoacg actoccacc tcaacagtog gocoattgoo caaggggg acgggaccac 720 tggtggoacg actoccacc toaccagtog gocoattgoo caaggggg acgggaccac 720 gaagatatgo tgtttattot otacacoto ggocgtacg caaggggga cogggaccac 720 caacaccaccog ggggttacaa cotttacacc cacatgacca coaactggat otttgacote 900 aaaggtacgg acgtttattg gtgtacogt gatgtgggt ggattacgg ccacagotag 960 attgtttacg gococotgto caacggtga acagggag acggggacca 1020 cococccaacc coggtgttt ttgggacgt attgaagg tggtgggg aggggtgaa tattttotac 1080 accgcocca cogottgtt ttgggacgt attgaagg agggggac caacgocag 1140 gattattoot otocogtt actgggogat gggggaa cacggogga ccacagocag 1140 gattatcot cotocogtt acgggacat gggggaa cacggagatco caacgocag 1140 gattatcot cotocogtt acgggacg gggaattg gggaaatag ctgggggaa 1220 atggggaacg goggattat gocoactoc ctacctggag ctatcocac caacgocag 1320 tottgacca acctttco cggcattgt goggaaattg ttgattaga tggaggaca 1260 agggaaaccg goggactat gocoactoc ctacctggag ctatcocac caaacccgg 1320 tottgacca acctttico cggcattgt goggaaattg ttgattaga tggagtacac 1380 gtcgagtcag accaaggggg cttttagg attaacaac cttggccag catgatcgg 1440 gatgtgtacg gogacaccga togottocg catacctat gggaaatat toacccaag 1500 gaggggacaat atoctact tgooggac ggggococg gggataaaga cggttattt 1560 tgggtoatgg gocggtgga tgatgtgat aatgtoctg gacacgtta aggcactatg 1620 gaaattgaat cggotttggt ttoccatoco ctogtagog aagggggacgg ggtggttatt 1560 cocatagaat tgactggga gcacttto cocctog catgacgg aggggggg gacggtgg 1680 gaaattgaat cggottggg ag	ittagtgage gggettaegt	gcgtagtggg cgggagtatg	agcaactgta cagccgggcg	120
ttaaatatt cocataactg tttggatogg cacttaacca cotggoggog caataagoog 300 gocattatt gggagggga acogggagat toooggata ttaoctatgo coaactooat 360 ogggaadgtgt gtoagtttgo caatgoootg aaaagtttag gogtgcaaaa aggtgatogg 420 gtagcaattt actogoocat gattooogaa goggogatca coatgttggo otgttooogt 480 atoggtgogo cocatagtgt tgtgtttggt gggtttagtg oggaagooot gogggatoga 540 ttagtgggat otgaagooaa attggtoata actgoogaac acoggtgooc caaogtggaa 660 gogatogooo tgaagooga agtggataag goootggaac acoggtgooo caaogtggaa 660 aacgtoatog togtgcaaag aactaaagoo gatgtgacca tgaoggogga acgggaccac 720 tggtggoacg aactocaaco toaacagtog goccattgoo caaoggaga acgggaccac 720 tggtggoacg aactocaaco toaacagtog goccattgoo caaoggaga acgggaccac 720 tggtggoacg aactocaaco toaacagtog goccattgoo caaoggaga coaggagaccac 720 aaagatatgo tgtttattot otacacotot ggoagtactg gcaaaccaaa aggotggto 840 cacaccaccac gggggttacaa cotttacaco cacatgacca ccaaatggat otttgacoto 900 aaagatacgg acgttattg gtgacogot gatgtggtt ggattacggg cocaogotac 960 attgtttaog goccoctgto caacggtga acaacggtaa tgtatagag ggtgcocogo 1020 cococcocaaco cogottgtt ttgggacga atgaaaggt atggaggaa tatttotac 1080 accgocccca cogocatcg agootttatt ogcatgggga aagoogtaco caaogocagg 1140 gatttatoot otoloogtt actgggoat atgaaggt atgggggaa tatttotac 1080 acggaaacog goggatta tgooggogt aaatgocca ttgtogata cagagottgg 1200 atgtggtacc acogggtat tgooggogg aagooctac ttgtogatac caaogocagg 1140 gatttatoot otoloogtt actgggoat gtggggaa coattaacoo cgaagottgg 1200 atgtggtaca accagggtat tgooggoat goggaattg ttgattaga tggacatcoo 1380 gloggagacaa acctttoo cggcattgg goggaaatg ttgattaga tgaagaaccg 1500 gaaggaaacg gogaacacga togottcogo catacctatt gggaacatat tcaacccaag 1500 gagggaacaat atootact tgooggaga ggggocogoo gggaacaga cggttattt 1560 tggggdaatgg gocgggtgga tgatggat aagtgcog gaggocgg ggtgggtogg 1680 cocgatggaat tgactggga agocattto octooggaacagga aagogoggt ggtgggtoga 1680 cocgatggaat tgactggga agocattto octooggaacaggaaga cggdaatag cggtaataga cggtaattg 1620	gccagcaatc cggagaagtt	ttggggtgag ctggcggagc	aggaattaca ttggtttaaa	180
gecattatt gggaggggga accgggagat teceggataa ttaeetatge ceaaeteeta 360 eeggaaagtg gteagttge eatgecetg aaaagtttag gegtgeaaaa aggtgategg 420 gtageaattt atetgeeeta gatteeegaa geggegatea eetagtgge etgtteeegt 480 ateggtgege eeetaggt tgtgtttgg gggttagt eggaageeet gegggatega 540 ttagtggatg etgaageeaa attggteata actgeegaeg gtggttteg taaagataag 600 gegategeee tgaageeaga agtggataag geeetggaae aeggtgeeee caegegtggaa 660 aaegteateg tegtgeaaag aaetaaagee gatgtgacea tgaeggegg aegggaeeae 720 tggtggeaeg aaeteeaae teaaeagteg geeettgeee eageggaae eatgaeagt 780 gaagatatge tgtttattet etaeaeagteg geeettgee eageggaaee eatagaeagt 780 gaagatatge tgtttattet etaeaeagteg geeettgee eageggaaee eatagaeagt 780 gaagatatge tgtttattet etaeaeagteg geeettgee eageggaaee eatagaeagt 780 gaagatateg tgtttattet etaeaeagte geeettgee eageggaaee eatagaeagt 780 gaagatateg tgtttattet etaeaeagte geegateag eaaaeeaaa aggegtggte 840 eaaeaeeeaeg ggggttaeaa eetttaeaee eacatgaeea ecaataggat etttgaeete 900 aaagataeeg aegtttattg gtgtaeeget gatgtgggt ggattaeggg eeeaegete 960 attgtttaeg eeeeette eaaeggtgea accaaeggtaa tgtatgaagg ggtgeeeege 1020 eeeeteeaeee eegstgtt ttgggaegt gatgtgggt aggeggaa tatttee 1080 aaeggaaeeg aegettgtt ttgggaegt attgaaggg aageegtae caaegeeag 1140 gatttateet eteteegttt actgggeaet gtgggggaae eeataaeee egaagettgg 1200 aagggaaeeg geggeatta geteettat egeatgggg eadeeettg egaagettgg 1200 aagggaaeeg geggeatta geteatee etaeettgeg etaeeettgg 1220 aaeggaaaeeg geggeatta geteatee etaeettgeg etaeeettgg 1220 gaaggaeae accaaggggg ettttagt gtggaaate etateee eaaaeeegg 1320 tettgaeea aaeetttee eggeattgg eeggaaattg ttgattaga tggeaateee 1380 gtegagteag aeeaagggg ettttagt gtgggaaeae etageeag 1320 gagggaeaat ateeteaet tgeegggae ggggeeege gggaaaaga eggtattt 1560 gaagggaeaat ateeteaet tgeegggae ggggeeege gggaaaaga eggtatttt 1560 gaaattgaat eggettggt teeeatee etegtagegg aageegget ggeggetege 1680 eeegatgaat tgaeeggga ageetttee eeeggaegg aageegget ggeggeegg geeggaeegg 1620	aaatgggacc aggttttgga	. ttggcaacct ccctttgcga	aatggtttgt gggggggtcag	240
cogggaagtgt gtcagtttge caatgeeetg aaagtttag gegtgeaaaa aggtgategg 420 gtageaattt atetgeeet gatteeega geggegatea eeatgtgee etgtteeegt 480 ateggtgege eeeatagtgt tgtgtttggt gggttagtg eggaageeet gegggatega 540 ttagtggatg etgaageeaa attggteata aetgeegaeg gtggtttteg taaagataag 600 gegategeee tgaageagga agtggataag geeetggaae aeggtgeeee eagegtggaa 660 aaegteateg tegtgeaaag aaetaaagee gatgtgacea tgaeggegg aegggaeeae 720 tggtggeaeg aaeteeaae teaaeagteg geeeattgee eageggaae eatagaeagt 780 gaagatatge tgtttattet etaeaeagteg geeeattgee eageggaaee eatagaeagt 780 gaagatatge tgtttattet etaeaeagteg geeeattgee eagaggaaee eatagaeagt 780 gaagatatge tgtttattet etaeaeagteg geeeattgee eagaggaaee eatagaeagt 780 gaagatatge tgtttattet etaeaeagteg geeattgee eagaggaaee eatagaeagt 780 gaagatatge tgtttattet etaeaeagteg geeattgee eagaggaaee eatagaeagt 780 gaagatatge tgtttattet etaeaeagteg geeattgee eagaggaaee eatagaeagt 780 gaagatatge tgtttattet etaeaeet ggeagtaetg geaaaeeaaa aggegtggte 840 eeeeeaeeg ggggttaeaa eetttaeee eacatgaeea ceaaatggat etttgaeete 900 aaagataegg aegtttattg gtgtaeeget gatgtgggt ggataeegg eceaeget 900 aaagataeeg aegtttattg gtgtaeeget gatgtgggt ggataeege 1020 eeeeteeaee eegsttgttt ttgggaegta ategaagg ggggegeeege 1020 eeeeteeaee eegstegtt ttgggaegta ategaagg aggegtgaa tatttee 1080 aeeggeaeeee eegstegtt ttgggaegta ategaagg aggegtae eacageeagg 1140 gatttateet eteteegt aegggegeg aaatgeeeea teggeggeaa 1260 aeeggaaaeeg geggeattat geteaetee etaeetggag etaeeetae eaaaeeeggt 1320 teetggaeea aeegggteat tgeeggeegg aaatgeeeea ttgeegaae 1380 gtegagteag aeeaagggg ettttagt gegaaateg ttgattaga tggeaateee 1380 gagggaeeaa ateetttee eggeatgg egggeeege gggaeeatat teaaeeeag 1500 gaagggaeaat ateeteaet tgeegggae ggggeeege gggaeaata teaeeeag 1500 gagggaeaat ateeteaet tgeegggae ggggeeege gggaeaata teaeeeag 1500 gaagggaeaat ateeteaet tgeegggae ggggeeege gggaeegg aageggegt ggegtaetttt 1560 eeggatgge geeggtgg eggtgga tgatggat aageeegeg ggggaeeat 1620 gaaaattgaat eggettggt tteeeatee eeeggaaggga aageggegg gggaeeattg 1620	ttaaatattt cccataactg	tttggatcgg cacttaacca	cctggcggcg caataaggcg	300
ggagaaatt attgeccat gatteegga geggegatea eeaggtgge etgateegg etgagegatea attgetegg eggagegatea attgetegg gggtttagtg eggaageeet gegggatega 660 aaeegteateg tegtgeaageaa attggteata aetgeeggae aeegggaeee eaggggaeee 720 taggtggeaeg aaeteeaaee gatggaeea aeggtgeeee eageggaeee 720 tggtggeaeg aaeteeaaeg eggegateg egggaeee eagggaeee 720 tggtgggeaeg aaeteeaaeg eggegateg eeagggaeee eagggaeeee 720 gaagatatge tgtttatte etaaeagee gatgtgaeea tgaeggegge eagggaeee 720 gaaggatatge tgtttatte etaaeagteg geeeattge eageggaaee eatagaeagt 780 gaagatatge tgtttatte etaaeagteg geeeattge eageggaaee eatagaeagt 780 gaaggatatge tgtttatte etaaeagteg geeeattge eageggaaee eatagaeagt 780 gaaggatatge tgtttatte etaaeagteg geeeattge eageggaaee eatagaeagt 780 gaaggatatge tgtttatte etaaeagteg geeeattge eageggaaee eatagaeagt 780 gaaggataegg aegtttattg gggaeed gatgtgggt geaaaeeaa aggegggge 840 eaeaeeaeaeg ggggttaeaa eetttaeee eaeaeggae eaaaggae ecaaaggae eaeagge 900 aaaggataegg aegtttattg gggaeed gatgtgggt ggattaeggg ecaagetae 960 attgtttaeg geeeeeetg eaaeggtga aeaaeggta tggaggggeaeae 960 attgtttaeg geeeeetge eaaeggtga atgagggg aggegeeege 1020 eeeeteeaee eeggttgtt ttgggaegta attgaaaggt atggggggaa tattteea 1080 aeeggeeeee eeggttgtt ttgggaegta attgaaaggt atggggggaa tattteea 1080 aeeggeaeeee eeggttgtt ttgggaegta attgaaaggt atgggggtgaa tattteea 1080 atggtggtaee acegggteat tggeggegg tgaggggaee eattaeeee eaaeeegg 1140 gattgtggtaee acegggetat tggeggegg tgagggeaee eattaeeee eaaeeeggt 1220 tettgtaeea aaeetttee eggeattgg geggaaattg ttgatttaga tggeaateee 1380 geeggaeaaeeg gegeeattat geeteeee eaaeeee etaeeeeee eagaeeeeeeeeee	gccattattt gggaggggga	accgggagat teecggataa	ttacctatgc ccaactccat	360
ateggtgege eccatagtgt tgtgtttggt gggtttagtg eggaageeet gegggatega 540 ttagtggatg etgaageeaa attggteata aetgeegaeg gtggtttteg taaagataag 600 gegategeee tgaageagga agtggataag geeetggaae aeggtgeeee cagegtggaa 660 aaegteateg tegtgeeaaag aaetaaagee gatgtgaeea tgaeggeggg aegggaeeae 720 tggtggeaeg aaeteeaaee teaaeagteg geeeattgee cageggaaee catagaeagt 780 gaagatatge tgtttattet etaeaeete ggeegtaetg geaaaeeaaa aggegtggte 840 caeeaeeeaeg ggggttaeaa eetttaeeae eaeatggaee eaaatggat etttgaeete 900 aaagataeeg aegtttattg gtgtaeeget gatgtgggt ggataeegg eeaeagetae 960 attgtttaeg geeeettt ggggaega aeaeggggg aeggggeeeeg 1020 eeeteeaaee eeggttgtt ttgggaegta attgaaggg gggtgeeeege 1020 eeeteeaaee eeggttgtt ttgggaegta attgaaggg aggeggtaee 1020 gattgtttee eteeegtt aetgggeegt attggggg aageegtaee eaaegegg 1140 gatttateet eteeegtt aetgggeegt aggegggaae eeataaeee egaagettgg 1200 atggtggtaee aeegggeegt aggeegga attgegggg aageegtaee egaagettgg 1200 atggtggtaee aeegggeegt tgeeggeegg aaageegtaee egaagettgg 1200 atggtggtaee aeegggeegt tgeeggaegg geggaaattg ttgatttaga tggeaateee 1380 geeggaeaeeg geggeattat geteaetee etaeetggag etateeetae eaaaeeegg 1320 teettgtaeea aaeetttee eggeattgg geggaaattg ttgatttaga tggeaateee 1380 gteegagteag aeeaagggg etttttagtg attaaaeae ettggeeeag eatgateegg 1440 gatgtgtaee gegaeaeega tegetteege eataeetatt gggaaeatat teaaeeeag 1500 gagggaeaat ateeteaett tgeegggae ggggeeegee gggataaaga eggttattt 1560 tgggteatgg geegggtgga tgatgtgatt aatgteetg gteaeegtt aggeaeatag 1620 gaaaattgaa eegetttgg tteeeaeee eteege ggaaaaga eggttatttt 1560 tgggteatgg geegggtga tgatgtgatt aatgteetg gteaeegtt aggeaeatag 1620 gaaaattgaat eggetttgg tteeeaeee eteegag aageggegg ggaggeegg ggeggtaee 1680 eeegatgaat tgaeeggga ageeattte geetteege aaageegg gaageggegg ggeggggeeg 1680 eeegatgaat tgaeeggga ageeattte geetteegt teeeteegg aageeggegg ggeggegegg 1640	egggaagtgt gteagtttge	caatgeeetg aaaagtttag	gcgtgcaaaa aggtgatcgg	420
ttagtggatg ctgaagccaa attggtcata actgccgacg gtggttttcg taaagataag 600 gegatcgccc tgaagccaga agtggataag geeetggaac acggtgeeec cagegtggaa 660 aacgtcateg tegtgcaaag aactaaagee gatgtgacea tgaeggeggg acgggaeeae 720 tggtggeaeg aacteeaaee teaacagteg geeeattgee cageggaaee catagaeagt 780 gaagatatge tgtttattet etacaeette ggeagtaetg geaaaceaaa aggegtggte 840 cacaeeeaeg ggggttaeea eetttaeee caeatggee geaaaeeaa aggegtggte 840 cacaeeeag ggggttaeea eetttaeee caeatggee geaaaeeaa aggegtggte 840 cacaeeeag ggggttaeea eetttaeee caeatggee geaaaeeaa aggegtggte 900 aaagataegg aegtttattg gtgtaeeget gatgtgggtt ggattaeggg eeaagetae 960 attgtttaeg geeeetgee caaeggtgea acaaeggtaa tgtatgaagg ggtgeeege 1020 eeeeteeaee eeggtgtt ttgggaeega acaaeggtaa tgtatgaagg ggtgeeeege 1020 eeeeteeaee eeggtgtt ttgggaeega acaaeggtaa tgtatgaagg ggtgeeeege 1020 eeeeteeaee eeggtgtt ttgggaeega attgaaaggt atggggtgaa tattttetae 1080 aacggeaeeee eeggtegtt ttgggaeegt gtgggggaae ceataaeee egaagettgg 1200 atgtggtaee aeegggteat tggeggeggt aaatgeeeae ttgtegatae egaagettgg 1200 atgtggtaee acegggteat tggeggeggt aaatgeeeea ttgtegatae etaggegaaa 1260 aeeggaaaeeg geggeattat geteaetee etaeetgag gedgaaattg ttgatttaga tggeaateee 1380 gtegagteag aeeaaggggg ettttagtg attaaeaeae ettggeeeag eatgattegg 1440 gatgtgtaee acedggteg tegetteege eataeetat gggaaeatat teaaeeeag 1500 gagggaeaat ateetaett tgetgggge ggggeeege gggataaaga eggttattt 1560 tgggteatgg geeggtgga tgatgtgatt aatgteetg geeaaag eggttattt 1560 tgggteatgg geegggtgga tgatgtgatt aatgteetg geeaeag eggegggeege 1680 gaaattgaat eggettggt tteeeaeee eeeggg aageggggg ggtgggtege 1680 eeegatgaat tgaeeggga ageeattte geetteetg eeetggg aageggegg taaegeega 1740	gtagcaattt atctgcccat	gatteeegaa geggegatea	. ccatgttggc ctgttcccgt	480
gegategeee tgaageagga agtggataag geeetggaae acggtgeeee cagegtggaa 660 aaegteateg tegtgeaaag aaetaaagee gatgtgaeea tgaeggeggg acgggaeeae 720 tggtgggaeg aaeteeaaee teaacagteg geeeattgee cageggaaee catagaeagt 780 gaagatatge tgtttattet etaeaeete ggeagtaetg geaaaeeaaa aggegtggte 840 caeeaeeaeg ggggttaeaa cetttaeee caeatgaeea ecaaatggat etttgaeete 900 aaagataegg aegtttattg gtgtaeeget gatgtgggtt ggattaeggg ecaeagetae 960 attgtttaeg geeeetgte caaeggtgea acaaeggtaa tgtatgaagg ggtgeeeege 1020 ceeeteeaaee eeggttgtt ttggggaegta attgaaaggt atggggtgaa tatttetae 1080 aeegeeeeee eegeetgte tggggeegg ageegggg aageeggaee eaaegeeag 1140 gattateet eteteegtt aetgggegegt aaetgeegg aageegtaee eaaegeeag 1140 gatttateet eteteegtt aetgggegeg aaatgeeeea ttgtegaatee egaagettgg 1200 atggtggtaee acegggteat ggeeggegg aaatgeeeea ttgtegaatee egaagettgg 1200 atggtggaeea aceeggeteat ggeeggeggt aaatgeeeea ttgtegaatee egaagettgg 1200 atggtggtaee acegggteat ggeeggeggt aaatgeeeea ttgtegaatee egaagettgg 1200 atggtggaeea aceegggteat ggeeggegg acaeegeetge 1320 tettgtaeea aaeetttee eggeattgtg geeggaaattg ttgattaga tggeaateee 1380 gtegagteag aceaaggggg ettttagtg attaaaeeae ettggeeeag eatgateegg 1440 gatgtgtaeg geegaeaeega tegetteege eataeetatt gggaaeatat teaaeeeaag 1500 gagaggaeaat ateetaett tgeegggga ggggeeege gggaaattg tegattaga eggttattt 1560 tgggteatgg geegggtgga tgatgtgatt aatgteeteg geagaatag eggttatttt 1560 gagaaattgaat eggettggt tteeeaee eteggegg aageggegg ggggegeg 1680 gagagtaatgaat eggettggt tteeeaeee eteggagg aageggegg ggtgggtege 1680	atcggtgcgc cccatagtgt	tgtgtttggt gggtttagtg	cggaagccct gcgggatcga	540
aacgtcatcg tcgtgcaaag aactaaagcc gatgtgacca tgacggcggg acgggaccac 720 tggtggcacg aactccaacc tcaacagtcg gcccattgcc cagcggaacc catagacagt 780 gaagatatgc tgtttattct ctacacctct ggcagtactg gcaaaccaaa aggcgtggtc 840 cacaccaccg ggggttacaa cctttacacc cacatgacca ccaaatggat ctttgacctc 900 aaagatacgg acgtttattg gtgtaccgct gatgtgggtt ggattacggg ccacagctac 960 attgtttacg gccccctgtc caacggtgca acaacggtaa tgtatgaagg ggtgccccgc 1020 ccctccaacc ccggttgttt ttgggacgta attgaaaggt atggggtgaa tatttetac 1080 accgccccca ccgccatccg agcctttatt cgcatggggg aagccgtacc caacgccagg 1140 gatttatcct ctctccgttt actgggcgt atggggggaa ccattaccc cgaagcttgg 1200 atggtggtacc accgggtcat tggcggcggt aaatgcccca ttgtcgatac ctggtggcaa 1260 acggaaaccg gcggcattat gcccactccc ctacctggag ctatccctac caaacccggt 1320 tcttgtacca aaccttttcc cggcattgtg gcggaaattg ttgattaga tggcaatccc 1380 gtcgagtcag accaaggggg cttttagt gtcgggac catacctat gggaacatat tcaacccag 1500 gagggacaat atcctactt tgctggggac ggggcccgcc gggataaaga cggttattt 1560 tgggtcatgg gccgggtgga tgatgtgatt aatgtcccg tgggagaa acggttagg 1620 gaaattgaat cggctttggt ttcccatcc ctcgtaggg aagcggt ggtggtcg 1620 gaaattgaat cggcttgg ttcccgc catacctatt gggaacatat tcaacccaag 1500 gagggacaat atcctactt tgctggggac ggggcccgcc gggataaaga cggttatttt 1560 tgggtcatgg gccgggtgga tgatgtgatt aatgtcctg gtcaccgtt aggcactatg 1620 gaaattgaat cggctttggt ttcccatccc ctcgtagcg aagcggcggt ggtggtcg 1680 cccgatgaat tgactgggga agccattttc gcctttgttt ctctggaggg taacgctgaa 1740	ttagtggatg ctgaagccaa	. attggtcata actgccgacg	gtggttttcg taaagataag	600
tggtggcacg aactccaacc tcaacagtcg gcccattgcc cagcggaacc catagacagt 780 gaagatatgc tgtttattct ctacacctct ggcagtactg gcaaaccaaa aggcgtggtc 840 cacaccaccg ggggttacaa cctttacacc cacatgacca ccaaatggat ctttgacctc 900 aaagatacgg acgtttattg gtgtaccgct gatgtgggtt ggattacggg ccacagctac 960 attgtttacg gcccctgtc caacggtgca acaacggtaa tgtatgaagg ggtgccccgc 1020 ccctccaacc ccggttgtt ttgggacgta attgaaaggt atggggtgaa tatttctac 1080 accgccccca ccgccatccg agcctttatt cgcatggggg aagccgtacc caacgccagg 1140 gatttatcct ctctccgttt actgggcact gtggggggaac ccattaaccc cgaagcttgg 1200 atggtggtacc accgggtcat tggcggcggt aaatgcccca ttgtcgatac ctggtggcaa 1260 acggaaaccg gcggcattat gctcactccc ctacctggag ctatccctac caaacccggt 1320 tcttgtacca aaccttttcc cggcattgtg gcggaaattg ttgattaga tggcaatccc 1380 gtcgagtcag accaaggggg ctttttagtg attaaacaac cttggcccag catgattcgg 1440 gatgtgtacg gcgacaccga tcgcttccgc catacctatt ggggaacatat tcaacccaag 1500 gagggacaat atcctactt tgctggggac ggggcccgcc gggataaaga cggttatttt 1560 tgggtcatgg gccgggtgga tgatgtgatt aatgtctctg gtcaccgttt aggcactatg 1620 gaaattgaat cggctttggt ttcccatccc ctcgtagcgg aagcggcggt ggtggtcgc 1680 cccgatgaat tgaccggga agccatttc ctcgtagcgg aagcggcggt ggtgggtcgc 1680	gegategeee tgaageagga	. agtggataag gccctggaac	acggtgcccc cagcgtggaa	660
gaagatatge tgtttattet etacaeetet ggeagtaetg geaaaeeaaa aggegtggte 840 cacaeeeaeg ggggttaeaa eetttaeaee eaeatggae eeaatggat etttgaeete 900 aaagataegg aegtttattg gtgtaeeget gatgtgggtt ggattaeggg eeaeageae 960 attgtttaeg geeeeetge eaaeggtgea aeaaeggtaa tgtatgaagg ggtgeeeege 1020 eeeeeeeegegggggae aeaaeggtaa tgtatgaagg ggtgeeeege 1020 eeeeeeeeegegggggae ageegttatt eggegggga aageeggae tatteetee 1080 aeeegeeeeee eegegtgtt tigggaegta attgaaaggt atggggggaa tatteeee 1080 aeegeeeeee eegegtgett eaegggeegeg aageegtaee eaaegeeagg 1140 gatttateet eteteegtt aeegggeegt aaatgeeeea eegagetgg 1200 aeeggaaaeeg geggeattat geeegeggg aaaeeeee eegagetgg 1200 aeeggaaaeeg geggeattat geeegeegg aaatgeeeea eegagetgg 1320 tettgtaeea aaeeetttee eggeatgg geggaaattg ttgattaga tggeaateee 1380 geegggteag aeeaaggggg ettettagg geggaaattg ttgattaga tggeaateee 1380 gatgtgtaee geggaeaeega tegeeteege eaaeeet tggggaeaa eegettegg 1440 gatgtgtaeeg geggaeaeega tegeeteege eaaeeet tggggaeaatat teaaeeeag 1500 gaggggaeaat atetetaett tgeegggae ggggeeegee gggaaaaga eegettatt 1560 tggggteatgg geegggtgga tgatgtgatt aatgteeteg gteaeegtt aggeeaetat 1620 gaaaattgaat eggettegg tteeeetee eteggaegg aaeeggegg ggeggeege 1680 eeegatgaat gaeegggga ageeattte geettegtt eteeggaggg taaegeega 1740	aacgtcatcg tcgtgcaaag	aactaaagcc gatgtgacca	tgacggcggg acgggaccac	720
cacaccaccg ggggttacaa cetttacace cacatgacea ecaaatggat etttgacete 900 aaagataegg aegtttattg gtgtaeeget gatgtgggtt ggattaeggg ecaeagetae 960 attgtttaeg geeeeetgte caaeggtgea aeaaeggtaa tgtatgaagg ggtgeeeege 1020 eeeeteeaaee eeggttgttt ttgggaegta attgaaaggt atggggtgaa tattttetae 1080 acegeeeeea eeggetgtt ttgggaegta attgaaaggt atggggtgaa tattttetae 1080 acegeeeeea eeggetgtt aetggggeae ggggggg aageegtaee eaaegeeagg 1140 gatttateet eteteegttt aetgggeaet gtggggggaae eeataaeee egaagettgg 1200 atggtggtaee aeegggteat tggeggeggt aaatgeeeea ttgtegatae etggtgggeaa 1260 aeeggaaaeeg geggeattat geteaeteee etaeetggag etateeetae eaaeeeggt 1320 tettgtaeea aaeetttee eggeatggg geggaaattg ttgatttaga tggeaateee 1380 gtegagteag aeeaaggggg etttttagtg geggaaattg ttgatttaga tggeaateee 1380 gatgtggtaee geggeaete tgeeggggae ggggeeege gggataaaga eggttattt 1560 gaggggaeaat atetetaett tgeeggggae ggggeeege gggataaaga eggttattt 1560 tggggteagg geegggtgga tgatgtgat aatgteetg gteaeegtt aggeaetatg 1620 gaaattgaat eggetttggt tteeeatee etegtagegg aageeggegg ggtgggteege 1680 eeegatgaat gaeegggga ageeattte geettgtt eteggaggg gaegggegg 1640 gaaaattgaat eggetttggt tteeeatee etegtagegg aageeggegg ggtgggteege 1680 eeegatgaat tgaeegggga ageeattte geettgtt eteggaggg taaegeegaa 1740	tggtggcacg aactccaacc	tcaacagtcg gcccattgcc	cagcggaacc catagacagt	780
aaagatacgg acgtttattg gtgtaccgct gatgtgggtt ggattacggg ccacagctac 960 attgtttacg gccccctgtc caacggtgca acaacggtaa tgtatgaagg ggtgccccgc 1020 ccctccaacc ccggttgttt ttgggacgta attgaaaggt atggggtgaa tattttctac 1080 accgccccca ccgccatccg agcctttatt cgcatggggg aagccgtacc caacgccagg 1140 gatttatcct ctctccgttt actggggcact gtggggggaac ccattaaccc cgaagcttgg 1200 atggtggtacc accgggtcat tggcggcggt aaatgcccca ttgtcgatac ctggtggcaa 1260 acgggaaaccg gcggcattat gcccactccc ctacctggag ctatccctac caaacccggt 1320 tcttgtacca accgggtg cttttagt gcggaaattg ttgatttaga tggcaatccc 1380 gtcgagtcag accaaggggg cttttagtg attaaacaac cttggcccag catgattcgg 1440 gatgtgtacg gcggacaccga tcgcttccgc catacctatt gggaacatat tcaacccaag 1500 gaggggacaat atctctactt tgctggggac ggggcccgcc gggataaaga cggttatttt 1560 tgggtcatgg gccgggtgga tgatgtgatt aatgtctcg gtcaccgtt aggcactatg 1620	gaagatatgc tgtttattct	ctacacctct ggcagtactg	gcaaaccaaa aggcgtggtc	840
attgtttacg geeeetgte caaeggtgea acaaeggtaa tgtatgaagg ggtgeeeege 1020 eeetteaace eeggtgtt ttgggaegta attgaaaggt atggggtgaa tatttetac 1080 acegeeeeea eegeettatt egeatggggg aageegtae caaegeeagg 1140 gatttateet eteteegtt aetgggeaet gtggggggaae eeattaaeee egaagettgg 1200 atgtggtaee aeegggteat tggeggeggt aaatgeeeea ttgtegatae etggtggeaa 1260 aeeggaaaeeg geggeattat geteaetee etaeetggag etateeetae etagetggeaa 1260 aeeggaaaeeg geggeattat geteaetee etaeetggag etateeetae etagetggeaa 1260 tettgtaeea aaeetttee eggeattgtg geggaaattg ttgatttaga tggeaateee 1320 tettgtaeea aaeetttee eggeattgtg geggaaattg ttgatttaga tggeaateee 1380 gtegagteag aeeaaggggg ettttagtg attaaaeeae ettggeeeag eatgattegg 1440 gatgtgtaeeg gegaeaeega tegetteege eataeetatt gggaaeatat teaaeeeaag 1500 gagggacaat atetetaett tgetggggae ggggeeege gggataaaga eggttattt 1560 tgggteatgg geegggtgga tgatgtgatt aatgteetg gteaeegtt aggeaetatg 1620 gaaaattgaat eggetttggt tteeeatee etegtagegg aageggeggt ggtgggtege 1680 eeegatgaat tgaetgggga ageeattte geettegtt etetggaggg taaegeegaa 1740	cacaccaccg ggggttacaa	. cctttacacc cacatgacca	ccaaatggat ctttgacctc	900
ccctccaacc ccggttgttt ttgggacgta attgaaaggt atggggtgaa tattttctac 1080 accgccccca ccgccatccg agcctttatt cgcatggggg aagccgtacc caacgccagg 1140 gatttatcct ctctccgttt actggggcact gtggggggaac ccattaaccc cgaagcttgg 1200 atgtggtacc accgggtcat tggcggcggt aaatgcccca ttgtcgatac ctggtggcaa 1260 acggaaaccg gcggcattat gctcactccc ctacctggag ctatccctac caaacccggt 1320 tcttgtacca aaccttttcc cggcattgtg gcggaaattg ttgatttaga tggcaatccc 1380 ggtgggtcag accaaggggg ctttttagtg attaaacaac cttggcccag catgattcgg 1440 gatgtgtacg gcggacaccga tcgcttccgc catacctatt gggaacatat tcaacccaag 1500 gaggggacaat atctctactt tgctggggac ggggcccgcc gggataaaga cggttatttt 1560 tgggtcatgg gccgggtgga tgatgtgatt aatgtctcg gtcaccgtt aggcactatg 1620	aaagatacgg acgtttattg	gtgtaccgct gatgtgggtt	ggattacggg ccacagctac	960
accgccccca ccgccatccg agcetttatt cgcatggggg aagcegtace caacgecagg 1140 gatttateet eteteegtt actgggeaet gtggggggaae eeattaaeee egaagettgg 1200 atgtggtaee accgggteat tggeggeggt aaatgeeeea ttgtegatae etggtggeaa 1260 acggaaaeeg geggeattat geteaeteee etaeetggag etateeetae eaaaeeeggt 1320 tettgtaeea aaeettttee eggeattgtg geggaaattg ttgatttaga tggeaateee 1380 gtegagteag aceaaggggg ettttagtg attaaaeaae ettggeeeag eatgattegg 1440 gatgtgtaeeg gegaeaeega tegetteege eataeetatt gggaaeatat teaaeeeaag 1500 gagggaeaat ateeetaett tgetggggae ggggeeegee gggataaaga eggttattt 1560 tgggteatgg geegggtgga tgatgtgatt aatgeteeg gteaeegtt aggeaeetat 1620 gaaattgaat eggetttggt teeeeatee etegtagegg aageggeggt ggtgggtege 1680 eeegatgaat tgaetgggga ageeattte geetttgtt etetggaggg taaegetgaa 1740	attgtttacg gccccctgtc	caacggtgca acaacggtaa	tgtatgaagg ggtgccccgc	1020
gatttateet eteteegtt aetggggedt gtggggggaae eettaaeee egaagettgg 1200 atgtggtaee aeegggteat tggeggeggt aaatgeeeea ttgtegatae etggtggeaa 1260 aeggaaaeeg geggeattat geteaeteee etaeetggag etaeeetae etggtggeaa 1260 tettgtaeea aaeettttee eggeattgtg geggaaattg ttgatttaga tggeaateee 1380 getegagteag aeeaaggggg etttttagtg attaaaeaae ettggeeeag eatgattegg 1440 gatgtgtaeg gegaeaeega tegetteege eataeetatt gggaaeatat teaaeeeaag 1500 gaggggaeaat atetetaett tgetggggae ggggeeegee gggataaaga eggttattt 1560 tgggteatgg geegggtgga tgatgtgatt aatgteetg gteaeegtt aggeaeatag 1620 gaaaattgaat eggetttggt tteeeateee etegtagegg aageggeggt ggtgggtege 1680 eeegatgaat tgaetgggga ageeattte geetttgtt etetggaggg taaegeegaa 1740	ccctccaacc ccggttgttt	ttgggacgta attgaaaggt	atggggtgaa tattttctac	1080
atgtggtacc accgggtcat tggcggcggt aaatgcccca ttgtcgatac ctggtggcaa 1260 acggaaaccg gcggcattat gctcactccc ctacctggag ctatccctac caaacccggt 1320 tcttgtacca aaccttttcc cggcattgtg gcggaaattg ttgatttaga tggcaatccc 1380 gtcgagtcag accaaggggg ctttttagtg attaaacaac cttggcccag catgattcgg 1440 gatgtgtacg gcgacaccga tcgcttccgc catacctatt gggaacatat tcaacccaag 1500 gagggacaat atctctactt tgctggggac ggggcccgcc gggataaaga cggttattt 1560 tggggtcatgg gccgggtgga tgatgtgatt aatgtctctg gtcaccgtt aggcactatg 1620 gaaattgaat cggctttggt ttcccatcc ctcgtagcgg aagcggcgg ggtgggtcgc 1680 cccgatgaat tgactgggga agccattttc gcctttgttt ctctggaggg taacgctgaa 1740	accgccccca ccgccatccg	agcetttatt egeatggggg	aagccgtacc caacgccagg	1140
acggaaaccg gcggcattat gctcactccc ctacctggag ctatccctac caaacccggt 1320 tcttgtacca aaccttttcc cggcattgtg gcggaaattg ttgatttaga tggcaatccc 1380 gtcgagtcag accaaggggg ctttttagtg attaaacaac cttggcccag catgattcgg 1440 gatgtgtacg gcgacaccga tcgcttccgc catacctatt gggaacatat tcaacccaag 1500 gaggggacaat atctctactt tgctggggac ggggcccgcc gggataaaga cggttatttt 1560 tgggtcatgg gccgggtgga tgatgtgatt aatgtctcg gtcaccgtt aggcactatg 1620 gaaaattgaat cggctttggt ttcccatccc ctcgtagcgg aagcggcggt ggtgggtcgc 1680 cccgatgaat tgactgggga agccattttc gccttgttt ctctggaggg taacgctgaa 1740	gatttatect eteteegttt	actgggcact gtggggggaac	ccattaaccc cgaagcttgg	1200
tettgtaeca aacettttee eggeattgtg geggaaattg ttgatttaga tggeaateee 1380 gtegggteag aceaaggggg etttttagtg attaaacaae ettggeeeag eatgattegg 1440 gatgtgtaeg gegacaeega tegetteege eataeetatt gggaacatat teaaeeeaag 1500 gaggggaeaat ateetaett tgetgggggae ggggeeegee gggataaaga eggttattt 1560 tggggteatgg geegggtgga tgatgtgatt aatgteetg gteaeegtt aggeaetatg 1620 gaaattgaat eggetttggt tteeeateee etegtagegg aageggeggt ggtgggtege 1680 eeegatgaat tgaetgggga ageeattte geetttgtt etetggaggg taaegeegaa 1740	atgtggtacc accgggtcat	tggcggcggt aaatgcccca	ttgtcgatac ctggtggcaa	1260
gtcgagtcag accaaggggg ctttttagtg attaaacaac cttggcccag catgattcgg 1440 gatgtgtacg gcgacaccga tcgcttccgc catacctatt gggaacatat tcaacccaag 1500 gaggggacaat atctctactt tgctggggac ggggcccgcc gggataaaga cggttatttt 1560 tgggtcatgg gccgggtgga tgatgtgatt aatgtctctg gtcaccgttt aggcactatg 1620 gaaaattgaat cggctttggt ttcccatccc ctcgtagcgg aagcggcggt ggtgggtcgc 1680 cccgatgaat tgactgggga agccattttc gcctttgttt ctctggaggg taacgctgaa 1740	acggaaaccg gcggcattat	gctcactccc ctacctggag	ctatccctac caaacccggt	1320
gatgtgtacg gcgacaccga tcgcttccgc catacctatt gggaacatat tcaacccaag 1500 gaggggacaat atctctactt tgctgggggac ggggcccgcc gggataaaga cggttatttt 1560 tgggtcatgg gccgggtgga tgatgtgatt aatgtctctg gtcaccgttt aggcactatg 1620 gaaattgaat cggctttggt ttcccatccc ctcgtagcgg aagcggcggt ggtgggtcgc 1680 cccgatgaat tgactgggga agccattttc gcctttgttt ctctggaggg taacgctgaa 1740	tcttgtacca aaccttttcc	cggcattgtg gcggaaattg	ttgatttaga tggcaatccc	1380
gatgtgtacg gcgacaccga tcgcttccgc catacctatt gggaacatat tcaacccaag 1500 gaggggacaat atctctactt tgctggggac ggggcccgcc gggataaaga cggttatttt 1560 tgggtcatgg gccgggtgga tgatgtgatt aatgtctctg gtcaccgttt aggcactatg 1620 gaaattgaat cggctttggt ttcccatccc ctcgtagcgg aagcggcggt ggtgggtcgc 1680 cccgatgaat tgactgggga agccattttc gcctttgttt ctctggaggg taacgctgaa 1740	gtcgagtcag accaaggggg	, ctttttagtg attaaacaac	cttggcccag catgattcgg	1440
gagggacaat atetetaett tgetggggae ggggeeegee gggataaaga eggttatttt 1560 tgggteatgg geegggtgga tgatgtgatt aatgtetetg gteaeegttt aggeaetatg 1620 gaaattgaat eggetttggt tteeeateee etegtagegg aageggeggt ggtgggtege 1680 eeeegatgaat tgaetgggga ageeattte geetttgttt etetggaggg taaegetgaa 1740				1500
tgggtcatgg gccgggtgga tgatgtgatt aatgtetetg gteaeegttt aggeaetatg 1620 gaaattgaat eggetttggt tteeeateee etegtagegg aageggeggt ggtggggtege 1680 eeegatgaat tgaetgggga ageeatttte geetttgttt etetggaggg taaegetgaa 1740				
gaaattgaat cggctttggt ttcccatccc ctcgtagcgg aagcggcggt ggtgggtcgc 1680 cccgatgaat tgactgggga agccattttc gcctttgttt ctctggaggg taacgctgaa 1740				
cccgatgaat tgactgggga agccattttc gcctttgttt ctctggaggg taacgctgaa 1740				
cccagtgaag agttgaaaaa agatttggtc aagcacgtca ctgaagaaat tggggcgatc 1800	sccgatgaat tgactgggga	agccattttc gcctttgttt	ctctggaggg taacgctgaa	
	cccagtgaag agttgaaaaa	. agatttggtc aagcacgtca	ctgaagaaat tggggcgatc	1800

gccag	gcc	ag c	ggaa	aatco	cg ti	tca	ccgat	: gtç	gttad	ccca	aaa	cccgi	tc (cggca	aaatt	1860
atgcg	tcg	tc t	gtt	gegga	ag ti	tage	cctco	a da	gcago	gaaa	ttt	ccgg	gga (cactt	ccaco	= 1920
ctgga	gga	.cc ç	ıgaca	agtgo	ct go	gaca	aatta	a cgo	ggago	ggct	aa					1962
<210> <211> <212> <213>	LE TY OR	NGTH PE : .GANJ	I: 65 PRT SM:	53 Syne	echoo	cyst:	is P(CC680	03							
<400>	SE	QUEN	ICE :	4												
Met S 1	er	Asp	Thr	Ile 5	Glu	Ser	Ile	Leu	Gln 10	Glu	Glu	Arg	Leu	Phe 15	Asp	
Pro P	ro	Thr	Glu 20	Phe	Ser	Glu	Arg	Ala 25	Tyr	Val	Arg	Ser	Gly 30	Arg	Glu	
Tyr G	lu	Gln 35	Leu	Tyr	Ser	Arg	Ala 40	Ala	Ser	Asn	Pro	Glu 45	Lys	Phe	Trp	
Gly G 5	lu 0	Leu	Ala	Glu	Gln	Glu 55	Leu	His	Trp	Phe	Lys 60	Lys	Trp	Asp	Gln	
Val L 65	eu	Asp	Trp	Gln	Pro 70	Pro	Phe	Ala	Lys	Trp 75	Phe	Val	Gly	Gly	Gln 80	
Leu A	sn	Ile	Ser	His 85	Asn	Сүз	Leu	Asp	Arg 90	His	Leu	Thr	Thr	Trp 95	Arg	
Arg A	sn	Lys	Ala 100	Ala	Ile	Ile	Trp	Glu 105	Gly	Glu	Pro	Gly	Asp 110	Ser	Arg	
Ile I	le	Thr 115	Tyr	Ala	Gln	Leu	His 120	Arg	Glu	Val	Суз	Gln 125	Phe	Ala	Asn	
Ala L 1	eu 30	Lys	Ser	Leu	Gly	Val 135	Gln	Lys	Gly	Asp	Arg 140	Val	Ala	Ile	Tyr	
Leu P 145	ro	Met	Ile	Pro	Glu 150	Ala	Ala	Ile	Thr	Met 155	Leu	Ala	Сув	Ser	Arg 160	
Ile G	ly	Ala	Pro	His 165	Ser	Val	Val	Phe	Gly 170	Gly	Phe	Ser	Ala	Glu 175	Ala	
Leu A	rg	Asp	Arg 180	Leu	Val	Asp	Ala	Glu 185	Ala	Lys	Leu	Val	Ile 190	Thr	Ala	
Asp G	ly	Gly 195	Phe	Arg	Lys	Asp	Lys 200	Ala	Ile	Ala	Leu	Lys 205	Gln	Glu	Val	
Asp L 2	ys 10	Ala	Leu	Glu	His	Gly 215	Ala	Pro	Ser	Val	Glu 220	Asn	Val	Ile	Val	
Val G 225	ln	Arg	Thr	Lys	Ala 230	Asp	Val	Thr	Met	Thr 235	Ala	Gly	Arg	Asp	His 240	
Тгр Т	rp	His	Glu	Leu 245	Gln	Pro	Gln	Gln	Ser 250	Ala	His	Сүз	Pro	Ala 255	Glu	
Pro I	le	Asp	Ser 260	Glu	Asp	Met	Leu	Phe 265	Ile	Leu	Tyr	Thr	Ser 270	Gly	Ser	
Thr G	ly	Lys 275	Pro	Lys	Gly	Val	Val 280	His	Thr	Thr	Gly	Gly 285	Tyr	Asn	Leu	
Tyr T 2	hr 90	His	Met	Thr	Thr	Lys 295	Trp	Ile	Phe	Asp	Leu 300	Гла	Asp	Thr	Asp	
Val T 305	yr	Trp	Cys	Thr	Ala 310	Asp	Val	Gly	Trp	Ile 315	Thr	Gly	His	Ser	Tyr 320	
Ile V	al	Tyr	Gly	Pro 325	Leu	Ser	Asn	Gly	Ala 330	Thr	Thr	Val	Met	Tyr 335	Glu	
Gly V	al	Pro	Arg	Pro	Ser	Asn	Pro	Gly	Cys	Phe	Trp	Asp	Val	Ile	Glu	

			340					345					350				
Arg	Tyr	Gly 355	Val	Asn	Ile	Phe	Tyr 360	Thr	Ala	Pro	Thr	Ala 365	Ile	Arg	Ala		
Phe	Ile 370	Arg	Met	Gly	Glu	Ala 375	Val	Pro	Asn	Ala	Arg 380	Asp	Leu	Ser	Ser		
Leu 385	Arg	Leu	Leu	Gly	Thr 390	Val	Gly	Glu	Pro	Ile 395	Asn	Pro	Glu	Ala	Trp 400		
Met	Trp	Tyr	His	Arg 405	Val	Ile	Gly	Gly	Gly 410	Lys	Суз	Pro	Ile	Val 415	Asp		
Thr	Trp	Trp	Gln 420	Thr	Glu	Thr	Gly	Gly 425	Ile	Met	Leu	Thr	Pro 430	Leu	Pro		
Gly	Ala	Ile 435	Pro	Thr	Lys	Pro	Gly 440	Ser	Cys	Thr	Lys	Pro 445	Phe	Pro	Gly		
Ile	Val 450	Ala	Glu	Ile	Val	Asp 455	Leu	Asp	Gly	Asn	Pro 460	Val	Glu	Ser	Asp		
Gln 465	Gly	Gly	Phe	Leu	Val 470	Ile	Гла	Gln	Pro	Trp 475	Pro	Ser	Met	Ile	Arg 480		
	Val	Tyr	Gly	Asp 485		Asp	Arg	Phe	Arg 490		Thr	Tyr	Trp	Glu 495	His		
Ile	Gln	Pro	Lys 500		Gly	Gln	Tyr	Leu 505		Phe	Ala	Gly	Asp 510		Ala		
Arg	Arg	Asp 515		Asp	Gly	Tyr	Phe 520	Trp	Val	Met	Gly	Arg 525		Asp	Asp		
Val	Ile 530		Val	Ser	Gly	His 535		Leu	Gly	Thr	Met 540		Ile	Glu	Ser		
Ala 545		Val	Ser	His	Pro 550		Val	Ala	Glu	Ala 555		Val	Val	Gly	Arg 560		
	Asp	Glu	Leu	Thr 565		Glu	Ala	Ile	Phe 570		Phe	Val	Ser	Leu 575			
Gly	Asn	Ala			Ser	Glu	Glu	Leu		Lys	Asp	Leu			His		
Val	Thr		580 Glu	Ile	Gly	Ala		585 Ala	Arg	Pro	Ala		590 Ile	Arg	Phe		
Thr		595 Val	Leu	Pro	Lys		600 Arg	Ser	Gly	Lys		605 Met	Arg	Arg	Leu		
	610 Arg	Ser	Leu	Ala		615 Gly	Gln	Glu	Ile		620 Gly	Asp	Thr	Ser			
625 Leu	Glu	Asp	Arg	Thr	630 Val	Leu	Asp	Lys	Leu	635 Arg	Glu	Gly			640		
		-	2	645			_		650	-		-					
<21)> SI	EQ II	оио	5													
	L> LI 2> TY																
<21	3 > OI	RGAN	ISM:	Syne	echo	20001	is Po	CC794	12								
<40	D> SI	EQUEI	ICE :	5													
atg	ageea	age d	caac	gatco	ga gi	tcgai	tcct	c caa	agaga	aagc	gggt	ttt	tcc 1	ccct	cggca	ı 6	50
gaa	ttg	cca ç	gtge	ggcgo	cg a	atcaa	atcc	: gaa	agcgt	tacg	aago	cgct	ctg (ccaga	aaageg	12	:0
gcg	geega	atc o	ggt	ggcti	t t	tggg	gcga	a ttç	ggcaq	gctc	agga	ageto	gga (ctggt	ttgag	18	30
cct	ggca	aac a	agac	gctg	ga ci	tgga	gcaat	: ccç	geegt	ttg	cgaa	agtgo	gtt 1	gtco	ggtggc	24	:0
															aataaa		
gcg	gcgat	ta t	ctg	ggaa	gg c	gaac	ccggi	: gao	etcad	cgga	cgct	gaco	cta 🤇	cgcgo	caacto	1 36	0

US 8,846,329 B1

56

_

55

				coner	indea		
catcgcgagg tct	gtcagtt c	gccaacgtg	ctcaaatcct	tgggcattca	a aaaaggtgat	420	
gtcgttggcg ttt	acatgcc ga	atgattccc	gaagcggcga	tcgccatgct	ggeetgtgeg	480	
cggattggcg cag	tgcatag c	gttgtcttt	ggggggttta	gtgcggaago	e actgegegat	540	
cgcttggtgg atg	gccaagc ca	aagetggtt	gtcacggcgg	atggtggctg	g gcgcaaagat	600	
gcgatcgtgc ccc	tcaagga ti	tctgttgat	caagccctgg	aaggcaatgo	c ctgccccagc	660	
gtccagcatg tcc	togtggt g	gaacggacg	aagcaagaca	tccacatgga	a accgggggcgc	720	
gaccattggt ggc	atgagct g	caacagacc	gtcagcgcta	cctgtccggo	c ggagccgatg	780	
gacagcgaag atc	tgetett e	gtgctctac	acctccggta	gcaccggcaa	a acccaagggt	840	
gtcgtccaca cca	ccggcgg ci	tacaacctc	tacgcccaca	tcaccaccca	a gtggactttt	900	
gacctgcagg ata	ccgatgt c	tactggtgt	acggcggacg	tcggctggat	taccggtcac	960	
agctacatcg tct	acgggcc g	ctctccaac	ggtgcgacca	cactgatgta	a tgagggtgcc	1020	
ccccgcgctt cta	atecegg t	tgcttctgg	gatgtgattg	aaaagtatgo	g cgttacgacc	1080	
ttctacacag ccc	caacagc ga	atccgcgcc	ttcatcaaaa	tgggtgagca	a gcatcccgcc	1140	
gctcgcgacc tct	cctcatt g	cgactgttg	ggcaccgtcg	gagagcccat	caatcccgaa	1200	
gcttggatct ggt	atcaccg c	gtcattggt	ggcgatcgct	gcccgattgt	cgatacctgg	1260	
tggcagaccg aaa	cgggcgg c	catatgatt	acgtcgctgc	cgggagccgt	c gccgaccaaa	1320	
ccgggctctg cca	ctaaacc t	tteeeggge	atcttggcag	acgttgtcga	a tctggatggg	1380	
cgatcggtgc cgg	ataacga ag	ggtggctac	ttggtgattc	gccatcctt	g gccaggcatg	1440	
atgcgcacgg tct	acggcga to	cccgatcgc	ttccgtcgca	cctattggga	a gcatattcct	1500	
ccgcaaaatg gcc	agtatct c	tacttcgcc	ggcgatggcg	cgcgccgcga	a tgccgatggc	1560	
tatttctggg tga	tggggcg c	gtcgatgac	gtgatcaatg	tctcaggtca	a ccgtctcggc	1620	
acgatggaaa ttg	agtegge e	ttggtctcc	catccggcag	ttgccgaago	tgcagttgtc	1680	
ggtcggcctg acg	atctcaa ag	ggtgaaggc	attgttgctt	tcatcacgct	ggaateggge	1740	
attgagactg gcg	atgagtt ag	gttaaagac	ctgaagaaac	acgtcgccca	a agaaattggc	1800	
gcgatcgctc gtc	ccgatga a	attegette	agtgaggcgc	tgcccaaaaa	gcgatcgggc	1860	
aagattatgc gcc	gtctgtt g	cgcagtctc	gccgctggtc	aagaagttto	gggcgacact	1920	
tccaccttgg aag	ategete g	gtgctcgat	aagctgcgtc	aaggcactta	a g	1971	
<210> SEQ ID N <211> LENGTH: <212> TYPE: PR <213> ORGANISM <400> SEQUENCE	656 T : Synechoo	coccus PCC	7942				
~ Met Ser Gln Pr		Glu Ser I	le Leu Gln	Glu Lvs Ai	q Val Phe		
1	5	_	10	1	15		
Pro Pro Ser Al 20	a Glu Phe		la Ala Arg 5	Ile Asn Pi 30			
Tyr Glu Ala Le 35	u Cys Gln	Lys Ala A 40	la Ala Asp	Pro Val Al 45	a Phe Trp		
Gly Glu Leu Al 50	a Ala Gln	Glu Leu A 55	sp Trp Phe	Glu Pro Ti 60	rp Gln Gln		
Thr Leu Asp Tr 65	p Ser Asn 70	Pro Pro P	he Ala Lys 75	Trp Phe Va	al Gly Gly 80		
Lys Leu Asn Il	e Ser His 85	Asn Cys L	eu Asp Arg 90	His Leu Th	nr Thr Trp 95		

Arg	Lys	Asn	Lys 100	Ala	Ala	Ile	Ile	Trp 105	Glu	Gly	Glu	Pro	Gly 110	Asp	Ser
Arg	Thr	Leu 115	Thr	Tyr	Ala	Gln	Leu 120	His	Arg	Glu	Val	Cys 125	Gln	Phe	Ala
Asn	Val 130	Leu	Lys	Ser	Leu	Gly 135	Ile	Gln	Lys	Gly	Asp 140	Val	Val	Gly	Val
Tyr 145	Met	Pro	Met	Ile	Pro 150	Glu	Ala	Ala	Ile	Ala 155	Met	Leu	Ala	Суз	Ala 160
Arg	Ile	Gly	Ala	Val 165	His	Ser	Val	Val	Phe 170	Gly	Gly	Phe	Ser	Ala 175	Glu
Ala	Leu	Arg	Asp 180	Arg	Leu	Val	Asp	Gly 185	Gln	Ala	ГЛа	Leu	Val 190	Val	Thr
Ala	Asp	Gly 195	Gly	Trp	Arg	Lys	Asp 200	Ala	Ile	Val	Pro	Leu 205	Lys	Asp	Ser
Val	Asp 210	Gln	Ala	Leu	Glu	Gly 215	Asn	Ala	Cys	Pro	Ser 220	Val	Gln	His	Val
Leu 225	Val	Val	Glu	Arg	Thr 230	Lys	Gln	Asp	Ile	His 235	Met	Glu	Pro	Gly	Arg 240
Asp	His	Trp	Trp	His 245	Glu	Leu	Gln	Gln	Thr 250	Val	Ser	Ala	Thr	Сув 255	Pro
Ala	Glu	Pro	Met 260	Aap	Ser	Glu	Aab	Leu 265	Leu	Phe	Val	Leu	Tyr 270	Thr	Ser
Gly	Ser	Thr 275	Gly	Lys	Pro	Lys	Gly 280	Val	Val	His	Thr	Thr 285	Gly	Gly	Tyr
Asn	Leu 290	Tyr	Ala	His	Ile	Thr 295	Thr	Gln	Trp	Thr	Phe 300	Asp	Leu	Gln	Asp
Thr 305	Asp	Val	Tyr	Trp	Cys 310	Thr	Ala	Asp	Val	Gly 315	Trp	Ile	Thr	Gly	His 320
Ser	Tyr	Ile	Val	Tyr 325	Gly	Pro	Leu	Ser	Asn 330	Gly	Ala	Thr	Thr	Leu 335	Met
Tyr	Glu	Gly	Ala 340	Pro	Arg	Ala	Ser	Asn 345	Pro	Gly	Сүз	Phe	Trp 350	Asp	Val
Ile	Glu	-	m												
Ara		355	Tyr	Gly	Val	Thr	Thr 360	Phe	Tyr	Thr	Ala	Pro 365	Thr	Ala	Ile
mg	Ala 370		-	-			360		-			365			
		Phe	Ile	Lys	Met	Gly 375	360 Glu	Gln	His	Pro	Ala 380	365 Ala	Arg	Asp	Leu
Ser 385	370	Phe Leu	Ile Arg	Lys Leu	Met Leu 390	Gly 375 Gly	360 Glu Thr	Gln Val	His Gly	Pro Glu 395	Ala 380 Pro	365 Ala Ile	Arg Asn	Asp Pro	Leu Glu 400
Ser 385 Ala	370 Ser	Phe Leu Ile	Ile Arg Trp	Lys Leu Tyr 405	Met Leu 390 His	Gly 375 Gly Arg	360 Glu Thr Val	Gln Val Ile	His Gly Gly 410	Pro Glu 395 Gly	Ala 380 Pro Asp	365 Ala Ile Arg	Arg Asn Cys	Asp Pro Pro 415	Leu Glu 400 Ile
Ser 385 Ala Val	370 Ser Trp	Phe Leu Ile Thr	Ile Arg Trp Trp 420	Lys Leu Tyr 405 Trp	Met Leu 390 His Gln	Gly 375 Gly Arg Thr	360 Glu Thr Val Glu	Gln Val Ile Thr 425	His Gly Gly 410 Gly	Pro Glu 395 Gly Gly	Ala 380 Pro Asp His	365 Ala Ile Arg Met	Arg Asn Cys Ile 430	Asp Pro Pro 415 Thr	Leu Glu 400 Ile Ser
Ser 385 Ala Val Leu	370 Ser Trp Asp	Phe Leu Ile Thr Gly 435	Ile Arg Trp 420 Ala	Lys Leu Tyr 405 Trp Val	Met J90 His Gln Pro	Gly 375 Gly Arg Thr Thr	360 Glu Thr Val Glu Lys 440	Gln Val Ile Thr 425 Pro	His Gly Gly 410 Gly Gly	Pro Glu 395 Gly Gly Ser	Ala 380 Pro Asp His Ala	365 Ala Ile Arg Met Thr 445	Arg Asn Cys Ile 430 Lys	Asp Pro Pro 415 Thr Pro	Leu Glu 400 Ile Ser Phe
Ser 385 Ala Val Leu Pro	370 Ser Trp Asp Pro Gly	Phe Leu Ile Thr Gly 435 Ile	Ile Arg Trp 420 Ala Leu	Lys Leu Tyr 405 Trp Val Ala	Met Leu 390 His Gln Pro Asp	Gly 375 Gly Arg Thr Thr Val 455	360 Glu Thr Val Glu Lys 440 Val	Gln Val Ile Thr 425 Pro Asp	His Gly Gly 410 Gly Gly Leu	Pro Glu 395 Gly Gly Ser Asp	Ala 380 Pro Asp His Ala Gly 460	365 Ala Ile Arg Met Thr 445 Arg	Arg Asn Cys Ile 430 Lys Ser	Asp Pro 415 Thr Pro Val	Leu Glu 400 Ile Ser Phe Pro
Ser 385 Ala Val Leu Pro Asp 465	370 Ser Trp Asp Pro Gly 450	Phe Leu Ile Thr Gly 435 Ile Glu	Ile Arg Trp 420 Ala Leu Gly	Lys Leu Tyr 405 Trp Val Ala Gly	Met Leu 390 His Gln Pro Asp Tyr 470	Gly 375 Gly Arg Thr Thr Val 455 Leu	360 Glu Thr Val Glu Lys 440 Val Val	Gln Val Ile Thr 425 Pro Asp Ile	His Gly Gly 410 Gly Gly Leu Arg	Pro Glu 395 Gly Gly Ser Asp His 475	Ala 380 Pro Asp His Ala Gly 460 Pro	365 Ala Ile Arg Met Thr 445 Arg Trp	Arg Asn Cys Ile 430 Lys Ser Pro	Asp Pro 415 Thr Pro Val Gly	Leu Glu 400 Ile Ser Phe Pro Met 480

-continued	
Gly Ala Arg Arg Asp Ala Asp Gly Tyr Phe Trp Val Met Gly Arg Val 515 520 525	
Asp Asp Val Ile Asn Val Ser Gly His Arg Leu Gly Thr Met Glu Ile 530 535 540	
Glu Ser Ala Leu Val Ser His Pro Ala Val Ala Glu Ala Ala Val Val 545 550 555 560	
Gly Arg Pro Asp Asp Leu Lys Gly Glu Gly Ile Val Ala Phe Ile Thr 565 570 575	
Leu Glu Ser Gly Ile Glu Thr Gly Asp Glu Leu Val Lys Asp Leu Lys 580 585 590	
Lys His Val Ala Gln Glu Ile Gly Ala Ile Ala Arg Pro Asp Glu Ile 595 600 605	
Arg Phe Ser Glu Ala Leu Pro Lys Thr Arg Ser Gly Lys Ile Met Arg 610 615 620	
Arg Leu Leu Arg Ser Leu Ala Ala Gly Gln Glu Val Ser Gly Asp Thr 625 630 635 640	
Ser Thr Leu Glu Asp Arg Ser Val Leu Asp Lys Leu Arg Gln Gly Thr 645 650 655	
<pre><210> SEQ ID NO 7 <211> LENGTH: 3898 <212> TYPE: DNA <213> ORGANISM: Chloroflexus aurantiacus <400> SEQUENCE: 7</pre>	
aacatcatgg tatactatac ctatcgataa ttcttcaact aattgcataa cagaacagcg	60
atggcgacgg gggagtccat gagcggaaca ggacgactgg caggaaagat tgcgttaatt	120
accggtggcg ccggcaatat cggcagtgaa ttgacacgtc gctttctcgc agagggagcg	180
acggtcatta ttagtggacg gaatcgggcg aagttgaccg cactggccga acggatgcag	240
gcagaggcag gagtgccggc aaagcgcatc gatctcgaag tcatggatgg gagtgatccg	300
gtcgcggtac gtgccggtat cgaagcgatt gtggcccgtc acggccagat cgacattetg gtcaacaatg caggaagtgc cggtgcccag cgtcgtetgg ccgagattec acteactgaa	420
getgaattag geoetggege egagagaeg etteatgeea geategeeaa tttaettggt	480
atgggatggc atctgatgcg tattgcggca cctcatatgc cggtaggaag tgcggtcatc	540
aatgtetega ceatetttte acgggetgag tactaeggge ggatteegta tgteaceeet	600
aaagetgete ttaatgetet ateteaaett getgegegtg agttaggtge aegtggeate	660
cgcgttaata cgatetttee eggeeegatt gaaagtgate geateegtae agtgtteeag	720
cgtatggatc agctcaaggg gcggcccgaa ggcgacacag cgcaccattt tttgaacacc	780
atgcgattgt gtcgtgccaa cgaccagggc gcgcttgaac gtcggttccc ctccgtcggt	840
gatgtggcag acgccgctgt ctttctggcc agtgccgaat ccgccgctct ctccggtgag	900
acgattgagg ttacgcacgg aatggagttg ccggcctgca gtgagaccag cctgctggcc	960
cgtactgatc tgcgcacgat tgatgccagt ggccgcacga cgctcatctg cgccggcgac	1020
cagattgaag aggtgatggc gctcaccggt atgttgcgta cctgtgggag tgaagtgatc	1080
atcggcttcc gttcggctgc ggcgctggcc cagttcgagc aggcagtcaa tgagagtcgg	1140
cggctggccg gcgcagactt tacgcctccc attgccttgc cactcgatcc acgcgatccg	1200
gcaacaattg acgctgtctt cgattggggg gccggcgaga ataccggcgg gattcatgca	1260
geggtgatte tgeetgetae eagteaegaa eeggeaeegt gegtgattga ggttgatgat	1320

61

				-contir	nued	
gagcgggtgc	tgaattttct	ggccgatgaa	atcaccggga	caattgtgat	tgccagtcgc	1380
ctggcccgtt	actggcagtc	gcaacggctt	acccccggcg	cacgtgcgcg	tgggccgcgt	1440
gtcatttttc	tctcgaacgg	tgccgatcaa	aatgggaatg	tttacggacg	cattcaaagt	1500
gccgctatcg	gtcagctcat	tcgtgtgtgg	cgtcacgagg	ctgaacttga	ctatcagcgt	1560
gccagcgccg	ccggtgatca	tgtgctgccg	ccggtatggg	ccaatcagat	tgtgcgcttc	1620
gctaaccgca	gccttgaagg	gttagaattt	gcctgtgcct	ggacagctca	attgctccat	1680
agtcaacgcc	atatcaatga	gattaccctc	aacatccctg	ccaacattag	cgccaccacc	1740
ggcgcacgca	gtgcatcggt	cggatgggcg	gaaagcctga	tcgggttgca	tttggggaaa	1800
gttgccttga	ttaccggtgg	cagegeeggt	attggtgggc	agatcgggcg	cctcctggct	1860
ttgagtggcg	cgcgcgtgat	gctggcagcc	cgtgatcggc	ataagctcga	acagatgcag	1920
gcgatgatcc	aatctgagct	ggctgaggtg	gggtataccg	atgtcgaaga	tcgcgtccac	1980
attgcaccgg	gctgcgatgt	gagtagcgaa	gcgcagcttg	cggatcttgt	tgaacgtacc	2040
ctgtcagctt	ttggcaccgt	cgattatctg	atcaacaacg	ccgggatcgc	cggtgtcgaa	2100
gagatggtta	tcgatatgcc	agttgaggga	tggcgccata	ccctcttcgc	caatctgatc	2160
agcaactact	cgttgatgcg	caaactggcg	ccgttgatga	aaaaacaggg	tagcggttac	2220
atccttaacg	tctcatcata	ctttggcggt	gaaaaagatg	cggccattcc	ctaccccaac	2280
cgtgccgatt	acgccgtctc	gaaggctggt	cagcgggcaa	tggccgaagt	ctttgcgcgc	2340
tteettggee	cggagataca	gatcaatgcc	attgcgccgg	gtccggtcga	aggtgatcgc	2400
ttgcgcggta	ccggtgaacg	teccggeete	tttgcccgtc	gggcgcgggct	gattttggag	2460
aacaagcggc	tgaatgagct	tcacgctgct	cttatcgcgg	ctgcgcgcac	cgatgagcga	2520
tctatgcacg	aactggttga	actgctctta	cccaatgatg	tggccgcact	agagcagaat	2580
cccgcagcac	ctaccgcgtt	gcgtgaactg	gcacgacgtt	ttcgcagcga	aggcgatccg	2640
gcggcatcat	caagcagtgc	gctgctgaac	cgttcaattg	ccgctaaatt	gctggctcgt	2700
		gttgcctgcc				2760
gatcccttct	tcacccgagc	ccagattgat	cgcgaggctc	gcaaggttcg	tgacggcatc	2820
atggggatgc	tctacctgca	acggatgccg	actgagtttg	atgtcgcaat	ggccaccgtc	2880
tattaccttg	ccgaccgcaa	tgtcagtggt	gagacattcc	acccatcagg	tggtttgcgt	2940
tacgaacgca	cccctaccgg	tggcgaactc	ttcggcttgc	cctcaccgga	acggctggcg	3000
gagetggteg	gaagcacggt	ctatctgata	ggtgaacatc	tgactgaaca	ccttaacctg	3060
		acgttacggg				3120
gaaaccgggg	cagagacaat	gcgtcgcttg	ctccacgatc	acgtcgaggc	tggtcggctg	3180
		tcagatcgaa				3240
ggtcgcccag	ggccggtcgt	ctgtaccccc	ttccggccac	tgccgacggt	accactggtc	3300
gggcgtaaag	acagtgactg	gagcacagtg	ttgagtgagg	ctgaatttgc	cgagttgtgc	3360
gaacaccagc	tcacccacca	tttccgggta	gcgcgcaaga	ttgccctgag	tgatggtgcc	3420
agtetegege	tggtcactcc	cgaaactacg	gctacctcaa	ctaccgagca	atttgctctg	3480
gctaacttca	tcaaaacgac	ccttcacgct	tttacggcta	cgattggtgt	cgagagcgaa	3540
agaactgctc	agcgcattct	gatcaatcaa	gtcgatctga	cccggcgtgc	gcgtgccgaa	3600
gageegegtg	atccgcacga	gcgtcaacaa	gaactggaac	gttttatcga	ggcagtcttg	3660
ctggtcactg	caccactccc	gcctgaagcc	gatacccgtt	acgccgggcg	gattcatcgc	3720

ggacgggcga ttaccgtgta aattctacgc cacaggaacc actaccaaac cagcatagta 3780)
agagaacgat agagacgttg caatgogacg tototatoat atttooggoo cococtagac 3840)
aaacccccac gtcttcgtgt agactagaaa caggaggctg tatgcacgtc caacaaga 3898	ţ
<210> SEQ ID NO 8 <211> LENGTH: 1220 <212> TYPE: PRT <213> ORGANISM: Chloroflexus aurantiacus <400> SEOUENCE: 8	
~	
Met Ser Gly Thr Gly Arg Leu Ala Gly Lys Ile Ala Leu Ile Thr Gly 1 5 10 15	
Gly Ala Gly Asn Ile Gly Ser Glu Leu Thr Arg Arg Phe Leu Ala Glu 20 25 30	
Gly Ala Thr Val Ile Ile Ser Gly Arg Asn Arg Ala Lys Leu Thr Ala 35 40 45	
Leu Ala Glu Arg Met Gln Ala Glu Ala Gly Val Pro Ala Lys Arg Ile 50 55 60	
Asp Leu Glu Val Met Asp Gly Ser Asp Pro Val Ala Val Arg Ala Gly 65 70 75 80	
Ile Glu Ala Ile Val Ala Arg His Gly Gln Ile Asp Ile Leu Val Asn 85 90 95	
Asn Ala Gly Ser Ala Gly Ala Gln Arg Arg Leu Ala Glu Ile Pro Leu 100 105 110	
Thr Glu Ala Glu Leu Gly Pro Gly Ala Glu Glu Thr Leu His Ala Ser 115 120 125	
Ile Ala Asn Leu Leu Gly Met Gly Trp His Leu Met Arg Ile Ala Ala 130 135 140	
Pro His Met Pro Val Gly Ser Ala Val Ile Asn Val Ser Thr Ile Phe 145 150 155 160	
Ser Arg Ala Glu Tyr Tyr Gly Arg Ile Pro Tyr Val Thr Pro Lys Ala 165 170 175	
Ala Leu Asn Ala Leu Ser Gln Leu Ala Ala Arg Glu Leu Gly Ala Arg 180 185 190	
Gly Ile Arg Val Asn Thr Ile Phe Pro Gly Pro Ile Glu Ser Asp Arg 195 200 205	
Ile Arg Thr Val Phe Gln Arg Met Asp Gln Leu Lys Gly Arg Pro Glu 210 215 220	
Gly Asp Thr Ala His His Phe Leu Asn Thr Met Arg Leu Cys Arg Ala 225 230 235 240	
Asn Asp Gln Gly Ala Leu Glu Arg Arg Phe Pro Ser Val Gly Asp Val 245 250 255	
Ala Asp Ala Ala Val Phe Leu Ala Ser Ala Glu Ser Ala Ala Leu Ser 260 265 270	
Gly Glu Thr Ile Glu Val Thr His Gly Met Glu Leu Pro Ala Cys Ser 275 280 285	
Glu Thr Ser Leu Leu Ala Arg Thr Asp Leu Arg Thr Ile Asp Ala Ser 290 295 300	
Gly Arg Thr Thr Leu Ile Cys Ala Gly Asp Gln Ile Glu Glu Val Met 305 310 315 320	
Ala Leu Thr Gly Met Leu Arg Thr Cys Gly Ser Glu Val Ile Ile Gly 325 330 335	
Phe Arg Ser Ala Ala Ala Leu Ala Gln Phe Glu Gln Ala Val Asn Glu	

												con		ued	
_	_	_	340	_	_	_	_	345	_	_	_	_	350	_	_
Ser	Arg	Arg 355		Ala	Gly	Ala	Asp 360		Thr	Pro	Pro	Ile 365	Ala	Leu	Pro
Leu	Asp 370	Pro	Arg	Asp	Pro	Ala 375	Thr	Ile	Asp	Ala	Val 380	Phe	Asp	Trp	Gly
Ala 385	Gly	Glu	Asn	Thr	Gly 390		Ile	His	Ala	Ala 395	Val	Ile	Leu	Pro	Ala 400
Thr	Ser	His	Glu	Pro 405	Ala	Pro	Сув	Val	Ile 410	Glu	Val	Asp	Asp	Glu 415	Arg
Val	Leu	Asn	Phe 420	Leu	Ala	Asp	Glu	Ile 425	Thr	Gly	Thr	Ile	Val 430	Ile	Ala
Ser	Arg	Leu 435	Ala	Arg	Tyr	Trp	Gln 440	Ser	Gln	Arg	Leu	Thr 445	Pro	Gly	Ala
Arg	Ala 450	Arg	Gly	Pro	Arg	Val 455	Ile	Phe	Leu	Ser	Asn 460	Gly	Ala	Asp	Gln
Asn 465	Gly	Asn	Val	Tyr	Gly 470	Arg	Ile	Gln	Ser	Ala 475	Ala	Ile	Gly	Gln	Leu 480
Ile	Arg	Val	Trp	Arg 485	His	Glu	Ala	Glu	Leu 490	Asp	Tyr	Gln	Arg	Ala 495	Ser
Ala	Ala	Gly	Asp 500	His	Val	Leu	Pro	Pro 505	Val	Trp	Ala	Asn	Gln 510	Ile	Val
Arg	Phe	Ala 515	Asn	Arg	Ser	Leu	Glu 520	Gly	Leu	Glu	Phe	Ala 525	Сүз	Ala	Trp
Thr	Ala 530	Gln	Leu	Leu	His	Ser 535	Gln	Arg	His	Ile	Asn 540	Glu	Ile	Thr	Leu
Asn 545	Ile	Pro	Ala	Asn	Ile 550	Ser	Ala	Thr	Thr	Gly 555	Ala	Arg	Ser	Ala	Ser 560
Val	Gly	Trp	Ala	Glu 565	Ser	Leu	Ile	Gly	Leu 570	His	Leu	Gly	Lys	Val 575	Ala
Leu	Ile	Thr	Gly 580	Gly	Ser	Ala	Gly	Ile 585	Gly	Gly	Gln	Ile	Gly 590	Arg	Leu
Leu	Ala	Leu 595	Ser	Gly	Ala	Arg	Val 600	Met	Leu	Ala	Ala	Arg 605	Asp	Arg	His
Lys	Leu 610	Glu	Gln	Met	Gln	Ala 615	Met	Ile	Gln	Ser	Glu 620	Leu	Ala	Glu	Val
Gly 625		Thr	Asp		Glu 630		Arg	Val		Ile 635		Pro	Gly	Суз	Asp 640
Val	Ser	Ser	Glu	Ala 645	Gln	Leu	Ala	Asp	Leu 650	Val	Glu	Arg	Thr	Leu 655	Ser
Ala	Phe	Gly	Thr 660	Val	Asp	Tyr	Leu	Ile 665	Asn	Asn	Ala	Gly	Ile 670	Ala	Gly
Val	Glu	Glu 675	Met	Val	Ile	Asp	Met 680		Val	Glu	Gly	Trp 685	Arg	His	Thr
Leu	Phe 690	Ala	Asn	Leu	Ile	Ser 695	Asn	Tyr	Ser	Leu	Met 700	Arg	Lys	Leu	Ala
Pro 705	Leu	Met	Lys	Lys	Gln 710	Gly	Ser	Gly	Tyr	Ile 715	Leu	Asn	Val	Ser	Ser 720
Tyr	Phe	Gly	Gly	Glu 725	ГЛа	Asp	Ala	Ala	Ile 730	Pro	Tyr	Pro	Asn	Arg 735	Ala
Aap	Tyr	Ala	Val 740	Ser	ГЛа	Ala	Gly	Gln 745	Arg	Ala	Met	Ala	Glu 750	Val	Phe
Ala	Arg	Phe 755		Gly	Pro	Glu	Ile 760		Ile	Asn	Ala	Ile 765		Pro	Gly
		,					, 50					, 55			

-continued

Pro	Val 770	Glu	Gly	Asp	Arg	Leu 775	Arg	Gly	Thr	Gly	Glu 780	Arg	Pro	Gly	Leu
Phe 785	Ala	Arg	Arg	Ala	Arg 790	Leu	Ile	Leu	Glu	Asn 795	Lys	Arg	Leu	Asn	Glu 800
Leu	His	Ala	Ala	Leu 805	Ile	Ala	Ala	Ala	Arg 810	Thr	Aap	Glu	Arg	Ser 815	Met
His	Glu	Leu	Val 820	Glu	Leu	Leu	Leu	Pro 825	Asn	Asp	Val	Ala	Ala 830	Leu	Glu
Gln	Asn	Pro 835	Ala	Ala	Pro	Thr	Ala 840	Leu	Arg	Glu	Leu	Ala 845	Arg	Arg	Phe
Arg	Ser 850	Glu	Gly	Asp	Pro	Ala 855	Ala	Ser	Ser	Ser	Ser 860	Ala	Leu	Leu	Asn
Arg 865	Ser	Ile	Ala	Ala	Lys 870	Leu	Leu	Ala	Arg	Leu 875	His	Asn	Gly	Gly	Tyr 880
Val	Leu	Pro	Ala	Aap 885	Ile	Phe	Ala	Asn	Leu 890	Pro	Asn	Pro	Pro	Asp 895	Pro
Phe	Phe	Thr	Arg 900	Ala	Gln	Ile	Asp	Arg 905	Glu	Ala	Arg	Lys	Val 910	Arg	Aap
Gly	Ile	Met 915	Gly	Met	Leu	Tyr	Leu 920	Gln	Arg	Met	Pro	Thr 925	Glu	Phe	Aap
Val	Ala 930	Met	Ala	Thr	Val	Tyr 935	Tyr	Leu	Ala	Asp	Arg 940	Asn	Val	Ser	Gly
Glu 945	Thr	Phe	His	Pro	Ser 950	Gly	Gly	Leu	Arg	Tyr 955	Glu	Arg	Thr	Pro	Thr 960
Gly	Gly	Glu	Leu	Phe 965	Gly	Leu	Pro	Ser	Pro 970	Glu	Arg	Leu	Ala	Glu 975	Leu
Val	Gly	Ser	Thr 980	Val	Tyr	Leu	Ile	Gly 985	Glu	His	Leu	Thr	Glu 990	His	Leu
	-		980		-			985 Glu					990 a A		Leu ln Val
Asn	-	Leu 995 Ile	980 Ala	Arg	-	Tyr	Leu 100 1 Tl	985 Gli	ı Arç	g Ty:	r Gly lu Tl	y Al. 10	990 a A 05	rg G	ln Val
Asn Val	Leu Met	Leu 995 Ile) His	980 Ala e Val	Arg L Glu	Ala	Tyr r Glu 10:	Leu 1009 1 Tl 15 1 A	985 Glu D nr G	ı Arç ly Al	g Ty: la G	r Gly lu Tl lu su Me	y Al. 10 hr 1 020	990 a A 05 Met .	rg G	ln Val Arg
Asn Val Leu	Leu Met 1010 Leu	Leu 995 Ile His Asp	980 Ala e Vai s Asp	Arg L Glu D His	Ala 1 Thi	Tyr Glu 10: L Glu 103	Leu 1000 1 Tl 15 1 A: 30	985 Glu o nr G la G	u Arg ly Al ly Al	g Ty: la G rg L	r Gly lu Tl lu lu lu Al	y Al. 10 hr 1 020 et 9 035	990 a A 05 Met . Thr	rg G Arg .	ln Val Arg Val
Asn Val Leu Ala	Leu Met 1010 Leu 1025 Gly	Leu 995 Ile His Asp Arg	980 Ala Val Asp Asp O Glr	Arg L Glu D His n Ile	Ala 1 Thi 3 Val	Tyr Glu 103 L Glu 103 L Ala 104	Leu 1009 1 Tl 15 1 Al 30 a Al 15	985 Glu o nr G la G la I	l Arg ly Al ly Al le As	g Ty: la G: rg L sp G:	r Gly lu Tl eu Ma lu A: ln A: ln Pl	y Al 10 020 et 9 035 1a 1 050	990 a A 05 Met . Thr Ile	rg G Arg . Ile ⁻ Thr .	ln Val Arg Val Arg
Asn Val Leu Ala Tyr	Leu Met 1010 Leu 1029 Gly 1040 Gly	Leu 995 Ile His Asp Arc Val	980 Ala Val S Asp Glr g Pro	Arg I Glu > His n Ile > Gly	Ala 1 Thi 3 Val 9 Glu 7 Pro	Tyr 6 Glu 103 1 Glu 104 104 104	Leu 1000 1 TI 15 1 A: 80 45 45 1 V: 60	985 Glu o nr G la G la I al C	l Arg ly Al ly Al le As ys Th	g Ty: la G: rg L sp G: nr P:	r Gly lu Ti eu Ma lu Ai ln Ai ro Pi i er Ai	y Al. 10 020 et 9 035 1a 1 050 he 1 065	990 a A 05 Met Thr Ile Arg	rg G Arg . Ile ⁻ Thr . Pro	ln Val Arg Val Arg Leu
Asn Val Leu Ala Tyr Pro	Leu Met 1010 Leu 1029 Gly 1040 Gly 1059 Thr	Leu 995 Ile His Asy Arg Val	980 Ala > Val > Asp Glr J Pro	Arg L Glu D His L Ile D Gly D Leu	Ala 1 Thi 3 Val 3 Glu 7 Protonal 1 Val	Tyr Glu 102 1 Glu 104 104 104 106 106 1 Gly 107	Leu 1000 1 Tl 15 1 A. 80 4 A. 75 75 A.	985 Glu D In G Ia G Ia I Ia I Y Y Y Y Y	l Arg ly A ly A le A ys Th ys A	g Ty: la G rg L sp G nr P:	r Gli lu TI li lu A li ln A li li li ar A li ys G	y Al. 100 200 et 1 035 la 1 050 me 2 065 sp 1 080	990 a A 05 Met . Thr Ile Arg Trp	rg G Arg . Ile ⁻ Thr . Ser	ln Val Arg Val Arg Leu Thr
Asn Val Leu Ala Tyr Pro Val	Leu Met 1010 Leu 1025 Gly 1040 Gly 1055 Thr 1070 Leu	Leu 995 Ile His 5 Asy 0 Xal	980 Ala Val 3 Asp 5 Asp 9 Pro 6 Glr 1 Pro	Arg L Glu D His D Ile D Gly D Leu L Als	Ala 1 Thi 3 Val 3 Glu 7 Protonal 1 Val	Tyr C Glu 102 1 Glu 103 1 Ala 104 104 106 1 Gly 107 1 Phe 109	Leu 1000 1 Tl 1 A: 30 4 A: 45 75 75 75 8 A: 90 8 A:	985 Glu D nr G la G la I L al C L y rg L y la G	l Arg ly Al ly A le As ys Th ys As	g Ty: la G rg L sp G sp G sp S sp S seu C	r Gly lu TH 1 lu A 1 ln A 1 ln A 1 l 1 v s G 1 lu 1 la Lo	y Al. 100 hr 1 0020 et 1 0035 he 2 0055 FP 0 005 10 1 0095	990 a A 05 Met . Thr Ile Arg Trp His	rg G Arg . Ile ⁻ Thr . Ser	ln Val Arg Val Arg Leu Thr
Asn Val Leu Ala Tyr Pro Val Thr	Leu Met 1010 Leu 1025 Gly 1040 Gly 1055 Thr 1070 Leu 1085 His	Leu 995 Ile Asp) Arç Val Sen Sen His	980 Ala > Val > Asp o Glr U Pro C Glr C Glr S Phe	Arg L Glu His L Glu L L L L C L C L C L C L C L C L C L C L	Ala 1 Thi 5 Val 6 Glu 7 Pro 1 Val a Glu	Tyr 10: 10: 10: 10: 10: 10: 10: 10:	Leu 1000 1 TI 15 1 A. 80 A. 45 7 A. 775 A. 775 A. 705 A. 705 A. 705 A. 705 A. 707 A. 70	985 Glu O Inr G Ia G Ia I Ia I Ia C J Ia G I Ia G	l Arg ly Al ly A le As ys Th ys As	J Ty; rg La G ap G nr P: sur P: sur C S	r Gly Iu TI Iu II Iu A Iu A Iu Iu A Iu Iu Iu Iu Iu Iu Iu Iu Iu Iu Iu Iu Iu	y Al. 100 hr 1 0020 et ' 0035 la 1 0050 he 2 0065 spp ' 0080 lu 1 0095 eu 5 110	990 a A 05 Met . Thr Ile Arg Trp His . Ser .	rg G Arg . Ile [.] Thr . Ser Gln	ln Val Arg Val Arg Leu Thr Leu Gly
Asn Val Leu Ala Tyr Pro Val Thr Ala	Leu Met 1010 Leu 1025 Gly 1040 Gly 1055 Thr 1070 Leu 1085 His 1100 Ser	Leu 995 Ile Asp Asp Val Sen Fis Lev Glr	980 Ala Val Asp Asp Asp Glr Pro Glr Pro C Glr Pro C Glr Ala Ala	Arg l Glu o His o Ile o Gly o Leu 1 Als a Leu	Ala 1 Thi 5 Val 6 Glu 7 Pro 1 Val a Glu 3 Val	Tyr - Glu 102 103 104 104 105 107 107 107 107 107 107 107 107	Leu 1000 1 TH 15 1 A. 30 4 50 7 50 7 50 7 50 7 50 7 50 7 50 7 50 7 50 7 50 7 50 7 50 7 50 7 50 7 50 7 50 7 50 7 50 7 50 7 7 7 7 7 7 7 7 7 7 7 7 7	985 Glu o Inr G Ia G Ia I Ia I Ia G I Ia G I Ia G I Ia G I I I I C Y I I I C Y I I I I I I I I I	l Arg ly A ly A le A ys A ys A i u L i u T lu T	g Ty: la G rg L sp G sp G sp S sp S seu C t le A le A	r Gly lu TH 1 lu TH 1 lu A 1 lu A 1 lu A 1 lu 1 lu L 1 lu L 1 lu L 1 lu TH 1 lu A 1 lu A A I lu A A A I lu A A A A A A A A A A A A A A A A A A A	Y Al. 10 hr 1 020 et 5 035 la 5 sp 5 080 lu 1 100 la 5 lu 1 110 la 5 110	990 A A O5 Met . Thr Ile Arg His . Ser . Thr	rg G Arg . Ile [.] Thr . Pro Ser Gln Asp .	ln Val Arg Val Arg Leu Thr Leu Gly Thr
Asn Val Leu Ala Tyr Pro Val Thr Ala Thr	Leu Met 1010 Leu 1025 Gly 1040 Gly 1055 Thr 1070 Leu 1085 His 1100 Ser 1115 Glu	Leu 995 Ila Asp) Val) Sei His 5 Leu Glr) Thi	980 Ala Ala Asp Asp Asp Asp Asp Asp Asp Asp Asp Asp	Arg L Glu His Gly C Gly Leu Leu Leu Leu Leu Als Als Als	Ala 1 Thi 5 Val 5 Val 6 Glu 7 Prot 9 Val 9 Val 1 Val	Tyr Glu 103 104 105 106 106 106 107 106 107 107 107 107 107 107 107 107	Leu 1000 1 TI 15 1 A. 30 30 45 Va 45 Va 45 7 7 45 60 7 7 7 7 7 7 7 7 7 7 7 7 7	985 Glu D In G Ia G Ia G Ia C Ia C Ia G L Ia G L S T C S T C S T P	l Arg ly A: ly A le As ys Th ys As lu Le i ys I: lu Th lu Th I u Th I lu Th	g Ty: la G rg L rg L sp G sp G seu C t le A hr T l le L	r Gly lu Ti lu Ti lu Ai ln Ai ln Ai li la Li li la Li li lu A:	Y Al. 10 hr 1 020 et 035 la 100 10 10 10 10 10 11 125 hr 1 140	990 a A Met . Thr Ile Arg Trp His Ser . Thr Thr Thr	rg G Arg . Ile Thr . Ser Gln Asp Ser	ln Val Arg Val Arg Leu Thr Leu Gly Thr His

-continued

Glu Glu Pro Arg Asp Pro His Glu Arg Gln Gln Glu Leu Glu Arg Phe Ile Glu Ala Val Leu Leu Val Thr Ala Pro Leu Pro Pro Glu Ala Asp Thr Arg Tyr Ala Gly Arg Ile His Arg Gly Arg Ala Ile Thr Val <210> SEQ ID NO 9 <211> LENGTH: 652 <212> TYPE: PRT <213> ORGANISM: Escherichia coli <400> SEQUENCE: 9 Met Ser Gln Ile His Lys His Thr Ile Pro Ala Asn Ile Ala Asp Arg Cys Leu Ile Asn Pro Gln Gln Tyr Glu Ala Met Tyr Gln Gln Ser Ile Asn Val Pro Asp Thr Phe Trp Gly Glu Gln Gly Lys Ile Leu Asp Trp Ile Lys Pro Tyr Gln Lys Val Lys Asn Thr Ser Phe Ala Pro Gly Asn Val Ser Ile Lys Trp Tyr Glu Asp Gly Thr Leu Asn Leu Ala Ala Asn 65 70 75 80 Cys Leu Asp Arg His Leu Gln Glu Asn Gly Asp Arg Thr Ala Ile Ile Trp Glu Gly Asp Asp Ala Ser Gln Ser Lys His Ile Ser Tyr Lys Glu Leu His Arg Asp Val Cys Arg Phe Ala Asn Thr Leu Leu Glu Leu Gly Ile Lys Lys Gly Asp Val Val Ala Ile Tyr Met Pro Met Val Pro Glu Ala Ala Val Ala Met Leu Ala Cys Ala Arg Ile Gly Ala Val His Ser Val Ile Phe Gly Gly Phe Ser Pro Glu Ala Val Ala Gly Arg Ile Ile Asp Ser Asn Ser Arg Leu Val Ile Thr Ser Asp Glu Gly Val Arg Ala Gly Arg Ser Ile Pro Leu Lys Lys Asn Val Asp Asp Ala Leu Lys Asn Pro Asn Val Thr Ser Val Glu His Val Val Val Leu Lys Arg Thr Gly Gly Lys Ile Asp Trp Gln Glu Gly Arg Asp Leu Trp Trp His Asp Leu Val Glu Gln Ala Ser Asp Gln His Gln Ala Glu Glu Met Asn Ala Glu Asp Pro Leu Phe Ile Leu Tyr Thr Ser Gly Ser Thr Gly Lys Pro Lys Gly Val Leu His Thr Thr Gly Gly Tyr Leu Val Tyr Ala Ala Leu Thr Phe Lys Tyr Val Phe Asp Tyr His Pro Gly Asp Ile Tyr Trp Cys Thr Ala Asp Val Gly Trp Val Thr Gly His Ser Tyr Leu Leu Tyr Gly Pro

Leu	Ala	Cys	Gly	Ala	Thr	Thr	Leu	Met	Phe	Glu	Gly	Val	Pro	Asn	Trp
			_	325		_		_	330					335	
Pro	Thr	Pro	Ala 340	Arg	Met	Ala	Gln	Val 345	Val	Asp	Lys	His	Gln 350	Val	Asn
Ile	Leu	Tyr 355	Thr	Ala	Pro	Thr	Ala 360	Ile	Arg	Ala	Leu	Met 365	Ala	Glu	Gly
Asp	Lys 370	Ala	Ile	Glu	Gly	Thr 375	Asp	Arg	Ser	Ser	Leu 380	Arg	Ile	Leu	Gly
Ser 385	Val	Gly	Glu	Pro	Ile 390	Asn	Pro	Glu	Ala	Trp 395	Glu	Trp	Tyr	Trp	Lys 400
Lys	Ile	Gly	Asn	Glu 405	Lys	Cys	Pro	Val	Val 410	Asp	Thr	Trp	Trp	Gln 415	Thr
Glu	Thr	Gly	Gly 420	Phe	Met	Ile	Thr	Pro 425	Leu	Pro	Gly	Ala	Thr 430	Glu	Leu
rÀa	Ala	Gly 435	Ser	Ala	Thr	Arg	Pro 440	Phe	Phe	Gly	Val	Gln 445	Pro	Ala	Leu
Val	Asp 450	Asn	Glu	Gly	Asn	Pro 455	Leu	Glu	Gly	Ala	Thr 460	Glu	Gly	Ser	Leu
Val 465	Ile	Thr	Asp	Ser	Trp 470	Pro	Gly	Gln	Ala	Arg 475	Thr	Leu	Phe	Gly	Asp 480
His	Glu	Arg	Phe	Glu 485	Gln	Thr	Tyr	Phe	Ser 490	Thr	Phe	Lys	Asn	Met 495	Tyr
Phe	Ser	Gly	Asp 500	Gly	Ala	Arg	Arg	Asp 505	Glu	Aab	Gly	Tyr	Tyr 510	Trp	Ile
Thr	Gly	Arg 515	Val	Asp	Asp	Val	Leu 520	Asn	Val	Ser	Gly	His 525	Arg	Leu	Gly
Thr	Ala 530	Glu	Ile	Glu	Ser	Ala 535	Leu	Val	Ala	His	Pro 540	Lys	Ile	Ala	Glu
Ala 545	Ala	Val	Val	Gly	Ile 550	Pro	His	Asn	Ile	Lys 555	Gly	Gln	Ala	Ile	Tyr 560
Ala	Tyr	Val	Thr	Leu 565	Asn	His	Gly	Glu	Glu 570	Pro	Ser	Pro	Glu	Leu 575	Tyr
Ala	Glu	Val	Arg 580	Asn	Trp	Val	Arg	Lys 585	Glu	Ile	Gly	Pro	Leu 590	Ala	Thr
Pro	Asp	Val 595	Leu	His	Trp	Thr	Asp 600	Ser	Leu	Pro	Lys	Thr 605	Arg	Ser	Gly
Lys	Ile 610	Met	Arg	Arg	Ile	Leu 615	Arg	Lys	Ile	Ala	Ala 620	Gly	Asp	Thr	Ser
Asn 625	Leu	Gly	Asp	Thr	Ser 630	Thr	Leu	Ala	Asp	Pro 635	Gly	Val	Val	Glu	Lys 640
Leu	Leu	Glu	Glu	Lys 645	Gln	Ala	Ile	Ala	Met 650	Pro	Ser				
<210)> SI	50 II	оио	10											
<21	L> LH 2> TY	ENGTH	H: 64												
				Psei	ıdomo	onas	fulv	/a							
)> SH	_				_	_		~					<i>a</i> -	_
Met 1	Ser	Leu	Pro	His 5	Arg	Tyr	Pro	Val	Ser 10	Asp	Ala	Ala	Arg	Gln 15	Arg
Thr	His	Leu	Asp 20	Asp	Thr	Ala	Tyr	Gln 25	Arg	Leu	Tyr	Arg	Gln 30	Ser	Val
Asp	Asp	Pro	Gln	Thr	Phe	Trp	Gly	Glu	Gln	Ala	Lys	Ala	Phe	Leu	Asp

40

35

Trp	Phe 50	Lys	Pro	Trp	Asp	Glu 55	Val	Суз	Ser	Gly	Ser 60	Leu	Ser	Lys	Gly
Asp 65	Ile	Arg	Trp	Phe	Ser 70	Gly	Gly	Gln	Leu	Asn 75	Ile	Ser	His	Asn	Cys 80
Ile	Asp	Arg	His	Leu 85	Ala	Lys	Arg	Gly	Asp 90	Gln	Val	Ala	Leu	Ile 95	Trp
Glu	Gly	Asp	Asp 100	Pro	Met	Asp	Ser	Ala 105	Arg	Ile	Thr	Tyr	Arg 110	Glu	Leu
His	Glu	Gln 115	Val	Суа	Arg	Leu	Ala 120	Asn	Val	Leu	Lys	Ser 125	Arg	Gly	Val
ГЛа	Lys 130	Gly	Asp	Arg	Val	Суз 135	Ile	Tyr	Met	Pro	Met 140	Val	Pro	Gln	Ala
Ala 145	Tyr	Ala	Met	Leu	Ala 150	Суз	Thr	Arg	Ile	Gly 155	Ala	Val	His	Ser	Val 160
Val	Phe	Gly	Gly	Phe 165	Ser	Pro	Asp	Ala	Leu 170	Arg	Asp	Arg	Ile	Leu 175	Asp
Ala	Asp	Cys	Arg 180	Thr	Val	Ile	Thr	Ala 185	Asp	Glu	Ala	Val	Arg 190	Gly	Gly
Lys	Leu	Ile 195	Pro	Leu	Гла	Ser	Asn 200	Val	Asp	Lys	Ala	Leu 205	Ala	Ser	Сув
Pro	Asn 210	Val	Ser	Thr	Val	Leu 215	Val	Val	Lys	Arg	Thr 220	Gly	Asn	Lys	Val
Asp 225	Trp	Asp	Asp	Гла	Arg 230	Asp	Leu	Trp	Tyr	Ala 235	Glu	Ala	Val	Gln	Gln 240
Ala	Gly	Ala	Asp	Cys 245	Pro	Ala	Glu	Pro	Met 250	Asp	Ala	Glu	Asp	Pro 255	Leu
Phe	Ile	Leu	Tyr 260	Thr	Ser	Gly	Ser	Thr 265	Gly	Lys	Pro	Lys	Gly 270	Val	Leu
His	Ser	Thr 275	Ala	Gly	Tyr	Leu	Leu 280	Gln	Ala	Ala	Met	Thr 285	His	Lys	Tyr
Val	Phe 290	Asp	Tyr	His	Asp	Gly 295	Asp	Ile	Tyr	Trp	Суз 300	Thr	Ala	Asp	Val
Gly 305	Trp	Val	Thr	Gly	His 310	Ser	Tyr	Ile	Val	Tyr 315	Gly	Pro	Leu	Ala	Asn 320
Gly	Ala	Thr	Ser	Leu 325	Ile	Phe	Glu	Gly	Val 330	Pro	Asn	Tyr	Pro	Asp 335	Thr
Ser	Arg	Phe	Trp 340	Gln	Val	Ile	Asp	Lys 345	His	Gln	Val	Asn	Ile 350	Phe	Tyr
Thr	Ala	Pro 355	Thr	Ala	Leu	Arg	Ala 360	Leu	Met	Arg	Glu	Gly 365	Glu	Ala	Pro
Val	Lys 370	Lys	Ala	Ser	Arg	Ser 375	Ser	Leu	Arg	Leu	Leu 380	Gly	Ser	Val	Gly
Glu 385	Pro	Ile	Asn	Pro	Glu 390	Ala	Trp	Glu	Trp	Tyr 395	Phe	Lys	Val	Val	Gly 400
	Gln	Arg	Cys	Pro 405		Val	Asp	Thr	Trp 410		Gln	Thr	Glu	Thr 415	
Ala	Ile	Met			Pro	Leu	Pro	-		Thr	Asp	Leu	-		Gly
Ser	Ala		420 Arg	Pro	Phe	Phe	-	425 Val	Gln	Pro	Val		430 Leu	Asp	Glu
Gln	Gly	435 Lys	Glu	Ile	Asp	Gly	440 Pro	Gly	Ala	Gly	Val	445 Leu	Ala	Ile	Lys
	450					455					460				

-continued

Ala Ser Trp Pro Ser Gln Ile Arg Ser Val Tyr Gly Asp His Lys Arg 465 470 475 480 Met Leu Glu Thr Tyr Phe Thr Ala Tyr Pro Gly Tyr Tyr Phe Ser Gly 490 485 495 Asp Gly Ala Arg Arg Asp Glu Asp Gly Tyr Trp Trp Ile Thr Gly Arg 500 505 510 Ile Asp Asp Val Ile Asn Val Ser Gly His Arg Ile Gly Thr Ala Glu 515 520 525 Val Glu Ser Ala Leu Val Leu His Asp Ala Val Ala Glu Ala Ala Val 535 540 Val Gly Tyr Pro His Asp Val Lys Gly Gln Gly Ile Tyr Ala Phe Val 545 Thr Thr Met Asn Gly Val Glu Pro Ser Asp Glu Leu Lys Lys Glu Leu 565 570 575 Leu Ser Leu Val Gly Lys Glu Ile Gly Asn Phe Ala Lys Pro Glu Leu 580 585 590 Ile Gln Trp Ala Pro Gly Leu Pro Lys Thr Arg Ser Gly Lys Ile Met 600 595 605 Arg Arg Ile Leu Arg Lys Ile Ala Cys Asn Glu Leu Asp Ser Leu Gly 610 615 620 Asp Thr Ser Thr Leu Ala Asp Pro Ser Val Val Asp Ser Leu Ile Glu 625 630 635 640 Gln Arg Val Asn Asn 645 <210> SEQ ID NO 11 <211> LENGTH: 1080 <212> TYPE: DNA <213> ORGANISM: Sulfolobus tokodaii <400> SEQUENCE: 11 gtgatactca tgaggagaac attaaaagcc gcaatattag gtgctactgg tttagtagga atcgaatacg taagaatget atcaaatcat eettatatta aaccageata tttagetgga 120 180 aaaggttcag tgggtaaacc gtatggtgag gtagtaagat ggcaaacagt aggacaagtt cctaaggaaa tagctgatat ggaaataaaa ccaactgatc ctaagttaat ggatgatgta 240 gacataatat tttctccatt acctcaaggt gctgctggcc cagtagaaga acaatttgca 300 aaagaaggat teeetgtgat tagtaattea ceagateata gatttgatee tgatgtteee 360 ttattggttc ctgaactaaa tcctcatact attagcttaa ttgatgagca aagaaaaaga 420 agagaatgga aaggatttat agtaactaca ccactatgca cagcccaggg tgcagcaata 480 ccattaqqtq ctatatttaa aqattataaq atqqatqqaq catttataac tactattcaa 540 togotatotq qtqccqqtta tocaqqaata coatcattaq atqtaqtaqa taatatottq 600 cctttaggtg atggatacga tgccaagacg ataaaagaga tcttcagaat tttaagcgaa 660 gttaagagaa atgtagatga acctaaatta gaagatgtaa gcttagcagc aacaactcat 720 agaatagcta ctatacatgg tcattatgaa gtactatatg tatcgttcaa agaggaaact 780 gctgctgaaa aagttaagga gactttagaa aactttagag gggaaccaca agatctaaaa 840 ttaccaactg caccttcaaa gccaattatc gttatgaatg aggatacaag acctcaagtc 900 tattttgata gatgggctgg ggatattcca ggaatgagtg tagttgtagg tagattaaag 960 caagtgaata agagaatgat aaggttagta tcattaattc ataacacggt cagaggagcc 1020

gcaggaggag gtatattagc agctgaatta cttgtcgaaa aaggatatat tgaaaagtaa 1080 <210> SEQ ID NO 12 <211> LENGTH: 1071 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Codon-optimized coding sequence for Sulfolobus tokodaii malonate semialdehyde reductase <400> SEQUENCE: 12 atgegtegea caettaaage egegattetg ggegeaaceg gtetegtggg gategaatae 60 gtgcgtatgc tcagtaacca cccctacatt aaaccggcgt atttagcagg taaaggtagc 120 gtcggtaaac cctatggtga ggtggtccgc tggcaaactg ttggtcaggt accgaaagaa 180 240 attqctqata tqqaqattaa acccacqqat cccaaactqa tqqatqatqt qqatatcatt 300 tttagccccc ttcccccaaqq tqccqcqqqt ccaqtqqaaq aacaattcqc caaqqaaqqc ttcccagtca tcagtaactc cccggaccac cgttttgatc ccgatgtccc gctcctcgtg 360 420 cccgaattga atccccacac catttccctc atcgatgaac agcgaaagcg acgcgagtgg aaqqqcttca ttqttaccac acctctqtqt accqcccaaq qqqcqqcqat tcccttaqqt 480 gcgattttca aagactataa aatggatggc gcctttatta ctaccatcca atccctcagt 540 ggggctggct atcccggtat tccgagtctg gatgtggtcg acaacatttt accgctgggg 600 660 qatqqttatq acqctaaaac cattaaaqaa atttttcqca tcttatcqqa qqttaaacqq aatgttgacg aacccaaact tgaagatgtc tcgttagccg cgaccactca tcggattgct 720 acgattcatg gtcattatga ggtcctctat gtgtccttca aagaagaaac cgcggcagaa 780 aaagtgaaag agaccttaga aaattttcga ggggagcctc aagatctgaa actgccgacc 840 gcacccagta aacccatcat tgtaatgaac gaagacacgc ggccacaggt ttactttgat 900 cgttgggccg gcgatatccc cgggatgtct gtcgtggtgg ggcgtttgaa acaagtaaat 960 aagegeatga tteggetggt gteettaate cacaacaetg taegeggtge tgegggeggt 1020 ggcatcctgg cggccgaact gttggtggag aaaggctaca ttgaaaaata a 1071 <210> SEQ ID NO 13 <211> LENGTH: 359 <212> TYPE: PRT <213> ORGANISM: Sulfolobus tokodaii <400> SEQUENCE: 13 Met Ile Leu Met Arg Arg Thr Leu Lys Ala Ala Ile Leu Gly Ala Thr 1 Gly Leu Val Gly Ile Glu Tyr Val Arg Met Leu Ser Asn His Pro Tyr 25 30 Ile Lys Pro Ala Tyr Leu Ala Gly Lys Gly Ser Val Gly Lys Pro Tyr 40 45 35 Gly Glu Val Val Arg Trp Gln Thr Val Gly Gln Val Pro Lys Glu Ile 50 55 60 Ala Asp Met Glu Ile Lys Pro Thr Asp Pro Lys Leu Met Asp Asp Val 70 65 75 80 Asp Ile Ile Phe Ser Pro Leu Pro Gln Gly Ala Ala Gly Pro Val Glu 85 90 95 Glu Gln Phe Ala Lys Glu Gly Phe Pro Val Ile Ser Asn Ser Pro Asp 100 105 110 His Arg Phe Asp Pro Asp Val Pro Leu Leu Val Pro Glu Leu Asn Pro

		115					120					125								
His	Thr 130	Ile	Ser	Leu	Ile	Asp 135	Glu	Gln	Arg	Lys	Arg 140	Arg	Glu	Trp	Lys					
Gly 145	Phe	Ile	Val	Thr	Thr 150	Pro	Leu	Суз	Thr	Ala 155	Gln	Gly	Ala	Ala	Ile 160					
Pro	Leu	Gly	Ala	Ile 165	Phe	ГЛа	Asp	Tyr	Lys 170	Met	Asp	Gly	Ala	Phe 175	Ile					
Thr	Thr	Ile	Gln 180	Ser	Leu	Ser	Gly	Ala 185	Gly	Tyr	Pro	Gly	Ile 190	Pro	Ser					
Leu	Asp	Val 195	Val	Asp	Asn	Ile	Leu 200	Pro	Leu	Gly	Asp	Gly 205	Tyr	Asp	Ala					
Lys	Thr 210	Ile	Lys	Glu	Ile	Phe 215	Arg	Ile	Leu	Ser	Glu 220	Val	Lys	Arg	Asn					
Val 225	Asp	Glu	Pro	ГЛа	Leu 230	Glu	Asp	Val	Ser	Leu 235	Ala	Ala	Thr	Thr	His 240					
Arg	Ile	Ala	Thr	Ile 245	His	Gly	His	Tyr	Glu 250	Val	Leu	Tyr	Val	Ser 255	Phe					
Lys	Glu	Glu	Thr 260		Ala	Glu	Гла	Val 265		Glu	Thr	Leu	Glu 270		Phe					
Arg	Gly	Glu 275		Gln	Asp	Leu	Lys 280		Pro	Thr	Ala	Pro 285		Lys	Pro					
Ile	Ile 290		Met	Asn	Glu	Asp 295		Arg	Pro	Gln	Val 300		Phe	Asp	Arg					
Trp 305	Ala	Gly	Asp	Ile	Pro 310		Met	Ser	Val	Val 315		Gly	Arg	Leu	Lys 320					
	Val	Asn	Lys			Ile	Arg	Leu			Leu	Ile	His							
Val	Arg	Gly		325 Ala	Gly	Gly	Gly		330 Leu	Ala	Ala	Glu		335 Leu	Val					
Glu	Lys		340 Tyr	Ile	Glu	Lys		345					350							
		355																		
<21 <21	0> SH 1> LH 2> TY 3> OH	ENGTH	H: 94 DNA	45	-110	mba	- 7 -2	adu.	1 -											
)> 51)> 51				4110	opna	JIG .	Jeau	La											
					qt a	qttq	qaqca	a qqa	aqtta	ataq	qcqt	taqqi	ttq d	aca	accett	6	0			
															jacaag	12	0			
ggaa	ataga	iga a	agcta	aagga	aa c	tacg	ttcaq	g gtę	gatga	aaga	acaa	actco	cca q	gataa	accgag	18	0			
gac	gtcaa	ata d	ccgt	gatci	tc g	agggi	tttci	c	cacca	acga	atci	tggai	tga 🤉	ggaco	gttagg	24	0			
gga	gccaa	act t	cgt	catt	ga g	gcagi	ttati	c gaq	ggati	tatg	acgo	caaa	aaa q	gaaaa	atcttt	30	0			
ggat	tactt	gg a	acago	cgtc	ct t	gaca	aggaq	g gti	tata	ctag	ctaç	gcagi	tac 1	tcaç	gtctc	36	0			
ctca	ataad	ag a	aggti	tcaga	aa g	gcaat	tgtco	c aaq	gcac	cctg	agaq	gggc	ggt (gataç	geceat	42	0			
ccci	tggaa	atc o	cacco	ccac	ct t	ctac	cgcti	t gto	cgaga	atag	ttco	cagga	aga 🤉	gaaga	accagt	48	0			
atg	gaagt	.gg t	ggaq	gagga	ac g	aagto	ccct	c ato	ggaga	aagc	tgga	acaga	aat a	agtag	ıtggtg	54	0			
ctca	aagaa	igg a	agati	teeg	gg t	ttca	taggo	g aad	caggo	ctcg	ccti	ttgc	tct 1	ttco	gagag	60	0			
gcc	gtata	acc t	tgta	agac	ga g	ggtgi	tggco	c act	tgtg	gagg	acat	tcga	caa 🤉	ggtaa	atgaca	66	0			
gcg	gcaat	tg g	gacto	caga	tg g	gccti	tcat	g ggt	teegi	ttcc	tca	cata	cca t	cctaç	ıgtggt	72	0			

-continued	
ggagaaggag ggcttgagta cttctttaat aggggttttg ggtacggtgc taacgaatgg	780
atgcataccc tggcaaaata cgacaagttc ccctacactg gggttacgaa agcgatacag	840
caaatgaagg aatacteett cataaagggt aagaetttee aggaaattte gaagtggagg	900
gacgaaaagc teetgaaggt atacaaacta gtttgggaaa aataa	945
<210> SEQ ID NO 15 <211> LENGTH: 945 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Codon-optimized coding sequence for Metallosphaera sedula malonyl-CoA reductase	
<400> SEQUENCE: 15	
atgaccgaaa aagtatctgt cgtgggtgct ggggtgatcg gcgttggatg ggccaccctt	60
tttgccagca aagggtattc cgtcagtttg tataccgaaa aaaaagaaac actcgataaa	120
ggaattgaaa aactgcggaa ctatgtgcag gtgatgaaaa ataatagcca aatcacggaa	180
gatgtcaata cogtgattag togogtgtoo ootaccacca atttggatga agoogttogo	240
ggcgcgaact tcgttatcga agccgtcatt gaagactatg atgccaagaa aaaaattttt	300
ggataceteg atagtgttet egataaagaa gttattttgg ettegteeae aagegggete	360
ttgattacag aagttcaaaa agcgatgtct aaacatcccg aacgcgcggt gattgcacat	420
ccttggaatc caccccacct gctgcccttg gtcgaaatcg ttcccggaga aaaaaccagc	480
atggaggtcg tcgaacgcac gaaatccctc atggaaaaac tcgatcgcat cgtggtggtc	540
ctcaaaaaag aaatteetgg ttttategge aategteteg eetttgeatt atteegtgaa	600
gccgtctacc tggttgatga gggggtggcg accgtggaag atatcgataa agtaatgacc	660
geogegattg gattaeggtg ggeetttatg ggeeeattte teacetaeea eeteggtgge	720
ggggaaggcg gtttggaata tttttttaac cggggctttg gctatggcgc aaatgaatgg	780
atgcataccc ttgccaaata tgataagttt ccctatactg gtgtaaccaa ggccattcaa	840
caaatgaagg aatactcgtt tattaagggt aaaacgttcc aggaaatctc caaatggcgg	900
gatgagaaac tettaaaagt etacaaaetg gtetgggaaa aataa	945
<210> SEQ ID NO 16 <211> LENGTH: 314 <212> TYPE: PRT <213> ORGANISM: Metallosphaera sedula <400> SEQUENCE: 16	
Met Thr Glu Lys Val Ser Val Val Gly Ala Gly Val Ile Gly Val Gly	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
Trp Ala Thr Leu Phe Ala Ser Lys Gly Tyr Ser Val Ser Leu Tyr Thr 20 25 30	
Glu Lys Lys Glu Thr Leu Asp Lys Gly Ile Glu Lys Leu Arg Asn Tyr 35 40 45	
Val Gln Val Met Lys Asn Asn Ser Gln Ile Thr Glu Asp Val Asn Thr 50 55 60	
Val Ile Ser Arg Val Ser Pro Thr Thr Asn Leu Asp Glu Ala Val Arg 65 70 75 80	
Gly Ala Asn Phe Val Ile Glu Ala Val Ile Glu Asp Tyr Asp Ala Lys 85 90 95	
Lys Lys Ile Phe Gly Tyr Leu Asp Ser Val Leu Asp Lys Glu Val Ile 100 105 110	

Leu Ala Ser Ser Thr Ser Gly Leu Leu Ile Thr Glu Val Gln Lys Ala 115 120 125	
Met Ser Lys His Pro Glu Arg Ala Val Ile Ala His Pro Trp Asn Pro 130 135 140	
Pro His Leu Leu Pro Leu Val Glu Ile Val Pro Gly Glu Lys Thr Ser 145 150 155 160	
Met Glu Val Val Glu Arg Thr Lys Ser Leu Met Glu Lys Leu Asp Arg 165 170 175	
Ile Val Val Leu Lys Lys Glu Ile Pro Gly Phe Ile Gly Asn Arg 180 185 190	
Leu Ala Phe Ala Leu Phe Arg Glu Ala Val Tyr Leu Val Asp Glu Gly 195 200 205	
Val Ala Thr Val Glu Asp Ile Asp Lys Val Met Thr Ala Ala Ile Gly 210 215 220	
Leu Arg Trp Ala Phe Met Gly Pro Phe Leu Thr Tyr His Leu Gly Gly225230235240	
Gly Glu Gly Gly Leu Glu Tyr Phe Phe Asn Arg Gly Phe Gly Tyr Gly 245 250 255	
Ala Asn Glu Trp Met His Thr Leu Ala Lys Tyr Asp Lys Phe Pro Tyr 260 265 270	
Thr Gly Val Thr Lys Ala Ile Gln Gln Met Lys Glu Tyr Ser Phe Ile 275 280 285	
Lys Gly Lys Thr Phe Gln Glu Ile Ser Lys Trp Arg Asp Glu Lys Leu 290 295 300	
Leu Lys Val Tyr Lys Leu Val Trp Glu Lys 305 310	
<210> SEQ ID NO 17	
<211> LENGTH: 966 <212> TYPE: DNA <213> ORGANISM: Bacillus subtilis	
<211> LENGTH: 966 <212> TYPE: DNA	
<211> LENGTH: 966 <212> TYPE: DNA <213> ORGANISM: Bacillus subtilis	60
<211> LENGTH: 966 <212> TYPE: DNA <213> ORGANISM: Bacillus subtilis <400> SEQUENCE: 17 atgatgaaca aacatgtaaa taaagtagct ttaatcggag cgggttttgt tggaagcagt tatgcatttg cgttaattaa ccaaggaatc acagatgagc ttgtggtcat tgatgtaaat	120
<211> LENGTH: 966 <212> TYPE: DNA <213> ORGANISM: Bacillus subtilis <400> SEQUENCE: 17 atgatgaaca aacatgtaaa taaagtagct ttaatcggag cgggttttgt tggaagcagt tatgcatttg cgttaattaa ccaaggaatc acagatgagc ttgtggtcat tgatgtaaat aaagaaaaag caatgggcga tgtgatggat ttaaaccacg gaaaggcgtt tgcgccacaa	120 180
<211> LENGTH: 966 <212> TYPE: DNA <213> ORGANISM: Bacillus subtilis <400> SEQUENCE: 17 atgatgaaca aacatgtaaa taaagtagct ttaatcggag cgggttttgt tggaagcagt tatgcatttg cgttaattaa ccaaggaatc acagatgagc ttgtggtcat tgatgtaaat aaagaaaaag caatgggcga tgtgatggat ttaaaccacg gaaaggcgtt tgcgccacaa ccggtcaaaa catcttacgg aacatatgaa gactgcaagg atgctgatat tgtctgcatt	120 180 240
<211> LENGTH: 966 <212> TYPE: DNA <213> ORGANISM: Bacillus subtilis <400> SEQUENCE: 17 atgatgaaca aacatgtaaa taaagtagct ttaatcggag cgggttttgt tggaagcagt tatgcatttg cgttaattaa ccaaggaatc acagatgagc ttgtggtcat tgatgtaaat aaagaaaaag caatgggcga tgtgatggat ttaaaccacg gaaaggcgtt tgcgccacaa ccggtcaaaa catcttacgg aacatatgaa gactgcaagg atgctgatat tgtctgcatt tgcgccggag caaaccaaaa acctggtgag acacgccttg aattagtaga aaagaacttg	120 180 240 300
<pre><211> LENGTH: 966 <212> TYPE: DNA <213> ORGANISM: Bacillus subtilis <400> SEQUENCE: 17 atgatgaaca aacatgtaaa taaagtagct ttaatcggag cgggttttgt tggaagcagt tatgcatttg cgttaattaa ccaaggaatc acagatgagc ttgtggtcat tgatgtaaat aaagaaaaag caatgggcga tgtgatggat ttaaaccacg gaaaggcgtt tgccgccacaa ccggtcaaaa catcttacgg aacatatgaa gactgcaagg atgctgatat tgtctgcatt tgcgccggag caaaccaaaa acctggtgag acacgccttg aattagtaga aaagaacttg aagattttca aaggcatcgt tagtgaagtc atggcgagcg gatttgacgg catttctta</pre>	120 180 240 300 360
<pre><211> LENGTH: 966 <212> TYPE: DNA <213> ORGANISM: Bacillus subtilis <400> SEQUENCE: 17 atgatgaaca aacatgtaaa taaagtagct ttaatcggag cgggttttgt tggaagcagt tatgcatttg cgttaattaa ccaaggaatc acagatgagc ttgtggtcat tgatgtaaat aaagaaaaag caatgggcga tgtgatggat ttaaaccacg gaaaggcgtt tgccgccacaa ccggtcaaaa catcttacgg aacatatgaa gactgcaagg atgctgatat tgtctgcatt tgcgccggag caaaccaaaa acctggtgag acacgccttg aattagtaga aaagaacttg aagattttca aaggcatcgt tagtgaagtc atggcgagcg gattgacgg cattttctta gtcgcgacaa atccggttga tatcctgact tacgcaacat ggaaatcag cggcctgcca</pre>	120 180 240 300 360 420
<pre><211> LENGTH: 966 <212> TYPE: DNA <213> ORGANISM: Bacillus subtilis <400> SEQUENCE: 17 atgatgaaca aacatgtaaa taaagtagct ttaatcggag cgggttttgt tggaagcagt tatgcatttg cgttaattaa ccaaggaatc acagatgagc ttgtggtcat tgatgtaaat aaagaaaaag caatgggcga tgtgatggat ttaaaccacg gaaaggcgtt tgccgccacaa ccggtcaaaa catcttacgg aacatatgaa gactgcaagg atgctgatat tgtctgcatt tgcgccggag caaaccaaaa acctggtgag acacgccttg aattagtaga aaagaacttg aagattttca aaggcatcgt tagtgaagtc atggcgacga gattgacgg catttctta gtcgcgacaa atccggttga tatcctgact tacgcaacat ggaaatcag cggcctgcca aaagaggggg tgattggaag cggcacaaca cttgattctg cgagattccg ttcatgctg</pre>	120 180 240 300 360 420 480
<pre><211> LENGTH: 966 <212> TYPE: DNA <213> ORGANISM: Bacillus subtilis <400> SEQUENCE: 17 atgatgaaca aacatgtaaa taaagtagct ttaatcggag cgggttttgt tggaagcagt tatgcatttg cgttaattaa ccaaggaatc acagatgagc ttgtggtcat tgatgtaaat aaagaaaaag caatgggcga tgtgatggat ttaaaccacg gaaaggcgtt tgccgccacaa ccggtcaaaa catcttacgg aacatatgaa gactgcaagg atgctgatat tgtctgcatt tgcgccggag caaaccaaaa acctggtgag acacgccttg aattagtaga aaagaacttg aagatttca aaggcatcgt tagtgaagtc atggcgagcg gattgacgg catttctta gtcgcgacaa atccggttga tatcctgact tacgcaacat ggaaattcag cggcctgcca aaagagcggg tgattggaag cggcacaaca cttgattctg cgagattccg ttcatgctg agcgaatact ttggcgcagc gcctcaaaac gtacacgcg atattacgg agagcacggc</pre>	120 180 240 300 360 420 480 540
<pre><211> LENGTH: 966 <212> TYPE: DNA <213> ORGANISM: Bacillus subtilis <400> SEQUENCE: 17 atgatgaaca aacatgtaaa taaagtagct ttaatcggag cgggttttgt tggaagcagt tatgcatttg cgttaattaa ccaaggaatc acagatgagc ttgtggtcat tgatgtaaat aaagaaaaag caatgggcga tgtgatggat ttaaaccacg gaaaggcgtt tgccgccacaa ccggtcaaaa catcttacgg aacatatgaa gactgcaagg atgctgatat tgtctgcatt tgcgccggag caaaccaaaa acctggtgag acacgccttg aattagtaga aaagaacttg aagattttca aaggcatcgt tagtgaagtc atggcgagcg gatttgacgg catttctta gtcgcgacaa atccggttga tatcctgact tacgcaacat ggaaattcag cggcctgcca aaagagcggg tgattggaag cggcacaaca cttgattctg cgagattccg ttcatgctg agcgaatact ttggcgcagc gcctcaaaac gtacacgcg atattacgg agagcacggc gacacagagc ttcctgtttg gagccacgcg aatgtcggcg gtgtgccggt cagtgaactc</pre>	120 180 240 300 420 480 540 600
<pre><211> LENGTH: 966 <212> TYPE: DNA <213> ORGANISM: Bacillus subtilis <400> SEQUENCE: 17 atgatgaaca aacatgtaaa taaagtagct ttaatcggag cgggttttgt tggaagcagt tatgcatttg cgttaattaa ccaaggaatc acagatgagc ttgtggtcat tgatgtaaat aaagaaaaag caatgggcga tgtgatggat ttaaaccacg gaaaggcgtt tgccgccacaa ccggtcaaaa catcttacgg aacatatgaa gactgcaagg atgctgatat tgtctgcatt tgcgccggag caaaccaaaa acctggtgag acacgccttg aattagtaga aaagaacttg aagattttca aaggcatcgt tagtgaagtc atggcgagcg gatttgacgg catttecta gtcgcgacaa atccggttga tatcctgact tacgcaacat ggaaatccg ttcatgctg aagagaggg tgattggaag cggcacaaca cttgattctg cgagattccg ttcatgctg agcgaatact ttggcgcagc gcctcaaaac gtacacgccg atttactgg agagcacggc gacacagagc ttcctgtttg gagccacgcg aatgtcggcg gtgtgccggt cagtgaactc gttgagaaaa acgatgcgta caaacaagag gagctggacc aaattgtaga tgatgtgaaa</pre>	120 180 240 300 420 480 540 600 660
<pre><211> LENGTH: 966 <212> TYPE: DNA <213> ORGANISM: Bacillus subtilis <400> SEQUENCE: 17 atgatgaaca aacatgtaaa taaagtagct ttaatcggag cgggttttgt tggaagcagt tatgcatttg cgttaattaa ccaaggaatc acagatgagc ttgtggtcat tgatgtaaat aaagaaaaag caatgggcga tgtgatggat ttaaaccacg gaaaggcgtt tgccgcacaa ccggtcaaaa catcttacgg aacatatgaa gactgcaagg atgctgatat tgtctgcatt tgcgccggag caaaccaaaa acctggtgag acacgccttg aattagtaga aaagaacttg aagatttca aaggcatcgt tagtgaagtc atggcgagcg gattgacgg catttectta gtcgcgacaa atccggttga tatcctgact tacgcaacat ggaaattcag cggcctgcca aaagagcggg tgattggaag cggcacaaca cttgattctg cgagattccg tttcatgctg agcgaatact ttggcgcagc gcctcaaaac gtacacgcg atattatcgg agagcacggc gacacagagc ttcctgtttg gagccacgcg aatgtcggcg gtgtgccggt cagtgaactc gttgagaaaa acgatgcgta caaacaagag gagctggacc aaattgtaga tgatgtgaaa aacgcagctt accatatcat tgagaaaaaa ggcgcgactt attatgggt tgcgatgagt</pre>	120 180 240 300 420 480 540 600 660 720
<pre><211> LENGTH: 966 <212> TYPE: DNA <213> ORGANISM: Bacillus subtilis <400> SEQUENCE: 17 atgatgaaca aacatgtaaa taaagtagct ttaatcggag cgggttttgt tggaagcagt tatgcatttg cgttaattaa ccaaggaatc acagatgagc ttgtggtcat tgatgtaaat aaagaaaaag caatgggcga tgtgatggat ttaaaccacg gaaaggcgtt tgccgccacaa ccggtcaaaa catcttacgg aacatatgaa gactgcaagg atgctgatat tgtctgcatt tgcgccggag caaaccaaaa acctggtgag acacgccttg aattagtaga aaagaacttg aagattttca aaggcatcgt tagtgaagtc atggcgagcg gatttgacgg catttecta gtcgcgacaa atccggttga tatcctgact tacgcaacat ggaaatccg ttcatgctg aagagaggg tgattggaag cggcacaaca cttgattctg cgagattccg ttcatgctg agcgaatact ttggcgcagc gcctcaaaac gtacacgccg atttactgg agagcacggc gacacagagc ttcctgtttg gagccacgcg aatgtcggcg gtgtgccggt cagtgaactc gttgagaaaa acgatgcgta caaacaagag gagctggacc aaattgtaga tgatgtgaaa</pre>	120 180 240 300 420 480 540 600 660
<pre><211> LENGTH: 966 <212> TYPE: DNA <213> ORGANISM: Bacillus subtilis <400> SEQUENCE: 17 atgatgaaca aacatgtaaa taaagtagct ttaatcggag cgggttttgt tggaagcagt tatgcatttg cgttaattaa ccaaggaatc acagatgagc ttgtggtcat tgatgtaaat aaagaaaaag caatgggcga tgtgatggat ttaaaccacg gaaaggcgtt tgccgcacaa ccggtcaaaa catcttacgg aacatatgaa gactgcaagg atgctgatat tgtctgcatt tgcgccggag caaaccaaaa acctggtgag acacgccttg aattagtaga aaagaacttg aagatttca aaggcatcgt tagtgaagtc atggcgagcg gattgacgg catttectta gtcgcgacaa atccggttga tatcctgact tacgcaacat ggaaattcag cggcctgcca aaagagcggg tgattggaag cggcacaaca cttgattctg cgagattccg tttcatgctg agcgaatact ttggcgcagc gcctcaaaac gtacacgcg atattatcgg agagcacggc gacacagagc ttcctgtttg gagccacgcg aatgtcggcg gtgtgccggt cagtgaactc gttgagaaaa acgatgcgta caaacaagag gagctggacc aaattgtaga tgatgtgaaa aacgcagctt accatatcat tgagaaaaaa ggcgcgactt attatgggt tgcgatgagt</pre>	120 180 240 300 420 480 540 600 660 720
<pre><211> LENGTH: 966 <212> TYPE: DNA <213> ORGANISM: Bacillus subtilis <400> SEQUENCE: 17 atgatgaaca aacatgtaaa taaagtagct ttaatcggag cgggttttgt tggaagcagt tatgcatttg cgttaattaa ccaaggaatc acagatgagc ttgtggtcat tgatgtaaat aaagaaaaag caatgggcga tgtgatggat ttaaaccacg gaaaggcgtt tgccgccacaa ccggtcaaaa catcttacgg aacatatgaa gactgcaagg atgctgatat tgtctgcatt tgcgccggag caaaccaaaa acctggtgag acacgccttg aattagtaga aaagaacttg aagattttca aaggcatcgt tagtgaagtc atggcgagcg gattgacgg catttectta gtcgcgacaa atccggttga tatcctgact tacgcaacat ggaaattcag cggcctgcca aaagaagcggg tgattggaag cgccacaac cttgattctg cgagattccg ttcatgctg agcgaatact ttggcgcagc gcctcaaaac gtacacgccg atattaccg agagcacggc gacacagagc ttoctgtttg gagccacgcg aatgtcggcg gtgtgccggt cagtgaactc gttgagaaaa acgatgcgta caaacaagag gagctggacc aaattgtaga tgatgtgaaa aacgcagctt accatatcat tgagaaaaa ggcgcgactt attatggggt tgcgatgagt cttgctcgca ttacaaaagc cattcttcat aatgaaaaca gcatattaac tgtcagcaca</pre>	120 180 240 300 420 480 540 600 660 720 780

-continued

aactaa

<210> SEQ ID NO 18 <211> LENGTH: 321 <212> TYPE: PRT <213> ORGANISM: Bacillus subtilis <400> SEQUENCE: 18 Met Met Asn Lys His Val Asn Lys Val Ala Leu Ile Gly Ala Gly Phe Val Gly Ser Ser Tyr Ala Phe Ala Leu Ile Asn Gln Gly Ile Thr Asp Glu Leu Val Val Ile Asp Val Asn Lys Glu Lys Ala Met Gly Asp Val Met Asp Leu Asn His Gly Lys Ala Phe Ala Pro Gln Pro Val Lys Thr 50 55 60 Ser Tyr Gly Thr Tyr Glu Asp Cys Lys Asp Ala Asp Ile Val Cys Ile 65 70 75 80 Cys Ala Gly Ala Asn Gln Lys Pro Gly Glu Thr Arg Leu Glu Leu Val Glu Lys Asn Leu Lys Ile Phe Lys Gly Ile Val Ser Glu Val Met Ala Ser Gly Phe Asp Gly Ile Phe Leu Val Ala Thr Asn Pro Val Asp Ile Leu Thr Tyr Ala Thr Trp Lys Phe Ser Gly Leu Pro Lys Glu Arg Val Ile Gly Ser Gly Thr Thr Leu Asp Ser Ala Arg Phe Arg Phe Met Leu Ser Glu Tyr Phe Gly Ala Ala Pro Gln Asn Val His Ala His Ile Ile Gly Glu His Gly Asp Thr Glu Leu Pro Val Trp Ser His Ala Asn Val Gly Gly Val Pro Val Ser Glu Leu Val Glu Lys Asn Asp Ala Tyr Lys Gln Glu Glu Leu Asp Gln Ile Val Asp Asp Val Lys Asn Ala Ala Tyr His Ile Ile Glu Lys Lys Gly Ala Thr Tyr Tyr Gly Val Ala Met Ser Leu Ala Arg Ile Thr Lys Ala Ile Leu His Asn Glu Asn Ser Ile Leu Thr Val Ser Thr Tyr Leu Asp Gly Gln Tyr Gly Ala Asp Asp Val Tyr Ile Gly Val Pro Ala Val Val Asn Arg Gly Gly Ile Ala Gly Ile Thr Glu Leu Asn Leu Asn Glu Lys Glu Lys Glu Gln Phe Leu His Ser Ala Gly Val Leu Lys Asn Ile Leu Lys Pro His Phe Ala Glu Gln Lys Val

Asn

<210> SEQ ID NO 19 <211> LENGTH: 1401 <212> TYPE: DNA <213> ORGANISM: Escherichia coli

<400> SEQUENCE: 19	
atgecacatt ectaeggatta egatgecata gtaataggtt eeggeeeegg eggegaagg	c 60
gctgcaatgg gcctggttaa gcaaggtgcg cgcgtcgcag ttatcgagcg ttatcaaaa	t 120
gttggeggeg gttgeaceca etggggeace atceegtega aageteteeg teaegeegte	c 180
ageegeatta tagaatteaa teaaaaceea etttaeageg aceatteeeg aetgeteeg	c 240
tettettttg eegatateet taaceatgee gataaegtga ttaateaaea aaegegeat	g 300
cgtcagggat tttacgaacg taatcactgt gaaatattgc agggaaacgc tcgctttgt	t 360
gacgagcata cgttggcgct ggattgcccg gacggcagcg ttgaaacact aaccgctga	a 420
aaatttgtta ttgcctgcgg ctctcgtcca tatcatccaa cagatgttga tttcaccca	t 480
ccacgcattt acgacagoga ctcaattoto agoatgoaco acgaacogog coatgtact	t 540
atctatggtg ctggagtgat cggctgtgaa tatgcgtcga tcttccgcgg tatggatgt	a 600
aaagtggatc tgatcaacac ccgcgatcgc ctgctggcat ttctcgatca agagatgtc	a 660
gattetetet eetateaett etggaacagt ggegtagtga ttegteacaa egaagagta	c 720
gagaagatcg aaggetgtga egatggtgtg ateatgeate tgaagteggg taaaaaaet	g 780
aaagetgaet geetgeteta tgeeaaeggt egeaeeggta ataeegatte getggegtt.	a 840
cagaacattg ggctagaaac tgacagccgc ggacagctga aggtcaacag catgtatca	g 900
accgcacage cacaegttta egeggtggge gaegtgattg gttateegag eetggegte	g 960
gcggcctatg accaggggcg cattgccgcg caggcgctgg taaaaggcga agccaccgc	a 1020
catctgattg aagatateee taceggtatt tacaceatee eggaaateag etetgtggg	c 1080
aaaaccgaac agcagctgac cgcaatgaaa gtgccatatg aagtgggccg cgcccagtt	t 1140
aaacatctgg cacgcgcaca aatcgtcggc atgaacgtgg gcacgctgaa aattttgtto	c 1200
catcgggaaa caaaagagat tctgggtatt cactgctttg gcgagcgcgc tgccgaaat	t 1260
attcatatcg gtcaggcgat tatggaacag aaaggtggcg gcaacactat tgagtactto	c 1320
gtcaacacca cctttaacta cccgacgatg gcggaagcct atcgggtagc tgcgttaaa	c 1380
ggtttaaacc gcctgttcta a	1401
<210> SEQ ID NO 20 <211> LENGTH: 466	
<212> TYPE: PRT <213> ORGANISM: Escherichia coli	
<400> SEQUENCE: 20	
Met Pro His Ser Tyr Asp Tyr Asp Ala Ile Val Ile Gly Ser Gly Pro 1 5 10 15	
Gly Gly Glu Gly Ala Ala Met Gly Leu Val Lys Gln Gly Ala Arg Val 20 25 30	
Ala Val Ile Glu Arg Tyr Gln Asn Val Gly Gly Gly Cys Thr His Trp 35 40 45	
Gly Thr Ile Pro Ser Lys Ala Leu Arg His Ala Val Ser Arg Ile Ile 50 55 60	
Glu Phe Asn Gln Asn Pro Leu Tyr Ser Asp His Ser Arg Leu Leu Arg 65 70 75 80	
Ser Ser Phe Ala Asp Ile Leu Asn His Ala Asp Asn Val Ile Asn Gln 85 90 95	
Gln Thr Arg Met Arg Gln Gly Phe Tyr Glu Arg Asn His Cys Glu Ile 100 105 110	

Leu Gln Gly Asn Ala Arg Phe Val Asp Glu His Thr Leu Ala Leu Asp 115 120 125

-continued

Cyo Pro Asp Gly Ser Val Glu Thr Leu Thr Ala Glu Lys Phe Val 1le 130Ala Cyo Gly Ser Arg Pro Tyr His Pro Thr Ang Val Asp Phe Thr Hs 160Pro Arg Ile Tyr Asp Ser Asp Ser Ile Leu Ser Met His His Glu Pro 175Arg His Val Leu Ile Tyr Gly Ala Gly Val Ile Gly Cyo Glu Tyr Ala 180Ser Ile Phe Arg Gly Met Asp Val Lys Val Asp Leu Ile Aon Thr Arg 225Ang Arg Leu Leu Ala Phe Leu Asp Gln Glu Met Ser Asp Ser Leu Ser 225Cyr His Phe Trp Asn Ser Gly Val Val Val Ile Met His Leu Lys Ser 225Glu Lys Ile Glu Gly Cyo Asp Asp Gly Val Ile Met His Leu Lys Ser 2260Gly Asn Thr Asp Ser Leu Ala Leu Gln Asn Ile Gly Leu Glu Thr Asp 275Ser Arg Gly Gln Leu Lys Val Asp Cyc Leu Tyr Ala Asn Gly Arg Thr 276Cyn Y His Phe Trp Ash Ser Clu Val Val Ile Met His Leu Lys Ser 2260Gly Asn Thr Asp Ser Leu Ala Leu Gln Asn Ile Gly Tyr Pro Ser Leu Ala Ser 301Ala A Tyr Asp Gln Gly Arg Ile Ala Ala Gln Ala Leu Val Lys Gly 325Glu Ala Thr Ala Hals Leu Ile Glu Asp Thr Chr Glu Gln Gln Leu Thr Ala 326Ala Ala Tyr Asp Glu Gly Arg Ile Ala Ala Gln Phe Thr Gly Glu 335Glu Ala Thr Ala Hals Leu Ile Glu Asp Thr Leu Lys His Leu Ala 336Arg Ala Gln Ile Val Gly Met Asn Val Gly Thr Leu Lys Ile Leu Phe 335Ang Ala Gln Ile Val Gly Met Asn Val Gly Thr Leu Lys Ile Leu Phe 335Ang Ala Gln Ile Val Gly Thr He Ala Ile Met Glu Gln Leu Thr Ala 336Arg Ala Gln Ile Val Gly Thr He Val Asn Thr Thr Phe Ann Tyr Pro 425Arg Ala Gln Ile Val Gly Thr He Val Asn Thr Thr Phe Ann Tyr Pro 425Arg Ala Glu Thr Lie Glu Tyr Phe Val Asn Thr Thr Phe Ann Tyr Pro 425Gly Gly Ann Thr He Glu Tyr The Val Asn Thr Thr Phe Ann Tyr Pro 425 </th <th></th>																	
145 150 150 155 160 Pro Arg Ile Tyr Arp Ser Arp Ser Ile Leu Ser Met His His Glu Pro 175 Arg His Val Leu Ile Tyr Gly Ala Gly Val Ile Gly Cys Glu Tyr Ala 180 Ser Ile Phe Arg Gly Met Asp Val Lys Val Asp Leu Ile Asn Thr Arg 195 Asp Arg Leu Leu Ala Phe Leu Asp Gln Glu Met Ser Asp Ser Leu Ser 210 Clu Lys Ile Glu Gly Cys Asp Asp Gly Val Ile Arg His Asn Glu Glu Tyr 225 Glu Lys Ile Glu Gly Cys Asp Asp Gly Val Ile Met His Leu Lys Ser 226 Gly Lys Leu Lus Ala Asp Cys Leu Leu Tyr Ala Asm Gly Arg Thr 260 Cly Lys Leu Lys Ala Asp Cys Leu Leu Tyr Ala Asm Gly Arg Thr 260 Cly Asn Thr Asp Ser Leu Ala Leu Gln Asn Ile Gly Leu Glu Thr Asp 277 Asp Gly Gln Leu Lys Val Asn Ser Met Tyr Gln Thr Ala Gln Pro 290 His Val Tyr Ala Val Gly Asp Val Ile Gly Tyr Pro Ser Leu Ala Ser 310 310 Ala Ala Tyr Asp Gln Gly Arg Ile Ala Ala Gln Ala Leu Val Lys 188 Met Lys Val Pro Tyr Glu Val Gly Asp Ile Pro Thr Gly Ile Tyr Thr 345 Met Lys Val Pro Tyr Glu Val Gly Arg Ala Gln Phe Lys His Leu Ala 370 Arg Ala Gln Ile Val Gly Met Asn Val Gly Thr Glu Gln Gln Leu Thr Ala 380 Arg Ala Gln Ile Val Gly Met Asn Val Gly Thr Leu Lys Ile Leu Phe 395 Arg Glu Glu Thr Lys Glu Ile Leu Gly 11e His Cys Phe Gly Glu Arg 440 Ala Ala Glu Thr Lys Glu Ile Leu Gly Ile His Cys Phe Gly Glu Arg 440 Ala Ala Glu Thr Lys Glu Ile Leu Gly Ile His Cys Phe Gly Glu Arg 440 Ala Ala Glu Thr Lys Glu Ile Leu Gly Ile His Cys Phe Gly Glu Arg 440 Ala Ala Glu The Ile Glu Tyr The Val Asn Thr Thr Phe Asn Tyr Pro 445 Ala Ala Glu Ala Tyr Arg Val Ala Ala Leu Asn Gly Leu Asn Arg 450 Ala Ala Glu Ala Tyr Arg Ya Ya Ya Ala Ala Leu Asn Gly Leu Asn Arg 450 Ala Ala Glu Ala Tyr Arg Ya Ja Ala Ala Leu Asn Gly Leu Asn Arg 450 Ala Ala Glu Ala Tyr Arg Ya Ja Ala Ala Leu Asn Gly Leu Asn Arg 450 450 Ala Ala Glu Ala Tyr Arg Ya Ala Ala Leu Asn Gly Leu Asn Arg 450 Ala Ala Glu Ala Tyr Arg Ya Ja Ala Ala Leu Asn Gly Leu Asn Arg 450 Ala Ala Glu Ala Tyr Arg Ya Ja Ala Ala Leu Asn Gly Leu Asn Arg 450 Ala Ala Glu Ala Tyr Tyr Fe VAL Asn Thr Thr Phe Asn Tyr Pro 450 Ala Ala Glu A	Cys		Asp	Gly	Ser	Val		Thr	Leu	Thr	Ala		Lys	Phe	Val	Ile	
165170175Arg His Val Leu He Tyr Gly Ala Gly Val Ile Gly Cys Glu Tyr Ala 185Ser He Phe Arg Gly Met Asp Yal Lys Val Asp Leu He Asn Thr Arg 200Asp Arg Leu Leu Ala Phe Leu Asp Gln Glu Met Ser Asp Ser Leu Ser 210Tyr His Phe Trp Asn Ser Gly Val Val Ile Arg His Asn Glu Glu Tyr 225Glu Lys He Glu Gly Cys Asp Asp Gly Val Ile Met His Leu Lys Ser 265Gly Lys Leu Lys Ala Asp Cys Leu Leu Tyr Ala Asn Gly Arg Thr 260265Gly Asn Thr Asp Ser Leu Ala Leu Gln Asn He Gly Leu Glu Thr Asp 275Ser Arg Gly Gln Leu Lys Val Asn Ser Met Tyr Gln Thr Ala Gln Pro 295300His Val Tyr Ala Val Gly Asp Val He Gly Tyr Pro Ser Leu Ala Ser 310310Ala Ala Tyr Asp Gln Gly Arg He Ala Gln Ala Leu Val Lys Gly 325Glu Ala Thr Ala His Leu He Glu Asp He Pro Thr Gly He Tyr Thr 346346370Arg Gla Chi Lei Lys Val Gly Arg Ala Gln Phe Lys His Leu Ala 366Ser Arg Glu Thr Val Gly Arg He Ala Gly Arg Ala Gln Phe Lys His Leu Ala 355Glu Ala Thr Ala His Leu He Gly Asp Ala Gly Thr Leu Lys He Leu Phe 396396Arg Ala Gln He Val Gly He His Cly Gly Has 400His Arg Glu Thr Lys Glu He Leu Gly Ha Ala He Glu Gln Lys Gly 415Ala Ala Glu Ala Tyr Arg Val Ala Ala Leu Asn Thr Thr Phe Asn Tyr Pro 445Arg Ala Glu Ala Tyr Arg Ya Ya Ya Ya Ya Ala Ala Leu Asn Gly Leu Asn Arg 450Arg Ala Glu Ala Tyr Arg Val Ala Ala Leu Asn Gly Leu Asn Arg 450Ala Ala Glu Ala Tyr Arg Val Ala Ala Leu Asn Gly Leu Asn Arg 450Ala Ala Glu Ala Tyr Arg Val Ala Ala Leu Asn Gly Leu Asn Arg 450Ala Cli Di O 21 415		Cys	Gly	Ser	Arg		Tyr	His	Pro	Thr	-	Val	Asp	Phe	Thr		
180 185 190 See II e Pie Arg Giy Met Arg Val Val Val Arg Lu Val Arg Lu Val Val Arg Lu Val Val Arg Lu Val	Pro	Arg	Ile	Tyr	_	Ser	Asp	Ser	Ile		Ser	Met	His	His		Pro	
195200205Asp Arg Leu Leu Ala Phe Leu Asp Gln Glu Met Ser Asp Ser Leu Ser 210Tyr His Phe Trp Asn Ser Gly Val Val IIe Arg His Asn Glu Glu Tyr 225Glu Lys IIe Glu Gly Cys Asp Asp Gly Val IIe Met His Leu Lys Ser 260Gly Lys Lys Leu Lys Ala Asp Cys Leu Leu Tyr Ala Asn Gly Arg Thr 260Gly Asn Thr Asp Ser Leu Ala Leu Gln Asn IIe Gly Leu Glu Thr Asp 275Ser Arg Gly Gln Leu Lys Val Asn Ser Met Tyr Gln Thr Ala Gln Pro 286Yan Tyr Ala Val Gly Asp Val IIe Gly Tyr Pro Ser Leu Ala Ser 310320Ala Ala Tyr Asp Gln Gly Arg IIe Ala Ala Gln Ala Leu Val Lys Gly 325Glu Ala Thr Ala His Leu II Gly Lys Thr Glu Gln Leu Thr Ala 345IIe Pro Glu IIe Ser Ser Val Gly Lys Thr Glu Gln Gln Leu Thr Ala 350IIe Pro Glu IIe Ser Ser Val Gly Lys Thr Glu Gln Glu Leu Lys His Leu Ala 350Arg Ala Gln IIe Val Gly Met Asn Val Gly Thr Leu Lys His Leu Ala 360Arg Ala Gln IIe Val Gly Met Asn Val Gly Thr Leu Lys IIe Leu Phe 390395Arg Ala Glu Thr Lys Glu IIe Leu Gly IIe His Cys Phe Gly Glu Arg 400His Arg Glu Thr Lys Glu IIe Leu Gly IIe His Cys Phe Gly Glu Arg 400Ala Ala Glu Thr Lys Glu IIe Leu Gly IIe His Cys Phe Gly Glu Arg 410Ala Ala Glu Thr Lys Glu Thr Y Arg Val Ala Ala Leu Asn Gly Leu Asn Arg 455Ala Ala Glu Ala Tyr Arg Val Ala Ala Leu Asn Thr Thr Phe Asn Tyr Pro 445Calo SEQ ID No 21 <113	Arg	His	Val		Ile	Tyr	Gly	Ala		Val	Ile	Gly	Суз		Tyr	Ala	
210 215 220 Tyr His Phe Trp Asm Ser Gly Val Val Ile Arg His Asm Glu Glu Tyr 230 Glu Lys Ile Glu Gly Cys Asp Asp Gly Val Ile Met His Leu Lys Ser 255 Gly Lys Lys Leu Lys Ala Asp Cys Leu Leu Tyr Ala Asm Gly Arg Thr 260 Gly Asm Thr Asp Ser Leu Ala Leu Gln Asm Ile Gly Leu Glu Thr Asp 285 Ser Arg Gly Gln Leu Lys Val Asm Ser Met Tyr Gln Thr Ala Gln Pro 290 His Val Tyr Ala Val Gly Asp Val Ile Gly Tyr Pro Ser Leu Ala Ser 310 Ala Ala Tyr Asp Gln Gly Arg Ile Ala Ala Gln Ala Leu Val Lys Gly 325 Glu Ala Thr Ala His Leu Ile Glu Asp Ile Pro Thr Gly Ile Tyr Thr 340 320 Ala Ala Tyr Asp Gln Gly Arg Ile Ala Ala Gln Ala Leu Val Lys Gly 335 Glu Ala Thr Ala His Leu Ile Glu Asp Ile Pro Thr Gly Ile Tyr Thr 340 345 346 357 Met Lys Val Pro Tyr Glu Val Gly Arg Ala Gln Phe Lys His Leu Ala 365 Met Lys Val Pro Tyr Glu Val Gly Arg Ala Gln Phe Lys His Leu Ala 365 Arg Ala Gln Ile Val Gly Met Asm Val Gly Thr Leu Lys Ile Leu Phe 395 Ala Ala Glu Ile Iser Ser Val Gly Cln Ala Ile Met Glu Gln Glu Arg 415 Ala Ala Glu Ile Ile His Ile Gly Gln Ala Ile Met Glu Gln Lys Gly 415 Ala Ala Glu Ile Ile His Ile Gly Gln Ala Ile Met Glu Gln Jhy Glu Arg 415 Ala Ala Glu Ile Ile His Ile Gly Gln Ala Ile Met Glu Gln Jhy Gly 420 Gly Gly Asm Thr Ile Glu Tyr Phe Val Asm Thr Thr Phe Asm Tyr Pro 445 Thr Met Ala Glu Ala Tyr Arg Val Ala Ala Leu Asm Gly Leu Asm Arg 455 < 210 > SEQ ID NO 21 < 213 > ORGANISM: Lactococccus lactis $< 400 > SEQUENCE : 21$	Ser	Ile		Arg	Gly	Met	Asp		Lys	Val	Aap	Leu		Asn	Thr	Arg	
225230235240Glu Lys Ile Glu Gly Cys Asp Asp Gly Val Ile Met His Leu Lys Ser 2602551Gly Lys Lys Leu Lys Ala Asp Cys Leu Leu Tyr Ala Asn Gly Arg Thr 260265285Gly Asn Thr Asp Ser Leu Ala Leu Gln Asn Ile Gly Leu Glu Thr Asp 2752801Ser Arg Gly Gln Leu Lys Val Asn Ser Met Tyr Gln Thr Ala Gln Pro 290295His Val Tyr Ala Val Gly Asp Val Ile Gly Tyr Pro Ser Leu Ala Ser 305300Ala Ala Tyr Asp Gln Gly Arg Ile Ala Ala Gln Ala Leu Val Lys Gly 340335Glu Ala Thr Ala His Leu Ile Glu Asp Ile Pro Thr Gly Ile Tyr Thr 3451le Pro Glu Ile Ser Ser Val Gly Lys Thr Glu Gln Gln Leu Thr Ala 350Mis Val Pro Tyr Glu Val Gly Arg Ala Gln Phe Lys His Leu Ala 360370Arg Ala Gln Ile Val Gly Met Asn Val Gly Thr Leu Lys Ile Leu Phe 390385Ala Glu Thr Lys Glu Ile Leu Gly Ile His Cys Phe Gly Glu Arg 410401420425Ala Ala Glu Ala Tyr Arg Val Ala Ala Chash Thr Thr Phe San Tyr Pro 425Arg Ala Glu Thr Lys Glu Thr Lys Glu Thr Lys Glu Arg 440455Cly Gly Asn Thr Ile Glu Tyr Phe Val Asn Thr Thr Phe San Tyr Pro 445456<210> SEQ ID NO 21 <213> ORGANISM: Lactococcus lact is<210> SEQUENCE: 21	Asp	-	Leu	Leu	Ala	Phe		Asp	Gln	Glu	Met		Asp	Ser	Leu	Ser	
Glu Lys Ile Glu Gly Cys Asp Asp Gly Val Ile Met His Leu Lys Ser 260 Gly Lys Lys Lys Leu Lys Ala Asp Cys Leu Leu Tyr Ala Asn Gly Arg Thr 260 275 Ser Arg Gly Gln Leu Lys Val Asn Ser Met Tyr Gln Thr Ala Gln Pro 280 285 Ser Arg Gly Gln Leu Lys Val Asn Ser Met Tyr Gln Thr Ala Gln Pro 290 190 His Val Tyr Ala Val Gly Asp Val Ile Gly Tyr Pro Ser Leu Ala Ser 310 325 Glu Ala Tyr Asp Gin Gly Arg Ile Ala Ala Gln Ala Leu Val Lys Gly 325 Glu Ala Thr Ala His Leu Ile Glu Asp Ile Pro Thr Gly Ile Tyr Thr 340 345 Glu Ala Thr Ala His Leu Ile Glu Asp Ile Pro Thr Gly Ile Tyr Thr 355 367 Met Lys Val Pro Tyr Glu Val Gly Arg Ala Gln Phe Lys His Leu Ala 370 Arg Glu Thr Lys Glu Ile Leu Gly Ile His Cys Phe Gly Glu Arg 405 410 415 Ala Ala Glu Thr Lys Glu Ile Leu Gly Ile His Cys Phe Gly Glu Arg 410 425 425 426 425 426 425 426 425 426 425 426 427 427 427 427 428 427 428 428 428 428 429 429 429 429 429 429 429 429	-	His	Phe	Trp	Asn		Gly	Val	Val	Ile	-	His	Asn	Glu	Glu	-	
Gly Lys Lys Leu Lys Ala Asp Cys Leu Leu Tyr Ala Asn Gly Arg Thr 260 Gly Asn Thr Asp Ser Leu Ala Leu Gln Asn Ile Gly Leu Glu Thr Asp 275 Ser Arg Gly Gln Leu Lys Val Asn Ser Met Tyr Gln Thr Ala Gln Pro 290 His Val Tyr Ala Val Gly Asp Val Ile Gly Tyr Pro Ser Leu Ala Ser 310 Ala Ala Tyr Asp Gln Gly Arg Ile Ala Ala Gln Ala Leu Val Lys Gly 325 Glu Ala Thr Ala His Leu Ile Glu Asp Ile Pro Thr Gly Ile Tyr Thr 340 11e Pro Glu Ile Ser Ser Val Gly Lys Thr Glu Gln Gln Leu Thr Ala 355 Met Lys Val Pro Tyr Glu Val Gly Arg Ala Gln Phe Lys His Leu Ala 356 Arg Ala Gln Ile Val Gly Met Asn Val Gly Thr Leu Lys Ile Leu Phe 390 Ala Ala Glu Thr Lys Glu Ile Leu Gly Ile His Cys Phe Gly Glu Arg 415 Ala Ala Glu Thr Lys Glu Ile Gly Asp Val Asn Thr Thr Phe Asn Tyr Pro 420 420 Gly Gly Asn Thr Ile Glu Tyr Phe Val Asn Thr Thr Phe Asn Tyr Pro 425 440 Leu Phe 455	Glu	Lys	Ile	Glu	-	Суз	Asp	Asp	Gly		Ile	Met	His	Leu	-	Ser	
Gly Asn Thr Asp Ser Leu Ala Leu Gln Asn Ile Gly Leu Glu Thr Asp 280 Ser Arg Gly Gln Leu Lys Val Asn Ser Met Tyr Gln Thr Ala Gln Pro 290 Ala Ala Tyr Ala Val Gly Asp Val Ile Gly Tyr Pro Ser Leu Ala Ser 305 Glu Ala Thr Ala His Leu Ile Glu Asp Ile Ala Ala Gln Ala Leu Val Lys Gly 325 Glu Ala Thr Ala His Leu Ile Glu Asp Ile Pro Thr Gly Ile Thr 340 Ile Pro Glu Ile Ser Ser Val Gly Lys Thr Glu Gln Gln Leu Thr Ala 355 Met Lys Val Pro Tyr Glu Val Gly Arg Ala Gln Phe Lys His Leu Ala 370 Arg Ala Gln Ile Val Gly Met Asn Val Gly Thr Leu Lys Ile Leu Phe 385 Ala Ala Glu Thr Lys Glu Ile Leu Gly Ile His Cys Phe Gly Glu Arg 400 His Arg Glu Thr Lys Glu Ile Gly Gln Ala Ile Met Glu Gln Lys Gly 415 Ala Ala Glu Ile Ile His Ile Gly Gln Ala Ile Met Glu Gln Lys Gly 425 Ala Ala Glu Ala Tyr Arg Val Ala Ala Leu Asn Gly Leu Asn Arg 450 Leu Phe 455	Gly	Lys	Lys			Ala	Asp	Cys			Tyr	Ala	Asn	-		Thr	
Ser Arg Gly Gln Leu Lys Val Asn Ser Met Tyr Gln Thr Åla Gln Pro 290 291 295 295 205 200 200 200 200 200 200 200 200 20	Gly	Asn			Ser	Leu	Ala			Asn	Ile	Gly			Thr	Asp	
His Val Tyr Ala Val Gly Asp Val Ile Gly Tyr Pro Ser Leu Ala Ser 305 Ala Ala Tyr Asp Gln Gly Arg Ile Ala Ala Gln Ala Leu Val Lys Gly 325 Glu Ala Thr Ala His Leu Ile Glu Asp Ile Pro Thr Gly Ile Tyr Thr 340 1le Pro Glu Ile Ser Ser Val Gly Lys Thr Glu Gln Gln Leu Thr Ala 355 Met Lys Val Pro Tyr Glu Val Gly Arg Ala Gln Phe Lys His Leu Ala 370 Arg Ala Gln Ile Val Gly Met Asn Val Gly Thr Leu Lys Ile Leu Phe 395 Ala Ala Glu Thr Lys Glu Ile Leu Gly Ile His Cys Phe Gly Glu Arg 405 Ala Ala Glu Ile Ile His Ile Gly Gln Ala Ile Met Glu Gln Lys Gly 420 Gly Gly Asn Thr Ile Glu Tyr Phe Val Asn Thr Thr Phe Asn Tyr Pro 445 Leu Phe 455 	Ser	-		Gln	Leu	Lys			Ser	Met	Tyr			Ala	Gln	Pro	
Ala Ala Tyr Asp Gln Gly Arg Ile Ala Ala Gln Ala Leu Val Lys Gly 335 Glu Ala Thr Ala His Leu Ile Glu Asp Ile Pro Thr Gly Ile Tyr Thr 340 Ile Pro Glu Ile Ser Ser Val Gly Lys Thr Glu Gln Gln Leu Thr Ala 355 Met Lys Val Pro Tyr Glu Val Gly Arg Ala Gln Phe Lys His Leu Ala 370 Arg Ala Gln Ile Val Gly Met Asn Val Gly Thr Leu Lys Ile Leu Phe 385 Arg Glu Thr Lys Glu Ile Leu Gly Ile His Cys Phe Gly Glu Arg 400 His Arg Glu Thr Lys Glu Ile Gly Gln Ala Ile Met Glu Gln Lys Gly 405 Gly Gly Asn Thr Ile Glu Tyr Phe Val Asn Thr Thr Phe Asn Tyr Pro 450 Leu Phe 45 			Tyr	Ala	Val			Val	Ile	Gly	-		Ser	Leu	Ala		
Glu Ala Thr Ala His Leu Ile Glu Asp Ile Pro Thr Gly Ile Tyr Thr 340 Ile Pro Glu Ile Ser Ser Val Gly Lys Thr Glu Gln Gln Leu Thr Ala 355 Met Lys Val Pro Tyr Glu Val Gly Arg Ala Gln Phe Lys His Leu Ala 370 Arg Ala Gln Ile Val Gly Met Asn Val Gly Thr Leu Lys Ile Leu Phe 400 His Arg Glu Thr Lys Glu Ile Leu Gly Ile His Cys Phe Gly Glu Arg 415 Ala Ala Glu Ile Ile His Ile Gly Gln Ala Ile Met Glu Gln Lys Gly 420 Gly Gly Asn Thr Ile Glu Tyr Phe Val Asn Thr Thr Phe Asn Tyr Pro 435 Thr Met Ala Glu Ala Tyr Arg Val Ala Ala Leu Asn Gly Leu Asn Arg 455 		Ala	Tyr	Asp			Arg	Ile	Ala			Ala	Leu	Val	-		
<pre>Ile Pro Glu Ile Ser Ser Val Gly Lys Thr Glu Gln Gln Leu Thr Ala 365 Met Lys Val Pro Tyr Glu Val Gly Arg Ala Gln Phe Lys His Leu Ala 370 Arg Ala Gln Ile Val Gly Met Asn Val Gly Thr Leu Lys Ile Leu Phe 385 Arg Glu Thr Lys Glu Ile Leu Gly Ile His Cys Phe Gly Glu Arg 410 Ala Ala Glu Ile Ile His Ile Gly Gln Ala Ile Met Glu Gln Lys Gly 425 Gly Gly Asn Thr Ile Glu Tyr Phe Val Asn Thr Thr Phe Asn Tyr Pro 435 Thr Met Ala Glu Ala Tyr Arg Val Ala Ala Leu Asn Gly Leu Asn Arg 455 Leu Phe 465 </pre>	Glu	Ala	Thr			Leu	Ile	Glu	-		Pro	Thr	Gly			Thr	
Met Lys Val Pro Tyr Glu Val Gly Arg Ala Gln Phe Lys His Leu Ala 370 Arg Ala Gln Ile Val Gly Met Asn Val Gly Thr Leu Lys Ile Leu Phe 385 Arg Glu Thr Lys Glu Ile Leu Gly Ile His Cys Phe Gly Glu Arg 405 Ala Ala Glu Ile Ile His Ile Gly Gln Ala Ile Met Glu Gln Lys Gly 420 Gly Gly Asn Thr Ile Glu Tyr Phe Val Asn Thr Thr Phe Asn Tyr Pro 445 Thr Met Ala Glu Ala Tyr Arg Val Ala Ala Leu Asn Gly Leu Asn Arg 455 Leu Phe 465 <210> SEQ ID NO 21 <211> LENGTH: 978 <212> TYPE: DNA <213> ORGANISM: Lactococcus lactis <400> SEQUENCE: 21	Ile	Pro			Ser	Ser	Val	-		Thr	Glu	Gln			Thr	Ala	
Arg Ala Gln Ile Val Gly Met Asn Val Gly Thr Leu Lys Ile Leu Phe 395And Clu Lys Glu Thr Lys Glu Ile Leu Gly Ile His Cys Phe Gly Glu Arg 405His Arg Glu Thr Lys Glu Ile Leu Gly Gln Ala Ile His Cys Phe Gly Glu Arg 420Ala Ala Glu Ile Ile His Ile Gly Gln Ala Ile Met Glu Gln Lys Gly 435Gly Asn Thr Ile Glu Tyr Phe Val Asn Thr Thr Phe Asn Tyr Pro 445Thr Met Ala Glu Ala Tyr Arg Val Ala Ala Leu Asn Gly Leu Asn Arg 455Ala Ala Leu Phe 465<210> SEQ ID NO 21 <211> LENGTH: 978 <212> TYPE: DNA <213> ORGANISM: Lactococcus lactis<400> SEQUENCE: 21	Met			Pro	Tyr	Glu			Arg	Ala	Gln			His	Leu	Ala	
His Arg Glu Thr Lys Glu Ile Leu Gly Ile His Cys Phe Gly Glu Arg Ala Ala Glu Ile Ile His Ile Gly Gln Ala Ile Met Glu Gln Lys Gly 420 Gly Gly Asn Thr Ile Glu Tyr Phe Val Asn Thr Thr Phe Asn Tyr Pro 435 Thr Met Ala Glu Ala Tyr Arg Val Ala Ala Leu Asn Gly Leu Asn Arg 450 Leu Phe 465 <210> SEQ ID NO 21 <211> LENGTH: 978 <212> TYPE: DNA <213> ORGANISM: Lactococcus lactis <400> SEQUENCE: 21	Arg		Gln	Ile	Val	Gly		Asn	Val	Gly			Lys	Ile	Leu	Phe	
Ala Ala Glu Ile Ile His Ile Gly Gln Ala Ile Met Glu Gln Lys Gly 420 Gly Gly Asn Thr Ile Glu Tyr Phe Val Asn Thr Thr Phe Asn Tyr Pro 435 Thr Met Ala Glu Ala Tyr Arg Val Ala Ala Leu Asn Gly Leu Asn Arg 450 Leu Phe 465 <210> SEQ ID NO 21 <211> LENGTH: 978 <212> TYPE: DNA <213> ORGANISM: Lactocccus lactis <400> SEQUENCE: 21		Arg	Glu	Thr	Lys		Ile	Leu	Gly	Ile		Cys	Phe	Gly	Glu		
420 425 430 Gly Gly Asn Thr Ile Glu Tyr Phe Val Asn Thr Thr Phe Asn Tyr Pro 435 Thr Met Ala Glu Ala Tyr Arg Val Ala Ala Leu Asn Gly Leu Asn Arg 450 Leu Phe 465 <210> SEQ ID NO 21 <211> LENGTH: 978 <212> TYPE: DNA <213> ORGANISM: Lactococcus lactis <400> SEQUENCE: 21	Ala	Ala	Glu	Ile		His	Ile	Gly	Gln		Ile	Met	Glu	Gln		Gly	
435 440 445 Thr Met Ala Glu Ala Tyr Arg Val Ala Ala Leu Asn Gly Leu Asn Arg 450 455 460 Leu Phe 465 <210> SEQ ID NO 21 <211> LENGTH: 978 <212> TYPE: DNA <213> ORGANISM: Lactococcus lactis <400> SEQUENCE: 21				420					425					430			
450 455 460 Leu Phe 465 <210> SEQ ID NO 21 <211> LENGTH: 978 <212> TYPE: DNA <213> ORGANISM: Lactococcus lactis <400> SEQUENCE: 21	-	-	435				-	440					445		-		
<pre>465 <210> SEQ ID NO 21 <211> LENGTH: 978 <212> TYPE: DNA <213> ORGANISM: Lactococcus lactis <400> SEQUENCE: 21</pre>		450	4			2 -							-4			5	
<211> LENGTH: 978 <212> TYPE: DNA <213> ORGANISM: Lactococcus lactis <400> SEQUENCE: 21		FIIG															
<213> ORGANISM: Lactococcus lactis <400> SEQUENCE: 21																	
					Lact	cocod	ccus	lact	is								
atggcggata agcaacgcaa aaaagtgatt ttggttggtg acgggggcagt tggttcgtcg 60	<400)> SH	EQUEI	ICE :	21												
	atgo	gegga	ata a	agcaa	acgca	aa aa	aaagt	gatt	t t t	ggtto	ggtg	acgo	gggca	agt t	ggtt	cgtcg	60

US 8,846,329 B1

91

-continued

tatgcgtttg ccctgg	gtaaa ccaaggtatc	gcccaagaat tag	gcatcgt tgacttgttc	120
aaagaaaaaa cccago	ggaga tgccgaagac	ctctctcacg cctt	ageett caccageeet	180
aaaaaaattt atagto	gctga ttatagtgat	gcgtccgacg ccga	atctcgt ggttcttacc	240
ageggtgeee eecaga	aagcc cggtgaaacc	cggttagatc tcgt	tgaaaa gaatctgcga	300
attaccaaag atgttg	gttac taagatcgtg	gcgtctggct ttaa	aggggat ttttctcgtc	360
gcggctaacc cagtgo	gacat cctcacgtat	gctacgtgga agtt	tagtgg ttttcccaag	420
aaccgagtgg tcggct	tetgg caceageete	gataccgccc gttt	cceggea ggeettgget	480
gagaaggtcg atgtcg	gacgc ccggtcgatt	cacgcgtaca ttat	tgggtga acatggtgac	540
agtgaatttg cagtct	tggag tcacgccaat	gtggccggcg tgaa	aactgga acaatggttc	600
caagaaaatg attacc	ctgaa tgaagccgaa	attgtggagt tatt	tgaaag cgtgcgggat	660
gccgcctatt ctatta	atcgc caaaaaaggg	gccacgtttt atgo	gagtege agtegeaett	720
gcgcgcatta ccaago	gccat tctggacgat	gaacacgccg ttct	ccccggt gagtgtgttt	780
caagatggtc aataco	ggegt gtetgattgt	tatctcgggc aaco	ccgccgt tgtgggtgca	840
gaaggagtgg taaato	cctat ccatatcccc	ttgaacgatg ccga	agatgca gaagatggaa	900
gcctcgggcg cgcaat	ttgaa agctattatt	gatgaggcat ttgo	ctaagga ggaatttgcg	960
agcgcggtga aaaatt	taa			978
<pre><210> SEQ ID NO 2 <211> LENGTH: 325 <212> TYPE: PRT <213> ORGANISM: I <400> SEQUENCE: 2</pre>	5 Lactococcus lacti	is		
Met Ala Asp Lys G	Gln Arg Lys Lys V	Val Ile Leu Val	Gly Asp Gly Ala	
1 5	5	10	15	
Val Gly Ser Ser 7 20	-	Leu Val Asn Gln 25	Gly Ile Ala Gln 30	
Glu Leu Gly Ile V 35	Val Asp Leu Phe L 40	Lys Glu Lys Thr	Gln Gly Asp Ala 45	
Glu Asp Leu Ser H 50	His Ala Leu Ala F 55	Phe Thr Ser Pro 60	Lys Lys Ile Tyr	
Ser Ala Asp Tyr S 65	Ser Asp Ala Ser A 70	Asp Ala Asp Leu 75	Val Val Leu Thr 80	
Ser Gly Ala Pro G	Gln Lys Pro Gly G 85	Glu Thr Arg Leu 90	Asp Leu Val Glu 95	
Lys Asn Leu Arg I	Ile Thr Lys Asp V	Val Val Thr Lys		
100	1	105	110	
Gly Phe Lys Gly 1 115	Ile Phe Leu Val A 120	Ala Ala Asn Pro	Val Asp Ile Leu 125	
Thr Tyr Ala Thr T 130	Trp Lys Phe Ser G 135	Gly Phe Pro Lys 140	Asn Arg Val Val	
Gly Ser Gly Thr S 145	Ser Leu Asp Thr A 150	Ala Arg Phe Arg 155	Gln Ala Leu Ala 160	
Glu Lys Val Asp V 1	Val Asp Ala Arg S 165	Ser Ile His Ala 170	Tyr Ile Met Gly 175	
Glu His Gly Asp S 180		Val Trp Ser His 185	Ala Asn Val Ala 190	
Gly Val Lys Leu G	Glu Gln Trp Phe G		Tyr Leu Asn Glu	
195	200		205	

Ala	Glu 210	Ile	Val	Glu	Leu	Phe 215	Glu	Ser	Val	Arg	Asp 220	Ala	Ala	Tyr	Ser
Ile 225	Ile	Ala	Lys	Lys	Gly 230	Ala	Thr	Phe	Tyr	Gly 235	Val	Ala	Val	Ala	Leu 240
Ala	Arg	Ile	Thr	Lys 245	Ala	Ile	Leu	Asp	Asp 250	Glu	His	Ala	Val	Leu 255	Pro
Val	Ser	Val	Phe 260	Gln	Asp	Gly	Gln	Tyr 265	Gly	Val	Ser	Asp	Cys 270	Tyr	Leu
Gly	Gln	Pro 275	Ala	Val	Val	Gly	Ala 280		Gly	Val	Val	Asn 285	Pro	Ile	His
Ile	Pro 290	Leu	Asn	Asp	Ala	Glu 295	Met	Gln	Lys	Met	Glu 300	Ala	Ser	Gly	Ala
Gln 305	Leu	Lys	Ala	Ile	Ile 310	Asp	Glu	Ala	Phe	Ala 315	Гла	Glu	Glu	Phe	Ala 320
Ser	Ala	Val	Lys	Asn 325											

25

50

We claim:

- 1. A microorganism comprising:
- a modification that reduces or ablates AcsA activity or AcsA homolog activity in the microorganism; and
- one or more recombinant nucleic acids configured to express an enzyme selected from the group consisting of a malonyl-CoA reductase and a malonate semialdehyde reductase, wherein the microorganism produces an increased amount of 3-hydroxypropionic acid compared to a corresponding microorganism not comprising the one or more recombinant nucleic acids.

2. The microorganism of claim **1** wherein the microorgan- $_{35}$ ism is a bacterium.

3. The microorganism of claim 1 wherein the microorganism is a cyanobacterium.

4. The microorganism of claim **1** wherein the one or more recombinant nucleic acids is configured to express a malonyl-CoA reductase and a malonate semialdehyde reductase.

5. The microorganism of claim 1 wherein the one or more recombinant nucleic acids is configured to express a malonyl-CoA reductase from *Sulfolobus tokodaii* or a homolog thereof.

6. The microorganism of claim **5** wherein the malonyl-CoA reductase from *Sulfolobus tokodaii* or the homolog thereof comprises a sequence at least 80% identical to SEQ ID NO:13.

7. The microorganism of claim 5 wherein the malonyl-CoA reductase from *Sulfolobus tokodaii* or the homolog thereof comprises a sequence at least 90% identical to SEQ ID NO:13.

8. The microorganism of claim **5** wherein the malonyl-CoA reductase from *Sulfolobus tokodaii* or the homolog thereof 55 comprises a sequence at least 95% identical to SEQ ID NO:13.

9. The microorganism of claim 1 wherein the one or more recombinant nucleic acids is configured to express a malonate semialdehyde reductase from *Metallosphaera sedula* or a homolog thereof.

10. The microorganism of claim **9** wherein the malonate semialdehyde reductase from *Metallosphaera sedula* or the homolog thereof comprises a sequence at least 80% identical to SEQ ID NO:16.

11. The microorganism of claim 9 wherein the malonate semialdehyde reductase from *Metallosphaera sedula* or the homolog thereof comprises a sequence at least 90% identical to SEQ ID NO:16.

12. The microorganism of claim **9** wherein the malonate semialdehyde reductase from *Metallosphaera sedula* or the homolog thereof comprises a sequence at least 95% identical to SEQ ID NO:16.

13. The microorganism of claim 1 wherein the microorganism is a bacterium, the one or more recombinant nucleic acids is configured to express a malonyl-CoA reductase from *Sulfolobus tokodaii* or a homolog thereof comprising a sequence at least 95% identical to SEQ ID NO:13 and a malonate semialdehyde reductase from *Metallosphaera*sedula or a homolog thereof comprising a sequence at least 95% identical to SEQ ID NO:16.

14. The microorganism of claim 13 wherein the microorganism is a cyanobacterium.

15. A method of producing 3-hydroxypropionic acid comprising culturing a microorganism as recited in claim **1**.

16. The method of claim 15 wherein the culturing produces 3-hydroxypropionic acid to a concentration of at least about $30 \ \mu M$.

17. The method of claim 15 wherein the culturing produces 3-hydroxypropionic acid to a concentration of at least about $60 \ \mu M$.

* * * * *