US009189394B2

a2 United States Patent 10) Patent No.: US 9,189,394 B2
Kim 45) Date of Patent: Nov. 17,2015
(54) MEMORY-LINK COMPRESSION FOR 8,243,086 B1* 82012 Diardcc..cceveiiiiinnn 345/555
GRAPHIC PROCESSOR UNIT 2003/0217237 Al* 11/2003 Benvenisteetal. 711/153
2009/0160857 Al 6/2009 Rasmusson et al.
. . 2010/0013839 Al 1/2010 Rawson
(75) Inventor: Nam Sung Kim, Middleton, WI (US) 2010/0114909 A1* 5/2010 Museth ..ooovevovvevernion 707/748
. 2012/0320067 Al* 12/2012 Tourcha et al. 345/501
(73) Assignee: Wisconsin Alumni Research 2013/0088504 Al* 4/2013 Strom et al. 345/582
Foundation, Madison, WI (US) 2013/0262809 Al* 10/2013 Wegener 711/165
2014/0101485 Al* 4/2014 Wegener 714/32
(*) Notice: Subject to any disclaimer, the term of this 2015/0025819 A1* 172015 Chandraetal. 702/58
patent is extended or adjusted under 35
U.S.C. 154(b) by 674 days. OTHER PUBLICATIONS
(21) Appl. No.: 13/569,999 ‘High Quality DXT Compression using CUDA’ by Ignacio Castano,
’ nVIDIA, Feb. 2007 *
22) Filed: Aug. 8, 2012 ‘Parallel Variable-Length Encoding on GPGPUs’ by Balevic, Euro-
(22) g. 8,
Par 2009—Parallel Processing Workshops Lecture Notes in Com-
(65) Prior Publication Data puter Science vol. 6043, 2010, pp. 26-35.*
US 2014/0047199 A1l Feb. 13,2014 * cited by examiner
(51) Imt.ClL
gzgi Zj zg (388281) Primary Examiner — Steven Snyder
HO04N 19/176 52014'013 (74) Attorney, Agent, or Firm — Boyle Fredrickson, S.C.
GO6F 12/08 (2006.01)
(52) US.CL (57) ABSTRACT
CPCcccceee. GO6F 12/04 (2013.01); GOGF 12/08
(2013.01); HO4N 19/176 (2014.11) A graphic processing unit having multiple computational
(58) Field of Classification Search elements flexibly interconnected to memory elements pro-
None o) vides for data compressors/decompressors in the memory
See application file for complete search history. channels communicating between the computational ele-
(56) Ref Cited ments and memory elements to provide an effective increase
eferences Cite

U.S. PATENT DOCUMENTS

5,708,511 A *
6,795,897 B2 *

1/1998 Gandhietal. 382/239
9/2004 Benveniste et al. 711/118

LOSS-LESS

TRANSFERTO
MEMORY ELEMENT

COMPRESSION

in bandwidth of those connections by the compression of data
transferred thereon.

17 Claims, 7 Drawing Sheets

LOssY
COMPRESSION

LOSS-LESS

DE-COMPRESSION

LOSSY
DE-COMPRESSION

U.S. Patent Nov. 17, 2015 Sheet 1 of 7 US 9,189,394 B2

FIG. 1

34 33 |
“>~~24

<N N K " S
o o | |

40\/“ /40 7 / l

P s I =
—|—=< — - — |-,

33 _I/ /44 7} ! |

42 | 26 26 26 |

U.S. Patent Nov. 17, 2015 Sheet 2 of 7 US 9,189,394 B2

50

28" *

/SPL\r
| 69 73| | |

'/ i |
%\ @

40
T T L —,/—__]
| 567 |_/33
/l\ / \ ,I 58 FIG. 3
|
64 1 [—]
e\)

/7
28’ W |
WZN .
50" i

U.S. Patent Nov. 17, 2015 Sheet 3 of 7 US 9,189,394 B2

50 50"

Ny
A B e DT

22—t S 111~
28 7777 é;zﬂjiiiii FTTn
7774\ [

//////// 67 [____|
o FIG. 4
| (%8
407 ED/—_\33
FIG. 5 =T
e
i

U.S. Patent

Nov. 17, 2015

¥

TRANSFERTO

MEMORY ELEMENT

~ - ” et
617 FLOATING)

POINT
?

Sheet 4 of 7

66

LOSSY
| COMPRESSION

UPDATE TABLE
| ¥
FETCH

¥

TRANSFER FROM

MEMORY ELEMENT:

o™ /i\\
I ‘ !
é@ﬁrzwa

¢

READ TABLE

POINT
?

LOSS-LESS
DE-COMPRESSION

YES

\g(’ DE-COMPRESSION
NO

L ~~90

/B0

82

L 84

92

/

US 9,189,394 B2

LOSSY

Y

ﬁﬁ

04

U.S. Patent Nov. 17, 2015 Sheet 5 of 7 US 9,189,394 B2

/ _ LLL 50

M50

U.S. Patent Nov. 17, 2015 Sheet 6 of 7

33—~ S\

20 N
TV
. OWQ—\
38/—\\
40/ }
lipiy
50/ \\50’

FIG. 9

US 9,189,394 B2

U.S. Patent Nov. 17, 2015 Sheet 7 of 7 US 9,189,394 B2

337

US 9,189,394 B2

1
MEMORY-LINK COMPRESSION FOR
GRAPHIC PROCESSOR UNIT

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT

This invention was made with government support under
0953603 awarded by the National Science Foundation. The
government has certain rights in the invention.

CROSS REFERENCE TO RELATED
APPLICATION

BACKGROUND OF THE INVENTION

The present invention relates to graphics processing units
(GPUs) and in particular to a method of accelerating process-
ing by such units by compressing data subject to transfer
between GPUs and their off-chip memory.

GPUs) provide a computer architecture specialized for
graphics processing but they may also work with a conven-
tional computer processing unit (CPU) to accelerate highly-
parallel general-purpose applications. In this regard, GPUs
provide for a large number of computational elements that
may operate in parallel on data held in special GPU memory.

In normal operation, the CPU prepares data to be operated
on by the GPU and loads that data into the GPU memory
together with information about the desired GPU functions to
be performed. The multiple computational elements then
execute the desired functions and the data is returned to the
CPU memory from the GPU memory.

The normal problems of long latency related to access by
the computational elements to off-chip memory can be
readily accommodated in a GPU by flexibly switching the
computational elements to a different thread (context switch-
ing) when a given thread is facing a memory access delay.
Since such switching is “lightweight” in a GPU because the
GPU has a large register file so that multiple “in-flight”
threads do not need to move their data from the register file to
a secondary memory. For this reason such switches between
threads can be accomplished rapidly with little delay, making
this an effective strategy for dealing with memory latency.

SUMMARY OF THE INVENTION

The inventor has recognized that context switching may be
inadequate to prevent significant impact in the execution
speed of the GPU caused by memory latency (waiting for
memory accesses) in many important memory-bound appli-
cations, particularly when GPUs are used for general-purpose
computation where the rate of memory access instructions to
compute instructions increases significantly. To address this
problem, the present invention provides compression/decom-
pression of data passing between the computational elements
and the GPU memory on a memory link. The present inventor
has determined that compressing data on the memory link
effectively increases the rate of data transfer despite the time
delay inherent in doing the compression or decompression.

In one embodiment, the invention provides a GPU having
aplurality of computational elements each adapted to execute
instructions on input data to provide output data and having a
plurality of memory elements inter-communicating with a
first set of the computational elements through associated
memory channels to provide input data thereto and receive
output data therefrom. A compressor/decompressor associ-

20

25

30

35

40

45

55

60

2

ated with each memory channel between a memory element
and a connected computational element decompresses data
stored in the memory element for reading by the computa-
tional element and compresses data written by the computa-
tional element for storage in the memory element.

It is thus a feature of at least one embodiment of the inven-
tion to improve the execution of memory-bound programs by
GPUs by increasing the effective bandwidth of memory chan-
nels.

The memory elements may reserve blocks of memory hav-
ing a predetermined address size for the compressed data
based on the uncompressed size of the compressed data.

It is thus a feature of at least one embodiment of the inven-
tion to avoid the circuitry overhead and delay associated with
transferring irregular memory units.

The compressor/decompressor may be adapted to provide
lossy compression and decompression.

It is thus a feature of at least one embodiment of the inven-
tion to provide a fast and simple compression technique con-
sistent with high-speed memory transfer.

The lossy compression and decompression may truncate
bits from data transferred from the computational element to
the memory element. For example, the compression may
truncate the least significant bits.

It is thus a feature of at least one embodiment of the inven-
tion to permit the use of a simple compression technique that
yields consistent compression for simplified data handling.

The compressor/decompressor may further be adapted to
provide a loss-less compression and decompression, and the
compressor/decompressor may operate to selectively provide
lossy or loss-less compression/decompression according to a
compression mode signal.

It is thus a feature of at least one embodiment of the inven-
tion to permit compression of data where lossy compression
would provide unacceptable loss of accuracy or produce
execution errors.

The compression mode signal may be derived from a data
type of the data received by the compressor/decompressor.

It is thus a feature of at least one embodiment of the inven-
tion to provide a simple method of controlling the application
oflossy or loss-less compression, for example, by identifying
the datatype in the memory transfer instruction.

The data type may include integer data and floating-point
data and the compressor/decompressor may provide loss-less
compression of integer data and lossy compression of float-
ing-point data.

It is thus a feature of at least one embodiment of the inven-
tion to identify a simple proxy for the types of data that can be
subject to lossy compression.

The memory elements may include blocks storing input
data and output data and a compression table storing, for each
block compression, data indicating whether the data of the
block is compressed and the amount of compression, and the
compressor/decompressor may use the compression data to
determine an amount of data to read from the block being
different from a size of the block.

It is thus a feature of at least one embodiment of the inven-
tion to provide a method to avoid the transferred data not
necessary to the decompression.

The GPU may include at least one memory cache associ-
ated with each memory channel for caching a portion of the
compression table.

It is thus a feature of at least one embodiment of the inven-
tion to accommodate the large size of the compression table
without an on-chip memory system.

US 9,189,394 B2

3

The compressor/decompressor may use compression data
from the cache and, in the event of a cache miss, reads the
entire data block while waiting for the cache miss to be
resolved.

It is thus a feature of at least one embodiment of the inven-
tion to promote high-speed data transfer by avoiding a stalling
of the data transfer when decompression information from
the compression table is temporarily unavailable.

The compressor/decompressor may be implemented with a
second set of the computational elements different from the
first set.

It is thus a feature of at least one embodiment of the inven-
tion to permit the implementation of the present invention
without substantial change to the GPU hardware.

The memory elements may be on a separate integrated
circuit from an integrated circuit holding the computational
units and the compressor/decompressor.

It is thus a feature of at least one embodiment of the inven-
tion to greatly increase memory transfer speeds for off chip
memory.

These particular objects and advantages may apply to only
some embodiments falling within the claims and thus do not
define the scope of the invention.

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1 is a simplified diagram of the data flow between a
CPU system and a GPU system showing logical points of data
compression and decompression;

FIG. 2 is a block diagram of the CPU system and GPU
system showing the principal functional elements imple-
menting the compression and decompression of FIG. 1
including multiple processing units in memory elements and
memory controllers communicating between the two and
holding the compressor/decompressor;

FIG. 3 is a data flow diagram of a compressor/decompres-
sor during a compression operation;

FIG. 4 is a pictorial representation of a data block under-
going compression as linked to data in a compression table
indicating the degree of compression;

FIG. 5 is a detailed view of the memory controller and
memory elements of FIG. 2 showing storage of the compres-
sion table of FIG. 4 and caching of portions of the compres-
sion table;

FIG. 6 is a flowchart showing the principal steps of the
present invention;

FIG. 7 is a data flow diagram showing a typical memory
transfer operation from a memory eclement through the
memory controller using cached information from the com-
pression table;

FIG. 8 is a figure similar to FIG. 7 showing the memory
transfer operation in the event of a cache miss;

FIG. 9 is a fragmentary representation of the elements of
FIG. 2 showing use of a computational element instead of the
memory controller for the compression and decompression
operation during first stage of compression; and

FIG. 10 is a figure similar to FIG. 9 showing compression
and decompression of the compressed data in a transfer from
a memory element to a processing element.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENT

Referring now to FIG. 1, the present invention may provide
for a computer system 10 having a central processing unit
(CPU) system 12 and a graphic processing unit (GPU) system
14 inter-communicating by a common bus 16. The CPU

20

25

30

35

40

45

50

55

60

65

4

system 12 may have a processor 18 including one or more
cores and a memory 20 including, for example, random
access memory, disk drives, etc. As is generally understood in
the art, the processor 18 will execute stored programs 21 from
memory 20 reading data 28 from the memory 20 and writing
data 28 to the memory 20 during this execution. The stored
programs 21 may include an operating system as well as one
or more application programs of the type known in the art
including programs manipulating graphic images for display
on an associated display (not shown).

The GPU system 14 may include multiple computational
units 22 communicating over memory channels 24 with
memory elements 26. Generally the memory elements 26 are
located “off chip” meaning that they are distanced from the
computational units 22 by constrained bandwidth connec-
tions (through a limited number of package pins or the like) as
is necessary when a common integrated circuit substrate is
not shared. The computational units 22 will also execute
stored programs 29 held in memory elements 26 reading data
28 from memory elements 26 and writing data 28 to memory
elements 26. The stored programs 29 may include a GPU
operating system as well as instructions provided from the
CPU system 12. The stored programs 29 may be augmented
by firmware of the GPU system 14 as is generally understood
in the art. The computational units 22 may be flexibly inter-
connected with the memory elements 26 through memory
channels 24.

In accordance with one embodiment of the present inven-
tion, during operation of the computer system 10, data 28 in
uncompressed form in memory 20, for example graphics
data, will be transferred from the CPU system 12 to the
memory elements 26 for processing by the GPU system 14 as
indicated by dataflow arrows 30. In this embodiment, the data
28 will undergo a compression operation by one or more
compressor/decompressors 33 to provide for a compressed
form of the data 28' in the memory elements 26.

When required by computational units 22, the compressed
data 28' is forwarded through compressor/decompressors 33
positioned on memory channels 24, to the computational
units 22 to provide decompressed data 28 to the computa-
tional units 22. After the data 28 has been processed by the
computational units 22, it is returned through memory chan-
nels 24 and through the compressor/decompressors 33 to
recompress the data 28' for storage in a compressed form in
memory elements 26.

This compression, by reducing the amount of data that
needs to be transferred through the limited bandwidth
memory channels 24 speeds the process of data transfer
increasing the effective bandwidth of the memory channels
24.

Referring now to FIG. 2, in one embodiment, the GPU
system 14 may include a direct memory access controller 34
of'the type well known in the art to affect transfers of data 28
between memory 20 and memory elements 26. The direct
memory access controller may communicate with a GPU
interconnection system or router 36 forming a portion of the
memory channels 24 and flexibly interconnecting different
computational units 22 with different memory elements 26 as
required during context switching and the like.

The router 36 connects each memory element 26 to an L1
cache 38 positioned typically on a chip with the computa-
tional unit 22 to provide standard cache functionality. The [.1
cache in turn connects to a memory controller 40 (also typi-
cally on a chip) that provides for standard memory mapping
functions as is understood in the art. Each memory controller
40 communicates in turn with a corresponding off chip
memory element 26 through a limited bandwidth main

US 9,189,394 B2

5

memory channel 42. The main memory channel 42 may also
implement a virtual memory channel 44 providing a high
priority logical connection between memory element 26 and
cache 38 for particular data as will be described below.

In one embodiment of the invention, each memory control-
ler 40 may incorporate circuitry affecting a compressor/de-
compressor 33 serving to implement compression and
decompression between memory elements 26 and the cache
38 as described above. Thus, the memory controller 40 may
provide for the initial compression of data 28 transferred
between memory 20 and memory element 26 and for the
decompression and re-compression of the data 28' as trans-
ferred along memory channels 24 between computational
unit 22 and memory elements 26.

Referring now to FIGS. 3 and 6, data 28 may be transferred
among the memory elements 26 and computational units 22
in architecturally convenient blocks 50 of data 28, for
example, each block including 128 bytes of data 28. The data
28 will generally be of different types including, for example,
integer data 52 and floating-point data 54. Memory controller
40, upon receiving a command for the transfer of a block 50
of data 28 to a memory element 26 (as indicated by process
block 48), may route the uncompressed data 28 of the uncom-
pressed block 50 to the compressor/decompressor 33 where it
is received by a data type identifier 56. The command in this
context will typically be a block transfer instruction of a type
known in the art indicating the data type.

As indicated by decision block 60 the data type identifier
56 may identify the data type to adopt a different compression
or decompression scheme according to that type of data. In
one embodiment, the data type identifier 56, when the data 28
is identified as integer data 52, communicates that data 28 to
a loss-less compressor 58 as indicated by process block 62.
The loss-less compressor 58 implements a loss-less compres-
sion scheme to reduce the number of bits in the data 28. For
example, the loss-less compression system may be that
described in Xi Chen, Yang L., R. P. Dick, Li Shang, and H.
Lekatsas, “C-Pack: A High-Performance Microprocessor
Cache Compression Algorithm,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, Volume 18, Number
Eight, Pages 196-1208 August 2010, hereby incorporated by
reference. Importantly, the loss-less compression scheme not
only produces compressed integer data 52' having fewer bits
but allows the original integer data 52 to be fully restored by
decompression without corruption or data loss.

Alternatively, when floating-point data 54 is identified, the
data type identifier 56 may route the data to a lossy compres-
sor 64 (as indicated by process block 66) that again reduces
the number of bits in the resulting compressed floating-point
data 54' but in a manner in which that removed data cannot be
restored. One such lossy compression system may simply
truncate bits from the original floating-point data 54. As is
generally understood in the art, floating-point data 54 may
include a sign bit 69 (indicating an algebraic sign of the data),
an exponent portion 71 and a mantissa portion 73, the latter
including most significant bits 74 and least significant bits 76.
One lossy compression system may simply truncate the least
significant bits 76 of the floating-point data 54 to produce a
compressed floating-point data 54'. It will be understood that
during decompression of this data, the truncated bits may be
padded, for example, with zero or a midrange value.

Lossy compression can be rapid and provide a significant
decrease in data size and may often be tolerated in floating-
point data unlike with integer data where such compression
may have a detrimental effect on accuracy or lead to errone-
ous execution states.

20

25

30

35

40

45

50

55

60

6

The present invention further contemplates that the lossy
compression may be turned on or off, for example, by the
programmer (for example, implemented through a memory
data type extension header) to preserve accuracy when great
accuracy is required or to accelerate processes, for example
an initial solution search for large process space, that can be
recognized in that programming time. When lossy compres-
sion is turned off, the identification of the data type per deci-
sion block 60 may be skipped as indicated by arrow 61. In this
case, the data type identifier 56 may simply follow the instruc-
tions provided to it with respect to selecting among different
types of data compression or no data compression.

Referring still to FIGS. 3 and 6, any compression, either
using a lossy or loss-less compressors 64 or 58 will produce
compressed data 28' and will have fewer bits than in the
original byte that was compressed. These fractional bytes are
then reassembled into contiguous chunks 64 (e.g. 16 byte
chunks) that fill a portion of the 128 byte compressed block
50'. Even though only a portion of the compressed block 50'
is filled, nevertheless a full 128 byte data block is reserved in
the memory element 26 for storage of the compressed data
block 50' for simplicity in addressing, the full data block
preserving consistent address boundaries between blocks.
This full allocation of full-sized data blocks 50 in memory
elements 26 is acceptable because the compression of the
present invention is not intended for memory conservation
but rather to increase the effective bandwidth of data transfer.

Referring now to FIG. 4, after a given data block 50 has
been compressed, as indicated by process arrow 67, the
amount of data (e.g., the number of significant chunks 64) in
the data block 50 will be substantially decreased. In order to
gain the benefit ofthis compression in reducing the transfer of
data, only the significant chunks 64 should be transferred. For
this purpose, the memory controller 40 must have access to
information about the compression and amount of compres-
sion of each compressed data block 50' so as to transmit only
the data 28 and not the empty addresses of the data block 50.

Accordingly, in one embodiment of the invention, each
compressed data block 50' may be associated with an entry 68
in a compression lookup table 70. The entry 68 may provide
afirst bit 72 indicating whether a block 50 in memory element
26 has been compressed and a second set of bits 75 indicating
the particular chunks 64 of the compressed data block 50' that
hold significant data 28. For example, the second set of bits 75
may provide three bits allowing eight different 16 byte
chunks 62 to be designated. Using this entry 68, the memory
controller 40 only transfers the chunks 64 having active data.
Upon each compression as indicated by process block 77 of
FIG. 6, the compression lookup table 70 may be updated.

Referring now to FIG. 5, the compression lookup table 70
may require as much as, for example, 0.4 percent of the total
GPU memory space to provide entries 68 for each com-
pressed data block 50'. This data structure will generally be
too large for practical storage in the cache 38 or other dedi-
cated memory structure on a chip. Accordingly, in one
embodiment of the invention, the compression lookup table
70 may be stored in the memory elements 26 associated with
the particular compressed blocks 50' in that memory element
26. Portions of this compression lookup table 70 then may be
cached in the cache 38 for rapid access by the memory con-
troller 40 during the transfer process.

Referring now to FIGS. 6 and 7, after the data 28 from the
CPU system 12 is compressed and stored in a memory ele-
ment 26, a computational unit 22 may make a fetch request 80
as indicated by like numbered process block 80 and arrow 80.
Per the subsequent process block 82, the memory controller
40 may then initiate a transfer ofthe indicated block or blocks

US 9,189,394 B2

7

50 from the memory element 26, first decompressing the data
in the memory element 26 into decompressed block 50 and
then forwarding it to the requesting computational unit 22.

Specifically, upon receiving the fetch request 80, the
memory controller 40 accesses the compression lookup table
70 as indicated by process block 84 to determine whether the
requested data block(s) 50 are compressed and where the
compressed data 28 resides within each data block 50.
Assuming the entry 68 of the compression lookup table 70
needed for the requested data block(s) 50 is cached in cache
38, this entry 68 is returned to the memory controller 40
which then transfers only the significant data from the com-
pressed data block 50" as indicated by arrow 85 and decom-
presses that data, typically into cache 38 as a full uncom-
pressed data block 50 with each chunk 64 fully reconstructed
with significant data.

Referring now to FIG. 8, in some cases, the cache 38 will
not have the necessary entry 68 of the compression lookup
table 70 needed for transfer of the requested compressed data
block 50'. In this case, a cache miss will occur and the nec-
essary data from the compression lookup table 70 stored in
memory element 26 will need to be transferred to the cache 38
through the virtual memory channel 44 described above. This
high priority virtual memory channel 44 prevents a deadlock
situation in which the necessary cache data (entry 68) gets
blocked behind stalled data responses for cash blocks 50' that
are waiting for the entry 68.

While the entry 68 is being transferred from the lookup
table 70 stored in the memory element 26 to the cache 38, the
memory controller 40 may transfer the entire data com-
pressed block 50' including both populated data chunks 62
and those that are blank for reasons of the compression. This
preemptive transfer prevents the stalling of the transfer pro-
cess in these cases of a cache miss of data from the compres-
sion lookup table 70. Decompression of the compressed data
block 50' as transferred to cache 38 may then be performed to
produce a decompressed data block 50 after the necessary
entry 68 of the lookup table 70 has been received in this
decompressed data block 50 provided to the computational
unit 22.

Referring again to FIG. 6, during the decompression pro-
cess, once the entry 68 of the compression lookup table 70 has
been obtained as indicated by process block 57, the data type
identifier 56, as described above, may determine whether the
particular data is floating-point data or integer data and may
conduct a loss-less decompression as indicated by process
block 94 or a lossy decompression process indicated by pro-
cess block 92 as may be required based on this determination
and the implicit previous compression of the data. In either
case, the data is then passed to the computational unit 22 for
execution as indicated by process block 94.

Upon completion of that execution of the data of the data
block 50 by the computational unit 22, the data block 50 may
be returned to the memory elements 26 by repeating the steps
following process block 48 described above to recompress
the data of the data block 50 for storage in the memory
element 26.

Referring now to FIG. 9, in a second embodiment, the
compressor/decompressors 33 may be implemented by one
or more of the processing units 22 either dedicated to that
purpose or switched in on a context-switching basis, instead
of through dedicated circuitry in the memory controller 40.
This latter approach uses additional computational resources
but eliminates the need for specialized hardware allowing the
present invention to be implemented without significant hard-
ware modifications. In an example memory transfer operation
using this technique, a data block 50 from memory 20 may be

20

25

30

35

40

45

55

60

65

8

transferred (for example by direct memory access) to
memory element 26 in an uncompressed form indicated by
data block 50. This data may then be transferred via the
memory controller 40 and the cache 38 to one computational
unit 22 serving as the compressor/decompressor 33 which
may compress the data and write it back via the cache 38 to the
memory element 26 as a compressed data block 50'. The
computational unit 22 serving as the compressor/decompres-
sor 33 may also calculate and save the necessary data for the
compression lookup table 70 (not shown in FIG. 9).

Referring now to FIG. 10, when the compressed data block
50, is required for use by a computational unit 22', it may be
routed through the memory controller 40 and cache 38 to the
computational unit 22 serving as the compressor/decompres-
sor 33. This latter computational unit 22 may be the same
computational unit 22 that originally compressed the com-
pressed data block 50" or may be any computational unit 22
that is available based on context switching. The computa-
tional unit 22 providing the compressor/decompressor 33
then decompresses the compressed data block 50' into cache
38 and then routes this decompressed data to the computa-
tional unit 22' issuing the fetch request.

This process may be reversed as indicated by the dotted
arrows in FIG. 10 after the execution on the uncompressed
data block 50 is complete and the data of the data block 50
returned to the memory element 26 as compressed data block
50". In this way the computational unit 22 that would other-
wise be idle at certain times can be used to handle the com-
pression and decompression overhead.

While the present invention has been described with
respectto a system in which there is a separate memory 20 for
the CPU system 12 and memory elements 26 for the GPU
system 14, it will be appreciated, that it will also be applicable
to systems that integrate memories between the CPU system
12 and GPU system 14. Although such integrated systems
will not require data transfer between them, the performance
impact of limited bandwidth of memory channels 24 will be
worse (and thus the improvement provided by the present
invention greater) since both the CPU and the GPU share
common memory channels 24.

It will be appreciated, that the present invention may also
compress the data footprint of the compressed data in the
memory if the additional latency required for determining
actual memory addresses of compressed data may be accom-
modated. It will further be understood that although the
memory elements are typically off chip, they may include
on-chip elements and further that the compression table may
be stored partially or fully on-chip, for example, in dedicated
memory other than the cache memory. Loss-less and lossy
compression may be used exclusively as well as in combina-
tion as described herein.

While the present invention has been described with
respect to a graphic processing unit (GPU) it will be appre-
ciated that the purpose of the unit for graphics does not limit
the invention and in fact that devices sold as graphic process-
ing units can be and are used for scientific and mathematical
calculations unrelated to graphics. The invention is therefore
generally applicable to “accelerator processing units” are
intended to be used with a master CPU including but not
limited to graphic processing units.

Certain terminology is used herein for purposes of refer-
ence only, and thus is not intended to be limiting. For
example, terms such as “upper”, “lower”, “above”, and
“below” refer to directions in the drawings to which reference
is made. Terms such as “front”, “back”, “rear”, “bottom” and
“side”, describe the orientation of portions of the component
within a consistent but arbitrary frame of reference which is

US 9,189,394 B2

9

made clear by reference to the text and the associated draw-
ings describing the component under discussion. Such termi-
nology may include the words specifically mentioned above,
derivatives thereof, and words of similar import. Similarly,
the terms “first”, “second” and other such numerical terms
referring to structures do not imply a sequence or order unless
clearly indicated by the context.

When introducing elements or features of the present dis-
closure and the exemplary embodiments, the articles “a”,
“an”, “the” and “said” are intended to mean that there are one
or more of such elements or features. The terms “compris-
ing”, “including” and “having” are intended to be inclusive
and mean that there may be additional elements or features
other than those specifically noted. It is further to be under-
stood that the method steps, processes, and operations
described herein are not to be construed as necessarily requir-
ing their performance in the particular order discussed or
illustrated, unless specifically identified as an order of perfor-
mance. It is also to be understood that additional or alternative
steps may be employed.

References to “a microprocessor” and “a processor” or
“the microprocessor” and “the processor,” can be understood
to include one or more microprocessors that can communi-
cate in a stand-alone and/or a distributed environment(s), and
can thus be configured to communicate via wired or wireless
communications with other processors, where such one or
more processor can be configured to operate on one or more
processor-controlled devices that can be similar or different
devices. Furthermore, references to memory, unless other-
wise specified, can include one or more processor-readable
and accessible memory elements and/or components that can
be internal to the processor-controlled device, external to the
processor-controlled device, and can be accessed via a wired
or wireless network.

It is specifically intended that the present invention not be
limited to the embodiments and illustrations contained herein
and the claims should be understood to include modified
forms of those embodiments including portions of the
embodiments and combinations of elements of different
embodiments as come within the scope of the following
claims. All of the publications described herein, including
patents and non-patent publications are hereby incorporated
herein by reference in their entireties.

What I claim is:

1. An accelerator processing unit comprising:

a plurality of computational elements each adapted to
execute instructions on input data to provide output data;

a plurality of memory elements storing compressed data
and inter-communicating with a first set of the compu-
tational elements through associated memory channels
to provide input data thereto and receive output data
therefrom wherein the memory elements include blocks
storing input data and output data;

a compressor/decompressor associated with each memory
channel between a memory element and a connected
computational element to decompress the compressed
data stored in the memory element for reading by the
computational element and to compress data written by
the computational element for storage in the memory
element as the compressed data;

a compression table storing for each block, compression
data providing an indication of whether the data of the
block is compressed and an amount of compression;

wherein the compressor/decompressor uses the compres-
sion data to determine an amount of data to read from the
block being different from a size of the block;

20

25

30

35

40

45

50

55

60

65

10

further including at least one memory cache associated

with each memory channel for caching a compression

table; and

wherein the compressor/decompressor uses compression

data from the cache and, in an event of a cache miss of

compression data for a given block, reads an entire given
block while waiting for the cache miss to be resolved.

2. The accelerator processing unit of claim 1 wherein the
compressor/decompressor is further adapted to provide at
least two modes of compression and wherein the compressor/
decompressor operates to selective the compression mode
according to a compression mode signal.

3. The accelerator processing unit of claim 2 wherein the
compression mode signal is derived from a data type of the
data received by the compressor/decompressor.

4. The accelerator processing unit of claim 3 wherein the
compression mode signal is derived from a data type provided
in a memory transfer instruction.

5. The accelerator processing unit of claim 3 wherein the
data type may include integer data, and single-/double-preci-
sion floating-point data and wherein the compressor/decom-
pressor provides loss-less compression of integer data and
lossy compression the floating-point data.

6. The accelerator processing unit of claim 5 wherein the
lossy compression truncates bits from data transferred from
the computational element to the memory element.

7. The accelerator processing unit of claim 6 wherein the
compressor/decompressor truncates least significant bits of a
mantissa of a floating point number.

8. The accelerator processing unit of claim 1 wherein the
compressor/decompressor provides lossy compression.

9. The accelerator processing unit of claim 1 wherein the
memory elements reserve blocks of memory having a prede-
termined address size for the compressed data based on the
uncompressed size of the compressed data.

10. The accelerator processing unit of claim 1 wherein the
compressor/decompressor is implemented with software
algorithm executed by a second set of the computational
elements different from the first set.

11. The accelerator processing unit of claim 1 wherein the
memory elements are on a separate integrated circuit from an
integrated circuit holding the computational units and the
compressor/decompressor.

12. The accelerator processing unit of claim 1 wherein the
compressor/decompressors include memory controllers for
communicating with memory elements to translate between
physical memory addresses and virtual memory addresses.

13. A computer system comprising:

(a) an accelerator processing unit including:

(1) a general-purpose computer including at least one
processor communicating with a memory system;

(b) a special purpose computer including:

(1) a plurality of computational elements each perform-
ing instructions on input data to provide output data;

(ii) a plurality of memory elements inter-communicat-
ing with a first set of the computational elements
through associated memory channels to provide input
data thereto and receive output data therefrom
wherein the memory elements include blocks storing
input data and output data;

(iii) a compressor/decompressor associated with each
memory channel between a memory element at a
connected computational element to decompress data
stored in the memory element for reading by the com-
putational element and to compress data written by
the computational element for storage in the memory
element; and

US 9,189,394 B2

11

(iv) a compression table storing for each block, com-
pression data providing an indication of whether the
data of the block is compressed and an amount of
compression;

wherein the compressor/decompressor operates to:
receive data from the memory system and compress that
data for storage in memory elements;

receive compressed data from the memory elements and
decompress the data for transfer to the computational
elements using the compression data to determine an
amount of data to read from the block being different
from a size of the block;

receive decompressed data from the computational ele-
ments and compress the data for storage in the
memory elements;

receive compressed data from the memory elements and
decompress the data for transfer to the memory sys-
tem;

further including at least one memory cache associated
with each memory channel for caching a portion of the
compression table; and
wherein the compressor/decompressor uses compression
data from the cache and in an event of a cache miss of
compression data for a given block, reads an entire given
block while waiting for the cache miss to be resolved.
14. The computer system of claim 13 wherein the compres-
sor/decompressor is adapted to provide a lossy compression
and decompression and to provide a loss-less compression
and decompression, and wherein the compressor/decompres-
sor operates to selectively provide lossy or loss-less compres-
sion/decompression according to a data type of the data
received by the compressor/decompressor.
15. A method of operating an accelerator processing unit
comprising:
a plurality of computational elements each adapted to
execute instructions on input data to provide output data;
aplurality of memory elements inter-communicating with

a first set of the computational elements through associ-

ated memory channels to provide input data thereto and

20

25

30

35

12

receive output data therefrom wherein the memory ele-
ments include blocks storing input data and output data;

a compressor/decompressor associated with each memory
channel between a memory element at a connected com-
putational element to decompress data stored in the
memory element for reading by the computational ele-
ment and to compress data written by the computational
element for storage in the memory element, and

a compression table storing for each block, of compression
data providing an indication of whether the data of the
block is compressed and an amount of compression;

the method comprising the steps of:

receive data over a memory channel from the computa-
tional elements and compress that data for storage in
memory elements; and

receive data over a memory channel from the memory
elements and decompress the data for transfer to the
computational elements using the compression data
to determine an amount of data to read from the block
being different from a size of the block,

wherein the accelerator processing unit further includes at
least one memory cache associated with each memory
channel for caching a portion of the compression table;
and

wherein the compressor/decompressor uses compression
data from the cache and, in an event of a cache miss of
compression data for a given block, reads an entire given
block while waiting for the cache miss to be resolved.

16. The method of claim 15 wherein the compression is
selected between lossy compression and loss-less compres-
sion based on a type of the data.

17. The method of claim 15 wherein the compressor/de-
compressor is implemented with software algorithm
executed by a second set of the computational elements dif-
ferent from the first set.

#* #* #* #* #*

	Bibliography
	Abstract
	Drawings
	Description
	Claims

