US009231865B2

a2z United States Patent (10) Patent No.: US 9,231,865 B2
Sankaralingam et al. 45) Date of Patent: Jan. 5, 2016
(54) LOOKUP ENGINE WITH 5,705,938 A * 1/1998 Kean ... 326/39
RECONFIGURABLE LOW LATENCY 5,946,706 A * 8/1999 Park et al. . 711/111
RE37,195 E * 5/2001 Keancccocovevvevieennnne 326/39
COMPUTATIONAL TILES 6,628,653 B1* 9/2003 Salimcccccvevvrennenn. 370/401
. . . 6,920,562 B1* 7/2005 Kerrccocooveueneee. GOGF 9/30003
(75) Inventors: Karthikeyan Sankaralingam, Madison, 380/28
WI (US); Eric Nathaniel Harris, 7,042,248 Bl1* 5/2006 Huttonetal. 326/41
Oshkosh, WI (US); Samuel Lawrence 7,818,725 B1* 10/2010 Agarwal ct al. .. 717/136
: 7,840,914 B1* 11/2010 Agarwal et al. ... 716/102
Wasmundt, Mosinee, WI (US) 8,130,791 B2* 3/2012 Leyreretal. 370/474
8,145,880 B1* 3/2012 Ci tal. .o 712/11
(73) Assignee: Wisconsin Alumni Research 8,250,555 B1* 82012 L;“éif L T717/159
Foundation, Madison, WI (US) 8,250,556 B1* 82012 Leeetal. 717/159
8,291,400 B1* 10/2012 Lc_ee etal. 717/161
(*) Notice: Subject to any disclaimer, the term of this 2003%312375’ ; }g ill : 1%; %8 (1)§ glsmalsl ett 211 AR ;B; }g
: : arwell € e .
paterlt 18 eXtended or adJuSted under 35 2003/0154458 Al 3k 8/2003 Butts et al. ''''''''' 716/17
U.S.C. 154(b) by 183 days. 2003/0174701 Al* 9/2003 Angle et al. .. 370/390
2003/0185220 Al* 10/2003 Valenci 370/398
(21) Appl. No.: 13/572,317 2004/0060032 Al* 3/2004 McCubbrey 716/16
2004/0205336 Al* 10/2004 Kessleretal. 713/160
(22) Filed: Aug. 10, 2012 2004/0250046 Al* 12/2004 Gonzalezetal. 712/11
i 2005/0122918 Al* 6/2005 Johnston 370/310
(65) Prior Publication Data (Continued)
US 2014/0044135 Al Feb. 13, 2014 OTHER PUBLICATIONS
(51) Imt.ClL Venkatraman Govindaraju et al., Dynamically Specialized Datapaths
HO4L 12/28 (2006.01) for Energy Efficient Computing, 17th IEEE International Sympo-
HO4L 12/741 (2013.01) sium on High Performance Computer Architecture, 2011, University
HO4L 12/773 (2013,01) of Wisconsin-Madison, Vertical Research Group.
(52) US.CL . . .
(& eI HO4L 45/745 (2013.01); HO4L 45/69 ~ Primary Examiner —Guang Li
(2013.01); HO4L 12/2858 (2013.01) Assistant Examiner — Joe Combs
(58) Field of Classification Search (74) Attorney, Agent, or Firm — Boyle Fredrickson, S.C.
CPC ...cceecveinn HO4L 2012/46; HO4L 2012/5618
USPC oo 370/401 7 ABSTRACT
See application file for complete search history. An architecture for a specialized electronic computer for
. high-speed data lookup employs a set of tiles each with inde-
(56) References Cited pendent logic elements lookup memory portions. The tiles

U.S. PATENT DOCUMENTS

4,700,187 A * 10/1987 Furtek 326/39
4,845,633 A * 7/1989 Furtek ... 326/38
5,151,623 A * 9/1992 Agrawal ... 326/40

may each comprise gate-array-like functional units that may
be wired together by a multi-way switch for extremely low
latency.

17 Claims, 7 Drawing Sheets

32~

L-50a | f

46

NN
502 50b

32/

US 9,231,865 B2

Page 2

(56) References Cited 2008/0136449 Al1* 6/2008 Huttonetal. 326/47
2008/0240090 Al* 10/2008 Helleretal. 370/360

U.S. PATENT DOCUMENTS 2009/0028150 Al* 1/2009 Johnsen et al. . . 370/392

2009/0122918 Al* 5/2000 Lictal ccocooooeireiiviisiirins 3757317

2005/0151258 Al* 7/2005 Kotechaetal. 257/758 ggigfgggggﬁ ﬁi: 1%812 Estanetal~t~l~ ~~~~~~~~~~~~~~~~ 33873‘85

* erguson et al.
2006/0098675 AL* 572006 Okuno - 370412 2014/0115248 Al* 4/2014 Kardachetal. 711/106

2007/0010205 Al* 1/2007 Wielage ... 455/63.3
2007/0200594 Al* 8/2007 Levietal.ccccovvnrnnen.. 326/38 * cited by examiner

U.S. Patent Jan. 5,2016

Sheet 1 of 7

US 9,231,865 B2

14
-
|28
=30
31
_-50a jOb;'
‘ »—30
Jo— O O
Piulm
3850 O
N2 ol
O O =
0O
0 O] 50a 50b
;2 00O ™~ h
| X \
et L 40 65 502
482) 48b
- X 500
32 g)
A A
502 50b
30"

FIG. 1

U.S. Patent Jan. 5,2016 Sheet 2 of 7 US 9,231,865 B2

o0 0 TLe 56 a
- AN

58
) i FIG. 2
N / KL 53
67 62 b------ _7 . /65

o O
WINE ST [E
*~-32
70 30
A 70 / 9 31
A AN, C G
0/\1 T
B C =3 Y
00 0l 10& 11 T) r
D E F G D EEd X =

U.S. Patent Jan. 5,2016 Sheet 3 of 7 US 9,231,865 B2

I I II ¥ Y
A
B\(_Zz FIG. 5
; \
D \
: \
g \
v \
X
74 VNI
L £ yaimb
76~ 76

FIG. 6 FIG. 7

U.S. Patent

Jan. 5§, 2016

Sheet 4 of 7

PARTITION TASKS
TO LOGICAL TILES

102 ~—

COMPILE CODE
BLOCKS FOR
TILES

ASSIGN LOGICAL

TILES TO PHYSICAL

TILES

106

CHECK
ROUTING
PROBLEMS
?

DETERMINE
ROUTING
HEADERS

110 —]

DOWNLOAD TO
TILES

|

US 9,231,865 B2

FIG. 8

FIG. 9

U.S. Patent Jan. 5,2016 Sheet 5 of 7 US 9,231,865 B2

> FIG. 10

IN
/—31
) outT
11
30
17
> 23
> 29
35— OUT

U.S. Patent Jan. 5,2016 Sheet 6 of 7 US 9,231,865 B2

36
w .
S s —
/ .- \/) 1 |
l 204{ 7 | 200 [~ 200
) 48 ' \
36 /’212@_/\—\
d | 206 ", |
34 / \
/
-5l \
’ \

, ~ 202 ‘204 38
204
7 204 202 % 10

) {_
By o 200
205 ATT_Zar—| Tol226 E*51_2/24 u/ -
- 'r 1 | | 1 208
L1 11
2 lljl él [w] o 38
212 , of a) o o 140
| I | | 3 | | | i | I
/ 1 I I
L]
/ 1
2042 / |
202— £ \
“9:‘_— | f205
216 | 520 9
_V .
iy FIG. 1
217 \f //,——40
381 _ L
| —
226
)_—

224

U.S. Patent Jan. 5,2016 Sheet 7 of 7 US 9,231,865 B2

216 202 204
[« S
\ /
/
e 220
241 |\ 1.7
221 L1~ [—40
38 ’//
|
) FIG. 13
: (
226

US 9,231,865 B2

1
LOOKUP ENGINE WITH
RECONFIGURABLE LOW LATENCY
COMPUTATIONAL TILES

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT

This invention was made with government support under
0917213 awarded by the National Science Foundation. The
government has certain rights in the invention.

BACKGROUND OF THE INVENTION

The present invention relates to specialized electronic
devices for looking up data such as may be used in high-speed
network routers and switches and, in particular, to a device
that may optimize its memory topology for diftferent lookup
tasks.

Computer networks allow the exchange of data among
spatially separated computers connected by “links”, the latter
physically implemented as electrical conductors, fiber optics,
and radio waves. The dominant network protocols work by
dividing a data message into data packets, each of which
contains a destination address. The destination address
attached to the packets permits the packets to navigate
through complex and dynamically changing networks to the
destination. When particular links used by a message become
crowded or disabled, packets of that message, guided by the
destination address, may be routed through different links to
reach their destination in a manner invisible to the sender.

A key element in implementing a network using addressed
packets is a device called a router (or sometimes a switch)
which reads packets’ addresses and steers them according to
the addresses among the different links joined by the router.
For this purpose, the router employs a “routing table” match-
ing packet addresses with ports leading to the different links.
The data in the router table maybe manually programmed or
may be “learned” using various router heuristics.

Routers may also perform other tasks such as address
translation where the packet addresses change for another
packet address, or the management of white or blacklists
where certain packets may be blocked, for example, to pre-
vent denial of service attacks where the network is flooded
with spurious packets from a given address.

All of these functions of a router require the router to look
up packet addresses or other packet features in memory, and
to perform these operations repeatedly and rapidly. The effec-
tiveness of a router is largely a function of how quickly these
memory lookups may be completed.

The memory lookup function may be implemented by a
conventional processor reading a table implemented in ran-
dom access memory. Such memories allow data to be read
from identified memory addresses when the address is pro-
vided. Finding data with such an architecture requires search-
ing through multiple addresses, a generally time-consuming
process. For this reason, high performance routers may use
so-called ternary content addressable memories (TCAM)
which allow the entire memory to be searched in parallel for
the data of interest. These memories substantially reduce the
time taken for the memory lookups but are costly and con-
sume considerable power and concomitantly generate greater
amounts of heat. Both electrical usage and heat generation
can be problems in large data centers.

A possible solution to the problems attendant to rapid
memory lookup is the creation of specialized electrical hard-
ware for this purpose. This task, however, is complicated by
the variety of different lookup tasks that may be required in a

20

25

30

35

40

45

50

55

60

65

2

modern router and the need to employ the router in an evolv-
ing set of network tasks. For example, currently routers may
need to respond to both Internet Protocol (IP) address lookups
and local area network (Ethernet-type) lookups. An IP
address lookup deals with addresses that have topological
significance, that is, different portions of the address repre-
sent different networks and sub networks. For IP address
lookups, a tree structure may be preferred as the tree allows
successively parsing the network address in a manner that
reflects the network topology. In contrast, for Ethernet-type
lookups the address will typically have no topological signifi-
cance, representing simply an arbitrary unique number
assigned to each device. In this case, the memory lookups are
better implemented using a hash table which encodes no
topological information about the addresses stored and
allows a simpler lookup operation.

As networks grow more complicated and routers are called
upon to execute additional tasks, it is likely that current meth-
ods for processing packets will prove sub-optimal and
changes to the data structures used by routers during packet
processing will be needed. Current methods of packet pro-
cessing may also be sub-optimal for new protocols, exten-
sions to existing protocols, or the introduction of new features
for packet processing.

U.S. Pat. No. 7,940,755 entitled “Lookup Engine with
Programmable Memory Topology” assigned to the same
assignee as the present invention and hereby incorporated by
reference, describes a novel computer architecture that flex-
ibly addresses the conflicting goals of high-speed memory
operations and the flexibility inherent in reprogrammable
hardware. In this design multiple inter-communicating “tiles”
are each associated with portions of lookup memory. A vari-
ety of different types of lookup tasks may be implemented by
programming the individual tiles and a path of intercommu-
nication data among the tiles. This latter programmability
allows different architectural topologies to be created that are
optimized for different types of lookup tasks.

Each of the tiles may be associated with a von Neumann
type processor that may implement a multistep program for
processing the data it receives from other tiles (or from a
general-purpose processor) and then may pass that data after
processing to another tile (or back to the general-purpose
processor). In a typical program, data will be passed in a chain
between multiple tiles before returning to the general-pur-
pOse processor.

SUMMARY OF THE INVENTION

The present inventors have recognized that the processing
paradigm of the tile-based system can be moved from tiles of
reduced instruction set von Neumann computers to tiles of
logical elements implementing more primitive functional ele-
ments. In this regard, the inventors believe that any increase in
the number of tiles that may be necessary to execute router
type functions using these primitive functional elements will
be offset by the substantially reduced latency within each tile
using high-speed gate-array structures. The logical elements
of'thetiles may include logical gates that produce an output in
a single cycle or a limited number of cycles when associated
with a local data store.

In one embodiment, the present invention provides a net-
work router for routing data packets in a network. The router
has a series of ports receiving and transmitting data packets
and a general-purpose processor communicating with the
series of ports to provide for network routing functions
including packet processing but exclusive of some data
packet lookup functions. In addition, the router has a packet

US 9,231,865 B2

3

processing engine communicating with the general-purpose
processor to receive data therefrom and to conduct memory
lookups based on the data. The packet processing engine
includes a set of intercommunicating computational tiles,
each tile having (1) a set of functional units having inputs
receiving arguments and processing the arguments to produce
values at outputs; (2) a configuration store for holding pro-
gram instructions; and (3) a programmable multi-way switch
communicating among the functional units to provide swit-
chable direct electrical connection between selected inputs
and outputs of the functional units according the program
instructions in the configuration store. The functional units
may access a lookup memory holding packet related data and
the tile includes interconnection circuitry managing inter-
communication of data between the tiles.

It is thus a feature of at least one embodiment of the inven-
tion to provide a router having hardware-type performance
but providing flexibility of programming. The use oftiles and
the multi-way switch allows relatively simple hardware ele-
ments to be easily arranged to produce sophisticated lookup
functions. It is another feature of the invention to permit ready
implementation in conventional devices such as field pro-
grammable gate arrays.

The interconnection circuitry may move data between tiles
according to a clock signal in which at least some of the
functional units receive arguments to produce values in a
single cycle of the clock signal.

It is thus a feature of at least one embodiment of the inven-
tion to provide a low latency processing of data in a tile-based
architecture by employing simple but extremely fast func-
tional elements in each tile.

At least one functional unit may be a four-input logical
Boolean gate providing a function selected from the functions
of: AND, OR, EXCLUSIVE-OR, LESS THAN, GREATER
THAN, and EQUAL.

It is thus a feature of at least one embodiment of the inven-
tion to provide a versatile functional element useful for many
packet processing tasks.

More generally, the single cycle functional units may
include an adder, a bit counter, a bit selector, a binary space
tree searcher, a two-input logic gate, a four-input logic gate,
and the two-input multiplexer.

It is thus a feature of at least one embodiment of the inven-
tion to provide a compact set of basic functional elements that
may be combined through the tile architecture to provide a
variety of high-speed functions for router.

The configuration store may hold multiple sets of program
instructions and one set of program instructions may be
selected according to bits in the data received by the lookup
processor.

It is thus a feature of at least one embodiment of the inven-
tion to allow each tile to provide multiple different functions
during operation of the router. The program instructions may
include configuration bits selecting configurations of multi-
plexers associated with each functional unit selecting among
different sources for the inputs for each functional unit. For
example, the sources may be selected from the lookup
memory, interconnection circuitry, and the multi-way switch.

It is thus a feature of at least one embodiment of the inven-
tion to provide for programmability through a selection of
input sources for the functional units.

In some embodiments, the network router may include at
least one data store each associated with a single functional
unit for receiving and storing values output from the single
functional unit and returning the stored values to the argu-
ments of the single functional unit.

20

25

30

35

40

45

50

55

60

65

4

It is thus a feature of at least one embodiment of the inven-
tion to flexibly permit some multi-cycle computations within
the tiles to improve the versatility of each tile for some types
of computations.

The program instructions may include configuration bits
selecting configurations of multiplexers associated with each
functional unit selecting among different sources for the
inputs for each functional unit selected from the lookup
memory, interconnection circuitry, the multi-way switch and
the data store.

It is thus a feature of at least one embodiment of the inven-
tion to permit the data store to be programmable and be
selected through use of the multiplexer used for the selection
of other source signals.

The network router may include at least two clusters of
functional units each communicating with a different multi-
way switch and inter-communicating through a non-multi-
way switch connection.

It is thus a feature of at least one embodiment of the inven-
tion to minimize the complex of the multi-way switch neces-
sary to interconnect the necessary number of functional units.
By dividing functional units into groups, the size of the multi-
way switch may be better managed.

These particular objects and advantages may apply to only
some embodiments falling within the claims and thus do not
define the scope of the invention.

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1 is a series of successive, increasingly detailed dia-
grams of a router per the present invention, the router com-
posed of line cards each using a lookup engine having mul-
tiple tiles, the figure showing the principal elements of each
tile including router circuitry joining the tiles together and
multiple functional units operating on a shared memory;

FIG. 2 is a logical diagram of the router circuitry of each
tile serving to arrange the tiles for a particular task;

FIG. 3 is a logical diagram of an example tree-type
memory lookup task that may be implemented with the
present invention;

FIG. 4 is an interconnection diagram of a simple set of tiles
of the present invention arranged to implement the example
lookup task of FIG. 3;

FIG. 5 is a “train schedule” showing the movement of data
among the tiles for the example lookup task of FIG. 3

FIG. 6 is a figure similar to that of FIG. 3 showing a logical
diagram of an example memory hash lookup task;

FIG. 7 is a figure similar to that of FIG. 4 showing an
interconnection diagram of a simple set of tiles of the present
invention arranged to implement the example lookup task of
FIG. 5;

FIG. 8 is a figure similar to that of FIG. 5 showing the
movement of data among the tiles for the example lookup task
of FIG. 6;

FIG. 9 is a flowchart for a compiler program executing to
create programs to be implemented by the functional units of
the tiles of the present invention;

FIG. 10 is a detailed train schedule used by the compiler to
identify tile interconnection problems;

FIG. 11 is a diagram similar to that of FIGS. 4 and 7
showing simultaneous execution of different lookup tasks on
the lookup engine of the present invention;

FIG. 12 is a set of expanded views of each tile showing the
interconnection of the functional units and construction of the
functional unit; and

US 9,231,865 B2

5

FIG. 13 is an alternative implementation of the functional
units providing for some local register storage.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENT

Referring now to FIG. 1, a router unit 10 constructed
according to the present invention may include a housing 12
holding multiple line cards 14 typically arranged in modular
fashion to connect to a common backplane 11 within the
housing 12. The backplane 11 connects the line cards to
network media 16, for example electrical conductors, optical
fiber, or radio transceivers, each representing different links
or ports interconnected by the router unit 10.

In this example, each line card 14 implements a router or
switch and provides multiple ports 20 at a rear connector 18
that may connect with the backplane 11 for the receipt and
transmission of data packets from and to the network media
16. Each port 20 is received by network interface circuitry 22
on the line card 14, the network interface circuitry 22 han-
dling data level and link level network protocols. The network
interface circuitry 22 in turn connects to an internal bus 24
communicating with a general-purpose or network processor
26 (henceforth general purpose processor) and memory 27.
Memory 27 may include a combination of volatile and non-
volatile memory and holds an effective operating system for
the line card 14 and programs executed by the general-pur-
pose processor 26 for managing router functions of the type
generally understood in the art.

The general-purpose processor 26 communicates with a
special-purpose packet processing engine 28 of the present
invention, for example, using a coprocessor type interface in
which the general-purpose processor 26 passes distinct
memory lookup tasks to the packet processing engine 28.
After a known number of cycles that may successively be a
memory read, a compute, and a memory write/network write
cycle the packet processing engine 28 returns the results of
that data lookup.

Referring still to FIG. 1, the packet processing engine 28 is
composed of multiple computational tiles 30 arranged in an
array 31 of rows and columns that intercommunicate using a
communication grid 32, the latter which connects each tile to
its immediate neighbors (e.g. east, west, north, south) for the
intercommunication of data as will be described.

Each tile 30 holds a portion of a lookup memory 34, the
lookup memory implementing, for example, a router table or
a whitelist or blacklist that can be indexed by information
from a data packet. The lookup memory 34 may be standard
random access memory.

The portion of the lookup memory 34 in each tile 30 is
addressable only by a compute engine 36 composed of mul-
tiple functional units 38 in that tile 30, each functional unit 38
restricted to access only lookup memory 34. The functional
units 38 may be simple assemblies of logical gates that may
produce output arguments from input values in a single cycle
(for example an adder, AND gate, a NOR gate, an OR gate or
a NOT gate or the like) and may be used alone or may be
coupled with a data store associated only with that functional
unit 38 to provide for multi-cycle operation. In one embodi-
ment, the compute engine 36 can read and write up to 128 bits
from the lookup memory 34 per cycle.

These functional units 38, as will be described below, may
have limited programmability (for example, selecting a type
of'logic gate e.g. AND, OR, etc.) but are also programmably
interconnected. As so interconnected, they may perform a
memory read of lookup memory 34 and apply routing headers
to data derived from that lookup based on the results of the

20

25

30

35

40

45

50

55

60

65

6

lookup. Importantly, the functional units 38 may be intercon-
nected so as to conditionally assign a destination (of another
tile) to data based on the outcome of an instruction operation.
Thus, programming of the functional units 38 permits branch
instructions to be implemented by choice of destination in the
passing of data among tiles 30 as well as by conventional
branching among instructions within the individual tile 30. In
one embodiment, each functional unit 38 may incorporate a
bit selection filter 217 which can select a number of bits to
receive from the input and sign- or zero-extend those bits.

This interconnection of the computational tiles 30 with
other computational tiles 30 in the array 31 using the grid 32
and with the general-purpose processor 26 is managed via
routing circuits 48a and 486 that provide two physically
independent interconnections 50a and 505 within the com-
munication grid 32 between each tile 30 and its neighbor.
Each interconnection 50a and 505 provides two conductors
52a and 525 providing for data flowing into the tile 30 and out
of the tile 30 respectively so that there is no interference
between incoming and outgoing data. Thus, each router cir-
cuit 48a and 4856 provides interconnections 50a and 504 to
each adjacent tile (if any) to the east (right) of the given tile 30,
to the west (left) of the giventile 30, to the north (above) of the
given tile 30 and to the south (below) of the given tile 30. Tiles
30 at the edge of the array 31 of computational tiles 30, for
example having no adjacent neighbors in at least one direc-
tion, may communicate directly with the general-purpose
processor 26 to receive or transmit data in similar fashion.
One more interconnection 50a and 5054 is provided from the
routing circuits 48a and 485 with the compute engine 36 of
functional units 38 so that data passing among computational
tiles 30 may be either routed through the tile 30 or routed to
the tile 30 depending on its routing header.

Referring now to FIG. 2, the routing circuits 48 provide for
a simple address-based routing of a received data packet 56
arriving on the communication grid 32. The data packet 56
will generally include a payload 58 having the results of the
calculation or read of lookup memory 34 of that tile 30 and
one or more address headers 60 describing the destination of
the payload 58 through the array 31 oftiles and program index
bits 61 to be used at the destination tile when the payload 58
arrives to select a program for the data of the data packet 56.
One header 60 may provide a multicast flag 64 as will be
described. The data packet 56 is received along the grid 32
from one of up to four directions (east, west, north, and
south). The particular direction may be ignored (as depicted)
or monitored to implement a collision management scheme
as will be described below.

The data packet 56 is parsed by the router circuits 48 at each
tile 30 receiving the data packet 56 to read the address header
60 (indicating its destination) which is provided to a decoder
62 operating according to a static set of rules that may be
preprogrammed and consistent among the computational
tiles 30 to control a logical single-pole, five-throw routing
switch 63 allowing the remainder of the data packet 56 (the
payload 58 plus other routing headers 60 exclusive of the
topmost address header) to be routed either east, west, north,
south, or to the instant tile 30. For computational tiles 30
within the array 31, each of the first four directions will be to
an adjacent tile 30; however, for computational tiles 30 at the
edge of the array 31, one of these directions may represent
general-purpose processor 26. When the address header 60
for an incoming message is the address of the instant tile 30
receiving the message, the data is routed to the instant tile 30
along the fifth throw 65.

For data packets 56 that are not being sent to an adjacent tile
30, a router circuit 48 at the non-destination tile 30 may

US 9,231,865 B2

7

follow a simple set of rules to further route the data packet 56.
In one embodiment, the router circuit 48 determines whether
the destination tile 30 is in the same row as the router circuit
48. It so, the router circuit 48 routes the data packet 56 to the
east. Otherwise, the router circuit 48 routes the data packet 56
to the south. This simple set of rules together with knowledge
by the router circuit 48 of the location of its tile 30 within the
array 31 allows data packets 56 to be sent to non-adjacent
computational tiles 30 over several clock cycles.

In one embodiment, a form of multicasting may be imple-
mented by the addition of a multicasting flag 64 in the header
60. This multicasting flag 64 indicates to each router circuit
48 receiving the data packet that the payload 58 should be
both forwarded to the destination tile 30 and used by the given
tile 30 of the router circuit 48.

The routing circuits 48 may also implement a form of
collision management by providing a predetermined priority
among packets received from different directions on the grid
32. Thus, for example, in the event of simultaneously arriving
data packets 56 from the north and the east at a given tile 30,
the given tile 30 may give priority to the data from the north
while ignoring the east data. This provides for increased
programming flexibility by permitting collision resolution to
be used to select among competing data flows.

Referring to FIGS. 1 and 2, data may be sent through the
array 31 along the routing circuits 48 in serial fashion under
the control of a cycle clock 67 (shown in FIG. 1) generally
having clock edges that control not only the execution of
instructions by the functional units 38 but also each “hop” in
data transfer between computational tiles 30. The routing of
the data may thus be preplanned statically by a compiler as
will be described so that there is no need for the detection of
collisions and retransmission of messages as in the conven-
tional network. For this reason, routing circuits 48a and 486
need not provide for buffering, flow control, or complex net-
work protocols that retransmit in the event of collision. Flow
control, as used herein, refers to communications among the
computational tiles 30 to control the rate of transmission
between computational tiles 30 so that a fast sending tile 30
does not overrun a slow sending tile 30 on the grid 32.

Synchronized by the cycle clock 67, the general-purpose
processor 26 may provide lookup requests to the packet pro-
cessing engine 28 and receive the results a fixed number of
cycles later. The lookup request is received from an edge tile
30 and the same or different edge tile may return the result.
Multiple computational tiles 30 typically are involved in the
lookup process, each of the computational tiles 30 processing
the data in a manner controlled by configuration bits 44 to
look up data from lookup memory 34 and forward the results
to another tile 30 or the general-purpose processor 26.

Instructions controlling the functional units 98 are held in
a configuration store 40 holding one or more “programs” 42
that are generally unique to each multiple functional unit 38.
The programs 42 will include configuration bits 44 control-
ling the source of data to the functional units 38, the intercon-
nection of the functional units 38 and topology bits 46 indi-
cating where the results of the execution of the configuration
bits 44 will be sent upon completion. Practically, the configu-
ration bits 44 and topology bits 46 may be jointly imple-
mented by a single set of instructions which controls the
processing of data in the lookup memory 34 and, based on the
results of the lookup, applies headers to data packets to route
them to other computational tiles 30 as will be discussed
below.

More generally, at each tile 30 involved in the computation,
data received by router circuit 48a or 48b for that tile 30 is
routed to the compute engine 36 which reads program index

20

25

30

35

40

45

50

55

60

65

8

bits 61 to select a program 42 in configuration store 40.
Before that time the compute engine 36 is idle conserving
power. Compute engines 36 that are currently executing
according to configuration bits 44 complete instructions syn-
chronized to the cycle clock 67 (often in one cycle) and
transmit data through the routing circuits 48a and 485 also
synchronized to the cycle clock 67. The functional units 38 of
the compute engine 36 select the router circuit 48a and 485
for transmission of data and apply headers for future routing
of'the data per the topology bits 46 that have been prepared to
prevent data collisions by a compilation process to be
described.

Referring now to FIG. 12, the compute engine 36 may
generally provide for two operation clusters 200 each holding
a subset of the functional units 38. Each operation cluster 200
receives memory data 202 from the memory 34 and network
data 204 from the router circuits 48. Outputs from the opera-
tion clusters 200 may be combined by a bit collection unit 206
(as will be discussed below) which returns memory data 202
back to the memory 34 or network data 204 back to the
network via router circuits 48.

This division of the functional units 38 between operation
clusters 200 accommodates the otherwise extremely high
number of interconnections required between, for example,
sixteen functional units 38. By breaking the functional units
38 into two operational clusters 200 the number of intercon-
nections can be better managed by practical multi-way
switches as now described.

Within each operation cluster 200, the subset of functional
units 38 are grouped in operation engines 205 with portions of
the configuration store 40 unique to the functional unit 38 and
other logic elements required to connect each functional unit
38 as will be described below. Within the operation engines
205, the functional units 38 may receive the memory data 202
and the network data 204. The functional units 38 are further
all joined by a multi-way switch, such as a common crossbar
switch 208 which, as is understood in the art, allows program-
mable connections to be formed, selectively, between any
input of a functional unit 38 and any output of another func-
tional unit 38. Generally each crossbar switch 208 provides
multiple parallel switchable connections each providing an
electrical path mimicking that of a wire conductor between
one input and one output of a functional unit 38. Multiple
pairs of terminals of a crossbar switch 208 can thereby be
formed pair wise connecting, in parallel, the functional units
38 according to a control signal expressed, for example, as a
set of binary signals. In this way, the functional units 38 may
be joined together in chains whose topologies are defined
programmably by switching of the crossbar switch 208. Gen-
erally the crossbar switch 208 can be tailored to the particular
number of inputs and outputs of each functional unit 38 to
reduce the number of crossbars. For example those functional
units 38 that produce an output of one bit (e.g. Bit Select,
described below) can be provided with only a single crossbar
for that output.

Generally, and as will be described in greater detail below,
when the crossbar switch 208 connects data from one func-
tional unit 38 output to the input of another functional unit 38,
that input supplants the connection of that functional unit to
the memory data 202 or network data 204. The output 226 of
the functional unit 38 is always returned to the crossbar
switch 208.

The crossbar switch 208 also provides for an output 212 to
the bit collection unit 206, to be combined with the output
from the crossbar switch of the other operation cluster 200.

US 9,231,865 B2

9

Thebit collection unit 206 may, in turn, forward the combined
output from the two operation clusters 200 to the memory
data 202 or network data 204.

Referring still to FIG. 12, each functional unit 38 provides
an input multiplexer 214 which may receive crossbar data
216, memory data 202 or network data 204 as has been
described above. The setting of this multiplexer 214 is
according to configuration bits 44 in the configuration store
40 as selected by the program index bits 61 previously
described. Generally when network data 204 is received from
the network, the program index bits 61 in that data packet 56
are received by a configuration selector 220 which selects a
particular program 42 to be used with that received data
packet 56. The configuration bits 44 of the selected program
42 are then used to further configure the multiplexer 214.

The configuration bits 44 may also be passed to the cross-
bar switch 208 as crossbar programming data 224 defining
the interconnection between functional units 38 and may be
passed to the functional units 38 to control their operating
characteristics.

Each of the functional units 38 may be a relatively simple
gate structure of a number of types generally known in the art.
In the preferred embodiment, the functions of the functional
units 38 may be selected from seven simple types as provided
in Table I below:

TABLE I

Functional Unit Description

Add Adds or subtracts two values; can also
decrement the final value by one

Bit Count Counts the number of bits in all or a subset
of the input

Bit Select Shifts the input value logically or

arithmetically and selects a subset of the bits
Performs a binary space tree search
comparing an input to input node values

A general-purpose two-input logical gate of
the form “a op b” where op is selected from
AND, OR, EXCLUSIVE-OR, LESS
THAN, GREATER THAN, EQUAL

A general-purpose four-input logical gate
of the form “(a op b) op (¢ op d)” or
implements the operation “(a op b) ? ¢: d”
Connects either of two inputs to an output
based on a selector input

Binary Spaced Tree

Logic-2

Logic-4

Multiplex 2

In one embodiment, each operation cluster 200 employs
one of each of the above functional units 38 plus one addi-
tional Logic-4 functional unit 38 which was determined to be
used more than the other functional units 38. It will be under-
stood generally that each of these functional units 38 may be
implemented as a assemblies of logical gates or other logic
elements to produce an output in one clock cycle from a
change in the input and that the crossbar switch 208 serves
essentially to “wire” multiple of these functional units 38
together into a larger assembly of logical gates for extremely
fast yet flexible data processing. The functional units 38 may
not necessarily (and typically will not) receive a clock signal
but rather operate in the manner of interconnected logic gates
to produce an immediate function of the input after a gate
propagation delay. Nevertheless, the output will normally be
provided well within the cycle of a cycle clock 67 synchro-
nizing movement of data between tiles 30.

The programming of the functional units 38 by the con-
figuration store 218 may select among functions of multi-
function functional unit 38, for example, whether the Logic-2
functional unit 38 implements an OR or AND logic gate. The
configuration store 218 may further provide an argument to

20

25

30

35

40

45

50

55

60

65

10

functional units 38 receiving two arguments, for example,
such as may be used to implement a branch-based selection of
a destination tile for output data, for example, by appending
or selecting destination information derived from the topol-
ogy bits 46 of the configuration store 218 to or from data
output from the functional unit 38. It will be appreciated that
each of these functional units 38 will typically receive multi-
bit input words to produce a multi-bit output word for each bit
described and thus, for example, a Logic-2 gate will be dupli-
cated to provide a gate for each bit of the multi-bit word
processed by the functional unit 38. The configuration store
218 may further program a bit selection filter 217 as described
above associated with each of the functional units 38.

Referring now to FIG. 13, while the functional units 38 will
produce their outputs in a single cycle, the present invention
also contemplates allowing repeated cycles through a func-
tional unit 38 in which the final result from the functional unit
may be delayed by multiple cycles. This may be accommo-
dated by proper routing of data through the tiles 30 to essen-
tially delay the ultimate calculation to accommodate this
multiple cycle calculation. Generally, multiple cycle calcula-
tions work against the goal of reducing latency but allow a
trade-off between latency and the complexity of the compu-
tational units 36 to be closer to optimum for some types of
calculations.

Multiple cycle calculations may be provided for a given
functional unit 38 by associating a data store 227 with an
individual functional unit 38 that may store in it an output of
the functional unit 38 and provide that output as an input
through the multiplexer 214 to that functional unit 38. The
data store 227 is local to an individual functional unit 38 and
may not be used by other functional units 38. In this way, the
complexity of the compute engine 36 is greatly reduced and
energy of the data store 227 is also limited.

An experimental analysis employing computer simula-
tions by the inventors has determined that this increase in
latency will generally provide improvements in energy usage
and total complexity of the circuit for the sort of calculations
required by routers. Generally, the configuration store 218
may implement multiple different programs 42 that may be
cycled through during each cycle of the functional unit 38 per
the above mechanism to allow different configurations or
programs between each cycle.

Implementing the data store 227 may be accommodated
simply by adding an additional input to the multiplexer 214 to
receive the output of the data store 227 and return it to the
input of the functional unit 38. Accordingly, proper selection
of an input of the multiplexer 214 by the configuration store
40 allows single cycle or multiple cycle operation to be imple-
mented for selective functional units 38.

Referring now to FIGS. 3 and 4, it will be understood that
the present architecture, by virtue of the ability to freely
interconnect the computational tiles 30, allows the topology
of the memory of the lookup table divided among lookup
memories 34 to be programmably reorganized for effective
processing. For example, a memory lookup problem, for
example for an IP address, may be logically represented in a
tree structure as shown in FIG. 3. In this memory lookup
process, incoming IP address data 70 may have three address
fields (here represented as a single bit) compared successively
at three different levels in the tree. Thus, for example, a first
address field may be evaluated with respect to data in memory
portion A to identify a network. Depending on the results of
that evaluation, the second address field identifying a sub-
network may be compared to data contained in memory por-
tions B or C (depending on the results of the determination at
A). At the third level of the tree, a third field representing a

US 9,231,865 B2

11

lower-level sub-network may be compared to data contained
in memory portions D, E, F, or G (depending on the previous
evaluations).

Efficient implementation of this tree structure can be done
by connecting tiles associated with memory portions A-F ina
similar tree using the grid 32 between the computational tiles
30. Thus, referring to FIG. 4 which shows an example tile
array 31 of three rows in three columns, the IP address data 70
may be received at tile A in the upper left-hand corner of the
array 31 which may be programmed to connect to computa-
tional tiles 30 at the second row, first column and first row,
second column representing memory portions B and C
respectively. Likewise memory portions D and E logically
related to memory portion B may be implemented by tiles in
the third row, first column, and third row, second column,
respectively, adjacent to memory portion B and connected
thereto by means of the routing circuits 48. Similarly,
memory portions F and G related to memory portion C may
be implemented by tiles in the second row, second column,
and first row, third column adjacent to the tile implementing
memory portion C.

Thus, the computational tiles 30 may be assigned to
memory portions as follows:

A
B
D

tmm 0

G
Y
X

where the tiles labeled Y and X perform no processing but
simply provide a conduit interconnecting the tiles. This
assignment of'tiles to logical memory structures provides one
possible organization of the computational tiles 30 for tree
type calculations and significantly one that improves the effi-
ciency of the calculation by allowing pipelining type process-
ing. Other arrangements are also possible.

Referring to FIG. 5, the passage of data among computa-
tional tiles 30 in this example may be represented in a “train
schedule” chart in which the particular tiles are arrayed on the
vertical axis and clock cycles are indicated on the horizontal
axes in the manner of stations and schedule times in a train
chart. The passage of data through the array 31 is represented
by trajectories 72. Bifurcations in trajectories 72 represent
different branches of the tree of FIG. 3, for example, at the A
node during the first clock cycle I, at the C node during the
second clock cycle 11, etc. Ultimately the data from all trajec-
tories 72 converge at tile X for communication back to the
general-purpose processor 26.

Importantly, the schedule of FIG. 5 shows all possible data
trajectories 72 for any traversal of the tree of FIG. 3 thus
permitting the routing of data to be statically planned by a
compiler to ensure consistent delay between the arrival of
data at the tile A and its exit at tile X regardless of the
trajectories 72 (simplifying the pipelining process) and, in
more complicated examples, limiting collisions between data
passing through computational tiles 30. It is important to note
in this example that only one trajectory 72 from a given tile
will be traversed at a time and hence places where trajectories
72 converge on a tile do not represent conflicts in network
communication.

Referring now to FIG. 6, a different memory lookup prob-
lem may make use of the completely different memory topol-
ogy. Consider now a hash table 74 that may be used for
Ethernet-type address lookups. Such a hash table 74 may
provide for the parallel interrogation of memory blocks A, B,
and C using a hash code of the argument 76. The results from
each of the memory portions A, B, and C are then assessed at

20

25

30

35

40

45

50

55

60

65

12

alogical OR-gate. Referring to FIG. 7, this topology may also
be implemented through the computational tiles 30 of the
present invention. In this case the hashed value of the argu-
ment 76 may be received by an input tile I in the upper
left-hand corner of the array 31 which may be programmed to
connect to the other tiles providing memory portions A, B,
and C in parallel per of the hash table topology of FIG. 6.
Thus, memory portions A and C may be assigned to tiles in the
first row, second column and second row, first column respec-
tively, to connect directly to the tile I while memory portion B
may be assigned to a tile in the second row, second column
communicating indirectly with tile [via the tile implementing
memory portion A acting as a conduit. The results from each
of the tiles representing memory portions A, B, and C may
then be routed to a tile O for evaluation of the results (whether
any individual hash tables have a matching entry) and output
to the general-purpose processor 26. Thus, the tiles may be
arranged as follows:

I A
C B
X O

where tile X serves in this example only for routing. The train
schedule for this example is shown in FIG. 8 and differs from
the example of FIG. 5 in that each of the trajectories 72 is
executed simultaneously and thus collisions in the grid 32 and
conflicts in processor demands can occur. Initially, node I
must transmit the data to be hashed to the tiles representing
memory portions A, B, and C in three sequential operations.
In this example during the first clock cycle II after receipt of
the data at tile I, the tile for memory portion A receives the
data. During the second clock cycle 111, the tile for memory
portion A receives the data for the tile representing memory
portion B (as a conduit) and, at a third clock cycle IV, node C
receives the data from node I and node B receives the data
from node A. Node O then receives the results from nodes A,
B, and C over clock cycles 1V, V, and VI to provide an output
to the processor 26 at VII.

Referring to FIGS. 1 and 11 these simple examples can be
routed with no collisions even with a single connection
between each tile 30; however, it will be understood that
messages may be sent over either the first or second intercon-
nections 50a and 505 further eliminating the risk of collision.
In addition, data may be routed through unused nodes or
computational tiles 30 to provide for synchronization or
effective buffering of the data through the machine. Generally
the routing must be performed to conform with the topology
of'rows and columns of the computational tiles 30; that is, (1)
data may only move from a given tile to an adjacent tile in one
clock cycle, (2) only one data packet may be received by a
given tile for processing in one clock cycle, and (3) at most
two data packets may arrive at a given tile in a given clock
cycle.

Referring now to FIG. 9, the architecture of the present
invention, as noted above, makes it possible to programmably
reconnect the computational tiles 30 to optimize memory
lookup problems in a way that permits the static avoidance of
routing problems such as described above. This static routing
solution may be fully embodied in the configuration bits 44
and topology bits 46 which together define the operation of
the functional units 38 generated at the time of compilation.

The compiling process performed by a program executing
typically but not necessarily on a separate processor may, as
indicated by process block 100, begin by partitioning lookup
tasks to particular logical memory blocks solely and uniquely

US 9,231,865 B2

13

accessed by those operations. This partitioning process may
be done automatically or may allow the user to identity logi-
cal memory blocks.

At process block 102, the code blocks associated with the
lookups of each logical memory block are written and com-
piled according to particular instruction sets of the functional
units 38. Up to this point, there is no need to relate the memory
blocks to particular computational tiles 30.

At process block 104, the logical memory blocks are
assigned to two physical computational tiles 30 either auto-
matically or with input from the user. In either case, at process
block 106 the assignment is evaluated, for example, by gen-
erating the logical equivalent train schedule described above
to check for routing collisions, adjacency problems, or the
conflicts in the need for resources of the functional units 38.
Contflicts may be corrected automatically by the compiler, for
example using a trial and error process, or other iterative
process or techniques known in the art.

At process block 108, based on the routing selected, the
topology bits’ 46 entries are computed and, at process block
110, the configuration bits 44 and topology bits 46 are loaded
in to the memory of each of the computational tiles 30.

Referring now to FIG. 11 it will be understood that to the
extent that the computational tiles 30 operate independently,
multiple different lookup problems can be executed by the
array 31 simultaneously. This permits, for example, the gen-
eration of a router that may decode both IP addresses and the
local Ethernet addresses in a gateway-type application. In this
case, the computational tiles 30 marked by a rectangle repre-
sent those undertaking an IP lookup while the computational
tiles 30 marked by a diamond are tiles implementing a packet
classification process, and computational tiles 30 marked by
a circle are those implementing a hash table for Ethernet
lookup.

The architecture of the present invention can generally
perform lookup operations and, specifically, lookup opera-
tions associated with packet types or addresses. Thus, it can
be used not only for routing packets but also for packet
classification, deep packet inspection for security applica-
tions, and network address translation.

The term router used herein should be understood broadly
to include any device providing for packet processing and
thus not only routers but also devices that are often referred to
as switches.

The functional units 38, and functional units 38 as coupled
with a data store 227 unique to the functional unit 38, may be
distinguished from general von Neumann machines by the
fact that they do not perform a fetch/execute cycle with a
memory or register set shared among other functional units.
The functional units when separate from the data store of the
functional unit produce output values in a single clock cycle
and thus are substantially stateless. In a von Neumann
machine, the processor say the results of each operation to
memory or registers (accessible to all processors) and then
read from the memory or registers at the time of the next
operation. The functional units 38 do not store the results of
their operations in a manner accessible to other functional
units until the entire operation for the tile is complete

Certain terminology is used herein for purposes of refer-
ence only, and thus is not intended to be limiting. For
example, terms such as “upper”, “lower”, “above”, and
“below” refer to directions in the drawings to which reference
is made. Terms such as “front”, “back”, “rear”, “bottom” and
“side”, describe the orientation of portions of the component
within a consistent but arbitrary frame of reference which is
made clear by reference to the text and the associated draw-
ings describing the component under discussion. Such termi-

20

25

30

35

40

45

50

55

60

65

14

nology may include the words specifically mentioned above,
derivatives thereof, and words of similar import. Similarly,
the terms “first”, “second” and other such numerical terms
referring to structures do not imply a sequence or order unless
clearly indicated by the context.

When introducing elements or features of the present dis-
closure and the exemplary embodiments, the articles “a”,
“an”, “the” and *“said” are intended to mean that there are one
or more of such elements or features. The terms “compris-
ing”, “including” and “having” are intended to be inclusive
and mean that there may be additional elements or features
other than those specifically noted. It is further to be under-
stood that the method steps, processes, and operations
described herein are not to be construed as necessarily requir-
ing their performance in the particular order discussed or
illustrated, unless specifically identified as an order of perfor-
mance. It is also to be understood that additional or alternative
steps may be employed.

References to a “computer”, “a microprocessor” and “a
processor” or “the microprocessor” and “the processor,” can
be understood to include one or more microprocessors that
can communicate in a stand-alone and/or a distributed envi-
ronment(s), and can thus be configured to communicate via
wired or wireless communications with other processors,
where such one or more processor can be configured to oper-
ate on one or more processor-controlled devices that can be
similar or different devices. Furthermore, references to
memory, unless otherwise specified, can include one or more
processor-readable and accessible memory elements and/or
components that can be internal to the processor-controlled
device, external to the processor-controlled device, and can
be accessed via a wired or wireless network.

It is specifically intended that the present invention not be
limited to the embodiments and illustrations contained herein
and the claims should be understood to include modified
forms of those embodiments including portions of the
embodiments and combinations of elements of different
embodiments as come within the scope of the following
claims. All of the publications described herein, including
patents and non-patent publications, are hereby incorporated
herein by reference in their entireties.

We claim:

1. A network router having electronic circuits for routing
data packets in a network comprising:

a series of ports receiving and transmitting data packets;

a general-purpose processor communicating with the
series of ports to provide for network routing functions
including packet processing but exclusive of some data
packet lookup functions;

a packet processing engine communicating with the gen-
eral-purpose processor to receive packet data therefrom
and to conduct memory lookups based on the data, the
packet processing engine comprising a set of intercom-
municating computational tiles, each tile including:

(1) a set of functional units having inputs receiving argu-
ments of packet data, memory data, and program index
bits and processing the arguments to produce values at
outputs; the functional units each associated with a mul-
tiplexer for selecting between the packet data and
memory data for processing by the functional unit in
accordance with program instructions selected by the
program index bits; wherein the interconnection cir-
cuitry moves data between tiles according to a clock
signal and at least some of the functional units receive
arguments to produce values in a single cycle of the
clock signal using functions selected from functions of:
AND, OR, EXCLUSIVE-OR, LESS THAN,

US 9,231,865 B2

15
GREATER THAN, and EQUAL to implement functions
selected from the group consisting of an adder, a bit
counter, a bit selector, a binary space tree searcher, a
two-input logic gate, a four-input logic gate, and the
two-input multiplexer;

(2) a configuration store for holding program instructions
selected by the program index bits to control the func-
tions implemented by the functional units;

(3) a programmable multi-way switch communicating
among the functional units to provide switchable direct
electrical connections between selected inputs and out-
puts of the functional units according to the program
instructions in the configuration store selected by the
program index bits;

(4) alookup memory holding memory data related to pro-
cessing of network data packets and accessible by the set
of functional units per the program instructions selected
by the program index bits; and

(5) interconnection circuitry managing intercommunica-
tion of data between the tiles according to a comparison
of data of the received data packets to the memory data
in the lookup memory per the program instructions
selected by the program index bits.

2. The network router of claim 1 wherein the multi-way
switch has terminals connected to each of the inputs and
outputs of each of the functional units and provides the swit-
chable direct electrical connections in a manner of a wire
conductor between multiple pairs of terminals on a pair wise
basis.

3. The network router of claim 1 wherein the configuration
store holds multiple sets of program instructions and wherein
one set of program instructions is selected according to pro-
gram index bits in the data received by the lookup processor.

4. The network router of claim 1 wherein the program
instructions include configuration bits selecting configura-
tions of multiplexers associated with each functional unit
selecting among different sources for the inputs for each
functional unit.

5. The network router of claim 4 wherein the sources are
selected from the lookup memory, interconnection circuitry,
and the multi-way switch.

6. The network router of claim 4 wherein at least one
functional unit is a four-input logical Boolean gate program-
mable by the program instructions to adopt any of the func-
tions of: AND, OR, EXCLUSIVE-OR, LESS THAN,
GREATER THAN, and EQUAL.

7. The network router of claim 1 further including at least
one data store associated with a single functional unit for
receiving and storing values output from the single functional
unit and returning the stored values to the arguments of the
single functional unit.

8. The network router of claim 7 wherein the program
instructions include configuration bits selecting configura-
tions of multiplexers associated with each functional unit
selecting among different sources for the inputs for each
functional unit selected from the lookup memory, intercon-
nection circuitry, the multi-way switch and the data store.

9. The network router of claim 1 including at least two
clusters of functional units each communicating with a dif-
ferent multi-way switch and inter-communicating through a
non-multi-way switch connection.

10. The network router of claim 1 wherein an arrival of data
at a lookup processor triggers execution of the program
instructions from the configuration store and wherein the
lookup processor is idle once the program instructions have
been completed until a next arrival of data at the lookup
processor.

20

25

30

35

40

45

50

55

60

65

16

11. The network router of claim 1 wherein the lookup
processors include program instructions to implement a func-
tion of routing data to specific other tiles dependent on an
outcome of a memory lookup of lookup memory.

12. The network router of claim 1 wherein the interconnec-
tion circuitry does not provide buffering of transmitted data.

13. The network router of claim 1 wherein the interconnec-
tion circuitry does not provide flow control that coordinates a
rate of data transmission among tiles.

14. The network router of claim 1 wherein the interconnec-
tion circuitry routes data among the tiles according to a rout-
ing header applied to the data by the lookup processors
according to an execution of the program instructions.

15. The network router of claim 1 wherein the interconnec-
tion circuitry routes data between the tiles according to a
routing header associated with the data and the interconnec-
tion circuitry follows static programmed rules in interpreting
the header to route the data.

16. The network router of claim 1 wherein the interconnec-
tion circuitry provides at least two physically distinct chan-
nels between a tile and the other tiles to which it is connected
by channels, each channel providing independent input and
output pathways.

17. An electronic computer, comprising:

a series of ports receiving and transmitting data packets;

a general-purpose processor communicating with the
series of ports to provide for network routing functions
including packet processing but exclusive of some data
packet lookup functions;

a packet processing engine communicating with the gen-
eral-purpose processor to receive packet data therefrom
and to conduct memory lookups based on the data, the
packet processing engine comprising a set of intercom-
municating computational tiles,

each tile including:

(1) a set of functional units having inputs receiving argu-
ments of packet data, memory data, and program index
bits and processing the arguments to produce values at
outputs; the functional units each associated with a mul-
tiplexer for selecting between the packet data and
memory data for processing by the functional unit in
accordance with program instructions selected by the
program index bits; wherein the interconnection cir-
cuitry moves data between tiles according to a clock
signal and at least some of the functional units receive
arguments to produce values in a single cycle of the
clock signal using function selected from functions of:
AND, OR, EXCLUSIVE-OR, LESS THAN,
GREATER THAN, and EQUAL to implement functions
selected from the group consisting of an adder, a bit
counter, a bit selector, a binary space tree searcher, a
two-input logic gate, a four-input logic gate, and the
two-input multiplexer;

(2) a configuration store for holding program instructions
selected by the program index bits to control the func-
tions implemented by the functional units;

(3) a programmable multi-way switch communicating
among the functional units to provide switchable direct
electrical connections between selected inputs and out-
puts of the functional units according to the program
instructions in the configuration store selected by the
program index bits;

(4) a lookup memory holding memory data and accessible
by the set of functional units per the program instruc-
tions selected by the program index bits; and

(5) interconnection circuitry managing intercommunica-
tion of data between the tiles according to a comparison

US 9,231,865 B2
17

of data of the received data packets to the memory data
in the lookup memory per the program instructions
selected by the program index bits.

#* #* #* #* #*

18

	Bibliography
	Abstract
	Drawings
	Description
	Claims

