
c12) United States Patent
Gupta et al.

(54) PRECISE-RESTARTABLE PARALLEL
EXECUTION OF PROGRAMS

(71) Applicant: Wisconsin Alumni Research
Foundation, Madison, WI (US)

(72) Inventors: Gagan Gupta, Fitchburg, WI (US);
Gurindar S. Sohi, Madison, WI (US)

(73) Assignee: Wisconsin Alumni Research
Foundation, Madison, WI (US)

(*) Notice: Subject to any disclaimer, the term ofthis
patent is extended or adjusted under 35
U.S.C. 154(b) by 699 days.

(21) Appl. No.: 13/766,053

(22) Filed:

(65)

Feb. 13, 2013

Prior Publication Data

US 2014/0229704 Al

(51) Int. Cl.
G06F 9/38

(52) U.S. Cl.

Aug. 14, 2014

(2018.01)

CPC G06F 9/3838 (2013.01); G06F 9/3855
(2013.01); G06F 9/3859 (2013.01); G06F
9/3863 (2013.01); G06F 9/3865 (2013.01)

(58) Field of Classification Search
None
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

5,247,628 A * 9/1993 Grohoski G06F 9/3885
710/260

2006/0161421 Al* 7/2006 Kissell G06F 9/4812
703/26

I 1111111111111111 1111111111 1111111111 111111111111111 IIIII IIIIII IIII IIII IIII
US010185569B2

(IO) Patent No.:
(45) Date of Patent:

US 10,185,569 B2
Jan.22,2019

2011/0145798 Al * 6/2011 Taillefer G06F 11/362
717/129

2011/0219208 Al * 9/2011 Asaad G06F 15/76
712/12

2012/0216080 Al* 8/2012 Bansal G06F 11/3476
714/45

OTHER PUBLICATIONS

Montesinos et al. (DeLorean: Recording and Deterministically
Replaying Shared-Memory Multiprocessor Execution Efficiently,
Jun. 2008, pp. 289-300).*
Ceze et al. (BulkSC: Bulk Enforcement of Sequential Consistency,
Jun. 2007, pp. 278-289). *
Mootaz Elnozahy, Lorenzo Alvisi, Yi-Min Wang, David B. Johnson;
A Survey of Rollback-Recovery Protocals in Message-Passing
Systems; Survey Paper; Jun. 1999; pp. 1-40; Schoool of Computer
Science, Carnegie Mellon University, Pittsburgh, PA 15213, US.
Greg Bronevetsky, Rohit Fernandes, Daniel Marques, Keshav Pingali,
Paul Stodghill; Recent Advances in Checkpoint/Recovery Systems;
Research Paper; Cornell University, Dept of Computer Science, 8
pages, 2006; Ithaca, NY 14853, US.
James E. Smith, Andrew R. Pleszkun; Implementation of Precise
Interrupts in Pipelined Processors; Proc. Computer Architesture; pp.
1-15, 1985 IEEE; US.

(Continued)

Primary Examiner - George Giroux
(74) Attorney, Agent, or Firm - Boyle Fredrickson, S.C.

(57) ABSTRACT

Interrupt handling on a multiprocessor computer executing
multiple computational operations in parallel is provided by
establishing a total ordering of the multiple computational
operations and defining an architectural state at the time of
the interrupt as if the computational operations executed in
the total ordering.

22 Claims, 6 Drawing Sheets

•"~9y •••
36...-..___.J;:M=ETH=O=D=l[W)=[R::::j) }3

2
40

36

36

MrH0D1[WJ[R] } 32

'
METH0D1[W)[R] }32

(56) References Cited

OTHER PUBLICATIONS

US 10,185,569 B2
Page 2

Tom Bergan, Joseph Devietti, Nicholas Hunt, Luis Ceze; The
Deterministic Execution Hannner: How Well Does it Actually
Pound Nails?; Research Paper; pp. 1-7; 2011; University of Wash­
ington; US.
Milos Prvulovic, Josef Torrellas; ReEnact: Using Thread-Level
Speculation Mechanisms to Debug Data Races in Multithreaded
Codes; Research Paper; pp. 1-12; 2003; University of Illinois at
Urbana-Champaign, IL; US.
Mootaz Elnozahy, Lorenzo Alvisi, Yi-Min Wang, David B. Johnson;
A Survey of Rollback-Recovery Protocols in Message-Passing
Systems: Survey Paper; Jun. 1999, pp. 1-40; School of Computer
Science, Carnegie Mellon University, Pittsburgh, PA 15213, US.

* cited by examiner

U.S. Patent Jan.22,2019 Sheet 1 of 6 US 10,185,569 B2

12a 13 12b
~10

FIG. 1

• 11

18

~

y--18

FIG. 2

210 72

U.S. Patent Jan.22,2019 Sheet 2 of 6 US 10,185,569 B2

36

36

36

36

-----~20 ~ y y • • •
MEfH00l[W)[R) } 32

4
0

MfH0Dl[WJ[RJ } 32

I

I
I
I

Mr"0Dl[W)[RJ }32

'
MEfH0Dl[W)IRJ } 32

FIG. 3

DATA IDENTIFIER

READ TOKEN

FIG. 4
COUNTER

WRITE TOKEN
FLAG

WAIT LIST

-

~40

42 i--,----.

1----, 44

~. 46

48 ---.
-

U.S. Patent Jan.22,2019 Sheet 3 of 6 US 10,185,569 B2

36~

IDENTIFY DATA
OBJECTS 52 ~66

ACQUIRE TOKENS 54 RETURN TOKENS 65

56

YES
QUEUE

ACTIVATE
WAIT LISTED 67

PROXIES AND OPERATIONS
ADDENDUM

__,..--..58

60
ENROLL IN FIG. 6
WAIT LIST

FIG. 5

:~
I ~86 84

I \
I \

I
I \

I \

FIG. 7

82

80

U.S. Patent Jan.22,2019 Sheet 4 of 6 US 10,185,569 B2

FIG. 8

________ _... TIME

rgo

12a~ F3

·•.

12b-O F4 @
FIG. 9

.... - -
12c-O

t1 t2 t3 t4 t5 t6 t7 ts

~84

U.S. Patent Jan. 22, 2019 Sheet 5 of 6 US 10,185,569 B2

{72
EPOCH ,-------r-------r--r-------r----.----. COMPLETED COMMITTED

t1 I F1 I F2 I F3 I F4 I F5 I F6 I

t2 I F2 I F3 I F4 I F5 I F6 I

t3 I F2 I F3 I F4 I F5 I F6 I

14 I F3 I gF5 I F6 I
84

t5 I F3 I F4 I F5 I F6 I
t

t6 I F4 I F5 I F6 I
t

t7 I F4 I F5 I F6 I
t

FIG. 10

F1 F1

F6

F2,F6 F2

F6

F3,F4,F6 F3

U.S. Patent

70

Jan.22,2019 Sheet 6 of 6

- - -I ; ...
/

/; - - I ····' ' .. ·--~
Fl F2 F3 F4 F5 F6

t
l/""'210

70'
84

FIG. 11

FIG. 12

US 10,185,569 B2

~72

US 10,185,569 B2
1 2

PRECISE-RESTARTABLE PARALLEL operation of these multiple processors results in a complex
EXECUTION OF PROGRAMS and distributed architectural state that is difficult to capture

on an instantaneous basis. Without an ability to capture
STATEMENT REGARDING FEDERALLY architectural state, precise interruptability cannot be

SPONSORED RESEARCH OR DEVELOPMENT 5 obtained, and advantages of precise interruptability are
unavailable.

This invention was made with government support under
0963737 awarded by the National Science Foundation. The SUMMARY
government has certain rights in the invention.

NIA

CROSS REFERENCE TO RELATED
APPLICATION

BACKGROUND OF THE INVENTION

The present invention relates to a method and computer
architecture for parallel execution of programs on multiple
processors.

Computer interrupts are signals received by a computer
processor that cause the processor to switch from a current
execution task or thread to a different execution task or
thread (the latter, for example, being an interrupt service
routine) typically as designated by an interrupt identifier.
The interrupt service routine executed after the interrupt
"handles" the interrupt, after which, the former task is
resumed.

Interrupts can be generated by hardware or software.
Hardware interrupts let a processor respond to external
events (for example, the expiration of a timer) without the
need for the processor to periodically check for the event in
a "polling" operation. Software interrupts may be triggered
by a special instruction executed by the processor. Interrupts
may be triggered by errors in the execution of an instruction,
for example a division by zero, or by other execution faults
such as lack of available memory. These latter interrupts are
often called exceptions.

Precise interruptability is provided by a processor if the
interrupted thread may be resumed without disruption. Pre­
cise interruptability generally requires that the architectural
state of the processor be well defined at the time of the
interrupt so that this architectural state may be restored when
the interrupt has been handled. The architectural state cap­
tured at the time of the interrupt should reflect completion of
all the instructions preceding the interrupted instruction and
none of the succeeding instructions.

Precise interruptability is crucial to a variety of system
applications including debugging and resource manage­
ment, and has allowed innovative micro-architectural tech­
niques, such as speculation, a technique that allows the
processor to execute instructions past the point of unre­
solved branch instructions, for example, by predicting how
the branch instruction will be resolved. The need to provide
for precise interruptability is likely to grow more important

10 The present invention allows accurate determination of an
architectural state in a multiprocessor system independently
executing portions of the program, by enforcing a consistent
order in the commitment of the results of those executions

15
regardless of the actual order of the execution. By marking
interrupts with respect to this commitment order, an archi­
tectural state may be rapidly determined with respect to the
interrupt, for example, by committing all earlier executions
in the commitment order and squashing all later executions

20 in the commitment order. To this extent then, the invention
provides for "precise restartability" rather than "precise
interruptability", nevertheless precise restartability provides
many of the benefits of precise interruptability.

When precise restartability is provided, the commitment
25 order will be a "total order" of the instructions, an order that

is consistent with a "data flow" order that respects data
dependencies between computational operations. Yet the
total order goes beyond the data flow order by additionally
relying on a sequence, such as provided by the program's

30 text, that provides a definitive order when a dataflow order
does not exist between instructions (that is, multiple order­
ings satisfy data flow ordering for the instructions).

As noted, obtaining a precise architectural state for a
complex system of multiple processors would seem to

35 require a precise capture and communication of the state of
each of the multiple processors, at an instant in time, to a
single location for integration into a single architectural
state. The present invention effectively avoids this problem
by operating before the interrupt to provide a per instruction

40 checkpointing and after the interrupt to bring the architec­
tural state of the system into conformance with one of these
checkpoints before releasing the system to the interrupt
handling routine. These checkpoints hold simplified infor­
mation sufficient for precise restarting even though they may

45 not technically represent the actual architectural state of the
multiprocessor system at the time of the interrupt.

Specifically then, the present invention in one embodi­
ment provides a method for processing a computer program
in a multiprocessor computer system with the following

50 steps. First, the computer program is divided into portions
having instructions which may be interrupted and the por­
tions are distributed among multiple processors of the mul­
tiprocessor computer system for parallel execution. A total
order of the portions is defined that preserves correct reso-

55 lution of data dependencies among the portions consistent
with execution of the computer program on a single pro­
cessor. At a time an instruction receives an interrupt sus­
pending execution of one of the parallel portions, the total
order is used to create an architectural state of the multi-

as system exceptions caused by transient processor errors
grow more common as the limitations of technology are
approached. These latter exceptions, which will be termed
transient exceptions, are generally independent of the par­
ticular instructions being executed, but are driven by spo- 60

radic occasional hardware faults caused, for example, by
overheating of the circuitry.

processor computer system that reflects completion of all
instructions of the portions preceding a given portion of the
interrupting instruction in the total order and none of the
instructions in the portions succeeding the given portion in
the total order. After the interrupt is handled, execution of

While precise interruptability is a common feature of
single processors, it is difficult to achieve in parallel pro­
cessing environments. Parallel processing uses multiple 65

processors which each may simultaneously execute different
portions of a program. Unfortunately, the independent

the parallel portions is resumed from the architectural state.
It is thus a feature of at least one embodiment of the

invention to allow an architectural state to be defined and

US 10,185,569 B2
3

used for the handling of interrupts when portions of a
program are executed in parallel on different processors.

The interrupts may require data describing the architec­
tural state.

4
the given portion are identified and a given portion and the
dependent portions restarted while allowing continued
execution of other portions.

It is thus a feature of at least one embodiment of the 5

It is thus a feature of at least one embodiment of the
invention to provide a method of efficiently treating faulting
operations on a single processor that does not unduly
restrain execution in parallel on other processors of portions
without data dependencies.

invention to provide interrupts that can aid in evaluating
program performance or troubleshooting computer pro­
grams by providing consistent architectural state at particu­
lar points in the program execution.

The method may create a check point with respect to data
modified by the portions before a commitment of an execu­
tion of the portion so that the portion may be squashed after
execution but before commitment. In this regard, the archi­
tectural state may be created by first completing all instruc­
tions of the portions preceding the given portion in the total
order and squashing all instructions in the portions succeed­
ing the given portion in the total order, where instructions
when squashed leave substantially no residual effect on the
architectural state of the multiprocessor computer system.

The method may generate a reorder list having an entry
10 for each portion at a time of discovery of the portion during

the dividing process, the reorder list defining a total order of
the portions. The reorder list may store information neces­
sary for squashing of the portions and data dependencies
may be determined only for portions in the reorder list after

15 the given portion.
It is thus a feature of at least one embodiment of the

invention to provide a system that compatibly works with
precise restarting using much of the same hardware.

The execution of each portion may be committed accord-
20 ing to the ordering of the reorder list, and at the time of

committing the entry for each committing portion in the
reorder list, may release storage of the information necessary
for squashing of the portion.

It is thus a feature of at least one embodiment of the
invention to provide a simple method of capturing and
storing architectural state that does not unduly constrain
parallel execution. By allowing subsequent completion and
squashing of uncommitted computational operations, the 25

architectural state may be determined in a system of dis­
tributed processing where a snapshot of processing state
would be otherwise difficult to obtain.

It is thus a feature of at least one embodiment of the
invention to provide a simple method of freeing up resources
used for checkpointing computational operations.

In one example, the fault may be a thermal fault.
It is thus a feature of at least one embodiment of the

Restarting execution of the program after an interrupt may
use the committed state of the other processors together with
an architectural state for a given processor (using standard
processor-based recording of architectural state) having the
interrupted instruction.

It is thus a feature of at least one embodiment of the
invention to make use of the precise interruptability of
standard processors in combination with a coarser architec­
tural state provided by precise restartability to provide
improved precision in restarting after an interrupt.

invention to provide an efficient method of treating faults
30 that may remedy themselves solely with repeated execution

and without the need for handling an interrupt such as may
otherwise require a precise architectural state.

These particular objects and advantages may apply to
only some embodiments falling within the claims and thus

35 do not define the scope of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

The method may commit execution and squash execution 40

according to the serial execution order of the program.

FIG. 1 is a simplified representation of the physical
architecture of an example multiprocessor system having
four processors and being one type of multiprocessor system
suitable for implementation of the present application; It is thus a feature of at least one embodiment of the

invention to use serial execution order as a simplified way of
deriving a total order, the former which may be readily
extracted from the program as the program portions are
allocated to the separate processors.

FIG. 2 is a simplified representation of the software
elements of the present invention including a modified

45 sequential model program for parallelization, associated
libraries, data objects, and queue structures;

FIG. 3 is a logical diagram of the modified sequential
model program of FIG. 2 showing computational operations
comprised of groups of instructions labeled by the program

The invention may also provide for selective restarting of
computational operations independent of capturing architec­
tural state. In this regard, a dataflow ordering of the com­
putational operations is established reflecting data depen­
dencies between computational operations. When a
particular computational operation faults and needs to be
restarted, only those other computational operations having
data dependencies on the faulting operation are squashed
and the remainder can continue to execute.

50 generator (a human or possibly a software pre-processor)
and associated with a data set identifier routine used in
identifying read and write sets at run-time, also showing data
objects holding read and write tokens, and processors and

55

In this case, the invention in one embodiment provides a
method for processing a computer program in a multipro­
cessor computer system starting with the step of dividing the
computer program into portions having instructions at least
one of which may generate an interrupt and distributing the 60

portions among multiple processors of the multiprocessor
computer system for parallel execution. A data flow order of
the portions is defined that preserves correct resolution of
data dependencies among the portions consistent with
execution of the computer program on a single processor. In 65

the event of a fault in execution of a portion on a given
processor, dependent portions having data dependencies on

associated queues;
FIG. 4 is a detailed representation of a data object of FIG.

3;
FIG. 5 is a flow chart of the data set identifier routine

inserted into the program of FIG. 3 for identifying data sets
at run time and obtaining necessary tokens;

FIG. 6 is a flow chart of a token return routine inserted
into a computational operation proxy when it is in queue;

FIG. 7 is a logical diagram of a reorder list used to track
dataflow execution order of computational operations
together with state and execution process information;

FIG. 8 is logical diagram of multiple computational
operations showing data dependencies between the compu­
tational operations that require a data flow order in time;

US 10,185,569 B2
5

FIG. 9 is a plot of execution as a function of time for one
possible scheduling of execution of the computational
operations of FIG. 8 showing problems of imprecise archi­
tectural state resulting from parallel execution;

FIG. 10 is a diagram indicating changes in the entries of
the reorder list of FIG. 7 during the execution of the
computational operations of FIGS. 8 and 9;

FIG. 11 is a figure similar to that of FIG. 7 showing
reorder list marks with data dependencies to reveal a data
flow order; and

FIG. 12 is logical diagram of a reorder list and a check­
point file for generation of global checkpoints.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

General Hardware Description

Referring now to FIG. 1, a multiprocessor system 10 may
include, for example, four processors 12a-12d each associ­
ated with a local memory 14 and communicating on an
interconnection network structure 16 with shared memory
18. It will be understood that the present application applies
to cases where the local memory 14 and shared memory 18
are managed automatically by hardware (i.e., local memory
14 is a cache), as well as cases where software must
explicitly perform transfers among shared memory 18 and
local memories 14. It will be further understood that shared
memory 18 may in tum communicate with additional exter­
nal memory (not shown) or in fact may be comprised totally
of local memories 14 accessed through communication
protocols. Each of the processors 12 may also communicate
with common control circuitry 24 providing coordination of
the processors 12 whose operation controlled by firmware,
discrete logic, or external software, will be described below.
The multiprocessor system 10 may communicate through a
port 15 with an external computer workstation 17 for
programming, compiling or the like, as is understood in the
art. Processors 12a-12d may also include precise interrupt
circuitry 13 allowing and instruction being executed during
an exception or interrupt to be identified together with the
architectural state of that processor 12 at the time of that
interrupt or exception.

Although the present application is described with respect
to a multiprocessor implemented as separate processors
communicating with shared memory, it will be understood
that the term multiprocessor includes any type of computer
system providing multiple execution contexts, including, but
not limited to, systems composed of multi-threaded proces­
sors, multi-core processors, heterogeneous computational
operations, or any combination thereof.

Referring now to FIG. 2, the shared memory 18 may hold
a target program 20 to be parallelized, modified according to
the present invention as will be described, and program data
22 accessed via the target program 20 during execution.
Generally the target program 20 will be generated using a
sequential programming model, meaning that all or part of
the program was generated as if it would be executed on a
single processor or as a single thread, however, the present
invention can work with mixed statically parallel programs
and sequential programming model programs as well.

Shared memory 18 may further include runtime library 25
possibly providing class specifications (i.e., object proto­
types), generators for data objects 27 (to be described) and
ordered communication structures (e.g., processor queues
26), and code to implement the run-time data set identifiers
and addendum routines described in further detail herein

6
below. The shared memory 18 may also include processor
queues 26 associated with the processors 12 and a memory
"shelf' 50 as will be described below. In addition, shared
memory 18 may support a reorder list 72 and a global

5 checkpoint store 210 as will be described below. It is
contemplated that the memory 18 will also support an
operating system 28 providing execution context for the
above as will generally be understood in the art.

10 Computational Operations and Parallel Execution

Referring now to FIG. 3, the target program 20 may
comprise multiple computer executable instructions 30 (for
examples instructions of the C++ programming language)

15 collected in computational operations 32 designated in the
Fig. as "methods". Generally, the target program 20 may
comprise of different methods or multiple invocations of the
same method as is shown in the figure. A computational
operation 32, for example, may be a function, a subroutine,

20 an object method, or other natural logical division of the
target program 20.

In practice, a computational operation 32 will access data
held in the shared memory 18 by reading or writing data
from or to the shared memory 18. As depicted, each com-

25 putational operation 32 may be designated with a unique
title (e.g. method!) identifying the function of the compu­
tational operation 32 associated with a write set [W] and
read set [R] indicating the data written to and read by the
method (hence its argument(s) and value(s)). Thus, the

30 designation "methodl[w][r]" may represent a first compu­
tational operation 32 reading data [r] and writing to data [w].
It will be understood that the particular data of the write set
and read set will typically be designated by a variable whose
value may not be resolved at the time of program generation

35 but determined only when the program is running. For this
reason, the actual addresses of the read set and write set will
frequently not be known by the program generator.

A given computational operation 32 (e.g. method!) of the
target program 20 may be executed multiple times in dif-

40 ferent instances (either as part of different instantiated
objects or repeated calls to a given function) and each
different instance may have a different read set and write set
dynamically determined during the execution of the target
program 20. When the target program 20 is properly

45 executed, these different instances execute in a serial execu­
tion order 34 representing the manner in which the target
program 20 would execute, for example, on a single pro­
cessor without data dependency conflicts. The serial execu­
tion order 34 is generally resolved only during execution of

50 the target program 20 after flow control instructions in the
serial model target program 20 are evaluated using actual
data. The serial execution order 34 will generally differ from
the static program order, for example, expressed in the
source code of the target program 20 and will include

55 dynamically determined loops, jumps and branches. In sum­
mary, the serial execution order 34 is the order in which the
serial model target program 20 would execute without the
parallelization of the present invention and in which all
dependencies between instructions are properly resolved by

60 the order of instruction execution.
Referring still to FIG. 3, the program generator, which

maybe the programmer or a software pre-processor, may
designate opportunities for parallelization by marking these
computational operations 32 with a tag that both indicates

65 the potential for parallelization and the extent of the com­
putational operation. An example of such marking might be
as follows:

US 10,185,569 B2
7

database.static_xact_delegate (write_setl, read-set_!,
db_xact)

where the computational operation 32 is of a type db_xact
operating on data contained in a write_setl and read-set_! of
database.

This marking invokes for each computational operation
32 a run-time, data object mapper 36 associated with the
computational operation 32. For clarity, the data object
mapper 36 is shown here as placed in-line in the serial
execution order 34 in the target program 20 but in practice
is only logically so positioned.

Generally, before execution of the computational opera­
tions 32 according to the serial execution order 34, the
run-time data object mapper 36 will determine the write set
and read set for the computational operation 32, most simply
by examining the variable values designating the data to be
written to or read from. The data object mapper 36 maps the
resolved read set and write set to one or more data objects
40 each associated with individual or collections of program
data 22 (shown in FIG. 2).

Generally, the data objects 40 define sets of program data
22, for example, as ranges of addresses, an object instan­
tiation number, or set of records in a database. The mapping
process may then be as simple as determining the address or
record number of the data of the write or read sets of the
computational operation 32 or the instance number of the
object associated with a given method forming the compu­
tational operation 32 which is then mapped to the particular
data object 40 having a comparable address range, record
number range, or instantiation number.

The data objects 40 ideally define data sets that are
"disjoint", meaning that they are accessed by one or a few
computational operations 32 at one time. This definition of
data objects 40 must balance a goal of collecting program
data 22 into as large of sets as possible (coarse granularity)

8
It will be appreciated that the read token counter 44 and

the write token flag 46 may be implemented through a
variety of structures including, for example, a single counter
which may have a value of O when the write token has been

5 taken, 1 when the write token is present and greater than 1
when read tokens have been taken, the number of granted
tokens being the counter value minus one.

Finally, the data object 40 may include a wait list 48
which provides an ordered queue (according to a time at

10 which a token is requested) of computational operations 32
requesting the tokens (read or write) which could not be
provided to the computational operations 32 because the
token is already taken. The wait list 48 may be any ordered

15
communication structure such as a list or queue or the like.

Referring again to FIG. 2, ultimately, as will be described
further below, each computational operation 32 is enrolled in
one processor queue 26 associated with a given processor 12
which will execute the computational operations 32 so

20 enrolled. When a computational operation 32 camiot be
executed because the tokens it requires are not yet available,
it may be placed on a shelf 50. It will be understood that the
actual computational operation 32 need not be placed in the
processor queue 26 or on the shelf 50, but this description

25 refers to a logical location only. The processor queue 26 and
shelf 50 may hold pointers or other identifying data. Gen­
erally, the processor queues 26 are general ordered commu­
nication structures that act logically as queues but may be
any particular physical structure. Likewise, the shelf 50 may

30 be any physical structure logically allowing temporary
retention of computational operations as described.

Referring now to FIG. 5, the data object mapper 36 may
operate not only to identify the necessary data objects 40
from which tokens must be obtained but may also provide

35 instructions to manage enrolling computational operations
32 in the queues 26 or placing computational operations 32
on a shelf 50.

to minimize the number of data objects 40 required and the
computational burden of the parallelizing operation, and in
subdividing the data 22 as much as possible (fine granular­
ity) to increase the possibilities of parallelization because the
data objects are disjoint. This division may be informed by 40

an understanding of the application by the programmer or
may be done automatically by pre-processing of the program

As described above, each data object mapper 36, as
indicated by process block 52, initially operates to identify
the data objects 40 associated with data accessed by a given
computational operation 32 either to write to or read from
that data. At process block 54, based on the identification at
process block 52, the data object mapper 36 attempts to
acquire the necessary tokens from the data objects 40.
Generally, the acquisition of tokens, in one embodiment of
the invention, follows the following rules:

by a compiler or the like and may be redefined heuristically
during program execution.

An example definition of data objects 40 for a banking 45

database may divide the data of the database into data
objects commensurate with the records of a single indi­
vidual, reflecting an understanding that computational
operations on one individual's records tend to be indepen­
dent of operations on another individual's records.

(a) a write token may be granted only if it is available (not
checked out by another computational operation 32 and
there are no read tokens checked out, that is, the read token

50 counter equals zero and the write token flag is set to "yes"
in one embodiment); and Referring momentarily to FIG. 4, each of the data objects

40 may generally provide for identification data 42 pointing
to the data it represents, for example, an address range or the
like. In addition, the data object 40 may provide a read token
counter 44 that may be incremented when a read token is 55

granted and decremented when that read token is returned.
The use of the counter permits an essentially unbounded
number of read tokens to be granted while still tracking the
total number of tokens outstanding with the expressed
counter tally. A value of zero therefore indicates that all 60

tokens have been returned. It will be appreciated that incre­
menting may alternatively be used to indicate the read token
is returned and decrementing that the read token is taken and
that this convention is arbitrary.

The data object 40 may also include a write token flag 46 65

reflecting the fact that each data object 40 has only a single
write token and thus a counter is not required.

(b) a read token may be granted only if the write token is
available (that is, the write token flag is set to "yes" in one
embodiment).

These rules prevent write-write dependency conflicts
because writing must occur in the order of write token
requests, and prevent write-read dependency problems
because the write token is not granted if there are pending
reads, and prevent read-write dependency problems because
the read token may not be granted if there is a pending write
operation.

If, at decision block 56, all the tokens for the computa-
tional operation 32 associated with the data object mapper
36 are obtainable, then at process block 58 the computa­
tional operation 32 is enrolled in a processor queue 26 for
any available processor 12 together with an addendum
program 66 as will be described.

US 10,185,569 B2
9

If, on the other hand, all the tokens cannot be obtained for
the computational operation 32 associated with the data
object mapper 36, then those tokens which can be obtained
may be obtained and then the data object mapper 36 places
the computational operation 32, per process block 60, on a
shelf 50 after the identity of the computational operation 32
is enrolled in the wait list 48 of all data objects 40 whose
tokens were needed but not obtained.

As will be understood from the following description, the
wait list 48 provides a queue function separate from the
actual queues 26 that permits processors 12 to steal com­
putational operations from other processors without upset­
ting the order structure enforced by the wait list 48.

Referring to FIG. 6, the addendum program 66 that will
be added to the computational operation 32 when it is
enrolled in a processor queue 26 (per process block 58 of
FIG. 5) provides for the return of tokens at process block 65
after execution of the computational operation 32 by a
processor 12. The addendum program 66 may further pro­
vide an activation of computational operations 32 that are at
the top of the wait list 48, and that have been shelved, per
process block 67. The return of tokens per block 65 may
imply that a shelved computational operation now has all the
read and write tokens needed for execution, whether pro­
vided as a result of the actions at block 66 or otherwise.

A detailed example of the operation of the above-de­
scribed structure is provided in U.S. patent application Ser.
No. 12/882,892 filed Sep. 15, 2010 and entitled "System and
Method Providing Run-Time Parallelization of Computer
Software Using Data Associated Tokens" hereby incorpo­
rated by reference in its entirety.

Precise Restartability

Referring now to FIGS. 3 and 7, when a given compu­
tational operation 32 in queue 26 reaches a processor 12 it
may be executed without "commitment" meaning generally
that the memory objects 40 can be restored to an unaffected
state. More generally, execution without commitment means
that the execution may be "undone" so that it has no
substantial residual effect on the architectural state of the
multiprocessor computer system.

Execution without commitment may be performed either
by not changing the memory objects 40 but rather changing
a temporary file (for example, a future file) or by recording
a reversionary copy of the memory objects in a temporary
file (for example, a history file) when they are changed so
that they can be restored to their earlier value. Either of these
techniques may be used in the present invention; however,
for the sake of clarity, the following description will discuss
the history file approach.

Commitment of a computational operation 32 is con­
trolled generally by a FIFO reorder list 72 as will now be
described. At the time when a given computational operation
32 is discovered during execution, an element 70 for that
computational operation 32 may also be generated in a FIFO
reorder list 72. In its simplest form, this element 70 is
ordered with respect to the other elements 70 in the reorder
list 72 according to the serial execution order of the com­
putational operations 32 in the program 20. Computational
operations 32 are entered at a tail 74 of the reorder lists 72
and shift left toward the head 76 of the reorder lists 72 at
which time those computational operations 32 are "commit­
ted" allowing them to change the data objects 40 and be
removed from the reorder lists 72. It will be appreciated that
the reorder list 72 defines a total order for execution of the
computational operations 32 that is consistent with the data

10
dependencies between computational operations 32 and that
if the computational operations 32 were committed in the
total order of the reorder list 72, a same result would be
produced as execution of the computational operations 32 on

5 a single processor.
Each element 70 of the reorder list 72 generally holds an

identification 77 of the computational operation 32 (for
example a pointer or identification number) together with a
copy of its modification set 78. The modification set 78 of a

10 computational operation 32 will generally be the objects 40
to which it will write, together with current values of the
registers and flags (including the program counter) of its
associated processor 12 before any modification by execu­
tion of the computational operation 32. This modification set

15 78 allows restoration of the objects 40 and a restarting of the
computational operation 32 in the event that the computa­
tional operation 32 does not reach commitment.

The element 70 also provides for storage of an intra­
processor state 79 for an architectural state of a processor 12

20 at the time of an interrupt or exception (loosely termed a
"faulting" instruction), the architectural state being the data
necessary for precise interruptability as is generally under­
stood in the art. Again, this depiction is simply a logical
diagram of the actual storage of this intra-processor state 79

25 that may physically remain in the individual processor 12. In
an optional embodiment, each element 70 also provides a
data dependency store 81 describing data dependency rela­
tionships between the computational operation 32 of the
element 70 and other computational operations of other

30 elements 70 in the reorder list 72.
In addition, each element 70 includes a completion flag 80

and an interrupt flag 82.
When execution of the computational operation 32 asso­

ciated with an element 70 is completed by the processor 12,
35 the completion flag 80 is set. This execution is not yet

committed which occurs only when an element 70 for a
completed computational operation 32 reaches the head 76
of the reorder list 72. At this time, the results of the execution
have previously been written to the memory elements of the

40 modification set 78 (that is, the objects 40) and the stored
values of the modification set 78 of element 70 (needed to
undo the execution) are removed from the reorder list 72.

In the event of an interrupt 84 during execution of a
computational operation 32 on a given processor 12, the

45 information from the precise interrupt circuitry 13 from the
given processor 12 executing the computational operation
32 is preserved as intra-processor state 79 of the element 70
(designated in FIG. 7 as element 70'), the given processor 12
is halted, and the element 70' is marked by setting of the

50 interrupt flag 82.
Processing of the interrupt 84 is delayed briefly while the

computational operations 32 associated with elements 70 in
a preceding region 86 of the reorder lists 72 (further toward
the head 76 of the reorder list 72 from the element 70')

55 continue to be committed. This commitment process pro­
ceeds until the element 70', having the set interrupt flag, is
reached. The elements 70 in a succeeding region 88, includ­
ing the given element 70' having the interrupt, are then
squashed by restoring the values of the registers and objects

60 40 according to the stored modification sets 78 of those
elements 70 starting at the youngest element 70 toward the
tail 74 and proceeding toward the element 70' associated
with the interrupt 84. If another interrupt occurs during this
process, it simply is enrolled in order in the reorder list 72

65 and processed in turn.
At the conclusion of this process, the intra-processor state

79 is combined with the modification set 78 of elements 70'

US 10,185,569 B2
11

to yield an architectural state of high resolution that accu­
rately reflects the current architectural state of the multipro­
cessor system 10. The interrupt is then serviced by jumping

12
data subsequent to a reading of the data ("write after read"
dependency). Errors can result if any of these interdependent
reads and writes change in order as a result of parallel
execution.

In FIG. 8, computation F3 exhibits a write after read
(WAR) dependency with respect to Fl because it writes an
object A that is previously read by Fl. It will be appreciated
that the ultimate value of object A will change if the relative
order of Fl and F3 change. WAR dependencies are indicated

to the interrupt service routine. In some cases, the handling
of the interrupt requires a reporting about details of the 5

architectural state, for example, a reporting or use of
memory values or register values, and the above process
provides consistency in that reporting because of the con­
sistent architectural state provided at the time the interrupt
84 is handled. 10 by solid line and a WAR dependency is also exhibited

between computational operation F3 and computational
operation F2. Computational object F4 has a write after
write (WAW) dependency on computational operation Fl
(indicated by the dotted lines) and so does F5 on F 4 because

Upon completion of service of the interrupt, resumption
of execution of the faulting instruction of the computational
operation 32 of elements 70' (now at the head 76 of the
reorder list 72) may be resumed at the saved high-resolution
architectural state.

It will be appreciated that if, for some reason, the multi­
processor system 10 is unable to provide for precise restart­
ability (for example because of hardware fault-detection
latency) precise restarting from the faulting instruction of
computational operation 32 elements 70' may not be pos­
sible. However, in this case, the multiprocessor system 10
may simply squash the entirety of the computational opera­
tion 32 of elements 70' subtending the interrupt 84 and can
restart using the modification set 78 alone. In all events it
will be possible and safe to restart the program by squashing
all of the computational operations 32 in the reorder list 72.
This technique is particularly useful for transient exceptions,
where the exception will not inevitably be repeated together
with repetition of execution of the computational operations.

Example I

Consider a program 20 providing the following method
which repeats execution of a Function F "n" times:

for (i-0; i<n; i++) {
Function F: [write set] [read set]

In each execution of the Function F (designated F 1, F2,
etc.), the write set and read set, being the data written to by
the Function F and the data read by the Function F, may
change as follows:

1. Fl: [B, C][A]
2. F2: [D][A]
3. F3: [A, E][F]
4. F4: [B][D]
5. F5: [B][D]
6. F6: [G][H]
where the capital letters represent distinct data objects 40.
Referring now to FIG. 8, a data dependence graph of these

different computational operations Fl-F6 depicts the data
dependencies that constrain the order of execution of these
computational operations 32. In general, parallel execution
of computational operations 32 requires commitment of the
computational operations 32 in a data flow order that
observes the data dependency of this data dependence graph.
The data flow order can be met by executing the computa­
tional operations 32 in the same ordering as sequential
execution of the program 20; however, as will be seen, other
orderings are also possible.

Of principal concern in the data flow ordering are portions

15 each of these computational operations writes the value ofB.
For this reason, these relative orderings must also be
observed. Finally F4 and F5 both have read after write
(RAW) dependencies on computational operation F2 as
indicated by a dashed line. Computational operations Fl, F2,

20 and F6, are independent without data dependencies.
Referring now to FIG. 9, the token system described

above with respect to managing data dependencies may be
used to implement the execution of these computational
operations 32 ofF1-F6 according to a schedule 90 operating

25 on three processors 12a-12c. This schedule 90 begins with
simultaneous execution of computational operations F 1, F2,
and F6. Computational operation F2, in this example,
requires three epochs (tl-t3) to complete. This in tum
requires F3 and F4 to be delayed (serialized) until epoch t4

30 because of the data dependencies between F3 and F4 and F2.
Computational operation F5 begins in epoch t6 and is
dependent on computational operation F4.

Note that an interrupt 84 occurring during the execution
of F 4 in epoch t4 would result in an imprecise architectural

35 state if the actual architectural state of the computer system
were captured with F6 completed out of order with respect
to the sequential execution of the program.

Referring now to FIGS. 9 and 10, a precise architectural
state is provided by monitoring program order and comple-

40 tion of the computational operations 32 using the reorder list
72. In epoch tl, each ofF1-F6 is enrolled in the reorder list
72 with Fl being completed and committed in epoch t2. In
epoch t2, F6 completes but is not committed because it has
not reached the head of the reorder list 72. In epoch t3, F2

45 completes and is retired in epoch t4 when interrupt 84 occurs
with respect to computational operation F4.

Assuming that an interrupt 84 arrives in epoch t4, the
element 70 for computational operation F4 will be marked
with an interrupt by interrupt flag 82 and the associated

50 processor 12 halted and its architectural state recorded.
Other processors 12 continue executing their respective
computational operations 32 until commitment of compu­
tational operation F3 at epoch t6, computational operation
F3 being the last computational operation preceding com-

55 putational operation F4 in the reorder list 72. At this point,
computational operation F4 reaches the head of the reorder
list 72 and triggers a squashing of subsequent computational
operations F5 and F6 and an augmenting of the modification
set 78 of computational operation F4 with the architectural

60 state captured by its processor 12 according to conventional
techniques, to produce a precise restarting architectural
state.

of the program 20 that may write to the same data ("write
after write" dependency), and portions of the program that 65

may implement a reading of data subsequent to a writing of
that data ("read after write" dependency), or a writing of

Selective Restartability

Referring now to FIG. 11, the hardware and mechanisms
described above may also be used to provide for a selective

US 10,185,569 B2
13

restarting of processors associated with faulting computa­
tional operations 32, for example, indicated by interrupt 84.
In selective restartability, the dependency relationships of
the computational operations Fl-F6 as enrolled in the reor­
der list 72 may be determined and recorded, for example, in 5

the data dependencies store 81 associated with each element
70 as described above. The data dependencies may be
extracted, for example, from the wait list 48 of each of the
objects 40 described above.

These data dependencies may be used to deduce a data 10

flow order differing from the serial execution order implicit
in the above example. By considering the data flow order, at
the time of the interrupt 84 during computational operation
F4, only succeeding computational operations in the data

15
flow order (and hence depending on the faulting computa­
tional operation 32 of element 70) need be squashed. In this
case, computational operation F5 having a data dependency
with faulting F4 may be squashed and the remaining com­
putational operations F6 may continue to execute for greater 20

computational efficiency. The data flow order describes an
order strictly required by data dependency considerations. In
this example the data flow order would be:

1. Fl, F2

14
gram provided that the program is restarted immediately
after the checkpointed instruction.

Other Considerations

It will be appreciated that a variety of different techniques
may be used to establish the total order and/or data flow
order of computational operations including those described
in U.S. patent application Ser. No. 12/543,354 filed Aug. 18,
2009, and entitled: "System And Method For Dynamic
Dependence-Based Parallel Execution Of Computer Soft-
ware", and U.S. Pat. patent application Ser. No. 12/858,907
filed Aug. 18, 2010 and entitled: "System and Method
Providing Run-Time Parallelization of Computer Software
Accommodating Data Dependencies", both hereby incorpo­
rated by reference. It is necessary only that the total order
provide a unique and reproducible ordering of all of the
concurrent processes; use of program textual order, is only
one example. For example, processes A, B, C, D, may occur
in this textual (sequential) order in the program but during
execution be encountered in a cycling pattern of (A,B,C,D),
then (B,C,D,A), then (C,D,A,B), then (D,A,B,C) and then
the pattern repeats. Knowing this pattern, a total order can be
derived for precise restartability, but the order would be

2. F3, F4, 25 neither the sequential order nor static.
3. F5
with F6 not included in the data flow order because it may

execute independently.

Generally the present invention may be implemented in
any of a combination of hardware, firmware, and software
including operating system software executing on all or
some of the processors of the multiprocessor system.

Certain terminology may be used herein for purposes of
reference only, and thus is not intended to be limiting. For
example, terms such as "upper", "lower", "above", and
"below" refer to directions in the drawings to which refer-
ence is made. Terms such as "front", "back", "rear", "bot-

In the above example, it will be recognized that F5 does
not need to be squashed because F4 has not been committed 30

and the dependency between F5 and F4 is a write after write
(WAW) dependency. F5 would need to be squashed, how­
ever, if it had a read after write (RAW) dependency and F 5
had begun.

35 tom" and "side", describe the orientation of portions of the
component within a consistent but arbitrary frame of refer­
ence which is made clear by reference to the text and the
associated drawings describing the component under dis­
cussion. Such terminology may include the words specifi-

In the present example, where there is no downstream
dependency, F4 can further be restarted immediately, before
it reaches the head of the reorder list, for an additional
increase in performance.

This selective restarting may be useful, for example, with
respect to intermittent thermal faults the latter representing
a momentary inability to obtain data from memory, where
simply re-executing the faulting computational operation 32
alone may be sufficient to remedy the fault without the need

40 cally mentioned above, derivatives thereof, and words of
similar import. Similarly, the terms "first", "second" and
other such numerical terms referring to structures do not
imply a sequence or order unless clearly indicated by the
context.

to execute an interrupt or exception routine. No precise 45

architectural state is required in selective restarting. In this
case, the above described reorder list 72 may be used simply

When introducing elements or features of the present
disclosure and the exemplary embodiments, the articles "a",
"an", "the" and "said" are intended to mean that there are
one or more of such elements or features. The terms "com­
prising", "including" and "having" are intended to be inclu­
sive and mean that there may be additional elements or
features other than those specifically noted. It is further to be

to store data necessary for the purpose of squashing the
dependent computational operations and, after a computa­
tional operation is committed, manage the process of freeing 50

that data storage for other use. The reorder list 72 also
simplifies the task of determining which computational
operations need to be examined for data dependency by
allowing inspection of only succeeding computational

55
operations 32 in the reorder list 72.

Global Checkpoints

understood that the method steps, processes, and operations
described herein are not to be construed as necessarily
requiring their performance in the particular order discussed
or illustrated, unless specifically identified as an order of
performance. It is also to be understood that additional or
alternative steps may be employed.

References to "multiprocessor system" or "a computer
system" can be understood to include one or more proces-

Referring now to FIG. 12, global checkpoints may be
created at the time of retiring each computational operation
32 at the head 76 of the reorder list 72 by capturing the
modification set 78 at that time in a global checkpoint store
210. Such global checkpoints can help recover from "cata­
strophic" failures, for example, where the integrity of the
system is suspect or may aid in migrating the program to a
different computer or analyzing the execution of the pro-

60 sors on the same substrate or package or multiple processors
inter-communicating in a distributed environment(s), Fur­
thermore, references to memory, unless otherwise specified,
can include one or more processor-readable and accessible
memory elements and/or components that can be internal to

65 the processor-controlled device, external to the processor­
controlled device, and can be accessed via a wired or
wireless network.

US 10,185,569 B2
15

It is specifically intended that the present invention not be
limited to the embodiments and illustrations contained
herein and the claims should be understood to include
modified forms of those embodiments including portions of
the embodiments and combinations of elements of different 5

embodiments as come within the scope of the following
claims. All of the publications described herein, including
patents and non-patent publications are hereby incorporated
herein by reference in their entireties.

We claim:
1. A method for processing a computer program in a

multiprocessor computer system comprising the steps of:

10

(a) dividing the computer program into multiple portions 15
having multiple instructions which may be interrupted
and distributing the portions among multiple physical
processors of the multiprocessor computer system for
parallel execution, each of the processors having an
independent dedicated program counter and dedicated 20

circuitry to receive independent interrupts directed to
each given one of the multiple processors;

16
putational operation executed by the processor and register
values of the processor on which the computational opera­
tion was executed.

7. The method of claim 5 wherein the interrupt is selected
from a group consisting of: a hardware interrupt, a software
interrupt, and an execution exception.

8. The method of claim 1 further including the steps of:
in the event of a fault in execution of a given portion on

a given processor, determining dependent portions dis­
tributed to processors other than the given processor
having data dependencies on the given portion; and

only after step (c) restarting that given portion and the
dependent portions while allowing continued execution
of other portions on processors other than the given
processor.

9. The method of claim 8 further including the steps of
generating a reorder list having an entry for each portion at
a time of discovery of the portion during the dividing
process of step (a) defining a total order of the portions and
storing in the reorder list information necessary for squash­
ing of the portions and wherein data dependencies are
determined only for portions in the reorder list after the
given portion.

10. The method of claim 9 wherein the execution of
portions is committed according to the ordering of the
reorder list and at the time of committing the entry for each
committing portion in the reorder list releasing storage of the
information necessary for squashing of the portion.

11. The multiprocessor computer system of claim 8
30 wherein the fault is selected from the group consisting of: a

thermal fault, a voltage emergency, and a timing fault.

(b) defining a total order of the instructions of the portions
before all the instructions of the portions are executed
and ready for commitment of the instructions, that 25

preserves correct resolution of data dependencies
among the instructions, and that provides a unique
ordering selected from different given possible order­
ings that would preserve correct resolution of data
dependencies;

(c) at an interrupt time when a first processor of the
multiple physical processors executing a first portion
receives an interrupt in the first portion, coordinating
execution of other portions on processors other than the
first processor, by using the total order to create an 35

architectural state of the multiprocessor computer sys­
tem of all processors, by completion of all instructions

12. The method of claim 1 wherein the step of coordi-
nating execution of other portions on processors other than
the first processor, completes all instructions of the other
portions of the other processors when those other portions
precede the first portion of the first processor in the total
order and squashes all executed instructions in the other
portions of the other processors when those other portions
succeed the first portion of the first processor in the total
order for portions on processors other than the first proces­
sor, regardless of whether instructions of the portions of the

of the other portions of the other processors when those
other portions precede the first portion of the first
processor in the total order and squashing all executed 40

instructions in the other portion of the other processors
when those other portions succeed the first portion of
the first processor in the total order for portions on
processors other than the first processor;

other processors were executed before or after the interrupt.
13. A multiprocessor computer system for executing a

computer program, the multiprocessor computer system
45 executing program steps fixed in non-transient medium to: (d) after completion of (c), handling the interrupt; and

(e) after completion of (d), resuming execution of the
parallel portions from the architectural state.

2. The method of claim 1 wherein handling of the
interrupt requires data describing the architectural state.

3. The method of claim 1 further including the step of 50

creating a check point with respect to data modified by the
portions before a commitment of an execution of a portion
so that the portion may be squashed after execution but
before commitment.

4. The method of claim 3 wherein step (c) creates the 55

architectural state by first completing all instructions of the
portions preceding the given portion in the total order and
squashing all instructions in the portions succeeding the
given portion in the total order, where instructions when
squashed leave substantially no residual effect on the archi- 60

tectural state of the multiprocessor computer system.
5. The method of claim 1 further including the steps of

recording a given architectural state of the given processor
at the interrupt time and wherein the architectural state is
also based on the given architectural state.

6. The method of claim 5 wherein the architectural state
of a processor is a state of memory accessed by the com-

65

(a) divide the computer program into multiple portions
having multiple instructions which may be interrupted
and distributing the portions among multiple physical
processors of the multiprocessor computer system for
parallel execution, each of the processors having an
independent dedicated program counter and dedicated
circuitry to receive independent interrupts directed to
each given one of the multiple processors;

(b) defined a total order of the instructions of the portions
before all the instructions of the portions are executed
and ready for commitment of the instructions, that
preserves correct resolution of data dependencies
among the instructions, and that provides a unique
ordering selected from different given possible order-
ings that would preserve correct resolution of data
dependencies;

(c) at an interrupt time when a first processor of the
multiple physical processors executing a first portion
receives an interrupt in the first portion, coordinate
execution of other portions on processors other than the
first processor, by using the total order to create an
architectural state of the multiprocessor computer sys-

US 10,185,569 B2
17

tern of all processors, by completion of all instructions
of the other portions of the other processors when those
other portions precede the first portion of the first
processor in the total order and squashing all executed
instructions in the other portions of the other processors 5

when those other portions succeed the first portion of
the first processor in the total order for portions on
processors other than the first processor;

(d) after completion of (c), handle the interrupt; and
(e) after completion of (d), resume execution of the 10

parallel portions from the architectural state.
14. The multiprocessor computer system of claim 13

wherein step (c) captures the architectural state by first
~ompleting all instructions of the portions preceding the
~nterrup_ted i~struction in the total order and squashing all 15

~nstruct~ons . m the portions succeeding the interrupted
mstruct10n m the total order, where instructions when
squashed leave no substantial residual effect on the archi­
tectural state of the multiprocessor computer system.

15. The multiprocessor computer system of claim 9 20

wherein the multiprocessor computer system further records
a given architectural state of the given processor at the
interrupt time and wherein the architectural state is also
based on the given architectural.

16. The multiprocessor computer system of claim 15 25

wherein the architectural state of a processor is a state of
memory accessed by the computational operation executed
by the processor and register values of the processor on
which the computational operation was executed.

17. The multiprocessor computer system of claim 15 30

wherein the interrupt is selected from a group consisting of:
a hardware interrupt, a software interrupt, and an execution
exception.

18
ing data dependencies on the given portion and distrib­
uted to processors other than the given processor; and

only after (c) restart that given portion and the dependent
portions while allowing continued execution of other
portions distributed to processors other than the given
processor.

19. The multiprocessor computer system of claim 18
wherein execution of the computer program further gener­
ates a reorder list having an entry for a portion at a time of
discovery of the portion during the dividing process of step
(a) defining a total order of the portions and stores in the
reorder list information necessary for squashing of the
portions_ and ~herein data dependencies are determined only
for port10ns m the reorder list after the given portion.

20. The multiprocessor computer system of claim 19
wherein the execution of portions is committed according to
the ordering of the reorder list and at the time of committing
the entry for each committing portion in the reorder list
releasing storage of the information necessary for squashing
of the portion.

21. The multiprocessor computer system of claim 18
wherein the total order is identical to an ordering of the
program on a single processor.

22. The multiprocessor computer system of claim 18
wherein the multiprocessor computer system coordinates
execution of other portions on processors other than the first
processor by completing all instructions of the other portions
of the other processors when those other portions precede
the first portion of the first processor in the total order and
squashing all executed instructions in the other portions of
the other processors when those other portions succeed the
first portion of the first processor in the total order for
portions on processors other than the first processor, regard-18. The multiprocessor computer system of claim 13

wherein the multiprocessor computer system further:
in the event of a fault in execution of a given portion on

a given processor, determine dependent portions hav-

35 less of whether instructions of the portions of the other
processors were executed before or after the interrupt.

* * * * *

