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PRECISE-RESTARTABLE PARALLEL operation of these multiple processors results in a complex 
EXECUTION OF PROGRAMS and distributed architectural state that is difficult to capture 

on an instantaneous basis. Without an ability to capture 
STATEMENT REGARDING FEDERALLY architectural state, precise interruptability cannot be 

SPONSORED RESEARCH OR DEVELOPMENT 5 obtained, and advantages of precise interruptability are 
unavailable. 

This invention was made with government support under 
0963737 awarded by the National Science Foundation. The SUMMARY 
government has certain rights in the invention. 

NIA 

CROSS REFERENCE TO RELATED 
APPLICATION 

BACKGROUND OF THE INVENTION 

The present invention relates to a method and computer 
architecture for parallel execution of programs on multiple 
processors. 

Computer interrupts are signals received by a computer 
processor that cause the processor to switch from a current 
execution task or thread to a different execution task or 
thread (the latter, for example, being an interrupt service 
routine) typically as designated by an interrupt identifier. 
The interrupt service routine executed after the interrupt 
"handles" the interrupt, after which, the former task is 
resumed. 

Interrupts can be generated by hardware or software. 
Hardware interrupts let a processor respond to external 
events (for example, the expiration of a timer) without the 
need for the processor to periodically check for the event in 
a "polling" operation. Software interrupts may be triggered 
by a special instruction executed by the processor. Interrupts 
may be triggered by errors in the execution of an instruction, 
for example a division by zero, or by other execution faults 
such as lack of available memory. These latter interrupts are 
often called exceptions. 

Precise interruptability is provided by a processor if the 
interrupted thread may be resumed without disruption. Pre­
cise interruptability generally requires that the architectural 
state of the processor be well defined at the time of the 
interrupt so that this architectural state may be restored when 
the interrupt has been handled. The architectural state cap­
tured at the time of the interrupt should reflect completion of 
all the instructions preceding the interrupted instruction and 
none of the succeeding instructions. 

Precise interruptability is crucial to a variety of system 
applications including debugging and resource manage­
ment, and has allowed innovative micro-architectural tech­
niques, such as speculation, a technique that allows the 
processor to execute instructions past the point of unre­
solved branch instructions, for example, by predicting how 
the branch instruction will be resolved. The need to provide 
for precise interruptability is likely to grow more important 

10 The present invention allows accurate determination of an 
architectural state in a multiprocessor system independently 
executing portions of the program, by enforcing a consistent 
order in the commitment of the results of those executions 

15 
regardless of the actual order of the execution. By marking 
interrupts with respect to this commitment order, an archi­
tectural state may be rapidly determined with respect to the 
interrupt, for example, by committing all earlier executions 
in the commitment order and squashing all later executions 

20 in the commitment order. To this extent then, the invention 
provides for "precise restartability" rather than "precise 
interruptability", nevertheless precise restartability provides 
many of the benefits of precise interruptability. 

When precise restartability is provided, the commitment 
25 order will be a "total order" of the instructions, an order that 

is consistent with a "data flow" order that respects data 
dependencies between computational operations. Yet the 
total order goes beyond the data flow order by additionally 
relying on a sequence, such as provided by the program's 

30 text, that provides a definitive order when a dataflow order 
does not exist between instructions (that is, multiple order­
ings satisfy data flow ordering for the instructions). 

As noted, obtaining a precise architectural state for a 
complex system of multiple processors would seem to 

35 require a precise capture and communication of the state of 
each of the multiple processors, at an instant in time, to a 
single location for integration into a single architectural 
state. The present invention effectively avoids this problem 
by operating before the interrupt to provide a per instruction 

40 checkpointing and after the interrupt to bring the architec­
tural state of the system into conformance with one of these 
checkpoints before releasing the system to the interrupt 
handling routine. These checkpoints hold simplified infor­
mation sufficient for precise restarting even though they may 

45 not technically represent the actual architectural state of the 
multiprocessor system at the time of the interrupt. 

Specifically then, the present invention in one embodi­
ment provides a method for processing a computer program 
in a multiprocessor computer system with the following 

50 steps. First, the computer program is divided into portions 
having instructions which may be interrupted and the por­
tions are distributed among multiple processors of the mul­
tiprocessor computer system for parallel execution. A total 
order of the portions is defined that preserves correct reso-

55 lution of data dependencies among the portions consistent 
with execution of the computer program on a single pro­
cessor. At a time an instruction receives an interrupt sus­
pending execution of one of the parallel portions, the total 
order is used to create an architectural state of the multi-

as system exceptions caused by transient processor errors 
grow more common as the limitations of technology are 
approached. These latter exceptions, which will be termed 
transient exceptions, are generally independent of the par­
ticular instructions being executed, but are driven by spo- 60 

radic occasional hardware faults caused, for example, by 
overheating of the circuitry. 

processor computer system that reflects completion of all 
instructions of the portions preceding a given portion of the 
interrupting instruction in the total order and none of the 
instructions in the portions succeeding the given portion in 
the total order. After the interrupt is handled, execution of 

While precise interruptability is a common feature of 
single processors, it is difficult to achieve in parallel pro­
cessing environments. Parallel processing uses multiple 65 

processors which each may simultaneously execute different 
portions of a program. Unfortunately, the independent 

the parallel portions is resumed from the architectural state. 
It is thus a feature of at least one embodiment of the 

invention to allow an architectural state to be defined and 



US 10,185,569 B2 
3 

used for the handling of interrupts when portions of a 
program are executed in parallel on different processors. 

The interrupts may require data describing the architec­
tural state. 

4 
the given portion are identified and a given portion and the 
dependent portions restarted while allowing continued 
execution of other portions. 

It is thus a feature of at least one embodiment of the 5 

It is thus a feature of at least one embodiment of the 
invention to provide a method of efficiently treating faulting 
operations on a single processor that does not unduly 
restrain execution in parallel on other processors of portions 
without data dependencies. 

invention to provide interrupts that can aid in evaluating 
program performance or troubleshooting computer pro­
grams by providing consistent architectural state at particu­
lar points in the program execution. 

The method may create a check point with respect to data 
modified by the portions before a commitment of an execu­
tion of the portion so that the portion may be squashed after 
execution but before commitment. In this regard, the archi­
tectural state may be created by first completing all instruc­
tions of the portions preceding the given portion in the total 
order and squashing all instructions in the portions succeed­
ing the given portion in the total order, where instructions 
when squashed leave substantially no residual effect on the 
architectural state of the multiprocessor computer system. 

The method may generate a reorder list having an entry 
10 for each portion at a time of discovery of the portion during 

the dividing process, the reorder list defining a total order of 
the portions. The reorder list may store information neces­
sary for squashing of the portions and data dependencies 
may be determined only for portions in the reorder list after 

15 the given portion. 
It is thus a feature of at least one embodiment of the 

invention to provide a system that compatibly works with 
precise restarting using much of the same hardware. 

The execution of each portion may be committed accord-
20 ing to the ordering of the reorder list, and at the time of 

committing the entry for each committing portion in the 
reorder list, may release storage of the information necessary 
for squashing of the portion. 

It is thus a feature of at least one embodiment of the 
invention to provide a simple method of capturing and 
storing architectural state that does not unduly constrain 
parallel execution. By allowing subsequent completion and 
squashing of uncommitted computational operations, the 25 

architectural state may be determined in a system of dis­
tributed processing where a snapshot of processing state 
would be otherwise difficult to obtain. 

It is thus a feature of at least one embodiment of the 
invention to provide a simple method of freeing up resources 
used for checkpointing computational operations. 

In one example, the fault may be a thermal fault. 
It is thus a feature of at least one embodiment of the 

Restarting execution of the program after an interrupt may 
use the committed state of the other processors together with 
an architectural state for a given processor (using standard 
processor-based recording of architectural state) having the 
interrupted instruction. 

It is thus a feature of at least one embodiment of the 
invention to make use of the precise interruptability of 
standard processors in combination with a coarser architec­
tural state provided by precise restartability to provide 
improved precision in restarting after an interrupt. 

invention to provide an efficient method of treating faults 
30 that may remedy themselves solely with repeated execution 

and without the need for handling an interrupt such as may 
otherwise require a precise architectural state. 

These particular objects and advantages may apply to 
only some embodiments falling within the claims and thus 

35 do not define the scope of the invention. 

BRIEF DESCRIPTION OF THE DRAWINGS 

The method may commit execution and squash execution 40 

according to the serial execution order of the program. 

FIG. 1 is a simplified representation of the physical 
architecture of an example multiprocessor system having 
four processors and being one type of multiprocessor system 
suitable for implementation of the present application; It is thus a feature of at least one embodiment of the 

invention to use serial execution order as a simplified way of 
deriving a total order, the former which may be readily 
extracted from the program as the program portions are 
allocated to the separate processors. 

FIG. 2 is a simplified representation of the software 
elements of the present invention including a modified 

45 sequential model program for parallelization, associated 
libraries, data objects, and queue structures; 

FIG. 3 is a logical diagram of the modified sequential 
model program of FIG. 2 showing computational operations 
comprised of groups of instructions labeled by the program 

The invention may also provide for selective restarting of 
computational operations independent of capturing architec­
tural state. In this regard, a dataflow ordering of the com­
putational operations is established reflecting data depen­
dencies between computational operations. When a 
particular computational operation faults and needs to be 
restarted, only those other computational operations having 
data dependencies on the faulting operation are squashed 
and the remainder can continue to execute. 

50 generator (a human or possibly a software pre-processor) 
and associated with a data set identifier routine used in 
identifying read and write sets at run-time, also showing data 
objects holding read and write tokens, and processors and 

55 

In this case, the invention in one embodiment provides a 
method for processing a computer program in a multipro­
cessor computer system starting with the step of dividing the 
computer program into portions having instructions at least 
one of which may generate an interrupt and distributing the 60 

portions among multiple processors of the multiprocessor 
computer system for parallel execution. A data flow order of 
the portions is defined that preserves correct resolution of 
data dependencies among the portions consistent with 
execution of the computer program on a single processor. In 65 

the event of a fault in execution of a portion on a given 
processor, dependent portions having data dependencies on 

associated queues; 
FIG. 4 is a detailed representation of a data object of FIG. 

3; 
FIG. 5 is a flow chart of the data set identifier routine 

inserted into the program of FIG. 3 for identifying data sets 
at run time and obtaining necessary tokens; 

FIG. 6 is a flow chart of a token return routine inserted 
into a computational operation proxy when it is in queue; 

FIG. 7 is a logical diagram of a reorder list used to track 
dataflow execution order of computational operations 
together with state and execution process information; 

FIG. 8 is logical diagram of multiple computational 
operations showing data dependencies between the compu­
tational operations that require a data flow order in time; 
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FIG. 9 is a plot of execution as a function of time for one 
possible scheduling of execution of the computational 
operations of FIG. 8 showing problems of imprecise archi­
tectural state resulting from parallel execution; 

FIG. 10 is a diagram indicating changes in the entries of 
the reorder list of FIG. 7 during the execution of the 
computational operations of FIGS. 8 and 9; 

FIG. 11 is a figure similar to that of FIG. 7 showing 
reorder list marks with data dependencies to reveal a data 
flow order; and 

FIG. 12 is logical diagram of a reorder list and a check­
point file for generation of global checkpoints. 

DETAILED DESCRIPTION OF THE 
PREFERRED EMBODIMENT 

General Hardware Description 

Referring now to FIG. 1, a multiprocessor system 10 may 
include, for example, four processors 12a-12d each associ­
ated with a local memory 14 and communicating on an 
interconnection network structure 16 with shared memory 
18. It will be understood that the present application applies 
to cases where the local memory 14 and shared memory 18 
are managed automatically by hardware (i.e., local memory 
14 is a cache), as well as cases where software must 
explicitly perform transfers among shared memory 18 and 
local memories 14. It will be further understood that shared 
memory 18 may in tum communicate with additional exter­
nal memory (not shown) or in fact may be comprised totally 
of local memories 14 accessed through communication 
protocols. Each of the processors 12 may also communicate 
with common control circuitry 24 providing coordination of 
the processors 12 whose operation controlled by firmware, 
discrete logic, or external software, will be described below. 
The multiprocessor system 10 may communicate through a 
port 15 with an external computer workstation 17 for 
programming, compiling or the like, as is understood in the 
art. Processors 12a-12d may also include precise interrupt 
circuitry 13 allowing and instruction being executed during 
an exception or interrupt to be identified together with the 
architectural state of that processor 12 at the time of that 
interrupt or exception. 

Although the present application is described with respect 
to a multiprocessor implemented as separate processors 
communicating with shared memory, it will be understood 
that the term multiprocessor includes any type of computer 
system providing multiple execution contexts, including, but 
not limited to, systems composed of multi-threaded proces­
sors, multi-core processors, heterogeneous computational 
operations, or any combination thereof. 

Referring now to FIG. 2, the shared memory 18 may hold 
a target program 20 to be parallelized, modified according to 
the present invention as will be described, and program data 
22 accessed via the target program 20 during execution. 
Generally the target program 20 will be generated using a 
sequential programming model, meaning that all or part of 
the program was generated as if it would be executed on a 
single processor or as a single thread, however, the present 
invention can work with mixed statically parallel programs 
and sequential programming model programs as well. 

Shared memory 18 may further include runtime library 25 
possibly providing class specifications (i.e., object proto­
types), generators for data objects 27 (to be described) and 
ordered communication structures (e.g., processor queues 
26), and code to implement the run-time data set identifiers 
and addendum routines described in further detail herein 

6 
below. The shared memory 18 may also include processor 
queues 26 associated with the processors 12 and a memory 
"shelf' 50 as will be described below. In addition, shared 
memory 18 may support a reorder list 72 and a global 

5 checkpoint store 210 as will be described below. It is 
contemplated that the memory 18 will also support an 
operating system 28 providing execution context for the 
above as will generally be understood in the art. 

10 Computational Operations and Parallel Execution 

Referring now to FIG. 3, the target program 20 may 
comprise multiple computer executable instructions 30 (for 
examples instructions of the C++ programming language) 

15 collected in computational operations 32 designated in the 
Fig. as "methods". Generally, the target program 20 may 
comprise of different methods or multiple invocations of the 
same method as is shown in the figure. A computational 
operation 32, for example, may be a function, a subroutine, 

20 an object method, or other natural logical division of the 
target program 20. 

In practice, a computational operation 32 will access data 
held in the shared memory 18 by reading or writing data 
from or to the shared memory 18. As depicted, each com-

25 putational operation 32 may be designated with a unique 
title ( e.g. method!) identifying the function of the compu­
tational operation 32 associated with a write set [W] and 
read set [R] indicating the data written to and read by the 
method (hence its argument(s) and value(s)). Thus, the 

30 designation "methodl[w][r]" may represent a first compu­
tational operation 32 reading data [r] and writing to data [w]. 
It will be understood that the particular data of the write set 
and read set will typically be designated by a variable whose 
value may not be resolved at the time of program generation 

35 but determined only when the program is running. For this 
reason, the actual addresses of the read set and write set will 
frequently not be known by the program generator. 

A given computational operation 32 (e.g. method!) of the 
target program 20 may be executed multiple times in dif-

40 ferent instances ( either as part of different instantiated 
objects or repeated calls to a given function) and each 
different instance may have a different read set and write set 
dynamically determined during the execution of the target 
program 20. When the target program 20 is properly 

45 executed, these different instances execute in a serial execu­
tion order 34 representing the manner in which the target 
program 20 would execute, for example, on a single pro­
cessor without data dependency conflicts. The serial execu­
tion order 34 is generally resolved only during execution of 

50 the target program 20 after flow control instructions in the 
serial model target program 20 are evaluated using actual 
data. The serial execution order 34 will generally differ from 
the static program order, for example, expressed in the 
source code of the target program 20 and will include 

55 dynamically determined loops, jumps and branches. In sum­
mary, the serial execution order 34 is the order in which the 
serial model target program 20 would execute without the 
parallelization of the present invention and in which all 
dependencies between instructions are properly resolved by 

60 the order of instruction execution. 
Referring still to FIG. 3, the program generator, which 

maybe the programmer or a software pre-processor, may 
designate opportunities for parallelization by marking these 
computational operations 32 with a tag that both indicates 

65 the potential for parallelization and the extent of the com­
putational operation. An example of such marking might be 
as follows: 
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database.static_xact_delegate (write_setl, read-set_!, 
db_xact) 

where the computational operation 32 is of a type db_xact 
operating on data contained in a write_setl and read-set_! of 
database. 

This marking invokes for each computational operation 
32 a run-time, data object mapper 36 associated with the 
computational operation 32. For clarity, the data object 
mapper 36 is shown here as placed in-line in the serial 
execution order 34 in the target program 20 but in practice 
is only logically so positioned. 

Generally, before execution of the computational opera­
tions 32 according to the serial execution order 34, the 
run-time data object mapper 36 will determine the write set 
and read set for the computational operation 32, most simply 
by examining the variable values designating the data to be 
written to or read from. The data object mapper 36 maps the 
resolved read set and write set to one or more data objects 
40 each associated with individual or collections of program 
data 22 (shown in FIG. 2). 

Generally, the data objects 40 define sets of program data 
22, for example, as ranges of addresses, an object instan­
tiation number, or set of records in a database. The mapping 
process may then be as simple as determining the address or 
record number of the data of the write or read sets of the 
computational operation 32 or the instance number of the 
object associated with a given method forming the compu­
tational operation 32 which is then mapped to the particular 
data object 40 having a comparable address range, record 
number range, or instantiation number. 

The data objects 40 ideally define data sets that are 
"disjoint", meaning that they are accessed by one or a few 
computational operations 32 at one time. This definition of 
data objects 40 must balance a goal of collecting program 
data 22 into as large of sets as possible ( coarse granularity) 

8 
It will be appreciated that the read token counter 44 and 

the write token flag 46 may be implemented through a 
variety of structures including, for example, a single counter 
which may have a value of O when the write token has been 

5 taken, 1 when the write token is present and greater than 1 
when read tokens have been taken, the number of granted 
tokens being the counter value minus one. 

Finally, the data object 40 may include a wait list 48 
which provides an ordered queue (according to a time at 

10 which a token is requested) of computational operations 32 
requesting the tokens (read or write) which could not be 
provided to the computational operations 32 because the 
token is already taken. The wait list 48 may be any ordered 

15 
communication structure such as a list or queue or the like. 

Referring again to FIG. 2, ultimately, as will be described 
further below, each computational operation 32 is enrolled in 
one processor queue 26 associated with a given processor 12 
which will execute the computational operations 32 so 

20 enrolled. When a computational operation 32 camiot be 
executed because the tokens it requires are not yet available, 
it may be placed on a shelf 50. It will be understood that the 
actual computational operation 32 need not be placed in the 
processor queue 26 or on the shelf 50, but this description 

25 refers to a logical location only. The processor queue 26 and 
shelf 50 may hold pointers or other identifying data. Gen­
erally, the processor queues 26 are general ordered commu­
nication structures that act logically as queues but may be 
any particular physical structure. Likewise, the shelf 50 may 

30 be any physical structure logically allowing temporary 
retention of computational operations as described. 

Referring now to FIG. 5, the data object mapper 36 may 
operate not only to identify the necessary data objects 40 
from which tokens must be obtained but may also provide 

35 instructions to manage enrolling computational operations 
32 in the queues 26 or placing computational operations 32 
on a shelf 50. 

to minimize the number of data objects 40 required and the 
computational burden of the parallelizing operation, and in 
subdividing the data 22 as much as possible (fine granular­
ity) to increase the possibilities of parallelization because the 
data objects are disjoint. This division may be informed by 40 

an understanding of the application by the programmer or 
may be done automatically by pre-processing of the program 

As described above, each data object mapper 36, as 
indicated by process block 52, initially operates to identify 
the data objects 40 associated with data accessed by a given 
computational operation 32 either to write to or read from 
that data. At process block 54, based on the identification at 
process block 52, the data object mapper 36 attempts to 
acquire the necessary tokens from the data objects 40. 
Generally, the acquisition of tokens, in one embodiment of 
the invention, follows the following rules: 

by a compiler or the like and may be redefined heuristically 
during program execution. 

An example definition of data objects 40 for a banking 45 

database may divide the data of the database into data 
objects commensurate with the records of a single indi­
vidual, reflecting an understanding that computational 
operations on one individual's records tend to be indepen­
dent of operations on another individual's records. 

(a) a write token may be granted only if it is available (not 
checked out by another computational operation 32 and 
there are no read tokens checked out, that is, the read token 

50 counter equals zero and the write token flag is set to "yes" 
in one embodiment); and Referring momentarily to FIG. 4, each of the data objects 

40 may generally provide for identification data 42 pointing 
to the data it represents, for example, an address range or the 
like. In addition, the data object 40 may provide a read token 
counter 44 that may be incremented when a read token is 55 

granted and decremented when that read token is returned. 
The use of the counter permits an essentially unbounded 
number of read tokens to be granted while still tracking the 
total number of tokens outstanding with the expressed 
counter tally. A value of zero therefore indicates that all 60 

tokens have been returned. It will be appreciated that incre­
menting may alternatively be used to indicate the read token 
is returned and decrementing that the read token is taken and 
that this convention is arbitrary. 

The data object 40 may also include a write token flag 46 65 

reflecting the fact that each data object 40 has only a single 
write token and thus a counter is not required. 

(b) a read token may be granted only if the write token is 
available (that is, the write token flag is set to "yes" in one 
embodiment). 

These rules prevent write-write dependency conflicts 
because writing must occur in the order of write token 
requests, and prevent write-read dependency problems 
because the write token is not granted if there are pending 
reads, and prevent read-write dependency problems because 
the read token may not be granted if there is a pending write 
operation. 

If, at decision block 56, all the tokens for the computa-
tional operation 32 associated with the data object mapper 
36 are obtainable, then at process block 58 the computa­
tional operation 32 is enrolled in a processor queue 26 for 
any available processor 12 together with an addendum 
program 66 as will be described. 
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If, on the other hand, all the tokens cannot be obtained for 
the computational operation 32 associated with the data 
object mapper 36, then those tokens which can be obtained 
may be obtained and then the data object mapper 36 places 
the computational operation 32, per process block 60, on a 
shelf 50 after the identity of the computational operation 32 
is enrolled in the wait list 48 of all data objects 40 whose 
tokens were needed but not obtained. 

As will be understood from the following description, the 
wait list 48 provides a queue function separate from the 
actual queues 26 that permits processors 12 to steal com­
putational operations from other processors without upset­
ting the order structure enforced by the wait list 48. 

Referring to FIG. 6, the addendum program 66 that will 
be added to the computational operation 32 when it is 
enrolled in a processor queue 26 (per process block 58 of 
FIG. 5) provides for the return of tokens at process block 65 
after execution of the computational operation 32 by a 
processor 12. The addendum program 66 may further pro­
vide an activation of computational operations 32 that are at 
the top of the wait list 48, and that have been shelved, per 
process block 67. The return of tokens per block 65 may 
imply that a shelved computational operation now has all the 
read and write tokens needed for execution, whether pro­
vided as a result of the actions at block 66 or otherwise. 

A detailed example of the operation of the above-de­
scribed structure is provided in U.S. patent application Ser. 
No. 12/882,892 filed Sep. 15, 2010 and entitled "System and 
Method Providing Run-Time Parallelization of Computer 
Software Using Data Associated Tokens" hereby incorpo­
rated by reference in its entirety. 

Precise Restartability 

Referring now to FIGS. 3 and 7, when a given compu­
tational operation 32 in queue 26 reaches a processor 12 it 
may be executed without "commitment" meaning generally 
that the memory objects 40 can be restored to an unaffected 
state. More generally, execution without commitment means 
that the execution may be "undone" so that it has no 
substantial residual effect on the architectural state of the 
multiprocessor computer system. 

Execution without commitment may be performed either 
by not changing the memory objects 40 but rather changing 
a temporary file (for example, a future file) or by recording 
a reversionary copy of the memory objects in a temporary 
file (for example, a history file) when they are changed so 
that they can be restored to their earlier value. Either of these 
techniques may be used in the present invention; however, 
for the sake of clarity, the following description will discuss 
the history file approach. 

Commitment of a computational operation 32 is con­
trolled generally by a FIFO reorder list 72 as will now be 
described. At the time when a given computational operation 
32 is discovered during execution, an element 70 for that 
computational operation 32 may also be generated in a FIFO 
reorder list 72. In its simplest form, this element 70 is 
ordered with respect to the other elements 70 in the reorder 
list 72 according to the serial execution order of the com­
putational operations 32 in the program 20. Computational 
operations 32 are entered at a tail 74 of the reorder lists 72 
and shift left toward the head 76 of the reorder lists 72 at 
which time those computational operations 32 are "commit­
ted" allowing them to change the data objects 40 and be 
removed from the reorder lists 72. It will be appreciated that 
the reorder list 72 defines a total order for execution of the 
computational operations 32 that is consistent with the data 

10 
dependencies between computational operations 32 and that 
if the computational operations 32 were committed in the 
total order of the reorder list 72, a same result would be 
produced as execution of the computational operations 32 on 

5 a single processor. 
Each element 70 of the reorder list 72 generally holds an 

identification 77 of the computational operation 32 (for 
example a pointer or identification number) together with a 
copy of its modification set 78. The modification set 78 of a 

10 computational operation 32 will generally be the objects 40 
to which it will write, together with current values of the 
registers and flags (including the program counter) of its 
associated processor 12 before any modification by execu­
tion of the computational operation 32. This modification set 

15 78 allows restoration of the objects 40 and a restarting of the 
computational operation 32 in the event that the computa­
tional operation 32 does not reach commitment. 

The element 70 also provides for storage of an intra­
processor state 79 for an architectural state of a processor 12 

20 at the time of an interrupt or exception (loosely termed a 
"faulting" instruction), the architectural state being the data 
necessary for precise interruptability as is generally under­
stood in the art. Again, this depiction is simply a logical 
diagram of the actual storage of this intra-processor state 79 

25 that may physically remain in the individual processor 12. In 
an optional embodiment, each element 70 also provides a 
data dependency store 81 describing data dependency rela­
tionships between the computational operation 32 of the 
element 70 and other computational operations of other 

30 elements 70 in the reorder list 72. 
In addition, each element 70 includes a completion flag 80 

and an interrupt flag 82. 
When execution of the computational operation 32 asso­

ciated with an element 70 is completed by the processor 12, 
35 the completion flag 80 is set. This execution is not yet 

committed which occurs only when an element 70 for a 
completed computational operation 32 reaches the head 76 
of the reorder list 72. At this time, the results of the execution 
have previously been written to the memory elements of the 

40 modification set 78 (that is, the objects 40) and the stored 
values of the modification set 78 of element 70 (needed to 
undo the execution) are removed from the reorder list 72. 

In the event of an interrupt 84 during execution of a 
computational operation 32 on a given processor 12, the 

45 information from the precise interrupt circuitry 13 from the 
given processor 12 executing the computational operation 
32 is preserved as intra-processor state 79 of the element 70 
( designated in FIG. 7 as element 70'), the given processor 12 
is halted, and the element 70' is marked by setting of the 

50 interrupt flag 82. 
Processing of the interrupt 84 is delayed briefly while the 

computational operations 32 associated with elements 70 in 
a preceding region 86 of the reorder lists 72 (further toward 
the head 76 of the reorder list 72 from the element 70') 

55 continue to be committed. This commitment process pro­
ceeds until the element 70', having the set interrupt flag, is 
reached. The elements 70 in a succeeding region 88, includ­
ing the given element 70' having the interrupt, are then 
squashed by restoring the values of the registers and objects 

60 40 according to the stored modification sets 78 of those 
elements 70 starting at the youngest element 70 toward the 
tail 74 and proceeding toward the element 70' associated 
with the interrupt 84. If another interrupt occurs during this 
process, it simply is enrolled in order in the reorder list 72 

65 and processed in turn. 
At the conclusion of this process, the intra-processor state 

79 is combined with the modification set 78 of elements 70' 
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to yield an architectural state of high resolution that accu­
rately reflects the current architectural state of the multipro­
cessor system 10. The interrupt is then serviced by jumping 

12 
data subsequent to a reading of the data ("write after read" 
dependency). Errors can result if any of these interdependent 
reads and writes change in order as a result of parallel 
execution. 

In FIG. 8, computation F3 exhibits a write after read 
(WAR) dependency with respect to Fl because it writes an 
object A that is previously read by Fl. It will be appreciated 
that the ultimate value of object A will change if the relative 
order of Fl and F3 change. WAR dependencies are indicated 

to the interrupt service routine. In some cases, the handling 
of the interrupt requires a reporting about details of the 5 

architectural state, for example, a reporting or use of 
memory values or register values, and the above process 
provides consistency in that reporting because of the con­
sistent architectural state provided at the time the interrupt 
84 is handled. 10 by solid line and a WAR dependency is also exhibited 

between computational operation F3 and computational 
operation F2. Computational object F4 has a write after 
write (WAW) dependency on computational operation Fl 
(indicated by the dotted lines) and so does F5 on F 4 because 

Upon completion of service of the interrupt, resumption 
of execution of the faulting instruction of the computational 
operation 32 of elements 70' (now at the head 76 of the 
reorder list 72) may be resumed at the saved high-resolution 
architectural state. 

It will be appreciated that if, for some reason, the multi­
processor system 10 is unable to provide for precise restart­
ability (for example because of hardware fault-detection 
latency) precise restarting from the faulting instruction of 
computational operation 32 elements 70' may not be pos­
sible. However, in this case, the multiprocessor system 10 
may simply squash the entirety of the computational opera­
tion 32 of elements 70' subtending the interrupt 84 and can 
restart using the modification set 78 alone. In all events it 
will be possible and safe to restart the program by squashing 
all of the computational operations 32 in the reorder list 72. 
This technique is particularly useful for transient exceptions, 
where the exception will not inevitably be repeated together 
with repetition of execution of the computational operations. 

Example I 

Consider a program 20 providing the following method 
which repeats execution of a Function F "n" times: 

for (i-0; i<n; i++) { 
Function F: [write set] [read set] 

In each execution of the Function F ( designated F 1, F2, 
etc.), the write set and read set, being the data written to by 
the Function F and the data read by the Function F, may 
change as follows: 

1. Fl: [B, C][A] 
2. F2: [D][A] 
3. F3: [A, E][F] 
4. F4: [B][D] 
5. F5: [B][D] 
6. F6: [G][H] 
where the capital letters represent distinct data objects 40. 
Referring now to FIG. 8, a data dependence graph of these 

different computational operations Fl-F6 depicts the data 
dependencies that constrain the order of execution of these 
computational operations 32. In general, parallel execution 
of computational operations 32 requires commitment of the 
computational operations 32 in a data flow order that 
observes the data dependency of this data dependence graph. 
The data flow order can be met by executing the computa­
tional operations 32 in the same ordering as sequential 
execution of the program 20; however, as will be seen, other 
orderings are also possible. 

Of principal concern in the data flow ordering are portions 

15 each of these computational operations writes the value ofB. 
For this reason, these relative orderings must also be 
observed. Finally F4 and F5 both have read after write 
(RAW) dependencies on computational operation F2 as 
indicated by a dashed line. Computational operations Fl, F2, 

20 and F6, are independent without data dependencies. 
Referring now to FIG. 9, the token system described 

above with respect to managing data dependencies may be 
used to implement the execution of these computational 
operations 32 ofF1-F6 according to a schedule 90 operating 

25 on three processors 12a-12c. This schedule 90 begins with 
simultaneous execution of computational operations F 1, F2, 
and F6. Computational operation F2, in this example, 
requires three epochs (tl-t3) to complete. This in tum 
requires F3 and F4 to be delayed (serialized) until epoch t4 

30 because of the data dependencies between F3 and F4 and F2. 
Computational operation F5 begins in epoch t6 and is 
dependent on computational operation F4. 

Note that an interrupt 84 occurring during the execution 
of F 4 in epoch t4 would result in an imprecise architectural 

35 state if the actual architectural state of the computer system 
were captured with F6 completed out of order with respect 
to the sequential execution of the program. 

Referring now to FIGS. 9 and 10, a precise architectural 
state is provided by monitoring program order and comple-

40 tion of the computational operations 32 using the reorder list 
72. In epoch tl, each ofF1-F6 is enrolled in the reorder list 
72 with Fl being completed and committed in epoch t2. In 
epoch t2, F6 completes but is not committed because it has 
not reached the head of the reorder list 72. In epoch t3, F2 

45 completes and is retired in epoch t4 when interrupt 84 occurs 
with respect to computational operation F4. 

Assuming that an interrupt 84 arrives in epoch t4, the 
element 70 for computational operation F4 will be marked 
with an interrupt by interrupt flag 82 and the associated 

50 processor 12 halted and its architectural state recorded. 
Other processors 12 continue executing their respective 
computational operations 32 until commitment of compu­
tational operation F3 at epoch t6, computational operation 
F3 being the last computational operation preceding com-

55 putational operation F4 in the reorder list 72. At this point, 
computational operation F4 reaches the head of the reorder 
list 72 and triggers a squashing of subsequent computational 
operations F5 and F6 and an augmenting of the modification 
set 78 of computational operation F4 with the architectural 

60 state captured by its processor 12 according to conventional 
techniques, to produce a precise restarting architectural 
state. 

of the program 20 that may write to the same data ("write 
after write" dependency), and portions of the program that 65 

may implement a reading of data subsequent to a writing of 
that data ("read after write" dependency), or a writing of 

Selective Restartability 

Referring now to FIG. 11, the hardware and mechanisms 
described above may also be used to provide for a selective 
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restarting of processors associated with faulting computa­
tional operations 32, for example, indicated by interrupt 84. 
In selective restartability, the dependency relationships of 
the computational operations Fl-F6 as enrolled in the reor­
der list 72 may be determined and recorded, for example, in 5 

the data dependencies store 81 associated with each element 
70 as described above. The data dependencies may be 
extracted, for example, from the wait list 48 of each of the 
objects 40 described above. 

These data dependencies may be used to deduce a data 10 

flow order differing from the serial execution order implicit 
in the above example. By considering the data flow order, at 
the time of the interrupt 84 during computational operation 
F4, only succeeding computational operations in the data 

15 
flow order (and hence depending on the faulting computa­
tional operation 32 of element 70) need be squashed. In this 
case, computational operation F5 having a data dependency 
with faulting F4 may be squashed and the remaining com­
putational operations F6 may continue to execute for greater 20 

computational efficiency. The data flow order describes an 
order strictly required by data dependency considerations. In 
this example the data flow order would be: 

1. Fl, F2 

14 
gram provided that the program is restarted immediately 
after the checkpointed instruction. 

Other Considerations 

It will be appreciated that a variety of different techniques 
may be used to establish the total order and/or data flow 
order of computational operations including those described 
in U.S. patent application Ser. No. 12/543,354 filed Aug. 18, 
2009, and entitled: "System And Method For Dynamic 
Dependence-Based Parallel Execution Of Computer Soft-
ware", and U.S. Pat. patent application Ser. No. 12/858,907 
filed Aug. 18, 2010 and entitled: "System and Method 
Providing Run-Time Parallelization of Computer Software 
Accommodating Data Dependencies", both hereby incorpo­
rated by reference. It is necessary only that the total order 
provide a unique and reproducible ordering of all of the 
concurrent processes; use of program textual order, is only 
one example. For example, processes A, B, C, D, may occur 
in this textual (sequential) order in the program but during 
execution be encountered in a cycling pattern of (A,B,C,D), 
then (B,C,D,A), then (C,D,A,B), then (D,A,B,C) and then 
the pattern repeats. Knowing this pattern, a total order can be 
derived for precise restartability, but the order would be 

2. F3, F4, 25 neither the sequential order nor static. 
3. F5 
with F6 not included in the data flow order because it may 

execute independently. 

Generally the present invention may be implemented in 
any of a combination of hardware, firmware, and software 
including operating system software executing on all or 
some of the processors of the multiprocessor system. 

Certain terminology may be used herein for purposes of 
reference only, and thus is not intended to be limiting. For 
example, terms such as "upper", "lower", "above", and 
"below" refer to directions in the drawings to which refer-
ence is made. Terms such as "front", "back", "rear", "bot-

In the above example, it will be recognized that F5 does 
not need to be squashed because F4 has not been committed 30 

and the dependency between F5 and F4 is a write after write 
(WAW) dependency. F5 would need to be squashed, how­
ever, if it had a read after write (RAW) dependency and F 5 
had begun. 

35 tom" and "side", describe the orientation of portions of the 
component within a consistent but arbitrary frame of refer­
ence which is made clear by reference to the text and the 
associated drawings describing the component under dis­
cussion. Such terminology may include the words specifi-

In the present example, where there is no downstream 
dependency, F4 can further be restarted immediately, before 
it reaches the head of the reorder list, for an additional 
increase in performance. 

This selective restarting may be useful, for example, with 
respect to intermittent thermal faults the latter representing 
a momentary inability to obtain data from memory, where 
simply re-executing the faulting computational operation 32 
alone may be sufficient to remedy the fault without the need 

40 cally mentioned above, derivatives thereof, and words of 
similar import. Similarly, the terms "first", "second" and 
other such numerical terms referring to structures do not 
imply a sequence or order unless clearly indicated by the 
context. 

to execute an interrupt or exception routine. No precise 45 

architectural state is required in selective restarting. In this 
case, the above described reorder list 72 may be used simply 

When introducing elements or features of the present 
disclosure and the exemplary embodiments, the articles "a", 
"an", "the" and "said" are intended to mean that there are 
one or more of such elements or features. The terms "com­
prising", "including" and "having" are intended to be inclu­
sive and mean that there may be additional elements or 
features other than those specifically noted. It is further to be 

to store data necessary for the purpose of squashing the 
dependent computational operations and, after a computa­
tional operation is committed, manage the process of freeing 50 

that data storage for other use. The reorder list 72 also 
simplifies the task of determining which computational 
operations need to be examined for data dependency by 
allowing inspection of only succeeding computational 

55 
operations 32 in the reorder list 72. 

Global Checkpoints 

understood that the method steps, processes, and operations 
described herein are not to be construed as necessarily 
requiring their performance in the particular order discussed 
or illustrated, unless specifically identified as an order of 
performance. It is also to be understood that additional or 
alternative steps may be employed. 

References to "multiprocessor system" or "a computer 
system" can be understood to include one or more proces-

Referring now to FIG. 12, global checkpoints may be 
created at the time of retiring each computational operation 
32 at the head 76 of the reorder list 72 by capturing the 
modification set 78 at that time in a global checkpoint store 
210. Such global checkpoints can help recover from "cata­
strophic" failures, for example, where the integrity of the 
system is suspect or may aid in migrating the program to a 
different computer or analyzing the execution of the pro-

60 sors on the same substrate or package or multiple processors 
inter-communicating in a distributed environment(s), Fur­
thermore, references to memory, unless otherwise specified, 
can include one or more processor-readable and accessible 
memory elements and/or components that can be internal to 

65 the processor-controlled device, external to the processor­
controlled device, and can be accessed via a wired or 
wireless network. 
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It is specifically intended that the present invention not be 
limited to the embodiments and illustrations contained 
herein and the claims should be understood to include 
modified forms of those embodiments including portions of 
the embodiments and combinations of elements of different 5 

embodiments as come within the scope of the following 
claims. All of the publications described herein, including 
patents and non-patent publications are hereby incorporated 
herein by reference in their entireties. 

We claim: 
1. A method for processing a computer program in a 

multiprocessor computer system comprising the steps of: 

10 

(a) dividing the computer program into multiple portions 15 
having multiple instructions which may be interrupted 
and distributing the portions among multiple physical 
processors of the multiprocessor computer system for 
parallel execution, each of the processors having an 
independent dedicated program counter and dedicated 20 

circuitry to receive independent interrupts directed to 
each given one of the multiple processors; 

16 
putational operation executed by the processor and register 
values of the processor on which the computational opera­
tion was executed. 

7. The method of claim 5 wherein the interrupt is selected 
from a group consisting of: a hardware interrupt, a software 
interrupt, and an execution exception. 

8. The method of claim 1 further including the steps of: 
in the event of a fault in execution of a given portion on 

a given processor, determining dependent portions dis­
tributed to processors other than the given processor 
having data dependencies on the given portion; and 

only after step ( c) restarting that given portion and the 
dependent portions while allowing continued execution 
of other portions on processors other than the given 
processor. 

9. The method of claim 8 further including the steps of 
generating a reorder list having an entry for each portion at 
a time of discovery of the portion during the dividing 
process of step (a) defining a total order of the portions and 
storing in the reorder list information necessary for squash­
ing of the portions and wherein data dependencies are 
determined only for portions in the reorder list after the 
given portion. 

10. The method of claim 9 wherein the execution of 
portions is committed according to the ordering of the 
reorder list and at the time of committing the entry for each 
committing portion in the reorder list releasing storage of the 
information necessary for squashing of the portion. 

11. The multiprocessor computer system of claim 8 
30 wherein the fault is selected from the group consisting of: a 

thermal fault, a voltage emergency, and a timing fault. 

(b) defining a total order of the instructions of the portions 
before all the instructions of the portions are executed 
and ready for commitment of the instructions, that 25 

preserves correct resolution of data dependencies 
among the instructions, and that provides a unique 
ordering selected from different given possible order­
ings that would preserve correct resolution of data 
dependencies; 

(c) at an interrupt time when a first processor of the 
multiple physical processors executing a first portion 
receives an interrupt in the first portion, coordinating 
execution of other portions on processors other than the 
first processor, by using the total order to create an 35 

architectural state of the multiprocessor computer sys­
tem of all processors, by completion of all instructions 

12. The method of claim 1 wherein the step of coordi-
nating execution of other portions on processors other than 
the first processor, completes all instructions of the other 
portions of the other processors when those other portions 
precede the first portion of the first processor in the total 
order and squashes all executed instructions in the other 
portions of the other processors when those other portions 
succeed the first portion of the first processor in the total 
order for portions on processors other than the first proces­
sor, regardless of whether instructions of the portions of the 

of the other portions of the other processors when those 
other portions precede the first portion of the first 
processor in the total order and squashing all executed 40 

instructions in the other portion of the other processors 
when those other portions succeed the first portion of 
the first processor in the total order for portions on 
processors other than the first processor; 

other processors were executed before or after the interrupt. 
13. A multiprocessor computer system for executing a 

computer program, the multiprocessor computer system 
45 executing program steps fixed in non-transient medium to: ( d) after completion of ( c ), handling the interrupt; and 

( e) after completion of ( d), resuming execution of the 
parallel portions from the architectural state. 

2. The method of claim 1 wherein handling of the 
interrupt requires data describing the architectural state. 

3. The method of claim 1 further including the step of 50 

creating a check point with respect to data modified by the 
portions before a commitment of an execution of a portion 
so that the portion may be squashed after execution but 
before commitment. 

4. The method of claim 3 wherein step ( c) creates the 55 

architectural state by first completing all instructions of the 
portions preceding the given portion in the total order and 
squashing all instructions in the portions succeeding the 
given portion in the total order, where instructions when 
squashed leave substantially no residual effect on the archi- 60 

tectural state of the multiprocessor computer system. 
5. The method of claim 1 further including the steps of 

recording a given architectural state of the given processor 
at the interrupt time and wherein the architectural state is 
also based on the given architectural state. 

6. The method of claim 5 wherein the architectural state 
of a processor is a state of memory accessed by the com-

65 

(a) divide the computer program into multiple portions 
having multiple instructions which may be interrupted 
and distributing the portions among multiple physical 
processors of the multiprocessor computer system for 
parallel execution, each of the processors having an 
independent dedicated program counter and dedicated 
circuitry to receive independent interrupts directed to 
each given one of the multiple processors; 

(b) defined a total order of the instructions of the portions 
before all the instructions of the portions are executed 
and ready for commitment of the instructions, that 
preserves correct resolution of data dependencies 
among the instructions, and that provides a unique 
ordering selected from different given possible order-
ings that would preserve correct resolution of data 
dependencies; 

( c) at an interrupt time when a first processor of the 
multiple physical processors executing a first portion 
receives an interrupt in the first portion, coordinate 
execution of other portions on processors other than the 
first processor, by using the total order to create an 
architectural state of the multiprocessor computer sys-
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tern of all processors, by completion of all instructions 
of the other portions of the other processors when those 
other portions precede the first portion of the first 
processor in the total order and squashing all executed 
instructions in the other portions of the other processors 5 

when those other portions succeed the first portion of 
the first processor in the total order for portions on 
processors other than the first processor; 

( d) after completion of ( c ), handle the interrupt; and 
(e) after completion of (d), resume execution of the 10 

parallel portions from the architectural state. 
14. The multiprocessor computer system of claim 13 

wherein step ( c) captures the architectural state by first 
~ompleting all instructions of the portions preceding the 
~nterrup_ted i~struction in the total order and squashing all 15 

~nstruct~ons . m the portions succeeding the interrupted 
mstruct10n m the total order, where instructions when 
squashed leave no substantial residual effect on the archi­
tectural state of the multiprocessor computer system. 

15. The multiprocessor computer system of claim 9 20 

wherein the multiprocessor computer system further records 
a given architectural state of the given processor at the 
interrupt time and wherein the architectural state is also 
based on the given architectural. 

16. The multiprocessor computer system of claim 15 25 

wherein the architectural state of a processor is a state of 
memory accessed by the computational operation executed 
by the processor and register values of the processor on 
which the computational operation was executed. 

17. The multiprocessor computer system of claim 15 30 

wherein the interrupt is selected from a group consisting of: 
a hardware interrupt, a software interrupt, and an execution 
exception. 

18 
ing data dependencies on the given portion and distrib­
uted to processors other than the given processor; and 

only after ( c) restart that given portion and the dependent 
portions while allowing continued execution of other 
portions distributed to processors other than the given 
processor. 

19. The multiprocessor computer system of claim 18 
wherein execution of the computer program further gener­
ates a reorder list having an entry for a portion at a time of 
discovery of the portion during the dividing process of step 
(a) defining a total order of the portions and stores in the 
reorder list information necessary for squashing of the 
portions_ and ~herein data dependencies are determined only 
for port10ns m the reorder list after the given portion. 

20. The multiprocessor computer system of claim 19 
wherein the execution of portions is committed according to 
the ordering of the reorder list and at the time of committing 
the entry for each committing portion in the reorder list 
releasing storage of the information necessary for squashing 
of the portion. 

21. The multiprocessor computer system of claim 18 
wherein the total order is identical to an ordering of the 
program on a single processor. 

22. The multiprocessor computer system of claim 18 
wherein the multiprocessor computer system coordinates 
execution of other portions on processors other than the first 
processor by completing all instructions of the other portions 
of the other processors when those other portions precede 
the first portion of the first processor in the total order and 
squashing all executed instructions in the other portions of 
the other processors when those other portions succeed the 
first portion of the first processor in the total order for 
portions on processors other than the first processor, regard-18. The multiprocessor computer system of claim 13 

wherein the multiprocessor computer system further: 
in the event of a fault in execution of a given portion on 

a given processor, determine dependent portions hav-

35 less of whether instructions of the portions of the other 
processors were executed before or after the interrupt. 

* * * * * 


