United States Patent

US009128739B1

(12) 10) Patent No.: US 9,128,739 B1
Juels et al. 45) Date of Patent: Sep. 8, 2015
’
(54) DETERMINING INSTANCES TO MAINTAIN 8,370,490 B2* 2/2013 Dengetal.ccoooen. 709/225
ON AT LEAST ONE CLOUD RESPONSIVE TO 8,601,483 B2* 12/2013 Heetal. 718/104
8,612,971 B1* 12/2013 Fitzgeraldetal. 718/1
AN EVALUATION OF PERFORMANCE 8,799,431 B2* 82014 Pabari 709/223
CHARACTERISTICS 2010/0287549 AL* 11/2010 Neft w.oooovoocirrrccrrrie 718/1
2011/0185064 Al* 7/2011 Headetal. .. 709/226
(71) Applicants: EMC Corporation, Hopkinton, MA 2011/0225277 Al* 9/2011 Freimuthetal. 709/223
(US); Wisconsin Alumnf Research 2013000775 Al® 12013 Tai 7157103
O : AT e
Foundation, Madison, WI (US) 2013/0332610 Al* 12/2013 Beveridgec.ccn. 709/226
(72) Inventors: Ari Juels, Brookline, MA (US); Kevin (Continued)
D. Bowers, Melrose, MA (US);
Benjamin Farley, Seattle, WA (US); FOREIGN PATENT DOCUMENTS
Venkatanathan Varadarajan, Madison,
WI (US); Thomas Ristenpart, Madison, gg }858322? ﬁ égg??
WI (US); Michael M. Swift, Madison, .
WI (US) (Continued)
(73) Assignee: EMC Corporation, Hopkinton, MA OTHER PUBLICATIONS
(Us) Amazon Web Services, “Amazon Elastic Compute Cloud (Amazon
EC2),” http://aws.amazon.com/ec2/, 2012, 16 pages.
(*) Notice: Subject to any disclaimer, the term of this 7 htp (Continued) pag
patent is extended or adjusted under 35
U.S.C. 154(b) by 347 days.
) Primary Examiner — Meng-Ai An
(21) Appl. No.: 13/731,663 Assistant Examiner — James J Lee
(22) Filed: Dec. 31, 2012 (74) Attorney, Agent, or Firm — Ryan, Mason & Lewis, LLP
(51) Int.CL (57) ABSTRACT
GO6F 9/455 (2006.01)
GOGF 9/48 (2006.01) A method includes the step of running a set of instances on at
GOG6F 9/50 (2006.01) least one cloud for a first time interval, each of the instances
(52) U.S.CL comprising a bundle of virtualized resources. The method
CPC ... GOGF 9/45533 (2013.01); GO6F 9/4856 also inclu.de.s the step of evalqating one or more performance
(2013.01); GO6F 9/5077 (2013.01) characteristics of each of the instances in the set of instances
(58) Field of Classification Search over the first time interval. The method further includes the
None step of determining a first subset of the set of instances to
See application file for complete search history. maintain for a second time interval and a second subset of the
’ set of instances to terminate for the second time interval
(56) References Cited responsive to the evaluating step. The steps are performed by

U.S. PATENT DOCUMENTS

atleast one processing device comprising a processor coupled
to a memory.

8,000,932 B2* 82011 Dingetal.cccoenne. 702/182
8,005,929 B1* 1/2012 Jietal. ..cccoovvviviiviiannns 718/1 23 Claims, 3 Drawing Sheets
/200
L RUN A SET OF INSTANCES ON |_A202

AT LEAST ONE CLOUD FOR A TIME INTERVAL
]

[}

EVALUATE ONE OR MORE PERFORMANCE
CHARACTERISTICS OF EACH OF THE INSTANCES IN [~ 204
THE SET OF INSTANGES OVER THE TIME INTERVAL

DETERMINE A FIRST SUBSET OF THE SET OF
INSTANCES TO MAINTAIN FOR A NEXT TIME
INTERVAL AND A SECOND SUBSET OF THE SET |-~ 206
OF INSTANCES TO TERMINATE FOR THE NEXT
TIME INTERVAL RESPONSIVE TO THE EVALUATION

START A NUMBER OF ADDITIONAL INSTANCES
ON AT LEAST ONE CLOUD FOR THE NEXT TIME [~ 208
INTERVAL RESPONSIVE TO THE DETERMINATION

US 9,128,739 B1
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

2014/0165063 Al*
2014/0173593 Al*

6/2014 Shivaetal.cccoeovvrnne 718/1
6/2014 Padalaetal.ccceovvennn. 718/1

FOREIGN PATENT DOCUMENTS

CN 102143025 A 8/2011
WO 2012053243 Al 4/2012
OTHER PUBLICATIONS

Amazon Web Services, “Amazon EC2 Instance Types,” http://aws.
amazon.com/ec2/instance-types/, 2012, 6 pages.

Amazon Web Services, “Amazon Elastic Block Store (EBS),” http://
aws.amazon.com/ebs/, 2012, 4 pages.

Apache Software Foundation, “ab—Apache HTTP Server
Benchmarking Tool,” Apache HTTP Server Version 2.0, http://httpd.
apache.org/docs/2.0/programs/ab.html, 2011, 3 pages.

Apache Software Foundation, “Apache HT TP Server Project,” http://
httpd.apache.org/, 2012, 2 pages.

M. Asawa et al., “Multi-Armed Bandits with Switching Penalties,”
IEEE Transactions on Automatic Control, Mar. 1996, pp. 328-348,
vol. 41, No. 3.

S.K. Barkeret al., “Empirical Evaluation of Latency-Sensitive Appli-
cation Performance in the Cloud,” First Annual ACM SIGMM Con-
ference on Multimedia Systems (MMSys), Feb. 2010, pp. 35-46.
Russker Coker, “Bonnie++ Benchmark Version 1.03e,” http://www.
coker.com.auw/bonnie++/, 2008, 2 pages.

J. Dejun et al., “EC2 Performance Analysis for Resource Provision-
ing of Service-Oriented Applications,” 7th International Joint Con-
ference on Service-Oriented Computing (ICSOC), ServiceWave,
Nov. 2009, pp. 197-207, Stockholm, Sweden.

J. Dejun et al., “Resource Provisioning of Web Applications in Het-
erogeneous Clouds,” 2nd USENIX Conference on Web Application
Development, Jun. 2011, 12 pages.

D. Gupta et al., “Enforcing Performance Isolation Across Virtual
Machines in Xen,” ACM/IFIP/USENIX 7th International
Middleware Conference, Nov.-Dec. 2006, pp. 342-362, Melbourne,
Australia.

John L. Henning, “SPEC CPU2006 Benchmark Descriptions,”
SIGARCH Computer Architecture News, 2006, 17 pages.

A.Tosup et al., “On the Performance Variability of Production Cloud
Services,” 11th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing (CCGrid), May 2011, pp. 104-113.

A. Jaleel et al., “CRUISE: Cache Replacement and Ultility-Aware
Scheduling,” 17th International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS),
Mar. 2012, 11 pages, London, United Kingdom.

V. Kale et al., “Hadooplitter: The Ghost in the Cloud and How to
Tame It,” http://hdl handle.net/2142/17084, Jun. 2010, 10 pages.

Y. El-Khamra et al., “Exploring the Performance Fluctuations of
HPC Workloads on Clouds,” IEEE Second International Conference
on Cloud Computing Technology and Science (CloudCom), Nov.-
Dec. 2010, pp. 383-387.

D. Klein et al., “Named Entity Recognition with Character-Level
Models,” Seventh Conference on Natural Language Learning
(CONLL) at HLT-NAACL, 2003, pp. 180-183, vol. 4.

A. Li et al., “CloudCmp: Comparing Public Cloud Providers,” 10th
ACM SIGCOMM Conference on Internet Measurement (IMC), Nov.
2010, 14 pages, Melbourne, Australia.

S.-H. Lim et al., “Migration, Assignment, and Scheduling of Jobs in
Virtualized Environment,” USENIX Workshop on Hot Topics in
Cloud Computing (HotCloud), Jun. 2011, 5 pages.

Dave Mangot, “EC2 Variability: The Numbers Revealed,” http://tech.
mangot.com/roller/dave/entry/ec2_ variability_the_ numbers_ re-
vealed, May 2009, 5 pages.

Microsoft ~ Corporation, “Pricing Materials,” http://www.
windowsazure.com/en-us/pricing/details/, 2012, 13 pages.

Z. Ou et al., “Exploiting Hardware Heterogeneity Within the Same
Instance Type of Amazon EC2,” 4th USENIX Conference on Hot
Topics in Cloud Computing (HotCloud), 2012, 5 pages.

R.S. Sutton et al., “Reinforcement Learning: An Introduction,” Feb.
1998, 398 pages, MIT Press.

Rackspace Inc., “How We Price Cloud Servers,” http://www.
rackspace.com/cloud/cloud_hosting_products/servers/pricing/,
2012, 3 pages.

M.S. Rehman et al., “Initial Findings for Provisioning Variation in
Cloud Computing,” IEEE Second International Conference on Cloud
Computing Technology and Science (CloudCom), Nov.-Dec. 2010,
pp. 473-479.

T. Ristenpart et al., “Hey, You, Get Off of My Cloud: Exploring
Information Leakage in Third-Party Compute Clouds,” 16th ACM
Conference on Computer and Communications Security (CCS), Nov.
2009, pp. 199-212.

J.C. Saez et al.,, “A Comprehensive Scheduler for Asymmetric
Multicore Systems,” Sth European Conference on Computer Sys-
tems (EuroSys), Apr. 2010, pp. 139-152, Paris, France.

J. Schad et al., “Runtime Measurements in the Cloud: Observing,
Analyzing, and Reducing Variance,” Proceedings of the Very Large
Databases (VLDB) Endowment, Sep. 2010, pp. 460-471, vol. 3, No.
1.

M. Schwarzkopf et al., “The Seven Deadly Sins of Cloud Computing
Research,” 4th USENIX Conference on Hot Topics in Cloud Com-
puting (HotCloud), Jun. 2012, 5 pages.

Buur Settles, “Biomedical Named Entity Recognition Using Condi-
tional Random Fields and Rich Feature Sets,” International Joint
Workshop on Natural Language Processing in Biomedicine and its
Applications (JNLPBA), Aug. 2004, pp. 104-107.

A. Shiehetal., “Seawall: Performance Isolation for Cloud Datacenter
Networks,” 2nd USENIX Conference on Hot Topics in Cloud Com-
puting (HotCloud), Jun. 2010, 7 pages.

The Stanford Natural Language Processing Group, “Stanford Named
Entity Recognizer (NER),” Version 1.2.4, http://nlp.stanford.edu/
software/CRF-NER .shtml, Apr. 2012, 3 pages.

A. Tirumala et al., “The TCP/UDP Bandwidth Measurement Tool,”
Version 2.0.5, http://sourceforge.net/projects/iperf/, 2010, 3 pages.
G. Wang et al., “The Impact of Virtualization on Network Perfor-
mance of Amazon EC2 Data Center,” IEEE 29th Conference on
Information Communications (INFOCOM), Mar. 2010, pp. 1163-
1171.

P. Whittle, “Sequential Scheduling and the Multi-Armed Bandit,”
Optimization Over Time-Dynamic Programming and Stechastic
Control, Chapter 14, 1982, pp. 210-224, vol. 1.

Wikipedia, “Markov Decision Process,” http://en.wikipedia.org/
wiki/Markov__decision__process, Sep. 2012, 9 pages.

J. Xie et al., “Improving MapReduce Performance Through Data
Placement in Heterogeneous Hadoop Clusters,” IEEE International
Symposium on Parallel & Distributed Processing, Workshops and
Phd Forum (IPDPSW), Apr. 2010, 9 pages.

J.-M. Xu et al., “Learning from Bullying Traces in Social Media,”
Conference of the North American Chapter of the Association for
Computational Linguistics: Human TLanguage Technologies
(NAACL HLT), Jun. 2012, pp. 656-666, Montreal, Canada.

S. Yeo et al., “Using Mathematical Modeling in Provisioning a Het-
erogeneous Cloud Computing Environment,” IEEE Computer Soci-
ety, Aug. 2011, pp. 55-62, vol. 44, No. 8.

M. Zaharia et al., “Improving MapReduce Performance in Hetero-
geneous Environments,” 8th USENIX Symposium on Operating
Systems Design and Implementation (OSDI), Dec. 2008, pp. 29-42.
C. Zhang et al., “Big Data Versus the Crowd: Looking for Relation-
ships in All the Right Places,” 50th Annual Meeting of the Associa-
tion for Computational Linguistics, Jul. 2012, pp. 825-834, vol. 1,
Jeju Island, Korea.

U.S. Appl. No. 13/532,132, filed in the name of S. Faibish et al. Jun.
25,2012 and entitled “Method and Apparatus for Selection Between
Multiple Candidate Clouds for Job Processing.”

* cited by examiner

US 9,128,739 B1

Sheet 1 of 3

Sep. 8, 2015

U.S. Patent

1IAId
d4sn

N-v017 ¢

oo_\\\

dINIS

1-071 7

0l

JIN3S

dIN3S

z-0717

ano1

1-0z1

IR

TINaoN
TS e NOIIVTH NN
YESL
oyt J S w
T0IAIQ ¥3N
w017 1-v01 7

U.S. Patent Sep. 8, 2015 Sheet 2 of 3 US 9,128,739 B1

FIG. 2 ”
J

202

RUN A SET OF INSTANCES ON
AT LEAST ONE CLOUD FOR A TIME INTERVAL

o

EVALUATE ONE OR MORE PERFORMANCE
CHARACTERISTICS OF EACH OF THE INSTANCES IN |~ 204
THE SET OF INSTANCES OVER THE TIME INTERVAL

DETERMINE A FIRST SUBSET OF THE SET OF
INSTANCES TO MAINTAIN FOR A NEXT TIME
INTERVAL AND A SECOND SUBSET OF THE SET | 206
OF INSTANCES TO TERMINATE FOR THE NEXT
TIME INTERVAL RESPONSIVE TO THE EVALUATION

\

START A NUMBER OF ADDITIONAL INSTANCES
ON AT LEAST ONE CLOUD FOR THE NEXT TIME |~ 208
INTERVAL RESPONSIVE TO THE DETERMINATION

U.S. Patent Sep. 8, 2015 Sheet 3 of 3 US 9,128,739 B1

FIG. 8
300
310-1 310-2 oy A
§ § §
APPS APPS APPS
VIRTUAL VIRTUAL |92 T viRruAL | g0,
302-1 <~ MACHINE 1| | MACHINE 2 MACHINE Jf
HYPERVISOR L~ 304
PHYSICAL INFRASTRUCTURE -~ 305
FIG. 4
s
£ 402-1
PROCESSING DEVICE f402-2
412 o PROCESSING
Y DEVICE
402-3
@ (410 L
PROCESSING
PROCESSOR DEVICE
@ [414 .
NETWORK ©402-K
INTERFACE PROCESSING
DEVICE

US 9,128,739 B1

1
DETERMINING INSTANCES TO MAINTAIN
ON AT LEAST ONE CLOUD RESPONSIVE TO
AN EVALUATION OF PERFORMANCE
CHARACTERISTICS

STATEMENT OF GOVERNMENT RIGHTS

This invention was made with government support under
1065134 awarded by the National Science Foundation. The
government has certain rights in the invention.

FIELD

The field relates generally to information processing sys-
tems, and more particularly to cloud-based information pro-
cessing systems.

BACKGROUND

Public clouds are increasingly being utilized to meet the
information technology needs of individuals, business enter-
prises and other users. Such public clouds may be shared by
a very large number of users, and therefore performance can
be highly unpredictable. For example, performance of a given
public cloud may vary significantly from user to user and also
from processing job to processing job for a given user, based
on a variety of factors that are usually not readily apparent to
the users. Moreover, users often have multiple options in
terms of the particular public clouds to utilize for different
processing jobs, but no reliable mechanism is available to
assess the relative advantages of these public clouds as
applied to a particular processing job.

Even though data may be available within a cloud-based
information processing system that could assist users in
assessing public cloud performance, such data is often in
large part kept confidential by the corresponding cloud ser-
vice provider, and therefore is typically limited to use by
internal information technology administrators and other per-
sonnel of the cloud service provider.

By way of example, a virtual machine (VM) run on a
particular public cloud may have significantly different per-
formance characteristics than a different VM run on the same
public cloud or on another public cloud, even when the cost of
running both VMs is the same. Distinct underlying hardware
differences, contention and other phenomena can result in
vastly differing performance across supposedly equivalent
instances of the VM. As a result, there is striking variability in
the resources received for the same price.

A need therefore exists for improved techniques for user
interaction with public clouds and other cloud-based process-
ing systems.

SUMMARY

Tlustrative embodiments of the present invention provide
techniques for exploiting performance heterogeneity in
clouds.

In one embodiment, a method includes the step of running
a set of instances on at least one cloud for a first time interval,
each of the instances comprising a bundle of virtualized
resources. The method also includes the step of evaluating
one or more performance characteristics of each of the
instances in the set of instances over the first time interval.
The method further includes the step of determining a first
subset of the set of instances to maintain for a second time
interval and a second subset of the set of instances to termi-
nate for the second time interval responsive to the evaluating

20

25

30

35

40

45

50

55

60

65

2

step. The steps are performed by at least one processing
device comprising a processor coupled to a memory.

Advantageously, one or more of the illustrative embodi-
ments disclosed herein provide simple and efficient tech-
niques for improving performance and cost for cloud com-
puting tasks.

These and other features and advantages of embodiments
of the present invention will become more readily apparent
from the accompanying drawings and the following detailed
description.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates an information processing system,
according to an embodiment of the invention.

FIG. 2 illustrates a methodology for determining sets of
instances to run on a cloud, according to an embodiment of
the invention.

FIGS. 3 and 4 show examples of processing platforms that
may be utilized to implement at least a portion of the FIG. 1
system.

DETAILED DESCRIPTION

Tustrative embodiments of the present invention will be
described herein with reference to exemplary information
processing systems and associated computers, servers, stor-
age devices and other processing devices. It is to be appreci-
ated, however, that the invention is not restricted to use with
the particular illustrative system and device configurations
shown. Accordingly, the term “information processing sys-
tem” as used herein is intended to be broadly construed, so as
to encompass, for example, processing systems comprising
private or public cloud computing or storage systems, as well
as other types of processing systems comprising physical or
virtual processing resources in any combination.

FIG. 1 shows an information processing system 100 con-
figured in accordance with an illustrative embodiment of the
present invention. The information processing system 100
comprises a cloud 102 and a number of user devices 104-1,
104-2, ...,104-N. A user associated with one or more of the
user devices 104 may be an individual, a business enterprise,
an IT administrator or other type of user. The term “user” as
utilized herein is therefore intended to be broadly construed
s0 as to encompass a human user as well as an inanimate
system entity. Also, the term may refer to a human user, an
associated device or set of devices, or a combination of both
a human user and an associated device or set of devices. The
same reference numeral 104 may be used for all of these
cases, with the particular user arrangement being understood
from the context.

The user devices 104 may be mobile telephones, laptops,
desktop computers, tablet computers, or other processing
devices suitable for interacting with cloud infrastructure over
one or more networks.

The user or users associated with user devices 104 may be
considered tenants or customers of the cloud 102 of'the cloud
infrastructure of system 100. The cloud 102 comprises a
number of servers 120-1, 120-2, . . ., 120-L. The number of
servers within cloud 102 is purely arbitrary, and may be
varied as desired in embodiments of the invention. The cloud
102 may be a public cloud or a private cloud associated with
the user or users. In addition, although FIG. 1 illustrates only
a single cloud 102, embodiments are not limited solely to
arrangements where user devices interact with a single cloud.
Instead, one or more of the user devices 104 may interact with

US 9,128,739 B1

3

two or more clouds, including combinations of private and
public clouds and clouds provided by two or more different
providers.

Moreover, the system 100 can of course be configured to
support a large number of user devices. Also, multiple users
may be permitted to access current status information and
other data associated with a given processing job that is
executing in the cloud 102 of the cloud infrastructure. For
example, each processing job that is executing may be pro-
vided with a unique job identifier, and users that enter the job
identifier and an appropriate password may obtain access to
the associated job data. Other types of authentication mecha-
nisms may be implemented in system 100 in order to ensure
the security of the processing jobs as those jobs are executed
in the cloud infrastructure.

The cloud infrastructure of system 100 may be viewed as
comprising physical infrastructure and associated virtualiza-
tion infrastructure running on the physical infrastructure, and
such infrastructure or portions thereof may be implemented
using one or more processing devices of a processing plat-
form. Examples of processing platforms that may form at
least portions of the cloud infrastructure in system 100 will be
described in more detail below in conjunction with FIGS. 3
and 4.

As noted above, the system 100 in the present embodiment
implements various processes that provide enhanced user
control over processing jobs that are executed in the cloud
102. An example of such a process will be described below,
but it is to be appreciated that numerous other types of pro-
cesses may be used in other embodiments.

A given cloud infrastructure processing device or user
processing device generally comprises at least one processor
and an associated memory, and includes one or more func-
tional modules for controlling certain features of the system
100. For example, user device 104-1 as shown in FIG. 1
comprises an instances module 142, an evaluation module
144 and a subset determination module 146, which will be
described in further detail below.

For example, the user devices 104 in the present embodi-
ment may comprise a processor coupled to a memory. The
processor may comprise a microprocessor, a microcontroller,
an application-specific integrated circuit (ASIC), a field-pro-
grammable gate array (FPGA) or other type of processing
circuitry, as well as portions or combinations of such circuitry
elements. The memory may comprise random access
memory (RAM), read-only memory (ROM) or other types of
memory, in any combination. This memory and other memo-
ries disclosed herein may be viewed as examples of what are
more generally referred to as “computer program products”
storing executable computer program code.

The user devices 104 may also include network interface
circuitry that is configured to allow the user device to com-
municate over one or more networks with the cloud infra-
structure of system 100, and possibly with other user devices,
and may comprise one or more conventional transceivers. The
one or more networks may include, for example, a global
computer network such as the Internet, a wide area network
(WAN), a local area network (LAN), a satellite network, a
telephone or cable network, a cellular network, a wireless
network such as Wi-Fi or WIMAX, or various portions or
combinations of these and other types of networks.

Similar processor, memory and network interface elements
may be utilized in processing devices that provide cloud 102
and servers 120 of the cloud infrastructure.

It is to be appreciated that the particular set of elements
shown in FIG. 1 for providing enhanced user involvement in
processing job execution in one or more public clouds is

20

25

30

35

40

45

50

55

60

65

4

presented by way of illustrative example, and in other
embodiments additional or alternative elements may be used.
Thus, another embodiment may include additional or alter-
native arrangements of user devices, clouds, servers, etc.

As mentioned previously, various elements of system 100
such as computers, servers, storage devices or their associated
functional modules may be implemented at least in part in the
form of software. Such software is stored and executed uti-
lizing respective memory and processor elements of at least
one processing device. The system 100 may include addi-
tional or alternative processing platforms, as well as numer-
ous distinct processing platforms in any combination, with
each such platform comprising one or more computers, serv-
ers, storage devices or other types of processing devices.

Embodiments of the invention implement what is referred
to herein as placement gaming, or strategies by which cus-
tomers can exploit performance heterogeneity to lower their
costs for completing a processing job or task on a cloud. The
term “processing job” as used herein is intended to encom-
pass any type of functionality that may be performed in cloud
infrastructure for a particular user, and will generally involve
the execution of at least one application, which may include,
for example, an application that involves processing, storing
and transmitting user data.

It is to be understood that the term “application” as used
herein is intended to be broadly construed. Accordingly, ref-
erences herein to multiple applications should be understood
to encompass, for example, a set of entirely different appli-
cations, or a set of different instances of a given application,
as well as various combinations of different applications and
application instances. An application instance is therefore
considered a type of application as that latter term is broadly
applied herein.

As used herein, the term “instance” is used to refer to a
bundle of virtualized resources. An instance may be a VM, as
will be discussed in further detail below with respect to FIG.
3.

Cloud computing providers typically use a simple billing
model in which customers pay a flat hourly fee for a bundle of
virtualized resources. For example, Amazon’s Flastic Com-
pute Cloud (EC2) provides a variety of instance types that
each offer a level of CPU power measured by abstract units
(EC2 Compute Units, or ECUs) together with storage,
memory, and either “low,” “moderate” or “high” input/output
(I/0) performance. Rackspace, Microsoft Azure, and other
providers are similar.

However, not all instances of a given type are created equal.
Data centers grow to contain multiple generations of hard-
ware (e.g., network switches, disks, and CPU architectures)
as old components are replaced or new capacity is added.
Network topology may vary, with some routes having lower
latency or supporting higher bandwidth than others. Multi-
plexing systems across customers with different workloads
can also lead to uneven resource contention across the cloud.
While a provider can try to render performance uniform
across all users of the same abstract instance type, in practice
this is untenable due the costs of maintaining homogeneous
infrastructure and enforcing rigid isolation policies. Thus, a
customer that runs the same application on two instances, of
the same abstract type, will often end up paying the same
amount for measurably different performance. The result of
successful placement gaming is improved efficiency, such as
lowered cost for the same amount of computation, or
increased performance for the same cost.

Embodiments of the invention may be implemented on
clouds which provide only coarse-grained control over place-
ment, i.e., one can start new instances or shutdown existing

US 9,128,739 B1

5

ones but cannot exert direct control over what physical
machines these instances are assigned to. Embodiments of the
invention, however, may also be implemented on clouds
which provide more fine-tuned control over placement of
instances. Embodiments of placement gaming may use one or
both of up-front exploration and opportunistic replacement.
In up-front exploration, a customer initially launches more
instances than needed and retains only ones predicted to be
high-performers. In opportunistic replacement a customer
can choose to migrate an instance (by shutting it down and
launching a fresh copy) based on projections of future per-
formance for the instance.

An estimation of an instance’s future performance may be
obtained using a variety of techniques. One strategy looks at
historical performance of the customer’s job, which is par-
ticularly suited to cases where temporal variability on
instances is relatively low. This strategy is black box, mean-
ing that it requires no understanding of the cloud infrastruc-
ture. Other strategies which may be used are considered gray
box, meaning that they leverage partial knowledge of the
provider’s infrastructure, such as known distributions of pro-
cessor types, network topology, or scheduling mechanisms.
Gray box strategies may be adjusted for use with a particular
cloud provider based on information which the cloud pro-
vider makes available regarding the cloud infrastructure and
hardware.

Cloud computing environments can exhibit substantial
performance heterogeneity. Variations in CPU, memory, net-
work, disk and application performance contribute to this
heterogeneity. There are generally three types of heterogene-
ity in cloud computing environments: inter-architecture, or
differences due to processor architecture or system configu-
ration; intra-architecture, or differences within a processor
architecture or system configuration; and temporal, or difter-
ences within a single VM or other instance, machine, server or
cloud over time.

A major source of heterogeneity in cloud environments is
physically different processor architectures. This can occur
either when a mix of machines is purchased initially or when
a data center adds machines of a different type. Differences
between processors directly affect performance, as newer
generations typically incorporate more advanced pipelines
and memory systems. Furthermore, cloud providers may not
penalize virtual machines using newer processors with
reduced CPU time. Thus, many applications may benefit sub-
stantially if they can run on the best architecture for their
needs.

There is also substantial variation across systems with the
same architecture. This can arise from different system-level
components, such as memory and peripherals, and from long-
term interference from other workloads on the same node. For
CPU-sensitive applications the variation within a processor
type tends to be smaller than that between different processor
types, while for disk and network the opposite is true.

The performance of a single instance can vary over time
due primarily to competing workloads. Thus, the stability of
a workload depends highly on the machine on which an
instance is placed, as well as the resources it uses.

The variation between architectures demonstrates that
cloud customers may want to select specific processor types
to optimize performance. However, the performance varia-
tion within a processor type further shows that this may be
insufficient for I/O performance, as there is similarly high
variation within a single processor type. Furthermore, the
variation of individual nodes over time indicates that work-
loads may prefer nodes with more stable performance and
benefit from migrating away from congestion.

20

25

30

35

40

45

50

55

60

65

6

Embodiments of the invention allow customers to guide
the placement of their tasks or processing jobs onto VMs or
other instances with good performance, thus lowering the
cost of a task, reducing its completion time, or otherwise
improving efficiency. A customer or tenant may use place-
ment gaming in embodiments of the invention to schedule a
job J on a public cloud. Embodiments of the invention can be
used in instances where the customer is only able to use a
cloud provider’s legitimate application programming inter-
face (API) in a manner that optimizes performance relative to
cost. Cloud providers, rather than customers, typically con-
trol assignment of VMs or other instances to physical
machines Thus, a typical provider API may allow a customer
only to start and stop instances of various types on a cloud. A
customer, however, may be able to select a particular portion,
such as an availability zone or geographic region, of the cloud
on which to start an instance.

In embodiments of the invention, a customer may also use
a gray box strategy of selecting a particular portion of the
cloud which is known to have a larger fraction of newer CPU
architectures, better network bandwidth, better disk perfor-
mance, etc. Such a strategy, however, is not always sufficient
due to the fact that certain tasks or processing jobs may not
benefit from faster CPUs or increased network bandwidth and
disk performance. In addition, customers may prefer to use
multiple availability zones to improve reliability, or the num-
ber of available instances in a given zone may be limited.
Similarly, a customer may achieve different efficiencies from
different instances types, such as small (shared core) or large
(dedicated multiple cores) instances. As with the choice of
availability zone, placement gaming in embodiments of the
invention permits a customer to choose a particular instance
type to improve performance.

Placement gaming in embodiments of the invention can
exploit several features of cloud computing common to most
cloud providers. First, cloud providers often bill for usage on
fine time scales, such as by the hour. Thus, it is possible to use
a machine for an hour and give it up if it is too slow. Second,
cloud providers allow programmatic control over launching
virtual machines. This allows control software to dynami-
cally launch additional instances in the hope of improving
performance. Third, cloud workloads are often cost-associa-
tive and can use varying numbers of machines; this allows the
productive use of extra machines for short periods. Finally,
many cloud workloads store their persistent state in net-
worked storage. Thus, moving a workload from one machine
to another need not entail migration of the entire data set. In
addition, applications run in distributed systems like EC2 are
often intentionally optimized to be able to shut down and
restart quickly.

A model for placement of instances is described below,
which assumes that customers launch servers synchronously,
and that servers are scheduled with a minimum granularity
referred to as a quantum such as one hour. Various other
quanta may be used, such as the minimum billing unit for a
particular instance. Integral quanta denoted by t=1, 2, . . . may
be used to organize job time. The provider draws servers from
some pool, having variation across servers in the amount of
job-specific work they perform within a time quantum (cross-
instance heterogeneity). There is also variation across the
amount of work performed by a single instance across time
quanta (temporal heterogeneity). The rate of job execution of
a given server S during a time quantum t is denoted as r,(S)e
[0,00]. A server’s rate is job-specific, as different jobs leverage
different blends of resources.

US 9,128,739 B1

7

For simplicity, the performance of each server is dictated
according to a probability distribution S . Thus, the sequence
of rates r,(S), r5(S), . . . is drawn independently from S for
each server S.

A placement schedule P is a sequence of sets of servers
denoting job placement across time. Let P[t] be the set of
servers assigned to a job in time quantum t. For a placement
schedule P of duration T, the cost is

T
o(P) = Y IPlr]l,
t=1

i.e., the total number of server-quanta units it consumes. The
overhead associated with launching an instance is modeled by
a time penalty m, which is the fraction of the first quantum
consumed by overhead. A quantum at which a job was
launched on S is denoted first(S)e{1, . . ., T}. The achieved
rate of S is thus

FS) = { r(S)- (L —m) if 7= first(S)

r:(S) otherwise

The work yielded by a placement schedule P is thus

T
WP =31 RS).

=1 SePl1]

The work output by a placement schedule in quantum t is
denoted w(P[t])=Z.p4F; () The cost is denoted c(P[t])=IP
[t]. The support of a placement schedule P is defined as
supp(P)=min,_, 7IP[t]I. This is the minimum number of serv-
ers executing J in any quantum.

In embodiments of the invention, a customer employs a
placement strategy o, which guides the construction of a
placement schedule as a job executes. In some embodiments,
customers can control placement only indirectly, by starting
and stopping instances. Therefore, strategies a at the end of
any quantum t>0 determine: (1) which servers in P[t] to
terminate and thus which servers in P[t] to retain, i.e., con-
tinue running in quantum t+1; and (2) how many fresh servers
to request from the provider in quantum t+1.

Atthe end of quantum t, a placement strategy determines a
set of servers K[t+1] = P[t] to keep, i.e., to include in P[t+1].
Let k[t]=IK[t]I. At the end of quantum t, a placement strategy
also determines a number f[t] of fresh servers to invoke in the
next quantum, i.e., to add to P[t+1]. The resulting set of fresh
servers is denoted F[t+1].

Thus, P[t+1]=K[t+1]UF[t+1]. For t=1, all servers are fresh
instances, i.e., P[1]=F[1]. Before job execution, at the end of
quantum t=0, the strategy o determines the number of initial
servers to start up by setting {f[1]. As there are no servers to
retain at the beginning of a job, K[1]=0. A strategy a takes as
input the current time t, the so-far placement schedule
P[1 .. .t], and the so-far observed rates. The strategy o also
outputs (K[t+1], f(t+1)).

For a given job J and distribution S on server performance,
o induces a probability distribution over placement schedules
P, denoted P<—o(S) or, for brevity, just P<—o. Consequently,
o induces probability distributions over placement schedule
properties, such as costs ¢(P) and work w(P).

20

25

30

40

45

50

55

60

65

8

There are several performance objectives for a placement
strategy. A customer may wish to minimize the cost or the
latency of executing a job J. The tenant may alternatively or
additionally wish to bound the cost of its execution of job J,
but maximize the amount of achieved work. Additionally, as
aplacement strategy a generates schedules P probabilistically
based on the distribution S of available machines, “maximi-
zation” may be defined in any of a number of ways. For
example, maximization may be defined in terms of expected
work w(P), in terms of the probability of w(P) exceeding a
certain threshold, etc.

Embodiments described below focus on the objective of
maximizing the efficiency e(P) of a job J. It should be under-
stood, however, that embodiments of the invention are not
limited solely to the objective of maximizing efficiency, but
instead may use various other objectives as described herein.
The efficiency of job J is the work per unit cost averaged
across the entire execution,

wP)

“P=um

where c(P) incorporates both the time spent executing the
workload as well as time for testing the performance of
instances and for migrating an application between instances.

Placement strategies have a trade-off between exploration
and exploitation. It may be beneficial to retain and repeatedly
use a “good” server S, i.e., one with high rates. Conversely,
though, launching additional servers offers the possibility of
discovering new servers with higher rates than retained ones.

The problem of job placement may be viewed as a Markov

decision process (MDP), in which the set of servers P[t]
at time t is the system state, and specification of (K[t+1],
f(t+1)) is an action. However, for complex distributions
S of performance and a large number of servers, the
state space is quite large. Solution approaches such as
dynamic programming may be computationally costly,
and also have the drawback of yielding complicated
placement strategies and cost structures.

A restricted space of placement strategies 2, 5), referred
to as (A, B) strategies herein, are considered in some embodi-
ments of the invention. (A, B) strategies run at least A servers
in every quantum and launch an additional B “exploratory”
instances for one quantum each at some point during the
execution. This model covers a wide variety of strategies that
launch additional instances solely for the purpose of evaluat-
ing their performance as well as strategies that replace execut-
ing instances. For a fixed number T of quanta, an (A, B)
strategy 0€Z , is one that always yields a placement sched-
ule P in which supp(P)=A and Z,_ “flil=A+B. An (A, B)
strategy has fixed cost ¢(P)=TA+B.

An example is the (A, 0) strategy 0,5, the null strategy,
that launches A instances in the first quantum and uses them
for the remainder of the schedule. This strategy is optimal
should all servers offer precisely the same performance.
When heterogeneous performance is the norm, though, the
class of X, 5 allows more refined strategies. As discussed
above, one or both of up-front exploration and opportunistic
replacement may be used in embodiments of the invention.

In up-front exploration, the strategy attempts to find high-
performing instances early so that they can be used for longer
in the execution of a job. An (A, B) strategy that uses up-front
exploration launches all B “exploratory” instances at the start
of'ajob, i.e. at time t=1. At time t=2 the highest performing A
instances are retained and the other B instances are shut down.

US 9,128,739 B1

9

In opportunistic replacement, the strategy attempts to seek
out better performing instances or adapt to slow-downs in
performance. Opportunistic replacement involves migrating
an instance, or shutting it down and replacing it with a fresh
one to continue its work. An (A, B) strategy that uses oppor-
tunistic replacement will retain from time t instances that are
deemed high performers and migrate instances that are low
performers.

Embodiments of the invention which employ placement
gaming rely on accurate judgments about instance perfor-
mance. Up-front exploration ranks server performance and
opportunistic replacement distinguishes between low and
high performance. A natural dichotomy exists between strat-
egies that do so by exploiting partial knowledge about the
infrastructure and those that do not. Gray box strategies make
decisions based in part on partial knowledge of the provider’s
infrastructure, such as hardware architectures, network topol-
ogy, provider scheduler, or historical performance of
instances. Black box strategies use only the measured perfor-
mance (rate) of the tenant’s instances. While gray-box strat-
egies are potentially more powerful, black-box strategies can
be simpler and more portable. For example, they can work for
more causes of heterogeneity and for unknown machine dis-
tributions.

One black box strategy, referred to herein as PERF-M,
combines up-front exploration (when B>0) with opportunis-
tic replacement. PERF-M uses the up-front exploration stage
to estimate average performance of the job, and then in the
remainder of the run the strategy attempts to beat that average.
PERF-M ranks instances at the end of t=1 based on their
performance during t=1. In other embodiments, strategies
may rank instances based on their performance during t=1
and previous quanta or other historical performance informa-
tion.

For opportunistic replacement, PERF-M migrates an
instance if its recent performance drops sufficiently below the
average performance of all instances that ran in the first
quantum. To define “sufficiently,” a heuristic threshold is used
that estimates the expected cost of migration needed to
achieve above-average performance, amortized across the
remaining time of the run. A replacement rule that a server S
will be migrated is thus

Wl_rr(s)>5: M

T-—
where

A+B

avg, =) n($)/(A+B),

i=1

m is the time penalty of migration and T is the total duration
of the computation.

In detail, PERF-M works as follows. Initially, A+B
instances are launched at time t=0. This set of instances is
P[1]. At the end of the first time quantum, the rate r,(S) is
measured for each instance SeP[1]. The mean performance is
computed as

20

25

35

40

50

55

60

65

10

A+B

avg, =) n(S)/(A+B).

i=1

The retained set is denoted K[2] =P[1], which includes
instances S such that both: (i) S is one of the top A performers
within P[1]; and (ii) avg, -r,(S)=d. All other instances, i.e.,
P[1]\K[2] are shut down, and A-Ik[2]| fresh instances are
launched to maintain a minimum of A instances in every
period. At the end of each quantum 2st<T and for each
instance SeP[t], S is put in K[t+1] if avg,-r,(S)=d. All other
instances P[t]\K[t+1] are shut down and A-Ik[t+1]| fresh
instances are launched.

Thus, the PERF-M strategy starts more than the necessary
number of instances and shuts down the slowest B of them at
the end of the first period. In addition, in every period it shuts
down all machines with below-average performance and
replaces them. PERF-M may also use moving estimates of
both the average performance and each server’s performance.
The moving estimates may be obtained using a variety of
techniques, including using exponentially weighted moving
averages.

Embodiments of the invention may use a placement strat-
egy wherein the opportunistic replacement is

avg(S) —F(S) > ¢ 2

where avg(S) is an estimate of the average rate across all
servers, namely avg(S), and r(S) is the estimated perfor-
mance of the server, namely r(S). The value 8 is used to
indicate a penalty associated with migrations. In particular,
d=2m/(T-t) is used as a heuristic, where m is an estimate of
the time between launching a new instance and the new
instance performing work. Thus, d represents the amortized
cost of migration across the expected number of migrations
(for a balanced distribution) needed to achieve r(S)=avg(s).

The estimates avg(S) and r(S) vary depending on whether
the strategy is gray box or black box. In gray box strategies,
decisions are based in part on partial knowledge of the pro-
vider’s infrastructure, such as hardware architectures, net-
work topology, provider scheduler, or historical performance
of instances. In black box strategies, the measured perfor-
mance (rate) of the tenant’s instances is used. Thus, an oppor-
tunistic (A, B) strategy o running for T quanta launches A+B
servers at time t=1. At the end of every quantum t, for
1=t<T-1 and every Se{S,, ..., S,}, it places S in K[t+1] if
avg(S)-r(S)>d and then sets ft+1]=A-k[t+1].

A simplification implicit in the model described above is
that server migration carries little or no cost, i.e., that no job
time is lost in setting up a fresh server. Of course, in reality,
migration does carry some cost, one that is specific to the
nature of the job J and also to the size of a quantum.

Migration cost doesn’t impact the principle of up-front
exploration. If the number of fresh servers to be launched is
fixed in a given strategy o at A+B, then the migration cost for
the strategy is also fixed. The scheduling of these fresh servers
doesn’t impact the overall job cost, so the analysis above
supporting launch at time t=1 still holds.

Migration cost, however, does impact—in particular,
diminish—the benefit of opportunistic replacement. The cost
of migration should be taken into account in assessing
whether to terminate a retained server and launch a fresh one.

US 9,128,739 B1

11

We denote m as the cost of migration for a given job J and
quantum size. As the resource costs of migration differ from
job execution, we characterize m simply in terms of the num-
ber of quantum hours consumed in a single migration, i.e., the
termination of one server and launch of a fresh one.

The cost of migration is amortized over the running time of
a freshly launched server. Of course, this running time is a
random variable—itself dependent upon the placement strat-
egy 0. As aheuristic choice, a crude estimate is employed that
when a server is replaced, the number of replacements over
the remainder of the job is u=1/(1-(avg(S))). This is the
expected number of server replacements needed to achieve
r(S)zavg(S). The amortized cost of migration is thus esti-
mated at 2m/(T-t) and, consequently, for strategy o, set as
d=um/(T-1).

When p is difficult to estimate, due to a complex or
unknown distribution §, a heuristic p=2 may be chosen,
which represents the expected number of server replacements
needed to achieve r(S)=zavg(S) when D(avg(S))='%, i.e., for
distributions symmetric around the mean.

An alternative or additional placement objective of particu-
lar interest is the minimization of the cost of a job J requiring
a fixed amount of work W. In this case, there is no bound on
T. The goal is to minimize ES [c(P)] under o strategy a that
outputs P such that w(P)=W. A variant opportunistic (A, B)
strategy o, ,B)TO is particularly suited for this case. First, the
optimal choice is A=1, i.e., J should be run exclusively on the
fastest (highest-rate) discovered server. Additionally, as T
isn’t fixed, it must be estimated in this scenario in order to set
d. At a given time t>1, when a single server S is running, the
estimation of T at time t as T=W[t]/r(S) can be used, where
W[t] is the amount of work for job J remaining at time t.

The speedup offered by a placement schedule P arising
from a strategy and the placement schedule P, ,, may be
determined according to the following equation:

e wP)T-A
e(Putt) ~ W(Puu)-(T-A+B)

spd(P, Puuy) =

where the costs of the two placement schedules, c(P)=T-A+B
and ¢(P,,,;,)=TA are inserted. Work completed is calculated
using the achieved rate (which subtracts time lost due to
migration) times the total number of instance hours.

Three major features of cloud environments affect the
achievable speedup from placement gaming in embodiments
of the invention: the magnitude of the difference in perfor-
mance between machines, the performance variability
observed by applications, and the distribution of differently
performing machines. The size of the differences between
machine performance essentially determines the cost of run-
ning on a slow machine (or conversely, the benefit of being on
a fast machine). Performance variability affects the ability of
aplacement strategy to accurately predict future performance
from a small number of measurements, while the distribution
of' machines affects the likelihood of improving performance
by migrating to a new instance.

Up-front exploration strategies do significantly better as
the separation between “good” and “bad” instances increases.
When the separation is small, the two distributions overlap so
much that intra-instance variation is nearly as large as inter-
instance variation. An up-front strategy measuring perfor-
mance during the first time quantum cannot determine which
instance will perform best in the long run. Replacement strat-
egies generally do better than the up-front strategies, and the
effect of larger separation is seen most as B increases.

20

25

30

35

40

45

50

55

60

65

12

The impact of variability within a machine’s performance
does not have much impact on the upfront strategies, but does
impact the gains seen by replacement strategies. The upfront
strategies merely sample from the combined distribution,
whose average remains constant. Widening of the distribu-
tions allows for a few slightly better instances, which are
canceled out by a few slightly worse instances available and
the larger number of average instances. If B is raised signifi-
cantly, more of the space can be sampled and potential gains
may be achieved with wider distributions. Raising B, how-
ever, involves a much longer time horizon to recoup the cost
of a larger initial search.

In a replacement strategy, however, the tighter the distri-
bution, the better the performance achieved. This is particu-
larly visible when B=0. In this case, no extra instances are
launched at the start and the strategy relies on migrations to
improve performance. When the distributions are tight, all of
the “bad” instances will perform significantly worse than the
average, causing an attempted migration. When this migra-
tion is successful in moving that instance to the “good” dis-
tribution, the performance improvement will be significant.
Two things happen as the distributions widen and overlap:
some of'the “bad” instances move close enough to the average
to avoid migration; and successful migrations may be only a
slight improvement.

The distribution of machines, or architectural mix, may
also affect the gains achieved by various strategies. Up-front
strategies naturally perform best when the fraction of “good”
machines is high. For a low fraction of “good” machines, the
performance of up-front strategies increases linearly as B
increases, and increases faster the higher the fraction of
“good” machines, eventually topping out once the total num-
ber of instances started (A+B) is enough to ensure that at least
A of them are in the “good” distribution. As the fraction of
“good” machines goes up, a smaller B is needed to achieve the
same performance, which lowers total cost.

For replacement strategies, the analysis is a little more
complex. If the number of “good” machines is too small, the
initial instances may all land in the “bad” distribution and the
existence of better machines may be missed. If the number of
“good” machines is small, the difficulty migrating to a “good”
machine may outweigh the benefit of getting there, especially
if the length of the workload is short. Performance of the
replacement strategies increases as the fraction of good
machines increases until roughly one third of the machines
are “good.” Above that point, replacement strategies continue
to outperform both the null and up-front strategies, but the
percentage improvement over a null strategy starts to go down
as the null strategy begins to improve.

Customer workload affects the ability to observe speedup
both through the performance differences it achieves on dif-
ferent machines and through the scalability and lifetime of the
workload. For example, workloads with low use for parallel-
ism may benefit differently from strategies that launch many
instances up front. Similarly, workloads that run for short
periods may not have time for opportunistic replacement to
find high-performance instances.

The available parallelism may also affect speedup. Work-
loads with perfect parallelism can run on any number of
machines and achieve the full combined throughput of all
instances. In reality, many workloads are not perfectly paral-
lelizable, either requiring some constant “recombining” cost
per parallel instance, or are simply unable to parallelize
beyond a certain point. The limit of parallelization, L, affects
the up-front strategies more than the replacement strategies as
the total number of instances running at a time may be capped.
This would limit the search space to A+B=L,,.

US 9,128,739 B1

13

The running time of a task or job may also affect speedup.
If tests only ran for a couple of hours, the cost of migration
could overwhelm the potential benefit, reducing the number
of migrations and minimizing performance speedup. Con-
versely, if a job were to run forever, it would make sense to
spend a lot of resources to secure placement on the very best
machines as even a small performance improvement over
such a long time would pay off.

In one embodiment, where A=10 and T=24, up-front strat-
egies do best when launching between 30 and 50 total
instances, keeping only the top 10 after the first hour. For
different A and T values, however, an optimal number of
instances will naturally change. If the job is run for a longer
period of time, these numbers would go up as launching more
instances allows for more exploration of the space in order to
find the best performing machines. Similarly, in replacement
strategies, the number of migrations per hour decreases as the
job runs, due to the limited time remaining to compensate for
the cost of the migration. There is a constant trade-off
between finding “good enough” machines and the cost asso-
ciated with the search, all relative to the time available to
recoup that cost.

A placement strategy referred to herein as CPU performs
up-front exploration using A+B instances, retaining the A
instances with the fastest CPUs and subsequently performs
no migrations. A placement strategy referred to herein as
CPU-M performs the same up-front exploration as CPU and
performs a migration using a thresholding equation similar to
Equation 2. Particularly, let cpu(S) be the rate of the archi-
tecture of S, as measured in the one-time measurement phase.
Let C be the average performance across all instances. Then,
a server S will be migrated if

C-cpu(S)>d

where 8 is defined as discussed above.

Another placement strategy which may be used in embodi-
ments of the invention is an opportunistic (A, B) strategy that
seeks out the best architecture as reported by a measurement
phase. A strategy referred to herein as CPU-MAX performs
the same up-front exploration as CPU and then performs
migration whenever an instance’s processor architecture is
not the best performing architecture.

A placement strategy referred to herein as PERF is a black
box strategy which executes an up-front exploration. A+B
instances are run for the first quantum, and after the first
quantum the B worst-performing instances are shut down.
Another black box strategy is PERF-M, which uses the same
up-front exploration as PERF but also performs opportunistic
replacement by migrating any instance whose recent perfor-
mance was below the first quantum’s average as described
above.

Generally, as A+B increases, the CPU, CPU-MAX, PERF
and PERF-M strategies converge in performance. CPU-MAX
will typically be the best performing gray box strategy. The
black box strategy PERF-M approaches the performance of
CPU-MAX. The CPU, CPU-MAX, PERF and PERF-IM
strategies all exhibit improved performance with increasing
T. Opportunistic replacement strategies, except CPU-A fare
better in the long run when compared to the up-front explo-
ration strategies. Since CPU-M looks only at the average
performance of each CPU type for taking migration deci-
sions, it ends up overlooking the performance variability of
each CPU.

Embodiments of the invention which implement place-
ment gaming may also address situations in which one cus-
tomer’s placement gaming impacts the distribution of perfor-
mance obtained by other customers. Assuming that there is a

20

25

30

35

40

45

50

55

60

65

14

limited number of high-performing machines, placement
gaming exhibits a “first-mover” advantage. A first group of
customers who perform placement gaming prior to a second
group of customers will obtain an advantage over the second
group of customers. That is, placement gaming by the first
group of customers decreases performance for the second
group of customers. When the number of good machines is
larger than the total number of machines requested, the sec-
ond group can match the performance of the first group by
way of placement gaming. When the number of good
machines is not larger, the second group’s performance suf-
fers.

Cloud computing environments will inevitably demon-
strate some level of performance heterogeneity due to hard-
ware variation and competing workloads. Embodiments of
the invention allow cloud customers, by means of placement
gaming, to deliberately guide the placement of their work-
loads to improve performance by selectively switching work-
loads off poorly performing machines. While embodiments
of the invention have been described with respect to the
objective of maximizing efficiency or reducing cost for a
particular job, other objectives may be used in addition to or
instead of these objectives in other embodiments of the inven-
tion. By way of example only, embodiments may use the
objective of improving stability for a given job or task. In
addition, while embodiments have been generally described
above in the context of a single customer, embodiments of the
invention are not limited solely to a single customer which
performs placement gaming. Instead, embodiments of the
invention may involve multiple customers performing place-
ment gaming simultaneously, either cooperatively or com-
petitively.

FIG. 2 illustrates a methodology 200 which may be per-
formed in embodiments of the invention. In step 202, a set of
instances is run on at least one cloud for a time interval. Next,
in step 204, one or more performance characteristics of each
of the instances in the set of instances is evaluated over the
time interval. Responsive to the evaluation in step 204, step
206 determines a first subset of the set of instances to maintain
for a next time interval and a second subset of the set of
instances to terminate for the next time interval. In some
embodiments, the methodology further performs step 208,
where a number of additional instances are started on at least
one cloud for the next time interval responsive to the deter-
mination in step 206. In some embodiments, steps 204, 206
and 208 may be repeated for one or more subsequent time
intervals.

A controller or processing device may be used to perform
the various steps of methodology 200 shown in FIG. 2. The
controller or processing device may implement one or more
of the instances module 142, evaluation module 144 and
subset determination module 146 as shown in FIG. 1. The
instances module 142 may perform steps 202 and 208, while
the evaluation module 144 performs step 204 and the subset
determination module 146 performs step 206 as shown in
FIG. 2. It is important to note, however, that various other
arrangements are possible. For example, steps 202 and 208
may be performed in separate modules. Similarly steps 206
and 208 may be performed in the same module in other
embodiments. In addition, the methodology 200 may incor-
porate various other steps and features described above but
not explicitly shown in FIG. 2.

The particular processing operations and other system
functionality described in conjunction with the flow diagram
of FIG. 2 are presented by way of illustrative example only,
and should not be construed as limiting the scope of the
invention in any way. Alternative embodiments can use other

US 9,128,739 B1

15

types of processing operations for providing user control over
processing job execution in system 100. For example, the
ordering of the process steps may be varied in other embodi-
ments, or certain steps may be performed concurrently with
one another rather than serially. Also, as indicated above, one
or more of the process steps may be repeated periodically for
a given user, or performed in parallel for the given user or
multiple users.

It is to be appreciated that functionality such as that
described in conjunction with the flow diagram of FIG. 2 can
be implemented at least in part in the form of one or more
software programs stored in memory and executed by a pro-
cessor of a processing device such as a computer or server. As
mentioned previously, a memory or other storage device hav-
ing such program code embodied therein is an example of
what is more generally referred to herein as a “computer
program product.”

Referring now to FIG. 3, portions of the information pro-
cessing system 100 in this embodiment comprise cloud infra-
structure 300. The cloud infrastructure 300 comprises VMs
302-1,302-2,...302-M implemented using a hypervisor 304.
The hypervisor 304 runs on physical infrastructure 305. The
cloud infrastructure 300 further comprises sets of applica-
tions 310-1, 310-2, . . . 310-M running on respective ones of
the virtual machines 302-1, 302-2, . . . 302-M under the
control of the hypervisor 304. The cloud infrastructure 300
may be viewed as providing an example of what is more
generally referred to herein as “virtual infrastructure.” The
cloud infrastructure 300 may encompass the entire system
100 or only portions of that system, such as the cloud infra-
structure comprising at least a portion of the cloud 102. Thus,
the cloud 102 may be viewed as comprising one or more of the
virtual machines 302. Each of the servers 120 of cloud 102
may similarly be viewed as comprising one or more of the
virtual machines 302.

Although only a single hypervisor 304 is shown in the
embodiment of FIG. 3, the system 100 may of course include
multiple hypervisors each providing a set of virtual machines
using at least one underlying physical machine such as a
given server 120 of cloud 102.

An example of a commercially available hypervisor plat-
form that may be used to implement hypervisor 304 and
possibly other portions of the cloud infrastructure of infor-
mation processing system 100 in one or more embodiments
of'the invention is the VMware® vSphere™ which may have
an associated virtual infrastructure management system such
as the VMware® vCenter™. The underlying physical
machines may comprise one or more distributed processing
platforms that include storage products, such as VNX and
Symmetrix VMAX, both commercially available from EMC
Corporation of Hopkinton, Mass. A variety of other storage
products may be utilized to implement at least a portion of the
cloud infrastructure of system 100.

As indicated previously, the system 100 may be imple-
mented using one or more processing platforms. One or more
of'the processing modules or other components of system 100
may therefore each run on a computer, server, storage device
or other processing platform element. A given such element
may be viewed as an example of what is more generally
referred to herein as a “processing device.” The cloud infra-
structure 300 shown in FIG. 3 may represent at least a portion
of one processing platform. Another example of such a pro-
cessing platform is processing platform 400 shown in FIG. 4.

The processing platform 400 in this embodiment com-
prises a portion of the system 100 and includes a plurality of
processing devices, denoted 402-1, 402-2, 402-3, . . . 402-K,
which communicate with one another over a network 404.

20

25

30

35

40

45

50

55

60

65

16

The network 404 may comprise any type of network, such as
a WAN, a LAN, a satellite network, a telephone or cable
network, or various portions or combinations of these and
other types of networks.

The processing device 402-1 in the processing platform
400 comprises a processor 410 coupled to a memory 412. The
processor 410 may comprise a microprocessor, a microcon-
troller, an ASIC, an FPGA or other type of processing cir-
cuitry, as well as portions or combinations of such circuitry
elements, and the memory 412, which may be viewed as an
example of a “computer program product” having executable
computer program code embodied therein, may comprise
RAM, ROM or other types of memory, in any combination.

Also included in the processing device 402-1 is network
interface circuitry 414, which is used to interface the process-
ing device with the network 404 and other system compo-
nents, and may comprise conventional transceivers.

The other processing devices 402 of the processing plat-
form 400 are assumed to be configured in a manner similar to
that shown for processing device 402-1 in the figure.

Again, the particular processing platform 400 shown in the
figure is presented by way of example only, and system 100
may include additional or alternative processing platforms, as
well as numerous distinct processing platforms in any com-
bination, with each such platform comprising one or more
computers, servers, storage devices or other processing
devices.

Multiple elements of information processing system 100
may be collectively implemented on a common processing
platform of the type shown in FIG. 3 or 4, or each such
element may be implemented on a separate processing plat-
form.

It should again be emphasized that the above-described
embodiments of the invention are presented for purposes of
illustration only. Many variations and other alternative
embodiments may be used. For example, the disclosed tech-
niques are applicable to a wide variety of other types of
devices and systems that can benefit from intelligent selection
of one or more VMs or other instances to run on one or more
clouds. Also, the particular configuration of system and
device elements shown in FIGS. 1, 3 and 4, and the method-
ology shown in FIG. 2, can be varied in other embodiments.
Moreover, the particular cloud metrics or other parameters
that are collected from a cloud or clouds, the particular infor-
mation that is compiled from such parameters, and the man-
ner in which selection among candidate VMs or other
instances, clouds, etc. is performed using such information,
may be altered in other embodiments in order to suit the needs
of a particular implementation. These and numerous other
alternative embodiments within the scope of the appended
claims will be readily apparent to those skilled in the art.

What is claimed is:

1. A method comprising the steps of:

running a set of instances on at least one cloud for a first

time interval for a given processing job, each of the
instances in the set of instances comprising a bundle of
virtualized resources;

evaluating one or more performance characteristics of each

of the instances in the set of instances over the first time
interval;
separating the set of instances into a first subset of the set of
instances to maintain for a second time interval and a
second subset of the set of instances to terminate for the
second time interval responsive to the evaluating step;

starting at least one additional instance on the at least one
cloud for the second time interval to replace at least one
of the instances in the second subset; and

US 9,128,739 B1

17

migrating at least one of the instances in the second subset

to the at least one additional instance;

wherein evaluating the one or more performance charac-

teristics comprises determining an average performance
level of the set of instances over the first time interval;
wherein separating the set of instances into the first subset
and the second subset comprises:
determining a migration cost for migrating a given
instance in the set of instances, the migration cost
being amortized across an expected amount of time
remaining for completion of the given processing job;
and
placing the given instance in the second subset based at
least in part on determining that a performance level
of the given instance, taking into account the migra-
tion cost, is below the average performance level of
the set of instances over the first time interval; and
wherein the steps are performed by at least one processing
device comprising a processor coupled to a memory.

2. The method of claim 1, wherein each of the instances in
the set of instances comprises at least one virtual machine.

3. The method of claim 1, wherein at least one of the
instances in the set of instances is run on a first cloud and at
least another one of the instances in the set of instances is run
on a second cloud.

4. The method of claim 1, wherein two or more of the
instances in the set of instances are run on a single cloud.

5. The method of claim 1, wherein the one or more perfor-
mance characteristics of each of the instances in the set of
instances comprises at least one performance characteristic
for respective ones of the virtualized resources in the bundle
of virtualized resources in each of the instances in the set of
instances, wherein the virtualized resources comprise one or
more of:

a central processing unit resource;

a memory resource;

a network resource;

a disk resource; and

an application resource.

6. The method of claim 1, wherein the separating step is
further responsive to an evaluation of one or more cloud
characteristics of the at least one cloud.

7. The method of claim 6, wherein the one or more cloud
characteristics of the at least one cloud comprise one or more
of:

an infrastructure of a provider of the at least one cloud;

hardware architectures of the at least one cloud; and

a network topology of the at least one cloud.

8. The method of claim 1, wherein the separating step is
further responsive to an evaluation of a historical perfor-
mance of one or more instances in the set of instances on the
at least one cloud.

9. The method of claim 1, wherein the first and second
subsets of the set of instances are separated so as to minimize
a cost for completing the given processing job.

10. The method of claim 1, wherein the first and second
subsets of the set of instances are separated so as to minimize
a time required to complete the given processing job.

11. The method of claim 1, wherein the evaluating step
further comprises determining a performance level for each
of the instances in the set of instances, and wherein the first
subset of instances comprise the instances in the set of
instances with the highest performance level and the second
subset of instances comprises the instances in the set of
instances with the lowest performance level.

20

25

30

35

40

45

50

55

60

65

18

12. The method of claim 1, wherein a number of additional
instances started on the at least one cloud for the second time
interval is less than a total number of instances in the second
subset.

13. The method of claim 12, wherein the number of addi-
tional instances is selected so as to maintain a specific number
of instances for the second time interval.

14. The method of claim 1, further comprising the step of
repeating the evaluating, separating and starting steps for one
or more additional time intervals.

15. The method of claim 1, wherein the average perfor-
mance level ofthe set of instances comprises an exponentially
weighted moving average.

16. The method of claim 12, wherein the number of addi-
tional instances is determined based at least in part on the
expected amount of time remaining for completion the given
processing job.

17. The method of claim 1, wherein the at least one cloud
comprises a plurality of servers, and wherein the running and
starting steps utilize an application programming interface of
the at least one cloud, the application programming interface
not permitting control of assignment of instances to particular
ones of the servers of the at least one cloud.

18. The method of claim 1, wherein a number of instances
in the first subset and a number of instances in the second
subset are determined based at least in part on a limit of
parallelization of the given processing job.

19. A computer program product comprising a non-transi-
tory processor-readable storage medium having encoded
therein executable code of one or more software programs,
wherein the one or more software programs when executed
cause at least one processing device to perform the steps of:

running a set of instances on at least one cloud for a first

time interval for a given processing job, each of the
instances in the set of instances comprising a bundle of
virtualized resources;

evaluating one or more performance characteristics of each

of the instances in the set of instances over the first time
interval;
separating the set of instances into a first subset of the set of
instances to maintain for a second time interval and a
second subset of the set of instances to terminate for the
second time interval responsive to the evaluating step;

starting at least one additional instance on the at least one
cloud for the second time interval to replace at least one
of the instances in the second subset; and

migrating at least one of the instances in the second subset

to the at least one additional instance;

wherein evaluating the one or more performance charac-

teristics comprises determining an average performance
level of the set of instances over the first time interval;
and

wherein separating the set of instances into the first subset

and the second subset comprises:

determining a migration cost for migrating a given
instance in the set of instances, the migration cost
being amortized across an expected amount of time
remaining for completion of the given processing job;
and

placing the given instance in the second subset based at
least in part on determining that a performance level
of the given instance, taking into account the migra-
tion cost, is below the average performance level of
the set of instances over the first time interval.

US 9,128,739 B1

19

20. An apparatus comprising:
at least one processing device comprising a processor
coupled to a memory, the at least one processing device
being configured to:
run a set of instances on at least one cloud for a first time
interval for a given processing job, each of the
instances in the set of instances comprising a bundle
of virtualized resources;
evaluate one or more performance characteristics of
each of the instances in the set of instances over the
first time interval,
separate the set of instances into a first subset of the set
of instances to maintain for a second time interval and
a second subset of the set of instances to terminate for
the second time interval responsive to the evaluation;
start at least one additional instance on the at least one
cloud for the second time interval to replace at least
one of the instances in the second subset; and
migrate at least one of the instances in the second subset
to the at least one additional instance;
wherein the at least one processing device is configured to
evaluate the one or more performance characteristics by
determining an average performance level of the set of
instances over the first time interval; and
wherein the at least one processing device is configured to
separate the set of instances into the first subset and the
second subset by:
determining a migration cost for migrating a given
instance in the set of instances, the migration cost
being amortized across an expected amount of time
remaining for completion of the given processing job;
and
placing the given instance in the second subset based at
least in part on determining that a performance level
of the given instance, taking into account the migra-
tion cost, is below the average performance level of
the set of instances over the first time interval.
21. The apparatus of claim 20, wherein the processing
device comprises a mobile telephone.
22. The apparatus of claim 20, wherein the processing
device comprises a computer.

20

25

30

35

40

20

23. A user device, comprising:
an instances module configured to run a set of instances on
at least one cloud for a first time interval for a given
processing job, each of the instances in the set of
instances comprising a bundle of virtualized resources;
an evaluation module configured to evaluate one or more
performance characteristics of each of the instances in
the set of instances over the first time interval; and
a subset determination module configured to separate the
set of instances into a first subset of the set of instances
to maintain for a second time interval and a second
subset of the set of instances to terminate for the second
time interval responsive to the evaluation;
wherein the instances module is further configured to start
at least one additional instance on the at least one cloud
for the second time interval to replace at least one of the
instances in the second subset and to migrate at least one
of the instances in the second subset to the at least one
additional instance;
wherein the evaluation module is configured to evaluate the
one or more performance characteristics by determining
an average performance level of the set of instances over
the first time interval; and
wherein the subset determination module is configured to
separate the set of instances into the first subset and the
second subset by:
determining a migration cost for migrating a given
instance in the set of instances, the migration cost
being amortized across an expected amount of time
remaining for completion of the given processing job;
and
placing the given instance in the second subset based at
least in part on determining that a performance level
of the given instance, taking into account the migra-
tion cost, is below the average performance level of
the set of instances over the first time interval; and
wherein the instances module, evaluation module and sub-
set determination module are implemented by at least
one processing device comprising a processor coupled
to a memory.

	Bibliography
	Abstract
	Drawings
	Description
	Claims

