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1
HIGH-PERFORMANCE INDEXING FOR
DATA-INTENSIVE SYSTEMS

TATESMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT

This invention was made with government support under
1050170 awarded by the National Science Foundation. The
government has certain rights in the invention.

BACKGROUND OF THE INVENTION

The present invention relates to the field of computer
systems, and in particular, to high-performance indexing for
data-intensive systems.

Data-intensive systems, that is, computer systems that
involve substantial amounts of data storage and recovery, are
being employed in a wide variety of applications today.
Efficient data storage and access normally uses an index
structure, such as a key-value index where the address of
storage is determined by applying a key (representative of
the stored data) to the index to obtain the storage address.
Key-value storage systems are employed in cloud-based
applications as diverse as ecommerce and business analytics
systems and picture stores. Large object stores having key-
value indexes are used in a variety of content-based systems
such as network de-duplication engines, storage de-dupli-
cation, logging systems and content similarity detection
engines.

An index may be a simple association list linking pairs of
keys and address values like the index of a book. Finding a
particular index entry could conceivably be done by order-
ing the keys (like alphabetizing entries in an index) and
searching for key using a search out of them such as a binary
search. Preferably, however, to ensure high application
performance, index systems often rely on random hashing-
based indexes, whose specific design may depend on the
particular system. Generally a hash includes keys and values
at locations within the index may be determined by applying
a hash type function to the key. A benefit of hash indexes is
that the hash function immediately directs the user to the
necessary key-value pair. For example, wide-area network
(“WAN”) optimizers, Web caches and video caches may
employ large streaming hash tables. De-duplication systems
may employ bloom filters to summarize the underlying
object stores. Content similarity engines and certain video
proxies may employ locality sensitive hash (“LLSH”) tables.
Given the volume of the underlying data, the indexes
typically span several tens of Gigabytes, and indexes con-
tinue to grow in size. The information in indexes of this type
are held both in the key-value pairs of the index but also in
the particular topology of the index, that is the location and
not simply the order of the keyvalue pairs in the index.
Compressing or reordering the entries in a hash type index,
for example for space savings, would render the hash index
inoperable.

Across such systems, the index may be quite intricate in
design. Significant engineering is often devoted to ensure
high index performance, particularly with respect to achiev-
ing low latency and high throughput, at low costs, particu-
larly with respect to the value of each component used to
store the index, as well as the amount of energy they
consume. Many state-of-the-art systems advocate using
solid-state drive (“SSD”) implementations comprised of
flash memory to store indexes, given flash memory’s supe-
rior density, lower cost and energy efficiency over conven-
tional memory, such as DRAM, and superior density, energy
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efficiency and high random read performance over conven-
tional disk storage. As used herein, SSD will be understood
to be non-volatile solid-state memory commonly known as
flash memory.

In SSD’s, a flash memory page, which may be between
2048 and 4096 bits in size, is typically the smallest unit of
read or write operations. Accordingly, reading a single entry
in an index stored in the SSD, such as a 16 Byte key-value
pair entry, may be as costly as reading a page. In addition,
pages are typically organized into blocks with each block
spanning 32 or 64 pages. While the performance of random
page reads may be comparable to that of sequential page
reads, random page writes are typically much slower.

Some ability to provide increased throughput in SSD
implementations via leveraging certain parallelisms cur-
rently exists. Certain SSD implementations have begun to
support native command queuing (“NCQ”), in which mul-
tiple /O operations may execute concurrently.

Some recent research proposals have proposed SSD-
based indexes for large key-value stores.

One such proposal, “Cheap and Large CAMs for High
Performance Data-Intensive Networked Systems,” NSDI
2010, Ashok Anand, Chitra Muthukrishnan, Steven Kappes,
Aditya Akella and Suman Nath, referred to as “BufferHash,”
the contents of which are hereby incorporated by reference,
buffers all insertions in the memory, and writes them in a
batch on flash. BufferHash maintains in-memory bloom
filters to avoid spurious lookups to any batch on flash, and
requires less than one page read per lookup on average.
However, BufferHash often scans multiple pages in the
worst case due to false positives produced by the bloom
filters and typically requires greater than 4 bytes/key.

Another proposal, “SILT: A Memory-Efficient, High-Per-
formance Key-Value Store,” SOSP, pages 1-13, 2011, H.
Lim, B. Fan, D. G. Andersen, and M. Kaminsky, referred to
as “SILT,” the contents of which are hereby incorporated by
reference, comes close to meeting the design requirements
outlined above by achieving a low memory footprint (0.7
bytes/entry) and requiring a single page lookup on average.
However, SILT uses a much more complex design than other
systems in that it employs a plurality of data structures
where one is highly optimized for a low memory footprint
and others are write-optimized but require more memory.
SILT continuously moves data from the write-optimized
data structures to the memory-efficient data structure. In
doing so, SILT has to continuously sort new data written and
merge it with old data, thereby increasing the computation
overhead. These background operations also affect the per-
formance of SILT under continuous inserts and lookups. For
example, the lookup performance drops by 21% for a 50%
lookup-50% insert workload on 64 B key-value pairs. The
authors of SILT also acknowledge that sorting becomes
performance bottleneck.

The conventional wisdom with respect to index design is
that domain and operations-specific SSD optimizations are
necessary to meet appropriate cost-performance trade-offs.
This poses two problems: (a) SSD implementations having
poor flexibility, and (b) SSD implementations having poor
generality.

Poor Flexibility:

Index designs often target a specific point in the cost-
performance spectrum, severely limiting the range of appli-
cations that can use them. This also makes indexes difficult
to tune, for example, using extra memory for improved
performance. In addition, indexes are often designed to work
best under specific workloads. As a result, even minor
deviations often cause performance to be quite variable.
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Poor Generality:

The design patterns often employed typically apply only
to the specific data structure on hand. As a result, it is often
difficult to employ different indexes in tandem, such as hash
tables for cache lookups alongside LSH tables for content
similarity detection over the same underlying content, as
they may employ conflicting techniques that result in poor
SSD input/output (“I/O”) performance.

SUMMARY OF THE INVENTION

The present invention significantly improves the access of
index data from flash type memories which have relatively
large increments of data access by providing buffer indexes
that can accumulate hash type index data for writing to the
flash memory. The accumulated index data is arranged on
the flash memory so that related data, meaning data related
to the same hash, is clustered for more efficient readout. The
clustering may be on a flash “page” to be read out together
or may take advantage of underlying parallel structure of the
flash memory.

Slicing enables combining multiple reads into a single
“slice read” of related items, offering high read performance.

Small in-memory indexes, such as hash tables, bloom
filters or LSH tables, may be used as buffers for insert
operations to resolve the issue of slow random writes on the
SSD. When full, these buffers are written to the SSD. Each
of these written data structures are called “incarnations.”
Data is organized on the SSD such that all related entries of
different incarnations are located together in a slice, thereby
optimizing lookup. The size of a slice may be tuned to
control I/O cost.

In addition, the internal architecture of an SSD may be
leveraged to achieve higher performance via parallelism.
Such parallelism may occur at various levels in the archi-
tecture of the SSD, such as the channel-level, the package-
level, the die-level and the plane-level. Parallelism benefits
may be more significant under particular /O patterns, and,
as such, identifying such patterns and encapsulating regular
1/0 workloads into them may provide significantly higher
performance. Based on the architecture of the SSD, read
requests may be appropriately reordered (without violating
application semantics) to distribute them uniformly to
extract maximal parallelism benefits.

In addition to supporting high performance, the buffering
and slicing primitives used in our indexes eliminate the need
to maintain complex metadata to assist in index 1/O opera-
tions. This frees memory and compute resources for use by
higher layer applications. Buffering and slicing also facili-
tate extending the indexes to use multiple SSDs in the same
system, offering linear scaling in performance while impos-
ing sub-linear scaling in memory and CPU overhead. State-
of-the-art techniques typically cannot be “scaled out” in a
similar fashion.

Different indexes may each leverage these optimizations,
which may be easier to tune to achieve optimal performance
under a given cost constraint, and which may support
widely-varying workload patterns and applications with
differing resource requirements as compared to past imple-
mentations. These optimizations may also offer better input/
output operations per second (“IOPS”), cost less and con-
sume lower energy than past implementations.

As described herein, aspects of the present invention
provide a method for indexing data in a storage system
comprising: (a) receiving a data element for storage in a
storage system at a storage address; (b) determining a slot
address in an index in a first memory as a function of a key
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value of the data element for storage; (c¢) storing the data
element for storage linked to the storage address as an index
pair at the slot address; and (d) transferring at an interval the
index pair from the first memory to an index in a second
memory being a flash memory larger in capacity than the
first memory to be preferentially combined with previously
transferred index pairs having the same slot address.

The method may further comprise: (e) receiving a key
value of a data element for retrieval from the storage system;
(f) determining a slot address in the index of the second flash
memory as a function of a value of the data element for
retrieval; (g) reading the preferentially combined index pairs
having the same slot address from the second flash memory
in a single read cycle; and (h) identifying the data element
for retrieval and obtaining a linked storage address. There
may be multiple first memories, and step (d) may move the
contents of common slot addresses of each of the first
memories into a corresponding slot memory of the second
memory.

The common slot addresses of the first memories may be
less than all slot addresses of the first memories and the
predetermined time may be a time when the common slot
addresses of the all the first memories have been filled.

The transferred index pairs from the first memories may
be combined to be concentrated in a page of the second
memory, wherein a page represents a unit of data readout of
the second memory.

The method may further comprise reordering a plurality
of read requests to allow a plurality of read cycles to occur
at the same time within the second flash memory. A plurality
of read cycles may occur on channels leading to different
flash memory packages within the second flash memory at
the same time.

An interval may occur after a predetermined number of
index pairs have been stored at slot addresses.

The method may further comprise a plurality of indexes
in the first memory, wherein determining the same slot
address based on different data elements results in storing
the different data elements linked to their respective storage
addresses as index pairs in different indexes using the same
slot address.

The index may comprise a hash table, and could further
comprise a locality-sensitive hash table.

The first memory may be DRAM.

The method may further comprise: (e) determining if a
key value for another data element may be in the storage
system by using a bloom filter in the first memory; and (f)
transferring at an interval the bloom filter from the first
memory to a bloom filter in the second memory to be
preferentially combined with previously transferred bloom
filters using the same hash function.

Another embodiment may provide a method for indexing
data in a storage system using flash memory comprising: (a)
determining the mapping between a first logical page and a
first plurality of memories coupled to a first channel within
a flash memory; (a) determining the mapping between a
second logical page and a second plurality of memories
coupled to a second channel within the flash memory; and
(c) reordering a plurality of read requests to the flash
memory to allow a plurality of read cycles to occur at the
same time within the flash memory.

The plurality of read cycles may occur on channels
leading to different flash memory packages within the flash
memory at the same time.

The method may further comprise: (d) receiving a data
element for storage in a storage system at a storage address;
(e) determining a slot address in an index in a first memory
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smaller in capacity than the flash memory as a function of a
value of the data element for storage; (f) storing the data
element for storage linked to the storage address as an index
pair at the slot address; and (g) transferring at an interval the
index pair from the first memory to an index in the flash
memory to be preferentially combined with previously
transferred index pairs having the same slot address.

An interval may occur after a predetermined number of
index pairs have been stored at slot addresses.

The method may further comprise a plurality of indexes
in the first memory, wherein determining the same slot
address based on different data elements results in storing
the different data elements linked to their respective storage
addresses as index pairs in different indexes using the same
slot address.

The index may be a random hash-based index.

The method may further comprise: (h) receiving a data
element for retrieval from the storage system; (i) determin-
ing a slot address in the index of the flash memory as a
function of a value of the data element for retrieval; (j)
reading the preferentially combined index pairs having the
same slot address from the flash memory in a single read
cycle; and (k) identifying the data element for retrieval and
obtaining a linked storage address. A single read cycle may
result in reading a flash memory page.

BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the invention will now be described, by
way of example only, with reference to the accompanying
drawings, in which:

FIG. 1 is a block diagram of a simplified computer data
system having a mass storage device, a solid-state drive and
a memory in accordance with an embodiment of the present
invention;

FIG. 2A is a block diagram of a flash memory package,
and FIG. 2B is a block diagram of a flash memory plane,
each in accordance with an embodiment of the present
invention;

FIG. 3 is a logical diagram illustrating indexing data in a
storage system in accordance with an embodiment of the
present invention; and

FIG. 4 is a logical diagram illustrating adding concur-
rency to slice hash in accordance with an embodiment of the
present invention.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

Referring to FIG. 1, the present invention shall be
described in the context of a simplified computer system 10
having a mass storage device (“MSD”) 12, a solid-state
drive (“SSD”) 14 and a memory 16 in accordance with an
embodiment of the present invention. The mass storage
device 12, which may be, for example, one or more hard disk
drives, optical disc drives or magnetic tape drives, holds data
which may be measured, for example, in Petabytes or
Exabytes, and couples directly or indirectly to a device
controller 18, which may be, for example, one or more Serial
ATA (“SATA”) controllers or similar devices.

The device controller 18 also couples directly or indi-
rectly to the SSD 14, which may be measured in size, for
example, in Gigabytes, such as a 128 Gigabyte SSD, and the
device controller 18 also couples directly or indirectly to a
system controller or chipset 20. The system controller or
chipset 20 couples directly or indirectly to one or more
system processors 60, which may execute computer read-
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6

able software fixed in a tangible medium, and to memory 16.
The memory 16 may be any conventional computer system
memory, and in a preferred embodiment, may be dynamic
random access memory (“DRAM”), which may be mea-
sured, for example, in Gigabytes.

The SSD 14 comprises interface logic 30, an SSD con-
troller 32, a RAM buffer 40 and a plurality of flash memory
packages 42, 44, 48 and 50, or similar non-volatile computer
memory which can be electrically erased and repro-
grammed. The device controller 18 communicates with
interface logic 30, which, in turn, communicates with the
SSD controller 32 generally via /O requests and responses.

The SSD controller 32 comprises an SSD processor 34 or
similar logic, a buffer manager 36 and a flash controller 38.
The SSD processor 34 couples between the interface logic
30 and the flash controller 38, and the SSD processor 34 also
couples to the RAM buffer 40. The buffer manager 36
couples between the interface logic 30 and the flash con-
troller 38. The SSD controller 32 operates to translate logical
pages of incoming requests to physical pages, to translate
physical pages of outgoing responses to logical pages, and
to issues commands to flash memory packages 42, 44, 48
and 50 via the flash controller 38. The flash controller 38
communicates with the plurality of flash memory packages
42, 44, 48 and 50 via a plurality of flash memory channels
46 and 52, in which certain flash memory packages 42 and
44 are coupled via one channel 46, and certain flash memory
packages 48 and 50 are coupled via another channel 52. In
a preferred embodiment, data will be organized in the SSD
14 such that that multiple entries to be read reside on the
same page, thereby reducing the number of page reads.

Referring to FIG. 2A, a block diagram of exemplar flash
memory package 42 is shown in accordance with an
embodiment of the present invention. Each flash memory
package may comprise a plurality of flash memory inte-
grated circuit chips or dies 80 and 82. In turn, each die 80
and 82 may further comprise a plurality of flash memory
planes, such as planes 84 and 86 on die 80, and planes 88 and
90 on die 82.

Referring to FIG. 2B, a block diagram of exemplar flash
memory plane 84 is shown in accordance with an embodi-
ment of the present invention. Each flash memory plane may
further comprise a cache register 92, coupled in turn to a data
register 94, coupled in turn to a plurality of blocks 96. Each
block may further comprise a plurality of pages 98 for
holding data. The data register 94 may temporarily store a
data page during a read or write. A page generally represents
a minimum increment of data access, being either the
amount of data that must be written to or read from the SSD
package in a single read cycle or write cycle.

In operation, for a write command, the SSD controller 32
may first transfer data to the cache register 92, then to the
data register 94, via a channel such as channel 46. The data
may then be written from the data register 94 to a corre-
sponding physical page. Conversely, for a read command,
the data may be first read from the physical page to the data
register 94, then to the cache register 92, and then the data
may be transferred from the cache register 92 to the con-
troller via a channel such as channel 46. This architecture
accordingly provides varying degrees and levels of paral-
lelism. Parallelism, as used herein, means that data can be
read or written to simultaneously in different parallel struc-
tures.

Each channel can operate in parallel and independently of
each other. Thus, the SSD 14 allows channel-level parallel-
ism. Typically, the data transfers from/to the flash memory
packages 42 and 44 on the same channel, or the flash
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memory packages 48 and 50 on the same channel, are
serialized. However, data transfers may also be interleaved
with other operations, such as reading data from the page 98
to the data register 94 on other packages sharing the same
channel. This interleaving allows package-level parallelism.
The SSD controller 32 also allocates consecutive logical
pages across a gang of different packages on the same
channel to provide package-level parallelism. The command
issued to a die 80 can be executed independently of others
on the same flash memory package 42. This allows die-level
parallelism.

Accordingly, multiple operations of the same type, such
as read cycles, write cycles and/or erase cycles, can occur
simultaneously on different planes in the same die. A two
plane command may be used for executing two operations of
the same type on two different planes simultaneously. This
provides plane-level parallelism. Furthermore, data transfers
to and from the physical page can be pipelined for consecu-
tive commands of the same type. This may be achieved
using the cache register 92 in the plane. For consecutive
write commands, the cache register 92 stores the data
temporarily until the previous data is written from the data
register 94 to the physical page 98. The cache register 92
may similarly be used for pipelining read commands.

Currently, reading data from the physical page 98 to the
data register 94 may typically takes on the order of 25
microseconds (us). Data transfers on the channel may typi-
cally take on the order of 100 ps. Thus, transfer time on the
channel is the primary bottleneck for page reads. As such,
the throughput of page reads may be significantly improved
by leveraging channel-level parallelism.

A first approach to extract the benefits of parallelism may
be to simply use multiple threads issuing requests in parallel.
By issuing multiple requests in parallel, and increasing the
depth of the I/O queue, the overall throughput may be
considerably improved.

However, to issue requests in a manner that ideally
exploits parallelism, it is important to understand the map-
ping between pages and channels. Recently, the authors of
“Essential Roles of Exploiting Internal Parallelism of Flash
Memory Based Solid State Drives in High-Speed Data
Processing,” HPCA, pages 266-277, 2011, F. Chen, R. Lee,
and X. Zhang, the contents of which are hereby incorporated
by reference, have devised a method to determine the
mapping. A group of consecutive logical pages is striped
across different packages on the same channel. The authors
discuss a technique to determine the size of the group that
gets contiguously allocated within a channel. They refer to
this logical unit of data as a “chunk.” They show how to
determine the chunk size and the number of channels in the
SSD. Using this, they also show how to derive the mapping
policy. In particular, they discuss techniques for deriving
two common mapping policies: (a) write-order mapping,
where the i chunk write is assigned the channel 1% N,
assuming N is the number of channels, and (b) logical block
address (“LBA”) based mapping, where the LBA is mapped
to a channel based on LBA % N. Using the above, the chunk
size and number of channels for the 128 Gigabyte SSD 14
may determined, for example, to be 8 Kilobytes and 32,
respectively, following a write-order mapping. With this
knowledge of the order of writes to the SSD 14, we can
determine the channel corresponding to a page, which
enables determining how to reorder and schedule requests to
spread them across channels. In addition, package-level
parallelism may be achieved by issuing chunk-sized or
larger reads.
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Based on the above properties of the SSD 14, we identify
the following guidelines in designing large hash table-based
data structures: (a) avoiding random page writes and issue
few large writes, (b) combining multiple reads by arranging
data in such a way that the multiple lookups can be confined
to a single page or a small number of pages, and (c)
intelligent request reordering to allow uniform distribution
over channels.

Referring now to FIG. 3, a logical diagram illustrating
indexing data in a storage system in accordance with an
embodiment of the present invention is shown. A data
element 100 is received for storage in a storage system 102,
which may be a mass storage device, at a storage address
104. A slot address 106, such as slot “0,” is determined in an
index 108 in a first memory 110 (“in-memory”), which may
be DRAM, as a function 101, such as a random hash-based
function, of a value of the data element 100 for storage. The
data element 100 linked to the storage address 104 is stored
as an index pair 112 and 114, respectively, at the slot address
106 in the index 108 in the first memory 110. The index 108,
a collection of index pairs at various slot addresses in the
first memory 110, may be referred to as an “incarnation.” An
alternative embodiment may provide a plurality of incarna-
tions in the first memory 110, such as an additional index
109 in the first memory 110.

At intervals, such as when the index 108 is full, which
may be determined, for example, by reaching a predeter-
mined number of slot addresses for an incarnation, the index
pairs, such as index pair 112 and 114, are transferred from
the first memory 110 to an index 125, a portion of which may
be referred to as a “slice table,” in a second flash memory
126 larger in capacity than the first memory 110, such as an
SSD, to be preferentially combined with previously trans-
ferred index pairs. For example index pair 112 and 114
having the slot address “0” may be transferred to the slice
table 125 in the second flash memory 126 at a particular
“slice” or index 120 with other index pairs also having the
same slot address ““0,” such as index pair 130 and 132. The
slice table 125 may exist alongside additional slice tables,
such as index 127. Similarly, index pair 140 and 142 having
the slot address “N” may be transferred to the slice table 125
in the second flash memory 126 at a particular “slice” 124
in the second flash memory 126 with other index pairs also
having the same slot address “N,” such as index pair 144 and
146. In other words, index pairs at each slot address in an
incarnation are transferred to slices where they are grouped
with previously transferred index pairs according to having
the same slot address. For “N” slot addresses in the index
108 in the first memory 110, there may be “N” slices in the
index or slice table 125 in the second flash memory 126. For
such embodiments using hash tables, this may be referred to
as “slice hash.” Such intervals need not occur at fixed or
predetermined times.

In a preferred embodiment, the size of a slice can be
limited to a page, and thus it would require only one page
read. For example, for a 16B key-value pair, one slice can
contain as many as 128 incarnations.

Additional incarnations may be created in the first
memory 110, such as the additional index 109. For example,
determining the slot address for distinctly different data
values could result in determining the same slot address. In
this case, the entries may be stored in different incarnations
using the same slot address. In transferring incarnations to
the slice table, the most recently created incarnation may be
transferred as the latest entries in the corresponding slice
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table—with the oldest entries in the slice table evicted as
may be required, such as due to space limitations—a in a
FIFO order.

A slot address 106, such as slot “0,” is determined in an
index 108 in a first memory 110 (“in-memory”), which may
be DRAM, as a function 101, such as a random hash-based
function, of a value of the data element 100 for storage.

The data element 100 may also be received for retrieval
from the storage system. In this case, a slot address 134 is
determined in the index or slice table 125 of the second flash
memory 126 as a function of a value of the data element 100
for retrieval. The preferentially combined index pairs having
the same slot address are read from the second flash memory
126 in a single read cycle, the data element for retrieval is
identified and a linked storage address is obtained.

For inserts/writes, we insert a key into the in-memory
index 108. If the in-memory index 108 becomes full, we first
read the corresponding slice table 125 from the second flash
memory 126. We then replace the entries for the correspond-
ing incarnation for each slot or slice with the entry of the
in-memory index 108. Then, we write back the modified
slice table 125 to the second flash memory 126. The in-
memory index 108 is cleared, and the current incarnation
count is incremented. Subsequent insertions happen in a
similar way. Once all incarnations are exhausted on the
second flash memory 126, the incarnation count is reset to
zero. Thus, this scheme supports a default FIFO eviction
policy.

For updates, if the key is in the in-memory index 108, the
in-memory index 108 is updated with the new value. Alter-
natively, if the key lies on the second flash memory 126,
directly updating the corresponding key-value pair on the
second flash memory 126 would cause random page writes
and affect performance. Instead, the new key-value pair is
inserted into the in-memory index 108.

For lookups/reads, the key is first looked up in the
in-memory index 108. If not found, the corresponding slice
table is looked up on the second flash memory 126 and the
slice is read from the SSD. The entries for all incarnations
may be scanned in the order of the latest to the oldest
incarnation. This ensures that the lookup does not return
stale values.

Partitioning Slice Hash:

Based on the first few bits of keys, the in-memory index
108 may be partitioned into multiple small in-memory
indexes, and, for each in-memory index 108, a correspond-
ing small-sized slice table on flash may be maintained. Thus,
if an in-memory partition becomes full, only the correspond-
ing slice table on the SSD requires updating. In this way, the
size of slice tables on flash and the worst case insertion
latency may be controlled.

Leveraging Available Memory:

If additional memory is available, spurious lookups may
be reduced using in-memory bloom filters. All lookups may
be first checked in these bloom filters. If the bloom filters
indicate that a key is present in the second flash memory
126, only then is an SSD lookup issued. Further, memory
may be used opportunistically. For example, bloom filters
can be maintained for only some partitions, for example,
those that are accessed frequently. This gives the ability to
adapt to memory needs, while ensuring that in the absence
of such additional memory application performance targets
are still met.

Adding Concurrency

Referring now to FIG. 4, a diagram illustrating adding
concurrency to slice hash is shown in accordance with an
embodiment of the present invention. In order to leverage
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the parallelism inherent to an SSD, 1/O requests should be
issued in parallel. Instead of using a multithreaded program-
ming model, multiple concurrent I/O requests may be issued
to the SSD, such as that described in “B+-Tree Index
Optimization by Exploiting Internal Parallelism of Flash-
Based Solid State Drives,” PVLDB, 5, 2011, H. Roh, S.
Park, S. Kim, M. Shin, and S.-W. Lee, referred to as “psync
1/0,” the contents of which are hereby incorporated by
reference. Internally, psync I/O uses multiple asynchronous
1/O calls, and waits until all [/O’s are completed.

A controller 200 may processes requests originating from
request queue 202, which may comprise insert, update
and/or lookup operations, in batches. The controller 200 first
processes all requests that can be instantly served in
memory. Then the controller 200 processes lookup requests
which need reading from the SSD. To leverage channel-level
parallelism maximally, the controller should pick requests
that go to different channels. Based on determining a map-
ping between pages and channels as discussed above, a
channel-estimator may be developed to estimate the map-
ping between read requests and channels. Using these esti-
mates, a set of K requests, with K corresponding to the size
of the SSD’s NCQ, such that the number of requests picked
for any channel is minimized. While it is desirable to use as
much concurrency as the NCQ can provide, it is important
to optimally exploit channel parallelism.

The algorithm underlying request selection works as
follows. In block 204, a “depth” for each channel is main-
tained, which estimates the number of selected requests for
a channel. Multiple passes over the request queue are taken
until K requests are selected. In each pass, requests that
would increase the depth of any channel by at most 1 are
selected. In this manner, the set of read requests to be issued
are found.

In block 206, the controller then asks a worker 210 to
process these read requests in parallel, such as using psync
1/0. While the worker 210 is waiting for flash reads to
complete, the controller also determines the next batch of
read requests to be issued to the worker 210. After the flash
page reads are complete, the worker 210 searches the entries
of all incarnations on the corresponding flash page for the
given key.

After processing lookups, in block 208 the controller
assigns SSD insert requests to the worker 210. These occur
when an in-memory index is full and needs to be flushed
onto the Flash SSD 212. The worker 210 processes these
SSD insert requests, and accordingly reads/writes slice
tables from the SSD 212.

Note that there may be consistency issues with reordering
reads and writes. The controller handles such corner cases
explicitly.

Building on the technique used in “Essential Roles of
Exploiting Internal Parallelism of Flash Memory Based
Solid State Drives in High-Speed Data Processing,” write-
order mapping to predict the channel corresponding to a
request may be determined. As discussed above, data chunk
writes alternate across channels. In other words, the first
write goes to the first channel, the second write goes to the
second channel, and so forth. Knowing this write order can
help determine the channel for any chunk. One approach is
to maintain an index that keeps track of the assignment of
each chunk to a channel; whenever a chunk is written,
estimate its channel as 1% N for the i” write and update the
index. For example, the size of the index may be estimated
around 160 Megabytes for 4 Kilobyte data chunk in a 128
Gigabyte SSD, and assuming 4 bytes for the chunk identi-
fier, and 1 byte for the channel in the index.
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We consider an approach that does not require any index
management. We configure the size of the slice table to be
a multiple of NxChunkSize, where N is the number of
channels. This simplifies determination of the channel.

Whenever a slice table is written to the SSD, there will be 5

N chunk writes, and the i chunk write would go to the i”
channel. The subsequent slice table write would also follow
the same pattern; after the N? channel, the first chunk write
would go to the first channel, the second chunk write would
go to the second channel, and so on. In other words, once we
determine the relative chunk identifier (first, or second, or
Nth) for an offset in the slice table, we can determine the
channel. The relative chunk identifier can be determined as
the offset modulo chunk size.

Due to its simplistic design and low resource footprint,
slice hash can easily leverage multiple SSDs attached to a
single machine. Slice hash can benefit from multiple SSD’s
in two ways: (a) higher parallelism (the key space is parti-
tioned across multiple SSDs; one controller-worker combi-
nation for each SSD is maintained; lookup/insert requests
may be distributed across multiple SSDs; and each control-
ler may handle requests in parallel), and (b) lower memory
footprint (for each in-memory index, one slice table per SSD
is maintained). For lookups, concurrent lookup requests to
all SSDs may be issued, in effect requiring an average
latency of one page lookup. For insertions, insertions into a
slice table on one SSD are made, and as it becomes full,
insertions move to next SSD. Once all SSD’s slice tables are
full, insertions return to the slice table on the first SSD. This
may reduce the memory footprint, while maintaining the
same latency and throughput. Other systems, such as Buffer-
Hash and SILT, do not support such scaling out and ease of
tuning.

Leveraging Multiple SSD’s:

In practice, depending on the specific requirements of
throughput and memory footprint, a combination of the
above two techniques may be used to tune the system
accordingly. Thus, slice hash allows us to leverage multiple
SSD’s in many different ways.

Latency and the memory overhead of slice hash may be
analyzed accordingly. Table 2 provides a summary of nota-
tions relevant for such analysis.

TABLE 2

Symbol Meaning

Total memory size

Number of SSDs

number of partitions

Size of a single hashtable (=M/n)
Size taken by a hash entry
Utilization of tje hashtable
Effective average space taken by a hash entry (=s/u)
Number of incarnations (=F/M)
Total flash size

Size of slicetable (=H x k)

Size of a flash page/sector

Size of a flash block

Page read latency

Block read latency

Block write latency

g St wwmmwgzz:wmu zz

o

The memory overhead per entry may be estimated. The
total number of entries in an in memory hash table is H/s,
where H is the size of a single hash table and s, is the
effective average space taken by a hash entry (actual
size (s)/utilization (u)). The total number of entries overall in
a slice hash for a given size F of flash is:
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F+M H _F+M
( H ) g_ Seff

Here, M is the total memory size. Hence, the memory
overhead per entry is MI #entries, in other words,

M
Frm o

or

1

FESRa

where k is the number of incarnations.

For s=16 Bytes (key 8 bytes, value 8 bytes), u=80%, M=1
Gigabyte, and F=32 Gigabytes, the memory overhead per
entry is 0.6 bytes/entry. In contrast, SILT and BufferHash
have memory overheads of 0.7 bytes/entry and 4 bytes/entry,
respectively.

By using N SSD’s, we can reduce the memory overhead
to even lower,

1

— X
IxN+1 o

using the technique outlined above. For the above configu-
ration with N=4 SSD’s, this amounts to 0.15 bytes/entry.

The average time taken for insert operations may be
estimated. The time taken to read a slice table and then write
it back is first calculated. This is given by

(Fxn+57m)
ZXrp+ =X
BRI

where S is the size of the slice table, B is the size of a flash
block, and r, and w, are the read and write latencies per
block, respectively. This happens after H/s,; entries are
inserted to the hash table; all insertions up to this point are
made in memory. Hence, the average insertion cost is

Sfjf

N N
(—Xrb+—><wb]>< H

B B

Replacing S by H*k, we get

(rb + Wb) XSeff xk
B

which is independent of the size of the hash table.

For typical block read latency of 0.31 ms, a blocked write
latency of 0.83 nearly seconds, s=16 Bytes, M=1 Gigabyte,
F=32 Gigabytes, and u=80%, the average insertion cost is
approximately 5.7 microseconds (us), and thus still small. In
contrast BufferHash has an average insertion latency of
approximately 0.2 ps.

Similarly, the worst-case insertion cost of slice hash is
(0.31+083)xS/B milliseconds (ms). By configuring S to be
the same size as B, we can control the worst-case insertion
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cost of the (0.31+083)=1.14 ms, slightly higher than the
worst-case insertion cost (0.83 ms) of BufferHash.

We consider a cuckoo hashing based hash table imple-
mentation with two hash functions. Suppose the success
probability of the first lookup is p. For each lookup, a
corresponding slice is read. We configure H, the size of an
in-memory hash table, such that size of a slice is not more
than a page. With this, the average lookup cost is r,+(1-p)x
r,, or (2—p)xr,, assuming that almost all of the lookups go to
SSD and only few requests are served by in-memory hash
tables. For p=0.9, r,=0.15 ms, the average lookup cost is
0.16 ms. SILT and BufferHash, both have similar average
lookup cost.

The worst case condition may occur upon reading both
pages corresponding to the two hash functions. The worst
case lookup latency is 2xr,. For 1,=0.15 ms, this cost is 0.3
ms. In contrast, BufferHash may have very high worst case
lookup latency; in the worst case, it may have to scan all
incarnations. For k=32, this cost would be 4.8 ms.

The ratio of the number of insertions to the number of
block writes to the SSD may be estimated as the ratio r,,,.,..-
A hash table becomes full after every H/s g inserts, after
which the corresponding slice table on flash is modified. The
number of blocks occupied by a slice table is S/B or kx H/B.
Thus

ILI>< B B
Seff kXH_kXngf

Fiwrite =

Thus, by increasing the number of incarnations k, the
frequency of writes to SSD (which is inversely proportional
to r,,,,) also increases. This in turn affects the overall
performance.

Slice hash increases the number of writes to the SSD
which may impact its overall lifetime. The lifetime of an
SSD may be estimated. For a given insert rate of R, the
number of block writes to the SSD per second is R/r,,,,,.c Or
the average time interval between block writes is r,,,,,../R.
The SSD may supports E erase cycles. Assuming the wear
leveling scheme for flash is perfect, then the lifetime (T) of
the SSD could be approximately estimated as number of
blocks, F/B times erase cycles E, times average time interval

between block writes, r,,,,../R, in other words,

_ F X EX Fyrites
- RxB

Bloom Filters:

Bloom filters, including as described in “Network appli-
cations of bloom filters: A survey,” Internet Mathematics, A.
Broder and M. Mitzenmacher, 2005, 1(4):485-509; “Bloom-
flash: Bloom Filter on Flash-Based Storage,” In ICDCS, B.
K. Debnath, S. Sengupta, J. Li, D. J. Lilja, and D. H. C. Du.,
pages 635-644, 2011; and “Buffered Bloom Filters on Solid
State Storage,” In ADMS, M. Canim, G. A. Mihaila, B.
Bhattacharjee, C. A. Lang, and K. A. Ross, 2010, the
contents of each of which are hereby incorporated by
reference are traditionally used as in-memory data struc-
tures.

Some recent studies have observed, with storage costs
falling and data volumes growing into the peta- and exa-
bytes, space requirements for Bloom filters constructed over
such datasets are also growing commensurately. In limited
memory environments, there is a need to maintain large
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Bloom filters on secondary storage. The techniques
described above may be applied for supporting Bloom filters
on flash storage efficiently, referred to as “slice bloom.”

Similar to slice hash, several in-memory small Bloom
filters and corresponding slice filters may be provided on
flash, similar to slice tables in slice hash described above
with respect to FIG. 3. The in-memory Bloom filters are
written to flash as incarnations. Each slot in a slice filter
contains the bits from all incarnations taken together.

In traditional Bloom filters, a key lookup requires com-
puting multiple hash functions and reading entries corre-
sponding to the bit positions computed by the hash func-
tions. Here, the corresponding in-memory Bloom filter
partition may be first looked up, and then the corresponding
slice filter on the flash storage for each hash function may be
looked up. The number of hash functions would determine
the number of page lookups, which could limit the through-
put.

Since flash storage is less expensive than conventional
memory, such as DRAM, more space per entry on flash may
be used, in other words, a larger m/n where m and n are the
Bloom filter size and number of unique elements, respec-
tively, and reduce the number of hash functions (k) while
maintaining a similar overall false positive rate. For
example, for a target false positive rate of 0.0008, instead of
using m/n=15 and k=8, we can use m/n=32 and k=3. By
reducing k, the number of page lookups may be reduced and
performance improved.

Locality Sensitive Hash Tables:

Locality sensitive hashing, including as described in
“Similarity Search in High Dimensions via Hashing,” In
Proc. VDB, 1999, A. Gionis, P. Indyk, and R. Motwani;
“Image Similarity Search with Compact Data Structures,” In
Proc. CIKM, 2004, Q. Lv, M. Charikar, and K. Li; and
“Small Code and Large Image Databases for Recognition,”
In Proc. CVPR, 2008, A. Torralba, R. Fergus, and Y. Weiss,
the contents of each of which are hereby incorporated by
reference, is a technique used in the multimedia community
for finding duplicate videos and images at large scale. These
systems use multiple hash tables. For each key, the corre-
sponding bucket in each hash table is looked up. Then, all
entries in the buckets are compared with the key to find the
nearest neighbor based on a certain metric, for example, the
Hamming distance or an .2 norm. Once again, the tech-
niques discussed above may be applied to build large LSH
hash tables efficiently on flash storage, referred to as “slice
LSH.”

Each of the LSH hash tables is designed as slice hash;
when a query comes, it goes to all slice hash instances. We
further optimize for LSH to exploit SSD-intrinsic parallel-
ism. When we write in-memory L.SH hash table partitions to
flash, they are arranged on the flash such that each L.SH slice
table partition belongs to one channel and the hash tables are
uniformly distributed over multiple channels. This ensures
that multiple hash table lookups would be uniformly dis-
tributed over multiple channels, and the intrinsic parallelism
of flash SSDs is maximally leveraged.

One or more specific embodiments of the present inven-
tion have been described above. It is specifically intended
that the present invention not be limited to the embodiments
and/or illustrations contained herein, but include modified
forms of those embodiments including portions of the
embodiments and combinations of elements of different
embodiments as come within the scope of the following
claims. It should be appreciated that in the development of
any such actual implementation, as in any engineering or
design project, numerous implementation-specific decisions
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must be made to achieve the developers’ specific goals, such
as compliance with system-related and business related
constraints, which may vary from one implementation to
another. Moreover, it should be appreciated that such a
development effort might be complex and time consuming,
but would nevertheless be a routine undertaking of design,
fabrication, and manufacture for those of ordinary skill
having the benefit of this disclosure. Nothing in this appli-
cation is considered critical or essential to the present
invention unless explicitly indicated as being “critical” or
“essential.”

Certain terminology is used herein for purposes of refer-
ence only, and thus is not intended to be limiting. For
example, terms such as “upper,” “lower,” “above,” and
“below” refer to directions in the drawings to which refer-
ence is made. Terms such as “front,” “back,” “rear,” “bot-
tom,” “side,” “left” and “right” describe the orientation of
portions of the component within a consistent but arbitrary
frame of reference which is made clear by reference to the
text and the associated drawings describing the component
under discussion. Such terminology may include the words
specifically mentioned above, derivatives thereof, and words
of similar import. Similarly, the terms “first,” “second” and
other such numerical terms referring to structures do not
imply a sequence or order unless clearly indicated by the
context.

When introducing elements or features of the present
disclosure and the exemplary embodiments, the articles “a,”
“an,” “the” and “‘said” are intended to mean that there are
one or more of such elements or features. The terms “com-
prising,” “including” and “having” are intended to be inclu-
sive and mean that there may be additional elements or
features other than those specifically noted. It is further to be
understood that the method steps, processes, and operations
described herein are not to be construed as necessarily
requiring their performance in the particular order discussed
or illustrated, unless specifically identified as an order of
performance. It is also to be understood that additional or
alternative steps may be employed.

References to “a microprocessor” and “a processor” or
“the microprocessor” and “the processor” can be understood
to include one or more microprocessors that can communi-
cate in a stand-alone and/or a distributed environment(s),
and can thus be configured to communicate via wired or
wireless communications with other processors, where such
one or more processor can be configured to operate on one
or more processor-controlled devices that can be similar or
different devices. Furthermore, references to memory, unless
otherwise specified, can include one or more processor-
readable and accessible memory elements and/or compo-
nents that can be internal to the processor-controlled device,
external to the processor-controlled device, and can be
accessed via a wired or wireless network.

All of the publications described herein including patents
and non-patent publications are hereby incorporated herein
by reference in their entireties.

What is claimed is:

1. A method for indexing data in a storage system having
first and second memories and, a mass storage device larger
than the first or second memories, the method comprising:

(a) storing a data clement in the mass storage device at a

storage address;

(b) determining a slot address in an index in the first

memory as a function of the data, element;

(c) storing a key representative of the data element and the

storage address as an index pair at the slot address in
the first memory; and

w
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(d) transferring at an interval the index pair from the first
memory to an index in the second memory being larger
in capacity than the first memory, the second memory
being organized in a plurality of pages in which a page
is the smallest unit for a read operation,

wherein the index pair is transferred with at least one
other index pair as transferred index pairs having the
same slot address, and

(e) storing the transferred index pairs in the second
memory on a same page with a previously transferred
index pair determined to have the same slot address,

wherein slot addresses of index pairs in the first memory
are analyzed for having a same slot address with index
pairs having a same slot address being selectively
accumulated in the second memory on a same page.

2. The method of claim 1, further comprising:

(e) receiving a key value of a data element for retrieval
from the mass storage device;

() determining a slot address in the index of the second
memory as a function of as value of the data element
for retrieval,

(g) reading the preferentially combined index pairs having
the same slot address from the second memory in a
single read cycle; and

(h) identifying the data element for retrieval and obtaining
a linked storage address.

3. The method of claim 1, further comprising providing
multiple indexes, and wherein step (d) moves the contents of
common slot addresses of each of the indexes into a corre-
sponding slot address of the second memory.

4. The method of claim 3, wherein the number of indexes
is less than the number of slot addresses of the indexes.

5. The method of claim 4, wherein a page is between 2048
and 4096 bits in size.

6. The method of claim 2, further comprising reordering
a plurality of read requests to allow a plurality of read cycles
to occur at the same time within the second memory.

7. The method of claim 6, wherein a plurality of read
cycles occurs on channels leading to different flash memory
packages within the second memory at the same time.

8. The method of claim 1, wherein an interval occurs after
a predetermined number of index pairs have been stored at
slot addresses.

9. The method of claim 1, further comprising providing a
plurality of indexes in the first memory, wherein determining
the same slot address based on different data elements results
in storing the different data elements linked to their respec-
tive storage addresses as index pairs in different indexes
using the same slot address.

10. The method of claim 9, wherein each index comprises
a hash table.

11. The method of claim 10, wherein each hash table is a
locality sensitive hash table.

12. The method of claim 1, further comprising:

(e) determining a key representative of another data

element using a bloom filter in the first memory; and

(D) transferring at an interval the bloom filter from the first
memory to a bloom filter in the second memory to be
preferentially combined with previously transferred
bloom filters using the same hash function.

13. The method of claim 1, wherein the first memory is

DRAM.

14. A method for indexing data in a storage system having
a flash memory. a DRAM and a mass storage device larger
than the flash memory or the DRAM, the method compris-
ing:
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(a) determining a mapping between a first logical page
and a first channel within the flash memory;

(b) determining a mapping between a second logical page
and a second channel within the flash memory;

(c) storing first and second data elements in the mass
storage device at first and second storage addresses,
respectively;

(d) determining first and second slot addresses in an index
in the DRAM as functions of the first and second data
elements for storage, respectively;

(e) storing first and second keys representative of the first
and second data elements and the first and second
storage addresses as first and second index pairs at the
first and second slot addresses, respectively, in the
DRAM; and

(f) transferring at an interval the first and second index
pairs from the DRAM to an index in the flash memory,
the flash memory being organized in a plurality of
pages in which a page is the smallest unit for a read
operation,

wherein the first index pair is transferred with at least one
other index pair having the first slot address, and the
second index pair is transferred with at least one other
index pair having the second slot address, and

(e)storing the transferred index pairs in the index of the
flash memory on first and second logical pages with
previously transferred index pairs determined to have
the same slot addresses, so that the first and second
logical pages each store transferred index pairs having
same slot addresses,

wherein slot addresses of index pairs in the first memory
arc analyzed for having same slot addresses with index
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pairs having same slot addresses being selectively
accumulated in the second memory on same pages, and

wherein the first and second index pairs are written to the
first and second logical pages, respectively, to occur at
the same time within the flash memory.

15. The method of claim 14, wherein the first and second
channels lead to different flash memory packages within the
flash memory.

16. The method of claim 14, wherein an interval occurs
after a predetermined number of index pairs have been
stored at slot addresses.

17. The method of claim 14, further comprising providing
a plurality of indexes in the DRAM, wherein determining
the same slot addresses based on different data elements
results in storing the different data elements linked to their
respective storage addresses as index pairs in different
indexes using the same slot address.

18. The method of claim 17, wherein each index is a
random hash-based index.

19. The method of claim 14, further comprising:

(g) receiving a third data element for retrieval from the

mass storage device;

(h) determining a slot address in the index of the flash
memory as a function of the third data element for
retrieval;

(1) reading the preferentially combined index pairs having
the same slot address from the flash in memory; and

(j) identifying the third data element for retrieval to obtain
a linked storage address.

20. The method of claim 1, wherein the second memory

is a flash memory.
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