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describes the relationship between the joints in the form of a
differential equation. The predictor solves this differential
equation for predicted joint states by fitting a polynomial
equation having free parameters describing the predicted
joint states to the differential equations by minimizing the
differential equation residuals. This minimization employs a
series expansion allowing algorithmic differentiation.
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1
DYNAMIC PREDICTOR FOR ARTICULATED
MECHANISMS

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT

Not Applicable

CROSS REFERENCE TO RELATED
APPLICATION

Not Applicable

BACKGROUND OF THE INVENTION

The present invention relates to articulated mechanisms,
such as but not limited to walking robots, and more particu-
larly to a dynamic predictor for determining link positions
along with displacements of multiple joints achieving those
positions, being particularly useful when selected joints have
relatively stiff springs such as bushings or other provisions for
compliance in their attachment to adjoining links.

Articulated mechanisms such as walking robots or robot
arms can be understood as a set of rigid links connected to
each other by joints. The joints in these mechanisms may be
associated with actuators such as motors to displace the joints
directly or to apply forces effecting displacement of the
joints, “passive” springs and dampers, along with sensors
providing an indication of joint position. Common joints
include so-called revolute joints acting like a hinge to provide
rotation about an axis line and prismatic joints acting like a
slide to provide translation along an axis direction. These
types of joints are termed “lower-pairs”. The absolute or
global position of each link is determined by the sequence of
connecting joints in the form of a kinematic chain where one
joint is attached to and thus referenced to the “ground”, which
provides a global reference frame.

The effective control of such mechanisms is aided by an
ability to mathematically predict the movement ofthe mecha-
nism in response to commands sent to the various actuators.
This prediction may be used to determine the necessary
actuator positions to place one link at a particular location, to
evaluate multiple control strategies, or to implement a control
system employing a predictive model of a dynamic system
within a feedback loop, in a feedforward or “open loop”
controller, or other applicable control method. That dynamic
system may be that of the physical robot or that of an aug-
mented dynamic system formulated to effect known control
algorithms.

The problem of determining the location of the link based
on actuation of connecting joints (or the reverse), where that
location is geometrically constrained by the joint displace-
ments, is a kinematic problem and is discussed in detail in US
patent application 2012/0303318 entitled “Kinematic Predic-
tor For Articulated Mechanisms” assigned to the same
assignee as the present application and hereby incorporated in
its entirety by reference. That application describes a com-
puterized predictor for rapidly determining control param-
eters for articulated mechanisms on an automatic basis with a
high degree of precision.

Generally, the kinematic predictor employs a system of
kinematic differential equations modeling the articulated
mechanism and whose solutions describe motion of rigid
links connected by joints and forming closed kinematic loops.
A desired motion of the end link in a robot arm can be
represented by a “virtual joint” forming such a closed loop.
These equations are solved by direct substitution of the equa-
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tion variables with multi-term power series expressions. Each
closed kinematic loop establishes a linear relationship
between power series coefficients of the same order which
allows formation of a system of independent, linearly related
equations, the latter solvable by well known automatic tech-
niques. Accuracy approaching the limit of precision of the
computer may thereby be obtained by extending the number
of power series terms treated.

For “dynamical” mechanisms, that is, mechanisms not
completely kinematically constrained and where inertial,
spring, damping, gravitational, and applied forces play a sig-
nificant role in their operation, the proper prediction of link
location and associated joint displacements requires a model
that includes parameters describing moments of inertia asso-
ciated with links along with spring and damping constants
associated with the joints. These additional parameters may
be characterized by the differential equations of the model
using generally understood techniques.

When the articulated mechanism has “stiff” springs, for
example rubber bushings or other sources of compliance with
high spring rates, solving the differential equations by term
expansions can prove problematic. This is because the mag-
nitude of higher-order expansion terms does not diminish
rapidly, requiring treatment of “large” numbers of expansion
terms in order to obtain the necessary accuracy, where large
can denote a number impractical to compute in the required
time or where the required accuracy cannot be achieved
owing to limitations of the numerical representation provided
by the computer.

SUMMARY OF THE INVENTION

The present invention provides a computerized dynamic
predictor for determining control parameters for dynamical
articulated mechanisms on an automatic basis with a high
degree of precision. This dynamic predictor may be used for
machine control or to model such mechanisms for design
purposes.

Generally, the dynamic predictor performs an analysis of
the motion of the system by evaluating solutions of the dif-
ferential equation model in incremental time steps. The state
variables of the differential equation constitute those quanti-
ties for which ata given moment in time, any other quantity in
the system is related through an algebraic formula. Each
time-step interval of the motion trajectory is approximated by
a collection of polynomials, one polynomial for each state
variable to express continuous variation in that variable over
the duration of the time step. Each polynomial has “free
parameter” coefficients relating to the constraints of the dif-
ferential equation model to be applied at the endpoint of the
step. These free parameters are not evaluated directly from
the differential equation (for example, by series expansion
about the start point of the step) but instead by a minimization
of “the residuals”. These residuals are derived from the dif-
ference between the derivative of a polynomial determined
directly from its coefficients and the same quantity evaluated
by substituting the collection of polynomials into the differ-
ential equation. Expanding the residuals using Taylor series,
the residuals along with multiple orders of their derivatives
are readily calculated from the Taylor series coefficients,
anywhere on the time-step interval including the endpoint,
and an algorithmic differentiation procedure determines the
sensitivity of the Taylor coefficients to changes in the free
parameters. This procedure allows the automatic adjustment
of the polynomial free parameters to minimize the residuals
and their derivatives at the time step endpoint. For conditions
atthe end of the time step to be controlled through adjustment
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of the free parameters is of special importance in obtaining a
stable and accurate solution of a stiff dynamical system. In
this way, improved polynomial approximations of the solu-
tion for the differential equation are obtained with the com-
putation of a limited number of expansion terms.

More specifically, the present invention provides a
dynamic predictor system using an electronic computer to
store a system of differential equations describing a rate of
change of joint state in each joint as a function of other joint
states, the joint states describing: positions (meaning scalar
displacements or deflections along an allowed movement) of
the joints along with rate of change of those positions, such
determining spring forces acting on the joints along with
momentum in the connecting links. The dynamic predictor
receives a first joint state and approximates a second later
joint state using a collection of multi-term polynomials cor-
responding to the differential equations, the polynomials hav-
ing first terms matching the first joint state and multiple later
terms related to derivatives of a predicted joint trajectory from
the first joint state evaluated at the second joint state. The
multiple later terms are evaluated by minimizing residuals
between the corresponding differential equations and multi-
term polynomials by performing a series expansion of the
residuals. An evaluation of the multi-term polynomials is
used to output a prediction the second joint state.

It is thus a feature of at least one embodiment of the inven-
tion to provide a tractable method of predicting joint motion,
particularly suitable for stiff dynamical systems, first by
reserving “free parameters” of the polynomials associated
with the second joint state, and second by evaluating the free
parameters through a series expansion of residuals.

The polynomials may be Hermite polynomials.

It is thus a feature of at least one embodiment of the inven-
tion to avoid the typically poor convergence of the series
expansion about the first joint state that can occur in stiff
dynamical systems.

The minimization may minimize multiple derivative
orders of the residuals.

It is thus a feature of at least one embodiment of the inven-
tion to provide a minimization that has fidelity to multiple
orders of the polynomial.

Minimizing the multiple derivative orders of the residuals
may be done by performing a series expansion of the residu-
als.

It is thus a feature of at least one embodiment of the inven-
tion to provide a minimization process that allows efficient
automatic fitting techniques to be employed.

The series expansion may be a Taylor series expansion.

It is thus a feature of at least one embodiment of the inven-
tion to employ the well-characterized Taylor series expansion
in identifying minimal residuals.

The Taylor series expansion may be minimized by algo-
rithmic differentiation.

It is thus a feature of at least one embodiment of the inven-
tion to provide for rapid determination of minimums suscep-
tible to automatic execution on the electronic computer.

The algorithmic differentiation determines a Jacobian
matrix.

It is thus a feature of at least one embodiment of the inven-
tion to employ a well-characterized method of minimizing
the system of equations.

The dynamic predictor may further include a set of sensors
for monitoring joint positions. In addition or alternatively, the
dynamic predictor may include a set of actuators for move-
ment of the joints.
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It is thus a feature of at least one embodiment of the inven-
tion to provide for improved control of articulated mecha-
nisms.

The electronic computer may further execute the step of
receiving a command indicating a desired second joint state
and providing feedforward to the actuators based on the pre-
dicted second joint state.

It is thus a feature of at least one embodiment of the inven-
tion to provide improved control of articulated mechanisms
such as walking machines.

These particular objects and advantages may apply to only
some embodiments falling within the claims and thus do not
define the scope of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG.1isasimplified block diagram of an example walking
machine having an articulated linkage of a type suitable for
use with a dynamic predictor of the present invention, the
walking machine having a controlling electronic computer
for implementing a control loop shown in an expanded frag-
mentary view and providing joints that exhibit stiffness as
depicted in an expanded fragmentary view and an associated
graph of a stiff spring function as well as joints that exhibit
un-stiff spring response as depicted in an associated graph of
an un-stiff spring function; and

FIG. 2 is a flowchart showing the principal steps of the
present invention as executed on an electronic computer.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENT

Referring now to FIG. 1, an articulated controlled dynami-
cal mechanism such as a walking machine 10 may include
articulated legs 12 positioned to support a main machine body
14. Each of the articulated legs 12 may include links 16 being
substantially rigid bars connected by joints 18. The legs 12
may have an end effector 20, for example, providing for
ground-contacting feet or the like.

Each of the joints 18 provides for relative movement
between the associated links 16 using mechanisms including
but not limited to a slide or rotary coupling. Each of the joints
18 may communicate with an actuator 22, such as a hydraulic
cylinder or motor for moving the joint 18, and a sensor 24,
such as an encoder, linear variable transformer (LVT),
tachometer, or the like (shown incorporated into the actuator
22), for reading out the position and velocity of the joint 18
when moved.

Electrical signals to the actuators 22 and from the sensors
24 may be communicated to an electronic computer 26. The
electronic computer 26 may have a processor 28 communi-
cating with a memory 30 such as random access memory, disk
drive, or the like. The memory 30 may hold, among other
programs such as an operating system, a dynamic predictor
program 32 as will be described below. The memory 30 may
further hold a model 34 of the articulated links 16 expressed
in the form of one or more differential equations.

In particular, the walking machine legs 12 may include stiff
springs, for example a rubber bushing 21, surrounding a
rotary bearing 23 forming the joints 18 of the leg 12. Gener-
ally the rubber bushing 21 will exhibit a stiff spring response
25 characterized by a rapidly rising force with distance func-
tion associated with compression of material such as elasto-
meric rubber or the like in normal operation of the walking
machine 10. In addition, the walking machine legs 12 may
include un-stiff springs, for example a helical compression
spring 27, providing for flexible extension of the end effector
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20. Generally such a helical compression springs will exhibit
un-stiff spring response 29 providing a substantially linearly
changing force with a distance function over the anticipated
operation of the machine 10. In contrast to the un-stiff spring
response 29, the stiff spring response 25 can present problems
in evaluating models of the operation of the legs 12.

In one embodiment, the dynamic predictor program 32
may be incorporated into a feedback loop 36, for example,
receiving and processing control commands 38 such as those
instructing the walking machine 10 as to desired movement of
its legs 12. In one example, sensor data 40 may be received
from the sensors 24 and provided to a summing junction 42
determining an error between the desired leg movement and
the indications ofthe sensors 24. This error is provided to a set
of control paths providing, for example, weighting of difter-
ent functions of the error signal by weighting blocks 44 (for
example, providing a weighting that is proportional to, a
derivative of, integral, or a non-linear function of the error)
which are then summed by summing junction 46 to provide
output signals 48 to the actuators 22.

The dynamic predictor program 32 of the present inven-
tion, for example, may receive the sensor data 40 and the
control commands 38 and provide a predicted position of the
legs 12 that may be used in the control process, for example,
for model predictive control providing additional control
modifications to the summing junction 46. This diagram is
intended to be representative of a variety of possible control
strategies according to well-known techniques that may make
use of predicted machine movement.

Referring now to FIG. 2, the present invention will gener-
ally operate to receive a current joint state as indicated by
process block 50 fully describing the position of the joint, its
current velocity, and the deformation distances of any asso-
ciated stiff and/or un-stiff springs.

At process block 52, a polynomial is generated that antici-
pates changes in the joint state for each joint state variable for
an increment in time into the future. This polynomial must be
fit to a known model of the mechanism held in the differential
equations expressing the model 34 describing the machine
10. As will be discussed below, the polynomial term generally
describes an expansion whose elements are associated with
different derivatives of the polynomial such as may be con-
formed to the differential equations of the model 34. Some of
these terms will be associated with the current joint state but
some of these terms will be held as “free parameters” to be
functions of the final joint state being predicted.

As indicated by process block 54, these free parameters are
evaluated by minimizing residuals determined from the dif-
ferences between corresponding derivative orders of the
polynomial predicted value compared to the values provided
by the differential equation model 34.

In one embodiment, these residuals are minimized by
expanding the residuals as indicated by process block 56
using a Taylor series expansion and applying an algorithmic
differentiation to the expansions as indicated by process
block 58 providing a Jacobian matrix that may be used to
minimize the residuals.

Once the minimization is completed, as indicated by pro-
cess block 68, predicted output being predicted values of the
joint state for the later time may be provided.

A more detailed overview and comprehensive view will
now be provided.
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OVERVIEW

Hermite-Taylor Multi-Derivative Method

A dynamical system is represented by the ordinary differ-
ential equations (ODEs)

Ho=F (5, Y(0) M

where vector Y(t) constitutes the collection of state variables
of the system sampled at time t, and Y(t) is the derivative of
that system state with respect to time. A numerical approxi-
mation to the solution on the time interval O<t<h is expressed
with the collection of Hermite polynomials represented in
vector form as

Yy (0)=Y[0]+Y[1]t+. .. +Y[p+q]E*9 2)

That polynomial along with p derivatives is chosen to
match the function and p derivatives Y, of state vector Y(t)
at t=0 according to

1 k
Y[k] = FY( )0),0<k=<p

where the q polynomial coefficients Y[k]| for p+1=<k=p+q are
free parameters. A Hermite polynomial is a “term of art” for
a polynomial matching a function and its derivatives at the
start and end of a time interval, but the following method by
which Eq. (2) expresses the Hermite polynomial is novel.

For Y()=Y (1), an “algorithmic differentiation” method
specific to the type of dynamical system—electrical,
mechanical, chemical, molecular geometry—expands the
differential equation residual

E@=¥0)-F(t,Y®) 3

in a Taylor series in order to evaluate E(h) along with deriva-
tives EP(h), . . ., E9Y(h). Also using algorithmic differen-
tiation to determine the Jacobian matrix, a term of art for the
variation in the values of E(h), EXh), . . ., E“V(h) with
change in the free parameters, adjust the q vector parameters

Y[p+1], ..., Y[p+q] to satisty
E(h)=0 EV@)=0 . . . E9 V(=0 )
Hermite-Taylor Multi-Integral Method

Vector W(t) is the p-th integral of Y(t) where Y (t) is the p-th
derivative Y(t)=W®(t). For W(t) having the p,q Hermite
polynomial of the form of Eq. (2), differential equation solu-
tion Y (t) has the approximation

Y =Wy O=Y[O]+Y[1]t+. .. +Y[q]E? ©)

where the q polynomial coefficients Y[k]1<k=q are the free
parameters. For Y (1)=Y (1), expand Eq. (3) in a Taylor series,
and adjust the q vector parameters Y[1], . . ., Y[q] to satisty

Ep(h)=0 E5AP(h)=0 ... 59 D(h)=0,

Ey(=ED(0), E)=Ye(0)-F (2, Ye(1)) Q)

The minus superscript (—p) denotes the p-th integral having
the constants of integration in the anti-derivatives of the Tay-
lor series expansion set to zero. “The residuals”, elements of
the vector E(t), are now the p-th integration of the “the
difference between the derivative of a polynomial determined
directly from its coefficients and the same quantity evaluated
by substituting the collection of polynomials into the differ-
ential equation”. Such constitutes a p-integral method applied
to the p, q Hermite polynomial representation of the differ-



US 9,260,147 B2

7

ential equation solution. One can express solution procedures
based on the O-integral method, same as the multi-derivative
method, ranging up to the p-integral method.

Integral-Derivative State-Variable Pairs

Many dynamical systems, and especially mechanical sys-
tems with mass and spring elements as well as electrical
systems with inductor and capacitor elements, have state
variables occurring in integral-derivative pairings. These
pairings are the positions and velocities in a mechanical sys-
tem, the voltages and currents in an electrical system.

Upon separating the state variables into the pairing of vectors
Y(t) and V(t) obeying the relationship Y(t)=V(t) and express-
ing each vector with the polynomial

Yu()=Y[0]+Y[1]t+. .. +Y[q]H,

Va@)=V{0]+V[1]t+ ... +V[q]t? @)

where in the multi-integral method coefficients V[1], . . .,
V[p] constitute the free parameters for V (1), the free param-
eters Y[1], . .., Y[p] for Y (1) are calculated from the coef-
ficients of V(1) by an explicit and algebraic formula. This
calculation reduces by halfthe number of free parameters that
need to be varied in minimizing the differential equation
residuals at the end of the time step.

This procedure is applicable to both the multi-derivative
and multi-integral methods. Defining Y (/=Y (1), coeffi-
cients

Yplk] = VIK] = ig Caiprg VIP — 8 + gl—RP 7, ®
-1 _k+1 B k+g) ... (k+1)
Yo = a)’k,l—p+qa7k,g22—(p+q).“(p+q+1_g)

where p, q is the order of the method, O=g=p gives the number
of integrations, and p—g=k=p-g+q-1.

In this formulation of the numerical method, Y ,(t)=V (1):
the derivative of position hence differs slightly from the
velocity, the two quantities becoming equal in the limit of
high method order. In a multibody mechanical system where
the other variables are calculated using the kinematic predic-
tor method, position variables are integrated from Y ,(t)
whereas acceleration variables are differentiated from V(t).
Such a double set of “velocity” variables has precedent in the
C. W. Gear linear multi-step method for the same reason of
reconciling conflicting conditions; these conditions relate to
the type of numerical approximation in the numerical method
to the true solution.

Features of the Two Methods

Under conditions where the exact solution to the differen-
tial equation is

Y(6)=e™¥(0) ©)]

(A, is the i-th complex-valued eigenvalue of the linearized

differential equation Y(t)=AY(t)), both the multi-derivative
and multi-integral methods compute the approximation

Y(h)=R,, ,(A1) Y(0) 10)

where R, (Mh) is the p, q Padé rational approximant (the
ratio of two polynomials) to e*”. For positive integer p, set-
ting q=p+1 or q=p+2 gives both the desired A-stable and
L-stable properties. This means that the numerical method is
a good candidate for solving stiff differential equations aris-
ing in electrical, mechanical, chemical, and molecular geom-
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etry problems. Stiff problems have notoriously unstable solu-
tions using explicit methods that simply extrapolate forward
from the initial state without adjusting for conditions at the
end of each solution step.

The multi-derivative method not only satisfies Eq. (10) for
the state vector Y (t), it also satisfies that equation for the first
p derivatives YXV(1), . . ., Y®)(t). This property may not be so
desirable as those derivatives need to be computed to form the
Hermite polynomial Y,(t). On highly stiff problems, those
derivative values can become very large in magnitude in
proportion to powers of the stiff eigenvalue A,. Those large
values “use up” the precision of the floating point represen-
tation in a digital computer, resulting in inaccurate or even
unstable solutions as a consequence of performing arithmetic
onnumbers that differ widely in scale. The p-integral method
only satisfies Eq. (10) for the state vector Y(t) and no longer
for derivatives of Y(t). By giving up a solution with continu-
ous derivatives, the multi-integral method avoids the difficul-
ties of lost numerical accuracy and even instability associated
with calculating the large-magnitude derivatives in stiff prob-
lems. If a continuous first derivative is required, p—1-integral
method, for example, generates a solution that is continuous
in Y(t) and its first derivative, and so on.

One analogy to the benefit of the new multi-integral
method is the analog computer, a hardware device using
either mechanical or electrical devices to solve a dynamical
system. Whereas the differential equation is typically written
in terms of derivatives, analog computers always express the
same problem with integrations; differentiations magnify
small disturbances that would make the solution “noisy.” The
multi-derivative method is also like attempting to back up a
farm tractor coupled to a hay wagon. The smallest error in
steering is rapidly translated into that rig jack-knifing. The
multi-integral method is like backing up an automobile—not
atrivial problem, but something that everyone with a driver’s
license has been trained to do.

The proposed multi-derivative method is a new implemen-
tation of a known numerical method for ordinary differential
equations. The new part is expanding residual E(t) in a Taylor
series, resulting in simplification in solving Eq. (4) over the
known “direct” method. The multi-integral method version of
the multi-derivative method is also new.

DETAILED EXAMPLE
Summary

The Hermite-Obreshkov-Padé (HOP) procedure is an
implicit method for the numerical solution of a system of
ordinary differential equations (ODEs) applicable to stiff
dynamical systems. This procedure applies an Obreshkov
condition to multiple derivatives of the system state vector,
both at the start and end of a time step in the numerical
solution. That condition is shown to be satisfied by the Her-
mite interpolating polynomial that matches the state vector
and its derivatives, also at the start and end of a time step. The
Hermite polynomial, in turn, can be specified in terms of the
system state and its derivatives at the start of a step together
with a collection of free parameters. Adjusting these free
parameters to minimize magnitudes of the ODE residual and
its derivatives at the end of a step serves as a proxy for
matching the system state and its derivatives. A high-order
Taylor expansion at the start of a time step interval models the
residual and its derivatives over the entire interval. A variant
of'this procedure adjusts those parameters to match integrals
of the system state over the duration of that interval. This is
done by minimizing magnitudes of integrals of the ODE
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residual calculated from the extrapolating Taylor series
expansion, a process that avoids the need to determine inte-
gration constants for multiple integrals of the state. This alter-
native method ecliminates the calculation of high-order
derivatives of the system state and hence avoids loss in accu-
racy from floating-point round off.

1 Introduction

A stiff dynamical system is defined to have properties that
work against obtaining a stable and accurate numerical solu-
tion. Generally speaking, an explicit numerical solver
extrapolates conditions at the start of a solution time step to
the end of that step and is susceptible to unstable overshoot
unless vanishingly small steps are used; an implicit procedure
can suppress that overshoot by taking into account conditions
at the time step end.

An implicit solver calculates a Jacobian matrix for the
sensitivity of conditions at the time step end with respect to a
set of independent parameters. That solver also conducts
multiple equation evaluations in the course of an iterative
Newton-type minimization. This process can require mul-
tiples of the computer operations of an explicit solver of the
same order and step size, but computation time and global
error are reduced when the implicit solver allows larger and
fewer time steps. Explicit solvers have been considered when
there is separation between a set of rapidly damped stiff
solution modes (the “fast” modes) and a set of slower modes:
each composite time step incurs the computational overhead
of'a burst of small steps damping out the fast modes followed
by a larger step to move forward in time with the remaining
slower modes.

The HOP method requires calculating high-order deriva-
tives of the system state, which is accomplished with an
automatic or algorithmic differentiation procedure. On the
multibody dynamics problem, that algorithmic differentia-
tion procedure is specific to the problem domain of kinemat-
ics in 3D. This procedure for the accurate calculation of
derivatives therefore makes the HOP method usable in prac-
tice.

This direct HOP method adjusts the state and its derivatives
at the end of each time step to satisfy the ODEs and also meet
the Obreshkov condition relating derivatives at the start and
end of the step. The HOP method can be formulated to be
A-stable and L-stable on linear problems although it can be
unstable on highly non-linear problems. The HOP solver can
also experience instability at high method orders that is attrib-
uted to numeric round off owing to the geometric growth in
the higher derivatives occurring in stift systems. Achieving
high accuracy in the multibody dynamics problem also
requires an initial burst of closely spaced time steps to damp
out any fast modes present in the initial conditions.

The new HOP method uses an O(N) Taylor model of the
system at the start of the time step to calculate variables that
depend on the state variables over the entire time step interval.
The Taylor expansion is denoted O(N) when position coeffi-
cients range from Y[0], . . . , Y[N], velocity coefficients range
up to V[N-1], and forces up to F[N-2]. The new HOP method
represents the state variables with Hermite interpolating
polynomials that match derivatives of the state at the start and
end of the time step interval. All other system variables by
definition have a pure algebraic dependence on the state vari-
ables, which is an implicit relationship in the differential
algebraic equation (DAE) expression of a multibody dynami-
cal system. The kinematic constraints are solved using the
methods described in Milenkovic, P., 2012, “Series Solution
for Finite Displacement of Single-Loop Spatial Linkages,”
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ASME Journal of Mechanisms and Robotics, 4(2) p. 021016
(14 henceforth “Series Solution”) hereby incorporated by
reference. These dependent variables are expressed by O(N)
Taylor series expansions about the time step start, generated
in order-recursive manner from the polynomial coefficients
of the state variables.

Upon satisfying the ODEs at the time step start, the Her-
mite polynomial coefficients are adjusted to direct the values
of'derivatives of the state variables, along with coefficients for
all other system variables, to satisfy the ODEs at the time step
end. The form of the Hermite polynomials also insures that
the Obreshkov relationship between state derivatives at the
time step start and end is satisfied automatically. This process
requires calculation of a Jacobian along with iterative updates
in a Newton-type algorithm.

A predictor step using a high-order Taylor series represen-
tation of a time-varying linearization of the ODEs has also
been considered as part of an implicit method for stiff prob-
lems. Differing from this earlier application to a stiff problem,
the proposed Taylor model is subject to the stabilizing adjust-
ments made to the Hermite coefficients to meet implicit-
solver conditions at the time step end.

Most importantly, the Taylor model allows integrating the
system variables from their polynomial or truncated power
series representations. This enables a multi-integral variant to
the multi-derivative HOP method, one which avoids numeri-
cal problems associated with calculating high-order deriva-
tives of the state variables. Numerical tests show such a pro-
cedure to be accurate with a greatly reduced number of initial
burst steps. The Taylor model also allows for a mixed
implicit-explicit (IMEX) procedure offering savings in com-
putation time.

In what follows, Section 2 contributes 1) how the Hermite
polynomial satisfies the Obreshkov relationship between
state derivatives, 2) the multi-integral counterpart to the
multi-derivative HOP solver, 3) the linear relationship
between Hermite polynomial coefficients for position and
velocity variables, and 4) the determination of the dependent-
variable power series from pairings of Hermite polynomials
for position and velocity state variables. Section 3 presents
numerical results.

2 Methods

A system of ordinary differential equations (ODEs) is
expressed

Y(0)=F (1, Y(©)) 11

where vector Y (t) constitutes the state variables of the system
sampled at time t, and Y (t) is the derivative of the system state
with respect to time. Strictly speaking, such a system of
ordinary differential equations is no more than an algebraic
relationship between a state vector and its derivative for any
chosen value of that state vector and for any designated time.
That algebraic relationship admits a multiplicity of solution
trajectories Y(t) as time t varies. The initial value problem
(IVP) is one of determining the unique solution for times t=t,,
that starts with state Y(t,).

Applying the rules of differentiation to the function F
determines higher derivatives of Y. Starting with sample val-
ues Yo=Y (t,) and Y, =¥ (,+h) of an approximation Y(t) to a
solution Y(t), Eq. (11) thus defines derivatives Y ,* and Y, ®
for positive integers k. The true solution Y(t) satisfies Eq. (11)
for all t whereas the approximation ¥ (t) may satisfy Eq. (11)
along with a limited number of derivatives of that relation
only at specified sample points, which are no longer located
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along a trajectory Y(t); this distinction is germane to the
formulation of a numerical solution procedure.

An Hermite-Obreshkov-Padé (HOP) procedure for the
numerical solution of ODEs satisfies the multi-derivative
Obreshkov relation

j4 q (12)
Z Pk hk Y(()k) = Z qkhk Yh(k)
k=0 k=0

where po, p;, - - -, p, and qg, qs, - - - , q,, are coefficients of the
p> q Padé rational approximant of the exponential function,
and state derivatives Y, and Y, satisfy Eq. (11). To see the
manner of approximation, consider the linear constant-coef-
ficient differential equation

Y(6)=4Y(®)

Applying the conditions Y,®=A*Y, for O<ks=p and
Y, P=A*Y, for 0=k=q, it follows that

)

calculates a unique value for Y ,,, subject to the matrix term in
the reciprocal being invertible. Selecting initial state Y, as an
eigenvector of matrix A having the non-repeated eigenvalue
A, it follows that Y, V=AY =AY, Y, P=A*Y =\ Y, and
hence

P

q —1
Yy = [; q,JL"A"] [; plik A

a3

P (14)
Z it Ak
k=0

gk
0

Y, = Yo = R, g(Lh)Yo = Nty

DM

~
I

is an admissible solution to Eq. (12), which according to Eq.
(13) is also a unique solution. When Y, is comprised of a mix
of eigenvectors of A, superposition allows treating each
eigenvector component independently. Subject to g=p+1 or
q=p+2, that the HOP method is A-stable and L-stable for
linear dynamical systems follows from properties of the Padé
rational approximant R, (A;h).

From the preceding exposition, if Y,®=A*Y =) Y, and
Y, O=A"Y =NfY h:KikRp, JAD)Y,, it follows that

Yh(k) = prq( M) Yo(k)g,e}»ih Yo(k) (15)

for O<k=min(p,q)=p when the conditions for Eq. (13) are
satisfied and p<q. Thus p derivatives of the state have the same
solution-approximating relationship as the state itself. Apply-
ing the Obreshkov relation to the g-th integration of Y (1) to
find a differential equation solution for Y (t) can avoid numeri-
cal sums of the geometrically growing derivatives Y, . Each
integration “uses up” a derivative of Y(t) for which Eq. (15)
applies. At the maximum number of integrations g=p, the
method no longer generates an approximate solution having
continuous derivatives across solution time steps. In trade, the
method avoids numerical difficulties associated with calcu-
lating high orders of derivatives, which is of special impor-
tance on stiff problems.

As polynomials are easily integrated, the Hermite interpo-
lating polynomial is central to obtaining a multi-integral HOP
procedure. The connection between the Hermite polynomial
and the Obreshkov relation is known. That the Padé coeffi-
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12
cients give a rational approximation to e is also known from
consideration of continued fractions. The following is novel
in establishing a direct connection between coefficients of the
Hermite polynomial and a rational approximation to €.

2.1 Hermite Interpolating Polynomial

A solution time step spans the interval t,=t=t,+h. For nota-
tional simplicity, the time origin is shifted to t,=0. The solu-
tion to the ODEs is approximated on that interval with the
polynomial

Yi(O=YOJ+Y[1]t+ . . . +¥[p+qJ&Z*?

The first p derivatives of polynomial Y (t) are chosen to

match the first p derivatives Y, of state vector Y at t=0

(16)

an

1
Y[k] Fyg“, D=<k<p

Throughout this description, square brackets denote poly-
nomial or power series coefficients whereas the round-
bracket superscript denotes derivatives, either of a polyno-
mial approximation or the underlying solution.

The q polynomial coefficients Y[k] for p+1=<k=p+q are free
parameters to be adjusted to make the first q derivatives of
Y ,(t) match the first q derivatives Y, of state vector Y, at the
end of a time step. This match may be formulated in the
instance of p=3 and q=4 with the matrix expression

wow o B oo (18)
1 h — — — — — o]
21 31 41 51 &1 7!
v 2o o s s || il
0l I N T TR TR T B b ]
vl<loo 1 & oo ps || 31Y[3)
g 31 31 I 51| 4tvi4)
y® 2 3 4
2 b0 o 1 g Bor s
v 21 31 41 || 6tyrg]
R\ 7
000 0 1 & 5 =
1 1 1 1 1 1 0)
11l = = =~ = — || ™
21 31 41 51 & 7! e
01 1 1 1 1 1 1 0
21 3 4 ST st | ¥
1 1 1 1 3)
—X’10011§§E§XY0
o Ay
ooo0 1 1 L L1 !
ﬁ a 4—' 51Y[5]
L1 61Y[6]
000 0 1 L 5 =| |7y

In Eq. (18), X (Greek Chi) is an 8x8 diagonal matrix with
elements X, =h"~* whereas X~ is a 5x5 diagonal matrix with
elements X, J"IZhl"i; in this and related formulas, the dimen-
sions of matrices X and X~ are adjusted as needed to match
the coefficient matrix being multiplied. Multiplying the coef-
ficient matrix on the right by X has the effect of multiplying
successive columns by powers of h; multiplying on the left by
X! multiplies successive rows by powers of h™', in this
manner giving the correct power of h multiplying each non-
zero element in the coefficient matrix.

Theorem: The polynomial Y () of Eq. (16) satisfies the
Obreshkov relation in Eq. (12).

Proof: The proof is illustrated with p=3 and q=4 and then
generalized to all positive integers p and q. The p, q Padé
rational approximant of ec is represented as
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Px) (19

L+ pix+ pox® + p3x°

R = =
34(0) Q) l+gix+qx? +gx® +gaxt

1, 15 s 15 1 1
_1+x+ﬁx +§x +ﬂx +§x +a+ﬂ"

ox®)

+

where the last line contains Taylor series terms of ¢* to the
maximum order that can be represented by the rational
expression. Clearing the denominator by multiplying Eq. (19)
by Q(x) and equating successive powers of x, the four coef-
ficients q satisfy the four linear relations

1 1 1
0=H+§£11+ﬁ£12+£13+£14
0_1 1 1 1
BRI TE R TR
0_1 1 1 1 1
SRR TE R TE R TR
0_1 1 1 1 1

SR TR TEAE T

The preceding generalizes to q coefficients q, satisfying the
q linear equations

1 1 1

.- 20)
Tl Tk DIt T k=t

for 1=k=q and each series terminating with j=q or p+k-j=0.
Given the solution for coefficients q,, coefficients p, are
determined by the three relations

pir=1+gq,

1
P2=ﬁ+£11+£12,

1 1
P3=ﬁ+ﬁ£11+£12+£13

In the general case, there are also p coefficients p, satisfy-
ing the p linear equations

1 1
—1)!q1+"'+(k—j)!qj

@D

pk—ﬁ &

for 1=k=p and each series terminating with j=q or k—j=0.
The Obreshkov relation from Eq. (12) has the matrix form

[l p1 p2 p3]

()
7@ Y
0

y®
(1) i
Yo )
o |71 & @2 o wlX|\ 7 =11 ¢ ¢ ¢ 4]
Yg y®
e "
0 Y,(l4)
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-continued
g Lo 1y
21 31 41 50 & T e
11 1 1 1 0
Ol U s s omwoe| |
1 1 1 1 o)
XX*10011E§4—'§XY0
SRR I P oY
0o o0 1 1 L L1 '
3 31 3| |30
L1 | |striel
000 0 1 1 = = |7ym

where the second equality follows from substituting Eq. (18);
matrices X and X! are diagonal matrices in powers of h as
before and the product XX is the identity matrix 1. Satisfy-
ing the proceeding for all coefficient values of polynomial
Y (1) and non-zero h requires

11 22)
11 Y]
1
01 1 57
[1 pit o p2 p3l=[]l @1 @2 a3 a1 2
00 1 1
00 0 1
00 0
together with
1111 23)
ar 51 6! 7!
1 1 1 1
31 41 51 6!
1 1 1 1
T _
0—[191924394]ﬁﬁa§
1 1 1
1 - — =
21 3t 4t
L L 1 1
21 31

For general positive integers p and g, column k of the matrix
in Eq. (23) matches coefficients of the k-th linear equation
expressed by Eq. (20), column k+1 of the matrix in Eq. (22)
matches coefficients of the k-th linear equation expressed by
Eq. (21), and column 1 of that matrix trivially represents the
identity 1=1. As Egs. (20) and (21) are known to uniquely
determine coefficients of the p, q rational approximant for e*
satisfying that same set of equations guarantees that the Her-
mite polynomial Y (1) satisfies the Obreshkov relation in Eq.
(12).

Derivatives Y ,%(t)=k! Y[k] of the Hermite polynomial are
used by Gad, E., Nakhla, M., Achar, R., 2009, “A-Stable and
L-Stable High-Order Integration Methods for Solving Stiff
Differential Equations,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 28(9) pp.
1359-1372 in estimating the local error of a HOP time step,
but they differ from the state derivatives Y,* on the range
p+1=k=p+q. Were this not the case, the Hermite polynomial
would be a truncated Taylor expansion at t=0, and a Taylor-
series method would be equivalent to an A-stable HOP
method, which is in contradiction with the known finite
region of convergence.
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2.2 Multi-Integral HOP Procedure

In place of directly solving for state Y, at the time step end
from state Y, at the start, an alternative procedure solves for
integrated state W, from integrated initial state W,,. States Y
are p-th derivatives of the integrated states according to
Y, =W,® and Y,=W,®. Equation (11) still applies to states
Y, and Y,,, but the Obreshkov relation from Eq. (12) is now
applied to derivatives W,® and W, in place of Y,% and
Y,®. The symbol W is also substituted for Y in Eq. (16) for
the Hermite polynomial of order p+q and in matching deriva-
tives through W,%’ along with W, (%,

The alternative procedure starts each step with Y,=W % as
the initial state and would require the determination
of W@V, . W, from W,%?. These integrations are
easily performed in the linear constant-coefficient case by
noting that if Y(t)=AY(t), then W(t)=AW(t) is a differential
equation for the integrated state meeting the stated condi-
tions, and the relation W(t)=A~'W(t) readily determines the
integrations of W,%’. All constants of integration may be set
to zero as the requirement is finding a usable initial state W,,
and not necessarily a unique W,

The proposed W,, and derivatives W,® through k=p there-
fore satisfy the same ODEs as Y, having the same coefficient
matrix A with the same eigenvectors and eigenvalues; the two
cases only differ in their initial values. Setting W, to the
eigenvector with eigenvalue A, it follows that not only does
W,=R,, q(kih)WOze”fh W, according to the pattern of Eq. (14),
but also

Y,=W,P=R, (MW P=R, MI)Y, (24)

according to Eq. (15), provided p<q. The relation Yh(k)fR
MY, for 1sk=p, however, no longer holds as it d1d
before. As a consequence, denvatlvesYh(k) through order k=p
are no longer guaranteed continuous across solution time
steps.

It is possible to avoid calculating integrals of the state by
considering properties of the differential equation residual of
the Hermite polynomial for the integrated state. In the linear
case, one may define

B0y W ()~ AW (1) 25

along with E,"V=E,,“?(0) and E,“=E ,*®(h) for sample val-
ues of the residual derivatives taken at the start and end of a
time step. The relations E,*~ =0 for 1 <k=p and E,*~ V=0 for
1=k=q are necessary and sufficient for the state vector deriva-
tives to satisty the differential equations according to
W, O=AW % and W,P=AW,* 1 on their respective
ranges of k.

Calculating integrations of W@’ can therefore be avoided
by setting E,* =0 for 1=k=p without needing to know the
underlying values of W,%9, . . .| W, . The value of
W, P=p!W [p] is the initial stateY at the start of the time
step interval, and polynomial coeﬂiments W [p+k] for 1sk=q
are the q free parameters that can be adjusted to satisfy
E,*Y=0 for 1=k=q. The complete set of q+I non-zero
residual derivatives E,* ") for p+l=k=q+1 are calculated
from initial state W,%’=Y,, and free parameters W[p+k] for
1=k=q, supplying a Taylor series having a limited number of
terms specifying the complete set of polynomial coefficients
to E(1). Those polynomial coefficients are used to compute
residual derivative values E, " for 1<k=q at the end of the
time step.

The same process may also be applied to non-linear ODEs.
Equation (11) determines a value for E,% from Y, and higher
residual derivatives Erk) for k>p may be determined through
an algorithmic differentiation procedure. A system of linear
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ODEs has an exact Taylor expansion of limited order whereas
the truncated Taylor expansion for non-linear ODEs is only
approximate.

2.3 Integral-Derivative State Variable Pairs

Many mechanical and electrical systems have state vari-
ables occurring in integral-derivative pairs such as position
and velocity in a mechanical system or capacitor voltage and
inductor current in a series electrical circuit.

The relationship between a pair of position and velocity
generalized coordinates in a multibody dynamical system is
linear, even though the overall system may be non-linear
owing to gyroscopic forces. This relationship allows the
direct determination of Hermite polynomial free parameters
for a position variable from the same type of parameters for
velocity, reducing by half the number of parameters in the
non-linear minimization procedure for differential equation
residuals atthe end of a solution time step. This simplification
is applicable both to the multi-derivative and the multi-inte-
gral HOP methods.

For an order p,q HOP procedure, the vector of position
state variables has the Hermite polynomial Y ;(t) expressed in
Eq. (16) whereas the counterpart vector of velocity state
variables has the Hermite polynomial of the same form where
V is substituted for Y. The linear constant-coefficient differ-
ential equation system V(t)=Y(t) leads to the q vector equa-
tions

V5 D=y D=y, P =1, ®, 1sk=q (26)

The vector coefficients Y[k] on the range p+1=<k=p+q thus
may be expressed in terms of the q free parameters V[k]|,
initial states Y, and V,, and derivatives V,® along with
Y, ®O=vV, % on the range 1=k=p. A closed-form relationship
for Y[K] in terms of these other variables is derived for any
given order p,q in what follows, starting by taking derivatives
of polynomials of the form of Eq. (16) and substituting into
Eq. (26).

From the relations in Eq. (18) and Y,®=V %1,

- 1 1 41 50 6! 7! 7% 27N

21 31 3 51 & T ©

) 1 4t 51 61 7! Yo
yol [O0 1 5 5 3 56| | W
! ! ! ! 2
x|y?l=loo 1 1 %;%%X"é),
v 4 st | | TH
o 00 0 L 3 5 o5 g |ve
4t 5t 6 71| | Y]

000 0 s o 3wl lvm

L L4t stost 7 v

20 31 3 51 & T o

v o4t st 7| |V
yol [O0 0 5 5 3 o5 oa| | W
41 50 61 T )

Xy l=loo 11 = 5 oo S K
v 4 st 7| |V
o 00 0 I 5 5 5 77| |VBI
41 5t 6t 71| |Vl

000 U m mow al lvim

Multiplying each matrix X into the vector on its right and
equating Y, =V, %1 for 1=<k=q, which keeps the bottom 4
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rows of the first-line coefficient matrix, the top 4 rows of the
second-line coefficient matrix,

YR (28)
141t 51 61 70| yop
011 = = 2 2 DVeh
21 31 4l 50 60 || e
Vi i
41 51 61 7!
00 1 1 55 3% 77 57| v
41 51 6! 7! 4T
D00 1 — 2 2 LyYHn
L2 30 4t s
ar st o7 || TP
0000 5 T o3 3| viewe
YT
V(go)hl
1 1 4t 51 61 7! (D2
L Lo Loat stoet 7ty s
21 31 41 51 61 Tt 2,3
V&
1 4t 51 61 7!
0L L 53 o3 o5 v
41 51 61 T 5
po 1 1 = 2 2 LV
2t 30 4r SH| e
0o o M ose 7 3]
T 21 31 4l view
Ml

Variable Y,, multiplies a zero column whereas V,*

V@ multiply the same columns on the left and right sides of
Eq. (28), allowing the removal of those variables and leading
to

)

31 41 51 6l 3141 51 61 T
3 s oa 34 5o T e
31 41 51 6l 3t 4t sto6t TH s
FIETRETIE T RS O N TR TR T

31 40 St 6! || syeme | | 3! 4! St 6! T visIK
1 2t 31 4t ; 20 31 4t 51| view
31 4 st g LY 3141 51 61 T .
oo 2 -T2 2 I vm
or 11 21 3 o 11 21 31 4

Identifying identical columns on the left and right-hand
sides along with substituting V,®/3!=V[3] gives

Co 29
1 1 1 1
o]
3 4 5 6 7
G | =0,
3.2 4.3 5-4 6-5 7-6
(&

3:2:1 4:3:2 5.4.3 654 7-65
4

o AY[AIR - V3Rt
a SY[SIHS — V41K

G| G | =|6Y[614° - V[51°
Cs TY[TIH = VI6W
G —VT

Inspection of solutions generated by symbolic algebra soft-
ware suggests that the alternating-sign binomial coefficients
Cy=1, C,=-4, C,=6, C;=—4, C,=1 supply the solution to the
preceding homogenous linear form within scale factor G.
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Theorem: The integer-power weighted alternating bino-
mial-coefficient sum

| (30)

z q
r k — — N
;:ok (—1FCap =0, Cpp = =P

is valid for integer O=<r=q-1.

Proof: The binomial coefficients are defined by the rela-
tionship

q 3D
(1 +x)7 = Z Cpud
k=0
having derivative of order r
(32)

9
q... (q—r+1)(1+x)‘7”=2k s k= r+ DCyxt "
k=r

koo (k—r+D)Cqpd™

NS

~
i
=3

(K + Pry (k)Cgp* ™

NS

k

i
=3

where the change in the lower summation limit from k=r to
k=01s allowed because the productk. . . (k-r+1) has one zero
term provided k<r. Polynomial P,_, (k) has powers of k up to
k™. Egs. (31) and (32) are generating functions, which are
employed in combinatorial proofs.

Starting with Eq. (30) being valid for r=0 when x=-1 is
substituted into Eq. (31), knowing that the left-hand side of
Eq. (32) is also zero when x=-1 subject to r=q-1 so as to not
annihilate the last factor (1+x), and assuming that Eq. (30) is
valid for all smaller integers r to the value under consider-
ation, it follows that the term from Eq. (32)

q
Z Py (k)G =0, x= —1
k=0
proving by induction that

q
DK Cpudt =0,x=-1,0=r=q-10
k=0

The homogenous linear system from Eq. (29) generalizes
to the set of equations

33

Zq: Cy =0,
k=0

q

Dk +p)Ci =0,

k=0
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-continued

9
DTtk pk+p-1)Cy =0,
k=0

9
Z(k+p) i+ p—g+2)C =0
k=0

Theorem: The alternating-sign binomial coefficients
Cc.=C q,k(—l)k for O<k=q satisfy Eq. (33). Proof: Equation (33)
may be represented by the q equations

q (34
> C=0;
k=0
9
Z(kwp,,l(k))ck, l=r=g-1
k=0

where r is an integer index. From the prior theorem, C,=C,_ ,
(~1Y* is a known solution.

Upon substituting binomial coefficients to obtain a solu-
tion to Eq. (29),

| AY[ALRY - V3t (35
_4 SY[SIHS — V41K
G| 6 |=|e6r[61r —V[51K°
=4 |7y - view
1 —V[7H
G=-V[TH
Y4 = %(VB] = VT, Y51 = é(vw +AVITIH)
Y[6] = é( [5]-6V[TIhY), Y[T] = %(V[6] +4V[71h)
which generalizes to
1 +g+1—k (36)
Y[k] = 2 (VIk = 1] = Coppr VIp + ) (=775,
p+l=<k=sp+g

The first derivative of the Hermite polynomial has the
representation

V(o) = Y[1] +2¥[2) + 3Y[3]7 + 4Y[4]F + 5Y[5]* + @D
6Y[61° + TY [T

= V0] + V[l + V[212 +
(V31 = VTS + (V4] +4V[TIR)* +

(V[5] = 6V[TIHDE + (V[6] + 4V [T

Defining the integrated position W(t) and velocity U(t)
according to WP ()=W(1)=Y(1) and UP()=US(1)=V (1),
substituting W forY, U for V and differentiating Eq. (37) p=3
times gives
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Yy =3-2- LU[3] = UTHHE +4-3-2U[4] +4U [T + (3%

5-4-3(U[5] = 6UTIHN)E + 6-5-4(U[6] + 4U[TIh)
= (V[0]1=3-2-1-1U[THC + (V[1] +4-3-2-4U [T +
(V[2]1=5-4-3-6U[TIAE + (V[3] +6-5-4-4U [T,

V[4]=7-6-5-U[T]
or
3.2-1

V() = (V[O] - V[4]h4)t° + (vu]

232 )
765 4 )’ *

763
5.4.3
765

654

(V[Z] 6V[4]h2)12 +(V[3] + m4v[4]h}3

Generalizing to order p, q and g integrations, Y ,(t) on
p-g=k=p-g+q-1 has coefficients

Yplk] = VIK] = Yi g Coumprg VIp — g + gl(—)P 84 7E, 39

k+1 _ k+g) ... (k+1)
pra T g L (prgrl-g)

Yo =1 1 =

2.4 Determining Power Series for the Dependent
Variables

The proposed embodiment of an order p, ¢ HOP method
represents each state variable with an interpolating polyno-
mial, formed according to Eq. (16) from the initial value,
together with p derivatives of that state variable, and followed
by q free parameters. The free parameters are adjusted to
minimize the differential equation residuals. The p-integral
HOP method is even simpler. The interpolating polynomial
for each state variable is constructed from its initial value
followed by q free parameters without any calculated deriva-
tives. That polynomial is the p-th derivative of the Hermite
polynomial for the p-th integral of the state variable, cancel-
ling any constants of integration.

Representing position and velocity by two separate Her-
mite polynomials requires modifying the procedure for cal-
culating the dependent variables given in Milenkovic, P.,
2011, “Solution of the Forward Dynamics of a Single-Loop
Linkage using Power Series,” ASME Journal of Dynamic
Systems, Measurement, and Control, 133(6) p. 061002 (11
henceforth “Forward Dynamics”) hereby incorporated by
reference and the Series Solution reference cited above,
where the polynomial coefficients for position result from
integrating the polynomials for velocity. Substituting for vari-
ables in Eqs. (37)-(39), the position state variable Y(t)
becomes joint angle 6(t) having angle derivative D(1)=0(t)
with polynomial coefficients D[k]=(k+1)0[k+1]. The veloc-
ity state variable V(1) becomes joint rate C(t) having its dif-
ferent set of polynomial coefficients C[k].

In the current description, “angle derivative” coefficients
D[k] determine Taylor series coefficients at t=0 for all posi-
tional kinematic variables, where substituting C[k]=D[k]
drives the process described above. This process generates a
power series expansion solving a closed-loop kinematics
problem, a strictly algebraic relationship although one having
a complicated implicit formulation.

The resulting series coefficients for all positional variables
allows solving for a separate set of “joint rate” coefficients
C[k] determining rigid-body angular velocities and center-of-
mass particle velocities followed by joint torques and the
torque Jacobian according to the methods described in
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Appendix I below. The ODE residuals for the multibody
dynamics problem are thus the torques of the active joints.
See Milenkovic, P., 2013, “Projective Constraint Stabiliza-
tion for a Power Series Forward Dynamics Solver,” ASME
Journal of Dynamic Systems, Measurement, and Control,
135(3), p. 031004 hereby incorporated by reference (19
henceforth “Projective Constraint™) regarding avoiding kine-
matic singularities in selecting those joints.

The O(N) Taylor model about t=0 serves to approximate
each such joint torque along with q-1 torque derivatives at
t=h for the end of the time step. A g-integral HOP method
requires calculating up to g integrations of torque at t=h; the
integration constants for joint torques are all zero as they are
ODE residuals having the properties described in Section 2.2.

Taylor series coefficients at t=0 are calculated for the pas-
sive joints, which are kinematically determined by the active
joints supplying the state variables, and the angles and rates
for the passive joints are corrected for constraint violation at
the end of each time step using the projection procedure of the
above cited reference. For a given O(N) for the power series
of the dependent variables, that step correction was shown
equivalent to the change resulting from extending those
power series from N+1 to infinite order and hence does not
change the coefficients for joint torques taken to O(N).

3 Numerical Procedure

Scaling derivatives or equivalently power series coeffi-
cients of the residual is observed in numerical tests to account
for significant improvement. Expressing the g-th integral of
torque T,(t) (negative superscript denotes integral, positive
denotes derivative) for joint 1 with the Taylor series at t=h

oS e, | « “0)
-8 — -8
0 = S grasn- 1,

g-1 '
gt P =y O - 1
= k!

leads to the scaled coefficients

_ ! 41
pee g)(h)i_' 41)

for O=k=q-1, which also gives the g-th coefficient as simply
7,(h), and where g=0 for a multi-derivative method, g=p for a
multi-integral method. The contribution of each coefficient is
hence about equal on O=<t<h.

The Newton-Raphson type minimization procedure
requires factoring the Jacobian matrix, which may be per-
formed by the LU method (lower-upper triangular factoriza-
tion—this algorithm is publically available in the LAPACK
function dgetrf( )), to solve the linear system of the form

JAY+E=0 @2)

where ] is the Jacobian, E the residual vector, and AY the
vector of coefficient updates.

Derivatives of the state variables at the start of a time step
may be determined by an inverse procedure where the state
variable derivatives, or parameters generating those deriva-
tives, are varied to minimize residuals in the form of joint
torque coefficients at the start of the time step. This procedure
benefits from the scaling of Eq. (41) as does the procedure to
vary the free parameters to minimize residuals at the time step
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endpoint. Those derivatives may also be determined by a
forward procedure upon solving the forward dynamics prob-
lem using the order-recursive algorithm of the Forward
Dynamics reference cited above. The proposed scaling is not
applicable to the forward procedure. Furthermore, Gad, et al.
cited above infer that errors made at one recursive stage
propagate to higher orders.

Owing to the importance of scaling in controlling the
effects of floating point approximation, the inverse procedure
where terms of the state variable polynomials are determined
by minimizing joint torques is preferred.

The multi-derivative method requires p derivatives of each
state variable at t=0 for its Hermite polynomial. Those deriva-
tives are computed by the forward or inverse procedure only
at the start of the initial time step. For subsequent time steps,
Eq. (18) determines state derivative values at the end of each
time step that are supplied to the start of the next time step, a
process that also benefits from torque scaling.

It will be understood that the invention described herein
may also be applied to the control of objects whose motion
can be decomposed into specific axes but where one or more
of'the links may represent conceptual rather than actual struc-
ture, for example, in the control of spacecraft with respect to
the Earth where there is no physical link to the Earth.

Certain terminology is used herein for purposes of refer-
ence only, and thus is not intended to be limiting. For
example, terms such as “upper”, “lower”, “above”, and
“below” refer to directions in the drawings to which reference
is made. Terms such as “front”, “back”, “rear”, “bottom” and
“side”, describe the orientation of portions of the component
within a consistent but arbitrary frame of reference which is
made clear by reference to the text and the associated draw-
ings describing the component under discussion. Such termi-
nology may include the words specifically mentioned above,
derivatives thereof, and words of similar import. Similarly,
the terms “first”, “second” and other such numerical terms
referring to structures do not imply a sequence or order unless
clearly indicated by the context.

When introducing elements or features of the present dis-
closure and the exemplary embodiments, the articles “a”,
“an”, “the” and *“said” are intended to mean that there are one
or more of such elements or features. The terms “compris-
ing”, “including” and “having” are intended to be inclusive
and mean that there may be additional elements or features
other than those specifically noted. It is further to be under-
stood that the method steps, processes, and operations
described herein are not to be construed as necessarily requir-
ing their performance in the particular order discussed or
illustrated, unless specifically identified as an order of perfor-
mance. It is also to be understood that additional or alternative
steps may be employed.

References to “a microprocessor” and “a processor” or
“the microprocessor” and “the processor,” can be understood
to include one or more microprocessors that can communi-
cate in a stand-alone and/or a distributed environment(s), and
can thus be configured to communicate via wired or wireless
communications with other processors, where such one or
more processor can be configured to operate on one or more
processor-controlled devices that can be similar or different
devices. Furthermore, references to memory, unless other-
wise specified, can include one or more processor-readable
and accessible memory elements and/or components that can
be internal to the processor-controlled device, external to the
processor-controlled device, and can be accessed via a wired
or wireless network.
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The terms “multiple derivative orders™, “multiple integral
orders”, and the like may include the 07 orders as may be
understood from context.

It is specifically intended that the present invention not be
limited to the embodiments and illustrations contained herein
and the claims should be understood to include modified
forms of those embodiments including portions of the
embodiments and combinations of elements of different
embodiments as come within the scope of the following
claims. All of the publications described herein, including
patents and non-patent publications, are hereby incorporated
herein by reference in their entireties.

APPENDIX I

Multibody Dynamic System Algorithmic
Differentiation Procedure

State Variables of a Multibody Dynamical System. A
multibody dynamical system in the form of a linkage is com-
prised of rigid-body links connected by lower-pair joints. The
state vector of that system is comprised of pairs of active-joint
angles and rates according to

Y=({6, C;}lie{is})

where {8,, C,} denote the set of pairings of the angle and rate
for joints designated by index i and ie{i,} selects the active
joints. The state of that system is the function of time Y=Y (1),
where Y (t)=Y(t) denotes a polynomial for a numerical
approximation to the differential equation (dynamic system)
solution having coefficients formed from zero or more deriva-
tives of the state at starting point of a time step along with free
parameters. Bach joint rate C;=C,(t) for the active joints ie{i,}
is hence expressed with a scalar polynomial included in the
vector Y ;(t).

These active joints are selected to be any convenient subset
of'the joints in the linkage from which the positions and rates
of the remaining joints, the so-called passive joints, along
with the locations of all of the links, may be determined using
the method of the US patent application 2012/0303318
entitled “Kinematic Predictor For Articulated Mechanisms”
and exemplified by Milenkovic, P., 2012, “Series Solution for
Finite Displacement of Single-Loop Spatial Linkages,”
ASME Journal of Mechanisms and Robotics, 4(2) p. 021016.
When all of the power series coefficients C,[k] for the active
joints ie{i,} are completely specified by the parameters com-
prising polynomial Y ,(t), the unique solution to the linear
system of equations

AC[k]+B[k]=0

determines the power series coefficients for the passive joints
C,[k]. Constant matrix A is determined from the linkage
geometry at the start of the time step and each “right-hand
side” term B[k] is calculated in the order-recursive process
from the joint rate coefficient vectors C[0], . . ., C[k-1].

Differential Equation Residual of the Dynamic System.
According to Milenkovic, P., 2011, “Solution of the Forward
Dynamics of a Single-Loop Linkage using Power Series,”
ASME Journal of Dynamic Systems, Measurement, and Con-
trol, 133(6) p. 061002, a publication also referenced in US
patent application 2012/0303318, a linkage subject to inertial
and other forces augments the preceding kinematic equation
on the power series coefficients for index k=1 to form the
dynamic equation
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Link inertias and the link locations at the time step starting
point determine the constant “mass matrix” M, A is the same
matrix from the kinematic equation, and the two right-hand
side terms B ;[k-1] and B[k] are calculated in order-recursive
fashion from solutions for prior values of k. The power series
coefficients for the “wrench” are W [k-1]=kC;[k-1], this
wrench denoting a pairing of a force and a moment vector at
a ground connection of a single-loop linkage or at a “cut
point” in a multi-loop linkage.

The “forward dynamics” problem is one in which the pure
kinematic relation AC[k]+B[k]=0 does not have a unique
solution but the dynamic equation provides a unique solution
for both C;[k-1] and C[K]. Specifying initial values C,[0]=C,
(0) for the active joints ie{i, } provides for a unique solution to
AC[k]+B[k]=0 for k=0. When the parameters governing the
active joint coefficients are fully determined by the candidate
differential equation solution Y (t), however, the kinematic
relation alone has a unique solution for joint rate coefficients
C,[k] making up vector C[k], but the linear system comprising
the dynamic equation can still be solved for wrench coeffi-
cients Wg[k-1]=kC;[k-1]. Such a process solves the
“inverse dynamics” problem of finding joint torques when all
of'the linkage motions are specified, which is indeed the case
when the differential equation solution is expressed with the
polynomial Y (t).

The joint rate coefficients C[k] in turn determine the
motion trajectories of the links. Those motion trajectories
acting on the link inertias, the joint rates themselves acting on
springs and dampers or other sources of force or torque
applied to the joints, together with the wrench coefficients
W [k-1] determine the power series coefficients T ,,[k-1] for
the applied torques on each of the joints in the linkage accord-
ing to the formulas in the preceding references.

Where the applied torques T ,(t) on the active joints are
defined to be “everything but” the torques accounted for by
link inertia, joint springs and dampers, gravity, motor torques,
or any other forces acting on or applied to the linkage, the
dynamical-system differential equation may be expressed by
the simple relationship < ,,()=0 for the active joints ie{i,}.
Hence the differential equation has the vector residual func-
tion or “residuals”

EQ={v 0}, ie{i,}
having the power series (Taylor series) expansion E(t)=E[0]+
E[1]t+ . .. +E[k-1]t*"'+ . . .. The values of the coefficients
E[k-1] are hence determined to any index k given the finite
collection of coefficients of the state-vector polynomial
Y z(1). Such is done by the above referenced procedure in the
example of a linkage multibody dynamic system.

Solving for the Residual Coefficients from the Free Param-
eters by Algorithmic Differentiation. Either derivatives (as in
the Multi-Derivative Method) or integrals (as in the Multi-
Integral Method) of the residual vector E(t) at the time-step
endpoint are readily determined from the aforementioned
power series coefficients. Directing those derivatives or inte-
grals to zero requires determining the sensitivity of each
Taylor series coefficient E[K] starting at E[0] to variation in
the free parameters of polynomial Y (t). Once those sensi-
tivities are known, the Jacobian matrix relating the sensitivity
of q differentiated or integrated endpoint residual vectors to
variation in q vector values for the polynomial free param-
eters is readily determined, and free parameters minimizing
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the required residual quantities are obtained by well-known
Newton-Raphson type minimization algorithms.

The sensitivity coefficients of the Taylor series of the
residuals are determined by an Algorithmic Differentiation
procedure for computing multi-variate partial derivatives.
The particular implementation of such a procedure used in the
multibody system dynamics example expands each polyno-
mial coefficient Y[k], or Taylor series coefficient E[k-1]
derived from the polynomial coefficients, according to the
form

Y/k]=Y[0kJ+0¥[1,k], Efk-1]=Ef0 k-1]+0E[1 k-1]

Determining the Jacobian matrix requires repeating this
process q times for each vector element of Y on the range of
q values of Y[k] constituting the free parameters. In each
repetition, all vector elements of Y[1,k] for the q values of k
are set to zero apart from a single element that is set to unity.
The resulting collection of terms E[1,k-1] generated with
each repetition allow computing the required Jacobian matrix
used in determining the free parameters by an iterative opti-
mization process.

The quantities E[k-1]=E[0,k-1] are the original E[k-1]
values computed according to the single-variate Algorithm
Differentiation procedure in Milenkovic (2011). Coefficients
of the form E[1,k-1] are determined by these simple rules.

Consider scalar 0 parameterizing polynomial coefficient
variation in the manner that parameterizes time variation. For
quantities a(0), b(0), and their product c(0)=a(0)b(0)
expressed in truncated Taylor series

c[0] + oc[1] = (a[0] + 0a[1])(b[0] + 0b[1])

= a[0]b[0] + d(a[1]5[0] + a[016[1]) + O(?)

equating powers of 6 and allowing that the term O(6?) van-
ishes in relative importance as 0—0,

i ¢[07=a[07/0),

cf1]=af1]b[0]+af0]b/[1]
where the second line embodies the product law of differen-
tiation. Trivially, the sum c(0)=a(0)+b(0) reduces to c[0]=a
[0]+b[0] and c[1]=a[1]+b[1]. Contrast this with the finite-
difference calculation

(@l0] + ha[11)(B[0] + hb[1]) — a[0]5[0]
/)
= a[116{0] + a[0]5[1] + ha[116[1]

ell]l =

that only approaches the exact value in the limit as h—0.
Furthermore, the top line becomes sensitive to floating point
round off for small h.

Solving first for E[k-1]=E[0,k-1] by the procedures dis-
closed in US 2012/0303318, Milenkovic (2012) and Milen-
kovic (2011) and applying the above multiplication and addi-
tion rules to those same procedures generates the kinematic
equation

AC[LEJ+B[1,k]=0
where right-hand side B[ 1,k] now depends on prior solutions
C[0,01, .. ., C[0,k-1], C[0,k] computed in the determination
of E[k-1]=E[0,k-1] along with C[1,0], . . ., C[1,k-1]. The
dynamic equation
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k=1

is also solvable in order-recursive fashion after first solving
the wrench coefficients through C,[0.k-1] and joint-rate
coeflicients C[0,k].

Model-Predictive Control.

A type of controller for a walking machine, robot, or other
dynamical system employs a differential-equation model of
that system inside a computer equipped with sensors to deter-
mine the initial state of the system together with actuators to
direct the system to a desired state at the end of a time step.
Applying control parameters to the model directs that repre-
sentation of the system along a trajectory towards that goal,
and those parameters are adjusted to minimize the deviation
from that goal along with cost functions applied to the trajec-
tory. The actual system is then driven with those control
parameters, the state of that system at the end of the time step
is measured with the sensors, and any departure of the actual
state from the desired state is taken into account in formulat-
ing the goal for the next time step according to a feedback
process updated with each time step.

The control parameters can take the form of power series
coefficients for actuated displacements of a subset of the
active joints or actuator-applied forces to selected joints. The
preceding Algorithmic Differentiation process determines of
the sensitivities of link trajectories, or other variables
expressed in power series, to variation in the control param-
eters. The combined set of control parameters and polynomial
free parameters may be adjusted to jointly minimize the
residual derivative or integral quantities together with the
deviation from the desired trajectory.

What I claim is:
1. A dynamic predictor system for an articulated linkage
providing a system of links connected by joints comprising:
an electronic computer executing a stored program held in
non-transitory media to:

(1) store a system of differential equations describing a rate
of change of joint state in each joint as a function of other
joint states, the joint states describing positions of the
joint, spring forces acting on the joint and momentum in
connecting links;

(2) receive a first joint state;

(3) approximate a second later joint state using a collection
of multi-term polynomials corresponding to the differ-
ential equations, the polynomials having at least one first
term matching the first joint state and multiple later
terms related to derivatives of a predicted joint trajectory
from the first joint state evaluated at the second joint
state;

(4) evaluate the multiple polynomial terms by minimizing
residuals between corresponding differential equations
and multi-term polynomials by performing a series
expansion of the residuals; and

(5) use the evaluated multi-term polynomials to output a
prediction of the second joint state;

further including a set of actuators for movement of the
joints; and

wherein the electronic computer further executes the step
of receiving a command indicating a desired second
joint state and providing feedforward to the actuators
based on the predited second joint state.
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2. The dynamic predictor of claim 1 wherein the multi-term
polynomials are Hermite polynomials.

3. The dynamic predictor of claim 1 including multiple first
terms related to multiple derivatives of the first joint state.

4. The dynamic predictor of claim 1 wherein at least one
first term is only the first joint state.

5. The dynamic predictor of claim 1 wherein step (4) mini-
mizes multiple derivative orders of the residuals.

6. The dynamic predictor of claim 5 wherein the series
expansion is a Taylor series expansion.

7. The dynamic predictor of claim 6 wherein the Taylor
series expansion is minimized by algorithmic differentiation.

8. The dynamic predictor of claim 7 wherein the algorith-
mic differentiation determines a Jacobian matrix.

9. The dynamic predictor of claim 1 further including a set
of sensors for monitoring joint positions.

10. A method of controlling an articulated linkage provid-
ing a system of links connected by joints, the method com-
prising:

executing in an electronic computer a stored program held

in non-transitory media to

(1) store a system of differential equations describing arate

of'change of joint state in each joint as a function of other
joint states, the joint states describing positions of the
joint, spring forces acting on the joint and joint momen-
tum;

(2) receive a first joint state;

(3) approximate a second later joined state using a system

of multi-tem polynomials corresponding to the differen-
tial equations, the polynomials having first terms match-
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ing the first joint state and multiple later terms related to
derivatives of a predicted joint trajectory from the first
joint state evaluated at the second joint state;

(4) evaluate the multiple later terms by minimizing residu-
als between the corresponding differential equations and
multi-term polynomials by performing a series expan-
sion of the residuals; and

(5) use the evaluated multi-term polynomials to output a
prediction of the second joint state:,

further including a set of actuators for movement of the
joints; and

further including the step of receiving a command indicat-
ing a desired second joint state and providing feedfor-
ward to the actuators based on the predicted second joint
state; and moving the joints based on the provided feed-
forward.

11. The method of claim 10 wherein the multi-term poly-

nomials are Hermite polynomials.

12. The method of claim 10 wherein step (4) minimizes

multiple derivative orders of the residuals.

13. The method of claim 10 wherein the series expansion is

a Taylor series expansion.

14. The method of claim 13 wherein the Taylor series

expansion is minimized by algorithmic differentiation.

15. The method of claim 14 wherein the algorithmic dif-

ferentiation determines a Jacobian matrix.

16. The method of claim 10 further including a set of

sensors for monitoring joint positions.

#* #* #* #* #*
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