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1
FAST STATISTICAL IMAGING
RECONSTRUCTION VIA DENOISED
ORDERED-SUBSET
STATISTICALLY-PENALIZED ALGEBRAIC
RECONSTRUCTION TECHNIQUE

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH

This invention was made with government support under
EB009699 and CA169331 awarded by the National Institutes
of' Health. The government has certain rights in the invention.

CROSS-REFERENCE TO RELATED
APPLICATIONS

N/A
BACKGROUND OF THE INVENTION

The field of the invention is systems and methods for recon-
structing medical images. More particularly, the invention
relates to systems and methods for reconstructing medical
images using an image reconstruction framework that
accounts for statistical noise so as to increase the attainable
signal-to-noise ratio in the reconstructed images.

In recent years, statistical imaging reconstruction has been
widely introduced by different CT manufacturers into clinics
as a vehicle to reduce radiation dose levels. In these methods,
an objective function with a statistically weighted data fidel-
ity term and an often highly nonlinear regularization term is
minimized to search for a highest quality CT image with
lowest noise level to enhance contrast-to-noise ratio to
achieve low dose CT imaging. However, a bottleneck to
widely use these developed tools for clinical utility is funda-
mentally impeded by the slow reconstruction speed, often at
the order of hours, for reconstruction of a clinical image
volume. This is primarily due to the tradeoff between conver-
gence speed and parallelizability of the used optimization
techniques. An optimization technique with high conver-
gence speed often has low parallelizability and vice versa.

It would therefore be desirable to provide systems and
methods for reconstructing medical images, in which high
convergence speeds can be achieved with high parallelizabil-
ity while reconstructing images with the benefits of statistical
reconstruction techniques.

SUMMARY OF THE INVENTION

The present invention overcomes the aforementioned
drawbacks by providing a method for reconstructing an
image of a subject using a medical imaging system, in which
data is acquired using the medical imaging system and the
image is reconstructed using an iterative statistical image
reconstruction that is decomposed to include in each iteration
an image reconstruction step without regularization and a
denoising step that includes regularization.

It is another aspect of the invention to provide a method for
reconstructing an image of a subject using a medical imaging
system, in which data is acquired using the medical imaging
system and the image is reconstructed by iteratively minimiz-
ing a cost function such that during each iteration an estimate
of'the image is updated using a step value that is calculated by
weighting a derivative of the cost function by a matrix that
accounts for noise in the acquired data.

It is yet another aspect of the invention to provide a method
for reconstructing an image of a subject. Data is acquired
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using a medical imaging system and the image is iteratively
reconstructed from the acquired data. The image reconstruc-
tion includes establishing a cost function to minimize, select-
ing an estimate of the image, and evaluating the cost function
for the estimate. The estimate is updated by adding a step
value to the estimate. This step value is calculated by produc-
ing synthesized data by applying a system matrix to the esti-
mate, producing difference data by calculating a difference
between the synthesized data and the acquired data, produc-
ing noise-weighted data by applying a noise-weighting
matrix to the difference data, the noise weighting matrix
including an estimate of noise, and producing the step value
by applying a transpose of the system matrix to the noise-
weighted data. A stopping criterion is then evaluated. The
updated estimate is stored as the image of the subject when
the stopping criterion is satisfied, and when the stopping
criterion is not satisfied, the updated estimate is stored as the
estimate and the reconstruction steps are repeated.

The foregoing and other aspects and advantages of the
invention will appear from the following description. In the
description, reference is made to the accompanying drawings
which form a part hereof, and in which there is shown by way
of'illustration a preferred embodiment of the invention. Such
embodiment does not necessarily represent the full scope of
the invention, however, and reference is made therefore to the
claims and herein for interpreting the scope of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a flowchart setting forth the steps of an example of
an image reconstruction method that is decomposed into a
statistically-weighted update step and a denoising step;

FIG. 2 is an illustrative example of ordered subsets of
tomographic data;

FIG. 3A is an example of an x-ray computed tomography
(“CT”) system;

FIG. 3B is an example of a block diagram of the x-ray CT
system of FIG. 3A; and

FIG. 4 is a block diagram of an example of a magnetic
resonance imaging (“MRI”) system.

DETAILED DESCRIPTION OF THE INVENTION

Described here are systems and methods for iteratively
reconstructing images from data acquired using a medical
imaging system, in which a nonlinear image reconstruction
problem is decomposed into linear sub-problems that can be
more efficiently solved. As such, both high convergence
speed and high parallelizability can be achieved for statistical
image reconstruction algorithms. In general, a statistical
image reconstruction process is decomposed into a statisti-
cally-penalized algebraic reconstruction update sequence
with ordered subsets applied on view angles. After this step,
the reconstructed image is then denoised using a regularizer.

The systems and methods of the present invention are
advantageously suited for medical imaging applications,
such as time-resolved computed tomography (“CT”), cone-
beam CT, cardiac imaging CT, contrast-enhanced CT, x-ray
angiography, magnetic resonance imaging (“MRI”), positron
emission tomography (“PET”), single photon emission com-
puted tomography (“SPECT”), optical coherence tomogra-
phy (“OCT”), and so on. The systems and methods are also
advantageously suited for reducing noise in the reconstructed
images because the image reconstruction process accounts
for noise.

In general, the image reconstruction operates by iteratively
minimizing a cost function such that during each iteration, the
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estimate of the reconstructed image is updated using a step
size that is computed using a noise-weighted first derivative
of the cost function. An additional denoising step can be
implemented at each iteration using a regularization function.
This differs from traditional iterative image reconstructions,
which incorporate the regularization directly into the cost
function, thereby increasing the complexity of the optimiza-
tion problem. This method, and several examples ofits imple-
mentation, are described below in detail.

The systems and methods of the present invention make
use of transforming a nonlinear optimization problem into a
series of consecutive linear optimization problems and noise
reduction steps. Using this approach, a high-dimensional
optimization problem can be transformed into a separable
convex optimization problem that constitutes many sub-prob-
lems with significantly reduced dimensions. A purely
numerical problem is thereby transformed into a combination
of numerical and analytical computations. Moreover, with
this approach, a coupled optimization problem with an
inseparable system matrix can be transformed into a problem
with a separable system matrix, thereby further reducing the
dimension of numerical computation. As a consequence, the
systems and methods of the present invention can be imple-
mented in a parallelizable manner, which allows for the use of
parallelizable computational architectures, such as graphic
processor units (“GPUs”), to improve image reconstruction
times.

As a non-limiting example, a discussion of iterative recon-

struction in the context of x-ray computed tomography
(“CT”) is now provided. It will be readily appreciated by
those skilled in the art, however, that the systems and methods
of the present invention are readily adaptable for image
reconstruction in other medical imaging modalities, includ-
ing other x-ray imaging geometries, magnetic resonance
imaging (“MRI”), positron emission tomography (“PET”),
single photon emission computed tomography (“SPECT”),
and so on.
In order to discuss iterative image reconstruction in CT, the
physical model of the detection system is first described. The
distribution of x-ray attenuation coefficients of an image
object is defined as a compactly supported function, u:Q—R
where Q ©R? is the spatial support of the object. The x-ray
projection measurement vector, y, can be defined as, yeR™»
with [y],=y, storing a set of line integrals over the lines
{1,=R*ie[1,N,,, 1} such that,

7Oj.

;i:flimgdsﬂ (1).
For the purposes of numerical representation, the attenuation
coefficient distribution is discretized using basis functions
B,:R*—R describing the voxelized MxNxP image xeR***

with [x],=x;. The voxel approximation can be written as,

MNP

H~ Y xR,

J=1

@

In this representation, the approximate x-ray projection—
typically called forward projection and denoted by the tilde
here—becomes,

MNP

S’if ds x;B;(x)
o Z iBj

J=1

©)
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-continued
MNP

3, = Z xjf dsBj(x)
_ rina

J=1 !

MNP

= A
=

where AeR™»7*¥ with [A] ;A 1s the so-called “system
matrix,” which in this instance is the intersection length of the
i? line with the j* voxel. Eqn. (3) can thus be rewritten as,

@)

It will be appreciated by those skilled in the art that the
system matrix, A, will vary depending on the medical imag-
ing system and modality. For instance, in MRI, the system
matrix can represent a Fourier transform that relates k-space
data to the image domain.

Following from Eqn. (4), image reconstruction can pro-
ceed as follows. First, a cost function (also referred to as an
objective function) to be minimized is established or other-
wise selected. By way of example, the cost function can be,

y=Ax

Fx)=Yoldx-yllp’ )

where the weighted norm, ||Ax-y]|,?, is,

l4x-Hlp*=(4x-y) D(4x-y) (6);

with the diagonal matrix, D, given by,

1 .
L)

where 0,2 is the noise variance for the i” measured data
sample; therefore, the diagonal matrix, D, accounts for noise
in the measured data samples by assigning a lower weight to
higher noise data and a higher weight to lower noise data.
Using the cost function in Eqn. (5), a solution to the image
reconstruction problem can be formulated as,

(1 @)
D = diagy —,
a1

. 1 ®
3 = argmin( S 1A4x - Y13 .

The cost function can also incorporate a regularization
function that that penalizes the roughness of the estimated
image. This regularization can decrease the condition number
of'the image reconstruction problem and, therefore, can speed
convergence. By way of example, the cost function of Eqn.
(5) can be modified to incorporate a regularization function as
follows:

Fey a5 A R() ©);

where R(X) is a regularization function and is a regular-
ization parameter that selectively scales the influence of the
regularization function. The regularization function can be
selected as any number of different functions, including a
total variation (“T'V”’) function, an absolute value function, a
quadratic function, a general power function, an indicator
function, a Huber function, a q-generalized Gaussian Markov
random field (“q-GGMRF”) function, a Fair potential, and a
prior image-constrained compressed sensing (“PICCS”)
function, such as,

RE)=0f[ W1 (-xp)||; +{1-0) [¥x] (10).
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To solve the image reconstruction problem in Eqn. (9), the
derivative (e.g., the gradient) of the data fidelity term and of
the prior term both need to be calculated. However, these two
terms operate in different spaces: the data fidelity term oper-
ates in projection data space while the prior term operates
image space. Therefore, the contributions from the two terms
often have dramatically different amplitudes, in which case
the regularization parameter, A, is used to balance the contri-
butions from each term. As will now be described in detail, it
is a discovery of the inventors that these two terms can be
separately optimized, thereby providing a mathematically
rigorous procedure to make the optimization of the two terms
independent while still guaranteeing convergence.

Using the cost function in Eqn. (9), the image reconstruc-
tion problem can be formulated as,

. 1 (1
3 = argmin{ 5 l4x - ¥l + R0

which can be recast as,

argminig, () + g2(0k (12
where g, (x) and g,(x) are convex functions defined as,

g1(X)=Y|| A5y p*=(dx-y) D(dx-y) (13

&(*)=MR()

The optimality condition for the image reconstruction
problem in Eqn. (11) thus becomes,

(14).

9 g =-Va ) 1s)

=(-Vg ) -x.

Using a proximity operator technique, a fixed point equa-
tion of the following form can derived from Eqn. (15):

(16);

where P, (z) is a proximity operator of an arbitrary vector,
7, to the convex function, g,(x). Generally speaking, the prox-
imity operator P, (z) defines the shortest distance from a point
the vector, z, to the domain of the convex function, g,(x). For
instance, the proximity operator may have the form,

Xpr1=Pg, (- Vg1(x)

1 17
Pyy(@ = argmin{ g2 + 5 e~ 4

During each iteration, the image estimate is updated using
a step value that incorporates the noise statistics in a noise
matrix, D. By way of example, the step value, Ax,, for the
image estimate computed in the n™ iteration of the minimi-
zation can be,

=0, XY ;
Ax,=04TD(4 18

where o is a weighting value, A is the system matrix
described above, A7 is the transpose of the system matrix, D
is the noise matrix, X,, is the image estimate computed in the
n™ iteration of the minimization, and y is the acquired data.
The weighting value can be a single numerical factor or a
numerical matrix. Preferably, the weighting value satisfies
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6

certain mathematical conditions, such as being positive defi-
nite, to ensure convergence of the update sequence. In one
example, the weighting value can simply be set to one, m=1.

The update sequence in Eqn. (18) provides significant flex-
ibility in practice. For instance, a single increment, Ax,,, can
be calculated from all of the measured projection data, or the
increment, Ax,, can be calculated from a subgroup of the
measured projection data. Preferably, when the increment,
Ax,, is calculated from different subgroups, the subgroups are
selected such that the union of all the subgroups covers all of
the measured data. When each individual subgroup of pro-
jection data is used to calculate the increment, Ax,,, one rough
estimate of the image object is generated. Each subsequent
increment, Ax, is calculated from the next subgroup of pro-
jection data, and the initial image in that estimation is set to be
the final image that incorporated the contributions from the
previous subgroups of projection data. In this way, after
accounting for all contributions from the entire projection
data set, an improved estimate of the image can be generated,
but with significantly accelerated speed. This flexibility in
data partitioning and in calculating the contributions from
sequential subgroups of the measured data can be been
referred to as an “ordered-subset” method. Conventional sta-
tistical image reconstruction method that directly incorporate
regularization into the numerical optimization procedure are
incompatible with the ordered-subset approach, thereby lim-
iting the flexibilities offered by that data partitioning scheme.
The other advantage of using ordered subsets is to signifi-
cantly reduce the dimensionality of the effective system
matrix, A, and thus reduce the computational complexity of
the problem.

Using the aforementioned techniques, a general image
reconstruction method can be provided as follows. Referring
now to FIG. 1, a method for reconstructing an image using a
two step iterative procedure that accounts for reconstruction
in one step and denoising in a second step is illustrated. The
method begins with the acquisition of data using a medical
imaging system, as indicated at step 102. The medical imag-
ing system may include, for example, a computed tomogra-
phy (“CT”) system, a cone-beam CT system, a C-arm x-ray
system, a magnetic resonance imaging (“MRI”) system, a
positron emission tomography (“PET”) system, a single pho-
ton emission computed tomography (“SPECT”) system, an
optical coherence tomography (“OCT”) system, and so on.

From this acquired data, a target image of the underlying
object is reconstructed, as generally indicated at 104. The
image reconstruction process can be viewed as one in which
the image reconstruction is decomposed into two distinct
steps: a statistical image reconstruction step without regular-
ization, and a denoising step that includes regularization. As
described above, image reconstruction may be performed
using ordered subsets of data. For instance, ordered subsets of
view angles can be used in tomographic imaging applica-
tions. An example of such ordered subsets is illustrated in
FIG. 2, in which a two subsets of the N total acquired view
angles are shown. These subsets include I<N and J<N view
angles that are uniformly distributed within each subset and
over the range of acquired view angles; however, other
arrangements of view angles can also be implemented. By
operating on ordered subsets rather than local groupings of
view angles, global information can be utilized during the
image reconstruction process.

First, an initial estimate of the target image is selected, as
indicated at step 106. Any suitable estimate can be selected,
including an appropriately sized empty image matrix, with
the choice of initial estimate influencing the convergence
speed of the image reconstruction process.
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The initial estimate is then updated using a step size that is
computed using a statistically-weighted consistency condi-
tion, as indicated at step 108. This step may include the
following. A cost function to be minimized can be selected
and evaluated for the estimate image. The step size can then
be computed and added to the value returned by the cost
function. Generally, the step size is computed as a statisti-
cally-weighted consistency condition. In some embodiments,
this step size can be computed by weighting a derivative of the
cost function by a matrix that accounts for noise in the
acquired data. Examples of these processes are provided
above, but may include producing synthesized data by apply-
ing a system matrix to the estimate image, producing difter-
ence data by calculating a difference between the synthesized
data and the acquired data, producing noise-weighted data by
applying a noise-weighting matrix to the difference data, and
producing the step value by applying a transpose of the sys-
tem matrix to the noise-weighted data.

The updated estimate image is then denoised, as indicated
at step 110. This denoising step includes a regularization
term, while the image reconstruction step did not. As an
example, the updated estimate image can be denoised accord-
ing to the following:

Bt =20 1=, AR () 19);

where x,,, , is the updated estimate image, x,, is the estimate
image provided in step 108, A is a regularization parameter,
R(X,,, ) indicates the application of a regularization function
to the estimate image, and Xi,,,, is the denoised image. The
regularization function can be selected as one of any number
of different functions, including a total variation function, an
absolute value function, a quadratic function, a general power
function, an indicator function, a Huber function, a
q-GGMREF function, a Fair potential, and a PICCS function,
such as the one in Eqn. (10) above.

After the updated estimate image is denoised, a stopping
criterion is evaluated at step 112 to determine whether addi-
tional iterations of the image reconstruction are warranted or
otherwise desired. If the stopping criterion is satisfied, then
the denoised image is stored as the target image at step 114;
otherwise, the denoised image is stored as the estimate image
at step 116 and the image reconstruction process proceeds for
another iteration at step 108.

Having described the image reconstruction method of the
present invention, an example of how it can be utilized to
further improve the signal-to-noise ratio of the target image is
provided. Reduction of radiation dose in CT has been a focus
of the recent CT technology development. There are many
different strategies that have been developed to achieve this
goal. One major category of the methods is to introduce
statistical modeling of the data into reconstruction, as
described above. Inthe second category of method, one major
challenge has been the residual streaking artifacts that are
caused by photon starvation when radiation dose is lowered.
The method of the present invention can be utilized to over-
come these technical challenges.

Inan example ofthis method, a source image for alow-pass
filter is generated using the iterative reconstruction procedure
described above. After this source image is low-pass filtered
to generate a prior image, the prior image is either directly
blended with an unfiltered image to generate a final image, or
the prior image is used together with the synthesized data in a
PICCS reconstruction algorithm to reconstruct a low noise
image with preserved spatial resolution. Either way, the gen-
erated low noise image is linearly combined with the source
image to generate the final image. As a result, the noise
distribution is homogenized by the iterative reconstruction
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procedure to improve the homogeneity of image quality,
especially to improve the low contrast detectability of the
image. The images may be combined as follows:

x=wx+(1-0)x, (20);

where x is the target image in which image quality is
homogenized and SNR improved without degrading spatial
resolution; X, is an image reconstructed using the iterative
image reconstruction method of the present invention,
described above; X, is either the prior image (e.g., the low-
pass filtered version of X, ) or an image reconstructed using a
PICCS image reconstruction method; and w is a weighting
parameter, which may include a diagonal matrix of weighting
parameters.

Referring particularly now to FIGS. 3A and 3B, an
example of an x-ray computed tomography (“CT”) imaging
system 300 is illustrated. The CT system includes a gantry
302, to which at least one x-ray source 304 is coupled. The
x-ray source 304 projects an x-ray beam 306, which may be a
fan-beam or cone-beam of x-rays, towards a detector array
308 on the opposite side of the gantry 302. The detector array
308 includes a number of x-ray detector elements 310.
Together, the x-ray detector elements 310 sense the projected
x-rays 306 that pass through a subject 312, such as a medical
patient or an object undergoing examination, that is posi-
tioned in the CT system 300. Each x-ray detector element 310
produces an electrical signal that may represent the intensity
of'an impinging x-ray beam and, hence, the attenuation of the
beam as it passes through the subject 312. In some configu-
rations, each x-ray detector 310 is capable of counting the
number of x-ray photons that impinge upon the detector 310.
During a scan to acquire X-ray projection data, the gantry 302
and the components mounted thereon rotate about a center of
rotation 314 located within the CT system 300.

The CT system 300 also includes an operator workstation
316, which typically includes a display 318; one or more
input devices 320, such as a keyboard and mouse; and a
computer processor 322. The computer processor 322 may
include a commercially available programmable machine
running a commercially available operating system. The
operator workstation 316 provides the operator interface that
enables scanning control parameters to be entered into the CT
system 300. In general, the operator workstation 316 is in
communication with a data store server 324 and an image
reconstruction system 326. By way of example, the operator
workstation 316, data store sever 324, and image reconstruc-
tion system 326 may be connected via a communication
system 328, which may include any suitable network connec-
tion, whether wired, wireless, or a combination of both. As an
example, the communication system 328 may include both
proprietary or dedicated networks, as well as open networks,
such as the internet.

The operator workstation 316 is also in communication
with a control system 330 that controls operation of the CT
system 300. The control system 330 generally includes an
x-ray controller 332, atable controller 334, a gantry controller
336, and a data acquisition system 338. The x-ray controller
332 provides power and timing signals to the x-ray source 304
and the gantry controller 336 controls the rotational speed and
position of the gantry 302. The table controller 334 controls a
table 340 to position the subject 312 in the gantry 302 of the
CT system 300.

The DAS 338 samples data from the detector elements 310
and converts the data to digital signals for subsequent pro-
cessing. For instance, digitized x-ray data is communicated
from the DAS 338 to the data store server 324. The image
reconstruction system 326 then retrieves the x-ray data from
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the data store server 324 and reconstructs an image therefrom.
The image reconstruction system 326 may include a commer-
cially available computer processor, or may be a highly par-
allel computer architecture, such as a system that includes
multiple-core processors and massively parallel, high-den-
sity computing devices. Optionally, image reconstruction can
also be performed on the processor 322 in the operator work-
station 316. Reconstructed images can then be communicated
back to the data store server 324 for storage or to the operator
workstation 316 to be displayed to the operator or clinician.

The CT system 300 may also include one or more net-
worked workstations 342. By way of example, a networked
workstation 342 may include a display 344; one or more input
devices 346, such as a keyboard and mouse; and a processor
348. The networked workstation 342 may be located within
the same facility as the operator workstation 316, or in a
different facility, such as a different healthcare institution or
clinic.

The networked workstation 342, whether within the same
facility or in a different facility as the operator workstation
316, may gain remote access to the data store server 324
and/or the image reconstruction system 326 via the commu-
nication system 328. Accordingly, multiple networked work-
stations 342 may have access to the data store server 324
and/or image reconstruction system 326. In this manner,
x-ray data, reconstructed images, or other data may
exchanged between the data store server 324, the image
reconstruction system 326, and the networked workstations
342, such that the data or images may be remotely processed
by a networked workstation 342. This data may be exchanged
in any suitable format, such as in accordance with the trans-
mission control protocol (“TCP”), the internet protocol
(“IP”), or other known or suitable protocols.

Referring particularly now to FIG. 4, an example of a
magnetic resonance imaging (“MRI”) system 400 is illus-
trated. The MRI system 400 includes an operator workstation
402, which will typically include a display 404; one or more
input devices 406, such as a keyboard and mouse; and a
processor 408. The processor 408 may include a commer-
cially available programmable machine running a commer-
cially available operating system. The operator workstation
402 provides the operator interface that enables scan prescrip-
tions to be entered into the MRI system 400. In general, the
operator workstation 402 may be coupled to four servers: a
pulse sequence server 410; a data acquisition server 412; a
data processing server 414; and a data store server 416. The
operator workstation 402 and each server 410, 412, 414, and
416 are connected to communicate with each other. For
example, the servers 410, 412, 414, and 416 may be con-
nected via a communication system 440, which may include
any suitable network connection, whether wired, wireless, or
a combination of both. As an example, the communication
system 440 may include both proprietary or dedicated net-
works, as well as open networks, such as the internet.

The pulse sequence server 410 functions in response to
instructions downloaded from the operator workstation 402
to operate a gradient system 418 and a radiofrequency (“RF”)
system 420. Gradient waveforms necessary to perform the
prescribed scan are produced and applied to the gradient
system 418, which excites gradient coils in an assembly 422
to produce the magnetic field gradients G, G, and G, used
for position encoding magnetic resonance signals. The gra-
dient coil assembly 422 forms part of a magnet assembly 424
that includes a polarizing magnet 426 and a whole-body RF
coil 428.

RF waveforms are applied by the RF system 420 to the RF
c0il 428, or a separate local coil (not shown in FIG. 4), in order

20

25

30

35

40

45

50

55

60

65

10

to perform the prescribed magnetic resonance pulse
sequence. Responsive magnetic resonance signals detected
by the RF coil 428, or a separate local coil (not shown in FI1G.
4), are received by the RF system 420, where they are ampli-
fied, demodulated, filtered, and digitized under direction of
commands produced by the pulse sequence server 410. The
RF system 420 includes an RF transmitter for producing a
wide variety of RF pulses used in MRI pulse sequences. The
RF transmitter is responsive to the scan prescription and
direction from the pulse sequence server 410 to produce RF
pulses of the desired frequency, phase, and pulse amplitude
waveform. The generated RF pulses may be applied to the
whole-body RF coil 428 or to one or more local coils or coil
arrays (not shown in FIG. 4).

The RF system 420 also includes one or more RF receiver
channels. Each RF receiver channel includes an RF pream-
plifier that amplifies the magnetic resonance signal received
by the coil 428 to which it is connected, and a detector that
detects and digitizes the [ and Q quadrature components of the
received magnetic resonance signal. The magnitude of the
received magnetic resonance signal may, therefore, be deter-
mined at any sampled point by the square root of the sum of
the squares of the I and Q components:

M:\/12+Q2 (21);

and the phase of the received magnetic resonance signal
may also be determined according to the following relation-
ship:

_— @

The pulse sequence server 410 also optionally receives
patient data from a physiological acquisition controller 430.
By way of example, the physiological acquisition controller
430 may receive signals from a number of different sensors
connected to the patient, such as electrocardiograph (“ECG”)
signals from electrodes, or respiratory signals from a respi-
ratory bellows or other respiratory monitoring device. Such
signals are typically used by the pulse sequence server 410 to
synchronize, or “gate,” the performance of the scan with the
subject’s heart beat or respiration.

The pulse sequence server 410 also connects to a scan room
interface circuit 432 that receives signals from various sen-
sors associated with the condition of the patient and the mag-
net system. It is also through the scan room interface circuit
432 that a patient positioning system 434 receives commands
to move the patient to desired positions during the scan.

The digitized magnetic resonance signal samples produced
by the RF system 420 are received by the data acquisition
server 412. The data acquisition server 412 operates in
response to instructions downloaded from the operator work-
station 402 to receive the real-time magnetic resonance data
and provide buffer storage, such that no data is lost by data
overrun. In some scans, the data acquisition server 412 does
little more than pass the acquired magnetic resonance data to
the data processor server 414. However, in scans that require
information derived from acquired magnetic resonance data
to control the further performance of the scan, the data acqui-
sition server 412 is programmed to produce such information
and convey it to the pulse sequence server 410. For example,
during prescans, magnetic resonance data is acquired and
used to calibrate the pulse sequence performed by the pulse
sequence server 410. As another example, navigator signals
may be acquired and used to adjust the operating parameters
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of'the RF system 420 or the gradient system 418, or to control
the view order in which k-space is sampled. In still another
example, the data acquisition server 412 may also be
employed to process magnetic resonance signals used to
detect the arrival of a contrast agent in a magnetic resonance
angiography (“MRA”) scan. By way of example, the data
acquisition server 412 acquires magnetic resonance data and
processes it in real-time to produce information that is used to
control the scan.

The data processing server 414 receives magnetic reso-
nance data from the data acquisition server 412 and processes
it in accordance with instructions downloaded from the
operator workstation 402. Such processing may, for example,
include one or more of the following: reconstructing two-
dimensional or three-dimensional images by performing a
Fourier transformation of raw k-space data; performing other
image reconstruction algorithms, such as iterative or back-
projection reconstruction algorithms; applying filters to raw
k-space data or to reconstructed images; generating func-
tional magnetic resonance images; calculating motion or flow
images; and so on.

Images reconstructed by the data processing server 414 are
conveyed back to the operator workstation 402 where they are
stored. Real-time images are stored in a data base memory
cache (not shown in FIG. 4), from which they may be output
to operator display 412 or a display 436 that is located near the
magnet assembly 424 for use by attending physicians. Batch
mode images or selected real time images are stored in a host
database on disc storage 438. When such images have been
reconstructed and transferred to storage, the data processing
server 414 notifies the data store server 416 on the operator
workstation 402. The operator workstation 402 may be used
by an operator to archive the images, produce films, or send
the images via a network to other facilities.

The MRI system 400 may also include one or more net-
worked workstations 442. By way of example, a networked
workstation 442 may include a display 444; one or more input
devices 446, such as a keyboard and mouse; and a processor
448. The networked workstation 442 may be located within
the same facility as the operator workstation 402, or in a
different facility, such as a different healthcare institution or
clinic.

The networked workstation 442, whether within the same
facility or in a different facility as the operator workstation
402, may gain remote access to the data processing server 414
or data store server 416 via the communication system 440.
Accordingly, multiple networked workstations 442 may have
access to the data processing server 414 and the data store
server 416. In this manner, magnetic resonance data, recon-
structed images, or other data may exchanged between the
data processing server 414 or the data store server 416 and the
networked workstations 442, such that the data or images
may be remotely processed by a networked workstation 442.
This data may be exchanged in any suitable format, such as in
accordance with the transmission control protocol (“TCP”),
the internet protocol (“IP”), or other known or suitable pro-
tocols.

The present invention has been described in terms of one or
more preferred embodiments, and it should be appreciated
that many equivalents, alternatives, variations, and modifica-
tions, aside from those expressly stated, are possible and
within the scope of the invention.

The invention claimed is:

1. A method for reconstructing an image of a subject using
a medical imaging system, the steps of the method compris-
ing:
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a) acquiring data from the subject using the medical imag-
ing system;

b) reconstructing an image of the subject from the acquired
data using an iterative statistical image reconstruction
that is decomposed to include in each iteration an image
reconstruction step without regularization and a denois-
ing step that includes regularization.

2. The method as recited in claim 1, wherein the image
reconstruction step includes establishing a cost function to
minimize, selecting an estimate of the image, evaluating the
cost function for the estimate, and producing an updated
estimate by adding a step value to the estimate.

3. The method as recited in claim 2, wherein the step value
is calculated by:

producing synthesized data by applying a system matrix to
the estimate;

producing difference data by calculating a difference
between the synthesized data and the acquired data;

producing noise-weighted data by applying a noise-
weighting matrix to the difference data, the noise
weighting matrix including an estimate of noise; and

producing the step value by applying a transpose of the
system matrix to the noise-weighted data.

4. The method as recited in claim 1, wherein the denoising
step includes using a regularizer to denoise the image recon-
structed in the image reconstruction step.

5. The method as recited in claim 4, wherein the regularizer
is at least one of a total variation function, an absolute value
function, a quadratic function, a general power function, an
indicator function, a Huber function, a g-GGMRF function,
and a Fair potential.

6. The method as recited in claim 4, wherein the regularizer
is a PICCS function that includes a term that sparsifies the
image using a prior image of the subject.

7. The method as recited in claim 1, further comprising
homogenizing noise in the image reconstructed in step b) by:

1) forming a denoised image by denoising the image recon-
structed in step b);

ii) combining the denoised image and the image recon-
structed in step b).

8. The method as recited in claim 7, wherein combining the
denoised image and the image reconstructed instep b) further
includes performing a weighted combination.

9. The method as recited in claim 7, wherein forming the
denoised image includes applying a low-pass filter to the
image reconstructed in step b).

10. The method as recited in claim 7, wherein forming the
denoised image further includes selecting the denoised image
as a prior image and updating the denoised image using an
iterative minimization that includes a term that sparsifies an
estimate of the updated denoised image using the prior image.

11. The method as recited in claim 1, wherein step b)
includes reconstructing the image of the subject from ordered
subsets of the data acquired in step a).

12. The method as recited in claim 11, wherein the medical
imaging system comprises a tomographic medical imaging
system and step b) includes reconstructing the image of the
subject from ordered subsets of acquired data that are ordered
by view angles.

13. The method as recited in claim 12, wherein a union of
the ordered subsets of acquired data encompasses the data
acquired in step a).

14. A method for reconstructing an image of a subject using
a medical imaging system, the steps of the method compris-
ing:

a) acquiring data from the subject using the medical imag-

ing system;
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b) reconstructing an image of the subject from the acquired
data by iteratively minimizing a cost function such that
during each iteration an estimate of the image is updated
using a step value that is calculated by weighting a
derivative of the cost function by a matrix that accounts
for noise in the acquired data.

15. The method as recited in claim 14, wherein the matrix
that accounts for noise in the acquired data is a diagonal
matrix that includes values based on noise variances of the
acquired data.

16. The method as recited in claim 15, wherein the diagonal
matrix includes values that are inverses of the noise variances
of the acquired data.

17. The method as recited in claim 14, wherein the cost
function minimized in step b) computes a sum-of-squares of
differences between the acquired data and a forward projec-
tion of an estimate of the image to be reconstructed.

18. The method as recited in claim 14, wherein step b)
includes reconstructing the image of the subject from ordered
subsets of the data acquired in step a).

19. A method for reconstructing an image of a subject, the
steps of the method comprising:

acquiring data from a subject using a medical imaging
system; and
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iteratively reconstructing an image of the subject from the

acquired data by:

1) establishing a cost function to minimize;

ii) selecting an estimate of the image;

iii) evaluating the cost function for the estimate;

iv) producing an updated estimate by adding a step value
to the estimate, the step value being calculated by:
producing synthesized data by applying a system

matrix to the estimate;
producing difference data by calculating a difference
between the synthesized data and the acquired data;
producing noise-weighted data by applying a noise-
weighting matrix to the difference data, the noise
weighting matrix including an estimate of noise;
producing the step value by applying a transpose of
the system matrix to the noise-weighted data;

v) evaluating a stopping criterion; and

vi) storing the updated estimate as the image of the
subject when the stopping criterion is satisfied and
when the stopping criterion is not satisfied, storing the
updated estimate as the estimate and repeating steps
iii)-v).
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