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1
SYSTEM AND METHOD FOR GRADIENT
ASSISTED NON-CONNECTED AUTOMATIC
REGION (GANAR) ANALYSIS

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH

This invention was made with government support under
CA136927 awarded by the National Institutes of Health. The
government has certain rights in the invention.

CROSS-REFERENCE TO RELATED
APPLICATIONS

N/A
BACKGROUND OF THE INVENTION

The field of the invention is image analysis and processing.
More particularly, the invention relates to systems and meth-
ods for processing and segmenting images, for example, for
use in therapy planning, such as for radiation therapy.

Many modern medical treatments rely heavily on planning
procedures that utilize medical images to facilitate the plan-
ning. For example, modern radiation therapy procedures are
preceded by substantial planning processes that dictate how
the radiation therapy will be performed. As another example,
robotically-driven surgical procedures, include radiosurgery
procedures, rely on extensive planning. Not surprisingly, the
effectiveness of any particular planning procedure is neces-
sarily limited by the detail and accuracy of the underlying
information used for planning.

In treatment planning procedures, medical images provide
the fundamental basis of information upon which planning is
conducted. Traditionally, many planning procedures have
relied upon anatomical images, such as are readily provided
by computed tomography (CT) or magnetic resonance (MR)
imaging systems. These and other modalities provide excep-
tional anatomical information, but often struggle to impart
any physiological information.

More recently, imaging modalities, such as positron emis-
sion tomography (PET), have become a prevalent resource in
medical planning because PET images (and other such imag-
ing modalities, such as single photon emission tomography
(SPECT) and the like) provide extensive physiological and/or
biological information that is unavailable from imaging
modalities such as CT and MR systems. For example, PET, in
particular, has become a common tool used for radiotherapy
target definition and for treatment assessment. PET images
provide functional information that can be incorporated into
the localization and planning process to further improve
tumor delineation, especially when tumors are difficult to
define from anatomical images, such as provided by CT sys-
tems, or when the tumor boundaries are not easily distin-
guished from the normal surrounding tissue. Another reason
for integrating PET in the gross tumor volume (GTV) defini-
tion is its higher sensitivity and specificity for malignant
disease. Therefore, a reliable and robust segmentation
method is of utmost importance, given that under-dosing a
tumor may lead to recurrence while over-dosing of the normal
surrounding tissue could lead to severe side effects to the
patients. Unfortunately, PET images provide poor anatomical
detail and, as a result of this limitation and others, segmenta-
tion can be difficult.

Multiple approaches for segmentation have been proposed
in the literature, but the most prevalent approach for auto-
segmentation of PET target volumes is threshold segmenta-
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tion, based on fixed uptake values or local contrast. More
sophisticated auto-segmentation approaches include gradi-
ent-based, region-growing, texture-feature, and statistical-
based segmentation methods. All of these methods have addi-
tional drawbacks associated with necessary parameter
determination during the pre-processing steps. For example,
in the case of the gradient-based approach, a pre-processing
step using a bilateral filter is required to smooth the image. In
the case of feature-based methods, a training data set is
required and serves as a limiting factor in the accuracy. In the
statistical approach, initial class estimates are required. The
need of pre-processing steps or additional information make
the use of these algorithms more complicated and the out-
come dependent on choices made by the user. Particularly in
light of the requirement of user input, these methods can have
substantial variability.

In addition, PET images are affected by inherent uncertain-
ties, such as physical, biological, and technical factors. The
physical factors include acquisition mode and image recon-
struction parameters. Biological factors refer to glucose level
in the blood, uptake periods, and motion, among others. The
technical factors include, but are not limited to, residual activ-
ity in the syringe, injection and calibration time, and incorrect
synchronization of clocks of PET/CT and dose calibrator.

Therefore, it would be desirable to have a system and
method for therapy planning, such as radiation therapy treat-
ment planning, that benefits from the important information
that can be derived from medical images including functional
information, such as PET images and the like, but does not
suffer from the limitations and uncertainties inherent in tra-
ditional planning methods, such as uncontrolled variability,
such as created by user input or user variations.

SUMMARY OF THE INVENTION

The present invention overcomes the aforementioned
drawbacks by providing a system and method for parameter-
free, auto-segmentation. For example, the present invention
may be used for radiotherapy target definition, by using a
combination of up to three different stages that may include
generation of multiple highly discriminate texture feature
images, a parameter-free, non-connected region-Growing
(NCRG) to determine a desired segmentation for each image
yielding multiple region of interest (ROI), and determination
of'a tumor region using a synthesis and analysis algorithm. As
described hereafter, this combination of stages may be
referred to as a gradient assisted non-connected automatic
region (GANAR) technique.

In accordance with one aspect of the invention, a method is
disclosed for programming operation of a radiation therapy
system to deliver radiation therapy to a subject. The method
includes acquiring medical images of the subject including
functional information and anatomical information about the
subject and acquiring texture feature images. The method
also includes using the medical images and the texture feature
images, determining a plurality of segmentation surfaces by
minimizing a relationship between a region growing algo-
rithm that selects a region of interest (ROI) to determine a
given segmentation surface and cost function for evaluating
the given segmentation surface. The method further includes
synthesizing the plurality of segmentation surfaces into a
segmentation report and using information from the segmen-
tation report to program operation of the radiation therapy
system for a delivery of radiation therapy to the subject.

In accordance with another aspect of the invention, a sys-
tem is disclosed for processing medical images of a subject.
The system includes a communications connection config-
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ured to acquire medical images of the subject including func-
tional information and anatomical information about the sub-
ject and a non-transitory storage medium having stored
thereon texture feature images. The system includes a com-
puter system configured to communicate with the communi-
cations connection to receive the medical images and com-
municate with the non-transitory storage medium to access
the texture images. The computer system is also configured to
determine, using the medical images and the texture feature
images, a plurality of segmentation surfaces by iteratively
adjusting a relationship between a region growing algorithm
that selects a region of interest (ROI) to determine a given
segmentation surface and cost function for evaluating the
given segmentation surface. The computer system is further
configured to generate a report using the plurality of segmen-
tation surfaces indicating at least boundaries between ana-
tomical structures with functional differences in the medical
images.

The foregoing and other aspects and advantages of the
invention will appear from the following description. In the
description, reference is made to the accompanying drawings
which form a part hereof, and in which there is shown by way
ofillustration a preferred embodiment of the invention. Such
embodiment does not necessarily represent the full scope of
the invention, however, and reference is made therefore to the
claims and herein for interpreting the scope of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a schematic illustration of a radiation therapy
system and computer system configured to in accordance
with the present invention and designed to communicate with
the radiation therapy system.

FIG. 2 is a flow chart setting forth exemplary stages and
steps of a method in accordance with the present invention
that may be used with the systems of FIG. 1.

FIG. 3 is a schematic diagram of a process for texture
feature image generation in accordance with the present
invention.

FIG. 4 is a flow chart setting forth the steps of a non-
connected region growing (NCRG) algorithm in accordance
with the present invention.

FIG. 5 is a flow chart setting forth the steps of a region
assessment process in accordance with the present invention.

FIG. 6 is a flow chart setting forth the steps of a process for
final region determination in accordance with the present
invention.

DETAILED DESCRIPTION OF THE INVENTION

Referring to FIG. 1, an example of therapy system 100 is
illustrated. In particular, an intensity-modulated radiation
therapy (“IMRT”) system 100 is illustrated. As will be
described, the present invention provides systems and meth-
ods that can be used for therapy and medical procedure plan-
ning. In this regard, the present invention may be used with
therapy system, such as an IMRT system, and other therapy
systems, including other radiation therapy systems, such as
stereotactic radiation systems (radiosurgery systems), par-
ticle therapy, and various other therapy and medical proce-
dure planning.

The illustrated system 100 includes a radiation source 102,
such as an x-ray source, that is housed at an end of a rotatable
gantry 104 that rotates about a rotation axis 106. The rotatable
gantry 104 allows the radiation source 102 to be aligned in a
desired manner with respect to a target volume 108 in a
subject 110 positioned on a patient table 112. A control
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mechanism 114 controls the rotation of the gantry 104 and the
delivery of radiation from the radiation source 102 to the
target volume 108. The system 100 includes a computer 116
that receives commands and scanning parameters from an
operator via a console 118, or from a memory or other suitable
storage medium or other networked system. That is, a net-
worked workstation 120 may be coupled to the system 100.
As will be described in further detail, the computer 116 or
networked workstation 120 allows the operator to observe
data, including images of the subject 110 that may be used to
create, review, or modify a treatment plan.

Theradiation source 102 produces a radiation beam 122, or
“field,” that is modulated by a collimator 124. The collimator
124 may include a multileaf collimator that is composed of a
plurality of independently adjustable collimator leaves. In
such a configuration, each leaf in the collimator 124 is com-
posed of an appropriate material that inhibits the transmission
of radiation, such as a dense radio opaque material, and may
include lead, tungsten, cerium, tantalum, or related alloys.

The radiation source 102 is mounted on the rotatable gan-
try 104 that rotates about the rotation axis 106 so that the
radiation beam 122 may irradiate the target volume 108 in the
subject 110 from a variety of gantry angles, 0,. The radiation
source 102 is controlled by a radiation controller 126 that
forms a part of the control mechanism 114, and which pro-
vides power and timing signals to the radiation source 102.

A collimator controller 128, which forms a part of the
control mechanism 114, controls the movement of each of'the
collimator leaves in and out of its corresponding sleeve. The
collimator controller 128 moves the collimator leaves rapidly
between their open and closed states to adjust the aperture
shape of the collimator 124 and, therefore, the shape and
fluence of the radiation beam 122. The collimator controller
128 receives instructions from the computer 116 to allow
program control of the collimator 124.

A gantry controller 130, which forms a part of the control
mechanism 114, provides the signals necessary to rotate the
gantry 104 and, hence, to change the position of the radiation
source 102 and the gantry angle, 6,, of the radiation beam 122
for the radiation therapy. The gantry controller 130 connects
with the computer 116 so that the gantry 104 may be rotated
under computer control, and also to provide the computer 116
with a signals indicating the gantry angle, 8,, to assist in that
control. The position of the patient table 112 may also be
adjusted to change the position of the target volume 108 with
respect to the radiation source 102 by way of a table motion
controller 132, which is in communication with the computer
116.

During operation of the system 100, a therapy plan is used
to direct the system 100 to control components of the system
100, such as the radiation controller 126, collimator control-
ler 128, gantry controller 130, and table motion controller 132
to carry out a radiation therapy plan. For example, the colli-
mator controller 128 receives, from the computer 116, seg-
mentation information indicating the aperture shape to be
used for each gantry angle, 0,, during each sweep of the
radiation source 102. The segmentations describe the inten-
sity of the radiation beam 122 that is desired for each gantry
angle, 0,. Likewise, the gantry controller 130 and table
motion controller 132 receive location and position informa-
tion to coordinate the location of the radiation beam 122 and
the patient 110.

As will be described, the present invention provides a sys-
tem and method that may be integrated with the computer 116
of the system 100 or used with other systems, such as the
networked workstation 120, to create and implement medical
plans, such as plans for therapies including radiation therapy
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plans, to be implemented with the system 100 of FIG. 1 or any
of a variety of other medical treatment or therapy systems.
Thus, all of the components of the system 100 and, in par-
ticular, the radiation controller 126, collimator controller 128,
gantry controller 130, and table motion controller 132 may be
controlled and operated based on the plans or reports gener-
ated using the present invention.

Referring to FIG. 2, one implementation of the present
invention can be described as a gradient assisted non-con-
nected automatic region (GANAR) method including a plu-
rality of steps 200 can be grouped into three different stages
202, 204, 206. The first stage 202 may include generation of
multiple, such as five, highly discriminate texture feature
images. The second stage 204 may include applying a param-
eter-free, non-connected, region-growing (NCRG) based on,
for example, two assessment functions to determine a desired
segmentation for each image yielding multiple, such as
twelve, region of interest (ROI). The third stage 205 may
include creating a report indicating the tumor region and/or
other therapy planning indicators using an algorithm, such as
a simultaneous truth and performance level estimation
(STAPLE) algorithm. This report can be used for creating or
information therefrom included in a radiation therapy plan.

More particularly, the process steps 200 begin at process
block 208 with the acquisition of image data. The “acquisi-
tion” may include the acquiring and reconstructing of image
data into images, such as PET images or any other imaging
modality suitable for a given planning procedure. Also, the
“acquisition” may include accessing previously acquired
imaging data or images.

In accordance with one aspect of the invention, multiple
highly discriminate texture feature images may be used, as
will be described, to segment distinct properties of a given
target in the images, such as a tumor, with the parameter-free,
non-connected region-growing algorithm of the second stage
204.

The purpose of the first stage 202 is to identify texture
features selections with desirable discriminate power
between classes. In the following example, two classes may
be used that correspond to tumor and background tissue.
However, one of ordinary skill in the art will readily appreci-
ate that other classes may be utilized for other medical pro-
cedures and procedure planning. The discriminatory power of
images may be determined, for example, based on the Fish-
er’s discriminate ratio (SFDR). Thus, in accordance with one
aspect of the invention the texture features images may be
designed to possess high-discriminatory, power between
tumor and background structures. These features may include
first-order (mean and median) and high-order (long run
emphasis, long run low gray-level emphasis, and long run
high gray-level emphasis). Thus, five images may be used
that, together with the original raw image (for a total of six
images), are then passed to process block 214 to perform an
initial segmentation. However, other images are also contem-
plated.

Thus, in one configuration, five highly discriminate texture
feature images may be used. At process block 210 multiple
texture feature selections are provide that are used at process
block 212 to generate texture features images.

In accordance with one implementation, an entire texture
feature image may be used, unlike traditional uses of texture
feature images, in which a feature bank is created from a
training data set based on known lesion site and background.
As such, the present invention does not require a training data
set. Instead, texture feature images can be generated, for
example, from a desired image set, such as 18F-FDG PET
images, and used for segmentation. Once the texture features
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have been identified using a benchmark data set, these images
can be reused for each new iteration of the process 200 for
each new set of image data 208. Thus, generating a new
texture feature is not necessary for each iteration and, instead,
process block 212, may simply include accessing the texture
features image(s).

Referring to FIG. 3, one example of a method 300 for
creating or selecting texture images in accordance with the
present invention is illustrated. The method 300 in this
example uses patient diagnostic reports from PET images for
tumor localization. Amira software (Visage Imaging) was
used for tumor region identification to define, across a series
ofimages, a tumor location 302, a RO1304, and an ROI+ 306.
In particular, a tumor location 302 may be, as shown, an axial
slice with the tumor location. This can be correlated with an
ROI304. The tumor location 302 and ROI 304 were identified
and a margin of four pixels was added to this ROl on the x and
y axes to define the ROI+ 306, to ensure that the texture
feature images are generated inside the region of interest.
Fifty texture feature images were generated from the ROI+
306 as part of the development process. The calculation of all
features (except first-order features) was performed using the
SUVs scaled to 256 intensity levels, assigning 0 to the mini-
mum and 255 to the maximal intensity of the PET image. The
texture feature images were generated on a voxel-by-voxel
basis, taking the mean value obtained from 3 planes (or
patches) of a 3x3x3 cube 308 centered on each PET image
voxel of the ROI+ 306. In this way, each voxel of the ROI+
306 was transformed into a texture feature voxel, whose value
represents the average texture feature calculated with all the 3
local patches (axial, coronal and sagittal) of the 3x3x3 cube
around the current voxel 310. For example, some texture
feature images are illustrated that correspond to the mean
(first-order) f1, the sum average (second-order feature calcu-
lated from the gray level co-occurrence matrix (GLCM)) f14,
the long run low gray-intensity level (high-order feature cal-
culated from the gray level run length matrix (GLRLM)) f41,
the large number emphasis (high-order feature calculated
from the neighboring gray level dependence matrix
(NGLDM)) f44, and the entropy (high-order feature calcu-
lated from the NGLDM) f47. The equations used for these
feature calculations, which are exemplary only are:

TABLE 1

Description of first-order texture features.
In this table p(i, j) is the intensity level extracted
from the patch. k is the size of the patch, N is the number of
elements in the patch, L is the highest intensity value in the patch
and Hi(i) is the value of the probability histogram for intensity value i.

Feature Feature Options
Mean k& oG, 1)
=)0 K=k
i=1 j=1
Median %%
Variance r )
. (e, ) ~mean” _
T N-1 -
=1 =1
Coefficient of variation . Vor
* = ean
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TABLE 1-continued

8
TABLE 2-continued

Description of first-order texture features.
In this table p(i, j) is the intensity level extracted
from the patch. k is the size of the patch, N is the number of
elements in the patch, L is the highest intensity value in the patch
and Hi(i) is the value of the probability histogram for intensity value i.

Feature Feature Options
Skewness r .
. (¢l ) -~
3= Nxo3
[ETR=
Kurtosis r r =
. ol p-w'
6= Nxcgt
[ETR=
Energy L
£ = Z H()?
i
Entropy

L
fy = Z H() « log H()

**The median (f,) is calculated by ordering the intensity values from lowest to highest and
since the patch is an array of odd numbers, the median value is the middle number.**

TABLE 2

Description of second-order texture features
from the gray level co-occurrence matrix (GLCM).
In this table p(i, j) is the GLCM and it is normalized by its sum

(T = 3pt j)].

L1

Ng
p,) = Z P(, j) is the ith entry in the matrix obtained
=
by summing the rows of p(i, j). N is the number of gray levels in I, pi,, u,,
o, and O, are the mean and standard deviations of p, and p,, respectively.

Feature Feature equations
Angular Moment Ng Ng
2
=5 Z Z (p(i, )
Contrast | Ng—1
fio = T Z nszfy(n)
7=0
Correlation Ng Ng
D> ExpG. §) - by
£ 1775
=T fo e
Sum of squares variance Ng Ng

fir= —ZZ(l—u) p(. §)

Inverse difference moment

Ng
pG j)
fiz = TZZ T+G-))?

Sum average 2Ng

fia = TZIPW(U

Sum variance 2Ng

fis = TZ (A= 1f16)py, D
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Description of second-order texture features
from the gray level co-occurrence matrix (GLCM).
In this table p(i, j) is the GLCM and it is normalized by its sum

(T = 306 j)].

iJ

Ng
p, @ = Z P(i, j) is the ith entry in the matrix obtained
=
by summing the rows of p(i, j). N is the number of gray levels in I, pi,, u,,
0, and o, are the mean and standard deviations of p, and p, respectively.

Feature Feature equations
Sum entropy 2Ng
fie =7 Z Pyey ) log p,, ()
Entropy Ng Ng

fir = ——Z Zp(l log (PG, )

Difference variance 1
fis = Torz{pry(k)}

Difference entropy Ng—1

1
fio =~ > Peylog(p, ()
i=0

TABLE 3

Description of second-order texture features
from the gray level co-occurrence matrix (GLCM).

In this table p(i, j) is the GLCM and it is normalized by its sum
Ne

T= Z pG, )] p.@) = Z PG, j) is the ith entry in the matrix obtained
i =

by summing the rows of p(i, j). N is the number of gray levels in I, pi,, u,,

o, and o, are the mean and standard deviations of p, and p,, respectively.

Feature Feature equations
Info. o _ LHXY-HXYL
measure of 20 = 1 max(iX, AY) an
correlation )
b =5 V(1 = exp(=2(HXY2 - HXY)))
Max.l 2, = (Second largest eigenvalue Q),
correlation
coefficient c . 1 p, k)p(j, k)
QG j) == —
T L p.0p,®
Maximal 1 .
probability by = Tmax(p(l, i)
Diagonal Ng Ng
moment
fy = TZZ = 16+ § e = 1,pGs )
Dissimilarity 1 o
s = TZ ZJ: [i-ilpG, j)
Difference 1
energy be = TZ Piy(n)
Inertia

fr7 = %ZZ (i-J’p(i, §)
i
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TABLE 3-continued

10
TABLE 4-continued

Description of second-order texture features
from the gray level co-occurrence matrix (GLCM).
In this table p(i, j) is the GLCM and it is normalized by its sum

(T =306, j)]. _
L4 J=1

by summing the rows of p(i, j). N is the number of gray levels in I, pi,, u,,
o and o, are the mean and standard deviations of p_ and p_ respectively.

Ng
p, @)= Z P(, j) is the ith entry in the matrix obtained

Feature Feature equations
Inverse
difference pG 1)
fog =
moment s TZZ 1+G-7
Sum energy 1 »
fhe = TZn: DPrry(m)
Cluster shade Ng,l Ng-1
fi0= 3 Z Z G +i—pe—u’pls )
Cluster Ng,l Ng-1
prominence

f51 = TZ Z

(i+]- e —up'pd, §)

TABLE 4

Description of high-order texture features
using the gray level run length matrix (GLRLM).

In this table z(i, j) is the GLRLM. N,

: is the

number of gray levels in I and N, is the number of different

run lengths that occur in the image such that the GLRLM is N, x N, size.

Neg Ny

M=) >z )

=1 j=1

Feature

Feature equations

Short run emphasis

Long run emphasis

Gray-level non-uniformity

Run length non-uniformity

Rum percentage

Low gray-level run emphasis

High gray-level run emphasis

£ _ZZ z(i, j)

=1 j=1

Ng Ny

f= Y >z )i

=1 j=1

N N, s
fo= > [Z 6, j)]
PR
Ve o, 2
f35 = [Z 26, j)]
" i=1
=1
Ng Ny

Z(l J)

=

Ng Ny

fi = > 260, i

=1 j=1
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Description of high-order texture features
using the gray level run length matrix (GLRLM).
In this table z(i, j) is the GLRLM. N, is the
number of gray levels in I and N, is the number of different
run lengths that occur in the image such that the GLRLM is N x N, size.

Ng Ny

M:ZZz(i,j)

=1 j=1

Feature Feature equations

Short run low gray-level emphasis

10 _ZZ z(i, J)

=1 j=1

Vg Ny PR
w3y

=L j=1

Short run high gray-level emphasis

Long run low gray-level emphasis Ne N
2(i. )i*
2

=1 =1

Long run high gray-level emphasis Ng N,

fo=) > 2 iy

=1 j=1

TABLE 5

Description of high-order texture features using the
neighboring gray level dependence matrix (NGLDM).

In this table q(i, s) is the NGLDM. N

: is the

Ng s

number of gray levels in I and Npy = Z Z q(, s)

i=1 s=1

Feature Feature equations

£y = — qu(l s)

M =1

Small number emphasis

Large number emphasis Ng s

= ﬁz Z q(i, s)s?

i=1 s=1

fis = Z[Z ati s)]

Ng s

fio = 5 S gt 522

MT] =1

Number non-uniformity

Second moment

Entropy Ng s

£ = __Z Z q(, s) log @, s)

i=1 s=1

Referring again to FIG. 2, in stage two 204, each of the
texture features images and raw images may be segmented
based on at least one cost function that is provided at process
block 216. Again, as stated, the above-described process for
selecting or creating texture features images need not be
repeated unless new classes or new features are desired or
identified. Thus, in many implementations, the process
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begins at the second stage 204 with the raw images and the
texture features images in hand.

In one implementation of the second stage 204, it is con-
templated that the images may be segmented twice, based on
two distinct cost functions that quantify desirable features of
the optimal segmentation. Continuing with the non-limiting
example presented above of five texture features images and
a set of raw medical images, 12 segmentations (6 images
times 2 cost functions) may be treated completely indepen-
dently of all the others. Each segmentation may involve the
combination of two methods, such as a non-connected
region-growing (NCRG) algorithm and a quantitative cost
function. One implementation an NCRG algorithm is pro-
vided by C. Revol and M. Jourlin. A new minimum variance
region growing algorithm for image segmentation. Pattern
Recognition Letters, 18(3), 1997, which is incorporated
herein by reference in its entirety. An implementation of a
quantitative cost function is provided by D. Mumford and J.
Shah. Optimal Approximations By Piecewise Smooth Func-
tions And Associated Variational-Problems. Communica-
tions on Pure and Applied Mathematics, 42(5):577-685,
1989, which is incorporated herein by reference.

Thus, process block 218 can be conceptualized as the com-
bination of two distinct methods into a complementary and
focused process. That is, a first method uniquely determines a
segmentation surface given a value of the maximum inhomo-
geneity and a second a method evaluates cost functions to be
minimized given a segmentation surface. The second stage
204 combines these two in a non-linear minimization routine
with an inhomogeneity parameter, o, being the sole param-
eter that can be discarded when creating the ultimate report of
the segments. In this way, the second stage 204 produces
multiple (using the example above of 6 images, twelve) dis-
tinct contours for each image that serve as the input for the
third stage 206. Thus, as will be further detailed, using the
medical images and the texture feature images, the second
stage 204 is able to determine a plurality of segmentation
surfaces by minimizing a relationship between the region
growing algorithm that selects a region of interest (ROI) to
determine a given segmentation surface and cost functions for
evaluating the given segmentation surface. Put another way,
the relationship between the region growing algorithm and
the cost function is through the inhomogeneity parameter.
The inhomogeneity parameter is used by the region growing
algorithm to determine a largest segmentation surface that
yield a degree of inhomogeneity less than a maximum accept-
able measure of inhomogeneity and is used by the cost func-
tion to evaluate the largest segmentation surface to control
inter-voxel and intra-voxel variances relative to the largest
segmentation surface.

Specifically, the region growing method begins with a
quantitative measure of the maximum acceptable degree of
inhomogeneity (o) and determines the largest segmentation
contours (in three dimensions, the segmentation surface) that
yield a degree of inhomogeneity less than this maximum. On
the other hand, the cost function method begins with segmen-
tation contours and calculates the value of particular expres-
sions based on those contours.

Unlike the above-referenced method by Revolt et al.,
which chose the voxel value standard deviation as the estima-
tor for region inhomogeneity, the present disclosure may use
the coefficient of variation, the standard deviation scaled by
the mean value. Thus, at each iteration of the region growing
process, the criterion C(R)=std(R)/mean(R) less thank or
equal to o is evaluated. Use of the coefficient of variation
causes C(R) to be dimensionless, and independent of the
overall image intensity.
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Referring to FIG. 4, a process 400 for NCRG begins with
generation of the initial seed region 402. © and & are symbols
for erosion and dilation operations, respectively. As will be
described, C(R)=std(R)/mean(R) and o is the stopping crite-
rion. The region can be as small as a one voxel to initialize the
algorithm. However, in order to speed up the process, a
method such as described in Nobuyuki Otsu. A Threshold
Selection Method from Gray-Level Histograms. IEEE Trans-
actions On Systems, Man, And Cybernetics, 9(1), 1979,
which is incorporated herein by reference in its entirety, may
be used, followed by an erosion operation to define the initial
region RO. The erosion operation may be used to ensure that
the initial region is closer to the ROIL.

At process block 404, a dilation operation may be applied
to RO. This operation may use a structuring element that adds
pixels to the binary mask obtained from process block 402.
This new region is named R1. It is worth noticing that in the
first iteration this step will restore RO back to the original
segmentation, such as provided when, for example, the above
method by Otsu is utilized.

At process block 406, a calculation of the coefficient of
variation C(R1) is performed. Thereafter, at decision block
408, R, is checked to see if it is homogeneous with respect to
0. Thatis, whether C(R, ) is less than or equal to o. If not, then
the R, region is trimmed using a left k-contraction method at
process block 410. This loop is repeated until a homogeneous
region is produced, which satisfies the criteria C(R) less than
o.

Once a homogeneous region is produced, at decision block
412, the new region is checked to determine ifit is the same as
the one obtained in the previous iteration. [fnot, then R is set
as a new seed at process block 414 and the process repeats.
The algorithm stops when the regions are the same after two
consecutive iteration, which means that the process of dila-
tion+k-contraction results in the same region.

One potential drawback of NCRG, as with any parametric
algorithm, is that it is necessary to establish the parameter, in
this case 0. However, there is not a priori rule or prescription
on what is the best value for o. Accordingly, the present
disclosure provides two assessment functions that can be used
to define the a parameter.

The assessment functions used may be, for example, a
version of those provided by Mumford and Shah functional.
Because of the discrete nature of the digital images that form
the basis of the overall analysis, for example, as provided in
process block 208 of FIG. 2, it may be advantageous to use a
discrete approach for f; and £, to obtain the characteristics of
the ROI. These functions to define the o parameter are
expressed as:

Eqn. 1
fier= Y Uw-p?+ Y U@ -p) o

*ER(@) <eRC(o)
A== P
x€OR()
where,
RC={x|x¢R)
pr =mean [I(x)]Yx &R

= mean [I(x)]V x & R;

and f, evaluates the total variance of the foreground and
background, favoring regions which closely resemble the
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underlying images mean values and f, aims to assess the
edges (steep transitions) of the ROIL.

The first expression (f;) is the sum of the voxel value
variances inside and outside the contours. The process is built
upon the realization that tumor-background contrast is the
major source of voxel value variance, and the sum of the
variance inside plus the variance outside is minimized by
accurately separating the two regions. The second expression
(f,) a calculation of the total gradient of the voxel values in
each ofthe contour voxels. These processes can be combined
into a minimization problem by searching for the minimum of
its negative. In this regard, the evaluation of the segmentation
surface from the region growing considers inter-voxel and
intra-voxel variances. This process is built upon the realiza-
tion that the result can be used as a maximum for the optimal
segmentation.

A cost function evaluation begins with segmentation con-
tours from NCRG and calculates the value of particular
expressions based on those contours. That is, referring to FIG.
5, a process 500 for the evaluation of the regions through the
assessment functions is performed a region for each a 502.
That is, at process block 504, NCRG defines a region for each
O, resulting in a family of regions R(0) parameterized by the
O parameter. At process block 506, two cost functions are
used to evaluate the regions. That is, the assessment functions
are used to evaluate the regions (R(0)) for each o and possess
a minimum for some value oc, whose region R(oc) defines
the optimal contour.

As an example, these functions may be minimized (opti-
mization process) individually using a Matlab function
known as fminsearch, which requires and initial guess O,
and the function to be minimized. The initial guess used in
each call to fminsearch is taken as the coefficient that corre-
sponds to the region given by an Otsu segmentation.

Referring again to FIG. 2, the output of the process
described with respect to the second stage 204 is passed to the
third stage 206 to, at process block 220, create a final region
report by synthesizing the plurality of segmentation surfaces
into a the report. Ultimately, then, the information from the
report is used to program operation of the radiation therapy
system, such as described with respect to FIG. 1, for a deliv-
ery of radiation therapy to the subject.

Using the example of a set of PET images and five texture
feature images, optimizing f; and f, will lead to two different
segmented regions from the PET images and ten different
segmented regions from the from the texture feature images,
foratotal of twelve regions. The final region can be defined by
synthesizing this information. For example, an expectation
maximization algorithm for simultaneous truth and Perfor-
mance level estimation (STAPLE) method may be used, as
described in S. K. Warfield, K. H. Zou, and W. M. Wells.
Simultaneous truth and performance level estimation
(STAPLE): An algorithm for the validation of image segmen-
tation. IEEE Transactions on Medical Imaging, 23(7), 2004,
which is incorporated herein by reference in its entirety.

The STAPLE algorithm can be used to collect the segmen-
tations, in this case the segmentations, as described above, are
from PET and texture feature images after f1 and {2 optimi-
zation, and calculate a probabilistic estimate of the true seg-
mentation. Thus, referring to FIG. 6, in accordance with the
present implementation 600, the STAPLE method is used to
estimate the performance level of the segmentation by maxi-
mizing the likelihood function P(D, T/p, q), that is,

(p, §) =arg max P(D, T| p, 9); Eqn. 2
Pq

where D is defined as a matrix describing the binary deci-
sions made by each ofthe S segmentations, given by NxS and
(N is the number of voxels contained in the segmented
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images). Thus, as described above, the output of the second
stage can be used to define the matrix D 602 describing the
binary decisions made by each of the S segmentations. Refer-
ring to step 604, p and q are the vectors representing the
sensitivity (fraction of true positives) and specificity (fraction
of true negatives) of the segmented regions S obtained from
the parameter free NCRG described above. The sensitivity
and specificity parameters characterize the performance of
each segmented region, which are set in this work initially to
0.9999.T is a vector of N elements representing the unknown
binary true segmentations, where each voxel has a value of 1
ifit is part of the region of interest, and a value of 0 otherwise.
At step 606, "p, "q are optimized and used, at process block
608 to generate the prior probability map that givens rise, at
block 610 to final region. At process block 608 the user may
provide a confidence level for computing the final region.

Therefore, the present invention provides a system and
method for image-based auto-segmentation that may be used,
for example, in medical planning procedures. The method,
which may be referred to as the gradient assisted non-con-
nected automatic region (GANAR) method, generates texture
feature images to segment distinct properties of the tumor
with a parameter free non-connected region-growing algo-
rithm. An expectation-maximization algorithm is used to
define the final region of interest. The generation of texture
feature images avoids texture feature data banks to character-
ize lesions and normal tissue, making the method applicable
to any lesion site. By incorporating texture feature informa-
tion and automatic parameter optimization, the GANAR
method is less sensitive to acquisition mode and reconstruc-
tion parameters. The present invention is also beneficial for
treatment response assessment, since accurate tumor delin-
eation will lead to more reliable quantitative analysis such as
SUV-based metrics.

The present invention is particularly advantageous because
it provides systems and methods for segmentation that
requires less or no user intervention and that is parameter free.
The present invention advantageously does not depend on any
parameter, and therefore there is no need for system-depen-
dent optimization procedures as it is the case for other seg-
mentation techniques.

The accuracy of the GANAR systems and methods was
assessed using PET-based Monte Carlo phantom as well as
clinical data. As it was shown in this study using PET-based
simulated real lesions, GANAR was able to successfully deal
with irregular lesion shapes and variable activity concentra-
tions and performed better than the threshold-based, gradi-
ent-based, or region-growing segmentation methods. The
techniques can be extended to more than two classes to allow
modeling a combination of inhomogeneous regions within a
given gross tumor volume. In this regard, the present inven-
tion can further enhance the use of GANAR for dose painting.

The robustness of the above-described systems and meth-
ods was assessed using FDG PET/CT images of twenty
patients acquired in 2D and 3D modes, and reconstructed
with varying parameters. In total, ten reconstructions used
within clinical settings per patient were used. The Dice, sen-
sitivity, positive predictive value, and Modified Hausdorff
Distance (MHD) metrics were used to quantify the robust-
ness. GANAR results were compared against threshold-
based, gradient-based and region-growing methods. The
present invention had the highest Dice coefficient, sensitivity,
PPV values (above 0.9), and small MHD (below 0.1 cm),
confirming its robustness to PET acquisition modes and
variation of reconstruction parameters. These results are valid
across different tumor sites such as lung, epiglottis, adrenal
gland, esophagus and metastasis. Based on these findings it
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was demonstrated that the GANAR systems and methods are
more robust than threshold-based, gradient-based and region-
growing methods under varying reconstruction parameters.

The present invention has been described in terms of one or
more preferred embodiments, and it should be appreciated
that many equivalents, alternatives, variations, and modifica-
tions, aside from those expressly stated, are possible and
within the scope of the invention.

The invention claimed is:

1. A method for programming operation of a radiation
therapy system to deliver radiation therapy to a subject, the
method comprising:

acquiring medical images of the subject including func-

tional information and anatomical information about the
subject;

generating texture feature images using the acquired medi-

cal images;

using the medical images and the texture feature images,

determining a plurality of segmentation surfaces by
minimizing a relationship between a region growing
algorithm that selects a region of interest (ROI) to deter-
mine a given segmentation surface and cost function for
evaluating the given segmentation surface;

synthesizing the plurality of segmentation surfaces into a

segmentation report; and

using information from the segmentation report to program

operation of the radiation therapy system for a delivery
of radiation therapy to the subject.

2. The method of claim 1 wherein the relationship between
the region growing algorithm and the cost function is defined
by a single variable.

3. The method of claim 2 wherein the single variable is an
inhomogeneity parameter.

4. The method of claim 1 wherein the relationship between
the region growing algorithm and the cost function is defined
by an inhomogeneity parameter that is used by the region
growing algorithm to determine a largest segmentation sur-
face that yield a degree of inhomogeneity less than a maxi-
mum acceptable measure of inhomogeneity and is used by the
cost function to evaluate the largest segmentation surface to
control inter-voxel and intra-voxel variances relative to the
largest segmentation surface.

5. The method of claim 4 wherein the inhomogeneity
parameter is disregarded when synthesizing the plurality of
segmentation surfaces into a segmentation report.

6. The method of claim 1 wherein the segmentation report
forms a portion of a radiation therapy plan.

7. The method of claim 1 wherein synthesizing the plural-
ity of segmentation surfaces into a segmentation report
includes calculating a probabilistic estimate of a probabilistic
segmentation surface from the plurality of segmentation sur-
faces.

8. The method of claim 1 wherein the synthesizing the
plurality of segmentation surfaces into a segmentation report
includes performing an expectation maximization algorithm.

9. The method of claim 8 wherein the expectation maximi-
zation algorithm includes a simultaneous truth and perfor-
mance level estimation (STAPLE) algorithm.

10. The method of claim 1 wherein the texture feature
images are entire texture feature images.
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11. A system for processing medical images of a subject,
the system comprising:
a communications connection configured to acquire medi-
cal images of the subject including functional informa-
tion and anatomical information about the subject;
a non-transitory storage medium having stored thereon
texture feature images generated based on the acquired
medical images;
a computer system configured to:
communicate with the communications connection to
receive the medical images;

communicate with the non-transitory storage medium to
access the texture feature images;

determine, using the medical images and the texture
feature images, a plurality of segmentation surfaces
by iteratively adjusting a relationship between a
region growing algorithm that selects a region of
interest (ROI) to determine a given segmentation sur-
face and cost function for evaluating the given seg-
mentation surface; and

generate a report using the plurality of segmentation
surfaces indicating at least boundaries between ana-
tomical structures with functional differences in the
medical images.

12. The system of claim 11 wherein the computer system is
further configured to synthesize the plurality of segmentation
surfaces into a segmentation report.

13. The system of claim 12 wherein the computer system is
further configured to calculate a probabilistic estimate of a
probabilistic segmentation surface from the plurality of seg-
mentation surfaces when synthesizing the plurality of seg-
mentation surfaces into a segmentation report.

14. The system of claim 12 wherein the computer system is
further configured to use information from the segmentation
report to program operation of a radiation therapy system for
a delivery of radiation therapy to the subject.

15. The system of claim 12 wherein the computer system is
further configured to perform an expectation maximization
algorithm when the synthesizing the plurality of segmenta-
tion surfaces into a segmentation report.

16. The system of claim 15 wherein the expectation maxi-
mization algorithm includes a simultaneous truth and perfor-
mance level estimation (STAPLE) algorithm.

17. The system of claim 11 wherein the relationship
between the region growing algorithm and the cost function is
defined by a single variable.

18. The system of claim 17 wherein the single variable is an
inhomogeneity parameter that is used by the region growing
algorithm to determine a largest segmentation surface that
yield a degree of inhomogeneity less than a maximum accept-
able measure of inhomogeneity and is used by the cost func-
tion to evaluate the largest segmentation surface to control
inter-voxel and intra-voxel variances relative to the largest
segmentation surface.

19. The system of claim 17 wherein the single variable is
disregarded when generating the report.

20. The system of claim 17 wherein the computer system is
configured to use the single variable as a stopping criteria
when determining the plurality of segmentation surfaces.
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