a2 United States Patent

Basu et al.

US009547603B2

US 9,547,603 B2
Jan. 17,2017

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

")

@

(22)

(65)

(1)

(52)

(58)

I/O MEMORY MANAGEMENT UNIT
PROVIDING SELF INVALIDATED MAPPING

Applicant: Wisconsin Alumni Research
Foundation, Madison, W1 (US)

Inventors: Arkaprava Basu, Madison, WI (US);
Mark D. Hill, Madison, WI (US);
Michael M. Swift, Madison, WI (US)

Assignee: Wisconsin Alumni Research
Foundation, Madison, W1 (US)
Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 171 days.

Appl. No.: 14/012,261
Filed: Aug. 28, 2013

Prior Publication Data

US 2015/0067296 Al Mar. 5, 2015
Int. CL.

GO6F 12/10 (2016.01)
GO6F 12/12 (2016.01)

U.S. CL

CPC ... GOGF 12/1009 (2013.01); GOGF 12/1027
(2013.01); GO6F 12/12 (2013.01)

Field of Classification Search

CPC ... GO6F 12/08; GO6F 12/10; GOGF 12/12;
GOG6F 12/1009; GO6F 12/1027
USPC oo 711/205-207

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

2011/0010502 A1* 1/2011 Wang ..o GO6F 12/121
711/128

2011/0023027 Al1* 1/2011 Kegel ... GO6F 12/10
718/1

2014/0068137 Al* 3/2014 Kegel GO6F 12/1009
711/6

2014/0181461 Al* 6/2014 Kegel GO6F 12/1009
711/207

OTHER PUBLICATIONS

O’Neil, EJ., O’Neil, PE. and G.Weikum, “The LRU-K Page
Replacement Algorithm for Database Disk Buffering”, Proceedings
of the ACM SIGMOD Conference May 1993, Wash. D.C.*

S. Madappa, “Ephemeral Volatile Caching in the cloud”, The Netflix
Tech Blog, Jan. 27, 2012, http://techblog.netflix.com/2012/01/
ephemeral-volatile-caching-in-cloud.html.*

O’Neil et al, “The LRU-K Page Replacement Algorithm for
Database Disk Buffering”, Proceedings of the ACM SIGMOD
Conference May 1993, Wash. D.C.*

Muli Ben-Yehuda, Nadav Amit, Ben-Ami Yassour, Assaf Schuster,
Dan Tsafrir, “Rethinking IOMMU Address Translation” [poster],
1st Technion Computer Engineering (TCE) Conference, 2011.*
Nadav Amit et al.; IOMMU: Strategies for Mitigating the IOTLB
Bottleneck, Author Manuscript; Published in WIOSCA 2010 Sixth
Annual Workshop on the Interaction between Operating Systems
and Computer Architecture; WIOSCA 2010; pp. 1-12; US.

(Continued)

Primary Examiner — Midys Rojas
Assistant Examiner — Tracy A Warren
(74) Attorney, Agent, or Firm — Boyle Fredrickson, S.C.

(57) ABSTRACT

A memory management unit for I/O devices uses page table
entries to translate virtual addresses to physical addresses.

(Continued)

78

84

YES
ACCESS
MEMORY
UPDATE RULE
STATE

90

NOTIFY 05

DELETE PTE
INTLB

DENY
ACCESS

US 9,547,603 B2
Page 2

The page table entries include removal rules allowing the
1/0 memory management unit to delete page table entries
without CPU involvement significantly reducing the CPU
overhead involved in virtualized I/O data transactions.

19 Claims, 2 Drawing Sheets

(56) References Cited

OTHER PUBLICATIONS

Nadav Amit et al, vIOMMU: Efficient IOMMU Emulation;
Research Paper; pp. 1-14; WIOSCA 2010.

Michael M. Swift et al; Improving the Reliability of Commodity
Operating Systems; ACM Journal Name, vol. V, No. N, Month
20YY, pp. 1-33; SOSP 2003: US.

* cited by examiner

U.S. Patent Jan. 17, 2017 Sheet 1 of 2 US 9,547,603 B2

42
\ rel (}4
18 12 -7
ﬂﬁ - S)O 20) 14 » -~
[Zi/ ﬂﬂmﬁ 22
46 w/ o
- /et b 24
A 18 ~
! oo, | ~
48 ..;4 D\@[?\:\ < :28;
26 30, w8
: ; S~ FIG. 1
;/ 54 ! \ RN 38

B

\te]
L
-

’ ’(S 34 38~ \\40 28b
é_> é‘%}_é 5% J
7

68 APPq 62

o]

70 "‘\fé

IOMMU

% FIG. 2

40
-28b
16

U.S. Patent

74

84+

90

Jan. 17,2017

MEMORY
ACCESS

Sheet 2 of 2

US 9,547,603 B2

e e e e aa G M e ev e mem e e e AN ane e W G e

NOTIFY OS

DELETE PTE j‘? -80
IN PT
~_ NO
< PERMISSION™ -
—— /’ DENY
| | ACCESS
ACCESS 86
MEMORY
| 88
UPDATE RULE
STATE
RULE YES
SATISFIED
92
DELETE PTE
96 INTLB //

US 9,547,603 B2

1
I/O MEMORY MANAGEMENT UNIT
PROVIDING SELF INVALIDATED MAPPING

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT

This invention was made with government support under
1218323 and 1117280 awarded by the National Science
Foundation. The government has certain rights in the inven-
tion.

CROSS REFERENCE TO RELATED
APPLICATION

BACKGROUND OF THE INVENTION

The present invention relates to a computer architecture
and in particular an input-output memory management unit
(IOMMU) for controlling mapping between an [/O device
address space and physical computer memory reducing both
the processor burden and the risks of memory corruption due
to erroneous or malicious operation of 1/O.

Current electronic computers may include a memory
management unit (MMU) positioned between one or more
processors and physical memory. The MMU, under the
control of the operating system (OS), maps virtual addresses
used by the processors to different addresses of physical
memory. This mapping, for example, allows fragmented
physical memory locations to be presented to a processor (or
a particular process running on the processor) as a continu-
ous block of virtual memory. Different processes can use the
same address range of virtual memory mapped to different
addresses of physical memory.

The MMU also provides for memory protection by iso-
lating given processes to limited virtual memory (and hence
a physical memory) regions preventing processes from
corrupting memory used by other processes through over-
writing of that memory. In this regard, the MMU may track
and enforce read/write permissions, limiting reading or
writing of a given process within the physical address range
allocated to a process.

A similar input-output memory management unit
(IOMMU) may be interposed between /O devices such as
disk drives and the physical memory. Like the MMU, the
IOMMU provides the /O devices with virtual addresses
(IOVA) that are mapped to physical addresses of the physi-
cal memory. The IOMMU may further include permissions
limiting the reading and writing within the physical address
range allocated to the /O device and thus may prevent an
1/0 device from corrupting the memory state of others
(CPU, OS or other 1/0) or accessing other /O devices.

The mappings between the virtual addresses (IOVA) and
the physical addresses are stored in a data structure called
page table, typically resident in physical memory. The page
table stores the mapping information at the granularity of
one or a few fixed-size pages. Each of the individual entries
of the page table is called a page table entry or PTE. A PTE
thus stores the mapping of a given page in a virtual address
to its corresponding physical address of physical memory.
The PTE may also include one or more permission limiting
reading and/or writing to the physical memory within the
mapped address range.

In operation, an device is typically associated with a
driver program that may run on the processor. Before an I/O
device can read or write, from or to the physical memory, the
corresponding driver program requests the OS to establish
the needed mapping between the virtual address and the

w

20

25

30

35

40

45

50

55

60

65

2

physical memory. The OS then may create the requested
PTEs in the page table to establish the requested mapping.

After the OS establishes table entry on behalf of the
driver, the driver invokes the necessary call to the /O device
which performs an [/O task.

When the I/O device needs to access memory as part of
the /O task, it provides a virtual address to the IOMMU. The
IOMMU finds a PTE related to that virtual address in the
page table to obtain the necessary physical address range
and permissions. These mappings and permissions of the
page table PTE may be duplicated in a cache structure of the
IOMMU called 10 Translation Lookaside Buffer (IOTLB).
The IOMMU then accesses the physical memory according
to that mapping and the permissions of the cached PTE. The
IOMMU denies access to physical memory if the mapping
or if enough permission for the operation is unavailable.

When the memory access by the /O device is complete,
the 1/0 device provides a completion signal to the operating
system. The operating system executing on the processor
then may perform a PTE deletion action, deleting the PTE
from the page table, and sends a corresponding IOMMU
cache deletion signal to the IOMMU cache causing deletion
of the corresponding PTE from the IOMMU cache. This
deletion process prevents extra erroneous memory accesses
by an errant [/O device such as may corrupt previously
written data. The operating system executing through the
processor may periodically delete stale PTEs from the page
table (even absent a completion signal from the IOMMU)
after a predetermined period of time.

The benefits of the IOMMU in virtualization and reduc-
tion of memory corruption are offset in part by the additional
time required to implement the above described protocol and
the demands placed on a processor resources.

SUMMARY OF THE INVENTION

The present inventors have recognized that the processor
time required to delete the PTE from the page table and send
the IOMMU cache deletion signal can be eliminated for
most IOMMU transactions by attaching a “removal rule” to
the PTE allowing “self deletion” of the PTE by the IOMMU.
The removal rule, for example, may delete the PTE after a
predetermined number of memory accesses (typically one)
or after a predetermined time. In this way, processor time
and resources required for IOMMU transactions may be
significantly reduced and the susceptibility of the computer
system to /O device or driver errors (for example in failing
to send the completion signal) are reduced.

Specifically then, the present invention provides an
IOMMU having input address lines for receiving virtual
addresses from an I/O device and output address lines for
providing physical addresses to a physical memory as well
as data lines for communicating data between the 1/O device
and the physical memory. A cache memory in the IOMMU
called IOTLB, holds at least one page table entry mapping
at least one virtual address to at least one physical address.

Translation circuitry receives a given virtual address from
the input address lines and, only when an applicable page
table entry is present in the memory, the translation circuitry
translates the given virtual address to a given physical
address at the output address lines according to the appli-
cable page table entry and communicates data on the data
lines related to the physical address in a data transaction.
Importantly, the applicable page table entry includes a
removal rule providing a condition for removal of the
applicable page table entry from the translation table and the

US 9,547,603 B2

3

translation circuitry further removes the applicable page
table entry from the memory when the condition is satisfied.

It is thus a feature of at least one embodiment of the
invention to reduce post-I/O transaction activity by the
processor by allowing the processor to communicate page
table entry cleanup rules to the IOMMU at the time of
creation of the page table entry, and allowing the IOMMU
to invalidate its own page table entries upon completion of
the memory transaction.

The translation table may hold multiple page table entries
mapping different virtual addresses to different physical
addresses. The translation table may be a buffer caching a
portion of a page table in physical memory holding multiple
page table entries.

It is thus a feature of at least one embodiment of the
invention to allow the removal rules to be conveniently
communicated from the processor to the IOMMU through
physical memory and efficiently cached at the IOMMU.

The IOMMU may further remove the applicable page
table entry from the page table.

It is thus a feature of at least one embodiment of the
invention to delegate to the IOMMU cleanup activities of
the page table in the physical memory eliminating both an
additional task otherwise formed by the processor and
optionally eliminating the need for post transaction commu-
nication between the IOMMU and the processor.

The IOMMU may remove the applicable page table entry
from the page table before determining whether the condi-
tion is satisfied.

It is thus a feature of at least one embodiment of the
invention to consolidate memory accesses to the page table
for improved efficiency. In the common case where the page
table entry is invalidated after a single memory transaction,
no later memory access may be required.

It is a further feature of at least one embodiment of the
invention to prevent inadvertent reuse of the page table entry
from the page table during a pending /O memory transac-
tion by deleting it during this transaction.

The translation circuitry may modify the removal rule
when writing the page table entry back to the page table in
physical memory.

It is thus a feature of at least one embodiment of the
invention to store the rule and the rule state indicating
whether the rule has been satisfied or not, in the same page
table entry for efficient processing.

The IOMMU may include a page table walker for extract-
ing page table entries from the page table in physical
memory when the applicable page table entry is not initially
found in the IOMMU memory so that the applicable page
table entry becomes present in the IOMMU memory.

It is thus a feature of at least one embodiment of the
invention to provide a correct test for the existence of an
applicable page table entry when the page table entry is not
cached by then referring to the page table in physical
memory.

Each page table entry may further provide at least one
permission indicating at least one of permission to read data
from at least one physical address and to write data to at least
one physical address.

It is thus a feature of at least one embodiment of the
invention to provide a system that integrates with read and
write permissions that may be implemented by a memory
management unit.

The removal rule condition may be an occurrence of a
predetermined number of data transactions using the appli-
cable page table entry. For example, the predetermined
number of data transactions may be one.

20

25

30

35

40

45

50

55

60

65

4

It is thus a feature of at least one embodiment of the
invention to provide a simple rule that can be effectively
executed by the IOMMU in a self-contained manner without
the need to confer with the processor. The IOMMU has
inherent knowledge of occurrence of the memory data
transaction.

Alternatively or in addition, the removal rule condition
may be an occurrence of a predetermined amount of time for
example a time of existence of the applicable page table
entry in the translation table or a time since the last reference
to the page table entry.

It is thus a feature of at least one embodiment of the
invention to provide an alternative removal rule consistent
with the current practice of invalidating page table entries in
a timely fashion to prevent unintended memory access.

These particular objects and advantages may apply to
only some embodiments falling within the claims and thus
do not define the scope of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of a computer system that may
employ the IOMMU of the present invention showing an
example processor system with a processor having an MMU
and multiple I/O devices employing an IOMMU and further
showing an IOMMU page table in physical memory incor-
porating removal rules per the present invention;

FIG. 2 is a data flow diagram showing the communication
of information among the various components of FIG. 1
providing PTE removal by the IOMMU independent of the
processor; and

FIG. 3 is a flowchart of the operation of the I/O memory
management Unit in executing a memory transaction.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

Referring now to FIG. 1, a computer 10 suitable for use
with the present invention may provide for a processor
system 12 including one or more processor cores 14, physi-
cal memory 16 and an I/O interface /O inter-communicat-
ing, for example, by means of a bus structure 20. The bus
structure may provide a conventional memory bus with
address lines and data lines communicating between the
processor cores 14 and /O interface 18 and physical
memory 16. The bus structure 20 may also provide a control
bus, for example, allowing direct communication of data
between the processor system 12 and the I/O interface 18,
for example using memory mapped registers.

Each processor core 14 may include a processing unit 22
(CPU) and a memory management unit (MMU) 24 of the
type well known in the art. As is understood in the art, each
processing unit 22 provides for an arithmetic logic unit and
various registers allowing the processing of arithmetic or
Boolean instructions obtained from the physical memory 16
and operating on data read from and then written to the
physical memory 16.

The MMU 24 provides a mapping between virtual
memory locations used by the processing unit 22 and actual
physical addresses of the physical memory 16. This mapping
process is normally controlled by the operating system 26
also being a program running on the processing unit 22 and
is enrolled in a page table (MMU-PT) 28a in the physical
memory 16 as written by the operating system 26.

The physical memory 16, for example, may include
electronic, solid-state, random-access memory or the like
generally operating together to provide for a logical storage

US 9,547,603 B2

5

area. As is understood in the art, physical memory 16
provides address lines receiving numerical addresses desig-
nating memory elements from which data may be read from
the physical memory 16 or to which data may be written to
the physical memory 16. As noted, the physical memory 16
will generally hold an operating system 26, one or more
application programs 30, and an MMU-PT 28a.

In addition, the physical memory 16 will hold an IOMMU
page table (IOMMU-PT) 28b. Here, the IOMMU-PT is
depicted as a simple flat table structure for clarity, but often
the page table will be a hierarchical or other structure and
this depiction is not intended to be limiting. IOMMU-PT
28b generally provides for a number of page table entries
(PTE) 32 shown as table rows that will hold the index values
of a virtual address 34 or virtual address range as each is
linked to a physical address 36 or a physical address range
to which the virtual address 34 will be mapped. Each PTE
32 also holds permissions 38, for example, to read or write
for that address range, and one or more removal rules 40
describing a condition that will provoke deletion of the PTE
32 as discussed below. One type of removal rule 40 provides
removal of the PTE 32 after a predetermined number of
memory transactions in which the given I/O device 42
accesses memory, typically one. This may be a default state
if no removal rule 40 is entered in a give PTE 32. This
number of memory transactions is entered at the time of
creation of the PTE 32 by the operating system 26.

Another type of removal rule 40 provides for removal of
the PTE 32 after a predetermined elapsed time. This time
may be the time since its creation in the IOMMU-PT 285 or
the time that the PTE 32 was last referenced by the IOMMU
50. At the time of generation of the PTE 32, the removal rule
40 will hold a sum of the current time and the interval that
will elapse before expiration of the PTE 32 occurs. Other
removal rules are possible and these two removal rules 40
may be combined for removal of the PTE 32 upon the first
of'a given number of memory transactions or the expiration
of a time period.

The /O interface 18 provides an interface with various
1/0 devices 42 including but not limited to, for example, a
disk drive 44, a graphics processing unit 46, and other /O
devices 48 including, for example, Ethernet, USB, and
Bluetooth interfaces as understood in the art. The I/O
interface 18 may include an IOMMU 50 also providing a
mapping between virtual addresses used by the I/O devices
25 and actual physical addresses of the physical memory 16.

IOMMU 50 generally receives virtual addresses 49 from
the I/O devices 42 and converts them to physical addresses
51 for use by the physical memory 16. Data for those
addresses is exchanged over data lines 53 according to that
mapping. For the purpose of the mapping, IOMMU 50
provides an IO translation look aside buffer (IOTLB) 54,
serving as a cache for data of the IOMMU-PT 28b. In
addition, the IOMMU 50 provides a page table walker
circuit 56 that may examine the IOMMU-PT 284 for rel-
evant entries when one is not found in TLB 54, and a
removal rule engine 58 for executing a removal process of
stale PTEs 32 from the TLB 54 and the IOMMU-PT 285. In
one embodiment, the removal rule engine 58 will include a
clock 59 or access to a system clock so that expiration times
can be evaluated.

Referring now to FIG. 2, an application program 30
requiring access to data from an I/O device 42 may provide
an API call 62 to the operating system 26. The operating
system invokes a driver 64 associated with a particular /O
device 42, The driver 64 requests the OS to create a PTE 32
indicated by arrow 66 in the IOMMU-PT 286 providing

20

25

30

35

40

45

50

55

60

65

6

virtual address 34, physical address 36 permissions 38 and
removal rule 40 for use by the IOMMU 50 in mediating
access between the /O device 42 and the physical memory
16. This creation process is performed by the operating
system 26 executing on a processor core 14 using permis-
sions provided by the MMU 24 allowing access to the
IOMMU-PT 28b.

The driver 64 may then instruct the 1/O device 42 to
provide the requested data through a write to physical
memory 16, for example, by setting values in memory
mapped registers or the like via bus structure 20 (shown in
FIG. 1). The I/O device 42 then performs the desired
operations, for example a disk read, port read, or the like,
and provides a virtual address as indicated by arrow 70 to the
IOMMU 50.

Referring now also to FIGS. 1, 2, 3, when the IOMMU 50
receives a request for memory access by /O device 42 and
a virtual address, as indicated by entry block 73, it checks
the TLB 54, as indicated by decision block 74, for the
desired virtual address range as held in a PTE 32 previously
cached by the IOMMU 50 from the IOMMU-PT 28b. If an
applicable PTE 32 is not available (meaning a PTE 32
having a having a virtual address matching that from the I/O
device 42), the IOMMU 50 invokes the page table walker
circuit 56, as indicated by process block 76, which scans
through the IOMMU-PT 28 in a search process to determine,
at decision block 80, whether the virtual address from the
/O device 42 is listed in any of the PTEs 32 in the
IOMMU-PT 285 in the physical memory 16. This walking
process is performed with one or more page accesses 81.

If an applicable PTE 32 is not found, the memory access
requested by the 1/O device 42 is denied as indicated by
termination block 78, such as may also generate a fault
transmitted to the operating system 26. On the other hand, if
an applicable PTE 32 is found at decision block 80, the
IOMMU 50 stores the necessary data in the TLB 54.

If an applicable PTE 32 is found. either as determined at
decision block 80 or at decision block 74, the IOMMU 50
performs a deletion operation indicated by process block 82
deleting that PTE 32 from the IOMMU-PT 285 and elimi-
nating the need for the processing unit 22 to do this in the
future. Ideally this deletion process is performed shortly
after reading of the PTE 32 so as to minimize the chance of
erroneous memory accesses by other processes using the [/O
device 42.

At succeeding decision block 84, permissions 38 for the
applicable PTE 32 are checked to see if the requested
memory access is permitted. If not, the access is again
denied at termination block 78.

If an applicable PTE 32 is found with correct permissions,
the IOMMU 50 proceeds to process block 86 and the access
of physical memory 16 is performed. Assuming the access
is complete, then at process block 88, the state of the
removal rule 40 is updated. If, for example, the removal rule
40 provides for removal of the PTE 32 after a predetermined
number of memory accesses, the state number contained in
the removal rule 40 is decremented and tested against a
condition of greater than zero. In this way, a removal rule 40
allowing two memory accesses to the physical memory 16
will be decremented to allow one access to physical memory
16. If the removal rule 40 provides for removal of the PTE
32 after a predetermined time, the recorded time of the rule
40 is compared against a current time (subtracted) and again
tested against a condition of greater than zero. In this case
no adjustment of the removal rule 40 state is required
because it is referenced to an absolute time.

US 9,547,603 B2

7

At decision block 90, if the condition of the removal rule
40 has been satisfied, the IOMMU 50 proceeds to process
block 92 and simply deletes the PTE 32 in the TLB 54,
having previously deleted the PTE 32 in the IOMMU-PT
28b at process block 82.

If the conditions of the removal rule 40 have not been
satisfied at decision block 90, then the PTE as updated at
process block 88 remains in the IOMMU-PT 28bAt process
block 96, the IOMMU 50 provides a completion message
100 to the operating system 26 that the I/O memory trans-
action has been completed, for example, by setting of
register flags and/or an interrupt of the control data structure
portion of bus structure 20. At this point the processing unit
22 need not employ resources deleting entries in the
IOMMU-PT 286 or in the TLB 54 greatly reducing the
demand on the processing unit 22.

It will be noted that the process of deleting the PTE 32 in
the IOMMU-PT 285 of physical memory of process block
82 may occur at various points in time in the process
performed by the IOMMU 50, for example, occurring any
time before process block 96. Desirably the deletion of
process block 82 is performed atomically with the reading of
the PTE 32 to prevent race problems.

During the time when the condition of the removal rule 40
of the PTE 32 has not yet been satisfied, the PTE 32 may be
evicted from the TLB 54, for example, as a result of space
constraints and incoming new PTE values. In these cases a
writeback will be triggered, writing the value of PTE 32
back to the IOMMU-PT 285.

For a page table entry to be “present” or “exist” in the
TLB 54 or in the IOMMU-PT 285 it must refer to a logical
condition and could refer to data actually held in these
memory structures but marked as unavailable or expired.
Thus “removal” of data may be accomplished marking the
data as invalid. The term “table” is not intended to be limited
to a particular form of data structure or organization of the
data so long as linkage between the indicated data elements
is logically provided. it will be appreciated that the present
invention is compatible with cache structures working in
conjunction with the physical memory which may be located
before or after the MMU. Different arrangements of the I/O
devices and IOMMU are contemplated, for example, with
different IOMMU used for different 1/O devices. The term
CPU (central processing unit) is intended to refer generally
to a functionally equivalent device including, for example,
one core of a multicore microprocessor.

Certain terminology is used herein for purposes of refer-
ence only, and thus is not intended to be limiting. For
example, terms such as “upper”, “lower”, “above”, and
“below” refer to directions in the drawings to which refer-
ence is made. Terms such as “front”, “back”, “rear”, “bot-
tom” and “side”, describe the orientation of portions of the
component within a consistent but arbitrary frame of refer-
ence which is made clear by reference to the text and the
associated drawings describing the component under dis-
cussion. Such terminology may include the words specifi-
cally mentioned above, derivatives thereof, and words of
similar import. Similarly, the terms “first”, “second” and
other such numerical terms referring to structures do not
imply a sequence or order unless clearly indicated by the
context.

When introducing elements or features of the present
disclosure and the exemplary embodiments, the articles “a”,
“an”, “the” and “‘said” are intended to mean that there are
one or more of such elements or features. The terms “com-
prising”, “including” and “having” are intended to be inclu-
sive and mean that there may be additional elements or

20

25

30

35

40

45

50

55

60

65

8

features other than those specifically noted. It is further to he
understood that the method steps, processes, and operations
described herein are not to be construed as necessarily
requiring their performance in the particular order discussed
or illustrated, unless specifically identified as an order of
performance. It is also to be understood that additional or
alternative steps may be employed.

References to “a microprocessor” and “a processor” or
“the microprocessor” and “the processor,” can be under-
stood to include one or more microprocessors that can
communicate in a stand-alone and/or a distributed environ-
ment(s), and can thus be configured to communicate via
wired or wireless communications with other processors,
where such one or more processor can be configured to
operate on one or more processor-controlled devices that can
be similar or different devices. Furthermore, references to
memory, unless otherwise specified, can include one or more
processor-readable and accessible memory elements and/or
components that can be internal to the processor-controlled
device, external to the processor-controlled device, and can
be accessed via a wired or wireless network.

It is specifically intended that the present invention not be
limited to the embodiments and illustrations contained
herein and the claims should be understood to include
modified forms of those embodiments including portions of
the embodiments and combinations of elements of different
embodiments as come within the scope of the following
claims. All of the publications described herein, including
patents and non-patent publications, are hereby incorporated
herein by reference in their entireties.

What we claim is:

1. An input/output memory management unit (IOMMU)
integrated circuit for use with a processor, the IOMMU
comprising:

an integrated circuit adapted for communicating with a

translation table holding at least one page table entry
mapping at least one virtual address to at least one
physical address, the integrated circuit including:

(a) input address lines for receiving virtual addresses from

an I/O device;

(b) output address lines for providing physical addresses

to a physical memory;

(c) data lines for communicating data between the 1/O

device and the physical memory;

and

(d) translation circuitry receiving a given virtual address

from the input address lines and, only when an appli-
cable page table entry is present in a translation table,
translating the given virtual address to a given physical
address at the output address lines according to the
applicable page table entry and communicating data on
the data lines related to the physical address in a data
transaction;

wherein the applicable page table entry is linked to a

removal rule providing a condition for removal of the
applicable page table entry from the translation table
other than a need for additional space in the translation
table and independent of a removal instruction by an
operating system for the applicable page table entry and
wherein the translation circuitry further responds to the
removal rule to remove the applicable page table entry
from the translation table when the condition is satis-
fied.

2. The IOMMU integrated circuit of claim 1 wherein the
translation table includes a first portion and second portion
and wherein the integrated circuit holds the first portion of
the translation table and the second portion of the translation

US 9,547,603 B2

9

table is held in a memory external to the integrated circuit
and wherein the first portion further holds multiple page
table entries mapping different virtual addresses to different
physical addresses and wherein the translation circuitry
operates to remove the applicable page table entry from the
first portion when the condition is satisfied.

3. The IOMMU integrated circuit of claim 2 wherein the
translation circuitry operates so that when an applicable
page table entry is not present in the first portion, an
applicable page table entry is read from the second portion
of the translation table held in memory external to the
integrated circuit.

4. The IOMMU integrated circuit of claim 3 wherein the
translation circuitry further removes the applicable page
table entry from the second portion of the translation table
held in memory external to the integrated circuit.

5. The IOMMU integrated circuit of claim 4 wherein the
translation circuitry writes the applicable page table entry
back to the second portion of the translation table when
additional space is needed in the first portion of the trans-
lation table.

6. The IOMMU integrated circuit of claim 2 further
including a page table walker for extracting page table
entries from the second portion of the page table when the
applicable page table entry is not initially found in the first
portion so that the applicable page table entry is loaded into
in the first portion.

7. The IOMMU integrated circuit of claim 1 wherein each
page table entry further provides at least one permission
indicating at least one of permission to read data at least one
physical address and to write data at least one physical
address.

8. The IOMMU integrated circuit of claim 1 wherein each
page table entry provides at least one virtual address linked
to at least one physical address and to one removal rule and
wherein the applicable page table entry provides at least one
virtual address mapping the given virtual address.

9. The IOMMU integrated circuit of claim 1 wherein the
condition is an occurrence of a predetermined number of
data transactions using the applicable page table entry.

10. The IOMMU integrated circuit of claim 9 wherein the
predetermined number of data transactions is one.

11. The IOMMU integrated circuit of claim 1 wherein the
condition is an occurrence of a predetermined amount of
time selected from the group consisting of a time of exis-
tence of the applicable page table entry in the translation
table and a time after last reference to the page table entry.

12. The IOMMU integrated circuit of claim 1 wherein the
IOMMU provides control lines for communication of data
directly with a processor without storage of the data in the
physical memory.

13. The IOMMU integrated circuit of claim 1 further
including control lines for communicating with a separate
processor executing and operating system and wherein the
translation circuitry communicates with the processor to
provide a completion message indicating removal of the
applicable page table entry when the page table entry has
been removed.

14. A computer processor comprising:

a physical memory;

20

25

30

35

40

45

50

55

10

at least one processor communicating with the physical
memory to access data within the physical memory
executing an operating system;

a memory management unit (MMU) integrated circuit
interposed between the physical memory and at least
one processor, the MMU receiving virtual addresses
from the processor for translation into physical
addresses of the physical memory;

at least one 1/O device communicating with the physical
memory to access data within the physical memory;
and

an [/O memory management unit (IOMMU) integrated
circuit interposed between the physical memory and at
least one 1/0 device, the IOMMU including:

(a) input address lines for receiving virtual addresses from
an I/O device;

(b) output address lines for providing physical addresses
to the physical memory;

(c) data lines for communicating data between the 1/O
device and the physical memory;

(d) a translation table holding at least one page table entry
mapping at least one virtual address to at least one
physical address; and

(e) translation circuitry receiving a given virtual address
from the input address lines and, only when an appli-
cable page table entry is present in the translation table,
translating the given virtual address to a given physical
address at the output address lines according to the
applicable page table entry and communicating data on
the data lines related to the physical address in a data
transaction;

wherein the applicable page table entry is linked to a
removal rule providing a condition for removal of the
applicable page table entry from the translation table
other than a need for additional space in the translation
table and independent of a removal instruction by an
operating system for the applicable page table entry and
wherein the translation circuitry further responds to the
removal rule to remove the applicable page table entry
from the translation table when the condition is satis-
fied;

wherein the at least one processor executes the operating
system to provide the data of page table entries in the
translation table according to a driver of the at least one
1/O device.

15. The computer system of claim 14 wherein at least one

1/O device is a disk drive.

16. The computer system of claim 14 wherein at least one
1/0O device is a graphic processing unit.

17. The computer system of claim 14 wherein the trans-
lation circuitry further removes the applicable page table
entry from a page table in the physical memory.

18. The computer system of claim 14 wherein the con-
dition is an occurrence of a predetermined number of data
transactions using the applicable page table entry.

19. The computer system of claim 14 wherein the con-
dition is an occurrence of a predetermined amount of time of
existence of the applicable page table entry in the translation
table.

	Bibliography
	Abstract
	Drawings
	Description
	Claims

