

US010508272B2

(12) United States Patent

Sato et al.

(54) RECOMBINANT YEAST HAVING ENHANCED XYLOSE FERMENTATION CAPABILITIES AND METHODS OF USE

- (71) Applicant: Wisconsin Alumni Research Foundation, Madison, WI (US)
- (72) Inventors: Trey Kyle Sato, Madison, WI (US); Jeff Scott Piotrowski, Madison, WI (US)
- (73) Assignee: Wisconsin Alumni Research Foundation, Madison, WI (US)
- (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 155 days.
- (21) Appl. No.: 14/683,724
- (22) Filed: Apr. 10, 2015

(65) **Prior Publication Data**

US 2015/0307872 A1 Oct. 29, 2015

Related U.S. Application Data

- (60) Provisional application No. 61/978,585, filed on Apr. 11, 2014.
- (51) Int. Cl.

C12N 1/19	(2006.01)
C12N 9/04	(2006.01)
C07K 14/395	(2006.01)
C12P 7/10	(2006.01)
C12N 9/12	(2006.01)
C12N 15/10	(2006.01)
C12N 9/24	(2006.01)
C12N 9/10	(2006.01)
C12N 9/92	(2006.01)

 (52) U.S. Cl.
 CPC C12N 15/1024 (2013.01); C07K 14/395 (2013.01); C12N 9/0006 (2013.01); C12N 9/1022 (2013.01); C12N 9/1205 (2013.01); C12N 9/2482 (2013.01); C12N 9/92 (2013.01); C12P 7/10 (2013.01)

(10) Patent No.: US 10,508,272 B2

- (45) **Date of Patent: Dec. 17, 2019**
- (58) Field of Classification Search None See application file for complete search history.
- (56) **References Cited**

U.S. PATENT DOCUMENTS

9,920,312 B2 * 3/2018 Froehlich C12N 9/92

OTHER PUBLICATIONS

Kotter et al., Xylose fermentation by *Saccharomyces cerevisiae*, Appl. Microbiol. Biotechnol., 1993, 38, 776-83.*

Gerber et al., The Yeast Scaffold Proteins Isuip and Isu2p Are Required inside Mitochondria for Maturation of Cytosolic Fe/S Proteins, Mol. Cell. Biol., 2004, 24, 4848-57.*

Zhou et al., Xylose isomerase overexpression along with engineering of the pentose phosphate pathway and evolutionary engineering enable rapid xylose utilization and ethanol production by *Saccharomyces cerevisiae*, Metabolic Eng., 2012, 14, 611-22.*

Sato et al., Directed Evolution Reveals Unexpected Epistatic Interactions That Alter Metabolic Regulation and Enable Anaerobic Xylose Use by *Saccharomyces cerevisiae*, PLoS Genet., 2016, 12, e1006372.*

Parreiras et al., Engineering and Two-Stage Evolution of a Lignocellulosic Hydrolysate-Tolerant *Saccharomyces cerevisiae* Strain for Anaerobic Fermentation of Xylose from AFEX Pretreated Corn Stover, PLoS One, Sep. 2014, 9, e107499.*

* cited by examiner

Primary Examiner — Robert B Mondesi Assistant Examiner — Todd M Epstein

(74) Attorney, Agent, or Firm-Boyle Fredrickson S.C.

(57) **ABSTRACT**

The present invention relates to the production of biofuels and chemical feedstocks. The present invention provides recombinant yeast having enhanced xylose fermentation capabilities. Methods of using such recombinant yeast for improved biofuel and chemical feedstock production are also provided.

> 22 Claims, 16 Drawing Sheets (15 of 16 Drawing Sheet(s) Filed in Color)

Specification includes a Sequence Listing.

FIG. 2A-C

U.S. Patent

Dec. 17, 2019

FIG. 4A-C

FIG. 6A-D

FIG. 7A-D

FIG. 8, CONTINUED FIG. 8C

FIG. 9A-B

Xytose Metabolism Phenotype (# of spores) Arrith Charles (# of spores) Arrith (# 10) Arrith (# 10) Parental (# 10) Parental (# 10) Parental (# 10) Parental (# 10)	Xytrue Metabolism Phenotype (# of sportes) Example 1 Example 1 Parential (4) Parentae (3)
CSM1 MOGT SUT	34.138 GRES R.4.2
A VILLE Control of the second	Time, n Time, n Tim

FIG. 9, CONTINUED FIG. 9C-F

Sheet 12 of 16

Dec. 17, 2019

U.S. Patent

US 10,508,272 B2

FIG. 11A-B

FIG. 11C-E

U.S. Patent

FIG. 12A-D

U.S. Patent

Dec. 17, 2019

35

RECOMBINANT YEAST HAVING ENHANCED XYLOSE FERMENTATION CAPABILITIES AND METHODS OF USE

CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Patent Application No. 61/978,585, filed Apr. 11, 2014; which is incorporated herein by reference as if set forth in its ¹⁰ entirety.

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT

This invention was made with government support under DE-FC02-07ER64494 awarded by the U.S. Department of Energy. The government has certain rights in the invention.

FIELD OF THE INVENTION

Broadly, the present invention relates to materials and methods for the production of biofuels and other industrially relevant products from plant materials such as chemical feedstocks. In particular, the present invention relates to ²⁵ genetically modified yeast strains useful for xylose fermentation and, more specifically, to strains of *Saccharomyces cerevisiae* genetically engineered for enhanced xylose fermentation capabilities and methods of using the same for improved fermentation of cellulosic materials comprising ³⁰ pentose sugars and for industrial-scale production of biofuels and plant-derived chemical feedstocks.

BACKGROUND

Cellulosic biomass is a vast source of renewable energy and an abundant substrate for biofuel production. As an alternative to corn-based ethanol, bioethanol can be generated from lignocellulosic (LC) sugars derived from cellulosic biomass of renewable and sustainable plant feedstocks. 40 Energy of cellulosic biomass is primarily stored as the recalcitrant polysaccharide cellulose, which is difficult to hydrolyze because of the highly crystalline structure, and in hemicellulose, which presents challenges because of its structural diversity and complexity. Many microbes cannot 45 natively ferment pentose sugars (e.g., xylose) from complex lignocellulosic biomass, which is composed of cellulose, hemicellulose and lignin fractions. Even when engineered to express the minimal enzymes from native pentose sugarmetabolizing organisms, S. cerevisiae cannot ferment xylose 50 from innocuous lab media at industrially-acceptable rates. Laluce et al., Applied Microbiol. Biotech. 166:1908 (2012); Almeida et al., Biotech. J. 6:286 (2011). Xylose is a prevalent sugar in both woody and herbaceous plants and a major component of hemicelluloses. Bioconversion of both xylose 55 and glucose is required for the production of cellulosic biofuels. To further complicate matters, plant biomass must be chemically, mechanically, or thermally pretreated prior to enzymatic hydrolysis ex situ in order to produce fermentable glucose and xylose monomers. Such pretreatment processes 60 generate a diverse array of degradation products derived from plant cell walls, such as hemicellulose and ligninderived acetate and aromatic molecules, many of which inhibit cellular metabolism in S. cerevisiae and induce microbial stress during hydrolysate fermentation. Taylor et 65 al., Biotechnology J. 7:1169 (2012); Liu, Applied Microbiol. Biotech. 90:809 (2011). At present, little is known about

how such inhibitors impact xylose fermentation, particularly under strict industrially relevant, anaerobic conditions where ethanol production is maximized.

In view of the current state of the biofuel industry, particularly ethanol production based on xylose-containing feedstocks, it can be appreciated that identifying genes related to enhanced biofuel production is a substantial challenge in the field. Accordingly, a need exists in the field to identify additional genes that influence biofuel production in yeast, and consequently engineer recombinant strains of yeast capable of increased biofuel yields from commonlyavailable feedstocks, including xylose-containing feedstocks.

SUMMARY OF THE INVENTION

The present invention is largely related the inventors' research efforts to better understand xylose utilization for microbial engineering. The invention relates generally to 20 methods and compositions for digesting lignocellulosic material and more particularly to methods that involve exposing the material to *S. cerevisiae* variants having enhanced capacities for anaerobic and aerobic xylose fermentation in industrially relevant lignocellulosic hydroly-25 sates.

In a first aspect, provided herein is a recombinant yeast that has been genetically engineered to exhibit reduced amounts of functional Isu1 polypeptide. The genetically engineered recombinant yeast is capable of increased aerobic xylose fermentation relative to a wild-type yeast or another recombinant yeast not exhibiting reduced amounts of functional Isu1 polypeptide. The recombinant yeast can comprise a disabling mutation in a gene encoding Isu1 polypeptide. The disabling mutation can comprise a substitution of a tyrosine for the histidine at amino acid residue position 138 of SEQ ID NO:6. The recombinant yeast can further comprise a disabling mutation in a gene encoding Hog1 polypeptide and exhibiting reduced amounts of functional Hog1 polypeptide. The disabling mutation in a gene encoding Isu1 can comprise a substitution of a tyrosine for the histidine at amino acid residue position 138 of SEQ ID NO:6, and the disabling mutation in the gene encoding Hog1 can comprise a deletion of the adenine at nucleotide position 844 of SEQ ID NO:7. The recombinant yeast can be of the genus Saccharomyces. The recombinant yeast can be of the species Saccharomyces cerevisiae. A portion of an extrachromosomal vector stably maintained in the recombinant yeast can comprise the disabling mutation. A nucleic acid sequence comprising the disabling mutation can be integrated into a chromosome of the recombinant yeast.

In another aspect, provided herein is a yeast inoculum comprising a recombinant yeast as provided herein and a culture medium.

In a further aspect, provided herein is a recombinant yeast that has been genetically engineered to exhibit reduced amounts of functional Isu1 and Hog1 polypeptides, and at least one of functional Gre3, Ira1, and Ira2 polypeptides. The recombinant yeast can be capable of increased anaerobic xylose fermentation relative to a wild-type yeast or another recombinant yeast not exhibiting reduced amounts of functional Isu1 and Hog1 polypeptides, and at least one of functional Gre3, Ira1, and Ira2 polypeptides. The recombinant yeast can comprise a disabling mutation in a gene encoding Isu1, a disabling mutation in a gene encoding Hog1, and at least one of a disabling mutation in a gene encoding Gre3, a disabling mutation in a gene encoding Ira1, and a disabling mutation in a gene encoding Ira2. The recombinant yeast can exhibit reduced amounts of functional Isu1, Hog1, Gre3, and Ira2 polypeptides and can be capable of increased anaerobic xylose fermentation relative to a wild-type yeast or another recombinant yeast not exhibiting reduced amounts of functional Isu1, Hog1, Gre3, 5 and Ira2 polypeptides. The disabling mutation in the gene encoding Isu1 can comprise a substitution of a tyrosine for the histidine at amino acid residue position 138 of SEQ ID NO:6; a disabling mutation in the gene encoding Hog1 can comprise a deletion of the adenine at nucleotide position 844 10 of SEQ ID NO:7; a disabling mutation in the gene encoding Gre3 can comprise a substitution of a threonine for the alanine at amino acid residue position 46 of SEQ ID NO:4; and a disabling mutation in the gene encoding Ira2 can comprise a substitution of a stop codon for the glutamate at amino acid residue at position 2927 of SEQ ID NO:2. The recombinant yeast can be of the genus Saccharomyces. The recombinant yeast can be of the species Saccharomyces cerevisiae. A portion of an extrachromosomal vector stably maintained in the recombinant yeast can comprise the dis- 20 abling mutations. A nucleic acid sequence comprising the disabling mutations can be integrated into a chromosome of the recombinant yeast.

In another aspect, provided herein is a yeast inoculum comprising a recombinant yeast as provided herein and a ²⁵ culture medium.

In a further aspect, provided herein is a method of fermenting cellulosic material into ethanol. The method can comprise contacting under ethanol-producing conditions a recombinant yeast provided herein to cellulosic material for 30 a period of time sufficient to allow fermentation of at least a portion of the cellulosic material into ethanol. The method can further comprise separating the ethanol from fermented cellulosic material. The method can further comprise hydrolyzing the cellulosic material to produce a hydrolysate 35 comprising xylose; and contacting the recombinant yeast to the hydrolysate under conditions that permit fermentation. The cellulosic material can comprise a lignocellulosic biomass. The lignocellulosic biomass can comprise at least one material selected from the group consisting of agricultural 40 residues, wood, municipal solid wastes, paper and pulp industry wastes, and herbaceous crops.

As can be appreciated, the present invention contemplates the use of recombinant yeast as described herein, including certain exemplary recombinant *Saccharomyces cerevisiae* ⁴⁵ strains specifically identified herein, for use in the fermentation of xylose-containing cellulosic materials and for production of ethanol.

These and other features, objects, and advantages of the present invention will become better understood from the ⁵⁰ description that follows. In the description, reference is made to the accompanying drawings, which form a part hereof and in which there is shown by way of illustration, not limitation, embodiments of the invention. The description of preferred embodiments is not intended to limit the ⁵⁵ invention to cover all modifications, equivalents and alternatives. Reference should therefore be made to the claims recited herein for interpreting the scope of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

60

The present invention will be better understood and features, aspects and advantages other than those set forth above will become apparent when consideration is given to the following detailed description thereof. Such detailed 65 description makes reference to the following drawings, wherein:

4

The patent or application file contains at least one drawing executed in color. Copies of this patent or patent application publication with color drawings(s) will be provided by the Office upon request and payment of the necessary fee.

FIG. 1 presents data demonstrating xylose consumption in lab strain backgrounds. ACSH; 6% glucan loading AFEXTM pretreated corn stover hydrolysate, AHP; Alkaline Hydrogen Peroxide pretreatment, IL; Ionic Liquid ([C₂mim][OAc]) pretreated, Dil. Acid; Dilute Acid pretreated hydrolysate, SGH; switchgrass hydrolysate, CSH; corn stover hydrolysate.

FIG. 2 demonstrates that phenotypic screening of wild and domesticated S. cerevisiae strains identified NRRL YB-210 as tolerant to a variety of pretreated lignocellulosic hydrolysates. In FIG. 2A, 117 S. cerevisiae strains (including some in duplicate) were cultured in 96-well plates and monitored for changes in cell density and growth rates. All strains in each condition were then ranked from 1 (highest growth rate in yellow) to 117 (lowest growth rate, or no growth, in blue) and hierarchically clustered. Arrows indicate clustered rows for BY4741 (green), CEN.PK2 (black) in duplicate microtiter wells, and NRRL YB-210/GL-BRCY0 (red). Representative growth data for the YB-210/ GLBRCY0 strain in the indicated media from FIG. 2A are plotted (FIGS. 2B-C). YP: Yeast Extract and Peptone supplementation; 6%: 6% glucan loading ACSH; 9%: 9% glucan loading ACSH; Dtx: Detoxified.

FIG. 3 demonstrates rapid aerobic xylose consumption by the GLBRCY127 strain, developed by directed engineering with xylose isomerase coupled with batch evolution. Average sugar consumption and cell growth of unevolved GLBRCY22-3 strain engineered with ScTAL1, CpXylA and SsXYL3 cultured in bioreactors containing YPDX media and sparged with air from biological duplicates is shown (FIG. 3A). Indicated components were quantified from media samples at times from initial inoculation. In FIG. 3B, the average percentage of xylose consumed and change in cell density per day are plotted for each transfer during the adaption of the Y22-3 strain in YP media containing 0.1% glucose and 2% xylose. The pattern of lower % of xylose consumed and change in cell density per day during every third transfer is due to reaching saturated growth prior to transfer. Average extracellular xylose concentrations and cell density measurements from parental GLBRCY22-3 and evolved Y127 strains grown aerobically in culture tubes with YPX media from three independent biological replicates are plotted in FIG. 3C. In FIG. 3D, evolved isolate GLBRCY127 was cultured in the same conditions as in FIG. 3A, and sample measurements were taken in an identical manner. Vertical bars indicate time points for metabolomic sampling described in FIG. 7.

FIG. 4 depicts second stage anaerobic adaptation on xylose for rapid xylose fermentation by GLBRCY128. A representative experiment (of two biological reps) of the GLBRCY127 strain cultured in bioreactors containing YPDX media and sparged with nitrogen is shown (FIG. 4A). Indicated components were quantified from media samples at times from initial inoculation. In FIG. 4B, the percentage of xylose consumed and change in cell density per day is plotted for each transfer during the anaerobic adaptation of the Y127 strain in YP media containing 0.1% glucose and 2% xylose. In the first two transfers (hatched bars), Tween-80 and ergosterol were added to the media. In FIG. 4C, evolved isolate GLBRCY128 was cultured in the same conditions as in FIG. 4A, and samples measurements taken in an identical manner.

FIG. **5** depicts the ability of GLBRCY128 to anaerobically ferment xylose from ACSH. A diagram summarizing the engineering and evolution of the GLBRCY0 strain to the evolved Y128 strain is provided in (FIG. **5**A). Representative experiments (of two biological reps) of the Y127 (FIG. **5** SB) and Y128 (FIG. **5**C) strains cultured in bioreactors containing ACSH and sparged with nitrogen are shown. Indicated components were quantified from media samples at times from initial inoculation. Vertical bars indicate time-points at which samples were taken for metabolomic 10 analysis described in FIG. **7**B.

FIG. 6 demonstrates that xylose consumption phenotypes of the evolved Y127 and Y128 strains are dependent upon CpXylA and ScTALJ. Extracellular xylose concentrations (solid lines) and cell density (dashed lines) were measured 15 by YSI instrument and optical density 600 readings, respectively, from cultures containing (FIG. 6A) GLBRCY127 and GLBRCY127 xylA Δ or (FIG. 6B) Y127 and Y127 tal1 Δ strains inoculated in aerobic YPX media. In FIG. 6C, extracellular xylose concentrations (solid lines) and cell 20 density (dashed lines) were measured as in FIGS. 6A-B for GLBRCY128 and two independent GLBRCY128 xylA Δ strains inoculated in anaerobic YPX media. These Y128 strains were cultured in YPD media and total RNA isolated from a single timepoint. Expression of CpXylA was then 25 quantified and normalized to ScERV25 RNA levels by qPCR. The bar graph in FIG. 6D displays the average values and standard deviations for CpXylA RNA from three independent biological replicates.

FIG. 7 demonstrates reduced xylitol production and 30 improved anaerobic xylose fermentation in a variant (GL-BRCY128) comprising a mutation in GRE3. Fermentation samples were taken at the indicated timepoints marked by vertical bars in FIGS. 5B-C. Cells were filter-captured, briefly washed and then intracellular metabolites extracted 35 by solvent. Identification and concentrations of xylose (FIG. 7A), xylulose (FIG. 7B), xylulose-5-phosphate (FIG. 7C), and xylitol (FIG. 7D) were determined by reverse phase ion pairing HPLC-ESI coupled with MS/MS or gas chromatography (see Example 3). Average concentrations and standard 40 deviations are based on two biological replicates. Y22-3, Y127, and Y128 strains (with or without deletion of GRE3) were cultured under anaerobic conditions. Samples were taken at the indicated time-points to measure xylose concentrations (FIG. 7E) or cell density (FIG. 7F). Average 45 values and standard deviations were calculated from biological triplicates.

FIG. 8 demonstrates that a hydrolysate-tolerant YB-210/ GLBRCY0 engineered with XR/XDH and evolved for aerobic xylose metabolism cannot ferment xylose anaerobically. 50 The YB-210/Y0 strain engineered with XYL1, 2 and 3 genes from *S. stipitis* and aerobically-evolved (GLBRCY73) was cultured in bioreactors and evaluated for consumption of xylose in aerobic YPXD (FIG. 8A), anaerobic YPXD (FIG. 8B), and anaerobic ACSH (FIG. 8C) media as described in 55 Materials and Methods (see Examples). Results displayed are from two independent biological replicates. Concentrations (g/L) of glucose (green circle), xylose (red circle), dry cell weight (black square), and ethanol (blue triangle) measured from representative experiments performed in dupli- 60 cate are indicated.

FIG. **9** presents a schematic and data demonstrating co-segregation two mutations co-segregate with the evolved xylose metabolism phenotypes. Schematic diagrams summarizing the segregation of genotypes and phenotypes in the 65 progeny from a parent×evolved backcross for one (FIG. **9**A) or two (FIG. **9**B) unlinked driver mutations (green or yellow

boxes) on chromosomes (red or blue rectangles). In FIG. 9B, progeny with a single evolved mutation have intermediate phenotypes; however, driver mutations can also have parental-like phenotypes. Probabilities for progeny genotypes are indicated based on random chromosomal segregation. Haploid progeny isolated from a backcross between parental Y22-3 and aerobically evolved Y127 (FIGS. 9C, D) or between parental Y127 and anaerobically evolved Y128 (FIGS. 9E, F) were genotyped and phenotyped for aerobic or anaerobic xylose consumption, respectively. Data in (FIG. 9C) and (FIG. 9E) are representative examples for progeny from the Y22-3×Y127 and Y127×Y128 backcrosses, respectively. Tables in (FIG. 9D) and (FIG. 9F) summarize the genotypes of analyzed spores and qualitative comparison of xylose consumption phenotype relative to the Parental and Evolved strains. Strains that consumed xylose at rates intermediate of the Parent and Evolved were designated with "Intermediate" phenotypes. Xylose consumption phenotypes were determined from the average of biological duplicates.

FIG. 10 presents data demonstrating that identical mutations in lab strain backgrounds phenocopy anaerobic xylose metabolism. BY4741 (FIG. 10A) and CEN.PK113-5D (FIG. 10B) lab strains engineered to express xylose metabolism enzymes (Y174 and Y176, respectively) were engineered with null mutations in the indicated gene. Strains were cultured either aerobically in YPX media, with cell densities and xylose concentrations sampled at the indicated times. Averages and standard deviations of biological triplicates are shown.

FIG. **11** demonstrates that null mutations in HOG1, ISU GRE3, and IRA2 are sufficient for anaerobic xylose consumption. Combinations of hog1, isu1, gre3 and ira2 null mutations were introduced into the Y132, Y133 (FIG. **11**A) or Y36 (FIGS. **11**B and C) strain backgrounds. The resulting strains were cultured in YPX media under anaerobic conditions. Specific xylose consumption rates (g xylose consumed h⁻¹ cell mass⁻¹ in g DCW or OD₆₀₀ units) were calculated from biological triplicates. In FIG. **11**B, statistically significant differences (p<0.05) by paired t-test are indicated (*) between Y36 isu1\Deltahog1\Deltaira2A or Y36 isu1\Deltahog1A gre3A ira2A.

FIG. 12 demonstrates that activation of PKA signaling by deletion of IRA genes confers capacity for anaerobic xylose fermentation. Strains harboring various null mutations in GRE3, IRA2, along with SAP190 (FIGS. 12A-B) or IRA1 (FIGS. 12C-D) within the Y132 or Y133 strain backgrounds were phenotyped by anaerobic xylose metabolism in YPX media. Average cell densities and xylose concentrations, as well as standard deviations, from independent biological duplicates sampled at the indicated times are shown.

While the present invention is susceptible to various modifications and alternative forms, exemplary embodiments thereof are shown by way of example in the drawings and are herein described in detail. It should be understood, however, that the description of exemplary embodiments is not intended to limit the invention to the particular forms disclosed, but on the contrary, the intention is to cover all modifications, equivalents and alternatives falling within the spirit and scope of the invention as defined by the appended claims.

DETAILED DESCRIPTION OF THE INVENTION

All publications, including but not limited to patents and patent applications, cited in this specification are herein incorporated by reference as though set forth in their entirety in the present application. Compositions of the Invention

Efficient fermentation of cellulosic feedstock is an essential step in the production of biofuel from plant materials. While S. cerevisiae excels at fermentation of glucose from corn and sugar cane, the fermentation of renewable ligno- 5 cellulosic biomass presents a significant challenge. Xylose, which is a pentose sugar and a major component of hemicellulose, can comprise almost 30% of total cell wall carbohydrate in grasses. Its conversion, along with glucose, into ethanol is critical for any economically-viable cellulosic 10 biofuel process. However, native S. cerevisiae cannot efficiently ferment xylose, as most strains have either lost or downregulated the activities of xylose catabolism proteins. Even when engineered to express the minimal enzymes from native xylose metabolizing organisms, S. cerevisiae is still 15 unable ferment xylose from innocuous lab media at industrially-acceptable rates. However, several Ascomycete yeasts that both ferment and assimilate xylose have been identified, including Pichia stipitis, whose genome has recently been sequenced. The present invention is based, at 20 least in part, on the Inventors' discovery of genetic modifications that permit substantially faster xylose fermentation under anaerobic conditions-conditions preferred for industrial ethanol production from plant biomass.

Accordingly, one aspect of the present invention relates to 25 strains genetically engineered to be xylose-utilizing and ethanol-producing yeast strains. In particular, the present invention provides further genetic modifications to eukaryotic host cells that have been engineered to express xylose metabolism enzymes. Such further genetic modifications 30 improve the efficiency of xylose metabolism in such host cells. In exemplary embodiments, modified host cells of the present invention are yeasts that have been additionally genetically engineered for enhanced anaerobic and/or aerobic xylose fermentation and increased ethanol production. 35 The modified host cells of the present invention are wellsuited for producing a variety of fermentation products, including ethanol, in fermentation processes that use xylose or a combination of xylose and glucose as carbon sources.

As used herein, a "host cell" is a cell which has been 40 transformed or transfected, or is capable of transformation or transfection by an exogenous polynucleotide sequence. A host cell that has been transformed or transfected may be more specifically referred to as a "recombinant host cell." A preferred host cell is a host cell that is naturally capable of 45 alcoholic fermentation, preferably, anaerobic alcoholic fermentation. Host cells may also exhibit a high tolerance to ethanol, low pH, organic acids, and/or elevated temperatures. Such characteristics or activities of the host cell may be naturally present in the host cell or may be introduced or 50 modified by genetic modification.

Preferred host cells for the present invention include yeast cells, particularly yeast cells of the genus Saccharomyces. Preferred yeast species as host cells include Saccharomyces cerevisiae, S. bulderi, S. barnetti, S. exiguus, S. uvarum, S. 55 diastaticus, K. lactis, K. marxianus, and K fragilis, of which yeast cells of the genus Saccharomyces and yeast cells of the species Saccharomyces cerevisiae are preferred. Yeasts of the genus Saccharomyces posses both a metabolic pathway and a fermentative pathway for respiration.

"Yeasts" are eukaryotic micro-organisms classified in the kingdom Fungi. Most reproduce asexually by budding, although some yeasts undergo sexual reproduction by meiosis. Yeasts are unicellular, although some species with yeast forms may become multi-cellular through the formation of 65 a string of connected budding cells known as pseudohyphae, or false hyphae, as seen in most molds. Yeasts do not form

a single taxonomic or phylogenetic grouping. The term "veast" is often taken as a synonym for Saccharomyces cerevisiae, but the phylogenetic diversity of yeasts is illustrated by their assignment to two taxonomic classes of fungi, the ascomycetes and the basidiomycetes. As used herein, wild type yeast refers to a yeast strain designated GLBRCY0 (YB-210). GLBRCY0/YB-210 is a strain of S. cerevisiae that can be obtained from the ARS Culture Collection, National Center for Agricultural Utilization Research, Peoria, Ill., USA; under NRRL YB-210.

A suitable host yeast cell contains at least one native gene (a "xylose isomerase gene") that produces an active xylose isomerase enzyme that is capable of catalyzing the interconversion of D-xylose to D-xylulose. Xylose isomerase can also catalyze the interconversion of D-ribose to D-ribulose and D-glucose to D-fructose. The enzyme can be specific to the reduction of xylose or non-specific (i.e., capable of catalyzing the conversion of a range of pentose sugars). In some cases, a suitable host yeast cell is genetically engineered to contain an expression cassette containing Clostridium phytofermentans xylose isomerase (CphytoXylA), which can confer anaerobic xylose fermentation by S. cerevisiae with additional genetic modifications (see Brat et al., Applied Environmental Microbiol. 75:2304 (2009)), driven by the ScerTDH3 promoter. In exemplary embodiments, the expression cassette further comprises ScerTAL1, a Pentose Phosphate Pathway transaldolase enzyme that can improve xylose metabolism when overexpressed (see Ni et al., Applied Environmental Microbiol. 73:2061 (2007); Walfridsson et al., Applied Environmental Microbiol. 61:4184 (1995)), and SstipXYL3 driven by the ScerPGK1 and Scer-TEF2 promoters, respectively. For example, the host yeast cell can comprise a TAL1-XylA-XYL3 gene expression cassette.

Recombinant yeast of the present invention can further comprise genetic modifications intended to delete or disrupt genes encoding certain polypeptides. By "delete or disrupt", it is meant that the entire coding region of the gene is eliminated (deletion), or the gene or its promoter and/or terminator region is modified (such as by deletion, insertion, or mutation) so that the gene no longer produces an active enzyme, or produces an enzyme with severely reduced activity. The deletion or disruption can be accomplished by genetic engineering methods, forced evolution or mutagenesis, and/or selection or screening.

Recombinant yeast of the present invention can comprise genetic modifications that cause reduced levels of functional Isu1, Gre3, Ira2, Ira1, and Hog1 polypeptides. Isu1 is a polypeptide required for mitochondrial iron-sulfur (Fe—S) protein biogenesis. Gre3 is an aldolase enzyme. Hog1 is a mitogen-activated protein (MAP) kinase involved in osmoregulation. Ira1 and Ira2 are Ras GTPase activating proteins that act as a negative regulators of cyclic AMP (cAMP) signaling. Consistent with their role as negative regulators of the Ras-cAMP pathway, disruption of either IRA2 or IRA1 decreases the rate at which Ras proteins hydrolyze GTP to GDP and increases intracellular cAMP levels (Tanaka et al., Mol Cell Biol 9(2):757-68 (1990)). The nucleotide and amino acid sequences of IRA2 (NCBI Gene ID: 854073) are set forth as SEQ ID NO:1 and SEQ ID NO:2, respectively. The nucleotide and amino acid sequences of GRE3 (NCBI Gene ID: 856504) are set forth as SEQ ID NO:3 and SEQ ID NO:4, respectively. The nucleotide and amino acid sequences of ISU1 (NCBI Gene ID: 855968) are set forth as SEQ ID NO:5 and SEQ ID NO:6, respectively. The nucleotide and amino acid sequences of HOG1 (NCBI Gene ID: 850803) are set forth as SEQ ID NO:7 and SEQ ID NO:8,

respectively. The nucleotide and amino acid sequences of IRA1 (NCBI Gene ID: 852437) are set forth as SEQ ID NO:9 and SEQ ID NO:10, respectively.

In some cases, a recombinant yeast of the present invention can comprise a disabling mutation that substitutes a 5 threonine amino acid residue for the alanine located amino acid residue position 46 of SEQ ID NO:4, whereby the yeast exhibits a reduced amount of functional Gre3 polypeptide. In other cases, a recombinant yeast of the present invention can comprise a disabling mutation that substitutes a stop 10 codon for the glutamate at amino acid residue at position 2927 of SEQ ID NO:2, whereby the yeast exhibits a reduced amount of functional Ira2 polypeptide. Alternatively, a recombinant yeast comprises a disabling mutation in SEQ ID NO:9, whereby the recombinant yeast exhibits a reduced 15 amount of functional Ira1. In other cases, a recombinant yeast of the present invention can comprise a disabling mutation that substitutes a tyrosine for the histidine at amino acid residue position 138 of SEQ ID NO:6, whereby the veast exhibits a reduced amount of functional Isu1 polypep- 20 tide. In further cases, a recombinant yeast of the present invention can comprise a disabling mutation that deletes an adenine nitrogenous base at nucleotide position 844 of SEQ ID NO:7, whereby the deletion causes a codon frame-shift and the yeast exhibits a reduced amount of functional Hog1 25 be combined, cloned, isolated and sequenced in accordance polypeptide.

In exemplary embodiments, a recombinant yeast of the invention comprises a disabling mutation at each of loci isu1, gre3, hog1, and ira2, whereby the mutations result in reduced amounts of functional Isu1, Gre3, Hog1, and Ira2 30 polypeptides, respectively. In some cases, the disabling mutations include a missense mutation in the S. cerevisiae gene encoding Isu1, a missense mutation in the gene encoding Gre3, an aldolase enzyme, a missense mutation in the gene encoding Ire2, and a codon frame-shift mutation in the 35 gene encoding Hog1. Deletion of GRE3 was previously shown to improve xylose fermentation in xylose isomeraseengineered S. cerevisiae strains (Traff et al., Applied and Environmental Microbiol. 67:5668 (2001)). In exemplary embodiments, a recombinant yeast of the present invention 40 comprises a disabling mutation at the GRE3 locus that substitutes a threonine for the alanine at amino acid residue position 46 of SEQ ID NO:4; a disabling mutation at the IRA2 locus that substitutes a stop codon for the glutamate at amino acid residue at position 2927 of SEQ ID NO:2; a 45 disabling mutation at the ISU1 locus that substitutes a tyrosine for the histidine at amino acid residue position 138 of SEQ ID NO:6; and a disabling mutation at the HOG1 locus that deletes an adenine nitrogenous base at nucleotide position 844 of SEQ ID NO:7. 50

Genetically modified yeasts of the present invention containing genetic modifications that reduce or disrupt expression of one or more of Isu1, Hog1, Gre3, Ira2, and Ira1 polypeptides are useful to ferment xylose pentose sugars to desirable fermentation products such as ethanol. As set forth 55 in Table 4 of the Examples, genetically engineered yeast comprising disabling mutations at three loci (e.g., $isu1\Delta hog1\Delta gre3\Delta$; $isu1\Delta hog1\Delta ira2\Delta$; $isu1\Delta hog1\Delta ira1\Delta$) or four loci (e.g., isu1 Δ hog1 Δ gre3 Δ , and either ira1 Δ or ira2 Δ) exhibit substantially faster anaerobic xylose fermentation 60 relative to controls. Anaerobic xylose fermentation was fastest for genetically engineered yeast comprising mutations in four loci (isu1 Δ hog1 Δ gre3 Δ , and either ira1 Δ or ira2A). Recombinant yeast described herein may not comprise null mutations at an IRA1 locus and an IRA2 locus 65 since the double mutation is lethal. For aerobic xylose metabolism, a genetically engineered yeast comprises

genetic modifications that reduces or disrupt Isu1 polypeptide expression. Such a genetically engineered yeast may have mutations at additional loci.

It is contemplated that certain additional genetic modifications may be necessary to produce other desirable characteristics and/or to enable the yeast cell to produce certain products at industrially-acceptable levels.

Genetic modification of the host cell can be accomplished in one or more steps via the design and construction of appropriate vectors and transformation of the host cell with those vectors. Nucleic acid constructs useful in the invention may be prepared in conventional ways, by isolating the desired genes from an appropriate host, by synthesizing all or a portion of the genes, or combinations thereof. Similarly, the regulatory signals, the transcriptional and translational initiation and termination regions, may be isolated from a natural source, be synthesized, or combinations thereof. The various fragments may be subjected to endonuclease digestion (restriction), ligation, sequencing, in vitro mutagenesis, primer repair, or the like. The various manipulations are well known in the literature and will be employed to achieve specific purposes.

The various nucleic acids and/or fragments thereof may with conventional ways. Standard techniques of molecular biology, microbiology, recombinant DNA, and immunology, which are within the skill of the art, are explained fully in the literature. See, for example, Molecular Cloning A Laboratory Manual, 2nd Ed., ed. by Sambrook, Fritsch and Maniatis (Cold Spring Harbor Laboratory Press: 1989); DNA Cloning, Volumes I and II (D. N. Glover ed., 1985); Oligonucleotide Synthesis (M. J. Gait ed., 1984); Mullis et al. U.S. Pat. No. 4,683,195; Nucleic Acid Hybridization (B. D. Hames & S. J. Higgins eds. 1984); Transcription And Translation (B. D. Hames & S. J. Higgins eds. 1984); Culture Of Animal Cells (R. I. Freshney, Alan R. Liss, Inc., 1987); Immobilized Cells And Enzymes (IRL Press, 1986); B. Perbal, A Practical Guide To Molecular Cloning (1984); the treatise, Methods In Enzymology (Academic Press, Inc., N.Y.); Gene Transfer Vectors For Mammalian Cells (J. H. Miller and M. P. Calos eds., 1987, Cold Spring Harbor Laboratory); Methods In Enzymology, Vols. 154 and 155 (Wu et al. eds.), Immunochemical Methods In Cell And Molecular Biology (Mayer and Walker, eds., Academic Press, London, 1987); and Handbook Of Experimental Immunology, Volumes I-IV (D. M. Weir and C. C. Blackwell, eds., 1986).

The nucleotides which occur in the various nucleotide sequences appearing herein have their usual single-letter designations (A, G, T, C or U) used routinely in the art. In the present specification and claims, references to Greek letters may either be written out as alpha, beta, etc. or the corresponding Greek letter symbols (e.g., α , β , etc.) may sometimes be used.

The term "isolated nucleic acid" used in the specification and claims means a nucleic acid isolated from its natural environment or prepared using synthetic methods such as those known to one of ordinary skill in the art. Complete purification is not required in either case. The nucleic acids of the invention can be isolated and purified from normally associated material in conventional ways such that in the purified preparation the nucleic acid is the predominant species in the preparation. At the very least, the degree of purification is such that the extraneous material in the preparation does not interfere with use of the nucleic acid of the invention in the manner disclosed herein. The nucleic

acid is preferably at least about 85% pure, more preferably at least about 95% pure and most preferably at least about 99% pure.

Further, an isolated nucleic acid has a structure that is not identical to that of any naturally occurring nucleic acid or to 5 that of any fragment of a naturally occurring genomic nucleic acid spanning more than three separate genes. An isolated nucleic acid also includes, without limitation, (a) a nucleic acid having a sequence of a naturally occurring genomic or extrachromosomal nucleic acid molecule but 10 which is not flanked by the coding sequences that flank the sequence in its natural position; (b) a nucleic acid incorporated into a vector or into a prokaryote or eukaryote genome such that the resulting molecule is not identical to any naturally occurring vector or genomic DNA; (c) a separate 15 molecule such as a cDNA, a genomic fragment, a fragment produced by polymerase chain reaction (PCR), or a restriction fragment; and (d) a recombinant nucleotide sequence that is part of a hybrid gene. Specifically excluded from this definition are nucleic acids present in mixtures of clones. 20 e.g., as those occurring in a DNA library such as a cDNA or genomic DNA library. An isolated nucleic acid can be modified or unmodified DNA or RNA, whether fully or partially single-stranded or double-stranded or even triplestranded. A nucleic acid can be chemically or enzymatically 25 modified and can include so-called non-standard bases such as inosine, as described in a preceding definition.

After each manipulation, the DNA fragment or combination of fragments (polynucleotides) may be inserted into the cloning vector, the vector transformed into a cloning host, 30 e.g., E. coli, the cloning host grown up, lysed, the plasmid isolated and the fragment analyzed by restriction analysis, sequencing, combinations thereof, or the like. "Polynucleotide(s)" generally refers to any polyribonucleotide or polydeoxyribonucleotide, which may be unmodified RNA or 35 DNA or modified RNA or DNA. "Polynucleotide(s)" include, without limitation, single- and double-stranded DNA, DNA that is a mixture of single- and double-stranded regions or single-, double- and triple-stranded regions, single- and double-stranded RNA, and RNA that is mixture 40 of single- and double-stranded regions, hybrid molecules comprising DNA and RNA that may be single-stranded or, more typically, double-stranded, or triple-stranded regions, or a mixture of single- and double-stranded regions. As used herein, the term "polynucleotide(s)" also includes DNAs or 45 RNAs as described above that contain one or more modified bases. Thus, DNAs or RNAs with backbones modified for stability or for other reasons are "polynucleotide(s)" as that term is intended herein. Moreover, DNAs or RNAs comprising unusual bases, such as inosine, or modified bases, 50 such as tritylated bases, to name just two examples, are polynucleotides as the term is used herein. It will be appreciated that a great variety of modifications have been made to DNA and RNA that serve many useful purposes known to those of skill in the art. The term "polynucleotide(s)" as it is 55 employed herein embraces such chemically, enzymatically or metabolically modified forms of polynucleotides, as well as the chemical forms of DNA and RNA characteristic of viruses and cells, including, for example, simple and complex cells. "Polynucleotide(s)" also embraces short poly- 60 nucleotides often referred to as oligonucleotide(s).

Targeted integration can be accomplished by designing a vector having regions that are homologous to the upstream (5'-) and downstream (3'-) flanks of the target gene. Either of both of these regions may include a portion of the coding 65 region of the target gene. The gene cassette (including associated promoters and terminators if different from those

of the target gene) and selection markers (with associated promoters and terminators as may be needed) can reside on a vector between the regions that are homologous to the upstream and downstream flanks of the target gene. Targeted cassette insertion can be verified by any appropriate method such as, for example, PCR. A host cell may be transformed according to conventional methods that are known to practitioners in the art. Electroporation and/or chemical (such as calcium chloride- or lithium acetate-based) transformation methods can be used. The DNA used in the transformations can either be cut with particular restriction enzymes or used as circular DNA. Methods for transforming yeast strains are described in WO 99/14335, WO 00/71738, WO 02/42471, WO 03/102201, WO 03/102152 and WO 03/049525; these methods are generally applicable for transforming host cells in accordance with this invention. Other methods for transforming eukaryotic host cells are well known in the art such as from standard handbooks, such as Sambrook and Russel (2001) "Molecular Cloning: A Laboratory Manual (3rd edition)," Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, or F. Ausubel et al., eds., "Current protocols in molecular biology," Green Publishing and Wiley Interscience, New York (1987).

In another aspect, compositions of the present invention further include yeast inoculums comprising recombinant yeast as provided herein. A yeast inoculum of the present invention can comprise a recombinant yeast as provided herein and (b) a culture medium. In exemplary embodiments, the recombinant yeast is S. cerevisiae and the culture medium is a liquid culture medium. Yeast inocula of the present invention include large-scale preparations of sufficient quantities of viable yeast cells for use in, for example, xylose fermentation and other industrial ethanol-producing methods. A yeast inoculum of the present invention can be contacted to cellulosic material for xylose fermentation.

Methods of the Invention

The methods provided by the present invention involve the discovery and incorporation of genetic modifications into genes encoding certain polypeptides into a single host organism and the use of those organisms to convert xylose to ethanol. In particular, the present invention provides methods of fermenting cellulosic material comprising the 5-carbon sugar xylose under anaerobic or aerobic conditions, where the method comprises use of a recombinant yeast.

In exemplary embodiments, recombinant yeast of the present invention are used to make a useful fuel (e.g., ethanol) or plant material-derived chemical feedstock by converting xylose and other sugars under appropriate fermentation conditions. The sugars can come from a variety of sources including, but not limited to, cellulosic material. The cellulosic material can be lignocellulosic biomass. As used herein, the term "lignocellulosic biomass" refers to any materials comprising cellulose, hemicellulose, and lignin, wherein the carbohydrate polymers (cellulose and hemicelluloses) are tightly bound to the lignin. Generally, lignocellulosic material for making ethanol is feedstock such as corn stover, which consists of the stems, cobs, and leaves from the corn plants (i.e., the non-grain material). Corn stover is typically shredded by mechanical means and incorporated by tillage into topsoil for decomposition. In addition to lignocellulosic ethanol production from corn stover, other feedstocks such as sorghum, wheat, or another grain can be used. In some cases, lignocellulosic biomass comprises material selected from the group consisting of materials that comprise at least 75% cellulose, cellulose/hemicelluloses, xylose, biomass, and chitin. In other cases, the lignocellu-

losic biomass comprises at least one material selected from the group consisting of agricultural residues, wood, municipal solid wastes, paper and pulp industry wastes, and herbaceous crops. As used herein, the term "biomass" refers to a renewable energy source, is biological material from living 5 or recently living organisms. As an energy source, biomass can either be used directly, or converted into other energy products such as biofuel. Biomass includes plant or animal matter that can be converted into fibers or other industrial chemicals, including biofuels. Industrial biomass can be 10 grown from numerous types of plants, including *miscanthus*, switchgrass, hemp, corn, poplar, willow, sorghum, sugarcane, bamboo, and a variety of tree species, ranging from *eucalyptus* to oil palm (palm oil). Thus, biomass can include wood biomass and non-wood biomass. 15

In some cases, cellulosic material is contacted with one or more of the genetically engineered yeasts disclosed herein (e.g., a yeast strain genetically modified to exhibit reduced amounts of functional ISU1, GRE3, HOG1, IRA1, and/or IRA2 polypeptides) under anaerobic or aerobic conditions. 20 For example, a method of fermenting cellulosic material can comprise contacting under anaerobic conditions a recombinant yeast as provided herein to cellulosic material for a period of time sufficient to allow fermentation of at least a portion of the cellulosic material. In exemplary embodi-25 ments, a recombinant yeast used according to the methods provided herein is *Saccharomyces cerevisiae*.

The fermentation process may be an aerobic or an anaerobic fermentation process. Anaerobic fermentation is herein defined as a fermentation process run in the absence of 30 oxygen or in which substantially no oxygen is consumed, preferably less than 5, 2.5 or 1 mmol/L/h, more preferably 0 mmol/L/h is consumed (i.e., oxygen consumption is not detectable), and where organic molecules serve as both electron donor and electron acceptors. In the absence of 35 oxygen, NADH produced in glycolysis and biomass formation cannot be oxidized by oxidative phosphorylation.

In some cases, the method can include a first hydrolyzation step. For example, when cellulosic material is used in the methods disclosed herein, the material can be hydro- 40 lyzed to produce a hydrolysate comprising xylose, which is subsequently contacted to one or more recombinant yeasts of the present invention. As used herein, the term "hydrolysate" refers to a fermentable sugar-containing product produced from cellulosic material (e.g., biomass), typically 45 through pretreatment and saccharification processes. In general, cellulosic material is pretreated using thermal, physical, and/or chemical treatments, and saccharified enzymatically. Physical and chemical treatments may include grinding, milling, cutting, base treatment such as with ammonia or 50 NaOH, and acid treatment. In some cases, plant biomass can be pretreated using AFEX[™]. While highly effective at pretreating grasses for enzymatic hydrolysis, AFEX[™] pretreament generates diverse inhibitory compounds from corn stover that impair xylose fermentation (Schwalbach et al., 55 Applied Environ. Microbiol. 78:3442 (2012); Koppram et al., Biotechnol. Biofuels 5:32 (2012); Lau & Dale, PNAS USA 106:1368 (2009)). The inhibitory compounds are degradation products derived from plant cell walls such as hemicellulose and lignin-derived acetate and aromatic mol- 60 ecules.

Enzymatic saccharification typically makes use of an enzyme composition or blend to break down cellulose and/or hemicellulose and to produce a hydrolysate containing 6-carbon sugars (e.g., glucose) and 5-carbon sugars (e.g., 65 xylose, arabinose). For review of saccharification enzymes, see Lynd et al., *Microbiol. Mol. Biol. Rev.* 66:506-577

(2002). Saccharification enzymes may be obtained commercially. In some cases, saccharification enzymes may be produced using recombinant microorganisms that have been engineered to express one or more saccharifying enzymes.

In some cases, methods of the present invention further comprise an ethanol separation or extraction step. Following conversion of sugars into ethanol, the ethanol can be separated from a fermentation culture using, for example, a standard distillation method or by filtration using membranes or membrane systems known in the art. Methods of separating or extracting are not restricted to those disclosed herein.

Methods of the present invention can be conducted continuously, batch-wise, or some combination thereof.

In another aspect, provided herein are methods for producing fuels and chemical feedstocks from glycerol (or glycerin). Glycerol is a by-product of biodiesel production, which, using a recombinant yeast of the present invention, could be further converted to a fuel or chemical feedstock such as, for example, ethanol, lactic acid, isobutanol, and propanediol. In some cases, a method of converting glycerol to ethanol can comprise contacting glycerol to one or more of the genetically engineered yeasts disclosed herein (e.g., a yeast strain genetically modified to exhibit reduced amounts of functional ISU1, GRE3, HOG1, IRA1, and IRA2 polypeptides) under appropriate fermentation conditions. In exemplary embodiments, methods are provided for producing lactic acid from glycerol. In such cases, the method comprises contacting under anaerobic conditions a recombinant yeast provided herein to glycerol for a period of time sufficient to allow fermentation of at least a portion of the glycerol into lactic acid. Lactic acid is in high demand as a chemical feedstock for the biodegradable plastic known as polylactic acid (PLA), a biopolymer that is useful in a variety of applications including packaging material and medical devices (e.g., surgical sutures, orthopedic implants). The raw materials required to manufacture lactic acid are expensive and limit use of PLA. In other cases, the method of converting glycerol into a useful fuel comprises contacting under anaerobic conditions a recombinant yeast as provided herein to glycerol for a period of time sufficient to allow fermentation of at least a portion of the glycerol into ethanol or butanol.

In exemplary embodiments, a recombinant yeast used according to the methods provided herein is *Saccharomyces cerevisiae* (*S. cerevisiae*). Following conversion of glycerol into ethanol, the fuel or chemical feedstock can be separated from a fermentation culture using, for example, a standard distillation method or by filtration using membranes or membrane systems known in the art. Methods of separating or extracting are not restricted to those disclosed or exemplified herein.

Articles of Manufacture

In a further aspect, the present invention provides an article of manufacture containing any one or more of the recombinant yeasts disclosed herein is provided. An article of manufacture can contain one of the microorganisms disclosed herein (e.g., one or more of the yeast strains), or an article of manufacture can contain two or more of the microorganisms disclosed herein. Articles of manufacture disclosed herein also can include, for example, components necessary for growth of the particular microorganism(s).

It is understood that this invention is not limited to the particular methodology, protocols, materials, and reagents described, as these may vary. It is also to be understood that the terminology used herein is for the purpose of describing

particular embodiments only, and is not intended to limit the scope of the present invention, which will be limited only by the appended claims.

It must be noted that as used herein and in the appended claims, the singular forms "a," "an," and "the" include plural 5 reference unless the context clearly dictates otherwise. As well, the terms "a" (or "an"), "one or more" and "at least one" can be used interchangeably herein. It is also to be noted that the terms "comprising," "including," and "having" can be used interchangeably.

Unless defined otherwise, all technical and scientific terms used herein have the same meanings as commonly understood by one of ordinary skill in the art to which this invention belongs. Although any methods and materials similar or equivalent to those described herein can be used 15 in the practice or testing of the present invention, the preferred methods and materials are now described. All publications and patents specifically mentioned herein are incorporated by reference for all purposes including describing and disclosing the chemicals, cell lines, vectors, animals, 20 instruments, statistical analysis and methodologies which are reported in the publications which might be used in connection with the invention. All references cited in this specification are to be taken as indicative of the level of skill in the art. Nothing herein is to be construed as an admission 25 that the invention is not entitled to antedate such disclosure by virtue of prior invention.

The present invention will be more fully understood upon consideration of the following non-limiting Examples.

EXAMPLES

Example 1-Genetic Engineering and Two-Stage Directed Evolution of a S. cerevisiae Strain Tolerant to Pretreated Lignocellulosic Hydrolysates

The primary goal of this research was to develop and characterize a S. cerevisiase strain that can effectively ferment xylose anaerobically from AFEXTM-pretreated lignocellulosic biomass. First, two well-characterized laboratory 40 strains, BY4741 and CEN.PK2 (Entian K D & Kötter P (2007) Yeast Genetic Strain and Plasmid Collections. (Academic Press, Amsterdam)), were evaluated for their potential to serve as starting points for this research by evaluating their general growth tolerance in lignocellulosic hydroly- 45 sates (LCHs) generated from a range of established pretreatments and feedstocks. While both strains reached saturated cell density within 8 hours after inoculation in YPD media, they grew at substantially slower growth rates and reached lower cell densities in the pretreated lignocellulosic hydro- 50 lysates (FIGS. 1A-B), even though glucose concentrations were significantly higher. These results are consistent previous studies reporting profound differences in xylose con16

sumption between S. cerevisiae strains grown either in lab media and pretreated lignocellulosic hydrolysates (Koppram et al., Biotech. for Biofuels 5:32 (2012); Lau et al., PNAS 106(5):1368-73 (2009); Jin et al., Biotech. for Biofuels (2013); Sato et al., Applied and Environ. Microbiology 80:540 (2014)), which was largely due to inhibitory compounds generated from lignocellulose pretreatment. Moreover, these results indicate that both BY4741 and CEN.PK2 strains would not be sufficiently tolerant for fermentation of inhibitor-laden hydrolysates.

Based on these observations, we surmised that an alternative strain background with tolerance to these inhibitors would be necessary to achieve adequate xylose fermentation. To find such strain, we performed comprehensive phenotyping of a collection of publicly-available, wild and domesticated S. cerevisiae strains obtained from a variety of locations and environments grown in multiple pretreated lignocellulosic hydrolysates. Individual strains were inoculated into 96-well plates containing 6 or 9% glucan loading AFEXTM pretreated corn stover (ACS), raw or detoxified alkaline hydrogen peroxide (AHP) pretreated corn stover (CS) or switchgrass (SG), [C2mim][OAc]-pretreated SG, or two different proprietary dilute acid pretreated biomass, including supplementation with yeast extract and peptone (YP). Cell densities were continuously measured for 24-48 hours, from which specific growth rates for each strain in every media condition were calculated and normalized relative to their growth rate in YPD media. Each strain was then ranked from fastest to slowest relative growth rate and 30 hierarchically clustered (FIG. 2A). Individual strain growth ranked similarly in ACSH and AHP SG and CS hydrolysates, which were generated by alkaline-based pretreatments. In contrast, the distinctive growth rank signatures in Ionic Liquid (IL) and dilute acid pretreated lignocellulosic 35 hydrolysates were observed, with most strains unable to grow in dilute acid pretreated LCH #2. Given our interest in understanding the genetic determinants of xylose fermentation from AFEXTM-pretreated LCHs, we identified strains that were broadly tolerant to most of the pretreated LCHs with a particular interest in those that ranked highest in growth rate in alkaline pretreatments. One strain that fit this description, NRRL YB-210 (YB-210) and previously named GLBRCY0, was found to grow robustly in AFEX™, AHP, and dilute acid pretreated hydrolysates, and to a slightly lesser extent in IL pretreated hydrolysate (FIGS. 2B-C). Furthermore, we independently determined that YB-210 display tolerance to ethanol stress (D. J. Wohlbach, J. A. Lewis and A. P. Gasch, unpublished observations), elevated temperature (Jin et al., Biotech for Biofuels (2013)) and inhibitors found in AHP pretreated LCHs (Sato et al., Applied Environ. Microbiol. 80:540 (2014)). Therefore, the YB-210 strain background was selected for metabolic engineering and evolution of anaerobic xylose fermentation.

TABLE 1

S. cerevisiae Strains							
Strain name	Genotype	Reference					
GLBRCY22-3	NRRL YB-210 MATa spore HOA::ScTAL1-CpxylA-SsXYL3- loxP-KanMX-loxP	Parreiras et al., PloS one 9(9):e107499 (2014).					
GLBRCY127	GLBRCY22-3 MATa, aerobically evolved isolate on YPDX	Parreiras et al. (2014)					
GLBRCY128	GLBRCY127 MATa, anaerobically evolved isolate on YPDX	Parreiras et al. (2014)					

TADLE T-COMMUC	TABLE	1-continued
----------------	-------	-------------

S. cerevisiae Strains							
Strain name	Genotype	Reference					
GLBRCY36	GLBRCY22-3 with loxP-KanMX-loxP marker excised by Cre	Parreiras et					
GLBRCY132	GLBRCY127 with loxP-KanMX-loxP marker excised by Cre	Parreiras et					
GLBRCY133	GLBRCY128 with loxP-KanMX-loxP marker excised by Cre	Parreiras et al. (2014)					
GLBRCY156	GLBRCY127 MATα	This study					
GLBRCY310	GLBRCY36 hog1A::KanMX	This study					
GLBRCY235	GLBRCY36 isu1AloxP	This study					
GLBRCY263	GLBRCY36 isu1A loxP hog1AKanMX	This study					
GLBRCY174	BY4741 HOA: ScTAL1-CoxylA-SsXYL3-loxP	This study					
GLBCY176	CEN PK113-5D HOA. ScTALI-CoxylA-SsXYL3-loxP	This study					
GLBRCV319	GI BRCY174 hog1A::KanMX	This study					
GLBRCV187	GLBRCY174 isu1A::loxP-HygMX-loxP	This study					
GLBRCY274	GLBRCY174 hog1A::KanMX isu1A::loxP-HygMX-loxP	This study					
GLBRCV271	GLBRCV176 hog1A::KanMX	This study					
GLBRCV188	GLBRCV176 isu1A::lovP-HygMY-lovP	This study					
GLBRCY272	GLBRCY176 hog1A::KanMX isu1A::loxP-HygMX-loxP	This study					
GLBRCV276	GI BRCV174 isulA::loxP hog1A::KanMX gre3A::loxP	This study					
GEDICC12/0	ira2A.·lovP	This study					
GLBRCY278	GLBRCY176 isu1A::loxP hog1A::KanMX gre3A::loxP ira2A::loxP	This study					
GLBRCY302	GLBRCY36 isu1A::loxP-HygMX-loxP hog1A::KanMX gre3A::loxP	This study					
GLBRCY283	GLBRCY36 isu1A::loxP hog1A::KanMX ira2A::loxP- HygMX-loxP	This study					
GLBRCY286	GLBRCY36 isu1A::loxP hog1A::KanMX gre3A::loxP ira2A::loxP	This study					
GLBRCY132 xylA∆	GLBRCY132 xylAA::loxP-KanMX-loxP	Parreiras et al. (2014)					
GLBRCY132 tal1Δ	GLBRCY132 synthetic tal1A::loxP-KanMX- loxP	Parreras et al. (2014)					
GLBRCY133 xylAA-A	GLBRCY133 xylAA::loxP-KanMX-loxP transformant A	Parreiras et al. (2014)					
GLBRCY133 xylAA-B	GLBRCY133 xylAA::loxP-KanMX-loxP transformant B	Parreiras et al. (2014)					
GLBRCY36 gre3∆	GLBRCY36 gre3A::loxP-KanMX-loxP	Parreiras et al. (2014)					
GLBRCY132 gre3∆	GLBRCY132 gre3A::loxP-KanMX-loxP	Parreiras et					
GLBRCY133 gre3Δ	GLBRCY132 gre3A::loxP-KanMX-loxP	Parreiras et al. (2014)					

After preliminary observations revealed the stress tolerant properties of the YB-210/Y0 strain, we first opted to engineer the strain for xylose metabolism by inserting an expression cassette containing the XYLJ (xylose reductase, XR), 45 XYL2 (xylitol dehydrogenase, XDH), and XYL3 (xylulokinase) genes from Scheffersomvces stipitis. Wohlbach et al., PNAS USA 108:13212 (2011). While stable genomic insertion of these genes into the YB-210 background conferred detectable consumption of xylose in lab media (Wohlbach et 50 al., PNAS USA 108:13212 (2011)), the engineered strain (named GLBRCY2A or Y2A) displayed severe reductions in xylose consumption rates when fermenting AHP CS hydrolysate (AHP CSH) (Sato et al., Applied Environ. *Microbiol.* 80:540 (2014)). To improve xylose metabolism, 55 the Y2A strain was subjected to aerobic batch adaptation on xylose, from which a single clone was isolated (GL-BRCY73; Y73) having improved xylose consumption rates in both lab media (FIG. 8A) and AHP SG hydrolysate (AHP SGH). See also Sato et al., Applied Environ. Microbiol. 60 80:540 (2014). We further examined the ability of Y73 to ferment xylose under controlled anaerobic conditions in N2-sparged bioreactors containing YP, 6% glucose and 3% xylose (YPXD) in lab media (FIG. 8B) or ACSH (FIG. 8C). While the Y73 strain could aerobically consume approximately 50% of the xylose in approximately 48 hours, it 65 fermented <20% and <5% of the total xylose anaerobically from YPXD and ACSH, respectively, within the same time

period. These results indicated that the Y73 strain was severely impaired for anaerobic fermentation of xylose, particularly in ACSH, relative to aerobic culturing and suggest that this strain would not be useful in our goals to better understand anaerobic xylose fermentation. Attempts to further improve the Y73 by anaerobic adaption on xylose did not yield any improved clones.

Similar to what we observed with the GLBRCY73 strain, others have reported reduced anaerobic xylose consumption rates from S. cerevisiae strains also expressing S. stipitis XR-XDH enzymes. This limitation is likely due to redox cofactor imbalance; heterologous engineering of S. stipitis XYL1, which primarily utilizes NADPH as its reducing cofactor, and XYL2, which uses NAD as its oxidizing cofactor, introduces incomplete cycles in S. cerevisiae that are rapidly imbalanced in the absence of oxygen (Jeffries et al., Applied Microbiol. Biotechnol. 63:495 (2004)). To circumvent this problem, alternative XRs and XDHs, either from other species (Krahulec et al., Biotechnology J. 4:684 (2009)) or through mutagenesis (Bengtsson et al., Biotechnol. Biofuels 2:9 (2009); Matsushika et al., Applied Microbiol. Biotechnol. 81:243 (2008)), that utilize NADH and NADP respectively, or xylose isomerase (Brat et al., Applied Environmental Microbiol. 75:2304 (2004); Karhumaa et al., Yeast 22:359 (2005); Kuyper et al., FEMS Yeast Research 4:655 (2004)), which catalyzes the conversion of xylose into xylulose without cofactors, have been engineered into S.

cerevisiae. In an alternative approach, we re-engineered the diploid NRRL YB-210 strain with an expression cassette containing Clostridium phytofermentans xylose isomerase (CphytoXylA), which can confer anaerobic xylose fermentation by S. cerevisiae with additional genetic modifications 5 (Brat et al., Applied Environ. Microbiol. 81:243 (2009)), driven by the ScerTDH3 promoter. In addition, the cassette included ScerTAL1, a Pentose Phosphate Pathway transaldolase enzyme that can improve xylose metabolism when overexpressed (Ni et al., Applied Environmental Microbiol. 10 73:2061 (2007); Walfridsson et al., Applied Environmental Microbiol. 61:4184 (1995)) and SstipXYL3 driven by the ScerPGK1 and ScerTEF2 promoters, respectively. Finally, in order to simplify future genomic resequencing of evolved descendants, as well as rapidly uncover beneficial recessive 15 traits during directed evolution, we sporulated and dissected tetrads of the engineered diploid strain, and isolated one haploid spore, named GLBRCY22-3 (Y22-3), that maintained the TAL1-XylA-XYL3 gene expression cassette.

To assess whether the engineered Y22-3 strain could metabolize xylose, we aerobically cultured the strain in YPXD media and monitored extracellular glucose, xylose, and dry cell weight concentrations (FIG. 3A). The Y22-3 strain consumed less than half of the xylose within 64 hours, which was significantly less than the Y73 strain. Thus, the Y22-3 strain was subjected to aerobic batch selection in YP 25 media containing 0.1% glucose and 2% xylose and without exogenous mutagens. For the first seven transfers, which took place over 3-4 day periods, the culture grew at rates of ~1 generation per day with limited xylose depletion detected in the media (FIG. 3B), suggesting that most of the growth 30 was from glucose. Over the eighth to eleventh transfer, slightly greater xylose consumption was observed, however this did not result in substantially faster cell growth rates. By the twelfth transfer and beyond, the culture adapted to xylose, consuming all of the sugar within the 2-4 day 35 passaging cycle and reaching saturated growth. After the 34th transfer, the culture was plated and single clones were screened for growth on xylose. One clone, named GLBRCY127 (Y127), displayed rapid aerobic growth in YPX by 96-well plate assay and was evaluated for aerobic xylose consumption in culture tubes containing YPX media (FIG. 3C) or bioreactors containing YPXD media (FIG. 3D). Consistent with the growth phenotype in 96-well plates, the Y127 strain displayed faster xylose consumption rates than the parental Y22-3 strain (FIGS. 3A, C, D; Table 1). These results indicate that the Y127 isolate evolved from Y22-3 45 with properties allowing faster aerobic xylose consumption.

We next assessed the ability of the Y127 strain to anaerobically ferment xylose in bioreactors sparged with nitrogen. Similar to that for the XR-XDH engineered Y73 strain (FIG. **8**B), the aerobically evolved Y127 strain displayed limited 50 xylose fermentation from YPXD media, consuming less than 30% of the total xylose within 42 hours and did not appear to convert any xylose into ethanol (FIG. **4**A). This suggested that, like Y73, the Y127 strain was not capable of 20

effectively fermenting xylose in the absence of oxygen. In an attempt to overcome this barrier, we performed a second round of batch selection of the Y127 strain cultured in YP media containing 0.1% glucose and 2% xylose under completely anaerobic conditions (FIG. 4B). During the first two transfers, 40 µg/L ergosterol and 4 g/L Tween-80 were added to support anaerobic growth, but then omitted for all proceeding transfers. For the first six transfers, the cell population doubled approximately twice per week. After the sixth transfer, the culture began to grow faster and consume a greater percentage of the total xylose per day. After reaching 33 generations at the 10th transfer, the culture appeared to plateau in anaerobic growth and xylose consumption rate. After the 14th transfer, the culture was plated and colonies screened for fastest growth rate in YPX media by 96-well plate assay. One clone (GLBRCY128) displaying rapid anaerobic growth on xylose was then evaluated in bioreactors containing YPXD media sparged with nitrogen (FIG. 4C). In contrast to GLBRCY127 (FIG. 4A), the GLBRCY128 strain fermented xylose rapidly in the absence of oxygen and glucose, during which time the extracellular ethanol concentration increased. Indeed, the GLBRCY128 strain exhibited higher absolute and specific xylose consumption rates in anaerobic YPXD media than the Y127 strain (Table 2). These results indicate that the two-stage directed evolution yielded Y127 and Y128 strains with faster growth from enhanced aerobic and anaerobic xylose metabolism, respectively.

Within a relatively small number of generations without exogenous mutagens, our two-stage evolution yielded a XvlA-engineered S. cerevisiae strain with the ability to anaerobically consume xylose from lab media (see FIG. $\mathbf{5}\mathrm{A}\mathrm{)}.$ Although the Y128 genetic background originated from a wild hydrolysate-tolerant strain, Y128 could have lost stress tolerant traits during the course of xylose evolution. In such case, Y128 may not be able to anaerobically convert of xylose from pretreated lignocellulose into ethanol, which was our stated goal of this work. Previous studies have shown that yeast strains that can ferment xylose rapidly in lab media are severely impaired in pretreated LCHs. Jin et al., Biotech. for Biofuels (2013). Therefore, we assessed the abilities of the Y127 and Y128 strains to anaerobically ferment sugars from ACSH in bioreactors sparged with nitrogen. Similar to what was observed in YP lab media, both Y127 and Y128 strains fermented glucose rapidly. However, only the Y128 strain appeared to consume most of the xylose (approximately 50% of the xylose within approximately 44 hours) once glucose was depleted from the ACSH. Indeed the absolute and specific xylose consumption rates for Y128 were approximately 10-fold higher than Y127 (Table 2). Because Y128 ferments more xylose than Y127 anaerobically, this resulted in a higher ethanol titer for Y128 (FIGS. 5B, C). Thus, despite the evolution on xylose occurred with lab media that lacks the inhibitors found in pretreated hydrolysates, the Y128 strain could effectively ferment xylose from a model industrial pretreated hydrolysate in the absence of oxygen.

TABLE 2

Xylose Consumption Rates and Product Yields for Bioreactor Fermentation in Lab Medium and ACSH									
	A	erobic YI	PXD	Anaerobic YPDX			Anaerobic ACSH		
	Y73	Y22-3	Y127	Y73	Y127	Y128	Y73	Y127	Y128
Absolute xylose consumption rate (grams xylose	0.47 ± 0.02	0.170 ± 0.003	0.310 ± 0.01	0.30 ± 0.02	0.094 ± 0.031	1.68 ± 0.06	0.28 ± 0.01	0.04 ± 0.03	0.52 ± 0.01

consumed/L/hr)

	A	erobic YI	in Lab M	Anaerobic YPDX			Anaerobic ACSH		
	Y73	Y22-3	Y127	Y73	Y127	Y128	Y73	Y127	Y128
Specific xylose consumption rate (grams xylose consumed/d/h/g DCW)	0.039 ± 0.001	0.019 ± 0.000	0.036 ± 0.01	0.066 ± 0.010	0.0165 ± 0.007	: 0.27 ± 0.06	0.059 ± 0.01	0.013 ± 0.01	0.18 ± 0.02
% of theoretical yield for consumed sugars	ND	ND	ND	80.1 ± 1.4	86.0 ± 2.5	87.5 ± 1.1	72.1 ± 10.4	78.9 ± 14.3	77.2 ± 6.4
Y _{x/glc}	ND	ND	ND	0.079 ±	0.093 ±	0.11 ±	0.066 ± 0.012	0.045 ± 0.004	0.05 ± 0.01
Y _{gly/glc}	ND	ND	ND	0.101 ± 0.001	0.068 ± 0.002	0.076 ± 0.007	0.051 ± 0.002	0.038 ± 0.006	0.04 ± 0.00

ND = no data available

Example 2—Assessing Xylose Consumption by GLBRCY127 and Y128

After clearly establishing the xylose consumption phenotypes of the Y127 and Y128 strains, we next wanted to better ²⁵ understand the potential genetic mechanisms by which these strains could have evolved. One possibility would be through mutations in the engineered genes XylA, TAL1, and XKS1 that increase their expression or activities. However, 30 when the engineered gene cassette was sequenced, no DNA sequence differences were identified. An alternative possibility is that the Y127 or Y128 strains obtained gain-offunction mutations in native genes that code for xylose metabolism enzymes, which are normally expressed at low 35 levels or lack sufficient activities rapid flux into the pentose phosphate pathway (Jeffries et al., Applied microbiol. and biotechnol. 63:495 (2004)). The S. cerevisiae genome contains a number of putative enzymes with xylose reductase activities, most notably the aldolase GRE3, which convert 40 xylose into xylitol, and xylitol dehydrogenases, including an ineffective XYL2 homolog and most recently, XDH1, which is present in some wild S. cerevisiae strains and is necessary and sufficient for detectable xylose consumption (Wenger et al., PLoS genetics 6:e1000942 (2010)). Thus, one possible 45 model for the evolution of Y127 and Y128 is that genetic changes in one or more of these genes allowed for improved xylose consumption independent of XylA and TALL We examined this possibility first by deleting XylA from the Y127 genome and assessed its ability to consume xylose 50 aerobically. Indeed, the Y127 xylA Δ strain was completely ablated of its ability consume or produce any cell biomass from xylose (FIG. 6A). In contrast, deletion of TAL1 from Y127 reduced the rate of xylose metabolism (FIG. 6B), suggesting that the additional copy of TAL1 was important 55 for determining the rate of xylose consumption but was not absolutely essential. In addition, we identified two independent Y128 xylA Δ candidates that were verified by PCR. Consistent with the Y127 xylA Δ strain, the Y128 xyla Δ -B strain could consume xylose aerobically (data not shown) or 60 anaerobically (FIG. 6C). Interestingly, the Y128 xylaA-A strain fermented xylose at a rate comparable rate to that of the Y128 strain. This suggested the possibility that the XylA gene was duplicated in cis, which could account for why the replacement of XylA with the KanMX deletion cassette 65 verified by PCR. Indeed, when we compared XylA RNA expression in the two Y128 xylAA strains with the Y128

20

strain by quantitative PCR (qPCR), we observed that the Y128 xyla Δ -A cells express half as much XylA as Y128, while no XylA RNA was detected in the Y128 xyla Δ -B strain (FIG. 6D). While this does not rule out the possibility of genetic changes in an endogenous xylose metabolizing enzyme, these results together suggest that the evolved xylose consumption phenotypes in Y127 and Y128 are dependent upon the engineered XylA and TAL1 genes.

The data presented thus far implicates the Y128 strain with an evolved ability to ferment xylose anaerobically in lab media (FIGS. 3C, D) and ACSH (FIG. 5C). As additional means to better understand how the evolved strains anaerobically ferment xylose, we analyzed the intracellular concentrations of metabolic intermediates of xylose catabolism. During the anaerobic fermentation of ACSH by the Y127 and Y128 strains (FIGS. 5A, C), culture samples were removed from the bioreactors at 5 different time-points spanning the glucose and xylose consumption phases: two samples were taken when glucose was detected in the hydrolysate (depicted by horizontal lines in shades of green), one during the transition to xylose after glucose was undetected (grey horizontal line), and two final samples when xylose consumption (horizontal lines in shades of red) was evident. Samples for Y127 and Y128 fermentations were taken at comparable sugar concentrations, while the last two samples were taken at the equivalent amount of time after the transition time-point. Cells were captured and washed on filters, and then placed in 40% acetonitrile:40% methanol:20% water:0.1% formic acid solvent to stabilize and extract intracellular metabolites. Intracellular concentrations of xylose, xylitol, and xylulose were then quantified using gas chromatography. Xylulose-5-phosphate levels were quantified by reverse phase anion exchange liquid chromatography and electrospray ionization couple with tandem mass spectrometry. Interestingly, the Y128 accumulated higher concentrations of intermediates from the engineered xylose metabolism pathway than Y127 (FIGS. 7A-C). In particular, intracellular xylose, xylulose (the product of xylose isomerase from xylose), and xylulose-5-phosphate, which is generated from phosphorylation of xylulose by Xks1p, levels were higher in Y128 than Y127 at the transition stage and the two time-points during xylose metabolism.

In addition to quantifying intermediates of our engineered xylose metabolism pathway, we also quantified intracellular levels of xylitol. A common phenotype in engineered strains

is the production of xylitol, which is then exported out of the cell. Strikingly, we observed a severe reduction in intracellular xylitol levels for Y128 at all time-points, where as Y127 appeared to accumulate xylitol over time (FIG. 7D). Early biochemical work has shown that bacterial xylose isomerase is inhibited by xylitol (Yamanaka, Archives Biotech. & Biophys. 131(2):502-506, 1969), and more recent studies on S. cerevisiae engineered with xylose isomerase has shown that deletion of GRE3, which encodes an enzyme that can convert xylose into xylitol, can improve xylose fermentation (Traff et al., Appl. Environ. Microbiol. 67(12): 5668-5674, 2001). This suggested that one difference between the Y127 and Y128 could be a mutation that alters GRE3 activity or expression. Thus, we sequenced the GRE3 open reading frames of the Y22-3, Y127, and Y128 strains and found a single nucleotide polymorphism (SNP) in the Y128 strain harbored a G to A mutation relative to both Y22-3 and Y127, which changed the alanine at amino acid residue 46 to threonine (A46T). This residue is conserved 20 amongst other S. cerevisiae strains, as well as many other yeast species, including Saccharomyces arboricola and kudriavzevii, Candida and Kluyveromyces species, and resides within the aldo-ketoreductase catalytic domain, suggesting that this mutation likely impacts Gre3p activity.

Taken together, our results suggest that the gre3^{A46T} mutation in Y128 causes a partial or complete loss of Gre3p function, which in turn reduces inhibition of CphytoXylA by xylitol. For additional confirmation that loss of Gre3p activity improves anaerobic xylose fermentation in our strain background, we deleted GRE3 in the Y22-3, Y127, and Y128 strains and compared their abilities to ferment xylose in the absence of oxygen. Indeed, we found that the Y127 gre3 Δ strain could anaerobically consume xylose (FIG. 7E) 35 and grow (FIG. 7F) faster than the parental Y127 strain, but not nearly as fast as Y128. This suggests that the Y128 strain contains mutations other than $gre3^{A46T}$ that help in anaerobic xvlose fermentation. Consistent with our conclusion that the gre3^{A46T} mutation is a loss of function, there were no ⁴⁰ differences in the xylose consumption or growth rates between the Y128 and Y128 gre3∆ strains. Finally, deletion of GRE3 in the Y22-3 parental strain had no effect, further indicating that loss of GRE3 alone cannot confer anaerobic xylose fermentation, and that mutations acquired by Y127 from aerobic evolution on xylose are important for anaerobic consumption of xylose. Together, these results indicate that the Y128 strain evolved a loss-of-function mutation in GRE3, improving xylose utilization by reducing the production of inhibitory xylitol.

Example 3-Mutations in ISU1, HOG1, GRE3, and IRA2 Co-Segregate With Evolved Phenotypes

analyses of GLBRCY22-3, Our phenotypic GLBRCY127, and GLBRCY128 strains indicates that each have differential abilities to metabolize xvlose under aerobic and anaerobic conditions (2). Furthermore, metabolite analyses and targeted DNA sequencing further determined that a loss-of-function mutation in GRE3 that emerged during the evolution of Y128 was critical for its ability to ferment xylose anaerobically. However, deletion of GRE3 alone in the Y127 strain could not phenocopy Y128 for xylose fermentation, suggesting that additional mutations were necessary. To better understand the genetic mutations that confer xylose metabolism, we applied a combination of long and short read genome resequencing to identify the evolved mutations in Y127 and Y128. From these approaches, we first assembled and annotated the complete Y22-3 genome sequence. We then utilized the Genome Analysis Toolkit (GATK) to identify single nucleotide polymorphisms (SNPs) and DNA insertions and deletions (indels) found in Y127 and Y128 relative to the Y22-3 reference genome.

From our sequence analyses, we identified three mutations in the evolved Y127 genome sequence that were not present in the Y22-3 parent strain, including missense mutations in ISU1 and GSH1, and a single base pair "A" deletion in HOG1, which resulted in a frame-shift of its coding sequence (Table 3). ISU1 encodes a mitochondrial protein involved in assembling iron-sulfur (Fe—S) clusters (18, 19), which are used as co-factors in recipient proteins for electron transfer, enzymatic reactions, and oxygen sensing. GSH1 encodes y-glutamylcysteine synthetase that catalyzes the first step in glutathione biosynthesis by converting glutamate into γ -glutamylcysteine (20), while the Hog1p Mitogen-Activated Protein Kinase (MAPK) is a key component of the high osmolarity glycerol (HOG) pathway that regulates responses to hyperosmotic stress (reviewed recently in (21)). Importantly, the genome sequence of Y128, which was evolved from Y127, contained the expected isu1, gsh1 and hog1 mutations, as well as the previously identified missense mutation in GRE3 (2). In addition, Y128 contained an additional nonsense mutation in IRA2, which negatively regulates cAMP-Protein Kinase A signaling (22), and missense mutation in SAP190 (Table 3). The evolved nonsense mutation in IRA2 causes truncation of the carboxy-terminal 152 amino acids, a region previously shown to be important for Ira2p stability (23). All six mutations were independently verified by PCR and Sanger sequencing, indicating that at least three mutations emerged during the aerobic and anaerobic evolution of Y22-3 and Y127 on xylose, respectively.

TABLE	3
TADLE	

	Genetic Differences Between Parental and Evolved Strains							
Evolved Strain	Parental Strain	Gene	Functional Gene Annotation ¹	Nucleotide Difference ²	Amino Acid Difference ³			
Y127 Y127	Y22-3 Y22-3	ISU1 HOG1	Fe—S cluster assembly MAP kinase signaling	C412T A844del	H138Y M282frame- shift ⁴			
Y127 Y128	Y22-3 Y127	GSH1 GRE3	Glutathione biosynthesis Aldose reductase	G839A G136A ⁵	R280H A46T			
Y128	Y127	IRA2	Inhibitor of RAS	G8782T	E2928Stop			

TABLE	3-continue	d

Genetic Differences Between Parental and Evolved Strains								
Evolved Strain	Parental Strain	Gene	Functional Gene Annotation ¹	Nucleotide Difference ²	Amino Acid Difference ³			
Y128	Y127	SAP190	Component of Sit4p phosphatase complex	A2590G	S864G			

¹Saccharomyces Genome Database (www.yeastgenome.org/on the World Wide Web).

²Nucleotide and position in parent to evolved mutation

³Amino acid and position in parent to evolved amino acid

⁴Deletion mutation caused a codon shift in the reading frame

⁵Published in *Parreiras* et al., 2014 (incorporated herein by reference as if set forth in its entirety).

mutations with neutral or minimal impact on selective growth (so called "hitchhiker" mutations; (24)) can be carried along with beneficial "driver" mutations during experimental directed evolution. Thus, all six identified mutations may be not important for the evolved phenotypes. 20 evolved gene targets were sufficient to recapitulate the To identify the "driver" mutations, we phenotyped and genotyped the haploid progeny derived from backcrosses between the evolved strains and their parental strains (FIG. 9). If the phenotype was driven by a single mutation, the haploid progeny would display a 2:2 segregation in 25 evolved::parental phenotype, and should co-segregate with the genotype (FIG. 9A). If, however, the mutation involves two (FIG. 9B) or more mutations that cause the phenotype, then the phenotypic segregation involves a number of possible combinations. From the Y22-3×Y127 backcross, 40 30 viable spores derived from 10 tetrad sets were genotyped by PCR and Sanger sequencing. As expected, the hog1, isu1 and gsh1 mutations segregated with 2:2 (mutant:parental sequences) ratio in the resulting haploid progeny. We then assessed the abilities of the genotyped progeny to metabo- 35 lize xylose under aerobic conditions. The six individual progeny harboring all three mutations metabolized xylose at rates comparable to the evolved Y127 strain, as did one spore containing only hog1 and isu1 mutations (FIGS. 9C-D). The haploid progeny containing the isu1 mutation 40 with (n=4) or without (n=9) the gsh1 mutation consumed xylose at a rate intermediate to the evolved Y127 and parental Y22-3 strains. Interestingly, progeny containing the hog1 mutation along with (n=5) or without (n=7) the gsh1 mutation displayed an inability to metabolize xylose similar 45 to the Y22-3 parent, as did progeny with the gsh1 mutation (n=5) alone. These results suggest that the isu1 mutation is necessary for aerobic xylose metabolism in the Y127 strain, while the hog1 mutation enhances the rate of xylose consumption only in the presence of isu1. The gsh1 mutation 50 may be a hitchhiker, or subtly influence xylose metabolism.

It was next determined which mutations in Y128 were responsible for its ability to ferment xylose anaerobically. As done with Y127, the Y128 strain was backcrossed to the Y127 MAT parental strain (thus, all progeny from this cross 55 maintained the hog1, isu1 and gsh1 mutations) and the resulting 28 haploid progeny from 7 tetrads were genotyped and phenotyped. The ira2, gre3 and sap190 mutations segregated 2:2 mutant::parent in the tetrad progeny (FIG. 9E). We then evaluated each of the haploid descendants for their 60 abilities to consume xylose anaerobically. As expected, strains harboring all three ira2, gre3 and sap190 mutations fermented xylose similarly to that of Y128, as did progeny containing mutant ira2 and gre3, but parental SAP190 (FIGS. 9E-F). Interestingly, descendants with ira2 or gre3 65 mutations alone displayed intermediate rates of anaerobic xylose consumption. In contrast, there were no differences in

Since mutations occur randomly during DNA replication, 15 xylose fermentation for haploids containing parental or mutant versions of SAP190, suggesting that the gre3 and ira2 mutations are the major drivers in the Y128 phenotype, while sap190 Δ is a hitchhiker mutation.

> We next sought to determine whether the deletion of the ability to aerobically metabolize xylose. The isu1H138Y mutation results in a histidine-to-tyrosine substitution at a position adjacent to a conserved PVK domain, which binds to HSP70 Ssq1p for assembly of Fe-S clusters (25). The hog1 frame-shift mutation was predicted to alter 123 of the 435 total amino acids in Hog1p. Thus, we surmised that these mutations significantly reduce Isu1p and Hog1p functions, and hypothesized that null mutations in ISU1 and HOG1 would phenocopy the evolved mutations. We tested this hypothesis by deleting HOG1 and ISU1 individually or in combination from the Y22-3 parent strain lacking the KanMX resistance marker (GLBRCY36) and assessed the resulting mutant strains for the ability to metabolize xylose aerobically. Consistent with spores harboring only the hog1 evolved frame-shift mutation, the Y36 hog1Δ mutant did not metabolize significant amounts of xylose, akin to the parental Y36 strain (FIG. 10A). In contrast, the Y36 hog 1Δ isu 1Δ double mutant metabolized xylose at a rate equivalent to the Y127 marker-rescued strain (GLBRCY132), while the Y36 isu1 Δ strain metabolized xylose at a slightly slower rate.

> We further assessed the sufficiency for deletion of HOG1 and ISU1 in aerobic xylose metabolism by examining the effect of these mutations in distinct S. cerevisiae strain backgrounds. First, we engineered the identical DNA cassette as Y22-3 for the expression of bacterial xylose isomerase, fungal XYL3 and yeast TAL1 (2) into the lab strains BY4741 (renamed GLBRCY174), which was derived from S288c (3), and CEN.PK113-5D (4) (renamed GLBRCY176), and then HOG1 or ISU1 were deleted from their genomes. As shown in FIG. 10, aerobic xylose consumption assays revealed that both Y174 and Y176 hog1 Δ isu1 Δ double mutants consumed xylose significantly faster than the Y174 and Y176 parental strains. However, both double mutant strains did not consume xylose at rates comparable to Y132 or the Y36 hog1 Δ isu1 Δ mutant, and the isu1∆ single mutants did not metabolize significant amounts of xylose. While these results indicate that the effectiveness of these mutations on xylose metabolism have some dependence upon strain background, they support the notion that epistatic interactions between HOG1 and ISU1 negatively regulate xylose metabolism and that deletion of both genes are sufficient to confer aerobic xylose consumption.

> Previously, we determined that deletion of GRE3 was sufficient for increasing the rate of xylose fermentation in the antibiotic resistance marker-rescued Y127 strain (referred to herein as GLBRCY133) (2). See FIGS. 7E-F. However, the Y132 gre3 Δ strain did not phenocopy the anaerobic xylose

consumption trait of Y133, prompting us to conclude that at least one additional mutation was needed. Therefore, we generated and compared Y132 ira2 Δ and Y132 gre3 Δ ira2 Δ mutant strains for their abilities ferment xvlose anaerobically. Similar to what was observed in our backcross studies, the Y132 ira2 Δ strain displayed an intermediate rate of anaerobic xylose consumption (FIG. 11A), while the Y132 gre3 Δ ira2 Δ double mutant phenocopied Y133 for xylose consumption rate. Moreover, the xylose consumption phenotypes of the Y133 and Y133 gre3 Δ ira2 Δ strains were ¹⁰ nearly identical, further suggesting that the evolved gre3 and ira2 point mutations cause losses in gene function.

Together, our genotypic and phenotypic studies implicate loss-of-function mutations in HOG1, ISU1, GRE3, and IRA2 for enhancing xylose metabolism. As additional evi-15 dence, we deleted various combinations of the four genes from the initial Y36 parent strain that lacks the ability metabolize xylose aerobically or anaerobically (see FIG. 11; Table 4). These strains were then assessed for the ability to convert xylose anaerobically into ethanol. Notably, the Y36 $\,^{20}$ hog1 Δ isu1A gre3 Δ ira2 Δ quadruple knockout strain consumed xylose and produced ethanol at similar rates to the evolved Y133 strain (FIGS. 11A-B). Interestingly, neither Y36 hog1 Δ isu1 Δ nor Y36 gre3 Δ ira2 Δ double mutants (FIGS. 11A-B) consumed significant amounts of xylose ²⁵ anaerobically, suggesting that the aerobically evolved hog1 and isu1 mutations in Y127 were necessary for the evolution of Y128 in anaerobic xylose media. Deletion of all four genes in the Y176 CEN.PK strain background conferred faster rates of anaerobic xylose consumption compared to

bic consumption of xylose from lignocellulosic biomass, we compared the abilities of the Y36 quadruple deletion strain with the evolved Y133 strain to convert xylose from AFEXpretreated corn stover hydrolysate (ACSH) in the absence of oxygen (FIG. 11A). Under anaerobic conditions, strains containing deletion mutations in HOG1 and ISU1, or GRE3 and IRA2, did not consume significant amounts of xylose. In contrast, the Y36 hog1 Δ isu1 Δ gre3 Δ ira2 Δ strain displayed consumed xylose at a faster rate than the double mutants, albeit not as fast as the Y133 mutant strain. These results indicate that deletion of HOG1, ISU1, GRE3 and IRA2 together permits anaerobic xylose fermentation in an industrially relevant lignocellulosic hydrolysate.

Further assays revealed that deletion of either ira1 or ira2 can confer capacity for anaerobic xylose fermentation to recombinant yeast having the null mutation. Strains harboring various null mutations in GRE3, IRA2, along with SAP190 (FIGS. 12A-B) or IRA1 (FIGS. 12C-D) within the Y132 or Y133 strain backgrounds were phenotyped by anaerobic xylose metabolism in YPX media.

Further assays revealed that deletion of either ira1 or ira2 can confer capacity for anaerobic xylose fermentation to recombinant yeast having the null mutation. Strains harboring various null mutations in GRE3, IRA2, along with SAP190 (FIGS. 12A-B) or IRA1 (FIGS. 12C-D) within the Y132 or Y133 strain backgrounds were phenotyped by anaerobic xylose metabolism in YPX media. These results demonstrate that deletion of SAP190 does not impact anaerobic consumption of xylose, and that deletion of IRA1 confers moderate, but significant, improvement in anaerobic xylose fermentation.

TABLE 4

Kinetic characteristics of engineered and evolved S. cerevisiae strains in YPX Media							
Condition	A	erobic		Anaer	obic		
Strain	μ1	q_{Xyl}^2	μ1	q_{Xyl}^2	q_{EtOH}^{3}	y_{EtOH}^{4}	
Y36	NG	0.015 ± 0.003	NG	0.002 ± 0.002	0.003 ± 0.001	ND*	
Y132	0.23 ± 0.08	0.268 ± 0.035	0.025 ± 0.002	0.152 ± 0.041	0.060 ± 0.014	0.41 ± 0.02	
Y133	0.25 ± 0.13	0.368 ± 0.036	0.060 ± 0.002	0.419 ± 0.008	0.177 ± 0.011	0.43 ± 0.01	
Y36 hog1∆	0.03 ± 0.01	0.014 ± 0.008	ND	ND	ND	ND	
Y36 isu1∆	0.22 ± 0.04	0.189 ± 0.083	ND	ND	ND	ND	
Y36 hog 1Δ isu 1Δ	0.27 ± 0.12	0.348 ± 0.048	NG	0.118 ± 0.057	0.044 ± 0.014	0.42 ± 0.05	
Y36 gre3∆ ira2∆	0.05 ± 0.01	0.035 ± 0.004	NG	0.125 ± 0.03	0.051 ± 0.009	0.49 ± 0.07	
Y36 hog1∆ isu1∆ gre3∆	ND	ND	0.045 ± 0.006	0.249 ± 0.053	0.106 ± 0.011	0.43 ± 0.02	
Y36 hog1Δ isu1Δ ira2Δ	ND	ND	0.055 ± 0.008	0.364 ± 0.014	0.159 ± 0.003	0.44 ± 0.01	
Y36 hog1∆ isu1∆ gre3∆ ira2∆	0.29 ± 0.15	0.409 ± 0.055	0.060 ± 0.007	0.417 ± 0.049	0.179 ± 0.022	0.43 ± 0.01	

ND, Not Determined for aerobic conditions; ND*, Not Determined-no ethanol produced.

NG, No Growth ¹Growth rate, h⁻¹

²Specific Xylose Consumption Rate, g xylose consumed \cdot g DCW⁻¹ \cdot h⁻¹

³Specific Ethanol Productivity Rate, g ethanol produced · g DCW⁻¹ · h⁻¹

60

⁴Ethanol Yield, g ethanol produced \cdot g xylose consumed⁻¹ (Max. Theoretical Yield = 0.51)

Example 4-Materials and Methods

the unmodified parent strains (FIG. 11C). Taken together, these data provide evidence for epistatic interactions between the hog1, isu1, gre3 and ira2 mutations that confer the rapid anaerobic xylose consumption phenotype by Y133. $_{65}$

Culture Media:

Standard undefined yeast lab medium was prepared as previous described (Sherman, Methods in Enzymology 350: 3-41 (2002)). Briefly, liquid and plate-based medium con-

Given that the primary goal of this work was to identify genetic modifications in S. cerevisiae that will allow anaero-

tained 10 g/L yeast extract and 20 g/L peptone (YP), and various sugar concentrations (X=20 or 30 g/L xylose, D=20 g/L dextrose, DX=60 g/L glucose and 30 g/L xylose). For bioreactor experiments, this YPDX medium also contained 50 mM potassium phosphate, pH 5.0.

AFEX[™] Pretreated Corn Stover Hydrolysate (ACSH) Preparation:

Zea mays (Pioneer hybrid 36H56) corn stover was harvested at Field 570-C Arlington Research Station, University of Wisconsin, in 2008 (for 96-well plate phenotyping) or 10 in 2009 (for fermentation experiments). AFEXTM pretreatment of the corn stover was performed as described previously (Balan et al., Methods Mol. Biol. 581:61 (2009)). AFEXTM pretreated corn stover was hydrolyzed at 6% or 9% glucan loading in a 1.5 L reaction volume in a 3 L Applikon 15 fermenter (Applikon Biotechnology Inc. USA) with Spezyme CP (15 FPU/g glucan loading, DuPont Danisco), Multifect Xylanase (10% of Spezyme CP, DuPont Danisco), and Novovzyme 188 (64 pNPGU/g glucan, Sigma-Aldrich) at 50° C. for 5 days. Tetracycline (40 mg/L) was used to 20 prevent microbial contamination and pH 4.8 was maintained during the hydrolysis process. Biomass was added to the reaction mixture in 4 batches within 4 hours from the start of hydrolysis to facilitate better mixing at 1000 rpm. After 120 hours, the hydrolysis mixture was centrifuged (2500 g 25 for 30 min.) and sterile filtered (0.22 mm pore size; Millipore Stericup). For 6% glucan loading ACSH, the final sugar concentrations were 53.3 g/L glucose and 21.7 g/L xylose. For 9% glucan loading ACSH, the final sugar concentrations were 80 g/L glucose and 36 g/L xylose.

For bioreactor fermentations, ACSH was prepared by hydrolysis of corn stover harvested in 2009 in a 14 L bioreactor from Applikon (Applikon Biotechnology), with 12 L loading volume. Nano-pure water was added into the vessel and was autoclaved for 30 min. After vessel was 35 cooled to 70-80° C., 30 ml undiluted HCl was added. After HCl was mixed with water, AFEX-pretreated corn stover was loaded into the vessel to 6% glucan loading. After cooling to 50° C., CTec2 and HTec2 enzymes (Novozymes) were added, with final concentrations of 24 mg/g glucan and 40 6 mg/g glucan respectively. After hydrolysis for 5 days at 50° C., solids were removed by centrifugation at 8,200 g for 10-12 hours at 4° C., and the supernatant was filter sterilized through 0.5 µm and then 0.2 µm filters prior to storage at 4° C. Prior to fermentation, the hydrolysate was adjusted to pH 45 5.0 and again filtered through a 0.2 µm filter to remove precipitates and to ensure sterility.

Alkaline Hydrogen Peroxide Pretreated Hydrolysates:

Pioneer hybrid 36H56 corn stover described above and switchgrass (Panicum virgatum cv. Cave-In-Rock) 50 described elsewhere (Li et al., Biotechnol. Biofuels 5:38 (2012)) were milled (Circ-U-Flow model 18-7-300, Schutte-Buffalo Hammermill, LLC) to pass a 5 mm screen. AHP pretreatment was performed as reported previously (Banerjee et al., Biotechnology and Bioengineering 109:22 (2012)) 55 at a hydrogen peroxide loading of 0.125 g H₂O₂/g biomass in an incubator with shaking at 150 rpm at 30° C. for 24 hours with periodic pH readjustment to 11.5 during pretreatment using 5 M NaOH. For switchgrass, pretreatment was conducted at biomass concentration of 20% w/w. For corn 60 stover, pretreatment was conducted at biomass concentration of 15% w/w. Following pretreatment, the whole slurry was adjusted to pH 4.8 using 72% H₂SO₄. Accelerase 1000 (Novozymes A/S), Multifect xylanase, and Multifect pectinase (DuPont Danisco) were used at the protein ratio of 65 0.62:0.24:0.14 at a total protein loading was 30 mg/g glucan as assayed by the Bradford Assay. Hydrolysis was per-

formed at 50° C. with shaking speed of 180 rpm for 24 hours. After enzymatic hydrolysis, the whole slurry was centrifuged at 18,000 g for 30 minutes. The supernatant was used as undetoxified raw hydrolysate or F hydrolysate. Activated carbon (Fisher Scientific #05-690A) was mixed with undetoxified hydrolysate at 5% concentration (5 g activated carbon with 100 mL hydrolysate) and incubated at 50° C. for 1 hour in an unbaffled shake flask at 150 rpm. After centrifugation at 18000 g for 30 min, the supernatant was used as the detoxified hydrolysate. Alt hydrolysates were filter-sterilized (0.22 mm pore size; Millipore Stericup). Final sugar concentrations for AHP hydrolysates were 29.7 g/L glucose and 19.8 g/L xylose for raw AHP corn stover hydrolysate, 34.8 g/L glucose and 23.4 g/L xylose for detoxified AHP CSH, and 26.7 g/L glucose and 19.2 g/L xylose for both raw and detoxified AHP SGH.

Dilute Acid Pretreated Lignocellulosic Hydrolysates:

Two different dilute acid pretreated wheat straw hydrolysates were acquired from an industrial collaborator. Both hydrolysates were diluted 4:5 in sterile water supplemented with yeast peptone media (YP).

Ionic Liquid Pretreated Switchgrass Hydrolysate (IL-SGH):

Switchgrass was pretreated with [C2mim][OAc] (1-ethyl-3-methylimidazolium acetate) at 15% solids loading as described elsewhere (Li et al., *Biotechol. Biofuels* 6:154 (2013)). IL-pretreated switchgrass was hydrolyzed with CTec2 (54 mg/g glucan) and HTec2 (6 mg/g glucan) enzymes (Novozyme) for 72 hours in a 2 L IKA bioreactor. [C2mim][OAc]-pretreated SGH was generated at Advanced Biofuels Process Demonstration Unit (batch ABPDU 110201S02). Final sugar concentrations in the IL-SGH were 41.4 g/L glucose and 9.7 g/L xylose.

Lab Media:

Standard undefined yeast lab media was used as previous described. Briefly, liquid and plate-based media contained 10 g/L yeast extract and 20 g/L peptone (YP), and various sugar concentrations (X=20 g/L xylose, D=20 g/L dextrose or glucose, XD=30 g/L xylose and 60 g/L glucose). Where indicated, hydrolysates were supplemented with 10 g/L yeast extract and 20 g/L peptone. For bioreactor experiments, this YPXD media also contained 50 mM potassium phosphate, pH 5.0.

Saccharomyces cerevisiae Strains:

Yeast strains used in this study are described in Table 1. Generation of Y22-3, Y127, and Y128 strains is described elsewhere (2). The Y174 and Y176 strains were constructed in an identical manner to Y22-3 by integrating the ScTAL1-CpxylA-SsXYL3-loxP-KanMX-loxP cassette into the HO locus of BY4741 (3) and CEN.PK113-5D (4), respectively, followed by excision of the KanMX marker by Cre recombinase (5). The Y127 MAT α strain (GLBRCY156) was generated by diploidization of Y127, sporulation, tetrad dissection and mating type identification (1). For backcrossing, Y22-3 or Y128 was mated to Y156, subjected to sporulation and tetrad dissection. All tetrad spores were verified for 2:2 segregation of mating type. Deletion of GRE3, ISU1, and IRA2 were performed by integration of PCR product generated from loxP-KanMX-loxP or loxP-HygMX-loxP templates (5) and primers containing at least 40 by of homology flanking the targeted gene. For deletion of HOG1, gDNA from a hog1 Δ ::KanMX mutant strain (6) was used as the PCR template. PCR products were purified and transformed (7) into the appropriate strains. Cre recombinase-mediated excision of loxP-flanked antibiotic markers was carried out by as published elsewhere (5) for strains listed in Table 1 containing deletion mutations without an

associated antibiotic resistance marker. Sanger sequencing of PCR products and DNA plasmids was performed by the University of Wisconsin-Madison Biotechnology Center.

96-Well Growth Assays and Hierarchical Clustering:

Native S. cerevisiae strains used in this study (see Table 5 1) were obtained from Dr. Cletus Kurtzmann (USDA ARS, Peoria, Ill.), National Collection of Yeast Cultures (Norwich, UK), and Dr. Justin Fay (Washington University, Saint Louis, Mo.). Aerobic growth assays in microtiter plates were performed as previously described (Wolbach et al., PNAS 108:13212 (2011); Sato et al., Applied and Environmental Microbiol. 80:540 (2014); Jin et al., Biotechnol. Biofuels 6:108 (2013)), with one exception: 10 µL of saturated culture was inoculated into 190 µL of YPD or a single type of pretreated lignocellulosic hydrolysate. Cell growth was 15 measured by optical density at 595 nm every 10 minutes for 24 hours in Tecan F500 or M1000 multimode plate readers with an interior temperature of 30° C. Background subtracted cell density readings for each strain were analyzed by GCAT (Sato et al., Applied and Environmental Microbiol. 20 80:540 (2014)). Normalized specific growth rates for each strain from three independent biological replicates in pretreated hydrolysates normalized to their average growth rate in YPD alone, and then ranked ordered from 1 to 117 (including control strains-Y389, BY4741, CEN.PK113- 25 5D and CEN.PK2-1D in duplicate) for highest average specific growth to lowest, respectively. For all strains with no detectable specific growth rates, strains were assigned a rank of 117. Strain ranks in each media condition were hierarchically clustered and displayed with Spotfire 30 lated at OD₆₀₀=0.05-0.1 in 250 mL YP media containing 2% (TIBCO).

Long-Read Sequencing of GLBRCY22-3 Genomic DNA: Sequencing was performed by the Medical College of Wisconsin Human and Molecular Genetics Center (Milwaukee, Wis.). Initial quantification was performed using a 35 Quant-iTTM PicoGreen® dsDNA Assay Kit (Life Technologies, Carlsbad, Calif., USA) and a NanoDrop 2000 (Thermo Fisher Scientific Inc., Waltham, Mass., USA). Genomic DNA (gDNA) was purified and concentrated with a 0.45× AMPure PB bead wash (Pacific Biosciences, Menlo Park, 40 Calif., USA). About 5 µg of concentrated gDNA was sheared to 10 kbase pairs using the Covaris gTube (Covaris Inc, Woburn, Mass., USA). A PacBio sequencing library, or SMRTbellTM, was constructed using the SMRTbellTM Template Prep Kit 1.0 and the 10 kb Template Preparation and 45 Sequencing with Low-Input DNA procedure (Pacific Biosciences). P4 Polymerase was coupled with the resulting SMRTbellTM library. For sequencing, the library was bound to Magbeads by incubating for 1 hour at 4° C. This was run over 8 V2 SMRT cells on the PacBio RSII using a C2 50 chemistry sequencing kit (Pacific Biosciences). Each SMRT cell was visualized using a 1×180 minute movie. Illumina short read sequencing was performed by the University of Wisconsin-Madison Biotechnology Center (8). In brief, libraries derived from purified gDNA were sequenced with 55 100 by paired end reads using an Illumina HiSeq 2000.

DNA Constructs and Strain Engineering:

Construction of the GLBRCY73 strain has been described elsewhere (Wolbach et al., PNAS 108:13212 (2011)). The expression cassette containing S. cerevisiae TAL1, C. phyto- 60 fermentans XylA, and S. stipitis was generated in similar manner with some modifications. Codon-optimized versions of each gene were synthesized (GeneArt, Life Technologies) and inserted via recombination in the following promoteropen reading frame-terminator combinations: ScPGK1 pro- 65 moter-ScTAL1-ScTDH3 terminator, ScTDH3 promoter-CpXYLA-ScTEF2 terminator, ScTEF2 promoter-SsXYL3-

ScCYC1 terminator. This cassette, which also contains a LoxP-KanMX-LoxP selection marker (Guldener et al., Nucleic Acids Res. 24:2519 (1996)) was flanked by ScHO sequences (Voth et al., Nucleic Acids Res. 29:E59 (2001)) for targeted recombination at the genomic HO locus. The complete XI cassette was amplified by standard polymerase chain reaction (PCR) using primers that anneal to the 5' ends of the HO flanking sequences, gel purified and transformed into the NRRL YB-210 strain. Following selection on YPD plates containing 50 µg/ml Geneticin (Life Technologies) Verification of cassette insertion was determined by PCR using combinations of primers that anneal outside of the HO flanking sequence and specific to synthesized DNA cassette. The engineered YB-210 diploid strain was then subjected to sporulation and tetrad dissection. One spore, which was not derived from a tetrad that generated four viable spores, was confirmed for a single "a" mating type and subsequently named GLBRCY22-3. LoxP-KanMX-loxP marker rescue was carried out by expression of Cre recombinase as published elsewhere (Guldener et al., Nucleic Acids Res. 24:2519 (1996)). Deletion of engineered CpXylA and ScTAL1, and endogenous ScGRE3 were performed by integration of PCR product using a LoxP-KanMX-LoxP cassette (Guldener et al., Nucleic Acids Res. 24:2519 (1996)) into the marker-rescued versions of GLBRCY22-3 (GL-BRCY36), GLBRCY127 (GLBRCY132) and GLBRCY128 (GLBRCY133, see Table 1).

Directed Evolution:

For aerobic adaptation, GLBRCY22-3 strain was inocuxylose and 0.1% glucose. The first 15 transfers took place over 53 days with serial 1:10 dilutions in fresh media occurring every 3-4 days. After transfer 15, the adaptation culture was diluted every 2-3 days over the course of 44 additional days, ending after transfer 34. For anaerobic adaptation, GLBRCY127 strain was inoculated at OD₆₀₀=0.05-0.1 in a flask containing 50 mL YP media containing 2% xylose, 0.1% glucose and 50 µg/mL Geneticin, and then placed in an anaerobic chamber. For the first two anaerobic transfers, the media also contained 40 µg/L ergosterol (Sigma-Aldrich) and 4 g/L Tween-80 (Sigma-Aldrich). Anaerobic cultures were maintained in suspension using a stir bar and magnetic stir plate, and passaged every 7 days during the first 5 transfers. After the fifth transfer, the culture was passaged every 3-4 days with the final fourteenth transfer finishing 66 days since the start of the anaerobic adaptation. Xvlose concentrations in the media at the end of each transfer cycle were measure by YSI 2700 Select instrument. At the end of each adaptation, the culture at 1:10,000 dilution was spread onto multiple YPD-Geneticin plates and incubated at 30° C. for 48 hours. Single clonal isolates were picked and evaluated for growth in YPX media either aerobically or anaerobically in an anaerobic chamber as described previously (Wolbach et al., PNAS 108:13212 (2011); Sato et al., Applied and Environmental Microbiol. 80:540 (2014)).

Aerobic and Anaerobic Xylose Consumption Assays:

Aerobic tube and anaerobic flask growth and sugar consumption assays were performed as previously described (2). For fermentative evaluation in industrial lignocellulosic media, strains were cultured in Minibio bioreactors (Applikon Biotechnology) with 100 mL 6% glucan loading AFEX pretreated corn stover hydrolysate. Inoculum cultures were prepared as previously described (2). Vessels were sparged with N₂ (150 sccm) and inoculated with a starting OD₆₀₀=0.1. Vessels were maintained at 30° C. and pH 5.0 with NaOH or HCl, and stirred at 500 rpm. Media glucose

and xylose concentrations from aerobic tube and anaerobic flask experiments were determined by YSI instrument. Extracellular glucose, xylose, ethanol, glycerol, and xylitol concentrations from aerobic and anaerobic bioreactor experiments were determined by high performance liquid 5 chromatography (HPLC) and refractive index detection RID as published elsewhere (Schwalbach et al., *Applied and Environmental Microbiol.* 78:3442 (2012)).

Quantification of Intracellular Pentose Metabolic Intermediates:

To quantify intracellular metabolites, 5 mL to 10 mL of cell culture was rapidly removed from bioreactors with a 20 cc sterile syringe and 4 mL aliquots were applied to a filtration manifold unit (Hoefer FH 225V) outfitted with sterile 25 ml nylon filters (Whatman; Nylon; 0.45 µm pore 15 size), and the cells captured on the filters under vacuum. To reduce the background associated with metabolites present in ACSH and SynH, the cells were then rapidly washed with 5 ml of synthetic hydrolysate media (Schwalbach et al., Applied and Environmental Microbiol. 78:3442 (2012)) at 20 pH5 lacking amino acids and replacing 9% sorbitol in place of 6% glucose and 3% xylose. The filters were then removed and rapidly placed in 15 mL conical tubes containing ice-cold extraction buffer [(Demke et al., Biotechnol. Biofuels 6:89 (2013)); acetonitrile-methanol-water, 40:40:20, 25 0.1% formic acid] and flash frozen in a dry ice ethanol bath.

The concentration of xylulose-5-phosphate was determined using reverse Phase Ion Pairing high performance liquid chromatography (HPLC) and electrospray ionization tandem mass spectrometry (ESI-MS/MS). Reagents and 30 nonlabeled reference compounds were from Sigma Aldrich Co. (Saint Louis, Mo., USA). Reverse Phase Ion Pairing HPLC was carried out by an adaptation of the method of Buescher et al., and was used to quantify xylulose-5-phosphate in intracellular extracts. Compounds were separated 35 on a Waters Acquity Ascentis HSS-T3 C18 column, 150×2.0 mm, 1.8 µm particle size. The mobile phase A consisted of 95:5 Water:methanol+10 mM TBA+15 mM acetic acid, and mobile phase B was isopropyl alcohol.

Concentrations of xylose, xylulose, xylitol, and trehalose 40 were determined in sample extracts by methoximation/ trimethylsilylation derivatization followed by gas chromatography-mass spectrometry (GC-MS) using ¹³C labeled internal standards for each compound. Pyridine was anhydrous and stored over molecular sieves. 2% methoxyamine 45 hydrochloride in pyridine (MOX reagent) and N-methyl,N-(trimethylsilyl) trifluoroacetamidewith 1% trimethylchlorosilane (MSTFA+1% TMCS) were obtained from Thermo Fisher Scientific. Xylose, xlulose, xylitol, and trehaolse reference materials, all >98% purity, (99 atom %) uniformly 50 labeled ¹³C₅-xylose, ¹³C₅-xylitol, and ¹³C₁₂-trehalose, and immobilized xylose isomerase, were obtained from Sigma Aldrich. Briefly, 50 µL aliquots of extract were transferred to 2.5 mL centrifuge tubes to which 20 µL were added of a solution containing U— ${}^{13}C_5$ -xylitol, U— ${}^{13}C_{12}$ -trehalose, 55 U— ${}^{13}C_5$ -xylose, and U— ${}^{13}C_5$ Xylulose. Samples were evaporated to dryness under reduced pressure in a Savant SPD 131A rotary evaporator with cryogenic cold trap for 3-4 hours. Dried samples were then treated with 30 µL 2% methoxyamine hydrochloride in pyridine at 60° C. for 45 60 minutes, followed by addition of 70 µL MSTFA+1% TMCS and incubation at 60° C. for an additional 30 minutes. The derivatized samples and standards were then analyzed by GC-MS on an Agilent 5975 MSD with a Combi PAL1 autosampler (CTC analytics) and a 6890A GC oven 65 equipped with a 30 m×0.25 mm ID×0.25µ df HP5-MS (5% phenyl polydimethylsiloxane) capillary column. The inlet

was held at 250° C. and operated in split mode with a ratio of 10:1 with a glass wool packed single bevel split liner. The flow rate of helium through the analytical column was 1.2 mL per minute. The oven temperature was held at 174° C. for 18 minutes then increased linearly at 30° C. per minute to a final temperature of 280° C. and held for 3 minutes before returning to starting conditions with a 30 second equilibration time prior to starting the next injection sequence. Standards used to construct a calibration curve were prepared by the same procedure using 20 μ L of the same internal standard mixture added to known amounts of reference compounds to obtain eight (8) concentration levels ranging from 1 to 500 μ M in the final 100 μ L volume of derivatization reagents.

The mass spectrometer was operated in SIM mode divided into time segments so that only the relevant masses were monitored over the times when each target compound eluted, allowing optimal dwell times of 150 ms while still recording at least 20 points over the width of a peak. SIM masses were selected corresponding to fragments ($M^{+/-}$ -15) containing all 5-¹³C atoms for the labeled internal standards of xylose and xylulose (m/z 457), and xylitol (m/z 427) and a 6-¹³C fragment (m/z 361) for trehalose to allow detection without interference from the isotopic masses of the coeluting natural abundance compounds. The natural ¹²C compounds were monitored with the corresponding ¹²C ions except for xylulose which was monitored with a much more abundant m/z 263 ion that was found to be free of interference from the labeled internal standard.

Results were calculated from relative peak areas of analytes to their corresponding internal standards interpolated with a calibration curve of relative natural standard/¹³C internal standard peak areas versus relative standard/¹³C internal standard concentrations. The ¹³C xylulose and ¹³C xylose internal standards were found to contain approximately a 3:1 ratio of ¹³C xylose:¹³C xylulose based on GC-MS TIC peak areas. All aspects of instrument operation, data collection, and calculation of results were handled by Agilent MassHunter for GC software VB.07.00 and Mass Hunter Workstation Quantitative Analysis v.B.06.00.

REFERENCES

- Sherman F (2002) Getting started with yeast. *Methods in* enzymology 350:3-41.
- Parreiras L S, et al. (2014) Engineering and two-stage evolution of a lignocellulosic hydrolysate-tolerant *Saccharomyces cerevisiae* strain for anaerobic fermentation of xylose from AFEX pretreated corn stover. *PloS one* 9(9):e107499.
- 3. Brachmann C B, et al. (1998) Designer deletion strains derived from *Saccharomyces cerevisiae* S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. *Yeast* 14(2):115-132.
- 4. Entian K D & Kotter P (2007) Yeast Genetic Strain and Plasmid Collections. (Academic Press, Amsterdam).
- Guldener U, Heck S, Fielder T, Beinhauer J, & Hegemann J H (1996) A new efficient gene disruption cassette for repeated use in budding yeast. *Nucleic acids research* 24(13):2519-2524.
- Winzeler E A, et al. (1999) Functional characterization of the *S. cerevisiae* genome by gene deletion and parallel analysis. *Science* 285(5429):901-906.
- 7. Gietz R D & Schiestl R H (2007) High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. *Nature protocols* 2(1):31-34.

- 8. Haft R J, et al. (2014) Correcting direct effects of ethanol on translation and transcription machinery confers ethanol tolerance in bacteria. Proceedings of the National Academy of Sciences of the United States of America 111(25):E2576-2585.
- 9. Chin C S, et al. (2013) Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nature methods 10(6):563-569.
- 10. Proux-Wera E, Armisen D, Byrne K P, & Wolfe K H (2012) A pipeline for automated annotation of yeast genome sequences by a conserved-synteny approach. BMC bioinformatics 13:237.
- 11. Boratyn G M, et al. (2013) BLAST: a more efficient report with usability improvements. Nucleic acids 15 research 41(Web Server issue):W29-33.
- 12. Bonfield J K & Whitwham A (2010) Gap5-editing the billion fragment sequence assembly. Bioinformatics 26(14):1699-1703.
- 13. Bankevich A, et al. (2012) SPAdes: a new genome 20 assembly algorithm and its applications to single-cell sequencing. Journal of computational biology: a journal of computational molecular cell biology 19(5):455-477.
- 14. McKenna A, et al. (2010) The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation 25 DNA sequencing data. Genome research 20(9):1297-1303.
- 15. Hinrichs A S, et al. (2006) The UCSC Genome Browser Database: update 2006. Nucleic acids research 34(Database issue):D590-598.
- 16. Wohlbach D J, et al. (2011) Comparative genomics of xylose-fermenting fungi for enhanced biofuel production. Proceedings of the National Academy of Sciences of the United States of America 108(32):13212-13217.

- 17. Schwalbach M S, et al. (2012) Complex physiology and compound stress responses during fermentation of alkalipretreated corn stover hydrolysate by an Escherichia coli ethanologen. Applied and environmental microbiology 78(9):3442-3457.
- 18. Lill R (2009) Function and biogenesis of iron-sulphur proteins. Nature 460(7257):831-838.
- 19. Schilke B, Voisine C, Beinert H, & Craig E (1999) Evidence for a conserved system for iron metabolism in the mitochondria of Saccharomyces cerevisiae. Proceedings of the National Academy of Sciences of the United States of America 96(18):10206-10211.
- 20. Ohtake Y & Yabuuchi S (1991) Molecular cloning of the gamma-glutamylcysteine synthetase gene of Saccharomyces cerevisiae. Yeast 7(9):953-961.
- 21. Saito H & Posas F (2012) Response to hyperosmotic stress. Genetics 192(2):289-318.
- 22. Tanaka K, et al. (1990) IRA2, a second gene of Saccharomyces cerevisiae that encodes a protein with a domain homologous to mammalian ras GTPase-activating protein. Molecular and cellular biology 10(8):4303-4313.
- 23. Harashima T, Anderson S, Yates J R, 3rd, & Heitman J (2006) The kelch proteins Gpb1 and Gpb2 inhibit Ras activity via association with the yeast RasGAP neurofibromin homologs Ira1 and Ira2. Molecular cell 22(6): 819-830.
- 24. Lang G I, et al. (2013) Pervasive genetic hitchhiking and clonal interference in forty evolving yeast populations. Nature 500(7464):571-574.
- 25. Dutkiewicz R, et al. (2004) Sequence-specific interaction between mitochondrial Fe-S scaffold protein Isu and Hsp70 Ssq1 is essential for their in vivo function. The Journal of biological chemistry 279(28):29167-29174.

SEQUENCE LISTING

<160> NUMBER OF SEQ ID NOS: 10

```
<210> SEQ ID NO 1
<211> LENGTH: 12012
<212> TYPE: DNA
<213> ORGANISM: Saccharomyces cerevisiae
<220> FEATURE:
<221> NAME/KEY: misc feature
<223> OTHER INFORMATION: IRA2 coding sequence
<400> SEQUENCE: 1
ataccqatac tttccatacq cacttqattt aqaqqccqqc tccactatcq aqattqaaaa
                                                                       60
tcagtatgga gaagtgatct tcttgggcaa gtatggctct tctccaatga ttaacttaag
                                                                      120
gccaccttca agattatctg cagaaagttt acaggcatcc caagagccat tttactcctt
                                                                      180
tcaaatcgat acgttaccag aactggatga ctctagtatc atcagtacat ccatttcact
                                                                      240
ctcttatgac ggtgacgaca atgaaaaagc cctgacttgg gaagaactct aggtcaaact
                                                                      300
ctatttttat acagcaatga gtaccttttc acatacacat aaatatatta aatataataa
                                                                      360
atacaataaa tataaaataa cccttttcga aactctttac ttcctaaggc ctctcattac
                                                                      420
ttatcaccta gcatcatgct cttcatacat gccatctact ttcaaacgat atacggctaa
                                                                      480
ccagaaaagt acggacaatc agggacgagc agggacatga cgccttccgc acagatccca
                                                                      540
qaqaaaaqca qqqaaacaaq aaaataaqaa aacaaqaaaa acaqtaqtta cccttqtaaq
                                                                      600
tgtcatccac aacagaacca atactcttac tcttccgctc attccccgca gaatgataga
                                                                      660
                                                                      720
actattetaa ateeeettge ettgettgge ettgaettgg gttgggaett ggaeetetag
```

37

-continued

aaccgatgtg	ccttcaaaca	tcttagcgag	ataagagtct	gccattaatg	catcgagcca	780	
atatcttgga	ctagtacgag	gttcacgtag	cctttcttgc	acggcaccag	cgtcccaccc	840	
caagttcttt	gctatactga	ccgccttaca	cattttagtg	tgattccaac	ccaaagtagc	900	
tcctcaaaaa	gggtcacccg	atcggtgaat	caatccgcgg	cgcagaaatg	ttcgtagagc	960	
tctcgtttct	tctagaacgc	tcccttgatg	aaacgaaaat	ttccatcaca	ataaagctcg	1020	
cacgcctttt	tgaaaacccc	aagctttgct	gtgtcttctt	gtgaaaagtt	ttgcccaacg	1080	
attatctatt	ctacatataa	ccggggagtt	aagcacatcc	tattgcccta	cattetetee	1140	
gcttacttca	ttgtctagag	ctcctgggaa	acaaaagacc	gaaaaagcga	aaacaaaatc	1200	
agaacaaggc	ttaagtactt	tttcaccaat	tgtagcaaac	atttaaccac	attttagcac	1260	
actagcatat	agcattgtcc	tctgttattc	gttttgcttt	tctcctttag	tgttactttt	1320	
cccccaacgt	tacaccattt	tttgatatca	actaaactgt	atacattatc	tttcttcagg	1380	
gagaagcatg	tcccagccca	ctaagaataa	gaagaaagaa	cacgggaccg	attccaagtc	1440	
atcccgcatg	actcggacgt	tggttaatca	tattctttt	gaaagaattc	tcccgatcct	1500	
tccggtggag	tctaatctaa	gtacctattc	ggaagtggaa	gagtattcct	cattcatttc	1560	
atgcagatct	gtgctcatta	acgttaccgt	ttcccgagat	gcaaatgcta	tggtggaagg	1620	
caccttggag	ttgatagaat	cgcttcttca	agggcacgaa	atcatttcag	ataagggtag	1680	
cagtgacgtt	attgaatcaa	tactgattat	actaagattg	ttaagtgatg	cgctagagta	1740	
taattggcaa	aatcaagaaa	gccttcatta	caacgacatt	tcgactcacg	tagaacatga	1800	
ccaagaacag	aagtacagac	caaagcttaa	cagtattctg	cccgactact	cgtcgactca	1860	
ttccaatggc	aacaaacact	ttttccacca	gagcaaacct	caggcactga	taccggaact	1920	
ggcatcgaaa	ttgcttgaga	gttgcgcgaa	gttgaagttc	aatacaagaa	ctttgcaaat	1980	
tttacaaaat	atgatcagtc	atgttcatgg	aaacattcta	acgactttga	gttcctcgat	2040	
tetteecege	cacaaatcct	atctgacaag	gcacaaccat	ccttctcatt	gtaaaatgat	2100	
tgactctact	ctaggccata	ttctccgatt	tgtagcggct	tccaatccgt	ccgagtattt	2160	
tgaatttatc	agaaagagtg	tgcaagtgcc	cgtaacacag	acacacacgc	attcacactc	2220	
ccattcacac	tctttgccat	cttccgttta	taacagcata	gtgccccact	ttgatctttt	2280	
cagetteate	tatttaagca	agcataattt	taagaaatac	ttggaactca	tcaaaaactt	2340	
atcggtgacg	ttaaggaaaa	cgatttatca	ttgcctactt	ttgcattaca	gcgccaaagc	2400	
aataatgttt	tggataatgg	ctaggcctgc	ggaatattat	gaactcttca	acttattaaa	2460	
agataataac	aatgaacact	cgaaatcctt	aaacacgtta	aaccatacac	ttttcgagga	2520	
gatccattcg	acttttaatg	tgaatagcat	gataaccacc	aatcaaaatg	ctcatcaagg	2580	
ctcatcttcc	ccttcgtcct	cctcgccatc	gtcaccacct	agctcatcat	catcggataa	2640	
caacaatcaa	aacataatag	caaaatcctt	aagtcgtcag	ctttctcacc	accagtcata	2700	
cattcaacag	cagtctgaaa	gaaaactaca	ttcttcatgg	actacaaact	ctcaatcctc	2760	
tacttcactg	tcatcttcaa	cgtctaattc	aacaacaact	gatttctcta	ctcacactca	2820	
accaggagaa	tatgaccctt	ccttaccaga	tactcccacg	atgtctaaca	tcactattag	2880	
tgcatcttca	ttattatctc	aaactccaac	tccaacaaca	caattgcaac	agcggttgaa	2940	
ctcagcagct	gcagccgccg	ccgcagctgc	ttcaccatcg	aattccaccc	caactggata	3000	
cacagcagag	caacaaagtc	gcgcttcata	cgatgcacac	aaaactggcc	atactggtaa	3060	
ggattatgac	gaacatttt	tgtctgtcac	tcgtttggat	aatgttttgg	agttatacac	3120	

39

-continued

gcactttgat	gatactgagg	tactaccaca	cacatccgta	ctgaagtttt	taactacttt	3180
gacaatgttc	gatattgacc	ttttaatga	attaaacgct	acatcattca	aatatattcc	3240
tgattgtact	atgcatcgtc	caaaagaaag	aacaagttct	ttcaataata	ctgcacacga	3300
gacaggttcc	gaaaagactt	cgggtataaa	acatattaca	caaggcttaa	agaaattaac	3360
ttctttacct	tcctcaacca	aaaaaactgt	aaaatttgtg	aagatgttgc	taagaaattt	3420
aaatgggaat	caagctgtat	cagatgttgc	cctcttagat	acaatgaggg	ccttactatc	3480
attctttaca	atgacttctg	cggtctttct	cgtggataga	aacttaccct	cagtactttt	3540
tgccaagaga	ctcatcccca	taatggggac	aaatttaagc	gtcggtcaag	actggaattc	3600
aaaaataaat	aacagtttga	tggtttgttt	gaaaaaaaac	tccaccacgt	ttgttcaatt	3660
acaattaata	ttcttctctt	cagctattca	attcgatcat	gaattattac	tggcacgtct	3720
gagcatcgat	acaatggcca	acaatttaaa	catgcagaag	ctatgccttt	atactgaagg	3780
attcaggata	ttcttcgaca	taccaagtaa	gaaggaattg	cggaaggcaa	ttgcggttaa	3840
aatttctaaa	tttttcaaaa	cattattctc	cattatagca	gatattcttt	tacaagaatt	3900
tccgtatttt	gatgagcaaa	tcaccgacat	agttgcttcc	attcttgacg	gtacaattat	3960
caatgagtat	ggtacgaaga	aacatttcaa	ggggagctca	ccctctttat	gttcgacaac	4020
ccggtcaaga	tcaggatcta	catctcaaag	ttcaatgaca	ccagtttctc	cgctgggact	4080
ggatactgat	atatgtccaa	tgaacaccct	gtctttagtt	ggttcaagta	cttcaagaaa	4140
ttctgacaac	gttaattcat	taaacagttc	accaaagaac	ttgtcttctg	atccatactt	4200
gtcacatctt	gtggccccaa	gagcgcgtca	tgctttaggt	gggccatcta	gtattataag	4260
gaataaaata	ccgactacat	tgacttcacc	tccaggaacg	gaaaaatctt	caccagtaca	4320
acgtccgcaa	acggaaagca	tcagtgccac	accaatggcc	ataacaaatt	ctactccatt	4380
atcgtcggca	gcattcggaa	ttcgatcgcc	tttgcagaaa	ataagaacga	ggcgttattc	4440
cgatgaaagt	ttaggaaaat	tcatgaaatc	aacaaataat	tacattcaag	aacatttgat	4500
accaaaagat	ttgaatgaag	caactcttca	agatgctaga	agaataatga	ttaatatttt	4560
cagtatttt	aagagaccga	atagttactt	catcattcct	cacaatataa	actcgaattt	4620
acaatgggtt	tcgcaggatt	ttagaaatat	tatgaaaccg	attttcgtcg	ccatcgtaag	4680
tccggatgta	gatttacaga	atactgctca	atcattcatg	gataccttat	tatcgaatgt	4740
tattacttat	ggtgaatcag	atgagaatat	cagtattgaa	gggtatcatc	ttetttgeag	4800
ttacactgta	acattatttg	caatgggcct	tttcgatttg	aaaattaata	atgaaaagcg	4860
tcaaattctc	ttggatataa	ctgtcaagtt	tatgaaggtt	agatcacatt	tagcagggat	4920
cgcggaggcc	tcacaccaca	tggaatacat	aagtgattct	gaaaaactca	cctttccgct	4980
gattatgggg	actgttggta	gggccctatt	tgtttcatta	tactctagtc	aacaaaaaat	5040
tgaaaagact	ttaaagattg	cttacacaga	gtatctttct	gcaatcaatt	ttcatgagag	5100
gaatattgat	gatgctgata	aaacttgggt	tcataatatt	gagtttgtag	aagcgatgtg	5160
tcatgacaac	tacacaactt	ctggttcaat	tgctttccaa	aggaggacaa	gaaataatat	5220
tttacgattt	gctactattc	ctaacgctat	cttacttgat	tctatgagga	tgatctataa	5280
gaagtggcat	acttacacac	acagtaaaag	tttagaaaaa	caagaacgga	acgacttcag	5340
aaatttcqcq	ggtatttaq	cctctttatc	gggtatccta	ttcatcaata	aaaaqatatt	5400
gcaagaaatg	tatccataco	tactcgacac	cqtttcagaa	ttgaaaaaaa	atatagacte	5460
ttttatetee	aaacaatooo	aatoottaaa	ctatecodet	ttattaarra	gagaaaatto	5520
lucialited	aaacaacyce	uuuyyuuaad	Julicygal	Luccaalya	Juguaaallu	5525

41

-continued

aagagatatt	ctaagtgtag	aactgcatcc	tttgtctttt	aacttacttt	ttaataattt	5580
gaggeteaag	ttaaaagaac	ttgcttgttc	agacttatca	ataccagaaa	atgaaagttc	5640
ctatgtttta	ttagaacaaa	taatcaaaat	gctgcggaca	atcctaggtc	gtgatgatga	5700
caattatgta	atgatgcttt	tttccacaga	gattgtagat	cttattgatt	tattgacaga	5760
tgaaataaaa	aaaataccag	cctattgtcc	aaaatatctc	aaggcaatta	ttcaaatgac	5820
caaaatgttc	agtgccttgc	agcactcaga	ggttaattta	ggtgtcaaaa	atcattttca	5880
cgttaaaaat	aaatggttga	ggcaaatcac	tgattggttt	caagtgagta	ttgcgagaga	5940
gtacgatttc	gaaaacttgt	caaaacctct	aaaagaaatg	gatttggtaa	aaagagacat	6000
ggatattcta	tacatagata	cggcaatcga	agcttcaacc	gctattgcgt	acctcacgag	6060
acatactttc	ttagagattc	cacctgccgc	gtcagatccc	gaactatctc	gatctaggtc	6120
tgtgatattt	gggttttatt	tcaacatctt	aatgaaaggc	cttgaaaaaa	gtagtgatcg	6180
tgacaattac	ccagtattct	tgaggcacaa	aatgagtgtc	ctcaacgaca	atgtaatact	6240
ttcattaaca	aatctttcaa	acaccaatgt	tgatgcgagt	ttgcagttca	ccttaccgat	6300
gggctattcc	ggaaatcgaa	acattaggaa	tgcatttttg	gaggtcttca	ttaatatcgt	6360
tacgaactat	cggacataca	cggctaaaac	tgaccttgga	aaattagagg	cagcagacaa	6420
atttttgcga	tatacgattg	aacatcccca	gctatcgtcc	tttggagcag	cggtttgtcc	6480
cgctagcgat	attgatgctt	atgctgctgg	cttaataaat	gcatttgaaa	cgaggaatgc	6540
cacccacatt	gtagtggcac	agttgattaa	aaatgaaatt	gaaaaatctt	ccagacctac	6600
ggatatcctt	agaagaaata	gctgtgctac	gagatcatta	tctatgctag	ccaggtccaa	6660
gggtaacgaa	tatttgattc	gcactttgca	accattacta	aaaaaatta	tccagaacag	6720
agatttttt	gaaattgaga	aactaaaacc	ggaagattca	gatgctgaac	gtcaaataga	6780
gctcttcgtt	aaatacatga	atgaattatt	ggaatccata	tccaactccg	tatcttattt	6840
tccccctcct	ttattttata	tttgccaaaa	catttataaa	gttgcgtgtg	aaaaatttcc	6900
ggatcacgca	attatcgccg	ctgggtcttt	cgtgtttta	cggtttttt	gtcctgcttt	6960
agtcagccct	gattctgaaa	atatcataga	tatttctcac	ttgagcgaaa	agegtaeett	7020
catcagcttg	gctaaagtta	tccaaaatat	tgccaatggc	tcagaaaatt	tctccagatg	7080
gccagctttg	tgttcccaaa	aggattttct	taaggaatgt	agcgatagaa	ttttcagatt	7140
cctagctgaa	ctttgtagaa	cagatcgcac	gatagacatc	caagtgagaa	cagacccaac	7200
gccaattgca	tttgactatc	aattccttca	ttcctttgtt	tacctttacg	gtcttgaggt	7260
gagaaggaat	gtgctaaatg	aagcaaaaca	tgatgatggt	gacattgatg	gtgacgattt	7320
ctataagacc	acatttttac	ttattgatga	tgttcttggc	caattaggcc	aacctaaaat	7380
ggaattttcc	aatgaaatac	caatatacat	aagagaacat	atggacgact	atccggaact	7440
gtatgagttc	atgaataggc	acgcgttcag	aaacattgag	acttcaacag	cgtacageee	7500
aagcgttcac	gagtccacct	caagtgaagg	cattccaatt	attacgttaa	caatgtcaaa	7560
tttctcagac	agacatgtgg	acattgatac	agttgcttac	aagttettge	aaatttatgc	7620
tcgaatctgg	accaccaaac	actgtttaat	aatcgactgt	acagaatttg	acgagggagg	7680
gcttgatatg	aggaaattta	tttctttggt	tatgggacta	ttaccagaag	ttgcacccaa	7740
aaattgtata	ggctgttact	actttaacgt	aaacgagaca	tttatggata	attatggaaa	7800
atgtttggac	aaagacaacg	tatatgtttc	ctcgaaaatt	cctcattatt	tcattaatag	7860
taactctgat	gaaggactta	tgaaatctgt	gggtataact	ggacaagggt	tgaaggttct	7920

44

43

-continued

gcaagatatt	cgtgtctctc	tgcatgatat	cacgctttat	gacgaaaaaa	gaaatagatt	7980	
tacgccggta	tcgttgaaaa	taggcgatat	ttactttcaa	gtcttgcatg	aaactcctag	8040	
gcaatataaa	ataagggaca	tgggtacttt	attcgacgta	aaattcaatg	atgtctacga	8100	
aattagccga	atatttgaag	tacatgtttc	gtcaataact	ggagtggcag	ctgaatttac	8160	
agtaactttt	caggacgaga	gaaggttgat	ttttagtagt	ccgaaatacc	ttgaaattgt	8220	
gaagatgttc	tattacgcac	agatccggtt	agaaagtgaa	tatgaaatgg	ataataattc	8280	
gagtacctcc	tccccaaatt	caaacaacaa	ggacaaacag	cagaaagaga	gaacaaaact	8340	
attgtgccac	ctactgttag	tatctcttat	tggtctgttt	gatgagagta	aaaaatgaa	8400	
aaacagttcg	tataacctaa	tagctgccac	tgaggcgtca	tttggtttga	actttggctc	8460	
ccattttcat	cgctctcccg	aggtgtacgt	ccccgaagat	actacaacat	ttttaggtgt	8520	
tattggaaag	tctcttgcag	agtctaatcc	agaactcaca	gcctatatgt	ttatctatgt	8580	
tttggaggca	ttgaagaaca	acgtaattcc	tcacgtttac	atccctcata	ccatttgcgg	8640	
tttgtcttat	tggatcccta	atttatacca	acatgtgtat	ttggctgatg	atgaagaagg	8700	
ccccgaaaac	atatctcaca	ttttccgaat	tcttatcagg	ctctctgtga	gagagactga	8760	
ctttaaagcc	gtatacatgc	aatatgtttg	gttgctactt	ttagatgatg	gccgcttaac	8820	
tgacattatc	gttgatgaag	ttattaatca	tgcgttagaa	agagactccg	aaaaccgcga	8880	
ttggaagaaa	acaatatcgt	tactgactgt	cctacccact	actgaggttg	ctaataatat	8940	
tattcaaaaa	atattggcaa	aaattagatc	atttttaccg	tcattgaagt	tagaagctat	9000	
gacccaaagt	tggtctgaac	taacaatatt	agttaagata	agcatccacg	tttttttga	9060	
aacttctttg	ctggtacaga	tgtacttacc	agagatcctg	tttatcgtat	ccttattaat	9120	
tgatgttggt	ccaagggaac	tcagatcatc	actacaccag	ctattaatga	atgtatgcca	9180	
ttccttggct	attaactcag	ctttaccaca	agatcataga	aataatctag	atgaaataag	9240	
tgatatattt	gcacatcaaa	aggtgaagtt	tatgtttggg	ttcagcgagg	acaaaggacg	9300	
aattttacag	atttttagcg	cttcttcttt	tgcaagcaag	tttaatattc	tggatttctt	9360	
catcaataat	atattattgc	tgatggaata	ttcttcaacg	tacgaagcaa	acgtgtggaa	9420	
gacaagatac	aagaaatatg	tcttggaatc	tgtgtttaca	agtaattctt	ttetttegge	9480	
acgttcaatc	atgattgttg	gtataatggg	taaatcttac	ataactgaag	ggttatgcaa	9540	
ggctatgtta	attgaaacca	tgaaagttat	cgccgaacca	aagattactg	acgagcatct	9600	
tttcttagcc	atatctcata	tttttactta	ttccaaaatt	gttgaaggtt	tggatcccaa	9660	
ccttgactta	atgaagcact	tattttggtt	ttcaacactc	ttccttgaat	cacgtcaccc	9720	
gataatttt	gagggtgccc	ttctctttgt	gtcaaactgt	ataaggcgcc	tatacatggc	9780	
ccagtttgaa	aatgaaagcg	aaacatcatt	gataagtact	ttacttaagg	ggagaaagtt	9840	
tgctcatacc	tttttaagca	agatagagaa	tcttagtggt	attgtttgga	atgaagataa	9900	
ttttacacac	attctgattt	tcatcattaa	taaaggacta	tccaatcctt	tcattaagag	9960	
tacggctttt	gatttcttga	agatgatgtt	tagaaactcc	tactttgagc	atcaaatcaa	10020	
tcagaaatct	gatcattatt	tgtgctatat	gttcctattg	tattttgttt	taaactgcaa	10080	
tcaatttgag	gaacttttag	gtgacgttga	ttttgaagga	gaaatggtta	acattgaaaa	10140	
caagaacacc	attcctaaaa	ttttgttaga	gtggttgagt	tcggataacg	aaaatgcaaa	10200	
cattaccctc	tatcaaggtq	cgatactgtt	caaatgttca	gttacggatq	aaccaagtag	10260	
atttaggttt	gcgttgatta	ttaggcatct	attgacaaag	aaacccattt	gtgcattgcg	10320	
			- 5				

45

tttttacagt gttattcgta acgaaataag aaaaatatca gcatttgagc aaaattcgga 10380

-continued

ttgtgttcca cttgctttcg atattttaaa cttattagtg acgcattcag agtctaattc 10440 gttagaaaaa cttcacgaag aatccattga acgtctaacc aaaagaggtt tatcgattgt 10500 gacttettet ggtatatttg egaagaaete egaeatgatg ataeetttag atgtaaaaee 10560 tgaagatatc tatgaacgta agagaataat gacaatgatt ttatcaagga tgtcatgttc 10620 tgcttagagg tgttacataa actaatgaaa gaaatatcaa tatctatctg taagcatgaa 10680 tgtacatatc tcatgttagg gttttcttat cgctaatttt tcgcaatttg ttacgtgggt 10740 tgcttttata cagctacaat ttttatatat tctatcgtgt aatgaatggc tcagtaaatt 10800 caagcgccac atagactaat gtacatacca atgcatttta attgtaagaa taaaaggggc 10860 cattcatcta ccgtcttagt tgaaagtgtt tctgtgaatt ttttcaaatt ccgttttttc 10920 ctttttatat aatagcatgg tggcacgagc atcttcgact gaagaatgct caccttcttg 10980 aatggaaatt tttaaaacct ccctggttaa tttctttaag ctgggtgttt tacccttagc 11040 atacaacttc ctgaatggga ggtgtcttga agtgtccctg agtagtgact ttgggtggga 11100 taacatcaat gettegagat catgetttaa agegtgeeet acaagaatte taeetteeag 11160 aatateegea gtettttttt gagettettt gaatgtaatg geatttttea tatgetetgg 11220 tttaatacca ctaacccaaq ttctccattc tacaactttc tctcttqqct taacaaattc 11280 atcgaggacg acatgtccaa aataatttac gattgatatt ctagctaacg cagactcttt 11340 acceteggga ceaacgeeta caaatteaca atceatggeg atgtattee caatteett 11400 actettatta etattaatae gagtatette egaaataeee aettttaetg getetttaat 11460 agtagtacta gtatttgctt tatttgggtt gaattcaaac acttttccct cgagcttgtc 11520 tttctcatgc ttactaatct ccttgttcat gttatatacc atgtccataa ttttactgcc 11580 gtttttgcgc tttcgagggg catattgggt tgtactactg acatttactg ttttgctaac 11640 tttcttaacg tttctgattt tcctatttga ttgcttattc tttccattgg aggtaggatt 11700 gctttcggag gctaatagtg cctgccagtt tgaagagaga gccattaaaa ctgtacgcta 11760 totactttat taaatotgta aacgtotatg aagoototag aaccaggott taaatggatt 11820 gtggttgcga tgaggttagt ttaacttttg aaatttttct tttttttagc cgaccttaca 11880 tatcagcccg cgtcaaaaaa tatacggtat aataattctc aatagataca ggctactgaa 11940 caggaaaact aaataaaaca gtgtttgtaa aacccccacc acaccataat aagacgataa 12000 tggacacggt ga 12012 <210> SEQ ID NO 2 <211> LENGTH: 3079 <212> TYPE: PRT <213> ORGANISM: Saccharomyces cerevisiae <400> SEQUENCE: 2 Met Ser Gln Pro Thr Lys Asn Lys Lys Lys Glu His Gly Thr Asp Ser 1 5 10 15 Lys Ser Ser Arg Met Thr Arg Thr Leu Val Asn His Ile Leu Phe Glu 20 25 Arg Ile Leu Pro Ile Leu Pro Val Glu Ser Asn Leu Ser Thr Tyr Ser 35 40 45 Glu Val Glu Glu Tyr Ser Ser Phe Ile Ser Cys Arg Ser Val Leu Ile 55 50 60

-continued

Asn 65	Val	Thr	Val	Ser	Arg 70	Asp	Ala	Asn	Ala	Met 75	Val	Glu	Gly	Thr	Leu 80
Glu	Leu	Ile	Glu	Ser 85	Leu	Leu	Gln	Gly	His 90	Glu	Ile	Ile	Ser	Asp 95	Lys
Gly	Ser	Ser	Asp	Val	Ile	Glu	Ser	Ile	Leu	Ile	Ile	Leu	Arg	Leu	Leu
Ser	Asp	Ala	Leu	Glu	Tyr	Asn	Trp	Gln	Asn	Gln	Glu	Ser	Leu	His	Tyr
۵an	Agn	115 Tle	Cer	Thr	Hig	Val	120 Glu	Ціа	Agn	Gln	Glu	125 Gln	Ive	Tvr	Ara
11011	130	110	DCI			135	oru	111.0	11010	GIII	140		Lys	1 y 1	
Pro 145	Lys	Leu	Asn	Ser	Ile 150	Leu	Pro	Asp	Tyr	Ser 155	Ser	Thr	His	Ser	Asn 160
Gly	Asn	Lys	His	Phe 165	Phe	His	Gln	Ser	Lys 170	Pro	Gln	Ala	Leu	Ile 175	Pro
Glu	Leu	Ala	Ser 180	Lys	Leu	Leu	Glu	Ser 185	Суз	Ala	Lys	Leu	Lys 190	Phe	Asn
Thr	Arg	Thr 195	Leu	Gln	Ile	Leu	Gln 200	Asn	Met	Ile	Ser	His 205	Val	His	Gly
Asn	Ile 210	Leu	Thr	Thr	Leu	Ser	Ser	Ser	Ile	Leu	Pro 220	Arg	His	Lys	Ser
Tyr	Leu	Thr	Arg	His	Asn	His	Pro	Ser	His	Cys	Lys	Met	Ile	Asp	Ser
225 Thr	Leu	Glv	Hie	T10	230 Leu	Ara	Phe	Val	Ala	235 Ala	Ser	Agn	Pro	Ser	240 Glu
1111	цец	сту	117.2	245	ыец	чтЯ	FIIG	var	250	лта	Det	11671	FIO	255	GIU
Tyr	Phe	Glu	Phe 260	Ile	Arg	ГЛЗ	Ser	Val 265	Gln	Val	Pro	Val	Thr 270	Gln	Thr
His	Thr	His 275	Ser	His	Ser	His	Ser 280	His	Ser	Leu	Pro	Ser 285	Ser	Val	Tyr
Asn	Ser 290	Ile	Val	Pro	His	Phe 295	Asp	Leu	Phe	Ser	Phe 300	Ile	Tyr	Leu	Ser
Lys	His	Asn	Phe	Lys	Lys	Tyr	Leu	Glu	Leu	Ile	rya	Asn	Leu	Ser	Val
305 Thr	Leu	Arg	Lys	Thr	Ile	Tyr	His	Суз	Leu	ьте Leu	Leu	His	Tyr	Ser	3∠0 Ala
Ţ			-	325		-		~	330	5	77	a 7	-	335	a 1
гла	Ala	Шe	Met 340	Phe	Trp	⊥le	Met	A1a 345	Arg	Pro	Ala	GIU	Tyr 350	Tyr	GIU
Leu	Phe	Asn 355	Leu	Leu	Lys	Asp	Asn 360	Asn	Asn	Glu	His	Ser 365	Lys	Ser	Leu
Asn	Thr 370	Leu	Asn	His	Thr	Leu 375	Phe	Glu	Glu	Ile	His 380	Ser	Thr	Phe	Asn
Val	Asn	Ser	Met	Ile	Thr	Thr	Asn	Gln	Asn	Ala	His	Gln	Gly	Ser	Ser
385 Ser	Pro	Ser	Ser	Ser	390 Ser	Pro	Ser	Ser	Pro	395 Pro	Ser	Ser	Ser	Ser	400 Ser
				405		0			410					415	
Asp	Asn	Asn	Asn 420	Gln	Asn	Ile	Ile	Ala 425	Lys	Ser	Leu	Ser	Arg 430	Gln	Leu
Ser	His	His 435	Gln	Ser	Tyr	Ile	Gln 440	Gln	Gln	Ser	Glu	Arg 445	Lys	Leu	His
Ser	Ser	Trp	Thr	Thr	Asn	Ser	Gln	Ser	Ser	Thr	Ser	Leu	Ser	Ser	Ser
	450					455					460				

Glu	Tyr	Asp	Pro	Ser 485	Leu	Pro	Asp	Thr	Pro 490	Thr	Met	Ser	Asn	Ile 495	Thr
Ile	Ser	Ala	Ser 500	Ser	Leu	Leu	Ser	Gln 505	Thr	Pro	Thr	Pro	Thr 510	Thr	Gln
Leu	Gln	Gln 515	Arg	Leu	Asn	Ser	Ala 520	Ala	Ala	Ala	Ala	Ala 525	Ala	Ala	Ala
Ser	Pro 530	Ser	Asn	Ser	Thr	Pro 535	Thr	Gly	Tyr	Thr	Ala 540	Glu	Gln	Gln	Ser
Arg 545	Ala	Ser	Tyr	Asp	Ala 550	His	Lys	Thr	Gly	His 555	Thr	Gly	Lys	Asp	Tyr 560
Asp	Glu	His	Phe	Leu 565	Ser	Val	Thr	Arg	Leu 570	Asp	Asn	Val	Leu	Glu 575	Leu
Tyr	Thr	His	Phe 580	Asp	Asp	Thr	Glu	Val 585	Leu	Pro	His	Thr	Ser 590	Val	Leu
Lys	Phe	Leu 595	Thr	Thr	Leu	Thr	Met 600	Phe	Asp	Ile	Asp	Leu 605	Phe	Asn	Glu
Leu	Asn 610	Ala	Thr	Ser	Phe	Lys 615	Tyr	Ile	Pro	Asp	Cys 620	Thr	Met	His	Arg
Pro 625	Lys	Glu	Arg	Thr	Ser 630	Ser	Phe	Asn	Asn	Thr 635	Ala	His	Glu	Thr	Gly 640
Ser	Glu	Lys	Thr	Ser 645	Gly	Ile	Lys	His	Ile 650	Thr	Gln	Gly	Leu	Lys 655	ГЛа
Leu	Thr	Ser	Leu 660	Pro	Ser	Ser	Thr	Lys 665	Lys	Thr	Val	Lys	Phe	Val	ГЛа
Met	Leu	Leu	Arg	Asn	Leu	Asn	Gly	Asn	Gln	Ala	Val	Ser	Asp	Val	Ala
Leu	Leu	Asp	Thr	Met	Arg	Ala	Leu	Leu	Ser	Phe	Phe	Thr	Met	Thr	Ser
Ala	690 Val	Phe	Leu	Val	Asp	695 Arg	Asn	Leu	Pro	Ser	700 Val	Leu	Phe	Ala	Lys
705 Arq	Leu	Ile	Pro	Ile	710 Met	Gly	Thr	Asn	Leu	715 Ser	Val	Gly	Gln	Asp	720 Trp
Acn	Sor	Lare	T10	725 Agn	Acn	Cor	Leu	Mot	730 Val	Cure	Leu	Luc	Luc	735 Agn	Cor
ASII	Ser	цув	740	ASII	ASII	Ser	Бец	745	vai	сув	Leu	цур	цу5 750	ASII	ser
Thr	Thr	Phe 755	Val	Gln	Leu	Gln	Leu 760	Ile	Phe	Phe	Ser	Ser 765	Ala	Ile	Gln
Phe	Asp 770	His	Glu	Leu	Leu	Leu 775	Ala	Arg	Leu	Ser	Ile 780	Asp	Thr	Met	Ala
Asn 785	Asn	Leu	Asn	Met	Gln 790	ГЛа	Leu	Суз	Leu	Tyr 795	Thr	Glu	Gly	Phe	Arg 800
Ile	Phe	Phe	Asp	Ile 805	Pro	Ser	Lys	Lys	Glu 810	Leu	Arg	Lys	Ala	Ile 815	Ala
Val	Lys	Ile	Ser 820	Гла	Phe	Phe	Lys	Thr 825	Leu	Phe	Ser	Ile	Ile 830	Ala	Asp
Ile	Leu	Leu 835	Gln	Glu	Phe	Pro	Tyr 840	Phe	Asp	Glu	Gln	Ile 845	Thr	Asp	Ile
Val	Ala 850	Ser	Ile	Leu	Asp	Gly 855	Thr	Ile	Ile	Asn	Glu 860	Tyr	Gly	Thr	Lya
Lys 865	His	Phe	Lys	Gly	Ser 870	Ser	Pro	Ser	Leu	Cys 875	Ser	Thr	Thr	Arg	Ser 880
Arg	Ser	Gly	Ser	Thr	Ser	Gln	Ser	Ser	Met	Thr	Pro	Val	Ser	Pro	Leu
				885					890					895	

Gly Leu Asp Thr Asp Ile Cys Pro Met Asn Thr Leu Ser Leu Val Gly

-continued

				900				9	05				91(,	
S	er	Ser	Thr 915	Ser	Arg	Asn	Ser A	Asp A 920	sn V	al A	sn Se	er Leu 925	ı Ası	n Sei	r Ser
P	ro	Lys 930	Asn	Leu	Ser	Ser	Asp 4 935	ro T	yr L	eu Se	er H: 94	is Leu 10	ı Val	l Ala	a Pro
A 9	rg 45	Ala	Arg	His	Ala	Leu 950	Gly G	Sly P	ro S	er Se 9!	er II 55	le Ile	e Arç	g Asr	n Lys 960
I	le	Pro	Thr	Thr	Leu 965	Thr	Ser F	Pro P	ro G 9	ly T1 70	nr G	lu Ly:	s Sei	r Sei 975	r Pro
v	'al	Gln	Arg	Pro 980	Gln	Thr	Glu S	Ser I 9	le S 85	er A	la Tł	nr Pro	Met 990	z Ala	a Ile
Т	'hr	Asn	Ser 995	Thr	Pro	Leu	Ser S 1	Ser .000	Ala .	Ala 1	Phe (3ly I] 10	Le 7	Arg S	Ser Pro
L	eu	Gln 1010	Lys	; Ile	e Arç	g Thr	Arg 1015	Arg	Tyr	Ser	Asp	Glu 1020	Ser	Leu	Gly
L	ya	Phe 1025	Met	: Lу:	s Sei	r Thr	Asn 1030	Asn	Tyr	Ile	Gln	Glu 1035	His	Leu	Ile
P	ro	Lys 1040	Asp) Lei	ı Ası	n Glu	Ala 1045	Thr	Leu	Gln	Asp	Ala 1050	Arg	Arg	Ile
Μ	let	Ile 1055	Asr	n Ile	e Phe	e Ser	Ile 1060	Phe	Lys	Arg	Pro	Asn 1065	Ser	Tyr	Phe
I	le	Ile 1070	Pro	> Hi:	s Ası	n Ile	Asn 1075	Ser	Asn	Leu	Gln	Trp 1080	Val	Ser	Gln
A	ab	Phe 1085	Arg	j Ası	n Ile	e Met	Lys 1090	Pro)	Ile	Phe	Val	Ala 1095	Ile	Val	Ser
P	ro	Asp 1100	Val	. Asj	p Lei	u Gln	. Asn 1105	Thr	Ala	Gln	Ser	Phe 1110	Met	Asp	Thr
L	eu	Leu 1115	Ser	: Ası	n Val	l Ile	• Thr 1120	Tyr	Gly	Glu	Ser	Asp 1125	Glu	Asn	Ile
S	er	Ile 1130	Glu	ı Gly	у Туз	r His	Leu 1135	Leu	Cys	Ser	Tyr	Thr 1140	Val	Thr	Leu
P	'he	Ala 1145	Met	Gly	y Lei	u Phe	Asp	Leu	Lys	Ile	Asn	Asn 1155	Glu	ГÀа	Arg
G	ln	Ile	Leu	ı Leı	ı Asl	p Ile	- Thr	Val	Lys	Phe	Met	Lys	Val	Arg	Ser
н	lis	Leu	Ala	u Gly	y Ile	e Ala	Glu	, Ala	Ser	His	His	Met	Glu	Tyr	Ile
S	er	1175 Asp	Ser	: Glu	ı Ly:	s Leu	1180 Thr	, Phe	Pro	Leu	Ile	1185 Met	Gly	Thr	Val
G	ly	1190 Arg	Ala	ı Leı	ı Phe	e Val	1195 Ser	5 Leu	Tyr	Ser	Ser	1200 Gln	Gln	Lys	Ile
G	lu	1205 Lys	Thr	: Lei	ı Ly:	s Ile	1210 Ala) Tyr	Thr	Glu	Tyr	1215 Leu	Ser	Ala	Ile
~	an	1220 Phe	ц:		- <u>-</u> ,		1225	-/-	Aar	210	2-	1230		 Trn	Val
		1235	1115	, GI(- EJ		1240))	м	AT4	тор	1245	1111	т.ћ	va.
н	15	Asn 1250	116	e GII	i Phe	e val	. GIU 1255	AIA	Met	суз	HIS	Asp 1260	Asn	Tyr	Tnr
Т	'hr	Ser 1265	Glγ	/ Sei	r Ile	e Ala	Phe 1270	Gln	Arg	Arg	Thr	Arg 1275	Asn	Asn	Ile
L	eu	Arg 1280	Phe	e Ala	a Thi	r Ile	Pro 1285	Asn	Ala	Ile	Leu	Leu 1290	Asp	Ser	Met

-continued

Arg	Met 1295	Ile	Tyr	Lys	Lys	Trp 1300	His	Thr	Tyr	Thr	His 1305	Ser	ГЛа	Ser
Leu	Glu 1310	Lys	Gln	Glu	Arg	Asn 1315	Asp	Phe	Arg	Asn	Phe 1320	Ala	Gly	Ile
Leu	Ala 1325	Ser	Leu	Ser	Gly	Ile 1330	Leu	Phe	Ile	Asn	Lys 1335	Lys	Ile	Leu
Gln	Glu 1340	Met	Tyr	Pro	Tyr	Leu 1345	Leu	Aab	Thr	Val	Ser 1350	Glu	Leu	Гла
Lys	Asn 1355	Ile	Asp	Ser	Phe	Ile 1360	Ser	Lys	Gln	Cys	Gln 1365	Trp	Leu	Asn
Tyr	Pro 1370	Asp	Leu	Leu	Thr	Arg 1375	Glu	Asn	Ser	Arg	Asp 1380	Ile	Leu	Ser
Val	Glu 1385	Leu	His	Pro	Leu	Ser 1390	Phe	Asn	Leu	Leu	Phe 1395	Asn	Asn	Leu
Arg	Leu 1400	LÀa	Leu	Lys	Glu	Leu 1405	Ala	Cys	Ser	Asp	Leu 1410	Ser	Ile	Pro
Glu	Asn 1415	Glu	Ser	Ser	Tyr	Val 1420	Leu	Leu	Glu	Gln	Ile 1425	Ile	Lys	Met
Leu	Arg 1430	Thr	Ile	Leu	Gly	Arg 1435	Asp	Asp	Asp	Asn	Tyr 1440	Val	Met	Met
Leu	Phe 1445	Ser	Thr	Glu	Ile	Val 1450	Asp	Leu	Ile	Asp	Leu 1455	Leu	Thr	Аар
Glu	Ile 1460	Lys	гла	Ile	Pro	Ala 1465	Tyr	Cys	Pro	Lya	Tyr 1470	Leu	гла	Ala
Ile	Ile 1475	Gln	Met	Thr	Lys	Met 1480	Phe	Ser	Ala	Leu	Gln 1485	His	Ser	Glu
Val	Asn	Leu	Gly	Val	Lys	Asn	His	Phe	His	Val	Lys	Asn	Lys	Trp
Leu	Arg	Gln	Ile	Thr	Asp	Trp	Phe	Gln	Val	Ser	Ile	Ala	Arg	Glu
Tyr	1505 Asp	Phe	Glu	Asn	Leu	1510 Ser	Lys	Pro	Leu	Lys	1515 Glu	Met	Asp	Leu
- 	1520	7 2 2 4	7 cm	Mot	Agr	1525	Lou	Theres	T10	- 7 cm	1530 Thr	710	-	Clu
Val	цуз 1535	AIG	мар	Met	Авр	1540	цец	IYI	116	Азр	1545	AIA	шe	GIU
Ala	Ser 1550	Thr	Ala	Ile	Ala	Tyr 1555	Leu	Thr	Arg	His	Thr 1560	Phe	Leu	Glu
Ile	Pro 1565	Pro	Ala	Ala	Ser	Asp 1570	Pro	Glu	Leu	Ser	Arg 1575	Ser	Arg	Ser
Val	Ile 1580	Phe	Gly	Phe	Tyr	Phe 1585	Asn	Ile	Leu	Met	Lys 1590	Gly	Leu	Glu
Гла	Ser 1595	Ser	Asp	Arg	Aab	Asn 1600	Tyr	Pro	Val	Phe	Leu 1605	Arg	His	Гуз
Met	Ser 1610	Val	Leu	Asn	Asp	Asn 1615	Val	Ile	Leu	Ser	Leu 1620	Thr	Asn	Leu
Ser	Asn 1625	Thr	Asn	Val	Aab	Ala 1630	Ser	Leu	Gln	Phe	Thr 1635	Leu	Pro	Met
Gly	Tyr 1640	Ser	Gly	Asn	Arg	Asn 1645	Ile	Arg	Asn	Ala	Phe 1650	Leu	Glu	Val
Phe	Ile 1655	Asn	Ile	Val	Thr	Asn 1660	Tyr	Arg	Thr	Tyr	Thr 1665	Ala	Lys	Thr
Asp	Leu 1670	Gly	Lys	Leu	Glu	Ala 1675	Ala	Asp	Lys	Phe	Leu 1680	Arg	Tyr	Thr

-continued

Ile	GIu 1685	His	Pro	GIn	Leu	Ser 1690	Ser	Phe	GIY	Ala	Ala 1695	Val	Суз	Pro
Ala	Ser 1700	Asp	Ile	Asp	Ala	Tyr 1705	Ala	Ala	Gly	Leu	Ile 1710	Asn	Ala	Phe
Glu	Thr 1715	Arg	Asn	Ala	Thr	His 1720	Ile	Val	Val	Ala	Gln 1725	Leu	Ile	Lys
Asn	Glu 1730	Ile	Glu	Lys	Ser	Ser 1735	Arg	Pro	Thr	Asp	Ile 1740	Leu	Arg	Arg
Asn	Ser 1745	Cys	Ala	Thr	Arg	Ser 1750	Leu	Ser	Met	Leu	Ala 1755	Arg	Ser	Lys
Gly	Asn 1760	Glu	Tyr	Leu	Ile	Arg 1765	Thr	Leu	Gln	Pro	Leu 1770	Leu	Lys	Lys
Ile	Ile 1775	Gln	Asn	Arg	Aab	Phe 1780	Phe	Glu	Ile	Glu	Lys 1785	Leu	Lys	Pro
Glu	Asp 1790	Ser	Aab	Ala	Glu	Arg 1795	Gln	Ile	Glu	Leu	Phe 1800	Val	Lys	Tyr
Met	Asn 1805	Glu	Leu	Leu	Glu	Ser 1810	Ile	Ser	Asn	Ser	Val 1815	Ser	Tyr	Phe
Pro	Pro 1820	Pro	Leu	Phe	Tyr	Ile 1825	Cys	Gln	Asn	Ile	Tyr 1830	Lys	Val	Ala
Сүз	Glu 1835	Lys	Phe	Pro	Asp	His 1840	Ala	Ile	Ile	Ala	Ala 1845	Gly	Ser	Phe
Val	Phe 1850	Leu	Arg	Phe	Phe	Cys 1855	Pro	Ala	Leu	Val	Ser 1860	Pro	Asp	Ser
Glu	Asn 1865	Ile	Ile	Asp	Ile	Ser 1870	His	Leu	Ser	Glu	Lys 1875	Arg	Thr	Phe
Ile	Ser 1880	Leu	Ala	Lys	Val	Ile 1885	Gln	Asn	Ile	Ala	Asn 1890	Gly	Ser	Glu
Asn	Phe 1895	Ser	Arg	Trp	Pro	Ala 1900	Leu	Cys	Ser	Gln	Lys 1905	Asp	Phe	Leu
Гла	Glu 1910	Сув	Ser	Asp	Arg	Ile 1915	Phe	Arg	Phe	Leu	Ala 1920	Glu	Leu	Суа
Arg	Thr	Asp	Arg	Thr	Ile	Asp	Ile	Gln	Val	Arg	Thr	Asp	Pro	Thr
Pro	Ile	Ala	Phe	Asp	Tyr	Gln	Phe	Leu	His	Ser	Phe	Val	Tyr	Leu
Tyr	1940 Gly	Leu	Glu	Val	Arg	1945 Arg	Asn	Val	Leu	Asn	1950 Glu	Ala	Гла	His
Asp	1955 Asp	Gly	Asp	Ile	Asp	1960 Gly	Asp	Asp	Phe	Tyr	1965 Lys	Thr	Thr	Phe
- Leu	1970 Leu	Ile	- Asp	Asp	Val	1975 Leu	Glv	Gln	Leu	Glv	1980 Gln	Pro	Lvs	Met
	1985 Pho	Cer	Acr	G1.,	T10	1990 Pro				1 Arc	1995	Hic	-12 Met	Agr
GIU	2000	ser	ASU	GIU	тте	2005		ıyr	тте	чт.д	2010	п18	met	чар
Asp	Tyr 2015	Pro	Glu	Leu	Tyr	Glu 2020	Phe	Met	Asn	Arg	His 2025	Ala	Phe	Arg
Asn	Ile 2030	Glu	Thr	Ser	Thr	Ala 2035	Tyr	Ser	Pro	Ser	Val 2040	His	Glu	Ser
Thr	Ser 2045	Ser	Glu	Gly	Ile	Pro 2050	Ile	Ile	Thr	Leu	Thr 2055	Met	Ser	Asn
Phe	Ser 2060	Asp	Arg	His	Val	Asp 2065	Ile	Asp	Thr	Val	Ala 2070	Tyr	Lys	Phe

-continued

Leu	Gln 2075	Ile	Tyr	Ala	Arg	Ile 2080	Trp	Thr	Thr	Lys	His 2085	Cys	Leu	Ile
Ile	Asp 2090	Cys	Thr	Glu	Phe	Asp 2095	Glu	Gly	Gly	Leu	Asp 2100	Met	Arg	Lys
Phe	Ile 2105	Ser	Leu	Val	Met	Gly 2110	Leu	Leu	Pro	Glu	Val 2115	Ala	Pro	Lys
Asn	Cys 2120	Ile	Gly	Cys	Tyr	Tyr 2125	Phe	Asn	Val	Asn	Glu 2130	Thr	Phe	Met
Asp	Asn 2135	Tyr	Gly	Lys	Суз	Leu 2140	Asp	Lys	Asp	Asn	Val 2145	Tyr	Val	Ser
Ser	Lys 2150	Ile	Pro	His	Tyr	Phe 2155	Ile	Asn	Ser	Asn	Ser 2160	Asp	Glu	Gly
Leu	Met 2165	Lys	Ser	Val	Gly	Ile 2170	Thr	Gly	Gln	Gly	Leu 2175	Lys	Val	Leu
Gln	Asp 2180	Ile	Arg	Val	Ser	Leu 2185	His	Aab	Ile	Thr	Leu 2190	Tyr	Asp	Glu
Lys	Arg 2195	Asn	Arg	Phe	Thr	Pro 2200	Val	Ser	Leu	Lys	Ile 2205	Gly	Asp	Ile
Tyr	Phe 2210	Gln	Val	Leu	His	Glu 2215	Thr	Pro	Arg	Gln	Tyr 2220	Lys	Ile	Arg
Asp	Met 2225	Gly	Thr	Leu	Phe	Asp 2230	Val	Lys	Phe	Asn	Asp 2235	Val	Tyr	Glu
Ile	Ser 2240	Arg	Ile	Phe	Glu	Val 2245	His	Val	Ser	Ser	Ile 2250	Thr	Gly	Val
Ala	Ala 2255	Glu	Phe	Thr	Val	Thr 2260	Phe	Gln	Asp	Glu	Arg 2265	Arg	Leu	Ile
Phe	Ser 2270	Ser	Pro	Lys	Tyr	Leu 2275	Glu	Ile	Val	Lys	Met 2280	Phe	Tyr	Tyr
Ala	Gln	Ile	Arg	Leu	Glu	Ser	Glu	Tyr	Glu	Met	Asp	Asn	Asn	Ser
Ser	Thr	Ser	Ser	Pro	Asn	Ser	Asn	Asn	Lys	Asp	Lys	Gln	Gln	Гла
Glu	Arg	Thr	Lys	Leu	Leu	2305 Сув	His	Leu	Leu	Leu	Val	Ser	Leu	Ile
Gly	2315 Leu	Phe	Asp	Glu	Ser	2320 Lys	Lys	Met	Lys	Asn	2325 Ser	Ser	Tyr	Asn
Leu	2330 Ile	Ala	Ala	Thr	Glu	2335 Ala	Ser	Phe	Glv	Leu	2340 Asn	Phe	Glv	Ser
Uia	2345 Phe	Uie	Ara	Cor	Pro	2350 Glu	Val	Tur	Vəl	Pro	2355 Glu	Agn	Thr	Thr
	2360		Arg	Jei		2365	-	1 y 1	-		2370	гор	-	_
Thr	Phe 2375	Leu	Gly	Val	Ile	Gly 2380	Гла	Ser	Leu	Ala	Glu 2385	Ser	Asn	Pro
Glu	Leu 2390	Thr	Ala	Tyr	Met	Phe 2395	Ile	Tyr	Val	Leu	Glu 2400	Ala	Leu	Гла
Asn	Asn 2405	Val	Ile	Pro	His	Val 2410	Tyr	Ile	Pro	His	Thr 2415	Ile	Сув	Gly
Leu	Ser 2420	Tyr	Trp	Ile	Pro	Asn 2425	Leu	Tyr	Gln	His	Val 2430	Tyr	Leu	Ala
Asp	Asp 2435	Glu	Glu	Gly	Pro	Glu 2440	Asn	Ile	Ser	His	Ile 2445	Phe	Arg	Ile
Leu	Ile 2450	Arg	Leu	Ser	Val	Arg 2455	Glu	Thr	Asp	Phe	Lys 2460	Ala	Val	Tyr

Met Gln Tyr Val Trp Leu Leu Leu Leu Asp Asp Gly Arg Leu Thr

-continued

	2465					2470					2475			
Asp	Ile 2480	Ile	Val	Asp	Glu	Val 2485	Ile	Asn	His	Ala	Leu 2490	Glu	Arg	Asp
Ser	Glu 2495	Asn	Arg	Asp	Trp	Lys 2500	Lys	Thr	Ile	Ser	Leu 2505	Leu	Thr	Val
Leu	Pro 2510	Thr	Thr	Glu	Val	Ala 2515	Asn	Asn	Ile	Ile	Gln 2520	Lys	Ile	Leu
Ala	Lys 2525	Ile	Arg	Ser	Phe	Leu 2530	Pro	Ser	Leu	Lys	Leu 2535	Glu	Ala	Met
Thr	Gln 2540	Ser	Trp	Ser	Glu	Leu 2545	Thr	Ile	Leu	Val	Lys 2550	Ile	Ser	Ile
His	Val 2555	Phe	Phe	Glu	Thr	Ser 2560	Leu	Leu	Val	Gln	Met 2565	Tyr	Leu	Pro
Glu	Ile 2570	Leu	Phe	Ile	Val	Ser 2575	Leu	Leu	Ile	Asp	Val 2580	Gly	Pro	Arg
Glu	Leu 2585	Arg	Ser	Ser	Leu	His 2590	Gln	Leu	Leu	Met	Asn 2595	Val	Суз	His
Ser	Leu 2600	Ala	Ile	Asn	Ser	Ala 2605	Leu	Pro	Gln	Aap	His 2610	Arg	Asn	Asn
Leu	Asp 2615	Glu	Ile	Ser	Asp	Ile 2620	Phe	Ala	His	Gln	Lys 2625	Val	Lys	Phe
Met	Phe 2630	Gly	Phe	Ser	Glu	Asp 2635	Гуз	Gly	Arg	Ile	Leu 2640	Gln	Ile	Phe
Ser	Ala 2645	Ser	Ser	Phe	Ala	Ser 2650	Lys	Phe	Asn	Ile	Leu 2655	Asp	Phe	Phe
Ile	Asn 2660	Asn	Ile	Leu	Leu	Leu 2665	Met	Glu	Tyr	Ser	Ser 2670	Thr	Tyr	Glu
Ala	Asn 2675	Val	Trp	Lys	Thr	Arg 2680	Tyr	Lys	Lys	Tyr	Val 2685	Leu	Glu	Ser
Val	Phe 2690	Thr	Ser	Asn	Ser	Phe 2695	Leu	Ser	Ala	Arg	Ser 2700	Ile	Met	Ile
Val	Gly	Ile	Met	Gly	Lys	Ser	Tyr	Ile	Thr	Glu	Gly	Leu	Суз	Гла
Ala	Met	Leu	Ile	Glu	Thr	Met	Lys	Val	Ile	Ala	Glu	Pro	Lys	Ile
Thr	2720 Asp	Glu	His	Leu	Phe	2725 Leu	Ala	Ile	Ser	His	2730 Ile	Phe	Thr	Tyr
Ser	2735 Lys	Ile	Val	Glu	Gly	2740 Leu	Asp	Pro	Asn	Leu	2745 Asp	Leu	Met	Lys
His	2750 Leu	Phe	Tro	Phe	Ser	2755 Thr	- Leu	Phe	Leu	Glu	2760 Ser	Ara	His	Pro
T10	2765	Dho	P	<i>c</i> 1	71-	2770	Lou	Dhe	Vol	Cor	2775		T10	 7
тте	2780	- rite	GIU	GIÀ	мта	2785	Leu	-116	vai	set.	2790	-,	тте	- ATG
Arg	Leu 2795	Tyr	Met	Ala	Gln	Phe 2800	Glu	Asn	Glu	Ser	Glu 2805	Thr	Ser	Leu
Ile	Ser 2810	Thr	Leu	Leu	Lys	Gly 2815	Arg	ГÀа	Phe	Ala	His 2820	Thr	Phe	Leu
Ser	Lys 2825	Ile	Glu	Asn	Leu	Ser 2830	Gly	Ile	Val	Trp	Asn 2835	Glu	Asp	Asn
Phe	Thr 2840	His	Ile	Leu	Ile	Phe 2845	Ile	Ile	Asn	Lys	Gly 2850	Leu	Ser	Asn

Pro

-continued

Pro	Phe 2855	Ile	ГЛа	Ser	Thr	Ala 2860	Phe	Asp	Phe	Leu	Lys 2865	Met	Met	Phe		
Arg	Asn 2870	Ser	Tyr	Phe	Glu	His 2875	Gln	Ile	Asn	Gln	Lys 2880	Ser	Asp	His		
Tyr	Leu 2885	Суз	Tyr	Met	Phe	Leu 2890	Leu	Tyr	Phe	Val	Leu 2895	Asn	Суз	Asn		
Gln	Phe 2900	Glu	Glu	Leu	Leu	Gly 2905	Asp	Val	Asp	Phe	Glu 2910	Gly	Glu	Met		
Val	Asn 2915	Ile	Glu	Asn	Lys	Asn 2920	Thr	Ile	Pro	Lys	Ile 2925	Leu	Leu	Glu		
Trp	Leu 2930	Ser	Ser	Asp	Asn	Glu 2935	Asn	Ala	Asn	Ile	Thr 2940	Leu	Tyr	Gln		
Gly	Ala 2945	Ile	Leu	Phe	Lys	Суя 2950	Ser	Val	Thr	Asp	Glu 2955	Pro	Ser	Arg		
Phe	Arg 2960	Phe	Ala	Leu	Ile	Ile 2965	Arg	His	Leu	Leu	Thr 2970	Lys	Lys	Pro		
Ile	Cys 2975	Ala	Leu	Arg	Phe	Tyr 2980	Ser	Val	Ile	Arg	Asn 2985	Glu	Ile	Arg		
Lys	Ile 2990	Ser	Ala	Phe	Glu	Gln 2995	Asn	Ser	Asp	Суз	Val 3000	Pro	Leu	Ala		
Phe	Asp 3005	Ile	Leu	Asn	Leu	Leu 3010	Val	Thr	His	Ser	Glu 3015	Ser	Asn	Ser		
Leu	Glu 3020	Lys	Leu	His	Glu	Glu 3025	Ser	Ile	Glu	Arg	Leu 3030	Thr	Lys	Arg		
Gly	Leu 3035	Ser	Ile	Val	Thr	Ser 3040	Ser	Gly	Ile	Phe	Ala 3045	Lys	Asn	Ser		
Asp	Met 3050	Met	Ile	Pro	Leu	Asp 3055	Val	Lys	Pro	Glu	Asp 3060	Ile	Tyr	Glu		
Arg	Lys 3065	Arg	Ile	Met	Thr	Met 3070	Ile	Leu	Ser	Arg	Met 3075	Ser	Сув	Ser		
Ala																
<210 <212 <212 <212 <220 <222 <222	0> SE(L> LEI 2> TYI 3> OR(0> FE2 L> NAI 3> OTH	Q ID NGTH PE: I GANIS ATURI ME/KI HER I	NO 3 : 12' ONA SM: 5 E: EY: 1 INFOI	3 78 Saccl nisc_ RMAT:	naron _feat [ON:	nyces ure GRE3	cere	evis: ing :	lae seque	ence						
<400)> SE(QUEN	CE: 3	3												
ctto	ctagg	gg g¢	cctat	caaq	g taa	aattad	ctc d	ctggt	cacad	et ga	aagtat	tata	agg	gatatag	60	
aago	caaata	ag ti	tgtca	agtgo	c aat	cctto	caa ç	gacga	attgo	gg aa	aaata	ctgt	aata	ataaatc	120	
gtaa	aaggaa	aa at	ttgga	aaatt	t tt	taaaq	gat ç	gtcti	cact	cg gt	tact	ctta	ataa	acggtct	180	
gaaa	aatgco	cc ct	tagto	egget	t taç	gggtgo	ctg g	gaaaa	attga	ac aa	aaaaa	gtct	gtg	cgaatca	240	
aatt	tatga	aa go	ctato	caaat	t taq	ggctad	ccg t	ttat	tcga	at go	gtgcti	gcg	acta	acggcaa	300	
cgaa	aaagga	aa gt	ttggt	gaag	g gta	atcage	yaa a	ageca	atcto	cc ga	aaggto	cttg	ttt	ctagaaa	360	

ggatatattt gttgtttcaa agttatggaa caattttcac catcctgatc atgtaaaatt agetttaaag aagaeettaa gegatatggg aettgattat ttagaeetgt attatattea cttcccaatc gccttcaaat atgttccatt tgaagagaaa taccctccag gattctatac

gggcgcagat gacgagaaga aaggtcacat caccgaagca catgtaccaa tcatagatac

gtaccgggct ctggaagaat gtgttgatga aggcttgatt aagtctattg gtgtttccaa

420

480

540

600

64

63

-continued

ctt	tcago	gga a	ageti	tgati	tc aa	agati	ttati	acç	gtggi	ttgt	agaa	atca	agc (ccgt	ggcttt	720
gca	aatto	gaa d	cacca	atcci	tt af	tttga	actca	a aga	aaca	ccta	gtt	gagt	ttt 🤉	gtaaa	attaca	780
cga	tatco	caa ç	gtag	ttgc	tt a	ctcci	tccti	c ago	gtcc	tcaa	tca	ttca	ttg a	agato	ggactt	840
aca	gttg	gca a	aaaa	ccac	ge ea	aacto	ctgti	c cga	agaat	tgat	gta	atca	aga a	aggto	ctcaca	900
aaa	ccat	cca ç	ggcag	gtac	ca ci	ttcc	caagi	t att	gct	taga	tggg	gcaa	ctc a	agaga	aggcat	960
tgc	cgtca	att d	ccaa	aatci	tt co	caaga	aagga	a aag	ggtta	actt	ggea	aacci	tag a	aaato	cgaaaa	1020
aaa	gttca	act t	taa	cgga	gc aa	agaat	ttgaa	a gga	atat	ttct	gca	ctaa	atg o	ccaad	catcag	1080
att	taato	gat d	ccat	ggac	ct g	gttg	gatg	g taa	aatto	cccc	act	ttg	eet g	gatco	cagcca	1140
gta	aaato	cca t	cact	caac	ga co	gata	tgaa	c aaa	attt	ccct	cati	teeg	atg o	etgta	atatgt	1200
gta	taaa	tt t	taca	atge	tc ti	tctgi	tttaq	g aca	acaga	aaca	gcti	ttaa	ata a	aaato	gttgga	1260
tat	actti	tt d	ctgc	ctgt												1278
<21 <21 <21 <21	0> SI 1> LI 2> T 3> OF	EQ II ENGTH YPE : RGANI	D NO H: 3: PRT ISM:	4 27 Saco	charo	omyce	es ce	erev:	isia	0						
Mot	Cor.	Cor	Tou	ч v1	Thr	Lou	Aan	Aan	Clu	Lou	Luc	Mot	Dro	Lou	Vol	
1	Ser	Ser	Бец	5 5	1111	цец	ASII	ASII	10	Бец	цув	Met	PIO	15	vai	
Gly	Leu	Gly	Cys 20	Trp	ГЛЗ	Ile	Asp	Lys 25	Lys	Val	Суз	Ala	Asn 30	Gln	Ile	
Tyr	Glu	Ala 35	Ile	ГЛа	Leu	Gly	Tyr 40	Arg	Leu	Phe	Asp	Gly 45	Ala	Суз	Asp	
Tyr	Gly 50	Asn	Glu	Гла	Glu	Val 55	Gly	Glu	Gly	Ile	Arg 60	Lys	Ala	Ile	Ser	
Glu 65	Gly	Leu	Val	Ser	Arg 70	Lys	Asp	Ile	Phe	Val 75	Val	Ser	Lys	Leu	Trp 80	
Asn	Asn	Phe	His	His 85	Pro	Asp	His	Val	Lys 90	Leu	Ala	Leu	ГÀа	Lys 95	Thr	
Leu	Ser	Asp	Met 100	Gly	Leu	Aap	Tyr	Leu 105	Aap	Leu	Tyr	Tyr	Ile 110	His	Phe	
Pro	Ile	Ala 115	Phe	Lys	Tyr	Val	Pro 120	Phe	Glu	Glu	Lys	Tyr 125	Pro	Pro	Gly	
Phe	Tyr 130	Thr	Gly	Ala	Asp	Asp 135	Glu	Lys	Lys	Gly	His 140	Ile	Thr	Glu	Ala	
His	Val	Pro	Ile	Ile	Asp	Thr	Tyr	Arg	Ala	Leu	Glu	Glu	Суз	Val	Asp	
145					150					155					160	
Glu	Gly	Leu	Ile	Lys 165	Ser	Ile	Gly	Val	Ser 170	Asn	Phe	Gln	Gly	Ser 175	Leu	
Ile	Gln	Asp	Leu 180	Leu	Arg	Gly	СЛа	Arg 185	Ile	Lys	Pro	Val	Ala 190	Leu	Gln	
Ile	Glu	His 195	His	Pro	Tyr	Leu	Thr 200	Gln	Glu	His	Leu	Val 205	Glu	Phe	Сув	
ГЛа	Leu 210	His	Asp	Ile	Gln	Val 215	Val	Ala	Tyr	Ser	Ser 220	Phe	Gly	Pro	Gln	
Ser 225	Phe	Ile	Glu	Met	Asp 230	Leu	Gln	Leu	Ala	Lys 235	Thr	Thr	Pro	Thr	Leu 240	
Phe	Glu	Asn	Asp	Val 245	Ile	Lys	Lys	Val	Ser 250	Gln	Asn	His	Pro	Gly 255	Ser	

-continued

Thr Thr Ser Gln Val Leu Leu Arg Trp Ala Thr Gln Arg Gly Ile Ala 260 265 270	
Val Ile Pro Lys Ser Ser Lys Lys Glu Arg Leu Leu Gly Asn Leu Glu 275 280 285	
Ile Glu Lys Lys Phe Thr Leu Thr Glu Gln Glu Leu Lys Asp Ile Ser 290 295 300	
Ala Leu Asn Ala Asn Ile Arg Phe Asn Asp Pro Trp Thr Trp Leu Asp	
Gly Lys Phe Pro Thr Phe Ala	
325	
<210> SEQ ID NO 5 <211> LENGTH: 648 <212> TYPE: DNA <213> ORGANISM: Saccharomyces cerevisiae <220> FEATURE: <221> NAME/KEY: misc_feature <223> OTHER INFORMATION: ISU1 coding sequence	
<400> SEQUENCE: 5	
tettaaatee ataagaacat eeetteatat aacaattgaa taaggaaaae acaacacata	60
acacatattt aacctgatgc ttootgttat aacgagattt gcaaggootg ototgatggo	120
catcagacct gtgaatgcca tgggggtttt gagagcgtcc agcataacga aaaggcttta	180
tcatcccaag gtcatagagc attatacaca tccaagaaac gtcggctcat tagataaaaa	240
attgcccaac gtcggcactg gtctagtggg tgcgccagcg tgcggtgatg tgatgaggtt	300
gcagatcaaa gtcaacgact ctactggcgt tattgaagat gtcaaattca aaacttttgg	360
atgtggctcc gccattgcct cctcttcata tatgactgaa ttggtacagg ggatgacctt	420
ggacgatgcg gcaaaaatta agaacactga aattgctaag gagttgagct tgcccccagt	480
caagttgcat tgctctatgt tagcggaaga tgcgatcaag gcagctatta aggactacaa	540
accadatcaa accetcacta atcaacaadt todacttaat ttotocaa	648
acaagaccaa accectacta accaacaage oggacccaat cogegeaa	010
<210> SEQ ID NO 6 <211> LENGTH: 165 <212> TYPE: PRT <213> ORGANISM: Saccharomyces cerevisiae	
<400> SEQUENCE: 6	
Met Leu Pro Val IIe Thr Arg Phe Ala Arg Pro Ala Leu Met Ala IIe 1 5 10 15	
Arg Pro Val Asn Ala Met Gly Val Leu Arg Ala Ser Ser Ile Thr Lys 20 25 30	
Arg Leu Tyr His Pro Lys Val Ile Glu His Tyr Thr His Pro Arg Asn 35 40 45	
Val Gly Ser Leu Asp Lys Lys Leu Pro Asn Val Gly Thr Gly Leu Val 50 55 60	
Gly Ala Pro Ala Cys Gly Asp Val Met Arg Leu Gln Ile Lys Val Asn 65 70 75 80	
Asp Ser Thr Gly Val Ile Glu Asp Val Lys Phe Lys Thr Phe Gly Cys 85 90 95	
Gly Ser Ala Ile Ala Ser Ser Ser Tyr Met Thr Glu Leu Val Gln Gly 100 105 110	
Met Thr Leu Asp Asp Ala Ala Lys Ile Lys Asn Thr Glu Ile Ala Lys	
115 120 125	

66

_

-continued

Glu Leu Ser Leu Pro Pro Val Lys Leu His Cys Ser Met Leu Ala Glu 130 135 140	
Asp Ala Ile Lys Ala Ala Ile Lys Asp Tyr Lys Ser Lys Arg Asn Thr 145 150 155 160	
Pro Thr Met Leu Ser	
165	
<210> SEQ ID NO 7 <211> LENGTH: 1308 <212> TYPE: DNA <213> ORGANISM: Saccharomyces cerevisiae <220> FEATURE: <221> NAME/KEY: misc_feature <223> OTHER INFORMATION: HOG1 coding sequence	
<400> SEQUENCE: 7	
atgaccacta acgaggaatt cattaggaca cagatattcg gtacagtttt cgagatcaca	60
aatagataca atgatttaaa coccgttggg atggggggcat ttgggttggt ttgctcagcc	120
acggacactt tgacatetea gecagttgee attaagaaaa teatgaaace ttttteeact	180
gcagtgctgg ccaaaaggac atatcgtgaa ctaaaactac taaaacatct aagacacgag	240
aacttgattt gccttcagga catatttett tetecattgg aagatatata ttttgteacg	300
gaattacaag gaacagattt acatagactc ttgcaaacaa gacccttgga aaagcaattt	360
gttcagtatt teetataeea aattetaagg ggtttaaaat aegtteaete egegggegte	420
attcatagag atttgaaacc gagcaacatt ctgattaatg aaaactgtga tttgaagatt	480
tgcgatttcg gtctagcaag aattcaagac cctcaaatga caggctatgt ttccactaga	540
tactacaggg cacctgaaat catgctaacg tggcaaaaat atgacgtcga ggtcgacatt	600
tggtccgctg gttgtatttt tgccgaaatg attgaaggta agcctttgtt ccctgggaaa	660
gatcatgttc accaattttc gatcatcact gacttgttgg gatctccgcc aaaggatgtg	720
ataaatacta tttgttccga aaatactcta aaatttgtta cttcgttacc acacagagat	780
ccaattccat tttctgaaag atttaaaaca gtcgaacctg atgccgtaga ccttttggaa	840
aaaatgctgg tttttgatcc taagaagaga atcactgcgg cggatgcctt ggctcatcct	900
tattcggctc cttaccacga tccaacggat gaaccagtag ccgatgccaa gttcgattgg	960
cactttaatg acgctgatct gcctgtcgat acctggcgtg ttatgatgta ctcagaaatc	1020
ctagacttcc ataagattgg tggcagtgat ggacagattg atatatctgc cacgtttgat	1080
gaccaagttg ctgcagccac cgctgccgcg gcgcaggcac aggctcaggc tcaggctcaa	1140
gttcagttaa acatggctgc gcattcgcat aatggcgctg gcactactgg aaatgatcac	1200
tcagatatag ctggtggaaa caaagtcagc gatcatgtag ctgcaaatga caccattacg	1260
gactacggta accaggccat acagtacgct aatgagttcc aacagtaa	1308
<210> SEQ ID NO 8 <211> LENGTH: 435 <212> TYPE: PRT <213> ORGANISM: Saccharomyces cerevisiae	
<400> SEQUENCE: 8	
Met Thr Thr Asn Glu Glu Phe Ile Arg Thr Gln Ile Phe Gly Thr Val 1 5 10 15	
Phe Glu Ile Thr Asn Arg Tyr Asn Asp Leu Asn Pro Val Gly Met Gly	
20 25 30	

-continued

Ala	Phe	Gly 35	Leu	Val	Суз	Ser	Ala 40	Thr	Asp	Thr	Leu	Thr 45	Ser	Gln	Pro
Val	Ala 50	Ile	Lys	Гла	Ile	Met 55	Lys	Pro	Phe	Ser	Thr 60	Ala	Val	Leu	Ala
Lys 65	Arg	Thr	Tyr	Arg	Glu 70	Leu	Lys	Leu	Leu	Lys 75	His	Leu	Arg	His	Glu 80
Asn	Leu	Ile	Сүз	Leu 85	Gln	Asp	Ile	Phe	Leu 90	Ser	Pro	Leu	Glu	Asp 95	Ile
Tyr	Phe	Val	Thr 100	Glu	Leu	Gln	Gly	Thr 105	Asp	Leu	His	Arg	Leu 110	Leu	Gln
Thr	Arg	Pro 115	Leu	Glu	Lys	Gln	Phe 120	Val	Gln	Tyr	Phe	Leu 125	Tyr	Gln	Ile
Leu	Arg 130	Gly	Leu	Lys	Tyr	Val 135	His	Ser	Ala	Gly	Val 140	Ile	His	Arg	Asp
Leu 145	Lys	Pro	Ser	Asn	Ile 150	Leu	Ile	Asn	Glu	Asn 155	Суз	Asp	Leu	Lys	Ile 160
Суз	Asp	Phe	Gly	Leu 165	Ala	Arg	Ile	Gln	Asp 170	Pro	Gln	Met	Thr	Gly 175	Tyr
Val	Ser	Thr	Arg 180	Tyr	Tyr	Arg	Ala	Pro 185	Glu	Ile	Met	Leu	Thr 190	Trp	Gln
ГЛа	Tyr	Asp 195	Val	Glu	Val	Asp	Ile 200	Trp	Ser	Ala	Gly	Сув 205	Ile	Phe	Ala
Glu	Met 210	Ile	Glu	Gly	ГЛа	Pro 215	Leu	Phe	Pro	Gly	Lys 220	Asp	His	Val	His
Gln 225	Phe	Ser	Ile	Ile	Thr 230	Asp	Leu	Leu	Gly	Ser 235	Pro	Pro	Lys	Asp	Val 240
Ile	Asn	Thr	Ile	Cys 245	Ser	Glu	Asn	Thr	Leu 250	Lys	Phe	Val	Thr	Ser 255	Leu
Pro	His	Arg	Asp	Pro	Ile	Pro	Phe	Ser	Glu	Arg	Phe	Lys	Thr	Val	Glu
Pro	Asp	Ala	260 Val	Asp	Leu	Leu	Glu	265 Lys	Met	Leu	Val	Phe	270 Asp	Pro	Lys
Lys	Arg	275 Ile	Thr	Ala	Ala	Asp	280 Ala	Leu	Ala	His	Pro	285 Tyr	Ser	Ala	Pro
• Tvr	290 Hig	Asn	Pro	Thr	Asp	295 Glu	Pro	Val	Ala	Agn	300 Ale	- Lve	Phe	Agn	Trn
305		7P	1.10		310	Lee	D	 	7	315		Ly5	110	P	320 Mat
ніз	rne	ASN	чар	дта 325	чар	ьец	Pro	va⊥	Азр 330	ınr	ırp	Arg	vai	Met 335	met
Tyr	Ser	Glu	Ile 340	Leu	Asp	Phe	His	Lys 345	Ile	Gly	Gly	Ser	Asp 350	Gly	Gln
Ile	Asp	Ile 355	Ser	Ala	Thr	Phe	Asp 360	Asp	Gln	Val	Ala	Ala 365	Ala	Thr	Ala
Ala	Ala 370	Ala	Gln	Ala	Gln	Ala 375	Gln	Ala	Gln	Ala	Gln 380	Val	Gln	Leu	Asn
Met 385	Ala	Ala	His	Ser	His 390	Asn	Gly	Ala	Gly	Thr 395	Thr	Gly	Asn	Asp	His 400
Ser	Asp	Ile	Ala	Gly 405	Gly	Asn	Lys	Val	Ser 410	Asp	His	Val	Ala	Ala 415	Asn
Asp	Thr	Ile	Thr 420	Asp	Tyr	Gly	Asn	Gln 425	Ala	Ile	Gln	Tyr	Ala 430	Asn	Glu
Phe	Gln	Gln													

<210> SEQ ID NO 9

-continued

<211> LENGTH: 9279 <212> TYPE: DNA <213> ORGANISM: Saccharomyces cerevisiae <400> SEOUENCE: 9 atgaatcaaa gcgatccgca agacaaaaaa aatttcccaa tggaatactc tttgaccaag 60 catcttttt ttgataggct tctacttgtt cttcccatag aatctaattt gaaaacatat 120 gctgatgtgg aggcagattc agttttcaat tcgtgtcggt ccatcatttt gaatatagcc 180 atcactaagg acttgaaccc gattatcgaa aacacattag gtttaattga cttgattgtg 240 caagatgaag aaattacgtc tgacaatatt acagatgata ttgcccattc tatattggtt 300 cttttgagat tactgagtga tgtttttgag tattactggg atcaaaacaa tgacttcaag 360 aaaattagaa acgataatta caaaccggga ttttcaagtc acaggccaaa cttccataca 420 tctaggccaa agcacacgag aatcaatcca gctttggcga cgatgttact atgtaaaatt 480 tctaagctga agttcaatac aagaacttta aaggttttac agaacatgtc tcaccatctt 540 tctggcagcg ctactatctc aaaatcgagt attttacccg attcacagga atttttacaa 600 aagagaaact atccagcata taccgagaaa atagatttaa caatagatta tatccagaga 660 ttcatatctg cttccaatca tgttgaattc acaaagtgtg tcaaaacaaa agttgttgca 720 cctttattga tatcacacac ctcaaccgaa ttgggcgtag taaaccactt ggattattt 780 qqttqtqaqt atttqactqa taaqaatctq ctaqcatatc tqqacatact acaacacctq 840 tcaagttaca tgaagaggac catttttcat tcgcttttgt tatattatgc ttccaaagct 900 tttttatttt ggataatggc aaggccaaaa gaatacgtca aaatttataa caatctaata 960 tcatcagatt ataatagtcc gtcttcttca tctgataatg gtggttcgaa taattctgat 1020 aaaacgtcta tatcccaact agtctcactg ttattcgatg acgtttattc cacttttagt 1080 gtatcatcat tattaacaaa tgtcaataat gaccaccact accatcttca tcattcatct 1140 tetteateaa agaegaecaa cactaatagt ecaaaeteta tateaaaaae gtegataaag 1200 cagtcgagtg tgaatgcttc tggcaatgtt tctccgtctc agttttctac tgggaatgat 1260 1320 gcatcgccta cttcccctat ggcatcattg agttcaccct taaacacgaa catcctaggg tatccgttat ctccaatcac ttcaacacta ggacaggcga atacttccac atcgactacg 1380 gctgcaacta ccaaaacaga tgcagatacg ccctctacta tgaatactaa caacaataat 1440 aacaataaca acagegetaa tettaataat atteeaaac geatatttte ettagatgae 1500 atttcatcct ttaactcgag tagaaaatca ctcaatctag atgatagtaa ctccttgttt 1560 ctttgggata cttctcagca ttctaatgca tcgatgacaa atacaaatat gcatgcagga 1620 gttaataatt ctcagtctca gaacgatcag tcttctttaa actatatgga aaatattatg 1680 gagetqtatt ceaactatac eggateagaa etateeteee atactgeeat attaaqqttt 1740 ttggtggttc tgaccttatt agacagtgaa gtatatgatg agatgaactc aaattcgtat 1800 agaaaaattt cggaaccgat aatgaatatt aatccgaagg actctaatac ttcaagttgg 1860 ggetcageat ceaaaaacee aagtateagg caceteacee atggettaaa aaaaettaet 1920 ttacagcaag gcaggaaacg taacgttaaa tttttgacat atttgattag aaatttgaat 1980 ggggggacagt tcgtttcaga tgtttccttg attgactcta tcaggtccat tctattctta 2040 atgacaatga cgtcttctat atcccaaatc gattcaaata ttgcttctgt tatttttcg 2100

aagagattet acaacttgtt gggteaaaat ttagaggteg geaceaattg gaattetgee

73

-continued

actgcaaata	cttttatttc	tcattgtgtt	gaaaggaatc	cccttacaca	taggcgttta	2220
caattagagt	ttttgcaag	cggtttacag	ctggattctg	atttatttt	aagacattta	2280
caactggaaa	aagaactcaa	tcacatagac	cttcccaaaa	tatcgttata	cactgaagga	2340
tttagggtat	tttttcacct	agtaagcacc	aaaaaacttc	atgaggatat	tgcagaaaaa	2400
acctcctctg	tgttaaagag	acttttctgc	ataattgctg	atattttgtt	gaaagcaacg	2460
ccttattttg	acgataatgt	aaccaagatt	attgcttcta	tattggatgg	gcatattta	2520
gatcaatttg	acgctgcgcg	aacactttct	aatgatgatc	atgtcagttt	tgatgctgcc	2580
acaagcgttt	acactgagcc	aaccgaaatt	attcataact	catcggatgc	ctcgttagtc	2640
tcttcacttt	cccaatcacc	cttatcaatt	aactcaggaa	gcaatatcac	caatacgcgc	2700
acctgggata	ttcaatcaat	cttaccaacc	ttatcgaaca	gatcaagtgc	ttctgatttg	2760
agettgteta	acattttgac	taatccgttg	gaggcacaac	aaaataataa	tgcaaacttg	2820
ttagcccata	gattatctgg	ggttcctact	actaagagat	acgcttcacc	gaacgactct	2880
gaaagatcac	gacaaagtcc	atattcttct	ccgccgcaat	tgcaacaaag	tgacttgcct	2940
tctccgctct	cagtcctctc	gtcaagtgca	ggattttctt	ctaatcattc	gattacggca	3000
accccaacta	ttttgaaaaa	catcaaatct	ccaaaaccaa	acaaaacaaa	aaaaattgct	3060
gatgataaac	aattgaaaca	gccttcttat	tcaagagtaa	tactgagtga	caatgatgaa	3120
gcaagaaaga	ttatgatgaa	cattttcagc	attttcaaaa	gaatgaccaa	ctggtttata	3180
cgcccagatg	ctaatacaga	attcccgaag	acttttacgg	atattataaa	accactttt	3240
gtctctatat	tggattctaa	tcaaagacta	caagttacag	cgcgggcttt	tattgaaatc	3300
ccattaagtt	atatagctac	ttttgaagac	attgataatg	atcttgaccc	aagagtactg	3360
aatgaccatt	atttgttatg	tacatatgcc	gttactttgt	ttgcttcatc	attgtttgat	3420
ttgaagttag	aaaatgcgaa	gagagagatg	ctactagaca	ttattgttaa	atttcaacga	3480
gtccgttctt	atttatcaaa	tttagcagaa	aaacacaacc	tagtccaggc	aataattacg	3540
acggagaggt	tgacgctgcc	attattagtt	ggtgctgtag	gaagtggaat	tttcatttca	3600
ttatactgca	gtcgtggaaa	tacgccacgc	ttaataaaaa	tttcatgttg	tgaatttcta	3660
cgatccttga	gattttatca	aaaatacgta	ggcgctttgg	atcaatattc	catttacaat	3720
attgatttca	tagatgctat	ggcccaggac	aatttcactg	cctcaggatc	agtggctttg	3780
caacggcgtc	taagaaataa	tattttaact	tatatcaaag	gatccgactc	aatccttttg	3840
gattcaatgg	acgtgattta	caagaagtgg	ttttacttca	gctgttcgaa	atcagttacg	3900
caagaggaac	tagtagattt	tagaagcttg	gcaggcattc	tagcttctat	gtcaggtatt	3960
ctgtctgata	tgcaagagtt	ggaaaaaagc	aagagcgctc	cagataatga	aggagacagc	4020
ttatcatttg	agtcacgaaa	tcccgcttat	gaggtgcaca	aaagtcttaa	actcgagtta	4080
acgaaaaaaa	tgaatttctt	tatttcaaaa	caatgtcaat	ggttgaataa	tccaaatcta	4140
ttaacaagag	aaaattcgag	agatatatta	agtattgagt	tgcatcctct	atcttttaac	4200
ttattgttta	acaacctagg	actgaaaata	gatgaactga	tgtcaattga	tctttcaaag	4260
tcacatgagg	attcatcgtt	tgttttacta	gagcagataa	taattataat	aagaactata	4320
ctaaagaggg	atgatgatga	aaagataatg	ctactctttt	cgacggactt	gcttgatgcg	4380
gtcgataagt	tgatcgaaat	agtggagaaa	atttccatca	agtcctccaa	atattataag	4440
ggaattatcc	aaatgtcgaa	aatgtttaga	gcatttgagc	actctgaaaa	gaacctgggc	4500
atttcaaatc	atttccattt	aaagaataaa	tggttgaagt	tagttattgg	ttggttcaaa	4560

75

-continued

ctatctatta ataaggatta tgattttgaa aacctgtcaa gaccattaag ggaaatggat 4620 ttgcagaaaa gggacgaaga ttttttgtat atcgacactt ctattgaatc tgcaaaagca 4680 ttggcttacc taacacataa tgttccttta gaaataccgc cttcaagctc aaaagaagat 4740 tggaacagat cttctacagt atcatttggc aatcacttta ctattttgtt aaaaggtctg 4800 gagaaaagcg cggacctgaa tcagtttcca gtttcattaa ggcataagat cagtatactt 4860 aatgaaaatg taataatagc gctaacgaac ttatctaatg ccaatgtcaa cgtttcttta 4920 4980 aaattcactt taccaatggg ttattctcca aataaagata tcagaatcgc ctttttaaga gttttcatcg acatagtaac caactatcca gttaaccctg agaaacatga aatggataaa 5040 atgctagcta tagacgactt cctgaaatat ataatcaaga acccaatatt agcatttttc 5100 ggaagtttag cgtgttctcc tgctgatgtt gatttatatg ctggtggatt cttaaacgcc 5160 tttgacacta gaaatgcgtc tcatatcctt gttactgagc tccttaaaca agaaatcaaa 5220 cgggccgcaa gatcagacga tattctcaga agaaatagtt gtgcaacaag ggctttgtca 5280 ctttacacta gatctagagg taacaaatat ttgataaaaa ctttgagacc cgttttgcaa 5340 gggatagtgg ataacaagga gtcttttgaa attgataaga tgaaaccagg atccgaaaac 5400 tccgaaaaga tgttagactt atttgagaag tacatgacaa gattaattga cgcaattaca 5460 agttetattg atgattteec aatagaatta gttgatatet gtaaaacaat ttacaatget 5520 gctagtgtaa attttccaga atacgcatat attgccgttg ggtcattcgt tttcttgagg 5580 tttatcgggc ctgctttagt tagtcctgat tcggaaaata tcattattgt tacgcacgcc 5640 catgacagaa agccctttat tacactagct aaagttattc aaagtttagc taatggcagg 5700 gaaaatatat tcaagaaaga tatcttagtt tcaaaagaag agtttttgaa aacctgtagt 5760 gataaaatat tcaatttttt gtctgaattg tgcaagatac cgactaacaa tttcaccgtc 5820 aatgtaagag aagateegae accaataage tttgaetaet eatttttgea taaattettt 5880 tacctcaatg agtttaccat aagaaaagaa attattaatg aatccaaatt accaggggag 5940 ttcagctttt tgaaaaatac tgttatgctc aacgacaaaa ttcttggtgt attgggacaa 6000 cctagcatgg aaataaaaaa tgaaattcct ccttttgtag tcgagaatcg ggaaaaatat 6060 ccttcattgt atgaattcat gagtcgctat gccttcaaaa aagtggacat gaaagaagaa 6120 gaagaggata atgcgccatt tgtacatgaa gcaatgacat tggatggcat acaaatcatt 6180 gtcgtaactt ttaccaattg cgagtacaat aattttgtaa tggactcact ggtctataaa 6240 gttctgcaga tatatgcaag aatgtggtgc tctaaacatt atgtagttat cgattgtacc 6300 accttttatg ggggtaaggc taatttccaa aaattgacta ctctattttt cagtttgata 6360 ccagagcaag catcaagtaa ttgtatggga tgttattact tcaacgtcaa caaatcattt 6420 atggaccaat gggeetcate atatactgta gaaaateegt aettggteae tacaatteee 6480 cqttqtttca tcaacaqcaa tactqaccaa aqtttqataa aqtccttaqq attqaqtqqt 6540 aggagtttgg aagttttgaa agatgtaaga gttactttgc atgatattac cctttatgac 6600 aaggaaaaaa agaagttttg tcccgtgtcc ttgaagatag gaaacaaata cttccaagtt 6660 ttacatgaga ttccgcagtt gtacaaggtt accgtatcaa acaggacatt cagcatcaaa 6720 ttcaacaatg tttacaagat atcaaattta atttcagtcg atgtctctaa caccacaggc 6780 gtttcctcgg aatttacgtt aagtcttgat aatgaagaaa agttggtatt ttgcagtccg 6840 aagtacctag aaattgtgaa aatgttttat tatgcccagt taaagatgga agaagacttt 6900

6960

ggtacggatt tttcgaacga tatttcattt tcaacatcct cttcagcagt taatgcttct

77

-continued

tactgcaatg	ttaaagaagt	tggtgaaatt	atatcacatt	tgtcattggt	gatccttgta	7020
ggtttattca	atgaggatga	tctcgtcaaa	aacatatcat	acaaccttct	cgtggcaacg	7080
caagaagcat	ttaatttaga	ttttgggaca	aggetteaca	aatccccaga	gacatatgta	7140
cccgatgata	ccaccacgtt	cttggcccta	attttcaagg	ctttttcaga	atcttcaacg	7200
gaactaactc	catatatatg	gaaatatatg	ctggatggcc	ttgaaaacga	cgtgattcct	7260
caagaacata	ttcctacggt	tgtctgttca	ttgtcatact	gggtaccaaa	cttatatgaa	7320
catgtatatt	tggcaaatga	cgaagaggga	ccagaggcga	tttcacgtat	aatctatagc	7380
ttaatcaggt	tgacggtcaa	agagccaaat	ttcacgacag	cttaccttca	acagatttgg	7440
tttttactgg	cattggatgg	tcgtctcacg	aacgtgatag	ttgaagaaat	agtaagtcat	7500
gcgctggata	gagattcaga	aaacagagac	tggatgaaag	ctgtgtcaat	actaaccagt	7560
tttccaacga	cagagattgc	ttgtcaggta	atagagaagc	taataaatat	gatcaaatct	7620
tttctacctt	ctctagcagt	tgaggettee	gcacacagtt	ggtctgagct	tactatttta	7680
tcaaaaatta	gtgtgtcaat	tttctttgaa	tcaccettae	tttcccagat	gtatttaccg	7740
gagattettt	tcgctgtgtc	tctgttaatt	gatgtcggtc	cttcggaaat	aagagtetea	7800
ttgtacgagt	tgttgatgaa	tgtttgtcat	tctttaacca	acaatgagtc	cttacctgaa	7860
aggaatagga	aaaatttgga	tatcgtctgt	gcaacattcg	cacgtcaaaa	gttgaacttt	7920
atctccggtt	ttagccaaga	aaaaggtaga	gttttaccaa	attttgccgc	ttcctccttc	7980
tccagtaaat	tcggaacatt	agatctcttc	actaaaaaca	ttatgctatt	gatggaatat	8040
ggttctattt	cagagggtgc	acaatgggag	gcaaaatata	agaaatattt	gatggatgcg	8100
atttttggcc	atcggtcgtt	cttctctgcg	agagctatga	tgattctagg	tataatgagt	8160
aagtcgcaca	cgtccctttt	cctttgtaaa	gaacttttag	ttgaaaccat	gaaggtette	8220
gcagagccag	ttgtggatga	tgaacaaatg	ttcatcatta	tagctcatgt	ctttacttac	8280
agcaaaattg	tcgaagggtt	agatccttct	tcagaattaa	tgaaagagct	attttggctt	8340
gctacaatat	gtgttgaatc	ccctcatcct	ttactctttg	aaggtggtct	cctgttcatg	8400
gtaaattgtt	tgaagcgact	gtacacggtc	catcttcaac	ttggattcga	tggcaaatcg	8460
ctagccaaaa	aattaatgga	atctagaaat	tttgctgcta	cgcttttggc	taagttagag	8520
tcatacaatg	gatgcatatg	gaacgaagat	aattttcctc	atattattt	aggtttcatt	8580
gcaaacggtt	tatccattcc	tgtcgtaaaa	ggagccgcat	tagattgtct	acaggccctt	8640
ttcaagaata	catattacga	aagaaagtcc	aacccaaaat	cctccgatta	tctttgttac	8700
cttttcttac	tccatttggt	cttaagtcct	gaacaacttt	ctaccttgtt	acttgaagtc	8760
qqcttcqaaq	atqaactqqt	acctttaaat	aatacactaa	aaqtqccact	tactttqatc	8820
aactqqctaa	qttcaqactc	aqataaatct	aatataqtct	tataccaaqq	aqcacttttq	8880
tttagctgtg	ttatgtcaga	cgaaccatgt	aaattccqtt	ttgctctatt	gatgaggtat	8940
ttggtgaaag	tcaacctat	ttatatatta	aggttctate	cactgactac	aaaqqaatto	9000
addaddttat	caaccotaco	acaatcatct	aaaaaatta	ctatetett	taattaatt	9060
aggatestte	ttagagagag	taaatttaat	tagetager	aatttaate	tassataata	9120
gggalgelig	LLAUACACAG	.yayıllad	Lauduagagg	aallaalga	Lyaaalyylu	9120
gaactttaa	aaaagagagg	cttgtcagtt	gtgaageete	tggatattt	tgatcaggaa	9120
catatagaaa	agttaaaagg	agagggtgaa	catcaagtgg	caatttatga	gagaaaaaga	9240
ttagcaacaa	tgatactggc	aagaatgtcg	tgctcctaa			9279

<210)> SE	EQ II	ои с 1. 30	10											
<211	L> L1 2> T3	PE :	PRT	J92											
<213	3 > OF	RGAN	[SM:	Saco	chard	omyce	es ce	erev	Lsiae	e					
<400)> SH	EQUEI	ICE :	10											
Met 1	Asn	Gln	Ser	Asp 5	Pro	Gln	Asp	Lys	Lys 10	Asn	Phe	Pro	Met	Glu 15	Tyr
Ser	Leu	Thr	Lys 20	His	Leu	Phe	Phe	Asp 25	Arg	Leu	Leu	Leu	Val 30	Leu	Pro
Ile	Glu	Ser 35	Asn	Leu	Lys	Thr	Tyr 40	Ala	Asp	Val	Glu	Ala 45	Asp	Ser	Val
Phe	Asn 50	Ser	Суз	Arg	Ser	Ile 55	Ile	Leu	Asn	Ile	Ala 60	Ile	Thr	Lys	Asp
Leu 65	Asn	Pro	Ile	Ile	Glu 70	Asn	Thr	Leu	Gly	Leu 75	Ile	Aab	Leu	Ile	Val 80
Gln	Aap	Glu	Glu	Ile 85	Thr	Ser	Aap	Asn	Ile 90	Thr	Asp	Asp	Ile	Ala 95	His
Ser	Ile	Leu	Val 100	Leu	Leu	Arg	Leu	Leu 105	Ser	Asp	Val	Phe	Glu 110	Tyr	Tyr
Trp	Aap	Gln 115	Asn	Asn	Asp	Phe	Lys 120	Lys	Ile	Arg	Asn	Asp 125	Asn	Tyr	Lys
Pro	Gly 130	Phe	Ser	Ser	His	Arg 135	Pro	Asn	Phe	His	Thr 140	Ser	Arg	Pro	Lys
His 145	Thr	Arg	Ile	Asn	Pro 150	Ala	Leu	Ala	Thr	Met 155	Leu	Leu	Cys	Lys	Ile 160
Ser	Lys	Leu	Lys	Phe 165	Asn	Thr	Arg	Thr	Leu 170	Lys	Val	Leu	Gln	Asn 175	Met
Ser	His	His	Leu 180	Ser	Gly	Ser	Ala	Thr 185	Ile	Ser	Lys	Ser	Ser 190	Ile	Leu
Pro	Asp	Ser 195	Gln	Glu	Phe	Leu	Gln 200	Lys	Arg	Asn	Tyr	Pro 205	Ala	Tyr	Thr
Glu	Lys 210	Ile	Asp	Leu	Thr	Ile 215	Aap	Tyr	Ile	Gln	Arg 220	Phe	Ile	Ser	Ala
Ser 225	Asn	His	Val	Glu	Phe 230	Thr	Lys	Cys	Val	Lys 235	Thr	Lys	Val	Val	Ala 240
Pro	Leu	Leu	Ile	Ser 245	His	Thr	Ser	Thr	Glu 250	Leu	Gly	Val	Val	Asn 255	His
Leu	Asp	Leu	Phe 260	Gly	СЛа	Glu	Tyr	Leu 265	Thr	Asp	Lys	Asn	Leu 270	Leu	Ala
Tyr	Leu	Asp 275	Ile	Leu	Gln	His	Leu 280	Ser	Ser	Tyr	Met	Lys 285	Arg	Thr	Ile
Phe	His 290	Ser	Leu	Leu	Leu	Tyr 295	Tyr	Ala	Ser	Lys	Ala 300	Phe	Leu	Phe	Trp
Ile 305	Met	Ala	Arg	Pro	Lys 310	Glu	Tyr	Val	Lys	Ile 315	Tyr	Asn	Asn	Leu	Ile 320
Ser	Ser	Asp	Tyr	Asn 325	Ser	Pro	Ser	Ser	Ser 330	Ser	Asp	Asn	Gly	Gly 335	Ser
Asn	Asn	Ser	Asp 340	Гла	Thr	Ser	Ile	Ser 345	Gln	Leu	Val	Ser	Leu 350	Leu	Phe
Asp	Asp	Val 355	Tyr	Ser	Thr	Phe	Ser 360	Val	Ser	Ser	Leu	Leu 365	Thr	Asn	Val
Asn	Asn 370	Asp	His	His	Tyr	His 375	Leu	His	His	Ser	Ser 380	Ser	Ser	Ser	Lys

-continued

Thr 385	Thr	Asn	Thr	Asn	Ser 390	Pro	Asn	Ser	Ile	Ser 395	Lys	Thr	Ser	Ile	Lys 400
Gln	Ser	Ser	Val	Asn 405	Ala	Ser	Gly	Asn	Val 410	Ser	Pro	Ser	Gln	Phe 415	Ser
Thr	Gly	Asn	Asp 420	Ala	Ser	Pro	Thr	Ser 425	Pro	Met	Ala	Ser	Leu 430	Ser	Ser
Pro	Leu	Asn 435	Thr	Asn	Ile	Leu	Gly 440	Tyr	Pro	Leu	Ser	Pro 445	Ile	Thr	Ser
Thr	Leu 450	Gly	Gln	Ala	Asn	Thr 455	Ser	Thr	Ser	Thr	Thr 460	Ala	Ala	Thr	Thr
Lys 465	Thr	Asp	Ala	Asp	Thr 470	Pro	Ser	Thr	Met	Asn 475	Thr	Asn	Asn	Asn	Asn 480
Asn	Asn	Asn	Asn	Ser 485	Ala	Asn	Leu	Asn	Asn 490	Ile	Pro	Gln	Arg	Ile 495	Phe
Ser	Leu	Asp	Asp 500	Ile	Ser	Ser	Phe	Asn 505	Ser	Ser	Arg	ГÀа	Ser 510	Leu	Asn
Leu	Asp	Asp 515	Ser	Asn	Ser	Leu	Phe 520	Leu	Trp	Asp	Thr	Ser 525	Gln	His	Ser
Asn	Ala 530	Ser	Met	Thr	Asn	Thr 535	Asn	Met	His	Ala	Gly 540	Val	Asn	Asn	Ser
Gln 545	Ser	Gln	Asn	Asp	Gln 550	Ser	Ser	Leu	Asn	Tyr 555	Met	Glu	Asn	Ile	Met 560
Glu	Leu	Tyr	Ser	Asn 565	Tyr	Thr	Gly	Ser	Glu 570	Leu	Ser	Ser	His	Thr 575	Ala
Ile	Leu	Arg	Phe 580	Leu	Val	Val	Leu	Thr 585	Leu	Leu	Asp	Ser	Glu 590	Val	Tyr
Asp	Glu	Met 595	Asn	Ser	Asn	Ser	Tyr 600	Arg	Lys	Ile	Ser	Glu 605	Pro	Ile	Met
Asn	Ile 610	Asn	Pro	Lys	Asp	Ser 615	Asn	Thr	Ser	Ser	Trp 620	Gly	Ser	Ala	Ser
Lys 625	Asn	Pro	Ser	Ile	Arg 630	His	Leu	Thr	His	Gly 635	Leu	Lys	Lys	Leu	Thr 640
Leu	Gln	Gln	Gly	Arg 645	Lys	Arg	Asn	Val	Lys 650	Phe	Leu	Thr	Tyr	Leu 655	Ile
Arg	Asn	Leu	Asn 660	Gly	Gly	Gln	Phe	Val 665	Ser	Asp	Val	Ser	Leu 670	Ile	Aap
Ser	Ile	Arg 675	Ser	Ile	Leu	Phe	Leu 680	Met	Thr	Met	Thr	Ser 685	Ser	Ile	Ser
Gln	Ile 690	Asp	Ser	Asn	Ile	Ala 695	Ser	Val	Ile	Phe	Ser 700	Lys	Arg	Phe	Tyr
Asn 705	Leu	Leu	Gly	Gln	Asn 710	Leu	Glu	Val	Gly	Thr 715	Asn	Trp	Asn	Ser	Ala 720
Thr	Ala	Asn	Thr	Phe 725	Ile	Ser	His	Сув	Val 730	Glu	Arg	Asn	Pro	Leu 735	Thr
His	Arg	Arg	Leu 740	Gln	Leu	Glu	Phe	Phe 745	Ala	Ser	Gly	Leu	Gln 750	Leu	Aap
Ser	Asp	Leu 755	Phe	Leu	Arg	His	Leu 760	Gln	Leu	Glu	Lys	Glu 765	Leu	Asn	His
Ile	Asp 770	Leu	Pro	ГЛа	Ile	Ser 775	Leu	Tyr	Thr	Glu	Gly 780	Phe	Arg	Val	Phe
Phe 785	His	Leu	Val	Ser	Thr 790	Lys	Lys	Leu	His	Glu 795	Asp	Ile	Ala	Glu	Lys 800

83

-continued

			_			_	_									
Thr	Ser	Ser	Val	Leu 805	Lys	Arg	Leu	Phe	Cys 810	Ile	Ile	Ala	Asp	Ile 815	Leu	
Leu	Lys	Ala	Thr 820	Pro	Tyr	Phe	Asp	Asp 825	Asn	Val	Thr	ГЛа	Ile 830	Ile	Ala	
Ser	Ile	Leu 835	Asp	Gly	His	Ile	Leu 840	Asp	Gln	Phe	Asp	Ala 845	Ala	Arg	Thr	
Leu	Ser 850	Asn	Asp	Asp	His	Val 855	Ser	Phe	Asp	Ala	Ala 860	Thr	Ser	Val	Tyr	
Thr 865	Glu	Pro	Thr	Glu	Ile 870	Ile	His	Asn	Ser	Ser 875	Asp	Ala	Ser	Leu	Val 880	I
Ser	Ser	Leu	Ser	Gln 885	Ser	Pro	Leu	Ser	Ile 890	Asn	Ser	Gly	Ser	Asn 895	Ile	:
Thr	Asn	Thr	Arg 900	Thr	Trp	Asp	Ile	Gln 905	Ser	Ile	Leu	Pro	Thr 910	Leu	Ser	
Asn	Arg	Ser 915	Ser	Ala	Ser	Asp	Leu 920	Ser	Leu	Ser	Asn	Ile 925	Leu	Thr	Asn	
Pro	Leu 930	Glu	Ala	Gln	Gln	Asn 935	Asn	Asn	Ala	Asn	Leu 940	Leu	Ala	His	Arg	
Leu 945	Ser	Gly	Val	Pro	Thr 950	Thr	Lya	Arg	Tyr	Ala 955	Ser	Pro	Asn	Asp	Ser 960	
Glu	Arg	Ser	Arg	Gln 965	Ser	Pro	Tyr	Ser	Ser 970	Pro	Pro	Gln	Leu	Gln 975	Gln	
Ser	Asp	Leu	Pro 980	Ser	Pro	Leu	Ser	Val 985	Leu	Ser	Ser	Ser	Ala 990	Gly	Phe	:
Ser	Ser	Asn 995	His	Ser	Ile	Thr	Ala 1000	Th:	r Pro	o Th	r Il	e Le 10	u L 05	ys A	sn I	le
Гла	Ser	Pro	> Ly:	s Pro) Asn	Lys 101		nr Ly	ys L	ys I	le A 1	1a 020	Asp .	Asp 1	Lys	
Gln	Leu	, Lys	5 Glı	n Pro) Ser	Tyn	s Se	er A:	rg Va	al I	ı le L	eu	Ser .	Asp 1	Asn	
Asp	1025 Glu	Ala	a Arç	g Lya	; Ile	103 • Met	30 : Me	et A	sn I	le Pl	1 he S	035 er	Ile	Phe 1	Lys	
Ara	1040 Met) Thr	: Ası	n Trr) Phe	104 : Ile	15 e Ai	rq P:	ro A:	ap A	1 la A	050 sn	Thr	Glu I	Phe	
	1055					106	50			-F •2	1	065				
Pro	цуз 1070	Thr)	: Phe	e Thr	. Aab) 11€ 107	e I. 75	re ri	γs Ρ:	ro L	eu Pi 1	ne 080	val	ser :	⊥⊥e	
Leu	Asp 1085	Ser S	: Ası	n Glr	n Arg	Leu 109	1 GI 90	ln V	al Tì	hr A	la A 1	rg 095	Ala	Phe i	Ile	
Glu	Ile 1100	Pro) Lei	ı Ser	Tyr	Il€ 110	e A1 05	la Tì	hr Pl	he G	lu A 1	sp 110	Ile .	Asp i	Asn	
Asp	Leu 1115	Asp 5) Pro	o Arg	g Val	Leu 112	1 As 20	sn A	sp H	is T	yr L 1	eu 125	Leu	Сув '	Thr	
Tyr	Ala 1130	Val)	l Thi	r Leu	ı Phe	e Ala 113	a Se 85	er S	er L	eu Pl	he A 1	sp 140	Leu	Lys 1	Leu	
Glu	Asn 1145	Ala S	a Ly:	s Arg	g Glu	. Met 115	: Le 50	eu L	eu A	ab I	le I 1	le 155	Val	Lys i	Phe	
Gln	Arg 1160	Val	L Arç	g Ser	Tyr	Leu 116	1 Se 55	er A	sn Le	eu A	la G 1	lu 170	Lys (His J	Asn	
Leu	Val 1175	Glr	n Ala	a Ile	e Ile	• Thr 118	r Th 30	nr G	lu A:	rg L	eu Ti 1	hr 185	Leu	Pro 1	Leu	
Leu	Val	Gly	7 Alá	a Val	. Gly	Ser	c GI	ly I	le Pl	he I	le S 1	er 200	Leu	Tyr	Cys	

-continued

Ser	Arg 1205	Gly	Asn	Thr	Pro	Arg 1210	Leu	Ile	Lys	Ile	Ser 1215	Суз	Сүз	Glu
Phe	Leu 1220	Arg	Ser	Leu	Arg	Phe 1225	Tyr	Gln	Lys	Tyr	Val 1230	Gly	Ala	Leu
Asp	Gln 1235	Tyr	Ser	Ile	Tyr	Asn 1240	Ile	Asp	Phe	Ile	Asp 1245	Ala	Met	Ala
Gln	Asp 1250	Asn	Phe	Thr	Ala	Ser 1255	Gly	Ser	Val	Ala	Leu 1260	Gln	Arg	Arg
Leu	Arg 1265	Asn	Asn	Ile	Leu	Thr 1270	Tyr	Ile	Lys	Gly	Ser 1275	Asp	Ser	Ile
Leu	Leu 1280	Asp	Ser	Met	Asp	Val 1285	Ile	Tyr	Гла	Гла	Trp 1290	Phe	Tyr	Phe
Ser	Cys 1295	Ser	ГÀа	Ser	Val	Thr 1300	Gln	Glu	Glu	Leu	Val 1305	Asp	Phe	Arg
Ser	Leu 1310	Ala	Gly	Ile	Leu	Ala 1315	Ser	Met	Ser	Gly	Ile 1320	Leu	Ser	Asp
Met	Gln 1325	Glu	Leu	Glu	ГЛа	Ser 1330	Гла	Ser	Ala	Pro	Asp 1335	Asn	Glu	Gly
Asp	Ser 1340	Leu	Ser	Phe	Glu	Ser 1345	Arg	Asn	Pro	Ala	Tyr 1350	Glu	Val	His
ГЛа	Ser 1355	Leu	Lys	Leu	Glu	Leu 1360	Thr	Lys	Lys	Met	Asn 1365	Phe	Phe	Ile
Ser	Lys 1370	Gln	Сүз	Gln	Trp	Leu 1375	Asn	Asn	Pro	Asn	Leu 1380	Leu	Thr	Arg
Glu	Asn 1385	Ser	Arg	Asp	Ile	Leu 1390	Ser	Ile	Glu	Leu	His 1395	Pro	Leu	Ser
Phe	Asn 1400	Leu	Leu	Phe	Asn	Asn 1405	Leu	Gly	Leu	Lys	Ile 1410	Asp	Glu	Leu
Met	Ser 1415	Ile	Asp	Leu	Ser	Lys 1420	Ser	His	Glu	Asp	Ser 1425	Ser	Phe	Val
Leu	Leu 1430	Glu	Gln	Ile	Ile	Ile 1435	Ile	Ile	Arg	Thr	Ile 1440	Leu	ГЛа	Arg
Asp	Asp 1445	Asp	Glu	Lys	Ile	Met 1450	Leu	Leu	Phe	Ser	Thr 1455	Asp	Leu	Leu
Asp	Ala 1460	Val	Asp	Lys	Leu	Ile 1465	Glu	Ile	Val	Glu	Lys 1470	Ile	Ser	Ile
Lys	Ser 1475	Ser	Lys	Tyr	Tyr	Lys 1480	Gly	Ile	Ile	Gln	Met 1485	Ser	Lys	Met
Phe	Arg 1490	Ala	Phe	Glu	His	Ser 1495	Glu	Lys	Asn	Leu	Gly 1500	Ile	Ser	Asn
His	Phe 1505	His	Leu	Lys	Asn	Lys 1510	Trp	Leu	Lys	Leu	Val 1515	Ile	Gly	Trp
Phe	Lys	Leu	Ser	Ile	Asn	Lys	Asp	Tyr	Asp	Phe	Glu 1530	Asn	Leu	Ser
Arg	Pro	Leu	Arg	Glu	Met	Asp	Leu	Gln	Гла	Arg	Asp	Glu	Asp	Phe
Leu	Tyr	Ile	Asp	Thr	Ser	Ile	Glu	Ser	Ala	Lys	Ala	Leu	Ala	Tyr
Leu	Thr	His	Asn	Val	Pro	Leu	Glu	Ile	Pro	Pro	Ser	Ser	Ser	Гуз
Glu	Asp	Trp	Asn	Arg	Ser	Ser	Thr	Val	Ser	Phe	Gly	Asn	His	Phe

-continued

Thr	Ile 1595	Leu	Leu	Lys	Gly	Leu 1600	Glu	Lys	Ser	Ala	Asp 1605	Leu	Asn	Gln	
Phe	Pro 1610	Val	Ser	Leu	Arg	His 1615	Lys	Ile	Ser	Ile	Leu 1620	Asn	Glu	Asn	
Val	Ile 1625	Ile	Ala	Leu	Thr	Asn 1630	Leu	Ser	Asn	Ala	Asn 1635	Val	Asn	Val	
Ser	Leu 1640	Lys	Phe	Thr	Leu	Pro 1645	Met	Gly	Tyr	Ser	Pro 1650	Asn	Lys	Asp	
Ile	Arg 1655	Ile	Ala	Phe	Leu	Arg 1660	Val	Phe	Ile	Asp	Ile 1665	Val	Thr	Asn	
Tyr	Pro 1670	Val	Asn	Pro	Glu	Lys 1675	His	Glu	Met	Asp	Lys 1680	Met	Leu	Ala	
Ile	Asp 1685	Asp	Phe	Leu	Lys	Tyr 1690	Ile	Ile	Lys	Asn	Pro 1695	Ile	Leu	Ala	
Phe	Phe 1700	Gly	Ser	Leu	Ala	Cys 1705	Ser	Pro	Ala	Asp	Val 1710	Asp	Leu	Tyr	
Ala	Gly 1715	Gly	Phe	Leu	Asn	Ala 1720	Phe	Asp	Thr	Arg	Asn 1725	Ala	Ser	His	
Ile	Leu 1730	Val	Thr	Glu	Leu	Leu 1735	Lys	Gln	Glu	Ile	Lys 1740	Arg	Ala	Ala	
Arg	Ser 1745	Asp	Asp	Ile	Leu	Arg 1750	Arg	Asn	Ser	Суз	Ala 1755	Thr	Arg	Ala	
Leu	Ser 1760	Leu	Tyr	Thr	Arg	Ser 1765	Arg	Gly	Asn	ГЛа	Tyr 1770	Leu	Ile	Гүз	
Thr	Leu 1775	Arg	Pro	Val	Leu	Gln 1780	Gly	Ile	Val	Asp	Asn 1785	Lys	Glu	Ser	
Phe	Glu 1790	Ile	Asp	Lys	Met	Lys 1795	Pro	Gly	Ser	Glu	Asn 1800	Ser	Glu	Гла	
Met	Leu 1805	Asp	Leu	Phe	Glu	Lys 1810	Tyr	Met	Thr	Arg	Leu 1815	Ile	Asp	Ala	
Ile	Thr 1820	Ser	Ser	Ile	Asp	Asp 1825	Phe	Pro	Ile	Glu	Leu 1830	Val	Asp	Ile	
Суа	Lys 1835	Thr	Ile	Tyr	Asn	Ala 1840	Ala	Ser	Val	Asn	Phe 1845	Pro	Glu	Tyr	
Ala	Tyr 1850	Ile	Ala	Val	Gly	Ser 1855	Phe	Val	Phe	Leu	Arg 1860	Phe	Ile	Gly	
Pro	Ala 1865	Leu	Val	Ser	Pro	Asp 1870	Ser	Glu	Asn	Ile	Ile 1875	Ile	Val	Thr	
His	Ala	His	Asp	Arg	Lys	Pro	Phe	Ile	Thr	Leu	Ala	Lys	Val	Ile	
Gln	Ser	Leu	Ala	Asn	Gly	Arg	Glu	Asn	Ile	Phe	Lys	Lys	Asp	Ile	
Leu	Val	Ser	Гла	Glu	Glu	Phe	Leu	Lys	Thr	Сув	Ser	Asp	Гла	Ile	
Phe	1910 Asn	Phe	Leu	Ser	Glu	1915 Leu	Cys	Lys	Ile	Pro	1920 Thr	Asn	Asn	Phe	
Thr	1925 Val	Asn	Val	Arg	Glu	1930 Asp	Pro	Thr	Pro	Ile	1935 Ser	Phe	Asp	Tyr	
Ser	1940 Phe	Leu	His	Lys	Phe	1945 Phe	Tyr	Leu	Asn	Glu	1950 Phe	Thr	Ile	Arq	
Larc	1955 Glui	TIC	TIC	_1 ~	G1.,	1960 Ser	-2-	Leu	Dro	G1.	1965 Glu	Dho	Ser	Dhe	
пЛа	31u 1970	тте	тте	ASU	GIU	ser 1975	пЛа	цец	PTO	σтλ	1980	Pne	ser	FIIG	

-continued

Leu	Lys 1985	Asn	Thr	Val	Met	Leu 1990	Asn	Asp	Lys	Ile	Leu 1995	Gly	Val	Leu	
Gly	Gln 2000	Pro	Ser	Met	Glu	Ile 2005	Lys	Asn	Glu	Ile	Pro 2010	Pro	Phe	Val	
Val	Glu 2015	Asn	Arg	Glu	Lys	Tyr 2020	Pro	Ser	Leu	Tyr	Glu 2025	Phe	Met	Ser	
Arg	Tyr 2030	Ala	Phe	Lys	Lys	Val 2035	Asp	Met	Lys	Glu	Glu 2040	Glu	Glu	Asp	
Asn	Ala 2045	Pro	Phe	Val	His	Glu 2050	Ala	Met	Thr	Leu	Asp 2055	Gly	Ile	Gln	
Ile	Ile 2060	Val	Val	Thr	Phe	Thr 2065	Asn	Cys	Glu	Tyr	Asn 2070	Asn	Phe	Val	
Met	Asp 2075	Ser	Leu	Val	Tyr	Lys 2080	Val	Leu	Gln	Ile	Tyr 2085	Ala	Arg	Met	
Trp	Cys 2090	Ser	Lys	His	Tyr	Val 2095	Val	Ile	Asp	Суз	Thr 2100	Thr	Phe	Tyr	
Gly	Gly 2105	ГЛа	Ala	Asn	Phe	Gln 2110	Lys	Leu	Thr	Thr	Leu 2115	Phe	Phe	Ser	
Leu	Ile 2120	Pro	Glu	Gln	Ala	Ser 2125	Ser	Asn	Суа	Met	Gly 2130	Суз	Tyr	Tyr	
Phe	Asn 2135	Val	Asn	Lys	Ser	Phe 2140	Met	Asp	Gln	Trp	Ala	Ser	Ser	Tyr	
Thr	Val	Glu	Asn	Pro	Tyr	Leu	Val	Thr	Thr	Ile	Pro	Arg	Суз	Phe	
Ile	Asn	Ser	Asn	Thr	Asp	Gln	Ser	Leu	Ile	Lys	Ser	Leu	Gly	Leu	
Ser	2165 Gly	Arg	Ser	Leu	Glu	2170 Val	Leu	Lys	Asp	Val	2175 Arg	Val	Thr	Leu	
uia	2180	т16	Thr	Ι.σ.1	ሞኒፖድ	2185 Asp	Lare	Glu	Lare	Lug	2190	Phe	Cve	Pro	
	2195	-	-		1 y 1	2200	цур	-	-,	цур	2205	-	cy5		
Val	Ser 2210	Leu	ГЛЗ	Ile	GIY	Asn 2215	ГЛЗ	Tyr	Phe	GIn	Val 2220	Leu	His	Glu	
Ile	Pro 2225	Gln	Leu	Tyr	Lys	Val 2230	Thr	Val	Ser	Asn	Arg 2235	Thr	Phe	Ser	
Ile	Lys 2240	Phe	Asn	Asn	Val	Tyr 2245	Lys	Ile	Ser	Asn	Leu 2250	Ile	Ser	Val	
Aap	Val 2255	Ser	Asn	Thr	Thr	Gly 2260	Val	Ser	Ser	Glu	Phe 2265	Thr	Leu	Ser	
Leu	Asp 2270	Asn	Glu	Glu	Lys	Leu 2275	Val	Phe	Суз	Ser	Pro 2280	Lys	Tyr	Leu	
Glu	Ile 2285	Val	Lys	Met	Phe	Tyr 2290	Tyr	Ala	Gln	Leu	Lys 2295	Met	Glu	Glu	
Asp	Phe 2300	Gly	Thr	Asp	Phe	Ser 2305	Asn	Asp	Ile	Ser	Phe 2310	Ser	Thr	Ser	
Ser	Ser	Ala	Val	Asn	Ala	Ser	Tyr	Суз	Asn	Val	Lys	Glu	Val	Gly	
Glu	Ile	Ile	Ser	His	Leu	2320 Ser	Leu	Val	Ile	Leu	Z325 Val	Gly	Leu	Phe	
Asn	2330 Glu	Asp	Asp	Leu	Val	2335 Lys	Asn	Ile	Ser	Tyr	2340 Asn	Leu	Leu	Val	
<u> </u>	2345 Thr	Gln	- G1.,	۵1 -	Ph≏	2350 Aan	Leu	Aan	Pho	- G1 v	2355 Thr	Ara	Leu	Hie	
чта	2360	GTU	GIU	лıd	гце	2365	пеп	чар	гце	σтγ	2370	лıд	ыец	чтв	

-continued

Lys	Ser 2375	Pro	Glu	Thr	Tyr	Val 2380	Pro	Asb	Asp	Thr	Thr 2385	Thr	Phe	Leu	
Ala	Leu 2390	Ile	Phe	Lys	Ala	Phe 2395	Ser	Glu	Ser	Ser	Thr 2400	Glu	Leu	Thr	
Pro	Tyr 2405	Ile	Trp	Lys	Tyr	Met 2410	Leu	Asp	Gly	Leu	Glu 2415	Asn	Asp	Val	
Ile	Pro 2420	Gln	Glu	His	Ile	Pro 2425	Thr	Val	Val	Суз	Ser 2430	Leu	Ser	Tyr	
Trp	Val 2435	Pro	Asn	Leu	Tyr	Glu 2440	His	Val	Tyr	Leu	Ala 2445	Asn	Asp	Glu	
Glu	Gly 2450	Pro	Glu	Ala	Ile	Ser 2455	Arg	Ile	Ile	Tyr	Ser 2460	Leu	Ile	Arg	
Leu	Thr 2465	Val	Lys	Glu	Pro	Asn 2470	Phe	Thr	Thr	Ala	Tyr 2475	Leu	Gln	Gln	
Ile	Trp 2480	Phe	Leu	Leu	Ala	Leu 2485	Asp	Gly	Arg	Leu	Thr 2490	Asn	Val	Ile	
Val	Glu 2495	Glu	Ile	Val	Ser	His 2500	Ala	Leu	Asp	Arg	Asp 2505	Ser	Glu	Asn	
Arg	Asp 2510	Trp	Met	Lys	Ala	Val 2515	Ser	Ile	Leu	Thr	Ser 2520	Phe	Pro	Thr	
Thr	Glu 2525	Ile	Ala	Суз	Gln	Val 2530	Ile	Glu	rÀa	Leu	Ile 2535	Asn	Met	Ile	
Lys	Ser 2540	Phe	Leu	Pro	Ser	Leu 2545	Ala	Val	Glu	Ala	Ser 2550	Ala	His	Ser	
Trp	Ser 2555	Glu	Leu	Thr	Ile	Leu 2560	Ser	Lys	Ile	Ser	Val 2565	Ser	Ile	Phe	
Phe	Glu 2570	Ser	Pro	Leu	Leu	Ser 2575	Gln	Met	Tyr	Leu	Pro 2580	Glu	Ile	Leu	
Phe	Ala 2585	Val	Ser	Leu	Leu	Ile 2590	Asp	Val	Gly	Pro	Ser 2595	Glu	Ile	Arg	
Val	Ser 2600	Leu	Tyr	Glu	Leu	Leu 2605	Met	Asn	Val	СЛа	His 2610	Ser	Leu	Thr	
Asn	Asn	Glu	Ser	Leu	Pro	Glu	Arg	Asn	Arg	Гла	Asn	Leu	Asp	Ile	
Val	Cys	Ala	Thr	Phe	Ala	Arg	Gln	Lys	Leu	Asn	Phe	Ile	Ser	Gly	
Phe	2630 Ser	Gln	Glu	Lys	Gly	2635 Arg	Val	Leu	Pro	Asn	2640 Phe	Ala	Ala	Ser	
Ser	2645 Phe	Ser	Ser	Lys	Phe	2650 Gly	Thr	Leu	Asp	Leu	2655 Phe	Thr	Lys	Asn	
Ile	2660 Met	Leu	Leu	Met	Glu	2665 Tyr	Gly	Ser	Ile	Ser	2670 Glu	Gly	Ala	Gln	
Tro	2675 Glu	Ala	Lvs	Tvr	Lvs	2680 Lvs	- Tvr	Leu	Met	Aso	2685 Ala	- Ile	Phe	Glv	
F	2690			-1±	-15	2695	-1-	71-	Mot	Mot	2700	Tau		y	
нія	Arg 2705	ser	rne	rne	ser	AIA 2710	Arg	AIA	Met	Met	11e 2715	ьeu	сту	тте	
Met	Ser 2720	ГЛа	Ser	His	Thr	Ser 2725	Leu	Phe	Leu	СЛа	Lys 2730	Glu	Leu	Leu	
Val	Glu 2735	Thr	Met	Lys	Val	Phe 2740	Ala	Glu	Pro	Val	Val 2745	Asp	Asp	Glu	
Gln	Met 2750	Phe	Ile	Ile	Ile	Ala 2755	His	Val	Phe	Thr	Tyr 2760	Ser	Lys	Ile	

-continued

Val	Glu 2765	Gly	Leu	Asp	Pro	Ser 2770	Ser	Glu	Leu	Met	Lys 2775	Glu	Leu	Phe
Trp	Leu 2780	Ala	Thr	Ile	Суз	Val 2785	Glu	Ser	Pro	His	Pro 2790	Leu	Leu	Phe
Glu	Gly 2795	Gly	Leu	Leu	Phe	Met 2800	Val	Asn	Суз	Leu	Lys 2805	Arg	Leu	Tyr
Thr	Val 2810	His	Leu	Gln	Leu	Gly 2815	Phe	Asp	Gly	Lys	Ser 2820	Leu	Ala	Гуз
Lys	Leu 2825	Met	Glu	Ser	Arg	Asn 2830	Phe	Ala	Ala	Thr	Leu 2835	Leu	Ala	Гуз
Leu	Glu 2840	Ser	Tyr	Asn	Gly	Cys 2845	Ile	Trp	Asn	Glu	Asp 2850	Asn	Phe	Pro
His	Ile 2855	Ile	Leu	Gly	Phe	Ile 2860	Ala	Asn	Gly	Leu	Ser 2865	Ile	Pro	Val
Val	Lys 2870	Gly	Ala	Ala	Leu	Asp 2875	Cys	Leu	Gln	Ala	Leu 2880	Phe	Lys	Asn
Thr	Tyr 2885	Tyr	Glu	Arg	Lys	Ser 2890	Asn	Pro	Lys	Ser	Ser 2895	Asp	Tyr	Leu
Сүз	Tyr 2900	Leu	Phe	Leu	Leu	His 2905	Leu	Val	Leu	Ser	Pro 2910	Glu	Gln	Leu
Ser	Thr 2915	Leu	Leu	Leu	Glu	Val 2920	Gly	Phe	Glu	Asp	Glu 2925	Leu	Val	Pro
Leu	Asn 2930	Asn	Thr	Leu	Lys	Val 2935	Pro	Leu	Thr	Leu	Ile 2940	Asn	Trp	Leu
Ser	Ser 2945	Asp	Ser	Asp	Lys	Ser 2950	Asn	Ile	Val	Leu	Tyr 2955	Gln	Gly	Ala
Leu	Leu 2960	Phe	Ser	Cys	Val	Met 2965	Ser	Asp	Glu	Pro	Cys 2970	Lys	Phe	Arg
Phe	Ala 2975	Leu	Leu	Met	Arg	Tyr 2980	Leu	Leu	Lys	Val	Asn 2985	Pro	Ile	Суз
Val	Phe 2990	Arg	Phe	Tyr	Thr	Leu 2995	Thr	Arg	Lys	Glu	Phe 3000	Arg	Arg	Leu
Ser	Thr 3005	Leu	Glu	Gln	Ser	Ser 3010	Glu	Ala	Val	Ala	Val 3015	Ser	Phe	Glu
Leu	Ile 3020	Gly	Met	Leu	Val	Thr 3025	His	Ser	Glu	Phe	Asn 3030	Tyr	Leu	Glu
Glu	Phe 3035	Asn	Asp	Glu	Met	Val 3040	Glu	Leu	Leu	Lys	Lys 3045	Arg	Gly	Leu
Ser	Val 3050	Val	Lys	Pro	Leu	Asp 3055	Ile	Phe	Asp	Gln	Glu 3060	His	Ile	Glu
Lys	Leu 3065	Lys	Gly	Glu	Gly	Glu 3070	His	Gln	Val	Ala	Ile 3075	Tyr	Glu	Arg
Lys	Arg 3080	Leu	Ala	Thr	Met	Ile 3085	Leu	Ala	Arg	Met	Ser 3090	Сув	Ser	

We claim:

1. A recombinant yeast that has been genetically engineered to: (a) include non-native genes that facilitate xylose fermentation, (b) exhibit reduced amounts of functional Isu1 ⁶⁰ polypeptide, (c) include a disabling mutation in a gene encoding Isu1 polypeptide, and (d) include a disabling mutation in a gene encoding Hog1 polypeptide and exhibiting reduced amounts of functional Hog1 polypeptide,

wherein the genetically engineered recombinant yeast is 65 capable of increased aerobic xylose fermentation relative to a recombinant yeast having the same genetic background of non-native genes that facilitate xylose fermentation but not exhibiting said reduced amounts of functional Isu1 polypeptide.

2. The recombinant yeast of claim **1**, wherein the disabling mutation in the gene encoding Isu1 comprises a substitution of a tyrosine for the histidine at amino acid residue position 138 of SEQ ID NO:6.

3. The recombinant yeast of claim **1**, wherein the disabling mutation in the gene encoding Hog1 comprises a deletion of the adenine at nucleotide position 844 of SEQ ID NO:7.

4. The recombinant yeast of claim **1**, wherein the recombinant yeast is of the genus *Saccharomyces*.

5. The recombinant yeast of claim 4, wherein the recombinant yeast is of the species *Saccharomyces cerevisiae*.

6. The recombinant yeast of claim **1**, wherein a nucleic 5 acid sequence comprising the disabling mutation in the gene encoding Isu1 is integrated into a chromosome of the recombinant yeast.

7. The recombinant yeast of claim 1, wherein the nonnative genes that facilitate xylose fermentation comprise 10 TAL1, XylA and XYL3.

8. A yeast inoculum, comprising: (a) the recombinant yeast of claim **1**; and (b) a culture medium.

9. A recombinant yeast that has been genetically engineered to: (a) include non-native genes that facilitate xylose 15 fermentation, and (b) exhibit reduced amounts of functional Isu1 and Hog1 polypeptides, and at least one of functional Gre3, Ira1, and Ira2 polypeptides,

wherein the genetically engineered recombinant yeast is capable of increased anaerobic xylose fermentation 20 relative to a recombinant yeast having the same genetic background of non-native genes that facilitate xylose fermentation but not exhibiting said reduced amounts of functional Isu1 and Hog1 polypeptides, and at least one of functional Gre3, Ira1, and Ira2 polypeptides. 25

10. The recombinant yeast of claim **9**, comprising a disabling mutation in a gene encoding Isu1, a disabling mutation in a gene encoding Hog1, and at least one of a disabling mutation in a gene encoding Gre3, a disabling mutation in a gene encoding Ira1, and a disabling mutation ³⁰ in a gene encoding Ira2.

11. The recombinant yeast of claim **10**, wherein a disabling mutation in the gene encoding Isu1 comprises a substitution of a tyrosine for the histidine at amino acid residue position 138 of SEQ ID NO:6; wherein a disabling 35 mutation in the gene encoding Hog1 comprises a deletion of the adenine at nucleotide position 844 of SEQ ID NO:7; wherein a disabling mutation in the gene encoding Gre3 comprises a substitution of a threonine for the alanine at amino acid residue position 46 of SEQ ID NO:4; and 40 wherein a disabling mutation in the gene encoding Ira2 comprises a substitution of a stop codon for the glutamate at amino acid residue at position 2927 of SEQ ID NO:2.

12. The recombinant yeast of claim **10**, wherein a nucleic acid sequence comprising the disabling mutations is integrated into a chromosome of the recombinant yeast.

13. The recombinant yeast of claim 9, wherein the recombinant yeast exhibits reduced amounts of functional Isu1, Hog1, Gre3, and Ira2 polypeptides and is capable of increased anaerobic xylose fermentation relative to a recombinant yeast having the same genetic background of nonnative genes that facilitate xylose fermentation but not exhibiting said reduced amounts of functional Isu1, Hog1, Gre3, and Ira2 polypeptides.

14. The recombinant yeast of claim 9, wherein the recombinant yeast is of the genus *Saccharomyces*.

15. The recombinant yeast of claim **14**, wherein the recombinant yeast is of the species *Saccharomyces cerevisiae*.

16. The recombinant yeast of claim **9**, wherein the nonnative genes that facilitate xylose fermentation comprise TAL1, XylA and XYL3.

17. A yeast inoculum, comprising: (a) the recombinant yeast of claim 9; and (b) a culture medium.

18. A method of fermenting a hydrolysate having xylose into ethanol, comprising: contacting under ethanol-producing conditions the recombinant yeast of claim **4** or the recombinant yeast of claim **9** to the hydrolysate for a period of time sufficient to allow fermentation of at least a portion of the hydrolysate into ethanol.

19. The method of claim **18**, further comprising separating the ethanol from fermented hydrolysate.

20. The method of claim **18**, further comprising hydrolyzing a cellulosic material to produce the hydrolysate comprising xylose; and contacting the recombinant yeast to the hydrolysate under conditions that permit fermentation.

21. The method of claim **20**, wherein the cellulosic material comprises a lignocellulosic biomass.

22. The method of claim 21, wherein the lignocellulosic biomass comprises at least one material selected from the group consisting of agricultural residues, wood, municipal solid wastes, paper and pulp industry wastes, and herbaceous crops.

* * * * *