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SYSTEMS AND METHODS FOR 
DETERMINING FLUX DISTRIBUTION 

STATEMENT REGARDING FEDERALLY 
SPONSORED RESEARCH 

This invention was made with government support under 
DE-SC0008103 awarded by the US Department of Energy. 
The government has certain rights in the invention. 

FIELD OF THE INVENTION 

The invention is directed to systems and methods for 
determining and predicting flux distribution in organisms, 
such as microorganisms. 

BACKGROUND 

Extracellular fluxes and gene expression data are easily 
measured and have been obtained for a wide variety of 
organisms and applications. However, it is difficult to incor­
porate these data directly into computational models to 
predict intracellular flux distributions. Central metabolic 
fluxes can instead be quantified using carbon isotope-based 
(i.e., 13C) metabolic flux analysis (MFA). MFA data, how­
ever, can be costly to obtain directly, and published data is 
available for only a few organisms. 

Flux balance analysis (FBA) is a mathematical method for 
simulating metabolism in genome scale reconstructions of 
metabolic networks. FBA is often used to predict flux 
distributions that maximize biomass, and parsimonious FBA 
(pFBA) predicts flux distributions that additionally mini­
mize the sum total of metabolic fluxes. When compared to 
MFA, FBA is less intensive in terms of the input data 
required for constructing the model (i.e., does not require 
13C-based pathway fluxes), is computationally inexpensive, 
and can calculate steady-state metabolic fluxes for large 
models in just a few seconds. However, FBApredictions do 
not always match experimentally measured fluxes. 

2 
strain. By incorporating growth rates, uptake and secretion 
rates (i.e., extracellular fluxes), and optional gene expression 
data for multiple reference strains and the parental strain into 
a constraint-based metabolic model, the present invention 

5 more accurately predicts the flux distribution in the parental 
strain. This parental strain flux distribution can then be used 
with existing computational methods ( e.g., MOMA, ROOM, 
and RELATCH) to predict fluxes in newly derived strains 
(uncharacterized strains that were not included as reference 

10 strains) with greater accuracy, thus improving computational 
strain design for metabolic engineering applications. 

The methods described herein improve parental strain flux 
estimations by as much as -60% compared to other 
approaches (pFBA or RELATCH), where accuracy was 

15 measured against MFA data in E. coli. 
One aspect of the invention comprises a method for 

determining flux distribution in a parental strain and, option­
ally, in a derived strain thereof. The method comprises 
estimating, in a computer system, a flux distribution from 

20 experimentally measured extracellular fluxes for each of a 
plurality of reference strains having known modifications 
with respect to the parental strain, wherein the flux distri­
bution for each reference strain comprises a directional, 
quantitative set of fluxes corresponding to a set of reactions 

25 occurring in the reference strain. The method further com­
prises determining, in a computer system, a flux distribution 
for the parental strain from the estimated flux distributions 
for the reference strains and experimentally measured extra­
cellular fluxes for the parental strain, wherein the flux 

30 distribution for the parental strain comprises a directional, 
quantitative set of fluxes corresponding to a set of reactions 
occurring in the parental strain. 

In some versions, determining the flux distribution for the 
parental strain comprises minimizing the sum-squared dif-

35 ference between estimated fluxes for the parental strain and 
the experimentally measured extracellular fluxes for the 
parental strain, the sum-squared difference being scaled by 
the number of experimentally measured extracellular fluxes 
in the parent strain. 

FBA is also used in bioprocess engineering to systemati- 40 

cally identify modifications to the metabolic networks of 
microbes used in fermentation processes that improve prod­
uct yields of industrially important chemicals ( e.g., ethanol, 
succinic acid, etc.). When simulating knockouts or growth 

In some versions, determining the flux distribution for the 
parental strain comprises minimizing the sum-squared dif­
ference between estimated fluxes for the parental strain and 
fluxes in the estimated flux distribution for the reference 
strains, the sum-squared difference being scaled by the 

on media, FBA predicts a steady-state flux distribution that 45 number of estimated fluxes and the number of reference 
strains in the plurality of reference strains. The number of 
estimated fluxes is the same for the parental strain and each 
of the reference strains. 

is more consistent with adaptively evolved strains, which 
can be reached over varying timescales (e.g., 40 days, 700 
generations, etc.). Alternatives to FBA-including MOMA, 
ROOM, and RELATCH-can better predict the immediate 
effect of an environmental perturbation or gene deletion. 50 

While more accurate, these FBA alternatives rely heavily 
upon the flux estimates for the parental strain. As a result, 
incorrect parental strain fluxes (i.e., starting point) can lead 

In some versions, determining the flux distribution for the 
parental strain comprises minimizing the sum-squared dif­
ference between estimated fluxes for the parental strain and 
the experimentally measured extracellular fluxes for the 
parental strain, the sum-squared difference being scaled by 
the number of experimentally measured extracellular fluxes to significant errors in estimates for mutants derived from 

the parental strain. A need exists for a method with improved 55 

identification of parental strain fluxes that does not require 
MFA. 

in the parent strain, and further comprises minimizing the 
sum-squared difference between estimated fluxes for the 
parental strain and fluxes in the estimated flux distribution 
for the reference strains, the sum-squared difference being 
scaled by the number of estimated fluxes and the number 

Systems and methods that address the above-mentioned 
problems are needed. 

SUMMARY OF THE INVENTION 

The present invention is a constraint-based modeling 
approach to calculate extracellular and intracellular flux 
distributions in a parental strain using easily obtained 
experimental data from a small set of reference strains 
(usually gene knockout mutants) derived from the parental 

60 reference strains in the plurality of reference strains. The 
number of estimated fluxes is the same for the parental strain 
and each of the reference strains. In some versions, the 
sum-squared difference between the estimated fluxes for the 
parental strain and the experimentally measured extracellu-

65 lar fluxes for the parental strain is scaled with respect to the 
sum-squared difference between the estimated fluxes for the 
parental strain and fluxes in the estimated flux distribution 
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for the reference strains by a factor of from about 0.0000001 
to about 10,000,000, from about 0.000001 to about 1,000, 
000, from about 0.00001 to about 100,000, from about 
0.0001 to about 10,000, from about 0.001 to about 1,000, 
from about 0.01 to about 100, or from about 0.1 to about 10. 5 

Values above and below these factors may be acceptable. In 
some versions, the respective sum-squared differences are 
scaled by a factor of 1. In some versions, the respective 
sum-squared differences are scaled by a factor other than 1. 

4 
configured to predict a flux distribution in a strain derived 
from the parental strain, using estimated flux distributions 
for the parental strain. 

In some versions, the second module is configured to 
minimize the sum-squared difference between estimated 
fluxes for the parental strain and the experimentally mea­
sured extracellular fluxes for the parental strain, the sum­
squared difference being scaled by the number of experi­
mentally measured extracellular fluxes in the parent strain. 

In some versions, the second module is configured to 
minimize the sum-squared difference between estimated 
fluxes for the parental strain and fluxes in the estimated flux 
distribution for the reference strains, the sum-squared dif­
ference being scaled by the number of estimated fluxes and 
the number of reference strains in the plurality of reference 
strains. 

In some versions, the second module is configured to 
minimize the sum-squared difference between estimated 
fluxes for the parental strain and the experimentally mea­
sured extracellular fluxes for the parental strain, the sum­
squared difference being scaled by the number of experi-
mentally measured extracellular fluxes in the parent strain, 
and further to minimize the sum-squared difference between 
estimated fluxes for the parental strain and fluxes in the 

In some versions, the method further comprises estimat- 10 

ing enzyme contributions for each of the plurality of refer­
ence strains from experimentally measured gene expression 
values for each of the plurality of reference strains and 
determining enzyme contributions in the parental strain from 

15 
the estimated enzyme contributions of the plurality of ref­
erence strains and experimentally measured gene expression 
values for the parental strain. An enzyme contribution is a 
maximum capacity of an enzyme to contribute to total flux 
through one or more of reactions in a set of reactions 20 

occurring in a particular strain. In some versions, the method 
further comprises experimentally measuring at least one of 
the gene expression values. In some versions, the method 
comprises experimentally measuring all or nearly all of the 
gene expression values. 25 estimated flux distribution for the reference strains, the 

sum-squared difference being scaled by the number of 
estimated fluxes and the number reference strains in the 
plurality of reference strains. In some versions, the second 

In some versions, the known modifications of the refer­
ence strains comprise genetic modifications. 

In some versions, the method further comprises experi­
mentally measuring at least one of the extracellular fluxes in 
at least a subset of the reference strains. In some versions, 30 

the method comprises experimentally all or nearly all of the 
extracellular fluxes in all or nearly all of the reference 
strains. 

In some versions, the method further comprises generat-
35 

ing at least a subset of the reference strains. 
In some versions, the method further comprises experi­

mentally measuring at least one of the extracellular fluxes in 
the parental strain. In some versions, the method comprises 
experimentally measuring all or nearly all of the extracel- 40 

lular fluxes in the parental strain. 
In some versions, the method further comprises predicting 

a flux distribution for an uncharacterized strain (i.e., derived 
strain) having a modification with respect to the parental 
strain, wherein the uncharacterized strain is not one of the 45 

reference strains. The modification in the uncharacterized 
strain may comprise a genetic modification. The method 
may further comprise generating the uncharacterized strain. 

Another aspect of the invention is a system for determin­
ing flux distribution in a parental strain and, optionally, in a 50 

derived strain thereof. The system comprises a first module 
in a computer system, the first module being configured to 
estimate a flux distribution from experimentally measured 
extracellular fluxes for each of a plurality of reference 
strains having known modifications with respect to the 55 

parental strain, wherein the flux distribution for each refer­
ence strain comprises a directional, quantitative set of fluxes 
corresponding to a set of reactions occurring in the reference 
strain. The system further comprises a second module in a 
computer system, the second module being configured to 60 

determine a flux distribution for the parental strain from the 
estimated flux distributions for the reference strains and 
experimentally measured extracellular fluxes for the paren-
tal strain, wherein the flux distribution for the parental strain 
comprises a directional, quantitative set of fluxes corre- 65 

sponding to a set of reactions occurring in the parental strain. 
The system can optionally contain a third module that is 

module is configured to scale the sum-squared difference 
between the estimated fluxes for the parental strain and the 
experimentally measured extracellular fluxes for the paren-
tal strain with respect to the sum-squared difference between 
fluxes in the estimated flux distribution for the reference 
strains and the estimated fluxes for the parental strain by a 
factor of from about 0.0000001 to about 10,000,000, from 
about 0.000001 to about 1,000,000, from about 0.00001 to 
about 100,000, from about 0.0001 to about 10,000, from 
about 0.001 to about 1,000, from about 0.01 to about 100, or 
from about 0.1 to about 10. Values above and below these 
factors may be acceptable. In some versions, the second 
module is configured to scale the respective sum-squared 
differences by a factor of 1. In some versions, the second 
module is configured to scale the respective sum-squared 
differences by a factor other than 1. 

In some versions, the first and second modules are further 
configured to estimate enzyme contributions for each of the 
plurality of reference strains from experimentally measured 
gene expression values for each of the plurality of reference 
strains, and to determine enzyme contributions in the paren­
tal strain from the estimated enzyme contributions of the 
plurality of reference strains and experimentally measured 
gene expression values for the parental strain. 

The objects and advantages of the invention will appear 
more fully from the following detailed description of the 
preferred embodiment of the invention made in conjunction 
with the accompanying drawings. 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1 is a schema depicting a methods of the prior art for 
utilizing MFA, gene expression, and extracellular flux data 
to accurately calculate the parental strain (PS) flux distribu­
tion and then calculating new knockout or derived strains 
(DS) therefrom. 

FIG. 2 is a schema depicting a method of the present 
invention for determining flux distribution of a parental 
strain (PS) and derived strains (DS) therefrom. The method 
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replaces the parental strain' s gene expression and MFA data 
with extracellular flux data from multiple reference strains 
(RS). Each reference strain has its flux distribution calcu­
lated independently and these estimations are combined with 
extracellular flux data from the parental strain to estimate the 5 
parental strain flux distribution. After calculating the paren­
tal strain flux distribution, new derived strains can be 
estimated using existing methods. 

FIG. 3 shows the effect of the number ofreference points 
(number of analyzed knockout reference strains) on error 

10 
(mean squared error between estimated and measured flux 
values) for iJR904. The Escherichia coli (E. coli) genome­
scale metabolic model was used with the methods of the 
present invention (REPPS) to determine the parental strain 
flux distribution in the absence of metabolic flux analysis 
data. The error for the corresponding pFBA (an existing 15 

method) solution for the parental strain is shown as a dotted 
horizontal line. 

6 
dieting flux distributions in knockout strains is shown in 
FIG. 1. Parental flux distributions can first be calculated 
using gene expression data, extracellular flux data, and 
metabolic flux analysis data for the parental strain (wild-type 
strain in FIG. 1) using the RELATCH Fit program (Kim et 
al. 2012). Once the parental flux distributions are calculated, 
flux distribution in evolved or un-evolved derived strains 
(new, uncharacterized modified versions of the parent strain) 
can then be determined using the RELATCH program (Kim 
et al. 2012). A problem with such methods is that they rely 
fundamentally on the metabolic flux analysis data in the 
RELATCH Fit program. Attempting to predict flux distri­
butions for derived strains of parental strains using parental 
flux distributions calculated in the absence of metabolic flux 
analysis data can result in error. 

The present invention provides systems and methods for 
calculating parental flux distributions and determining flux 
distributions of new derived strains in the absence of meta­
bolic flux analysis data and, optionally in the absence of 
gene expression data. A schema of an exemplary method is 
provided in FIG. 2. 

A first step involves estimating the flux distribution for 
each of a plurality of reference strains. The reference strains 
include various modified versions of a parental strain. The 

FIG. 4 shows the measured fluxes using MFA versus 
predicted fluxes for a single knockout strain (llpfkA) using 
the iJR904 E. coli genome-scale metabolic model with FBA, 20 

RELATCH Fit, or REPPS to calculate the parental strain flux 
distribution and either MOMA or RELATCH to predict the 
derived strain (a knockout of the parent strain) flux distri­
bution. The diagonal line indicates a perfect 1: 1 correlation 
between the predicted and measured fluxes. 

FIG. 5 shows the distribution of mean squared errors 
(MSE) in the predicted flux values for derived strains 
(knockouts of the parental strain) using iJR904 E. coli 
genome-scale metabolic model and FBA, RELATCH Fit, or 
REPPS (the current invention) to calculate the parental 
strain flux distribution and either MOMA or RELATCH to 30 

25 modified versions may include gene-knockout mutants, 
mutants that have partial activity of certain enzymes, strains 
grown in modified environmental conditions ( e.g., different 
oxygen concentration), or strains that are treated with agents 

predict the derived strain flux distribution. The derived 
strains shown in the figure were all knockouts which were 
not included in the reference strain set. 

FIG. 6 shows the density of the mean squared error (MSE) 
of the predicted fluxes vs the measured intracellular fluxes 
for various methods of calculating the reference strain flux 
distributions. Data from 24 mutant strains and their parental 
strain were used. The minimum possible error obtained by 
minimizing the MSE is indicated. The Fit function had a 
median lower than pFBA. However, it also contained more 
results with higher MSEs. 

FIG. 7 shows a plot of MSE vs a weighting factor (y) 
utilizing 24 reference strains using the Fit function. As y is 
increased, the reference strains are fit better at the expense 

that elicit certain physiological effects, such as inhibiting the 
function of an enzyme. 

The flux distribution for each reference strain may be 
estimated using any of a number of suitable programs or 
methods. Exemplary programs or methods include 
RELATCH Fit, flux balance analysis, and parsimonious flux 

35 balance analysis (pFBA) (Lewis et al. 2010), among others. 
Input data used in estimating the reference strain flux 
distribution preferably includes experimentally measured 
fluxes (see Blazier et al. 2012) for each of the reference 
strains. The experimentally measured fluxes generally com-

40 prise extracellular fluxes. In some versions, the experimen­
tally measured fluxes consist of extracellular fluxes. 

Once the flux distribution for each of the reference strains 

of exactly fitting the extracellular fluxes. At a sufficiently 45 

high value (y=l000), the results stabilized at their lowest 
MSE. 

is estimated, a second step involves determining a flux 
distribution for the parental strain. Information used for 
determining the flux distribution for the parental strain 
preferably includes experimentally measured fluxes for the 
parental strain as well as the estimated flux distributions 
from the reference strains. The experimentally measured 
fluxes preferably comprise extracellular fluxes. In some 

50 versions, the experimentally measured fluxes consist of 
extracellular fluxes. In preferred versions of the invention, 
metabolic flux analysis data is not used in determining the 
flux distribution for the parental strain. In some versions, 

FIGS. SA and SB show the MSE for a parental strain 
calculated using MFA data. Plots utilize pFBA (FIG. SA) or 
the Fit function (FIG. SB) for estimating the reference strain 
flux distributions. For each colunm, a random subset of the 
specified size was selected from a 24 mutant pool. The PS 
flux distribution was then calculated using methods of the 
invention. This process was repeated for 20 times for each 
number of reference strains. The MSE for the parental strain 55 

found utilizing pFBA and the Fit function are indicated with 
the horizontal lines. 

gene expression data also is not used. 
The flux distribution for the parental strain can be deter-

mined by matching the predicted fluxes for the parent strain 
as closely as possible to the experimentally measured fluxes 
for the parent strain and to the estimated flux distributions 
from the reference strains. This can be performed by mini-

FIG. 9 shows the MSE density function utilizing various 
methods for calculating derived strains of single gene 
knockouts. The median MSE is shown for each method in 
the inserted table. 

DETAILED DESCRIPTION OF THE 
INVENTION 

A schematic of exemplary prior art methods for calculat­
ing parental flux distributions in a parental strain and pre-

60 mizing the sum-squared difference between the estimated 
extracellular fluxes for the parental strain and the experi­
mentally measured extracellular fluxes for the parental 
strain, as well as minimizing the sum-squared difference 
between the estimated fluxes for the parental strain and 

65 fluxes in the estimated flux distributions for the reference 
strains. The sum-squared difference between the estimated 
extracellular fluxes for the parental strain and the experi-
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lation term preferably becomes positive and is penalized in 
an objective function comprising the enzyme contribution 
directional violation term of the given reference strain. If the 
change in the enzyme contribution between the parental 

mentally measured extracellular fluxes for the parental strain 
may be scaled by the number of experimentally measured 
extracellular fluxes in the parent strain. The sum-squared 
difference between estimated fluxes for the parental strain 
and fluxes in the estimated flux distribution for the reference 
strains may be scaled by the number of estimated fluxes in 
the parent strain and by the number reference strains in the 
plurality of reference strains. Furthermore, the sum-squared 
difference between the estimated extracellular fluxes for the 
parental strain and the experimentally measured extracellu­
lar fluxes for the parental strain may be scaled with respect 
to the sum-squared difference between fluxes in the esti­
mated flux distribution for the reference strains and esti­
mated fluxes for the parental strain. This may be done to 
emphasize the relationship of the estimated fluxes of the 
parental strain to either the experimentally measured extra­
cellular fluxes for the parental strain or the estimated flux 
distributions of the reference strains. Equations for carrying 
out these processes are provided by Equations lla-lle in 
Example 2 below. 

5 strain and a given reference strain is in the same direction 
compared to a change in the experimentally measured gene 
expression values between the parental strain and the given 
reference strain, the associated enzyme contribution direc­
tional violation term preferably becomes zero and does not 

10 affect the value of the objective function. In some versions, 
proteomics (i.e., protein levels) can be used in place of or in 
addition to gene expression data, wherein the protein levels 
are used analogously to the gene expression levels. 

Some versions of the invention comprise experimentally 
15 measuring the gene expression values in reference strains 

and/or the parental strain. Methods of measuring gene 
expression are well-known in the art. Any method of mea­
suring gene expression is suitable in the present invention. 

Some versions of the invention comprise generating ref-
20 erence strains and/or uncharacterized, modified versions of 

the parental strain ( e.g., "derived strains"). In some versions, 
the reference strains or uncharacterized, modified versions 
of the parental strain include genetic modifications. Genetic 
engineering of organisms is well-known in the art. Any 

Once the flux distribution for the parental strain is deter­
mined, a third, optional, step involves predicting flux dis­
tributions in one or more uncharacterized, modified versions 
(i.e., "derived strains") of the parental strain. The derived 
strains may include gene-knockout mutants, mutants that 
have partial activity of certain enzymes, strains grown in 
modified environmental conditions, or strains that are 
treated with agents that elicit certain physiological effects, 
such as inhibiting the function of an enzyme. The modifi­
cations in the uncharacterized, modified versions of the 30 

parental strain are preferably different from the modifica­
tions that characterize the reference strains. Exemplary 
programs or methods for predicting the flux distributions in 
the uncharacterized, modified versions of the parental strain 
include pFBA, MOMA (Segre et al. 2002), RELATCH (Kim 35 

et al. 2012), and ROOM (Shlomi et al. 2005), among others. 

25 methods of genetically modifying the parental strains to 
obtain the reference strains or uncharacterized, modified 
versions of the parental strain are suitable in the present 
invention. 

In some versions of the invention, the first step involves 
estimating the flux distribution and enzyme contributions 
within the flux distribution for each of the plurality of 
reference strains. Programs or methods such as RELATCH 40 

Fit are capable of estimate flux distributions as well as 
enzyme contributions. Input data used in estimating the flux 
distribution may include experimentally measured fluxes 
and gene expression data (see Blazier et al. 2012) for each 

As used herein, "strain" refers to any unique type of 
individual cell or collection of cells. Non-limiting examples 
of individual cells include microorganisms or isolated cells 
from organs or tissues. Non-limiting examples of collections 
of cells include organs or tissues. 

As used herein the term "parental strain" or "parent 
strain" refers to a strain from which all reference and derived 
strains are derived. The parental strain is chosen so that any 
and all reference and derived strains may be obtained from 
it via modification, such as genetic modification (i.e., gene 
deletion, gene insertion, gene transformation via an extra-
chromosomal plasmid, etc.). 

As used herein the term "reference strain" refers to a 
modified version of the parental strain. The modification is 
preferably a genetic modification. Experimental data for the 
reference strains may be used to calculate a reference 

of the reference strains. 45 strain's flux distribution and with other reference strains 
may be further used to estimate fluxes in the parental strain. Similarly, the second step may involve determining a flux 

distribution and enzyme contributions for the parental strain. 
Input data for determining the flux distribution and enzyme 
contributions for the parental strain may include the esti­
mated flux distributions and enzyme contributions from the 50 

reference strains as well as experimentally measured fluxes 
and gene expression data for the parental strain. Programs or 
methods for determining the flux distribution and enzyme 
contributions are provided in Example 1 below. 

Determining the flux distribution and enzyme contribu- 55 

tions for the parental strain may comprise minimizing 
enzyme contribution directional violation terms from refer­
ence strains in which a change in an enzyme contribution 
between the parental strain and a given reference strain is in 
the opposite direction compared to a change in the experi- 60 

mentally measured gene expression values between the 
parental strain and the given reference strain. If the change 
in an enzyme contribution between the parental strain and a 
given reference strain is in an opposite direction compared 
to a change in the experimentally measured gene expression 65 

values between the parental strain and the given reference 
strain, the associated enzyme contribution directional vio-

As used herein the term "derived strain" refers to a new, 
uncharacterized modified version of the parental strain. The 
modification is preferably a genetic modification. The 
derived strain should not be one of the reference strains. 
Derived strain flux distributions can be predicted from the 
parental strain's flux distribution. 

As used herein, "modified" or "modification" used with 
reference to a strain (parental strain, reference strain, or 
derived strain) refers to any structural change or treatment 
that affects the abundance of a gene product in a cell. 
Preferred modifications include genetic modifications. The 
genetic modifications may entirely delete a gene (and its 
corresponding gene product), decrease the abundance of a 
gene product, decrease the activity of a gene product, 
increase the activity of a gene product, increase the abun-
dance of a gene product, or add an entire new gene. The 
genetic modifications may occur through mutation of the 
strain's chromosome or through ectopic introduction of 
extrachromosomal material ( e.g., plasmids, etc.). Other 
modifications may include small-molecule treatments that 
either increase or decrease expression of a gene product or 
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increase or decrease its activity through allosteric regulation 
or other mechanisms (V max' Km, etc.). Additionally, modi­
fication of the environmental growth conditions ( e.g., tem­
perature, oxygen concentration, etc.) may also increase or 
decrease expression of a gene product. 

10 
As used herein, the term "network map" refers to the set 

of reactions in the biological network and the compounds, 
macromolecules, and/or genes with which they are associ­
ated. 

Methods and systems for constructing and analyzing 
steady-state in silica models of biological networks are 
provided herein. A steady-state model can be used to simu­
late different aspects of cellular behavior of cells under 
different environmental and genetic conditions, thereby pro- 10 

viding valuable information for a range of industrial and 
research applications. Developing steady-state models of 
biological networks can be used to inform and guide the 
research process, potentially leading to the identification and 

15 
production of new enzymes, medicines or metabolites of 
commercial importance. 

As used herein, the term "stoichiometric matrix" or "S" 
refers to a matrix with the stoichiometric coefficients for 
reactions represented by the colunms and the substrates and 
products in the rows. The stoichiometric matrix may be 
written for any biological network. Examples include but are 
not limited to metabolic networks and signaling networks. 

As used herein, the term "steady-state" refers to any of a 
number of conditions for which the flux distribution and 
concentrations do not change over time. Equilibrium is a 
special case which also satisfies the steady-state. In general, 
unless otherwise specified, references to the steady-state 
imply a non-equilibrium steady-state. 

The reconstruction of a genome-scale reaction network 
As used herein, the term "concentration" refers to a 

numerical value with physical units of mass*volume-1, such 
as molar and millimolar. Such quantities include but are not 20 

limited to molecules in a biochemical network, such as 
glucose, pyruvate, lactate, enzymes that carry out biochemi-

(network map) requires the identification of all its chemical 
components and the chemical transformations that they 
participate in. This process primarily relies on amiotated 
genomes and detailed bibliomic assessment. See Reed, et al. 
(2006), Nature Reviews Genetics, 7(2):130-141, which is 
hereby incorporated by reference in its entirety. See also, 
U.S. Pat. No. 8,301,393 which is also incorporated by 

cal transformations or transport reactions such as hexoki­
nase, adenosine deaminase, and sodium-potassium ATPase 
pump. 

As used herein, the term "mass balance" refers to a linear 
algebraic equation which equates the net production rate and 
net consumption rate for each component in a specified 
biological network. 

25 reference in its entirety. The result of this process is the 
stoichiometric matrix, S, that is used in the mass balances 

that are the basis of all steady-state models. Here v is the 
vector of the reaction fluxes (i.e., flux distribution). All 
biochemical transformations are fundamentally uni- or bi­
molecular and their reaction rates can be represented by 
mass action kinetics, or generalizations thereof. The net 
reaction flux for every reaction in a network can be repre-

As used herein the term "flux" or "reaction flux" refers to 30 

a single flux in a flux distribution. Individual fluxes can be 
represented as the difference between a forward and reverse 
flux, with units mass, or number of moles, or number of 
molecules per unit biomass per unit time. 

35 sented by the difference between a forward and reverse flux. 
As used herein the term "extracellular flux" refers to the 

growth, uptake or secretion rate of one or more metabolites 
by a strain. The extracellular fluxes may be experimentally 
measured by monitoring media concentrations over time, 
and most have units of mass, moles, or number of molecules 40 

per unit biomass per unit time. Growth rate has units of 

This commonly used formulation is based on several well­
known assumptions, such as constant temperature, volume, 
and homogeneity of the medium. A steady-state flux distri-
bution (v) must satisfy the mass balances. 

The availability of genomic and bibliomic data can be 
used to define S, which has been described in detail. S is 
primarily derived from an annotated genomic sequence 
fortified with any direct bibliomic data on the organisms' 
gene products. In the physico-chemical context, S represents 

inverse unit time. 
As used herein the term "intracellular flux" refers to the 

flux through one or more reactions taking place in a cell ( e.g. 
transport or enzymatic reactions). The intracellular fluxes 
represent the net difference between a forward and reverse 
flux, with units of mass, moles, or number of molecules per 
unit biomass per unit time. Intracellular fluxes can be 
measured experimentally with the use of carbon isotope­
based metabolic flux analysis (MFA). 

As used herein, the term "flux distribution" refers to a 
directional, quantitative set of values corresponding to the 
set of reactions in a network, representing the mass flow per 
unit biomass per unit time for each reaction in the network 
being analyzed. 

As used herein the term "enzyme contribution" refers to 
the maximum capacity of a particular enzyme to contribute 
to the total flux through a reaction in a strain. Enzyme 
contributions have the same units as flux, and most have 
units of mass, moles, or number of molecules per unit 
biomass per unit time. 

As used herein, the term "biological network" refers to 
assembled reactions reflecting biological processes. 
Examples of biological networks include but are not limited 
to metabolic networks, signaling networks, and regulatory 
networks. 

45 chemistry (i.e. stoichiometry ofreactions). In the biological 
and genetic considerations context, the matrix S is recon­
structed based on the content of a genome and is a property 
of a species. 

As used herein, the term "reaction" is intended to mean a 
50 conversion that consumes a substrate or forms a product that 

occurs in a biological network. The term can include a 
conversion that occurs due to the activity of one or more 
enzymes that are genetically encoded by an organism's 
genome. The term can also include a conversion that occurs 

55 spontaneously. Conversions included in the term include, for 
example, changes in chemical composition such as those 
due to nucleophilic or electrophilic addition, nucleophilic or 
electrophilic substitution, elimination, isomerization, deami­
nation, phosphorylation, methylation, glycosylation, reduc-

60 tion, oxidation or changes in location such as those that 
occur due to a transport reaction that moves one or more 
reactants within the same compartment or from one cellular 
compartment to another. In the case of a transport reaction, 
the substrate and product of the reaction can be chemically 

65 the same and the substrate and product can be differentiated 
according to location in a particular cellular compartment. 
Thus, a reaction that transports a chemically unchanged 
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reactant from a first compartment to a second compartment 
has as its substrate the reactant in the first compartment and 
as its product the reactant in the second compartment. It will 
be understood that when used in reference to an in silica 
model or data structure, a reaction is intended to be a 
representation of a chemical conversion that consumes a 
substrate or produces a product. 

12 
lated such as a list of representations for reactions from 
which reactants can be related in a matrix or network. The 
term can also include a matrix that correlates data elements 
from two or more lists of information such as a matrix that 

5 correlates reactants to reactions. Information included in the 

As used herein, the term "reactant" is intended to mean a 
chemical that is a substrate or a product of a reaction that 
occurs in a biological network. The term can include sub- 10 

strates or products of reactions performed by one or more 
enzymes encoded by gene(s), reactions occurring in cells 
that are performed by one or more non-genetically encoded 
macromolecule, protein or enzyme, or reactions that occur 
spontaneously in a cell. Metabolites are understood to be 15 

reactants within the meaning of the term. It will be under­
stood that when used in reference to an in silica model or 
data structure, a reactant is intended to be a representation of 

term can represent, for example, a substrate or product of a 
chemical reaction, a chemical reaction relating one or more 
substrates to one or more products, a constraint placed on a 
reaction, a stoichiometric coefficient, or a rate constant. 

As used herein, the term "boundary constraint", "reaction 
constraint" or "flux constraint" is intended to mean an upper 
or lower bound (or boundary) for a reaction's flux. A bound 
can specify a minimum or maximum flow of mass, electrons 
or energy through a reaction. A bound can further specify 
directionality of a reaction. A bound can be a constant value 
such as zero, infinity, or a numerical value such as an integer 
and non-integer. Alternatively, a bound can be a variable 
value as set forth below. Boundary constraints can be 
formulated to allow a violation of the bound penalizing a chemical that is a substrate or a product of a reaction that 

occurs in a cell. 
As used herein the term "substrate" is intended to mean a 

reactant that can be converted to one or more products by a 
reaction. The term can include, for example, a reactant that 
is to be chemically changed due to nucleophilic or electro­
philic addition, nucleophilic or electrophilic substitution, 
elimination, isomerization, deamination, phosphorylation, 
methylation, reduction, oxidation or that is to change loca­
tion such as by being transported across a membrane or to 
a different compartment. 

As used herein, the term "product" is intended to mean a 
reactant that results from a reaction with one or more 
substrates. The term can include, for example, a reactant that 
has been chemically changed due to nucleophilic or elec­
trophilic addition, nucleophilic or electrophilic substitution, 
elimination, isomerization, deamination, phosphorylation, 
methylation, reduction or oxidation or that has changed 
location such as by being transported across a membrane or 
to a different compartment. 

As used herein, the term "stoichiometric coefficient" is 
intended to mean a numerical constant correlating the num­
ber of one or more substrates and the number of one or more 
products in a chemical reaction. Typically, the numbers are 
integers as they denote the number of molecules of each 
reactant in an elementally balanced chemical reaction that 
describes the corresponding conversion. However, in some 
cases the numbers can take on non-integer values, for 
example, when used in a lumped reaction or to reflect 
empirical data. 

As used herein, the term "plurality" in intended to mean 

20 bound violations in the objective function. This penalty can 
be a function of how far the flux value exceeds the bound 
and can be binary, linear, or quadratic in formulation. 

As used herein, the term "variable," when used in refer­
ence to a constraint or objective function is intended to mean 

25 it is capable of assuming any of a set of values in response 
to being acted upon by a constraint or objective function. 
The term "function," when used in the context of a con­
straint, is intended to be consistent with the meaning of the 
term as it is understood in the computer and mathematical 

30 arts. A function can be binary such that changes correspond 
to a reaction being off or on. Alternatively, continuous 
functions can be used such that changes in boundary values 
correspond to increases or decreases in activity. Such 
increases or decreases can also be binned or effectively 

35 digitized by a function capable of converting sets of values 
to discreet integer values. A function included in the term 
can correlate a boundary value with the presence, absence or 
amount of a biochemical reaction network participant such 
as a reactant, reaction, enzyme or gene. A function included 

40 in the term can correlate a boundary value with an outcome 
of at least one reaction in a reaction network that includes 
the reaction that is constrained by the boundary limit. A 
function included in the term can also correlate a boundary 
value with an environmental condition such as time, pH, 

45 temperature or redox potential. 
As used herein, the term "activity," when used in refer­

ence to a reaction, is intended to mean the amount of product 
produced by the reaction, the amount of substrate consumed 
by the reaction or the rate at which a product is produced or 

50 a substrate is consumed. The amount of product produced by 
the reaction, the amount of substrate consumed by the 
reaction or the rate at which a product is produced or a 
substrate is consumed can also be referred to as the flux for 
the reaction. 

at least 2. For example, the term "plurality," when used in 
reference to reactions or reactants, is intended to mean at 
least 2 reactions or reactants. The term can include any 
number of reactions or reactants in the range from 2 to the 
number of naturally occurring reactants or reactions for a 
particular cell. Thus, the term can include, for example, at 55 

least 10, 20, 30, 50, 100, 150, 200, 300, 400, 500, 600 or 
more reactions or reactants. The number of reactions or 
reactants can be expressed as a portion of the total number 

As used herein, the term "allosteric regulation" refers to 
the regulation of a protein or enzyme by a molecule that 
binds to a site other than the primary active site, thereby 
altering the activity of the enzyme and the corresponding 
reaction that it regulates. of naturally occurring reactions for a particular cell such as 

at least 20%, 30%, 50%, 60%, 75%, 90%, 95% or 98% of 60 

the total number of naturally occurring reactions that occur 
in the particular cell. 

As used herein, the term "data structure" is intended to 
mean a physical or logical relationship among data ele­
ments, designed to support specific data manipulation func- 65 

tions. The term can include, for example, a list of data 
elements that can be added combined or otherwise manipu-

As used herein, the term "activate" or activation refers to 
an effect a compound has on another compound, serving to 
alter the constraints in a positive manner, such as increasing 
the activity of a reaction. This includes but is not limited to 
allosteric and non-allosteric regulation of enzymes. 

As used herein, the term "inhibit" or inhibition refers to 
an effect a compound has on another compound, serving to 
alter the constraints in a negative marmer, such as decreasing 
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the activity of a reaction. This includes but is not limited to 
allosteric and non-allosteric regulation of enzymes. 

As used herein, the term "biomass" refers to a collection 

14 
or products of a particular reaction, each with a stoichio­
metric coefficient assigned to it to describe the chemical 
conversion taking place in the reaction. Each reaction is also 
described as occurring in either a reversible or irreversible of metabolites identified as biomass components, as is 

common in the art. 
As used herein, the term "growth" or "biomass flux" 

refers to the production of a weighted sum of metabolites 
identified as biomass components. 

5 direction. Reversible reactions can either be represented as 
one reaction that operates in both the forward and reverse 
direction or be decomposed into two irreversible reactions, 
one corresponding to the forward reaction and the other 

As used herein, the term "energy production" refers to the 
production of metabolites that store energy in their chemical 10 

bonds, particularly high energy phosphate bonds such as 
ATP and GTP. 

As used herein, the term "redox equivalent" refers to a 
metabolite that can alter the oxidation state of other metabo­
lites, generally through the transfer of electrons and or 15 

protons. Examples of redox equivalents include NAD+ and 
NADP+. 

As used herein, the term "bioactive small molecule" refers 

corresponding to the backward reaction. 
Reactions included in a reaction network data structure 

can include intra-system or exchange reactions. Intra-system 
reactions are the chemically and electrically balanced inter­
conversions of chemical species and transport processes, 
which serve to replenish or drain the relative amounts of 
certain metabolites. These intra-system reactions can be 
classified as either being transformations or translocations. 
A transformation is a reaction that contains distinct sets of 
compounds as substrates and products, while a translocation 
contains reactants located in different compartments. Thus, to a metabolite that can inhibit or activate another biological 

compound, including metabolites, proteins, and nucleic acid 
polymers. 

As used herein, the term "cofactor" refers to a metabolite 
or chemical compound that is required for a catalytic activity 
of an enzyme to be carried out. 

20 a reaction that simply transports a metabolite from the 
extracellular environment to the cytosol, without changing 
its chemical composition is solely classified as a transloca­
tion, while a reaction such as the phosphotransferase system 
(PTS) which takes extracellular glucose and converts it into 

As used herein, the term "optimization problem" refers to 
a problem whose solution is obtained through the calculation 
of a minimum ( or maximum) value of the objective function. 

25 cytosolic glucose-6-phosphate is a translocation and a trans­
formation. 

As used herein, the term "objective function" refers to a 
physiological or metabolic function that can be described in 
terms of the data structure of a network, generally in terms 30 

of one or more weighted sum or product of reaction fluxes. 
This function is either maximized or minimized using opti­
mization algorithms by changing the values of the variables 
subject to problem constraints. 

As used herein, the term "compartment" is intended to 35 

mean a subdivided region containing at least one reactant, 
such that the reactant is separated from at least one other 
reactant in a second region. A subdivided region included in 
the term can be correlated with a subdivided region of a cell. 
Thus, a subdivided region included in the term can be, for 40 

example, the intracellular space of a cell; the extracellular 
space around a cell; the periplasmic space; vacuole or 
nucleus; or any subcellular space that is separated from 
another by a membrane or other physical barrier. Subdivided 
regions can also be made in order to create virtual bound- 45 

aries in a reaction network that are not correlated with 
physical barriers. Virtual boundaries can be made for the 
purpose of segmenting the reactions in a network into 
different compartments or substructures. 

As used herein, the term "substructure" is intended to 50 

mean a portion of the information in a data structure that is 
separated from other information in the data structure such 
that the portion of information can be separately manipu­
lated or analyzed. The term can include portions subdivided 
according to a biological function including, for example, 55 

information relevant to a particular metabolic pathway such 
as an internal flux pathway, exchange flux pathway, central 
metabolic pathway, peripheral metabolic pathway, or sec­
ondary metabolic pathway. The term can include portions 
subdivided according to computational or mathematical 60 

principles that allow for a particular type of analysis or 
manipulation of the data structure. 

Exchange reactions are those which constitute sources 
and sinks, allowing the passage of metabolites into and out 
of a compartment or across a hypothetical system boundary. 
These reactions are included in a model for simulation 
purposes and represent the metabolic demands placed on a 
cell. While they may be chemically balanced in certain 
cases, they are typically not balanced and can often have 
only a single substrate or product. As a matter of convention 
the exchange reactions are further classified into demand 
exchange and input/output exchange reactions. 

Input/output exchange reactions are used to allow extra-
cellular reactants to enter or exit the reaction network 
represented by a model. For each of the extracellular 
metabolites a corresponding input/output exchange reaction 
can be created. These reactions can either be irreversible or 
reversible with the metabolite indicated as a substrate with 
a stoichiometric coefficient of one and no products produced 
by the reaction. This particular convention is adopted to 
allow the reaction to take on a positive flux value (activity 
level) when the metabolite is being produced or removed 
from the reaction network and a negative flux value when 
the metabolite is being consumed or introduced into the 
reaction network. These reactions will be further constrained 
during the course of a simulation to specify exactly which 
metabolites are available to the cell and which can be 
excreted by the cell. 

A demand exchange reaction is always specified as an 
irreversible reaction containing at least one substrate. These 
reactions are typically formulated to represent the produc­
tion of an intracellular metabolite by the metabolic network 
or the aggregate production of many reactants in balanced 
ratios such as in the representation of a reaction that leads to 
biomass formation, also referred to as growth. 

A demand exchange reaction can be introduced for any 
metabolite in a model of the invention. Most commonly 
these reactions are introduced for metabolites that are 
required to be produced by the cell for the purposes of 
creating a new cell such as amino acids, nucleotides, phos-

The reactions included in a reaction network data struc­
ture can be obtained from a metabolic reaction database that 
includes the substrates, products, and stoichiometry of a 
plurality of biological reactions. The reactants in a reaction 
network data structure can be designated as either substrates 

65 pholipids, and other biomass constituents, or metabolites 
that are to be produced for alternative purposes. Once these 
metabolites are identified, a demand exchange reaction that 
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is irreversible and specifies the metabolite as a substrate with 
a stoichiometric coefficient of unity can be created. With 
these specifications, if the reaction is active it leads to the net 
production of the metabolite by the system meeting potential 
production demands. Examples of processes that can be 
represented as a demand exchange reaction in a reaction 
network data structure and analyzed by the methods of the 
invention include, for example, production or secretion of an 
individual protein; production or secretion of an individual 
metabolite such as an amino acid, vitamin, nucleoside, 
antibiotic or surfactant; production of ATP for extraneous 
energy requiring processes such as locomotion; or formation 
of biomass constituents. 

In addition to these demand exchange reactions that are 
placed on individual metabolites, demand exchange reac­
tions that utilize multiple metabolites in defined stoichio­
metric ratios can be introduced. These reactions are referred 
to as aggregate demand exchange reactions. An example of 
an aggregate demand reaction is a reaction used to simulate 
the concurrent growth demands or production requirements 
associated with cell growth that are placed on a cell, for 
example, by simulating the formation of multiple biomass 
constituents simultaneously at a particular cellular growth 
rate. 

Depending upon the particular environmental conditions 
being tested and the desired activity, a reaction network data 
structure can contain smaller numbers of reactions such as at 
least 200, 150, 100 or 50 reactions. A reaction network data 
structure having relatively few reactions can provide the 
advantage of reducing computation time and resources 
required to perform a simulation. When desired, a reaction 
network data structure having a particular subset of reactions 
can be made or used in which reactions that are not relevant 
to the particular simulation are omitted. Alternatively, larger 
numbers of reactions can be included in order to increase the 
accuracy or molecular detail of the methods of the invention 
or to suit a particular application. Thus, a reaction network 
data structure can contain at least 300, 350, 400, 450, 500, 
550, 600 or more reactions up to the number of reactions that 
occur in a particular cell or that are desired to simulate the 
activity of the full set of reactions occurring in the particular 
cell. 

16 
can determine the direction or reversibility of any of the 
reactions or transport fluxes in the reaction network data 
structure. 

The ability of a reaction to be actively occurring is 
5 dependent on a large number of additional factors beyond 

just the availability of substrates. These factors, which can 
be represented as variable constraints in the models and 
methods of the invention include, for example, the presence 
of cofactors necessary to stabilize the protein/enzyme, the 

10 presence or absence of enzymatic inhibition and activation 
factors, the active formation of the protein/enzyme through 
translation of the corresponding mRNA transcript, the tran­
scription of the associated gene( s) or the presence of chemi­
cal signals and/or proteins that assist in controlling these 

15 processes that ultimately determine whether a chemical 
reaction is capable of being carried out within an organism. 

The methods described herein can be implemented on any 
conventional host computer system, such as those based on 
Intel® or AMD® microprocessors and running Microsoft 

20 Windows operating systems. Other systems, such as those 
using the UNIX or LINUX operating system and based on 
IBM®, DEC® or Motorola® microprocessors are also con­
templated. The systems and methods described herein can 
also be implemented to run on client-server systems and 

25 wide-area networks, such as the Internet. 
Software to implement a method or model of the inven­

tion can be written in any well-known computer language, 
such as Java, C, C++, Visual Basic, FORTRAN, GAMS, 
MATLAB or COBOL and compiled using any well-known 

30 compatible compiler. The software of the invention nor­
mally runs from instructions stored in a memory on a host 
computer system. A memory or computer readable medium 
can be a hard disk, floppy disc, compact disc, DVD, mag­
neto-optical disc, Random Access Memory, Read Only 

35 Memory or Flash Memory. The memory or computer read­
able medium used in the invention can be contained within 
a single computer or distributed in a network. A network can 
be any of a number of conventional network systems known 
in the art such as a local area network (LAN) or a wide area 

40 network (WAN). Client-server environments, database serv­
ers and networks that can be used in the invention are well 
known in the art. For example, the database server can run 
on an operating system such as UNIX, running a relational 

A reaction network data structure or index of reactions 
used in the data structure such as that available in a meta- 45 

database management system, a World Wide Web applica­
tion and a World Wide Web server. Other types of memories 
and computer readable media are also contemplated to 
function within the scope of the invention. 

Data matrices can be represented in a markup language 
format including, for example, Systems Biology Markup 

50 Language (SBML), Hypertext markup language (HTML) or 
Extensible Markup language (XML). Markup languages can 
be used to tag the information stored in a database or data 
structure of the invention, thereby providing convenient 
annotation and transfer of data between databases and data 

bolic reaction database, as described herein, can be anno­
tated to include information about a particular reaction. A 
reaction can be annotated to indicate, for example, assign­
ment of the reaction to a protein, macromolecule or enzyme 
that performs the reaction, assigriment of a gene(s) that 
codes for the protein, macromolecule or enzyme, the 
Enzyme Commission (EC) number of the particular meta­
bolic reaction or Gene Ontology (GO) number of the par­
ticular metabolic reaction, a subset of reactions to which the 
reaction belongs, citations to references from which infor- 55 

mation was obtained, or a level of confidence with which a 
reaction is believed to occur in a particular cell. A computer 
readable medium of the invention can include a gene data­
base containing annotated reactions. Such information can 
be obtained during the course of building a metabolic 60 

reaction database or model of the invention as described 
below. 

structures. In particular, an XML format can be useful for 
structuring the data representation of reactions, reactants and 
their annotations; for exchanging database contents, for 
example, over a network or internet; for updating individual 
elements using the document object model; or for providing 
differential access to multiple users for different information 
content of a data base or data structure of the invention. 
XML programming methods and editors for writing XML 
code are known in the art as described, for example, in Ray, 
Leaming XML O'Reilly and Associates, Sebastopol, Calif. 

Flux constraints can be placed on the value of any of the 
fluxes in a metabolic network. These constraints can be 
representative of a minimum or maximum allowable flux 
through a given reaction, possibly resulting from a limited 
amount of an enzyme present. Additionally, the constraints 

65 (2001 ). 
A computer system of the invention can include a user 

interface capable of receiving a representation of one or 
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amino acid, degradation of an amino acid, biosynthesis of a 
purine, biosynthesis of a pyrimidine, biosynthesis of a lipid, 
metabolism of a fatty acid, biosynthesis of a cofactor, 
production of a hormone, production of a bioactive small 

more reactions. A user interface of the invention can also be 
capable of sending at least one command for modifying the 
data structure, the flux constraints or the commands for 
applying the constraints to the data representation, or a 
combination thereof. The interface can be a graphic user 
interface having graphical means for making selections such 

5 molecule, transport of a metabolite, metabolism of an alter­
native carbon source, or biosynthesis of any desired com­
pound the cell is capable of making. The genetic variations 
can be determined using the methods described above, 
wherein the reaction network data structure lacks one or 

as menus or dialog boxes. The interface can be arranged with 
layered screens accessible by making selections from a main 
screen. The user interface can provide access to other 
databases useful in the invention such as a metabolic reac- 10 

tion database or links to other databases having information 
relevant to the reactions or reactants in the reaction network 
data structure or to human physiology. Also, the user inter­
face can display a graphical representation of a reaction 
network or the results of a simulation using a model of the 15 

invention. 

more gene-associated reactions. Alternatively, methods can 
be used to determine genetic variations when a reaction that 
does not naturally occur in the cell is added to the reaction 
network data structure. Deletion of a gene can also be 
represented in a model of the invention by constraining the 
flux through the associated reaction to zero, thereby allow­
ing the reaction to remain within the data structure. Thus, 
simulations can be made to predict the effects of adding or 
removing genes to or from the cell. The methods can be 
particularly useful for determining the effects of adding or 

As used herein, the term "physiological function" is 
intended to mean an activity of a cell as a whole. An activity 
included in the term can be the magnitude or rate of a change 
from an initial state of a cell to a final state of the cell. An 
activity can be measured qualitatively or quantitatively. An 
activity included in the term can be, for example, growth, 
energy production, redox equivalent production, biomass 
production, compound production, development, flux 
through a particular reaction or set of reactions, enzyme 
activity, or consumption of carbon, nitrogen, sulfur, phos­
phate, hydrogen or oxygen. An activity can also be an output 

20 deleting a gene that encodes for a gene product that performs 
a reaction(s) in a peripheral metabolic pathway. In one 
contemplated embodiment, vectors are used for in vivo 
transfer of genes determined in silica to be required for a 
desired functioning of the metabolic pathway. Other meth-

25 ods are discussed below or known in the art. 

of a particular reaction that is determined or predicted in the 
context of substantially all of the reactions that affect the 
particular reaction in a cell or substantially all of the 30 

reactions that occur in a cell. Examples of a particular 
reaction included in the term are production of biomass 
precursors, production of a protein, production of an amino 
acid, production of a purine, production of a pyrimidine, 
production of a lipid, production of a fatty acid, production 35 

of a cofactor, production of a bioactive small molecule, flux 
through a particular reaction or set of reactions, enzyme 
activity, or transport of a metabolite. The activities or 
reactions in the physiological function can be increased or 
decreased. A physiological function can include an emergent 40 

property which emerges from the whole but not from the 
sum of parts where the parts are observed in isolation. 

The methods of the invention can be used to determine the 
effects of one or more environmental components or con­
ditions on an activity of a cell. As set forth above, an 
exchange reaction can be added to a reaction network data 
structure corresponding to uptake of an environmental com­
ponent, release of a component to the environment, or other 
environmental demand. The effect of the environmental 
component or condition can be further investigated by 
running simulations with adjusted values for the metabolic 
flux vector of the exchange reaction target reaction to reflect 
a finite maximum or minimum flux value corresponding to 
the effect of the environmental component or condition. The 
environmental component can be, for example an alternative 
carbon source or a metabolite that when added to the 
environment of a cell can be taken up and metabolized. The 
environmental component can also be a combination of 
components present for example in a minimal medium 
composition. Thus, methods disclosed herein can be used to 
determine an optimal or minimal medium composition that 

As used herein, the term "metabolic function" refers to 
flux through a particular or set of reactions, and thereby 
refers to a type of physiological function. 45 is capable of supporting a particular activity of a cell. 

The invention provides methods of generating cells 
capable of performing a physiological function. Possible 
genotypes of cells capable of performing a physiological 
function can first be determined. Cells having the predicted 
genotypes can then be generated. The cells can be generated 
by functionally deleting genes or gene products, or increas-
ing or decreasing expression or activity of genes or gene 
products. In some instances, the cells undergo adaptive 
evolution to achieve the desired physiological function. 

A physiological function of cellular reactions can be 
determined using a reaction map to display a flux distribu­
tion. A reaction map (network map) can be used to view 
reaction networks at a variety of levels. In the case of a 
cellular metabolic reaction network, a reaction map can 50 

contain the entire reaction complement representing a global 
perspective. Alternatively, a reaction map can focus on a 
particular region of metabolism such as a region correspond­
ing to a reaction subsystem described above or even on an 
individual pathway or reaction. 55 Adaptive evolution involves culturing a population of cells 

for many generations under conditions for which they are 
not optimally adapted to select for variants with the desired 
physiological function. 

Methods disclosed herein can be used to determine the 
activity of a plurality of cellular reactions including, for 
example, biosynthesis of an amino acid, degradation of an 
amino acid, biosynthesis of a purine, biosynthesis of a 
pyrimidine, biosynthesis of a lipid, metabolism of a fatty 
acid, biosynthesis of a cofactor, production of a hormone, 
production of a bioactive small molecule, transport of a 
metabolite and metabolism of an alternative carbon source. 

Methods disclosed herein can be used to determine 
genetic variations of a cell or organism that enable it to 
perform a particular physiological function. The physiologi­
cal function may comprise, for example, biosynthesis of an 

"Functional deletion" or its grammatical equivalents 
60 refers to any modification to a cell that ablates, reduces, 

inhibits, or otherwise disrupts production of a gene product, 
renders the gene product non-functional, or otherwise 
reduces or ablates the gene product's activity. "Gene prod­
uct" refers to a protein or polypeptide encoded and produced 

65 by a particular gene. "Gene" as used herein refers to a 
nucleic acid sequence capable of producing a gene product 
and may include such genetic elements as a coding sequence 
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together with any other genetic elements required for tran­
scription and/or translation of the coding sequence. Such 
genetic elements may include a promoter, an enhancer, 
and/or a ribosome binding site (RBS), among others. In 
some versions of the invention, "functionally deleted gene 5 

product or homolog thereof' means that the gene is mutated 
to an extent that a gene product or homolog thereof is not 
produced at all. 

One of ordinary skill in the art will appreciate that there 
are many well-known ways to functionally delete a gene 10 

product. For example, functional deletion can be accom­
plished by introducing one or more genetic modifications. 
As used herein, "genetic modifications" refer to any differ­
ences in the nucleic acid composition of a cell, whether in 
the cell's native chromosome or in endogenous or exog- 15 

enous non-chromosomal plasmids harbored within the cell. 
Examples of genetic modifications that may result in a 
functionally deleted gene product include but are not limited 
to mutations, partial or complete deletions, insertions, or 
other variations to a coding sequence or a sequence con- 20 

trolling the transcription or translation of a coding sequence; 
placing a coding sequence under the control of a less active 
promoter; blocking transcription of the gene with a trans­
acting DNA binding protein such as a TAL effector or 
CRISPR guided Cas9; and expressing ribozymes or anti- 25 

sense sequences that target the mRNA of the gene of interest, 
etc. In some versions, a gene or coding sequence can be 
replaced with a selection marker or screenable marker. 
Various methods for introducing the genetic modifications 
described above are well known in the art and include 30 

homologous recombination, among other mechanisms. See, 
e.g., Green et al., Molecular Cloning: A laboratory manual, 
4th ed., Cold Spring Harbor Laboratory Press (2012) and 
Sambrook et al., Molecular Cloning: A Laboratory Manual, 

20 
70%, less than about 65%, less than about 60%, less than 
about 55%, less than about 50%, less than about 45%, less 
than about 40%, less than about 35%, less than about 30%, 
less than about 25%, less than about 20%, less than about 
15%, less than about 10%, less than about 5%, less than 
about 1 %, or about 0% of the amount of the non-functionally 
deleted gene product. 

In certain versions of the invention, the functionally 
deleted gene product may result from a genetic modification 
in which at least 1, at least 2, at least 3, at least 4, at least 5, 
at least 10, at least 20, at least 30, at least 40, at least 50, or 
more nonsynonymous substitutions are present in the gene 
or coding sequence of the gene product. 

In certain versions of the invention, the functionally 
deleted gene product may result from a genetic modification 
in which at least 1, at least 2, at least 3, at least 4, at least 5, 
at least 10, at least 20, at least 30, at least 40, at least 50, or 
more bases are inserted in the gene or coding sequence of the 
gene product. 

In certain versions of the invention, the functionally 
deleted gene product may result from a genetic modification 
in which at least about 1 %, at least about 5%, at least about 
10%, at least about 15%, at least about 20%, at least about 
25%, at least about 30%, at least about 35%, at least about 
40%, at least about 50%, at least about 55%, at least about 
60%, at least about 65%, at least about 70%, at least about 
75%, at least about 80%, at least about 85%, at least about 
90%, at least about 95%, or about 100% of the gene 
product's gene or coding sequence is deleted or mutated. 

In certain versions of the invention, the functionally 
deleted gene product may result from a genetic modification 
in which at least about 1 %, at least about 5%, at least about 
10%, at least about 15%, at least about 20%, at least about 
25%, at least about 30%, at least about 35%, at least about 

35 40%, at least about 50%, at least about 55%, at least about 
60%, at least about 65%, at least about 70%, at least about 
75%, at least about 80%, at least about 85%, at least about 
90%, at least about 95%, or about 100% of a promoter 

3rd ed., Cold Spring Harbor Laboratory Press (2001). Vari­
ous other genetic modifications that functionally delete a 
gene product are described in the examples below. Func­
tional deletion can also be accomplished by inhibiting the 
activity of the gene product, for example, by chemically 
inhibiting a gene product with a small molecule inhibitor, by 40 

expressing a protein that interferes with the activity of the 
gene product, or by other means. 

driving expression of the gene product is deleted or mutated. 
In certain versions of the invention, the functionally 

deleted gene product may result from a genetic modification 
in which at least about 1 %, at least about 5%, at least about 
10%, at least about 15%, at least about 20%, at least about 
25%, at least about 30%, at least about 35%, at least about 

In certain versions of the invention, the functionally 
deleted gene product may have less than about 95%, less 
than about 90%, less than about 85%, less than about 80%, 
less than about 75%, less than about 70%, less than about 
65%, less than about 60%, less than about 55%, less than 
about 50%, less than about 45%, less than about 40%, less 
than about 35%, less than about 30%, less than about 25%, 
less than about 20%, less than about 15%, less than about 
10%, less than about 5%, less than about 1 %, or about 0% 
of the activity of the non-functionally deleted gene product. 

45 40%, at least about 50%, at least about 55%, at least about 
60%, at least about 65%, at least about 70%, at least about 
75%, at least about 80%, at least about 85%, at least about 
90%, at least about 95%, or about 100% of an enhancer 
controlling transcription of the gene product's gene is 

50 deleted or mutated. 

In certain versions of the invention, a cell with a func­
tionally deleted gene product may have less than about 95%, 
less than about 90%, less than about 85%, less than about 55 

80%, less than about 75%, less than about 70%, less than 
about 65%, less than about 60%, less than about 55%, less 
than about 50%, less than about 45%, less than about 40%, 
less than about 35%, less than about 30%, less than about 
25%, less than about 20%, less than about 15%, less than 60 

about 10%, less than about 5%, less than about 1 %, or about 
0% of the activity of the gene product compared to a cell 
with the non-functionally deleted gene product. 

In certain versions of the invention, the functionally 
deleted gene product may be expressed at an amount less 65 

than about 95%, less than about 90%, less than about 85%, 
less than about 80%, less than about 75%, less than about 

In certain versions of the invention, the functionally 
deleted gene product may result from a genetic modification 
in which at least about 1 %, at least about 5%, at least about 
10%, at least about 15%, at least about 20%, at least about 
25%, at least about 30%, at least about 35%, at least about 
40%, at least about 50%, at least about 55%, at least about 
60%, at least about 65%, at least about 70%, at least about 
75%, at least about 80%, at least about 85%, at least about 
90%, at least about 95%, or about 100% of a sequence 
controlling translation of gene product's mRNAis deleted or 
mutated. 

In certain versions of the invention, the decreased activity 
or expression of the functionally deleted gene product is 
determined with respect to the activity or expression of the 
gene product in its unaltered state as found in nature. In 
certain versions of the invention, the decreased activity or 
expression of the functionally deleted gene product is deter-
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should demonstrate comparable activities and, if an enzyme, 
participate in the same or analogous pathways. "Orthologs" 
are genes or coding sequences thereof in different species 
that evolved from a common ancestral gene by speciation. 

mined with respect to the activity or expression of the gene 
product in its form in a corresponding cell. In certain 
versions, the genetic modifications giving rise to a function­
ally deleted gene product are determined with respect to the 
gene or coding sequence in its unaltered state as found in 
nature. In certain versions, the genetic modifications giving 
rise to a functionally deleted gene product are determined 
with respect to the gene or coding sequence in its form in a 
corresponding cell. 

5 Normally, orthologs retain the same or similar function in 
the course of evolution. As used herein "orthologs" are 
included in the term "homologs". 

For sequence comparison and homology determination, 
one sequence typically acts as a reference sequence to which 

As used herein, "corresponding cell" refers to a second 
cell having the same or substantially same genetic and 
proteomic composition as a first cell, with the exception of 
genetic and proteomic differences resulting from the modi­
fications described herein for the first cell. 

10 test sequences are compared. When using a sequence com­
parison algorithm, test and reference sequences are input 
into a computer, subsequence coordinates are designated, if 
necessary, and sequence algorithm program parameters are 
designated. The sequence comparison algorithm then calcu-

The cells of the invention may be modified to express or 
increase expression of one or more genes involved in 
carrying out the physiological function. Modifying a cell to 
express or increase expression of a gene can be performed 
using any methods currently known in the art or discovered 

15 !ates the percent sequence identity for the test sequence(s) 
relative to the reference sequence based on the designated 
program parameters. A typical reference sequence of the 
invention is a nucleic acid or amino acid sequence corre­
sponding to coding sequences, genes, or gene products 

20 described herein (see below) or those identified by the 
methods described herein. 

in the future. Examples include genetically modifying the 
cell and culturing the cell in the presence of factors that 
increase expression of the gene. Suitable methods for 
genetic modification include but are not limited to placing 
the coding sequence under the control of a more active 
promoter, increasing the copy number of the gene, and/or 25 

introducing a translational enhancer on the gene (see, e.g., 
Olins et al. Journal of Biological Chemistry, 1989, 264(29): 
16973-16976). Increasing the copy number of the gene can 

Optimal alignment of sequences for comparison can be 
conducted, e.g., by the local homology algorithm of Smith 
& Waterman, Adv. Appl. Math. 2:482 (1981), by the homol­
ogy alignment algorithm of Needleman & Wunsch, J. Mo!. 
Biol. 48:443 (1970), by the search for similarity method of 
Pearson & Lipman, Proc. Nat'!. Acad. Sci. USA 85:2444 
(1988), by computerized implementations of these algo­
rithms (GAP, BESTFIT, PASTA, and TFASTA in the Wis­
consin Genetics Software Package, Genetics Computer 
Group, 575 Science Dr., Madison, Wis.), or by visual 
inspection (see Current Protocols in Molecular Biology, F. 
M. Ausubel et al., eds., Current Protocols, a joint venture 
between Greene Publishing Associates, Inc. and John Wiley 
& Sons, Inc., (supplemented through 2008)). 

One example of an algorithm that is suitable for deter­
mining percent sequence identity and sequence similarity for 
purposes of defining homologs is the BLAST algorithm, 
which is described in Altschul et al., J. Mal. Biol. 215:403-

be performed by introducing additional copies of the gene to 
the cell, i.e., by incorporating one or more exogenous copies 30 

of the native gene or a heterologous homo log thereof into the 
cellular genome, by introducing such copies to the cell on a 
plasmid or other vector, or by other means. "Exogenous" 
used in reference to a genetic element means the genetic 
element is introduced to a cell by genetic modification. 35 

"Heterologous" used in reference to a genetic element 
means that the genetic element is derived from a different 
species. A promoter that controls a particular coding 
sequence is herein described as being "operationally con­
nected" to the coding sequence. 

Proteins and/or protein sequences are "homologous" 
when they are derived, naturally or artificially, from a 
common ancestral protein or protein sequence. Similarly, 
nucleic acids and/or nucleic acid sequences are homologous 
when they are derived, naturally or artificially, from a 45 

common ancestral nucleic acid or nucleic acid sequence. 
Homology is generally inferred from sequence similarity 
between two or more nucleic acids or proteins ( or sequences 
thereof). The precise percentage of similarity between 
sequences that is useful in establishing homology varies 50 

with the nucleic acid and protein at issue, but as little as 25% 
sequence similarity ( e.g., identity) over 50, 100, 150 or more 
residues (nucleotides or amino acids) is routinely used to 
establish homology ( e.g., over the full length of the two 
sequences to be compared). Higher levels of sequence 55 

similarity (e.g., identity), e.g., 30%, 35% 40%, 45% 50%, 
55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 99% 

40 410 (1990). Software for performing BLAST analyses is 
publicly available through the National Center for Biotech­
nology Information. This algorithm involves first identifying 
high scoring sequence pairs (HSPs) by identifying short 

or more, can also be used to establish homology. Accord­
ingly, homologs of the coding sequences, genes, or gene 
products described herein include coding sequences, genes, 60 

or gene products, respectively, having at least about 30%, 
35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 
85%, 90%, 95%, or 99% identity to the coding sequences, 
genes, or gene products described herein. Methods for 
determining sequence similarity percentages (e.g., BLASTP 65 

and BLAS TN using default parameters) are described herein 
and are generally available. The homologous proteins 

words of length W in the query sequence, which either 
match or satisfy some positive-valued threshold score T 
when aligned with a word of the same length in a database 
sequence. T is referred to as the neighborhood word score 
threshold (Altschul et al., supra). These initial neighborhood 
word hits act as seeds for initiating searches to find longer 
HSPs containing them. The word hits are then extended in 
both directions along each sequence for as far as the cumu-
lative alignment score can be increased. Cumulative scores 
are calculated using, for nucleotide sequences, the param­
eters M (reward score for a pair of matching residues; 
always >0) and N (penalty score for mismatching residues; 
always <0). For amino acid sequences, a scoring matrix is 
used to calculate the cumulative score. Extension of the 
word hits in each direction are halted when: the cumulative 
alignment score falls off by the quantity X from its maxi­
mum achieved value; the cumulative score goes to zero or 
below, due to the accumulation of one or more negative-
scoring residue alignments; or the end of either sequence is 
reached. The BLAST algorithm parameters W, T, and X 
determine the sensitivity and speed of the alignment. The 
BLAS TN program (for nucleotide sequences) uses as 
defaults a wordlength (W) of 11, an expectation (E) of 10, 
a cutoff of 100, M=5, N=-4, and a comparison of both 
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strands. For amino acid sequences, the BLASTP program 
uses as defaults a wordlength (W) of 3, an expectation (E) 
of 10, and the BLOSUM62 scoring matrix (see Henikoff & 
Henikoff (1989) Proc. Natl. Acad. Sci. USA 89:10915). 

In addition to calculating percent sequence identity, the 
BLAST algorithm also performs a statistical analysis of the 
similarity between two sequences (see, e.g., Karlin & Alts­
chul, Proc. Natl.Acad. Sci. USA90:5873-5787 (1993)). One 
measure of similarity provided by the BLAST algorithm is 
the smallest sum probability (P(N)), which provides an 
indication of the probability by which a match between two 
nucleotide or amino acid sequences would occur by chance. 
For example, a nucleic acid is considered similar to a 
reference sequence if the smallest sum probability in a 
comparison of the test nucleic acid to the reference nucleic 
acid is less than about 0.1, more preferably less than about 
0.01, and most preferably less than about 0.001. The above­
described techniques are useful in identifying homologous 
sequences for use in the methods described herein. 

The terms "identical" or "percent identity", in the context 
of two or more nucleic acid or polypeptide sequences, refer 
to two or more sequences or subsequences that are the same 
or have a specified percentage of amino acid residues or 
nucleotides that are the same, when compared and aligned 
for maximum correspondence, as measured using one of the 
sequence comparison algorithms described above ( or other 
algorithms available to persons of skill) or by visual inspec­
tion. 

The phrase "substantially identical", in the context of two 
nucleic acids or polypeptides refers to two or more 
sequences or subsequences that have at least about 60%, 
about 65%, about 70%, about 75%, about 80%, about 85%, 
about 90, about 95%, about 98%, or about 99% or more 
nucleotide or amino acid residue identity, when compared 
and aligned for maximum correspondence, as measured 
using a sequence comparison algorithm or by visual inspec­
tion. Such "substantially identical" sequences are typically 
considered to be "homologous" without reference to actual 
ancestry. Preferably, the "substantial identity" exists over a 
region of the sequences that is at least about 50 residues in 
length, more preferably over a region of at least about 100 
residues, and most preferably, the sequences are substan­
tially identical over at least about 150 residues, at least about 
250 residues, or over the full length of the two sequences to 
be compared. 

24 
configured to overexpress an enzyme produces the enzyme 
at a greater amount than a cell that does not include the 
recombinant nucleic acid. 

The cells of the invention may comprise any type of cell. 
5 The cells may be isolated, dispersed, or in the form of an 

organ or tissue. Exemplary cells comprise microorganisms. 
The microorganisms may be prokaryotic or eukaryotic. 
Suitable prokaryotes include bacteria and archaea. Suitable 
types of bacteria include gram-positive bacteria, gram-nega-

10 tive bacteria, ungrouped bacteria, phototrophs, lithotrophs, 
and organotrophs. Suitable eukaryotes include yeast and 
other fungi. 

The invention also provides methods for increasing or 
decreasing compound production or increasing or decreas-

15 ing select enzyme activities with the cells of the present 
invention. The methods involve culturing the microorgan­
ism in conditions suitable for growth of the cell. In some 
instances, the cells undergo adaptive evolution to achieve 
the desired physiological function. The cell either directly 

20 produces the desired compound or produces precursors from 
which the desired compound is spontaneously converted. 
The desired compound may be any metabolite the cell 
naturally generates or any metabolite the cell does not 
naturally generate but is capable of generating through 

25 genetic modification. 
The select enzyme activity may be the activity of an 

enzyme naturally encoded in the organism's genome or may 
be an enzyme that is heterologously expressed. Conditions 
for culturing cells are well-known in the art. Such conditions 

30 include providing suitable carbon sources for the particular 
cell along with suitable micronutrients. For eukaryotic cells 
and heterotrophic bacteria, suitable carbon sources include 
various carbohydrates. Such carbohydrates may include 
biomass or other suitable carbon sources known in the art. 

35 For phototrophic bacteria, suitable carbon sources include 
CO2 , which is provided together with light energy. 

Methods of producing a desired compound with the cells 
of the present invention may also include isolating the 
desired compound from the cell. Methods of isolating vari-

40 ous compounds from cells are well-known in the art. 
The elements and method steps described herein can be 

used in any combination whether explicitly described or not. 
All combinations of method steps as used herein can be 

performed in any order, unless otherwise specified or clearly 
45 implied to the contrary by the context in which the refer­

enced combination is made. 

The cells of the invention may include at least one 
recombinant nucleic acid configured to express or overex­
press a particular enzyme. "Recombinant" as used herein 50 

with reference to a nucleic acid molecule or polypeptide is 
one that has a sequence that is not naturally occurring, has 

As used herein, the singular forms "a," "an," and "the" 
include plural referents unless the content clearly dictates 
otherwise. 

Numerical ranges as used herein are intended to include 
every number and subset of numbers contained within that 
range, whether specifically disclosed or not. Further, these 
numerical ranges should be construed as providing support 
for a claim directed to any number or subset of numbers in 
that range. For example, a disclosure of from 1 to 10 should 
be construed as supporting a range of from 2 to 8, from 3 to 

a sequence that is made by an artificial combination of two 
otherwise separated segments of sequence, or both. This 
artificial combination can be achieved, for example, by 55 

chemical synthesis or by the artificial manipulation of iso­
lated segments of nucleic acid molecules or polypeptides, 
such as genetic engineering techniques. "Recombinant" is 
also used to describe nucleic acid molecules that have been 
artificially modified but contain the same regulatory 60 

sequences and coding regions that are found in the organism 
from which the nucleic acid was isolated. A recombinant cell 

7, from 5 to 6, from 1 to 9, from 3.6 to 4.6, from 3.5 to 9.9, 
and so forth. 

All patents, patent publications, and peer-reviewed pub­
lications (i.e., "references") cited herein are expressly incor­
porated by reference to the same extent as if each individual 
reference were specifically and individually indicated as 
being incorporated by reference. In case of conflict between 
the present disclosure and the incorporated references, the 

is one that contains a recombinant nucleic acid molecule or 
polypeptide. "Overexpress" as used herein means that a 
particular gene product is produced at a higher level in one 
cell, such as a recombinant cell, than in a corresponding cell. 
For example, a cell that includes a recombinant nucleic acid 

65 present disclosure controls. 
It is understood that the invention is not confined to the 

particular construction and arrangement of parts herein 
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illustrated and described, but embraces such modified forms 
thereof as come within the scope of the claims. 

The following examples are intended to illustrate but not 
limit the invention. 

EXAMPLES 

Introduction to Examples 
Computational modelling of cells has enabled both quali­

tative and quantitative descriptions and predictions of cel­
lular behavior. In particular, constraint-based modelling 
methods utilizing genome-scale metabolic models have 
been widely used to predict cellular fluxes. Flux Balance 
Analysis (FBA)-which predicts the flux distribution in a 
cell-is the most fundamental of these methods and has 
been in use for over twenty years (Orth 2010). FBAhas been 
utilized in drug discovery (Kim 2012), biofuel production 
(Liu 2012), and other biotechnology applications. FBA has 
been extended to predict cellular perturbations for flux 
coupling (Burgard 2004), predictions of non-steady state 
behavior (Segre 2002, Shlomi 2005, Kim 2012), incorpora­
tion of regulatory networks (Covert 2008), the incorporation 
of expression data (Machado 2014), and numerous other 
applications. FBA assumes that the reaction rates in a cell 
are chosen to maximize an objective function, such as 
cellular growth. FBA quickly calculates cellular states and 
its predictions have been found to be consistent with experi­
ments under a wide variety of conditions for evolved cells. 

FBA can make inaccurate flux predictions when cells 
have not evolved to maximize growth or where other 
processes (e.g., regulation) limit metabolic fluxes. For 
example, when cells are perturbed from their optimal wild 
type state, by changing media conditions or removing genes, 
they often do not exhibit maximum growth. Instead, a 
variety of perturbation methods (Segre 2002, Shlomi 2005, 
Kim 2012) have been developed which predict fluxes that 
are close to the un-perturbed wild-type flux distribution. Of 
particular note, the minimization of metabolic adjustments 
(MOMA) minimizes the squared difference between fluxes 

26 
cannot be incorporated directly without considering thermo­
dynamic and kinetic information. These methods again 
require extensive knowledge of the organism and the kinet­
ics of the particular enzymes in vivo, something that is 

5 unlikely to be available for most organisms. 
In the following Examples, we propose and evaluate 

variations of a novel method which incorporates easily 
measured extracellular fluxes for a parental strain and mul­
tiple perturbed reference strains ( e.g. knockouts). This 

10 method, referred to herein as REiative Phenotypes for Paren­
tal Strain estimation (REPPS), considers the available data 
for the parental and perturbed reference strains to describe 
the intracellular flux distributions in the parental strain. 
Using this method, we are able to better predict the intrac-

15 ellular flux distribution for the parental strain. FIGS. 1 and 
2 show this process in detail in comparison to RELATCH. 
RELATCH utilizes measured extracellular fluxes, MFA 
data, and gene expression data to first estimate fluxes and 
enzyme contributions in the parental strain and then predicts 

20 fluxes in derived strains, such as gene knockouts. REPPS 
similarly uses experimental data to improve the parental 
strain flux estimation, which helps improve flux predictions 
of subsequently derived strains. Unlike RELATCH, REPPS 
does not require expression or MFA data. Instead, REPPS 

25 utilizes extracellular flux data from multiple reference 
strains and the parental strain. These reference strains are 
functionally equivalent to the derived strains, in that they are 
all related to the parental strain (e.g. the reference strains and 
derived strains are single gene knockouts of a parental 

30 strain). Data from the reference strains are used to estimate 
fluxes in the parental strains, and these flux estimates are 
subsequently used to predict fluxes in the derived strains. By 
utilizing only a small number of reference strains, we can 
greatly improve the accuracy of the parental strain flux 

35 estimation and thus improve the prediction of derived-strain 
phenotypes. Improving flux estimations can reduce the 
number of experiments necessary to create a desired pro­
duction strain, and thus can improve the ability to engineer 
strains in novel organisms. 

in a knockout strain and the wild-type strain (Segre 2002). 40 

These methods are more accurate for perturbed states than 
FBA; however, adaptive evolution of the perturbed strain 
may eventually lead to flux distributions more similar to 
those predicted by FBA. 

Example 1 provides an example of REPPS using extra­
cellular flux data in addition to gene expression data. 
Example 2 provides an example of REPPS using extracel­
lular flux data without gene expression data. 

Measurements of sugar and oxygen uptake rates or by- 45 

product ( e.g., acetate, lactate, CO2 ) production can easily be 
incorporated into constraint-based models to further con­
strain the FBA problem to better predict the observed 
phenotype. Unfortunately, many different intracellular flux 
distributions could be consistent with these measurements 50 

(Kim 2012, Mahadevan 2003). In order to further constrain 
the predicted flux distribution, intracellular fluxes can be 
measured using 13C metablic flux analysis (MFA) (Zamboni 
2009). While MFA estimates intracellular fluxes with high 
precision, the experiments are more difficult and costly to 55 

perform than experiments measuring extracellular fluxes. As 

Example 1 

1.1 Materials and Methods 
1.1.1 Experimental Data, Genome Scale Metabolic Models, 
and Constraint-Based Methods 

Experimental data for both the wild-type and knockout 
mutants of Escherichia coli K-12 were obtained from the 
Keio University E. coli multi-omics database of in-frame 
single-gene deletion strains (Ishii et al. 2007). This dataset 
includes 13C metabolic flux analysis (MFA), extracellular 
flux, and gene expression data which were used in this study. 
All MFA fluxes were reported as a percentage of the glucose 
substrate uptake. In order to convert these values to actual 
fluxes, they were multiplied by the glucose consumption rate 
which was measured separately and reported as mmol/g-dry 

a result, MF A has been applied to a relatively few number of 
organisms. Therefore, in situations where we desire high 
quality descriptive modelling data, it is unlikely that MFA 
data is available. 

Other approaches for improving flux predictions have 
used expression data, proteomics data, or transcriptional 
regulatory models to restrict fluxes through parts of the 
metabolic network. However, a recent study of existing 
expression-based methods showed existing approaches 
make worse predictions than FBA (Machado 2014). Outside 
of transcriptomic and proteomic data, metabolomics data 

60 weight (gDW) of biomass/hour. All mRNA expression data 
was reported as copy number/µg-total RNA. The genome­
scale metabolic model of E. coli, iJR904 (Reed et al. 2003) 
was used in this study. 

Fluxes in reference strains (i.e., mutant flux distributions, 
65 denoted by u1." used to estimate the parental flux distribu­

tion) were calculated using either parsimonious flux balance 
analysis (pFBA) (Lewis et al. 2010) or with a modified 
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RELATCH Fit equation which are described below (see 
1.1.5 and 1.1.2 for details). pFBA predictions were com­
puted by constraining the growth rate to the measured value 
and fitting the measured extracellular fluxes before mini­
mizing the total flux usage. Parental strain flux distributions 5 

were estimated using either pFBA (see 1.1.5 for details, 
Lewis et al. 2010), modified RELATCH Fit (see 1.1.2 for 
details), or REPPS (see 1.1.3 for details). For REPPS, flux 
estimates for a set of reference strains (referred to as the 
reference set, R) were used to estimate the parental strain 10 

fluxes (w). Additional flux distributions for derived strains 
(v) that are not part of the reference strain set were pre­
dicted-using the parental strain as a starting point-using 
either RELATCH (Kim et al. 2012) or MOMA (Segre et al. 
2002) as described in section 1.1.5. These derived strain's 15 

flux distributions were also calculated using pFBA (Lewis et 
al. 2010) and the modified RELATCH Fit (see 1.1.2 for 
details) for comparison. 

All optimization problems were solved using CPLEX (for 
pFBA), CONOPT (for RELATCH Fit, MOMA, RELATCH, 20 

and REPPS), or IPOPT (for flux variability analysis) 
accessed using GAMS 24.1.3 (GAMS Development Corp.; 
1217 Potomac St, NW; Washington D.C. 20007, USA). 

Yr= 

28 
-continued 

UJ,':;_,?. 0 V j E J, V n E N(j) 

UJ,':;_, = 0 V {j E JGPR(g), n E N(j, g) I g E G~0
} 

(le) 

(lf) 

(lg) 

1.1.3 Predicting the Parental Flux Distribution Using 
REPPS 

Once the reference strain's flux distributions and corre­
sponding enzyme contributions for all the mutants in the 
reference set R have been calculated, we then proceeded to 
use REPPS to calculate the parental strain flux distribution 
(w) and enzyme contributions (Wenz). 

While all flux estimates for the reference strains (in R) can 
be used, there may be differences in the quality of fit 
between experimental measurements and model predictions 
(measured as Yr for strain r) across the different reference 
strains. In the reference flux distribution estimation (Eq. 1), 
the objective value (Yr) is a measure of the difficulty of fitting 
the flux distribution to the experimentally measured data. 1.1.2 Estimating the Reference Flux Distributions Using 

RELATCH Fit 
The flux distribution (u) and enzyme contribution (U enz) 

for each reference strain within a training set of refer~nce 
strains (R) were first estimated. This requires the problem 
(Eqs. la-lg) to be solved repeatedly for each reference strain 
(r) within R. 

25 Therefore, a weighting factor (fr) is defined which will vary 
linearly from 0.5 to 1.5 depending upon the quality of the fit, 
with a larger weighting factor corresponding to a better fit 
(Eq. 2). 

30 

In order to calculate these values without MFA data, the 
RELATCH fit function (Kim et al. 2012) was slightly 
modified to use only experimentally measured fluxes (uex) 
within the set of measured extracellular fluxes (J ) as well 
as gene expression data (E). The flux data is in';;"o~orated 35 

into the first term of the objective function variable (Yr) (Eq. 
lg), where the sum-squared difference between the experi­
mentally measured and estimated fluxes. The second term 
weights enzyme contributions for enzymes by their expres­
sion levels. These enzyme contributions are non-negative 40 

(Eq. le) and indicate how much flux each isozyme can 
contribute towards total flux through a reaction. The enzyme 
contribution is only used for reactions with a gene to protein 
to reaction associations (JGPR) and have known associated 
enzymes (N(j)). The enzyme contributions, when summed 45 

across isozymes, are the maximum capacity of enzymes to 
catalyze a reaction in either direction (Eq. ld). Steady-state 
mass balance and reaction irreversibility (J'rr contains only 
reactions which are irreversible) constraints are also 
enforced (Eq. lb-c). While the reference strains are not 50 

necessarily limited to knockout strains, in this study we 
performed analysis solely using knockout strains as the 
reference stains. Therefore, for each mutant in the reference 
set R, we added constraints to remove enzyme contributions 
for genes which have been knocked out (GK0 ) (Eq. lf). The 55 

sets J,rr and yx are subsets of the set of all reactions J. 

minu,uenz Yr V r E R 

f,=1.5- y,-min(y,lrER) VrER 
max(y, Ir E R)-min(y, Ir ER) 

(2) 

REPPS also uses relative differences between the gene 
expression data for the parental strain (E Ps) and each 
reference strain (Eg,r) for every measured g~ne (~e). The 
direction of the gene expression difference is stored as a 
directional parameter (d) (Eq. 3). 

dg.r = 1 0 

-1 

E:s > Eg,r 

Eis= Eg.r V g E Gg', V r ER 

E:s < Eg,r 

(3) 

Once these directional parameters have been defined, it is 
then possible to solve REPPS (Eq. 4) for the parental flux 
distribution and enzyme contributions. The objective func­
tion for REPPS contains three terms (Eq. 4a) which can be 
weighted by selecting a, ~' and Ii to adjust their relative 
contributions to the objective function. The first term (cex) 
represents the sum-squared difference between the experi­
mentally measured (wex) and estimated fluxes (Eq. 40 nor­
malized by the number of measured fluxes. The second term 
(crs) measures the sum-squared distance between the paren-
tal and reference strains' fluxes, with the difference being 
scaled by a weighting factor (f" indicating the quality of 
each reference strain's fit, Eq. 2), the number of reference (la) 

(lb) 

60 strains, and the number of estimated parental fluxes (Eq. 4g). 

S.T ~jcl S;.J · Uj.r = 0 Vi E / 

U j,r 2. 0 V j E irr 

- '\' ue.nz s u. s '\' ue_nz V . E ]CPR 
L...JnEN(j) J,n,r J,r L...JnEN(j) J,n,r J 

(le) 

(ld) 65 

Finally, the third term (cge)-in combination with con­
straints 4i-j-quantifies violations (e) of the enzyme contri­
butions' bounds defined by gene expression differences (Eq. 
4h), which are scaled by the fit quality factor (fr) and 
normalized by the number of genes with measured expres­
sion and number of reference strains. If the change in 
enzyme contribution between the parental and a reference 
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strain has an opposite sign to the change in gene expression 
data for the respective strains, then the enzyme contribution 
directional violation term (eg,r) becomes positive (Eq. 4i) 
and is penalized in the objective function (Eq. 4a). If, 
however, the expression and enzyme contribution change is 5 

in the same direction then eg,r can be zero (Eq. 4i). The 
remaining constraints (Eq. 4b-e) are analogous to those 
described in section 1.1.2 (Eq. 1 b-e) except the parental 
strain fluxes (w) and enzyme contributions (Wenz) are used. 

10 

WJ,~' 2 0 V j E ]CPR, V n E N (j) 

e > d · '\' '\' (U'"" - W'"") 
g,r - g,r L...JJEJGPR L...JnEN(g) J,n,r J,n 

V g E Gg', V r ER 

eg,r2.0 VrER 

(4a) 

(4b) 

(4c) 

(4d) 

15 

(4e) 20 

(4f) 

(4g) 25 

(4h) 

(4i) 30 

(4j) 

30 
values of the experimentally measured fluxes that are con­
sistent with mass balance (Eq. 6b) and reaction irreversibil­
ity constraints (Eq. 6c) at the experimental growth rate. 
Once the optimal experimentally measured flux values 
(w/x) were found they were used to find a flux distribution 
(w) that was consistent with these values and which mini­
mized the absolute value of the total fluxes (Eq. 6). The 
resulting flux distribution is a pFBA solution. Since alternate 
equivalent solutions exist to the pFBA problem, we found 
the pFBA solution that further maximized the MSE (see 
section 1 .4) to represent the worst case scenario. 

mi11w" . lwJI 
L..JJEJ 

S.T. ~JcJS;,J·W1=0 ViEI 

Wj = wy V j E Jex 

(6a) 

(6b) 

(6c) 

(6d) 

Fluxes in derived strains that were not part of the reference 
set R were calculated using either MOMA (Segre et al. 
2002) or RELATCH (Kim et al. 2012). MOMA (Eq. 7) was 
used to calculate the flux distribution in a derived strain (v) 
by minimizing the Euclidian distance between the derived 
strain's flux distribution and a previously estimated parental 
strain's flux distribution (Eq. 7a). As before, steady-state 
mass balance (Eq. 7b) and irreversible reaction constraints 
are enforced (Eq. 7c). Finally, MOMA constrains fluxes to 

1.1.4 Error Calculation and Plotting 
For the majority of these analyses, the mean sum-squared 

error (MSE) was used as a measure of the accuracy of the 
flux predictions. This was defined as the sum of the squared 

35 be zero that depend on the knocked out gene(s) (Eq. 7d). For 
this study, fluxes were only constrained to be zero if all 
isozymes for a particular reaction were deleted. 

f ~J;)(;s~i::e:i~ ~t~7)x:~i::n:~::=~~::it ~:e1i~::~ 40 
(7a) 

S.T. ~jcl S;,J · VJ = 0 Vi E / 
(7b) 

(7c) 

(7d) 

flux (w) divided by the number of fluxes being compared 
(Eq. 5). These predicted fluxes could be for parental strain 
that were calculated using pFBA (see 1.1.5 for details), 
RELATCH Fit (see 1.1.2 for details, using parental strain 

45 
instead ofreference strain experimental data), or REPPS; or 
for knockout mutants (where w is replaced with v) that were 
calculated using RELATCH or MOMA (see 1.1.5 for 
details). For the parental strain, the expression, extracellular 

RELATCH (Kim et al. 2012) was also used to calculate flux 
50 distributions in derived strains that were not part of the 

reference set R. RELATCH differs from MOMA in several 

flux, and MFA data from experiment RF05 was used. 

1 
MSE- --·" - IIJMFAII L,jcJMFA 

(5) 

All plots were made using R version 3.1 (R Foundation for 
Statistical Computing, 2013) and the 'gdxrrw' package 
version 0.3.1 for importing data between GAMS and R. 
1.1.5 Flux Predictions Using pFBA, MOMA, and 
RELATCH 

pFBA (Lewis et al. 2010) was used to calculate fluxes in 
the parental strain for comparison to REPPS. pFBA mini­
mizes the absolute value of the total fluxes (Eq. 6a). This 
problem was further constrained by the set of experimentally 
measured fluxes (Eq. 6d). The experimentally measured flux 
values were first adjusted by minimizing the Euclidean 
distance between their measured values and the predicted 

significant ways. First, RELATCH treats reactions (and 
enzyme contributions) that were active in the parental strain 
differently in the objective function from those which were 

55 not active. For previously active (i.e., non-zero) reactions, 
RELATCH uses a relative distance in its objective function, 
where the relative distance between the knockout and paren­
tal strain flux distribution (normalized by the parental 

60 
strain's flux values), as compared to the absolute distance 
used in MOMA (Eq 7a). For previously inactive reactions, 
the enzyme contributions which were zero in the parental 
strain and can be 'turned on' in the derived strains using a 
second term in the objective function. This penalizes using 

65 a new pathway and the additional enzymes which must be 
produced to do so. For further detail on RELATCH, see Kim 
et al. 2012. 
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1.2 Results 
1.2.1 Predicting the Parental Flux Distribution Using 
REPPS 

Parental strain flux distributions were calculated using 
REPPS (Eq. 1 and Eq. 4) and compared to parental strain 5 

flux distributions calculated using pFBA (Eq. 6) or 
RELATCH Fit (Eq. 1, where data for the parental strain is 
used instead of the reference strains). Predictions were made 
using a genome-scale metabolic model of E. coli, iJR904. 
The results are shown in Table 1. All these calculations were 10 

32 
deletion strains (Ishii et al. 2007), as in Example 1. We 
utilized 13C metabolic flux analysis (MFA) and extracellular 
flux data. All MFA fluxes were reported as a percentage of 
the glucose substrate uptake. In order to convert these values 
to actual fluxes, the reported MFA fluxes were multiplied by 
the reported glucose consumption rate. For the parental 
strain flux distribution, the data from three replicate experi­
ments (RF03, RF05, and RF06) were averaged together to 
represent the mean MFA and extracellular flux values for the 
parental strain. 

done using a randomly chosen set of reference strains 
containing five mutants from the Keio dataset (li.gnd, li.rpe, 
li.rpiA, li.tktA, li.talA). 

TABLE 1 

Comparison of REPPS, pFBA, and RELATCH Fit in Predicting 
Parental Flux Distribution in tbe iJR904 Genome-Scale 

Metabolic Model of E. coli. 

As in Example 1, all optimization problems were solved 
using CPLEX (for pFBA), CONOPT (for RELATCH Fit, 
MOMA, RELATCH, and REPPS), or IPOPT (for flux 

15 
variability analysis) accessed using GAMS 24.1.3 (GAMS 
Development Corp.; 1217 Potomac St, NW; Washington 
D.C. 20007, USA). 

Parental Strain Metbod MSE* using iJR904 

All plots were made using R version 3.1 (R Foundation 
for Statistical Computing, 2013) and the 'gdxrrw' package 

20 version 0.3.1 for importing data between GAMS and R. 
2.1.2 Estimating Reference Strain Flux Distribution 

pFBA 
RELATCH Fit 
REPPS 

*MSE in units of (mmol/gDW/h)2 

1.248 
1.833 
0.701 

Fluxes in the reference strains were estimated using either 
pFBA (Lewis 2010) or a modified form of the RELATCH Fit 
function (Reed 2012), which will be referred to as the "Fit" 

25 method. 
pFBA required two steps. The first was to minimize the 

difference between the experimentally measured extracellu­
lar fluxes (u/x) and estimated extracellular fluxes (up for the 
given reference strain. Fluxes associated with genes that 

REPPS yielded a lower MSE (in [mmol/gDW/h] 2
) than 

pFBA and RELATCH Fit, indicating that REPPS predicts 
the parental flux distribution better than FBA and 
RELATCH Fit. We subsequently evaluated how REPPS 
performed using different randomly chosen sets of reference 
strains with different numbers of strains included in R (i.e., 
by varying IIRII). Results for the MSE versus the size of the 
reference set (i.e., number of reference strains) for iJR904 
are shown in FIG. 3. These results show that a relatively 
small number of reference strains are needed for REPPS to 
improve flux predictions over pFBA. 

30 were knocked out were forced to be zero using equation 8d. 

35 

1.2.2 Flux Predictions for Derived Strains 
Parental strain flux distributions can be predicted using 

pFBA, RELATCH Fit, and REPPS and these predictions can 40 

be used to make predictions for new derived strains. The 
previous section showed that REPPS predictions were clos-
est to flux measurements obtained by 13C MFA for the 
parental strain. We next investigated how different parental 
strain flux distributions ( calculated using pFBA, RELATCH 45 

Fit, and REPPS) affected predictions for derived strains that 
were not included as reference strains for REPPS parental 
strain flux estimates. The iJR904 genome-scale model was 
used as before. For derived strains flux predictions MOMA 
or RELATCH was used with each of the different predicted 50 

parental strain flux distributions ( estimated using pFBA, 
RELATCH Fit, or REPPS). Using REPPS to predict the 
parental strain flux distribution and enzyme contributions 
resulted in lower MSEs than using pFBA or RELATCH Fit, 
regardless of the method (RELATCH or MOMA) used to 55 

predict the knockout strain flux distribution. See FIGS. 4 and 

min,,, ~ (u'• - (Sa) 
J )Elex J 

s.T. ~iE
1
si_J·uj=O VjEJ (Sb) 

uj 2. 0 V j E irr (Sc) 

uj = 0 V jE ho (Sd) 

After the best fit of the extracellular flux data is performed, 
the corresponding extracellular fluxes are fixed and the sum 
of the absolute value of all fluxes (u1) is then minimized. 

U j,r 2. 0 V j E irr 

U j,r = uj V j E Jex 

(9a) 

(9b) 

(9c) 

(9d) 

(9e) 

5. 

Example 2 

2.1 Materials and Methods 
2.1.1 Genome Scale Metabolic Models 

The Fit method combines these two steps into one process 
and instead of minimizing the sum of absolute fluxes, 
minimizes the enzymatic contribution (U1.n/nz) to reactions. 

60 The enzymatic contribution term is a proxy for the amount 
of enzyme required for all of the reactions that it catalyzes. 
It is explained in more detail in (Kim et al. 2012). 

All Escherichia coli modelling was performed using the 
iJR904 model (Reed 2003), as in Example 1. Experimental 
data for both the parental strain and knockout mutants of 
Escherichia coli K-12 were obtained from the Keio Univer­
sity E. coli multi-omics database of in-frame single-gene 

(10a) 
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S.T. ~;E/ S;.J · Uj.r = 0 V j E J 

U j,r 2. 0 V j E frr 
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(10c) 

(10d) 
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VJ,~' 2 0 V j E lcPR, n E N(j) 

VJ,~'= 0 V j E ho, n E N(j) 

2.1.5 Calculation of Error 

(12e) 

(12f) 

u5;'., 2 0 V j E lcPR, n E N(j) 

u5;'., = 0 V j E ho, n E N(j) 

(lOe) 

(!Of) 10 

Mean squared error (MSE) is used extensively as a metric 
for the quality of the fit to the experimentally measured 
intracellular fluxes from MFA data. For any particular strain, 
the difference between the predicted (v. or w) and measured 

Regardless of the method used, each method was applied to 
multiple reference strains, with the resulting fluxes for 

MFA MFA J J (v1 or w1 ) flux is squared and summed over all of the 
measured fluxes. This is then normalized by the number of 
fluxes being compared. 

reaction j in strain r denoted as u . 15 
2.1.3 Determining Parental Strain' Flux Distribution with 
REPPS 

REPPS is used to calculate the parental strain flux distri­
bution. It utilizes two terms (Eq. 11). The first is analogous 

(13) 

to the extracellular flux fitting found in the reference strain 
methods (section 2.1.2) but is performed on the parental 20 

strain fluxes (w). The first term thus minimizes the distance 
between experimentally measured fluxes and estimated 
fluxes of the parental strain and is normalized by the number 

2.2 Results and Discussion 
The methods outlined in Example 1 utilize gene expres­

sion data or proteomics data. However, further analysis of 
the published dataset (Ishii et al. 2007) indicated that the of extracellular fluxes measured. The second term mini­

mizes the distance between the flux estimations in the 
reference strains and the flux estimations of the parental 
strain and is normalized by the number of reference strains 
and the number of total reactions. 

~ (w - ~ ~ (w-
(lla) 

miDw, wenz 
)Elex J rE.R )El J 

1wx11 + /3 IIRII · 11111 

s.T. ~iE
1

si_J•w1 =0 VjEJ (llb) 

Wj 2. Q V j E Jirr (llc) 

- ~ w1:nz s w. s ~ w1:nz 
nEN(j) J,n 1 nEN(J) J,n 

V j E lcPR (lld) 

WJ,~' 2 0 V j E lcPR, n E N(j) (lle) 

Equation 11 is based on Equation 4 in Example 1 wherein 
11=0 and a=l. This negates the relevance of the enzyme 
contribution term in Equation 4a and results in Equations 4h, 
4i, and 4j being non-binding. The removal of these con­
straints further removes the dependency of this formulation 
on d; thus, Equation 3 in Example 1 is not actively 
employed. In addition, because expression data are not used 
in Equation 11, the weighting term fr in Equation 4g, 
determined in Equation 2, is less useful and has been 
omitted. This is equivalent to setting fr=l in (4g). 
2.1.4 Determining Derived Strain Flux Distribution 

MOMA (Segre 2002) is used to calculate the fluxes of 
derived strains (v). In this example, all derived strains are 
single gene knockouts. 

. ~ 2 nun,, v"" . (w1· - v1 ) 
, JEJ 

(12a) 

(12b) 

v j 2. 0 V j E frr (12c) 

25 relative levels of both genes and proteins did not sufficiently 
correlate to fluxes, and the gene expression data and enzyme 
contributions did not improve flux estimations. As a result, 
in this Example we tested REPPS without gene expression 

30 

35 

40 

data and enzyme contributions. As in Example 1, we utilized 
the dataset from (Ishii et al. 2007), which contains measured 
extracellular fluxes, intracellular fluxes (MFA data), gene 
expression, and protein levels for 24 single gene knockouts 
as well as the parental strain grown in a chemostat. We 
utilized this data to test the predicted flux distributions from 
REPPS against the reported MFA data for the parental strain, 
reference strains, and derived strains. 
2.2.1 Estimation of Reference Strain Flux Distributions 

We estimated the flux distributions for all 24 mutants and 
the parental strain utilizing pFBA, the Fit method, and the 
minimization of the possible error as a control (representing 
the best case scenario). We then calculated the mean-squared 
error (MSE) between the predicted flux values and the 
measured MFA and extracellular fluxes (FIG. 6). Overall, 
both pFBA and the Fit method proved to be similarly 

45 accurate. The average MSE across all strains was 1 .48 for 
pFBA and 1.52 for the Fit as compared to 1.10 mmol2

/ 

(gDW*hr)2 for the minimum possible error. Conversely, the 
median MSE was 1.09 for pFBA, 0.78 for the Fit, and 0.55 
mmol2/(gDW*hr)2 for the minimum. Therefore, while the 

50 Fit function appears to be more accurate than pFBA for the 
majority of strains, it results in a higher quantity and range 
of outliers that could potentially bias the REPPS formula­
tion. Since it was not apparent which method would be more 
effective for calculating the reference strain estimations, we 

55 used both pFBA and Fit to predict reference strain fluxes in 
REPPS and then compared them. 
2.2.2 Determination of Parental Strain Flux Distributions 

Before using REPPS, we determined the appropriate 
weighting (~) of the reference strain term relative to the 

60 extracellular flux term. After performing REPPS utilizing 
the full reference strain dataset of 24 mutants with values of 
~ ranging from O to 1,000,000, it was determined that ~ 
should have a value of 1,000 to best predict the measured 

- '\' v1:nz < V . < '\' v1:nz V j E J CPR 
L...JnEN(j) J,n - 1 - L...JnEN(j) J,n 

(12d) 65 

flux distribution (FIG. 7). This is equivalent to ~=1000 and 
a=l in Equation 4. It is important to note that the REPPS 
formulation normalizes each term. Since the extracellular 
flux term is divided by the number of extracellular flux 
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measurements and the reference strain term is divided by the 
total number of reaction fluxes and reference strains, a value 
of 1000 for ~ effectively re-scales the term so that the 
absolute number of reactions is used for both terms. This is 
because there are on the order of 100 times the number of 5 

total reactions as those fluxes measured extracellularly. 
Once the weighting (~) has been specified, it is possible 

36 
(median MSE=0.44) than methods that used experimental 
measurements for the derived strains-pFBA and Fit (me­
dian MSE= 1.09 and 0. 78, respectively). By utilizing REPPS 
with five reference strains for the parental strain estimation 
and MOMA for the derived strain estimation, the median 
MSE of the 19 remaining knockouts was 0.44, a 58% 
improvement over the 1.04 median MSE predicted using the 
more traditional approach of using pFBA to estimate paren­
tal fluxes and MOMA to predict derived strain fluxes. 

10 Overall, this analysis indicates that the more accurate paren­
tal strain flux estimates generated by REPPS improves flux 
predictions for strains derived from the parental strain. 

to calculate the parental strain flux distribution utilizing a 
varying number of reference strains (FIGS. SA and SB). By 
randomly sampling a set number of reference strains from 
the available pool of 24 knockouts, we can estimate the 
distribution of, and quality of, parental strain flux predic­
tions. Regardless of whether pFBA or Fit is utilized for the 
reference strains, REPPS can improve the quality of parental 
strain flux estimations compared to those estimated by 15 

pFBA or the Fit method alone. Overall, the Fit method with 
REPPS results in a lower median and average MSE and 
converges to a lower MSE as more reference strains are 
incorporated. The Fit method does appear to make REPPS 
susceptible to extreme outliers when a low number of 20 

reference strains are used. However, the usage of two to 
three reference strains greatly reduces the chance of an 
outlier, and the usage of five or more reference strains 
appears to limit the parental strain estimation to be no worse 
than that predicted by the Fit method alone and often 25 

substantially improved ( depending on which set of reference 
strains were randomly chosen). In fact, REPPS with five 
reference strains results in a median MSE of 0.41, while 
additional reference strains converge to a MSE of 0.34. 
Compared to the Fit function which results in a MSE of0.65, 30 

REPPS improves the result by 37% and 48% respectively. 
Utilizing pFBA for the reference strain estimation in REPPS 
uniformly increased the error over the Fit reference strains 
with REPPS. pFBA reference strains both increased the 
number of outliers (although they were less severe than the 35 

worst outliers using the Fit method) and the median error for 
any number of reference strains. For example, five reference 
strains with pFBA resulted in a median MSE of 0.55 while 
incorporating more reference strains converged to a MSE of 
0.49. Overall, it is clear that the Fit method for reference 40 

strain fitting performs better than the analogous pFBA 
method when used along with REPPS to predict parental 
strain fluxes. Utilizing the Fit method, REPPS can improve 
the parental strain estimation by nearly 50% compared to the 
pFBA estimation of the parental strain. 

CONCLUSIONS 

REPPS significantly improves parental strain flux distri­
bution predictions without using MFA data or even gene 
expression data. Improved parental strain flux distributions 
further improves flux predictions in knockout mutants that 
are derived from the parental strain and which are not part 
of the reference set used to estimate the parental strain flux 
distribution. 
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What is claimed is: 
1. A method for determining flux distribution in a parental 

strain and in a derived strain thereof, comprising: 

45 

generating a plurality of reference strains, each reference 
strain having a known genetic modification with 50 
respect to the parental strain; 

experimentally measuring extracellular fluxes for each of 
the plurality of reference strains; 

estimating, in a computer system, a flux distribution from 
the experimentally measured extracellular fluxes for 55 
each of the plurality of reference strains, wherein the 
flux distribution for each reference strain comprises a 
directional, quantitative set of fluxes corresponding to 
a set of reactions occurring in the reference strain; 

experimentally measuring extracellular fluxes from the 60 
parental strain; 

determining, in a computer system, a flux distribution for 
the parental strain from the estimated flux distributions 
for the reference strains and the experimentally mea­
sured extracellular fluxes for the parental strain, 
wherein the flux distribution for the parental strain 

estimating, in a computer system, a flux distribution from 
experimentally measured extracellular fluxes for ea~h 
of a plurality of reference strains, each reference stram 
having a known genetic modification with respect to 
the parental strain, wherein the flux distribution for 
each reference strain comprises a directional, quantita­
tive set of fluxes corresponding to a set of reactions 
occurring in the reference strain, wherein the estimat-
ing the flux distribution for each of the reference strains 
is performed without metabolic flux analysis data for 
any of the reference strains and without experimentally 
measured gene expression data for any of the reference 
strains; 

determining, in a computer system, a flux distribution for 
the parental strain from the estimated flux distributions 
for the reference strains and experimentally measured 
extracellular fluxes for the parental strain, wherein the 
flux distribution for the parental strain comprises a 
directional, quantitative set of fluxes corresponding to 
a set of reactions occurring in the parental strain, 
wherein the determining the flux distribution for the 
parental strain is performed without metabolic flux 
analysis data for the parental strain and without experi-
mentally measured gene expression data for the paren­
tal strain; 

predicting, from the flux distribution determined for the 
parental strain, a flux distribution for an uncharacter­
ized strain having a genetic modification with respect to 
the parental strain, wherein the uncharacterized strain is 
not one of the reference strains; and 

generating the uncharacterized strain. 
3. A method for determining flux distribution in a parental 

strain and in a derived strain thereof, comprising: 
estimating, in a computer system, a flux distribution from 

experimentally measured extracellular fluxes for each 
of a plurality of reference strains, each reference strain 
having a known genetic modification with respect to 
the parental strain, wherein the flux distribution for 
each reference strain comprises a directional, quantita­
tive set of fluxes corresponding to a set of reactions 
occurring in the reference strain; 

determining, in a computer system, a flux distribution for 
the parental strain from the estimated flux distributions 
for the reference strains and experimentally measured 
extracellular fluxes for the parental strain, wherein the 
flux distribution for the parental strain comprises a 
directional, quantitative set of fluxes corresponding to 
a set of reactions occurring in the parental strain; 

predicting, from the flux distribution determined for the 
parental strain, a flux distribution for an uncharacter­
ized strain having a genetic modification with respect to 
the parental strain, wherein the uncharacterized strain is 
not one of the reference strains; and 

generating the uncharacterized strain. 
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