

US010246725B2

(12) United States Patent

Reed et al.

(54) MICROORGANISMS AND METHODS FOR PRODUCING PYRUVATE, ETHANOL, AND OTHER COMPOUNDS

- (71) Applicant: WISCONSIN ALUMNI RESEARCH FOUNDATION, Madison, WI (US)
- (72) Inventors: Jennifer L. Reed, Madison, WI (US); Xiaolin Zhang, Newark, DE (US)
- (73) Assignee: WISCONSIN ALUMNI RESEARCH FOUNDATION, Madison, WI (US)
- (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.
- (21) Appl. No.: 15/815,327
- (22) Filed: Nov. 16, 2017

(65) **Prior Publication Data**

US 2018/0087074 A1 Mar. 29, 2018

Related U.S. Application Data

- (62) Division of application No. 14/848,646, filed on Sep. 9, 2015, now Pat. No. 9,850,505.
- (60) Provisional application No. 62/047,896, filed on Sep. 9, 2014.
- (51) Int. Cl.

C12P 7/40	(2006.01)
C12P 7/06	(2006.01)
C12N 1/21	(2006.01)
C12N 1/15	(2006.01)
C12N 9/88	(2006.01)
C12N 9/04	(2006.01)

- (58) Field of Classification Search CPC C12P 7/40; C12P 7/06; C12Y 101/01001; C12Y 401/01001; C12N 9/88; C12N 9/0006; Y02E 50/17

See application file for complete search history.

(56) **References Cited**

U.S. PATENT DOCUMENTS

2010/0304450 A1 12/2010 Eiteman et al.

FOREIGN PATENT DOCUMENTS

WO WO 99/53035 10/1999

OTHER PUBLICATIONS

Altschul et al., Basic Local Alignment Research Tool, J. Mol. Biol. (1990)215, 403-410.

(10) Patent No.: US 10,246,725 B2 (45) Date of Patent: Apr. 2, 2019

Asadollahi et al., Enhancing sesquiterpene production in *Sac-charomyces cerevisiae* through in silico driven metabolic engineering. Metab Eng. 2009; 11(6):328-34.

Atsumi et al., Non-fermentative pathways for synthesis of branchedchain higher alcohols as biofuels. Nature. 2008;451(7174):86-U13. Baba et al., Construction of *Escherichia coli* K-12 in-frame, singlegene knockout mutants: the Keio collection. Mol Syst Biol. 2006;2. Baumler et al., The evolution of metabolic networks of *E. coli*. Bmc Syst Biol. 2011;5:182.

Beller et al., Genes Involved in Long-Chain Alkene Biosynthesis in Micrococcus luteus. Appl Environ Microb. 2010;76(4):1212-23.

Bologna et al., Characterization of *Escherichia coli* EutD: a Phosphotransacetylase of the Ethanolamine Operon. J Microbiol. 2010;48(5):629-36.

Causey et al., Engineering the metabolism of *Escherichia coli* W3110 for the conversion of sugar to redox-neutral and oxidized products: Homoacetate production. Proceedings of the National Academy of Sciences of the United States of America. 2003;100(3):825-32.

Causey et al., Engineering *Escherichia coli* for efficient conversion of glucose to pyruvate. Proceedings of the National Academy of Sciences of the United States of America. 2004;101(8):2235-40.

Datsenko et al., One-step inactivation of chromosomal genes in *Escherichia coli* K-12 using PCR products. Proceedings of the National Academy of Sciences of the United States of America. 2000;97(12):6640-5.

Feist et al., BO. Model-driven evaluation of the production potential for growth-coupled products of *Escherichia coli*. Metab Eng. 2010;12(3):173-86.

Fong et al., In silico design and adaptive evolution of *Escherichia coli* for production of lactic acid. Biotechnol Bioeng. 2005;91(5):643-8.

Hawkins et al., Production of benzylisoquinoline alkaloids in *Saccharomyces cerevisiae*. Nat Chem Biol. 2008;4(9):564-73.

Henikoff et al., Amino acid substitution matrices from protein blocks. Proc. Natl. Acad. Sci. USA 1989; 89:10915-10919.

Ingram et al., Genetic-Engineering of Ethanol-Production in *Escherichia-coli*. Appl Environ Microb. 1987;53(10):2420-5.

Karlin et al., Applications and statistics for multiple high-scoring segments in molecular sequences, Proc. Natl. Acad.Sci, USA, Fol. 90, pp. 5873-5877, Jun. 1993.

Kim et al., Optimal metabolic and regulatory perturbations for metabolic engineering of microbial strains. BMC Syst Biol. 2010;4. (Continued)

Primary Examiner — Delia M Ramirez

(74) Attorney, Agent, or Firm — Daniel A. Blasiole; DeWitt LLP

(57) **ABSTRACT**

Microorganisms comprising modifications for producing pyruvate, ethanol, and other compounds. The microorganisms comprise modifications that reduce or ablate activity of one or more of pyruvate dehydrogenase, 2-oxoglutarate dehydrogenase, phosphate acetyltransferase, acetate kinase, pyruvate oxidase, lactate dehydrogenase, cytochrome terminal oxidase, succinate dehydrogenase, 6-phosphogluconate dehydrogenase, glutamate dehydrogenase, pyruvate formate lyase, pyruvate formate lyase activating enzyme, and isocitrate lyase. The microorganisms optionally comprise modifications that enhance expression or activity of pyruvate decarboxylase and alcohol dehydrogenase. The microorganisms are optionally evolved in defined media to enhance specific production of one or more compounds. Methods of producing compounds with the microorganisms are provided.

20 Claims, 14 Drawing Sheets

Specification includes a Sequence Listing.

(56) **References Cited**

OTHER PUBLICATIONS

Kumar et al., Methods for pretreatment of lignocellulosic biomasss for efficient hydrolysis and biofuel production. Ind. Eng. Chem. Res. 2009; 48:3713-3729.

Leonard et al., Combining metabolic and protein engineering of a terpenoid biosynthetic pathway for overproduction and selectivity control. Proceedings of the National Academy of Sciences of the United States of America. 2010;107(31):13654-9.

Miller et al., Experiments in Molecular Genetics. Cold Spring Harbor Laboratory, (1972), 433 Entire Book Not Provided.

Mills et al., Cellulosic hydrolysate toxicity and tolerance mechanisms in *Escherichia coli*. Biotechnol Biofuels. 2009;2.

Nagy et al., Formyltetrahydrofolate Hydrolase, a Regulatory Enzyme That Functions to Balance Pools of Tetrahydrofolate and One-Carbon Tetrahydrofolate Adducts in *Escherichia-coli*. Journal of Bacteriology. 1995;177(5):1292-8.

Nakamura et al., Metabolic engineering for the microbial production of 1,3-propanediol. Curr Opin Biotech. 2003;14(5):454-9.

Neidhardt et al., Physiology of the bacterial cell: a molecular approach. Sunderland, Mass: Sinauer Associates; 1990.

Olins et al., A Novel Sequence Element Derived from Bacteriophage T7 mRNA Acts as an Enhancer of Translation of the lacZ Gene in *Escherichia coli*, The Journal of Biological Chemistry, vol. 264, No. 29, pp. 16973-16976 1989.

Park et al., Metabolic engineering of *Escherichia coli* for the production of L-valine based on transcriptome analysis and in silico gene knockout simulation. Proceedings of the National Academy of Sciences of the United States of America. 2007;104(19):7797-802. Peng et al., Global metabolic regulation analysis for *Escherichia coli* K12 based on protein expression by 2-dimensional electrophoresis and enzyme activity measurement. Applied Microbiology and Biotechnology. 2003;61(2):163-78.

Pfeifer et al., Biosynthesis of complex polyketides in a metabolically engineered strain of *E-coli*. Science. 2001;291(5509):1790-2. Reed et al., An expanded genome-scale model of *Escherichia coli* K-12 (iJR904 GSM/GPR). Genome Biol. 2003;4(9).

Ro et al., Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature. 2006;440(7086):940-3.

Sawers et al., A glycyl radical solution: oxygen-dependent interconversion of pyruvate formate-lyase. Molecular Microbiology. 1998;29(4):945-54.

Sawers et al., The glycyl radical enzyme TdcE can replace pyruvate formate-lyase in glucose fermentation. Journal of Bacteriology. 1998;180(14):3509-16.

Schirmer et al., Microbial Biosynthesis of Alkanes. Science. 2010;329(5991):559-62.

Schwalbach et al., Complex Physiology and Compound Stress Responses during Fermentation of Alkali-Pretreated Corn Stover Hydrolysate by an *Escherichia coli* Ethanologen. Appl Environ Microb. 2012;78(9):3442-57.

Siewers et al., Implementation of Communication-Mediating Domains for Non-Ribosomal Peptide Production in *Saccharomyces cerevisiae*. Biotechnol Bioeng. 2010;106(5):841-4.

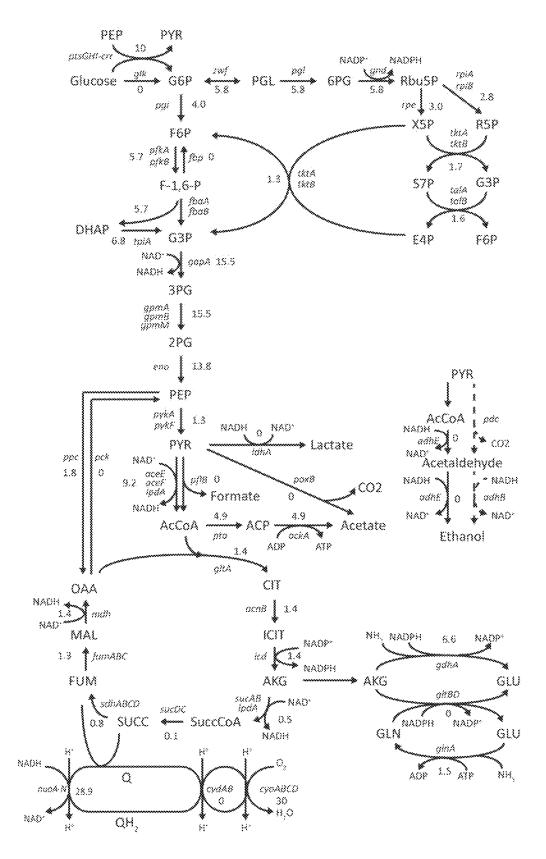
Steen et al., Microbial production of fatty-acid-derived fuels and chemicals from plant biomass. Nature. 2010;463(7280):559-U182. Tarmy et al., Kinetics of *Escherichia coli* B D-Lactate Dehydrogenase and Evidence for Pyruvate-Controlled Change in Conformation. Journal of Biological Chemistry. 1968;243(10):2587.

Tomar et al., The effect of acetate pathway mutations on the production of pyruvate in *Escherichia coli*. Applied Microbiology and Biotechnology. 2003;62(1):76-82.

Toya et al., Metabolic regulation analysis of wild-type and arcA mutant *Escherichia coli* under nitrate conditions using different levels of omics data. Molecular bioSystems. 2012;8(10):2593-604. Wang et al., Production of pyruvate in *Saccharomyces cerevisiae* through adaptive evolution and rational cofactor metabolic engineering. Biochem Eng J. 2012;67:126-31.

Wierckx et al., Engineering of solvent-tolerant Pseudomonas putida S12 for bioproduction of phenol from glucose. Appl Environ Microb. 2005;71(12):8221-7.

Wieschalka et al., Engineering Corynebacterium glutamicum for the production of pyruvate. Applied Microbiology and Biotechnology. 2012;94(2):449-59.


Xu et al., Regulation of thiamine synthesis in *Saccharomyces cerevisiae* for improved pyruvate production. Yeast. 2012;29(6):209-17.

Zha et al., Improving cellular malonyl-CoA level in *Escherichia coli* via metabolic engineering. Metab Eng. 2009;11(3):192-8.

Zhang et al., Metabolic evolution of energy-conserving pathways for succinate production in *Escherichia coli*. Proceedings of the National Academy of Sciences of the United States of America. 2009;106(48):20180-5.

Zhou et al., Evaluation of Genetic Manipulation Strategies on d-Lactate Production by *Escherichia coli*. Curr Microbiol. 2011;62(3):981-9.

Zhu et al., High Glycolytic Flux Improves Pyruvate Production by a Metabolically Engineered *Escherichia coli* Strain. Appl Environ Microb. 2008;74(21):6649-55.

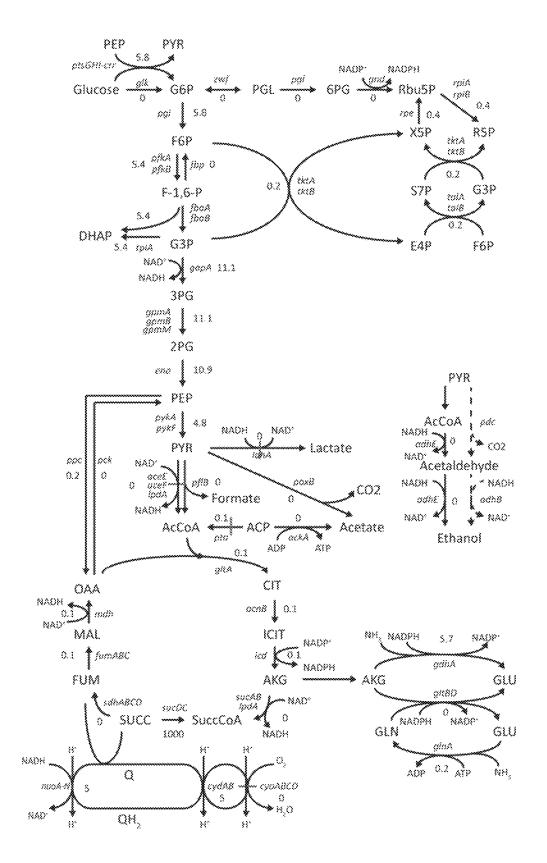
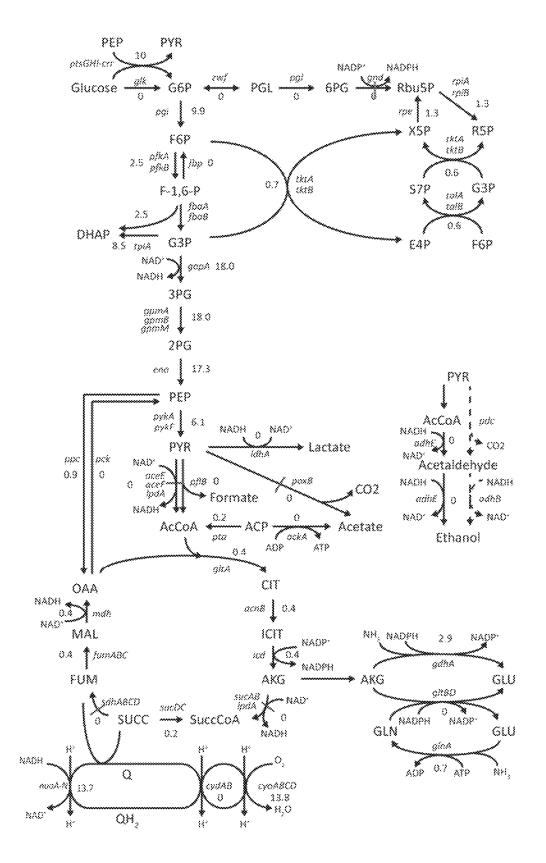
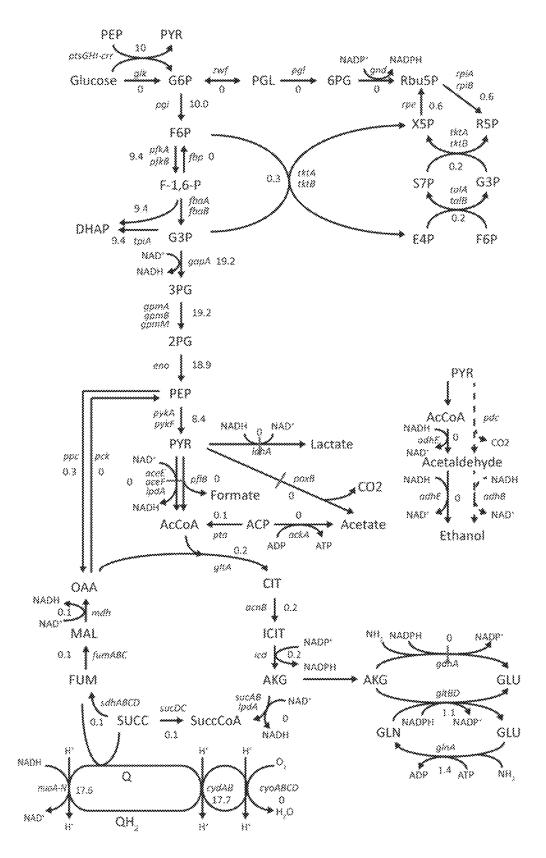
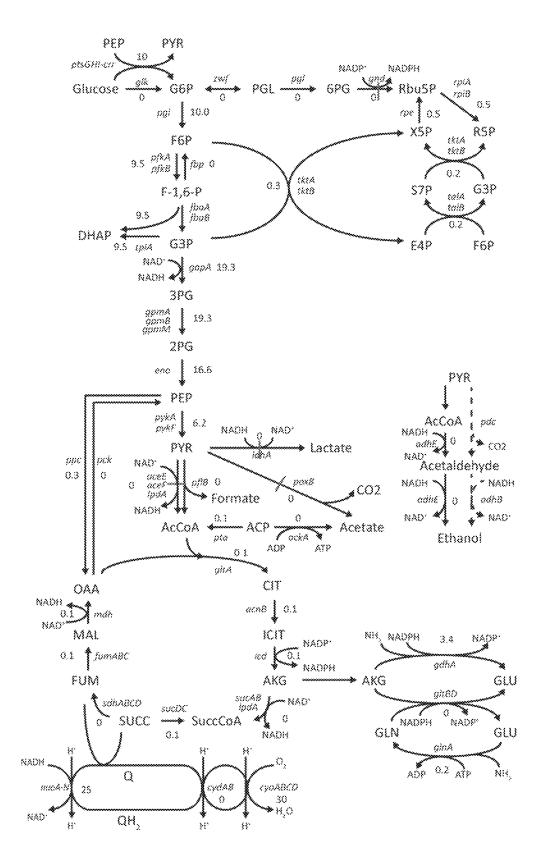





FIG. 2A

FIG. 2D

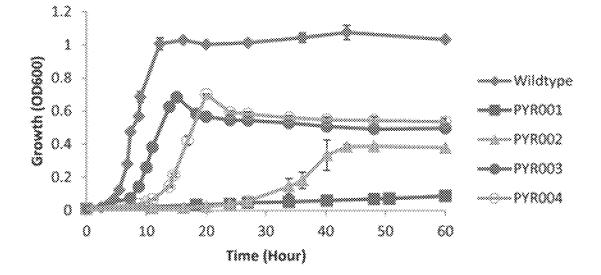


FIG. 3A

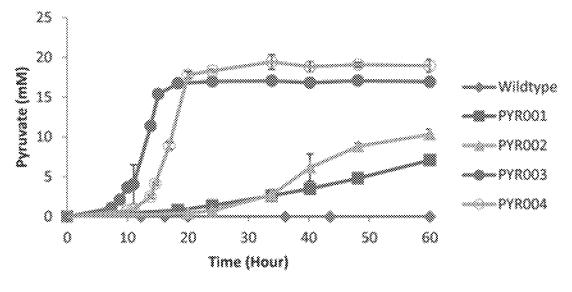


FIG. 38

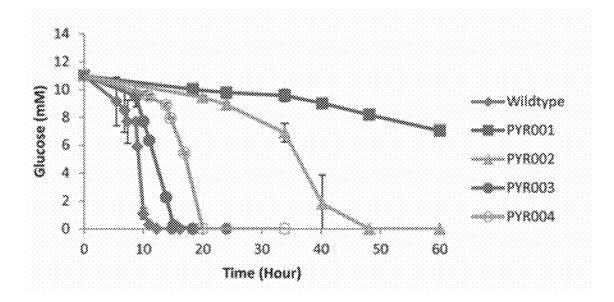
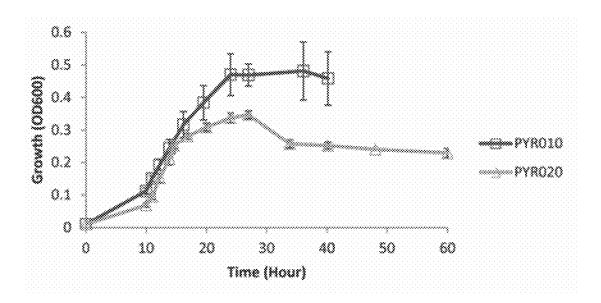



FIG. 3C

FIG. 3D

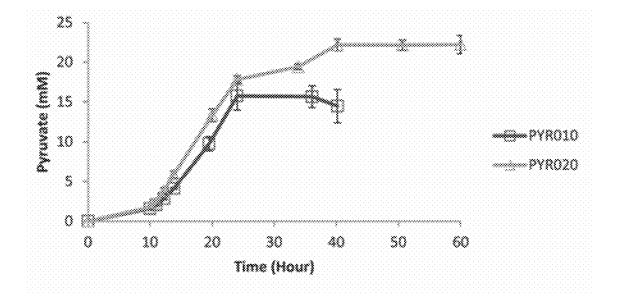


FIG. 3E

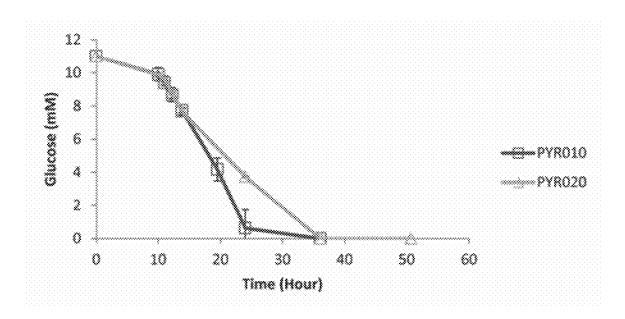


FIG. 3F

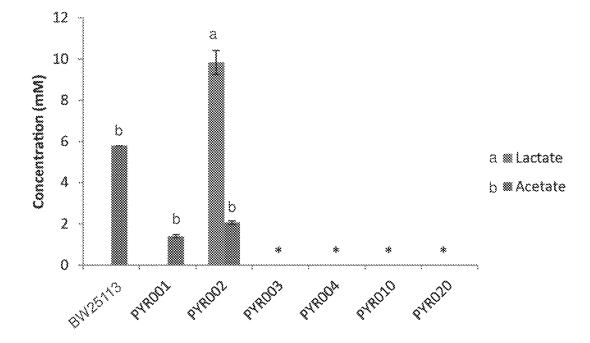
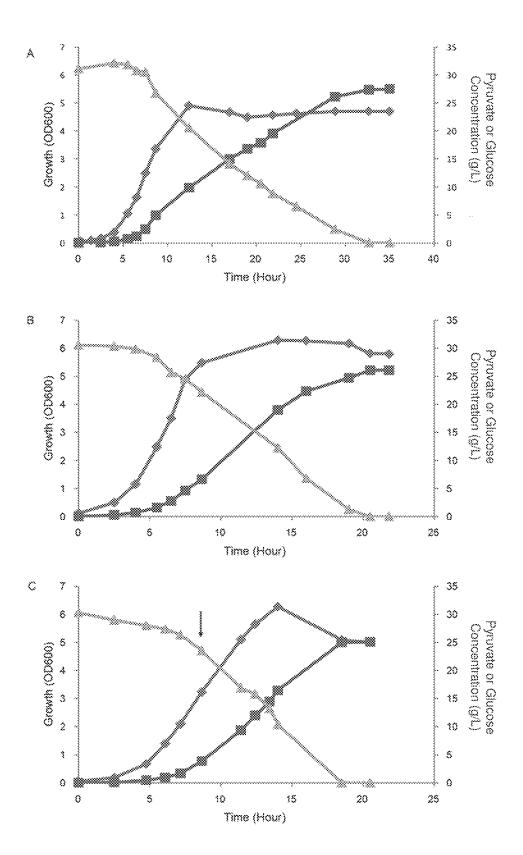
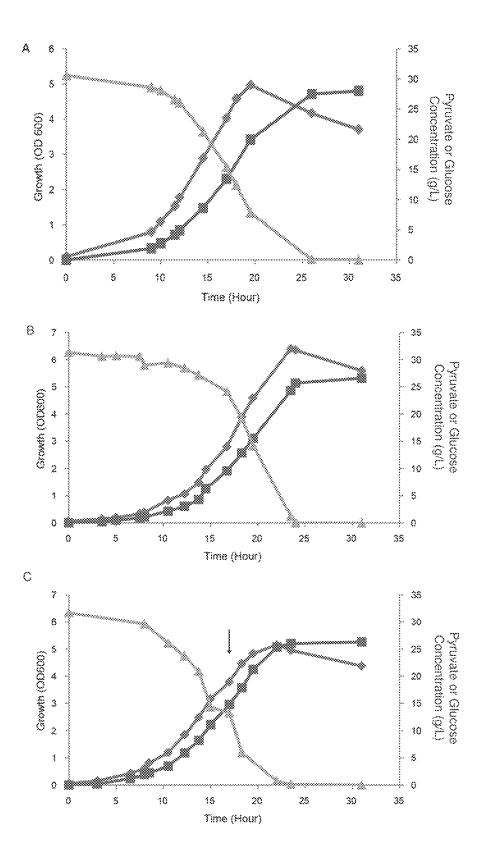




FIG. 4

FIG. 5

FIG. 6

FIG. 7

FIG. 8A

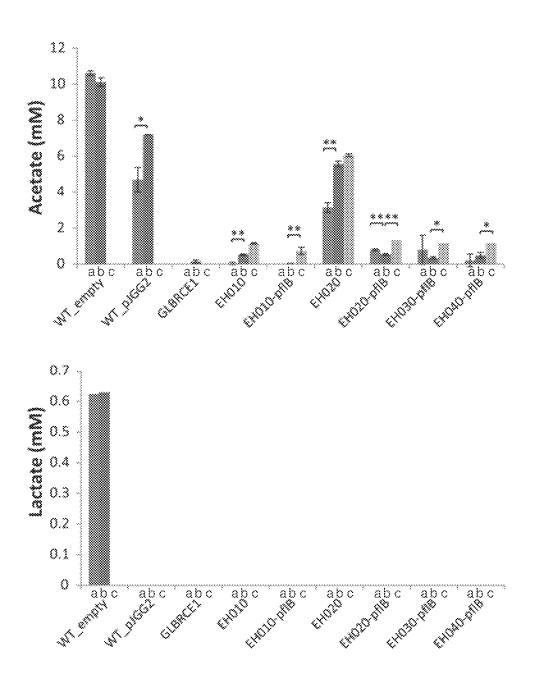


FIG. 88

50

MICROORGANISMS AND METHODS FOR PRODUCING PYRUVATE, ETHANOL, AND OTHER COMPOUNDS

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH

This invention was made with government support under DE-FC02-07ER64494, DE-SC0008103 awarded by the US Department of Energy. The government has certain rights in ¹⁰ the invention.

BACKGROUND

Over the past decade a number of chemical companies ¹⁵ have begun to develop infrastructures for the production of compounds using bio-based processes. Considerable progress has been reported toward new processes for producing commodity chemicals such as ethanol, lactic acid, 1,3-propanediol, and adipic acid. In addition, advances have ²⁰ been made in the genetic engineering of microbes for higher value specialty compounds such as acetate, polyketides, and carotenoids.

Pyruvate is a starting material for synthesizing a variety of biofuels and chemicals. Industrially, pyruvate is produced ²⁵ via dehydration and decarboxylation of calcium tartrate, a byproduct of the wine industry. This process involves toxic solvents and is energy intensive with an estimated production cost of \$8,650 per ton of pyruvate. Microbial pyruvate production is based primarily upon two microorganisms, a ³⁰ multi-vitamin auxotroph of the yeast *T. glabrata* and a lipoic auxotroph of *E. coli* containing an F1ATPase mutation. The estimated cost of pyruvate production via microbial fermentation with such strains is estimated to be \$1,255 per ton of pyruvate, an 85% savings. Increasing the yield of pyruvate ³⁵ would increase the savings even further.

Ethanol is mainly of interest as a petrol additive, or substitute, because ethanol-blended fuel produces a cleaner, more complete combustion that reduces greenhouse gas and toxic emissions. The production of ethanol in the US has ⁴⁰ increased tremendously in recent years, and demand is projected to increase even further. As a consequence of the surge in demand for biofuels, ethanol-producing microorganisms are of considerable interest due to their potential for the production of bioethanol. To keep in step with the ⁴⁵ growing demand for biofuels, the engineering of new strains of fermentative microorganisms that can efficiently produce ethanol will be required.

There is a need for microorganisms that efficiently produce pyruvate, ethanol, or other commodity chemicals.

SUMMARY OF THE INVENTION

The present invention addresses the aforementioned needs by providing microorganisms with increased produc-55 tion of pyruvate, ethanol, or other commodity chemicals. Methods of producing commodity chemicals with the microorganisms described herein are also provided.

One aspect of the invention is a microorganism comprising modifications that reduce or ablate activity of one or 60 more enzymes in a first set, one or more enzymes in a second set, and enzymes in a third set. The enzymes in the first set are selected from the group consisting of pyruvate dehydrogenase and 2-oxoglutarate dehydrogenase. The enzymes in the second set are selected from the group consisting of 65 phosphate acetyltransferase, acetate kinase, and pyruvate oxidase. The enzymes in the third set comprise lactate 2

dehydrogenase and one or more enzymes selected from the group consisting of cytochrome terminal oxidase and succinate dehydrogenase; lactate dehydrogenase and one or more enzymes selected from the group consisting of 6-phosphogluconate dehydrogenase and glutamate dehydrogenase; one or more enzymes selected from the group consisting of cytochrome terminal oxidase and succinate dehydrogenase and one or more enzymes selected from the group consisting of 6-phosphogluconate dehydrogenase, and glutamate dehydrogenase; or lactate dehydrogenase, one or more enzymes selected from the group consisting of cytochrome terminal oxidase and succinate dehydrogenase, and one or more enzymes selected from the group consisting of 6-phosphogluconate dehydrogenase and glutamate dehydrogenase.

In some versions, the one or more enzymes in the first set are selected from pyruvate dehydrogenase.

In some versions, the one or more enzymes in the second set are selected from the group consisting of phosphate acetyltransferase and pyruvate oxidase.

In some versions, the enzymes in the third set comprise lactate dehydrogenase and cytochrome terminal oxidase, lactate dehydrogenase and one or more enzymes selected from the group consisting of 6-phosphogluconate dehydrogenase and glutamate dehydrogenase, or succinate dehydrogenase and 6-phosphogluconate dehydrogenase.

In some versions, the one or more enzymes in the first set are selected from pyruvate dehydrogenase, the one or more enzymes in the second set are selected from phosphate acetyltransferase, and the enzymes in the third set comprise lactate dehydrogenase and one or more enzymes selected from the group consisting of cytochrome terminal oxidase and succinate dehydrogenase, or lactate dehydrogenase and one or more enzymes selected from the group consisting of 6-phosphogluconate dehydrogenase and glutamate dehydrogenase.

In some versions, the one or more enzymes in the first set are selected from pyruvate dehydrogenase, the one or more enzymes in the second set are selected from phosphate acetyltransferase, and the enzymes in the third set comprise lactate dehydrogenase and cytochrome terminal oxidase, or lactate dehydrogenase and one or more enzymes selected from the group consisting of 6-phosphogluconate dehydrogenase and glutamate dehydrogenase.

In some versions, the one or more enzymes in the first set are selected from pyruvate dehydrogenase, the one or more enzymes in the second set are selected from pyruvate oxidase, and the enzymes in the third set comprise one or more enzymes selected from the group consisting of cytochrome terminal oxidase and succinate dehydrogenase and one or more enzymes selected from the group consisting of 6-phosphogluconate dehydrogenase and glutamate dehydrogenase.

In some versions, the microorganism further comprises a modification that reduces or ablates activity of an enzyme selected from the group consisting of pyruvate formate lyase and pyruvate formate lyase activating enzyme.

In some versions, the microorganism further comprises a modification that enhances expression of pyruvate decarboxylase and alcohol dehydrogenase.

In some versions, the microorganism is a bacterium or a yeast.

In some versions, an evolved microorganism is produced by sequentially culturing any microorganism described above or elsewhere herein in media comprising decreasing concentrations of a compound such as acetate, ethanol, or another compound. The media each preferably comprise approximately a same amount of total consumable carbon.

In some versions, the microorganism is cultured in media comprising decreasing concentrations of acetate. The concentrations of acetate in the media may range from about 0.1 mg/L acetate to about 3 g/L acetate.

Another aspect of the invention is a method of producing a chemical. The method comprises culturing any microorganism described above or elsewhere herein. The chemical may be selected from the group consisting of pyruvate and ethanol. The culturing may comprise culturing the microorganism in a medium comprising a biomass hydrolysate.

The objects and advantages of the invention will appear more fully from the following detailed description of the preferred embodiment of the invention made in conjunction with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a schema showing the central metabolic pathway of wild-type E. coli. Genes associated with each reaction in 20 the central metabolic network are shown and flux values are labeled. The metabolic flux distribution for the wild-type strain under aerobic conditions was predicted by flux balance analysis. Glucose uptake rate was set at 10 mmol/gDW/ hour. The dashed line represents the ethanol synthesis path- 25 way (PET operon) from Zymomonas mobilis.

FIGS. 2A-2D are schemas showing the central metabolic pathway of mutant E. coli strains designed for pyruvate production. Genes associated with each reaction in the central metabolic network are shown and flux values are labeled. The reactions marked by bars correspond to the deletion targets calculated computationally. The labeled metabolic flux distribution for each strain was predicted by flux balance analysis. Glucose uptake rate was set at 10 35 mmol/gDW/hour. Oxygen uptake was unlimited for the strains shown in FIGS. 2B-2D, but limited to 3 mmol/gDW/ hour for the strain shown in FIG. 2A. FIG. 2A: Strain designed as $\Delta aceE$, $\Delta cyoA$, $\Delta cydB$, Δpta , $\Delta eutI$, $\Delta ldhA$, and Δ dld. FIG. **2**B: Strain designed as Δ lpdA, Δ gnd, Δ sdhA, ΔpoxB, ΔpflB, ΔpflD, ΔtdcE, and ΔpurU. FIG. 2C: Strain designed as $\Delta aceE$, $\Delta gdhA$, $\Delta poxB$, $\Delta ldhA$, Δdld , $\Delta atpE$, $\Delta pflB$, $\Delta pflD$, and $\Delta tdcE$. FIG. **2**D: Strain designed as designed as $\Delta aceE$, Δgnd , $\Delta poxB$, $\Delta ldhA$, Δdld , $\Delta atpE$, 45 $\Delta pflB$, $\Delta pflD$, and $\Delta tdcE$.

FIGS. 3A-3F show growth (FIGS. 3A and 3D), pvruvate production (FIGS. 3B and 3E), and glucose consumption (FIGS. 3C and 3F) of wild-type (BW25113) and mutant E. coli strains. Cells were grown in M9 minimal medium 50 containing glucose and acetate. (See Table 2 for media details).

FIG. 4 shows (a) lactate and (b) acetate secretion for parent (BW25113) and mutant E. coli strains under aerobic conditions in shake flasks. The shown concentrations are the 55 comprising modifications that reduce or ablate the activity of maximum acid concentrations observed over 60 hours during growth in M9 minimal medium supplemented with glucose and acetate. (See Table 2 for media details). Acetate accumulated in BW25113, PYR001 and PYR002 cultures and lactate accumulated in PYR002 cultures. * indicates 60 concentrations of acetate and lactate that were below the detection level of the HPLC.

FIG. 5 shows growth, glucose consumption, and pyruvate production by PYR004 in bioreactors. Panels (A) and (B) show batch fermentation in minimal salts medium contain- 65 ing 30 g/L glucose with 1.5 g/L acetate (panel A) or 3 g/L acetate (panel B). Panel (C) shows fed-batch fermentation

operated in minimal salts medium initially containing 30 g/L glucose and 1.5 g/L acetate. In the fed-batch operation, an additional 7.5 mL of 200 g/L acetate was added at 8.5 hours, indicated by the black arrow, for a total acetate concentration of 3.0 g/L. Experiments were performed in duplicate. Diamond: OD 600. Triangle: glucose concentration. Square: pvruvate concentration.

FIG. 6 shows growth, glucose consumption and pyruvate production by PYR020 in bioreactors. Panels (A) and (B) show batch fermentation in minimal salts medium containing 30 g/L glucose with 0.9 g/L acetate (Panel A) or 1.5 g/L acetate (Panel B). Panel (C) shows fed-batch fermentation operated in minimal salts medium initially containing 30 g/L glucose and 0.6 g/L acetate. In the fed-batch operation, an additional 1.5 mL of 200 g/L acetate was added at 17 hours, indicated by the black arrow. Experiments were performed in duplicate. Diamond: OD 600. Triangle: glucose concentration. Square: pyruvate concentration.

FIG. 7 shows batch production of pyruvate in ammonia fiber expansion (AFEX)-pretreated switchgrass hydrolysate (ASGH) by strain PYR020. Cells were grown in ASGH containing 48 g/L glucose, 27 g/L xylose, and 2.6 g/L acetate. Diamond: OD 600. Square: pyruvate concentration.

FIGS. 8A-8B show product secretion from various strains under anaerobic conditions. Secretion of ethanol, succinate, and formate is shown in FIG. 8A. Secretion of acetate and lactate is shown in FIG. 8B. All experiments were performed anaerobically in hungate tubes in M9 minimal media. Columns marked "a" correspond to fermentations containing 1.98 g/L glucose and 0.02 g/L acetate. Multiple samples were taken over 48 hours, which reduced the culture volume by about 50%. Columns marked (b) correspond to fermentations in M9 medium with 1.98 g/L glucose and 0.02 g/L acetate for 24 hours, but only three samples were taken at 16, 20 and 24 hours. Columns marked (c) correspond to fermentations in M9 minimal medium with more acetate (0.1 g/L) and 1.9 g/L glucose for 24 hours, with only three samples. Error bars represent standard errors among three replicates. Percent of theoretical yield was calculated as the ethanol concentration divided by the theoretical maximum production of ethanol (2 mmol of ethanol per mmol of glucose plus 0.67 mmol of ethanol per mmol of acetate). t-tests were used to determine significant differences in product concentrations between different fermentations (a, b, and c columns) where * and ** indicates the p-value is between 0.01 and 0.05, or less than 0.01, respectively.

DETAILED DESCRIPTION OF THE INVENTION

One aspect of the invention is directed to microorganisms gene products of one or more genes. Such a modification that that reduces or ablates the activity of gene products of one or more genes is referred to herein as a "functional deletion" of the gene product. "Gene product" refers to a protein or polypeptide encoded and produced by a particular gene. "Gene" refers to a nucleic acid sequence capable of producing a gene product and may include such genetic elements as a coding sequence together with any other genetic elements required for transcription and/or translation of the coding sequence. Such genetic elements may include a promoter, an enhancer, and/or a ribosome binding site (RBS), among others.

One of ordinary skill in the art will appreciate that there are many well-known ways to functionally delete a gene product. For example, functional deletion can be accomplished by introducing one or more genetic modifications. As used herein, "genetic modifications" refer to any differences in the nucleic acid composition of a cell, whether in the cell's native chromosome or in endogenous or exogenous non-chromosomal plasmids harbored within the cell. Examples of genetic modifications that may result in a 10functionally deleted gene product include but are not limited to mutations such as substitutions, partial or complete deletions, insertions, or other variations to a coding sequence or a sequence controlling the transcription or translation of a coding sequence; placing a coding sequence under the control of a less active promoter; blocking transcription of the gene with a trans-acting DNA binding protein such as a TAL effector or CRISPR guided Cas9; and expressing ribozymes or antisense sequences that target the mRNA of the gene of interest, etc. In some versions, a gene or coding 20 sequence can be replaced with a selection marker or screenable marker. Various methods for introducing the genetic modifications described above are well known in the art and include homologous recombination, among other mechanisms. See, e.g., Green et al., Molecular Cloning: A labo- 25 ratory manual, 4th ed., Cold Spring Harbor Laboratory Press (2012) and Sambrook et al., Molecular Cloning: A Laboratory Manual, 3rd ed., Cold Spring Harbor Laboratory Press (2001). Various other genetic modifications that functionally delete a gene product are described in the examples below. 30 Functional deletion can also be accomplished by inhibiting the activity of the gene product, for example, by chemically inhibiting a gene product with a small molecule inhibitor, by expressing a protein that interferes with the activity of the gene product, or by other means.

In certain versions of the invention, the functionally deleted gene product may have less than about 95%, less than about 90%, less than about 85%, less than about 80%, less than about 75%, less than about 70%, less than about 65%, less than about 60%, less than about 55%, less than about 50%, less than about 40%, less than about 55%, less than about 30%, less than about 25%, less than about 35%, less than about 30%, less than about 25%, less than about 20%, less than about 15%, less than about 15%, less than about 10%, less than about 15%, less than about 10%, less than about 50%, less than about 15%, less than about 10%, less than about 5%, less than about 15%, less than about 10%, less than about 15%, less than about 10%, less than about 5%, less than about 15%, less than about 10%, less than about 5%, less than about 10%, less than about 1

In certain versions of the invention, a cell with a functionally deleted gene product may have less than about 95%, less than about 90%, less than about 85%, less than about 80%, less than about 75%, less than about 70%, less than about 65%, less than about 60%, less than about 55%, less than about 50%, less than about 45%, less than about 40%, less than about 35%, less than about 30%, less than about 25%, less than about 20%, less than about 15%, less than about 10%, less than about 5%, less than about 0% of the activity of the gene product compared to a cell 55 with the non-functionally deleted gene product.

In certain versions of the invention, the functionally deleted gene product may be expressed at an amount less than about 95%, less than about 90%, less than about 85%, less than about 80%, less than about 75%, less than about 60%, less than about 55%, less than about 50%, less than about 40%, less than about 50%, less than about 45%, less than about 40%, less than about 35%, less than about 30%, less than about 25%, less than about 35%, less than about 10%, less than about 5%, less than about 15%, less than about 10%, less than about 5%, less than about 15%, less than about 10%, less than about 5%, less than about 15%, less than about 10%, less than about 5%, less than about 15%, less than about 10%, less than about 5%, less than about 15%, less than about 10%, less than about 5%, less than about 15%, less than about 10%, less than about 5%, less than about 10%, less than about 1

In certain versions of the invention, the functionally deleted gene product may result from a genetic modification in which at least 1, at least 2, at least 3, at least 4, at least 5, at least 10, at least 20, at least 30, at least 40, at least 50, or more nonsynonymous substitutions are present in the gene or coding sequence of the gene product.

In certain versions of the invention, the functionally deleted gene product may result from a genetic modification in which at least 1, at least 2, at least 3, at least 4, at least 5, at least 10, at least 20, at least 30, at least 40, at least 50, or more bases are inserted in the gene or coding sequence of the gene product.

In certain versions of the invention, the functionally deleted gene product may result from a genetic modification in which at least about 1%, at least about 5%, at least about 10%, at least about 20%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 50%, at least about 55%, at least about 60%, at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, or about 100% of the gene product's gene or coding sequence is deleted or mutated.

In certain versions of the invention, the functionally deleted gene product may result from a genetic modification in which at least about 1%, at least about 5%, at least about 10%, at least about 20%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 50%, at least about 55%, at least about 60%, at least about 65%, at least about 75%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, or about 100% of a promoter driving expression of the gene product is deleted or mutated.

In certain versions of the invention, the functionally deleted gene product may result from a genetic modification in which at least about 1%, at least about 5%, at least about 10%, at least about 25%, at least about 15%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 50%, at least about 55%, at least about 60%, at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, or about 100% of an enhancer controlling transcription of the gene product's gene is deleted or mutated.

In certain versions of the invention, the functionally deleted gene product may result from a genetic modification in which at least about 1%, at least about 5%, at least about 10%, at least about 20%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 50%, at least about 55%, at least about 60%, at least about 65%, at least about 75%, at least about 65%, at least about 70%, at least about 90%, at least about 95%, or about 100% of a sequence controlling translation of gene product's mRNA is deleted or mutated.

In certain versions of the invention, the decreased activity or expression of the functionally deleted gene product is determined with respect to the activity or expression of the gene product in its unaltered state as found in nature. In certain versions of the invention, the decreased activity or expression of the functionally deleted gene product is determined with respect to the activity or expression of the gene product in its form in a corresponding microorganism. In certain versions, the genetic modifications giving rise to a functionally deleted gene product are determined with respect to the gene or coding sequence in its unaltered state as found in nature. In certain versions, the genetic modifications giving rise to a functionally deleted gene product are determined with respect to the gene or coding sequence in its form in a corresponding microorganism.

As used herein, "corresponding microorganism" refers to a microorganism of the same species having the same or substantially same genetic and proteomic composition as a 5 microorganism of the invention, with the exception of genetic and proteomic differences resulting from the modifications described herein for the microorganisms of the invention.

Some versions of the invention comprise microorganisms 10 configured for increased production of pyruvate. For the production of pyruvate, at least three sets of enzymes are functionally deleted in the microorganism. Enzymes in a first set are selected from the group consisting of pyruvate dehydrogenase and 2-oxoglutarate dehydrogenase. Enzymes 15 in a second set are selected from the group consisting of phosphate acetyltransferase, acetate kinase, and pyruvate oxidase. Enzymes in a third set comprise lactate dehydrogenase and one or more enzymes selected from the group consisting of cytochrome terminal oxidase and succinate 20 dehydrogenase; lactate dehydrogenase and one or more enzymes selected from the group consisting of 6-phosphogluconate dehydrogenase and glutamate dehydrogenase; one or more enzymes selected from the group consisting of cytochrome terminal oxidase and succinate dehydrogenase 25 and one or more enzymes selected from the group consisting of 6-phosphogluconate dehydrogenase and glutamate dehydrogenase; or lactate dehydrogenase, one or more enzymes selected from the group consisting of cytochrome terminal oxidase and succinate dehydrogenase, and one or more 30 enzymes selected from the group consisting of 6-phosphogluconate dehydrogenase and glutamate dehydrogenase. Deletion of any gene or any other modification that reduces or ablates the activity of these enzymes or reduces or ablates flux of metabolites through these enzymes is encompassed 35 by the present invention.

Pyruvate dehydrogenases convert pyruvate into acetyl Co-A. Pyruvate dehydrogenases include enzymes classified under any or all of EC 1.2.4.1, EC 2.3.1.12, and EC 1.8.1.4. An exemplary pyruvate dehydrogenase is the pyruvate dehy- 40 drogenase of E. coli, which is a multi-subunit complex comprising AceE (SEQ ID NO:2) encoded by aceE (SEQ ID NO:1), AceF (SEQ ID NO:4) encoded by aceF (SEQ ID NO:3), and Lpd (SEQ ID NO:6) encoded by IpdA (SEQ ID NO:5). AceE has activity classified under EC 1.2.4.1. AceF 45 has activity classified under 2.3.1.12. Lpd has activity classified under 1.8.1.4. Other pyruvate dehydrogenases include homologs of the E. coli pyruvate dehydrogenase.

2-Oxoglutarate dehydrogenases convert α -ketoglutarate. NAD⁺, and CoA to succinyl CoA, CO₂, and NADH. 2-Oxo- 50 glutarate dehydrogenases include enzymes classified under any one or all of EC 1.8.1.4, EC 1.2.4.2, and EC 2.3.1.61. An exemplary 2-oxoglutarate dehydrogenase is the 2-oxoglutarate dehydrogenase of E. coli, which is a multi-subunit complex comprising Lpd (SEQ ID NO:6) encoded by lpdA 55 cinate to fumarate with the reduction of ubiquinone to (SEQ ID NO:5), SucA (SEQ ID NO:8) encoded by sucA (SEQ ID NO:7), and SucB (SEQ ID NO: 10) encoded by sucB (SEQ ID NO:9). Lpd has activity classified under EC 1.8.1.4. SucA has activity classified under EC 1.2.4.2. SucB has activity classified under EC 2.3.1.61. Other 2-oxoglut- 60 arate dehydrogenases include homologs of the E. coli 2-oxoglutarate dehydrogenase. Functionally deleting 2-oxoglutarate dehydrogenase may be performed as an alternative to or in addition to functionally deleting pyruvate dehydrogenase.

Phosphate acetyltransferases convert acetyl-CoA and phosphate to CoA and acetyl phosphate. Phosphate acetyl-

65

transferases include enzymes classified under EC 2.3.1.8. An exemplary phosphate acetyltransferase is the phosphate acetyltransferase of E. coli (SEQ ID NO:12), which is encoded by pta (SEQ ID NO:11). Other phosphate acetyltransferases include homologs of the E. coli phosphate acetyltransferase.

Acetate kinases convert acetate and ATP to acetyl phosphate. Acetate kinases include enzymes classified under EC 2.7.2.-, such as EC 2.7.2.1. An exemplary acetate kinase is the acetate kinase A of E. coli (SEQ ID NO:14), which is encoded by ackA (SEQ ID NO:13). Other acetate kinases include homologs of the E. coli acetate kinase A. Functionally deleting acetate kinase may be performed as an alternative to or in addition to functionally deleting phosphate acetyltransferase. In some versions, the ackA gene in the microorganism is structurally and functionally intact such that the acetate kinase in the cells is fully expressed and fully functional.

Pyruvate oxidases convert pyruvate, phosphate, and O₂ to acetyl phosphate, CO_2 , and H_2O_2 . Pyruvate oxidases include enzymes classified under EC 1.2.3.3. An exemplary pyruvate oxidase is the pyruvate oxidase of E. coli (SEQ ID NO:16), which is encoded by poxB (SEQ ID NO:15). Other pyruvate oxidases include homologs of the E. coli pyruvate oxidase.

Lactate dehydrogenases convert pyruvate to lactate and vice versa. Lactate dehydrogenases include enzymes classified under any or all of EC 1.1.1.27 and EC 1.1.1.28. An exemplary lactate dehydrogenase is the LdhA of E. coli (SEQ ID NO:18), which is encoded by ldhA (SEQ ID NO: 17). Other lactate dehydrogenases include homologs of the E. coli LdhA.

Cytochrome oxidases transfer electrons in the respiratory chain from donors to an acceptor. Cytochrome oxidases include enzymes classified under any or all of EC 1.9.3.1 and EC 1.10.3.-. Exemplary cytochrome oxidases suitable for functionally deleting in the present invention include cytochrome terminal oxidases, such as Family A cytochrome terminal oxidases. An exemplary Family A cytochrome terminal oxidase in E. coli is the cytochrome bo terminal oxidase, which is a multi-subunit complex comprising subunit I (SEQ ID NO:22) encoded by cyoB (SEQ ID NO:21), subunit II (SEQ ID NO:20) encoded by cyoA (SEQ ID NO:19), subunit III (SEQ ID NO:24) encoded by cyoC (SEQ ID NO:23), and subunit IV (SEQ ID NO:26) encoded by cyoD (SEQ ID NO:25). Subunits I-IV have activity classified under EC 1.10.3.-. A fifth gene of the cvo operon. cyoE (SEQ ID NO:27) encodes a heme O synthase (SEQ ID NO:28) that is essential for correct assembly of the complex and can be functionally deleted to effectively functionally delete the cytochrome bo terminal oxidase itself. Other cytochrome oxidases include homologs of the E. coli cytochrome bo terminal oxidase.

Succinate dehydrogenases catalyze the oxidation of sucubiquinol. Succinate dehydrogenases include enzymes classified under EC 1.3.5.1. An exemplary succinate dehydrogenase is the succinate dehydrogenase of E. coli, which is a multi-subunit complex comprising SdhA (SEQ ID NO:30) encoded by sdhA (SEQ ID NO:29), SdhB (SEQ ID NO:32) encoded by sdhB (SEQ ID NO:31), SdhC (SEQ ID NO:34) encoded by sdhC (SEQ ID NO:33), and SdhD (SEQ ID NO:36) encoded by sdhD (SEQ ID NO:35). Other succinate dehydrogenases include homologs of the E. coli succinate dehydrogenases.

6-Phosphogluconate dehydrogenases catalyze the decarboxylating reduction of 6-phosphogluconate into ribulose 5-phosphate in the presence of NADP⁺. Phosphogluconate dehydrogenases include enzymes classified under EC 1.1.1.44. An exemplary 6-phosphogluconate dehydrogenase is the Gnd of *E. coli* (SEQ ID NO:38), which is encoded by gnd (SEQ ID NO:37). Other 6-phosphogluconate dehydro- 5 genases include homologs of the *E. coli* Gnd.

Glutamate dehydrogenases convert glutamate to α -ketoglutarate and vice versa. Glutamate dehydrogenases include enzymes classified under EC 1.4.1.4. An exemplary glutamate dehydrogenase is the GdhA of *E. coli* (SEQ ID NO:40), 10 which is encoded by gdhA (SEQ ID NO:39). Other glutamate dehydrogenases include homologs of the *E. coli* GdhA.

In some versions of the invention, the microorganisms having the above-referenced sets of enzymes functionally deleted are evolved for enhanced production of pyruvate. 15 The microorganisms are evolved by sequentially culturing microorganisms in media comprising decreasing concentrations of acetate. This process preferably involves sequentially culturing the microorganisms in aliquots of media, with sequential aliquots comprising decreasing concentra- 20 tions of acetate. The concentrations of acetate in the media are preferably within a range of from about 0 mg/L to about 80 g/L, such as from about 0.001 mg/L to about 80 g/L, about 0.01 mg/L to about 50 g/L, about 0.1 mg/L to about 10 g/L, or about 0.1 mg/L to about 3 g/L. In some versions, the 25 starting acetate concentration in the medium is within a range of from about 90 mg/L to about 80 g/L and sequentially reduces to a concentration with a range of from about 0 mg/L to about 90 mg/L. In some versions, the starting acetate concentration in the medium is within a range of 30 from about 90 mg/L to about 80 g/L and sequentially reduces to a concentration with a range of from about 0.001 mg/L to about 90 mg/L. In some versions, the starting acetate concentration in the medium is within a range of from about 90 mg/L to about 1 g/L and sequentially reduces to a concen- 35 tration with a range of from about 0.1 mg/L to about 90 mg/L. In some versions, the starting acetate concentration in the medium is within a range of from about 90 mg/L to about 500 g/L and sequentially reduces to a concentration with a range of from about 1 mg/L to about 90 mg/L.

The initial amount of total consumable carbon in the various media used in the sequential culturing is preferably approximately the same among the media. The initial amount of total consumable carbon preferably ranges from about 1 g/L to about 100 g/L, but may be higher or lower. 45 Beyond the acetate, the balance of consumable carbon preferably comprises a sugar such as glucose or other carbohydrates or carbon sources known in the art. The sequential culturing may comprise passing the microorganism through the media in at least about 2, 3, 4, 5, 7, 10, 15, 50 or 20 passages and/or up to about 5, 10, 15, 20, 30, 50 or more passages.

Some versions of the invention comprise microorganisms configured for increased production of ethanol. These microorganisms have the enzymes described above for 55 producing pyruvate functionally deleted but additionally have pyruvate formate lyase functionally deleted.

Pyruvate formate lyases catalyze the reversible conversion of pyruvate and coenzyme-A into formate and acetyl-CoA. Pyruvate formate lyases include enzymes classified 60 under EC 2.3.1.54. An exemplary pyruvate formate lyase is the PFL of *E. coli* (SEQ ID NO:42), which is encoded by pfIB (SEQ ID NO:41). Other pyruvate formate lyases include homologs of the *E. coli* PFL.

In some versions of the invention, a pyruvate formate 65 lyase activating enzyme in the recombinant microorganism is functionally deleted. Pyruvate formate lyase activating

enzymes include enzymes classified under EC 1.97.1.4. Pyruvate formate lyase activating enzymes activate pyruvate formate lyases. Functionally deleting a pyruvate formate lyase activating enzyme constitutes a way to functionally delete a pyruvate formate lyase. An exemplary pyruvate formate lyase activating enzyme is the PFL activase of *E. coli* (SEQ ID NO:44), which is encoded by pflA (SEQ ID NO:43). Other pyruvate formate lyase activating enzymes include homologs of the *E. coli* PFL activase.

The enzymes described herein can be functionally deleted by mutating or disrupting expression of any one or all of the genes encoding the enzyme or its substituent subunits. Accordingly, the pyruvate dehydrogenase can be functionally deleted by mutating or disrupting expression of any one or more of aceE, aceF, and lpdA or homologs thereof. The 2-oxoglutarate dehydrogenase can be functionally deleted by mutating or disrupting expression of any one or more of lpdA, sucA, and sucB or homologs thereof. The phosphate acetyltransferase can be functionally deleted by mutating or disrupting expression of pta or homologs thereof. The acetate kinase can be functionally deleted by mutating or disrupting expression of ackA or homologs thereof. The pyruvate oxidase can be functionally deleted by mutating or disrupting expression of poxB or homologs thereof. The lactate dehydrogenase can be functionally deleted by mutating or disrupting expression of ldhA or homologs thereof. The cytochrome oxidase can be functionally deleted by mutating or disrupting expression of any one or more of cyoA, cyoB, cyoC, cyoD and cyoE or homologs thereof. The succinate dehydrogenase can be functionally deleted by mutating or disrupting expression of any one or more of sdhA, sdhB, sdhC, and sdhD or homologs thereof. The 6-phosphogluconate dehydrogenase can be functionally deleted by mutating or disrupting expression of gnd or homologs thereof. The glutamate dehydrogenase can be functionally deleted by mutating or disrupting expression of gdhA or homologs thereof. The pyruvate formate lyase can be functionally deleted by mutating or disrupting expression 40 of pflB and pflA or homologs thereof.

The microorganisms of the invention may also be modified to increase expression of one or more enzymes. Modifying the microorganism to increase expression of an enzyme can be performed using any methods currently known in the art or discovered in the future. Examples include genetically modifying the microorganism and culturing the microorganism in the presence of factors that increase expression of the enzyme. Suitable methods for genetic modification include but are not limited to placing the coding sequence under the control of a more active promoter, increasing the copy number of the gene, introducing a translational enhancer on the gene (see, e.g., Olins et al. Journal of Biological Chemistry, 1989, 264(29):16973-16976), and/or increasing expression of transactivators. Increasing the copy number of the gene can be performed by introducing additional copies of the gene to the microorganism, i.e., by incorporating one or more exogenous copies of the native gene or a heterologous homolog thereof into the microbial genome, by introducing such copies to the microorganism on a plasmid or other vector, or by other means. "Exogenous" used in reference to a genetic element means the genetic element is introduced to a microorganism by genetic modification. "Heterologous" used in reference to a genetic element means that the genetic element is derived from a different species. A promoter that controls a particular coding sequence is herein described as being "operationally connected" to the coding sequence.

The microorganisms of the invention may include at least one recombinant nucleic acid configured to express or overexpress a particular enzyme. "Recombinant" as used herein with reference to a nucleic acid molecule or polypeptide is one that has a sequence that is not naturally occurring, has a sequence that is made by an artificial combination of two otherwise separated segments of sequence, or both. This artificial combination can be achieved, for example, by chemical synthesis or by the artificial manipulation of isolated segments of nucleic acid 10 molecules or polypeptides, such as genetic engineering techniques. "Recombinant" is also used to describe nucleic acid molecules that have been artificially modified but contain the same regulatory sequences and coding regions that are found in the organism from which the nucleic acid was isolated. A recombinant cell or microorganism is one that contains a recombinant nucleic acid molecule or polypeptide. "Overexpress" as used herein means that a particular gene product is produced at a higher level in one cell, such as a recombinant cell, than in a corresponding cell. For 20 example, a microorganism that includes a recombinant nucleic acid configured to overexpress an enzyme produces the enzyme at a greater amount than a microorganism that does not include the recombinant nucleic acid.

Exogenous, heterologous nucleic acids encoding enzymes 25 to be expressed in the microorganism are preferably codonoptimized for the particular microorganism in which they are introduced. Codon optimization can be performed for any nucleic acid by a number of programs, including "GENEGPS"-brand expression optimization algorithm by 30 DNA 2.0 (Menlo Park, Calif.), "GENEOPTIMIZER"-brand gene optimization software by Life Technologies (Grand Island, N.Y.), and "OPTIMUMGENE"-brand gene design system by GenScript (Piscataway, N.J.). Other codon optimization programs or services are well known and commer-35 cially available.

Microorganisms of the invention configured to increase production of ethanol may be modified to increase expression of pyruvate decarboxylase and alcohol dehydrogenase.

Pyruvate decarboxylases catalyze the decarboxylation of 40 pyruvic acid to acetaldehyde and carbon dioxide. Pyruvate decarboxylases include enzymes classified under EC 4.1.1.1. An exemplary pyruvate decarboxylase is the PDC of *Zymomonas mobilis* (SEQ ID NO:46), which is encoded by pdc (SEQ ID NO:45). Other pyruvate decarboxylases 45 include homologs of the *Z. mobilis* PDC.

Alcohol dehydrogenases catalyze the interconversion between alcohols and aldehydes or ketones with the reduction of nicotinamide adenine dinucleotide (NAD⁺ to NADH). Alcohol dehydrogenases include enzymes classi- 50 fied under EC 1.1.1.1. An exemplary alcohol dehydrogenase is the ADH2 of *Zymomonas mobilis* (SEQ ID NO:48), which is encoded by adhB (SEQ ID NO:47). Other alcohol dehydrogenases include homologs of the *Z. mobilis* ADH2.

Increased expression of the pyruvate decarboxylase and/ 55 or the alcohol dehydrogenase can be included in a microorganism comprising a functional deletion of any of the genes or gene products, or combinations thereof, described herein.

Isocitrate lyase, encoded by aceA in *E. coli* or homologs 60 thereof, can also be functionally deleted in any of the microorganisms described herein.

Homologs include genes or gene products (including enzymes) that are derived, naturally or artificially, from a common ancestral gene or gene product. Homology is 65 generally inferred from sequence similarity between two or more genes or gene products. Homology between genes may 12

be inferred from sequence similarity between the products of the genes. The precise percentage of similarity between sequences that is useful in establishing homology varies with the gene or gene product at issue, but as little as 25% sequence similarity (e.g., identity) over 50, 100, 150 or more residues (nucleotides or amino acids) is routinely used to establish homology (e.g., over the full length of the two sequences to be compared). Higher levels of sequence similarity (e.g., identity), e.g., 30%, 35% 40%, 45% 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 99% or more, can also be used to establish homology. Accordingly, homologs of the coding sequences, genes, or gene products described herein include coding sequences, genes, or gene products, respectively, having at least about 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 99% identity to the coding sequences, genes, or gene products, respectively, described herein. In some versions, homologs of the genes described herein include genes that have gene products at least about 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 99% identical to the gene products of the genes described herein. Methods for determining sequence similarity percentages (e.g., BLASTP and BLASTN using default parameters) are described herein and are generally available. The homologous gene products should demonstrate comparable activities and, if an enzyme, participate in the same or analogous pathways. "Orthologs" are genes or coding sequences thereof in different species that evolved from a common ancestral gene by speciation. Normally, orthologs retain the same or similar function in the course of evolution. As used herein "orthologs" are included in the term "homologs." Homologs also include paralogs.

For sequence comparison and homology determination, one sequence typically acts as a reference sequence to which test sequences are compared. When using a sequence comparison algorithm, test and reference sequences are input into a computer, subsequence coordinates are designated, if necessary, and sequence algorithm program parameters are designated. The sequence comparison algorithm then calculates the percent sequence identity for the test sequence(s) relative to the reference sequence based on the designated program parameters. A typical reference sequence of the invention is a nucleic acid or amino acid sequence corresponding to coding sequences, genes, or gene products described herein.

Optimal alignment of sequences for comparison can be conducted, e.g., by the local homology algorithm of Smith & Waterman, Adv. Appl. Math. 2:482 (1981), by the homology alignment algorithm of Needleman & Wunsch, J. Mol. Biol. 48:443 (1970), by the search for similarity method of Pearson & Lipman, Proc. Nat'l. Acad. Sci. USA 85:2444 (1988), by computerized implementations of these algorithms (GAP, BESTFIT, FASTA, and TFASTA in the Wisconsin Genetics Software Package, Genetics Computer Group, 575 Science Dr., Madison, Wis.), or by visual inspection (see Current Protocols in Molecular Biology, F. M. Ausubel et al., eds., Current Protocols, a joint venture between Greene Publishing Associates, Inc. and John Wiley & Sons, Inc., (supplemented through 2008)).

One example of an algorithm that is suitable for determining percent sequence identity and sequence similarity for purposes of defining homologs is the BLAST algorithm, which is described in Altschul et al., *J. Mol. Biol.* 215: 403410 (1990). Software for performing BLAST analyses is publicly available through the National Center for Biotechnology Information. This algorithm involves first identifying high scoring sequence pairs (HSPs) by identifying short

words of length W in the query sequence, which either match or satisfy some positive-valued threshold score T when aligned with a word of the same length in a database sequence. T is referred to as the neighborhood word score threshold (Altschul et al., supra). These initial neighborhood word hits act as seeds for initiating searches to find longer HSPs containing them. The word hits are then extended in both directions along each sequence for as far as the cumulative alignment score can be increased. Cumulative scores are calculated using, for nucleotide sequences, the parameters M (reward score for a pair of matching residues; always >0) and N (penalty score for mismatching residues; always <0). For amino acid sequences, a scoring matrix is used to calculate the cumulative score. Extension of the 15 word hits in each direction are halted when: the cumulative alignment score falls off by the quantity X from its maximum achieved value; the cumulative score goes to zero or below, due to the accumulation of one or more negativescoring residue alignments; or the end of either sequence is 20 reached. The BLAST algorithm parameters W, T, and X determine the sensitivity and speed of the alignment. The BLASTN program (for nucleotide sequences) uses as defaults a wordlength (W) of 11, an expectation (E) of 10, a cutoff of 100, M=5, N=-4, and a comparison of both 25 strands. For amino acid sequences, the BLASTP program uses as defaults a wordlength (W) of 3, an expectation (E) of 10, and the BLOSUM62 scoring matrix (see Henikoff & Henikoff (1989) Proc. Natl. Acad. Sci. USA 89:10915).

In addition to calculating percent sequence identity, the 30 BLAST algorithm also performs a statistical analysis of the similarity between two sequences (see. e.g., Karlin & Altschul, Proc. Natl. Acad. Sci. USA 90:5873-5787 (1993)). One measure of similarity provided by the BLAST algorithm is the smallest sum probability (P(N)), which provides an 35 indication of the probability by which a match between two nucleotide or amino acid sequences would occur by chance. For example, a nucleic acid is considered similar to a reference sequence if the smallest sum probability in a comparison of the test nucleic acid to the reference nucleic 40 acid is less than about 0.1, more preferably less than about 0.001. The above-described techniques are useful in identifying homologous sequences for use in the methods described herein.

The terms "identical" or "percent identity", in the context 45 of two or more nucleic acid or polypeptide sequences, refers to two or more sequences or subsequences that are the same or have a specified percentage of amino acid residues or nucleotides that are the same, when compared and aligned for maximum correspondence, as measured using one of the 50 sequence comparison algorithms described above (or other algorithms available to persons of skill) or by visual inspection.

The phrase "substantially identical", in the context of two nucleic acids or polypeptides refers to two or more 55 sequences or subsequences that have at least about 60%, about 65%, about 70%, about 75%, about 80%, about 85%, about 90, about 95%, about 98%, or about 99% or more nucleotide or amino acid residue identity, when compared and aligned for maximum correspondence, as measured 60 using a sequence comparison algorithm or by visual inspection. Such "substantially identical" sequences are typically considered to be "homologous" without reference to actual ancestry. Preferably, the "substantial identity" exists over a region of the sequences that is at least about 50 residues in 65 length, more preferably over a region of at least about 100 residues, and most preferably, the sequences are substan-

tially identical over at least about 150 residues, at least about 250 residues, or over the full length of the two sequences to be compared.

Accordingly, homologs of the genes described herein include genes with gene products at least about 80%, 85%, 90%, 95%, 97%, 98%, 99%, or more identical to the gene products of the genes described herein.

The microorganisms of the invention may be prokaryotic, such as bacteria or archaea, or eukaryotic, such as yeast. Among bacteria, any bacterium in the domain Bacteria, the kingdom Eubacteria, the phylum Proteobacteria, the class Gammaproteobacteria, the order Enterobacteriales, and the family Enterobacteriaceae are suitable. Gram-positive, gram-negative, and ungrouped bacteria are suitable. Phototrophs, lithotrophs, and organotrophs are also suitable. In exemplary versions of the invention, the microorganism is E. coli. In some versions of the invention, the microorganism is a cyanobacterium. Suitable cyanobacteria include those from the genuses Agmenellum, Anabaena, Aphanocapsa, Arthrosprira, Gloeocapsa, Haplosiphon, Mastigocladus, Nostoc, Oscillatoria, Prochlorococcus, Scytonema, Synechococcus, and Synechocystis. Preferred cyanobacteria include those selected from the group consisting of Synechococcus spp., spp., Synechocystis spp., and Nostoc spp.

An aspect of the present invention includes methods of producing commodity chemicals, such as pyruvate and/or ethanol, with the microorganisms of the invention. The methods involve culturing the microorganism in conditions suitable for growth of the microorganism. Such conditions include providing suitable carbon sources for the particular microorganism along with suitable micronutrients. For eukaryotic microorganisms and heterotrophic bacteria, suitable carbon sources include various carbohydrates. Such carbohydrates may include biomass or other suitable carbon sources known in the art. For phototrophic bacteria, suitable carbon sources include CO_2 , which is provided together with light energy. The commodity chemical can be purified or isolated with methods known in the art.

In some versions of the invention, the microorganism may be cultured in a medium comprising a biomass hydrolysate. The biomass hydrolysate can be produced from any biomass feedstock. Exemplary types of biomass feedstocks include sucrose-rich feedstocks such as suger cane; starchy materials, such as corn grain; and lignocellulosic biomass, such as costal Bermuda grass, corn cobs, corn stover, cotton seed hairs, grasses, hardwood stems, leaves, newspaper, nut shells, paper, primary wastewater solids, softwood stems, solid cattle manure, sorted refuse, swine waste, switchgrass, waste papers from chemical pulps, wheat straw, wood, and woody residues.

Prior to hydrolysis, the biomass feedstock may be pretreated or non-pretreated. Pretreatment of biomass feedstock removes a large proportion of the lignin and other materials and enhances the porosity of the biomass prior to hydrolysis. The biomass feedstock may be pretreated by any method. Exemplary pretreatments include chipping, grinding, milling, steam pretreatment, ammonia fiber expansion (AFEX, also referred to as ammonia fiber explosion), ammonia recycle percolation (ARP), CO2 explosion, steam explosion, ozonolysis, wet oxidation, acid hydrolysis, dilute-acid hydrolysis, alkaline hydrolysis, organosolv, and pulsed electrical field treatment, among others. See. e.g., Kumar, P.; Barrett, D. M.; Delwiche, M. J.; Stroeve, P., Methods for Pretreatment of Lignocellulosic Biomass for Efficient Hydrolysis and Biofuel Production. Industrial & Engineering Chemistry Research 2009, 48, (8), 3713-3729.

35

50

The pretreated or non-pretreated biomass may be hydrolyzed by any suitable method. Hydrolysis converts biomass polymers to fermentable sugars, such as glucose and xylose, and other monomeric or oligomeric components. Exemplary hydrolysis methods include enzymatic hydrolysis (e.g., with 5 cellulases or other enzymes) and acid hydrolysis (e.g., with sulfurous, sulfuric, hydrochloric, hydrofluoric, phosphoric, nitric, and/or formic acids), among other methods

Exemplary biomass hydrolysates include AFEX-pretreated corn stover hydrolysate (ACSH) (Schwalbach et al. App. Environ. Microbiol. 2012, 78, (9), 3442-3457) and AFEX-pretreated switchgrass hydrolysate (ASGH).

The medium comprising the biomass hydrolysate may comprise at least about 5%, about 10%, about 20%, about 30%, about 40%, about 50%, about 60%, about 70%, about 15 80%, about 90%, about 95%, or about 99% biomass hydrolysate by volume or by mass.

The term "increase," whether used to refer to an increase in production of an organic acid, an increase in expression of an enzyme, etc., generally refers to an increase from a 20 baseline amount, whether the baseline amount is a positive amount or none at all.

The elements and method steps described herein can be used in any combination whether explicitly described or not.

The singular forms "a," "an," and "the" include plural 25 referents unless the content clearly dictates otherwise.

Numerical ranges as used herein are intended to include every number and subset of numbers contained within that range, whether specifically disclosed or not. Further, these numerical ranges should be construed as providing support 30 for a claim directed to any number or subset of numbers in that range. For example, a disclosure of from 1 to 10 should be construed as supporting a range of from 2 to 8, from 3 to 7, from 5 to 6, from 1 to 9, from 3.6 to 4.6, from 3.5 to 9.9, and so forth.

All patents, patent publications, and peer-reviewed publications (i.e., "references") cited herein are expressly incorporated by reference to the same extent as if each individual reference were specifically and individually indicated as being incorporated by reference. In case of conflict between 40 the present disclosure and the incorporated references, the present disclosure controls.

It is understood that the invention is not confined to the particular construction and arrangement of parts herein illustrated and described, but embraces such modified forms 45 thereof as come within the scope of the following claims.

EXAMPLES

Overview

Microbes produce a variety of useful chemicals. However, most strains have not evolved to produce compounds at industrially-relevant levels. Metabolic engineering develops biocatalysts to produce desired chemicals at high rates, yields, and titers. Strains have been engineered to produce a 55 broad range of products, including transportation fuels (e.g. ethanol, butanol and biodiesel) [1-5], pharmaceuticals (e.g. alkeloids, polyketides, nonribosomal peptides and isoprenoids) [6-11] and bulk and fine chemicals (e.g. amino acids, organic acids, industrial solvents and polymer pre- 60 cursors) [12-16]. Metabolic engineering strategies involve increasing production of pathway precursors, recycling redox carriers, improving flux through biosynthesis pathways, reducing toxic intermediate concentrations, and/or increasing tolerance to intermediates and products. Increas- 65 ing precursor(s) supply is often needed to generate more of a desired downstream product. For example, strains with

elevated malonyl-CoA levels were engineered to produce phloroglucinol (a polyketide derived from malonyl-CoA) [17], and strains with higher oxaloacetate levels produced more succinate, threonine and lysine, which are all derived from oxaloacetate [18].

Pyruvate is a central metabolite and precursor to acetyl-CoA and several amino acids (including alanine, lysine, valine, isoleucine and leucine). Commodity chemicals (e.g. ethanol, acetic acid, lactic acid and acrylic acid), as well as active pharmaceutical ingredients (e.g. polyketides and isoprenoids) can also be derived from pyruvate. Pyruvate can be converted into >60 commercial chemicals within five reaction steps. Furthermore, pyruvate itself can be used as a food additive, weight loss agent, and anti-aging skin treatment. Microbial production of pyruvate is an attractive alternative to current chemical processes, which are expensive and toxic [21].

Escherichia coli, Corynebacterium glutamicum, and Saccharomyces cerevisiae strains have been genetically engineered to produce pyruvate [19-24]. However, most strains have low yields and use expensive medium components. Previous E. coli metabolic engineering strategies focused on blocking pyruvate consumption pathways to phosphoenolpyruvate (PEP), acetyl-CoA, ethanol, acetate, lactate and formate. Other strategies prevented conversion of PEP to oxaloacetate by deleting PEP synthase, increasing glycolytic flux by deleting F1-ATPase deletion mutant or reducing NADH availability [19-21], and reducing TCA cycle fluxes by deleting α -ketoglutarate dehydrogenase [21]. The highest reported yield is 0.75 g pyruvate/g glucose (78% of the theoretical maximum yield) using a thiamin supplemented salts minimal medium. Pyruvate overproducing strains have been further altered to produce other chemicals, including alanine and diacetyl [25].

The present examples design and construct pyruvate strains using a genome-scale metabolic model of E. coli. OptORF [26] was used to search for gene deletions that would have high pyruvate yields at their maximal growth rate. Four mutant strains were constructed and characterized for growth and pyruvate production, and two of the four strains were adaptively evolved to increase growth rates and further improve pyruvate production. The pyruvate strains were further engineered to produce ethanol, which is derived from pyruvate. The examples show strains achieving up to 95% of the maximum theoretic yields for pyruvate. The examples also show growth and production of chemicals in bioreactors and with media containing biomass hydrolysate. Materials and Methods

Strains and Plasmids

E. coli BW25113 and the pCP20 plasmid were obtained from the E. coli genetic stock center (CGSC, Yale University). Single E. coli gene deletion strains were obtained from the Keio collection (Open Biosystems) and used to construct multiple gene deletion strains (listed in Table 1). To generate mutants with multiple gene deletions, the kanamycin resistance gene (kan) was removed using the pCP20 plasmid [39]. An additional gene was deleted (and kan re-inserted) using P1 transduction from a donor Keio mutant and selection on LB agar plates with 50 µg/mL kanamycin. This process was repeated for each additional knockout and the gene deletions were verified by PCR. The GLBRCE1 strain, pJGG2 plasmid, and its corresponding empty vector (pBBR-DSC5) were obtained from Robert Landick (University of Wisconsin-Madison). The pJGG2 plasmid is a low copy number plasmid with a lac promoter that controls expression of the Zymomonas mobilis PET cassette genes (pdc and adhB) that encode enzymes to produce ethanol from pyru-

vate. GLBRCE1 lacks ldhA, pflB and ackA and contains pJGG2 and a chromosomal copy of the PET cassette inserted in the pflB locus [36].

Media and Culture Conditions

For shake flask and hungate tube experiments, M9 minimal 5 media [44] supplemented with glucose and acetate (at varying concentrations) was used. Gentamicin was added to the media (at $15 \,\mu$ g/mL) for strains containing pJGG2 or pBBR-DSC5 plasmids. All strains were precultured overnight in Luria Broth (LB), pelleted and washed twice in M9 media, 10 and then resuspended in M9 media with an initial OD600 of 0.01. For aerobic flask experiments, cultures were grown aerobically in 250 mL flasks containing 100 mL of media.

For anaerobic hungate tube experiments, cultures were grown in hungate culture tubes with 10 mL of media and 15 IPTG was added (at 200 μ M) to induce the expression of PET cassette. Hungate tubes were vacuumed and flushed with argon three times. All experiments were carried out in triplicate at 37° C. in a shaking incubator. Samples were periodically taken for further analysis and cells were 20 removed using 0.2 μ m nylon filter.

For aerobic bioreactor experiments, a minimal salts medium (adapted from [40]) was used that included 3.5 g/L KH₂PO₄, 5 g/L K₂HPO₄, 3.5 g/L (NH₄)₂HPO₄, 2 mM MgSO₄, 0.1 mM CaCl₂, 0.01 mM FeCl₃ and 0.5 mL per L 25 trace metal solution (described previously [40]). Glucose (30 g/L) and acetate (at reported concentrations) were added to the minimal salts medium. AFEX-pretreated switchgrass hydrolysate (ASGH) was provided by the Great Lakes Bioenergy Research Center. The initial concentrations of 30 glucose, xylose and acetate in ASGH hydrolysate were quantified by HPLC. Bioreactor seed cultures were prepared by inoculating 100 mL of minimal salts medium (with 30 g/L glucose and 0.9 g/L acetate) from a 5 mL overnight LB culture such that the initial OD600 was 0.01. Cells were 35 grown at 37° C. for 14 hours in a 250-mL shake flask and then transferred into three 250-mL flasks containing 100 mL of same medium. The cultures were grown at 37° C. for another 8 hours and used to inoculate the bioreactors. The starting OD600 in the bioreactors was 0.05. Bioreactors

Batch and fed-batch experiments were conducted in a 3 L bioreactor (Applikon Biotechonology, Inc., Shiedam, Netherlands) using a 1 L working volume with the following parameters 37° C., 0.5 L/min air inflow and pH 7.0±0.1. 45 Acid (0.5 M H₂SO₄) and base (2 M KOH) buffers were added to adjust the pH as needed. The stirring speed was set to 500-800 rpm by a single Rushton impeller to ensure the dissolved oxygen level was above 40% of saturation. Each bioreactor experiment was conducted in duplicate. Samples 50 were taken periodically for sugar and end-product analysis after cells were removed by centrifugation. For fed-batch experiments, a 200 g/L acetate solution was added to the reactor when growth slowed. For PYR020, the fed-batch started with 30 g/L glucose and 0.6 g/L acetate, and an 55 additional 0.3 g/L acetate was added (1.5 mL of 200 g/L solution). For PYR004, the fed-batch started with 30 g/L glucose and 1.5 g/L acetate, and an additional 1.5 g/L acetate was added (7.5 mL of 200 g/L solution). Chemical Analyses

Glucose concentrations were determined using an enzyme assay from Sigma (GAGO20). Pyruvate, lactate, acetate, succinate, and formate concentrations in the medium were measured by HPLC using an Aminex HPX-87H with Cation-H guard column (Bio-Rad, cat #125-0140). The mobile 65 phase contained 0.02 N H_2SO_4 (for samples from minimal medium) or 0.05 N H_2SO_4 (for samples from ammonia fiber

expansion (AFEX)-pretreated switchgrass hydrolysate (ASGH)) and was run at a flow rate of 0.5 mL/min at 50° C. The end-products were quantified (from standard curves) based on their refractive index. The reported yields were all adjusted by taking into account evaporation and buffer addition to bioreactors. The uptake and secretion rates were determined from the metabolite and biomass concentration data during exponential growth. Biomass concentrations (gram of cell dry weight per liter, gDW/L) were calculated from OD600 values using a conversion factor 1 OD600=0.415 gDW/L [41].

Adaptive Evolution

PYR001 and PYR002 were adaptively evolved independently for 20 passages. The initial cultures were grown in M9 minimal medium with 1.6 g/L glucose and 0.4 g/L acetate. At an OD600~0.2, cells were transferred to fresh medium (such that starting OD600 was 0.01). During adaptive evolution, the amount of acetate in the medium was gradually reduced, while the glucose concentration increased so that the total carbon source was 2 g/L. After 15 passages, the medium contained 1.98 g/L glucose and 0.02 g/L acetate. Cultures from each passage were frozen and stored at -80° C.

Strain Design

OptORF was used to identify gene deletions that couple growth and pyruvate production [26]. This method finds mutants that would produce pyruvate at their highest biomass yield. OptORF was run using a tilted inner objective function (growth rate—0.001•pyruvate production rate) [42] and a gene deletion penalty equal to 1 in the outer objective function. All simulations were done for glucose aerobic conditions using the iJR904 *E. coli* genome-scale metabolic network [43], with a maximum glucose uptake rate of 10 mmol/gDW/hour and an unlimited oxygen uptake. Results

In Silico Strain Design for Pyruvate Production

To improve pyruvate production, OptORF suggested four strategies which delete: (1) aceE, cyoA, cydB, pta, eutI, ldhA and dld; (2) lpdA, gnd, sdhA, poxB, pflB, pflD, tdcE 40 and purU; (3) aceE, gdhA, poxB, ldhA, dld, atpE, pflB, pflD and tdcE; or (4) aceE, gnd poxB, ldhA, dld, atpE, pflB, pflD and tdcE (FIGS. 2A-2D). Given the large numbers of deletions, the identified genes were further evaluated and prioritized for deletion. Enzymes that are inactive under glucose aerobic conditions (e.g. due to regulation) were first excluded, including pyruvate formate lyases (PfIB and PfID) [27, 28]. In addition, eutI, dld and tdcE encode minor isozymes for Pta, LdhA and PflB, respectively [29-32]. Deleting purU also had little impact on cell growth in glucose minimal media [33, 34]. Based on these considerations, pflB, pflD, eutI, dld, tdcE and purU were not deleted since they are likely to have low (if any) activity anyway. Additionally, the cydB and atpE deletions were experimentally lethal in combination with other suggested gene deletions (data not shown) and were not included in the constructed strains. The remaining genes identified by OptORF were deleted to create four engineered strains (PYR001-PYR004, Table 1).

The engineered strains each involved deletions that
impacted metabolism and pyruvate production differently.
Deleting aceE, lpdA, pta, poxB, and/or ldhA reduces the conversion of pyruvate into acetyl-CoA, acetate, and lactate.
Deletion of cyoA, sdhA, and/or lpdA slows down the citric acid (TCA) cycle which would decrease ATP production,
and thus biomass yields. With regard to gdhA and gnd, *E. coli* has two primary pathways for glutamate synthesis using NADPH, ammonia and α-ketoglutarate. The glutamate

dehydrogenase (GDH) pathway (via gdhA) does not require ATP, while the other glutamine synthetase-glutamine oxoglutarate aminotransferase (GS-GOGAT) pathway consumes one ATP per glutamate formed. Deleting gdhA forces cells to use the GS-GOGAT pathway, increasing ATP consumption and decreasing biomass yields. Similarly, deleting gnd prevents NADPH production via the pentose phosphate pathway, and cells produce NADPH from NADH via pyridine nucleotide transhydrogenase. The transhydrogenase consumes energy, thereby lowering the maximum biomass yield. In both cases, lowering the maximum biomass yield (via gdhA or gnd deletions) will increase pyruvate yields, since pyruvate and biomass formation compete for carbon. The gene deletions either prevent pyruvate consumption or reduce growth, and synergistically enhance pyruvate pro-15 duction. Based on the computational results, four strains (PYR001-PYR004) were constructed and tested experimentally (see Table 1). The aceA deletion in PYR001 is not required.

TABLE 1

	Strains and plasmids.		
Strains/ Plasmid	Genotype/Relevant characteristics	Reference	
E. coli strains			
BW25113	lacI ^q rmBT14 ΔlacZWJ16 hsdR514 ΔaraBADAH33 ΔrhaBADLD78	[39]	
PYR001	BW25113 aceE::kan ΔcyoA Δpta ΔldhA ΔaceA	This study	
PYR002	BW25113 lpdA::kan Δgnd ΔpoxB ΔsdhA	This study	
PYR003	BW25113 aceE::kan ΔgdhA ΔpoxB ΔldhA	This study	
PYR004	BW25113 aceE::kan Δgnd ΔpoxB ΔldhA	This study	
PYR010	Adaptively evolved strain of PYR001 (single isolate)	This study	
PYR020	Adaptively evolved strain of PYR002 (single isolate)	This study	
GLBRCE1	MG1655 AackA AldhA ApflB::PET crl(70insIS1) ylbE(253insG) gltB(G3384A) yodD(A85T) glpR(150delG) gatC(916insCC), pJGG2	[36]	
EH010-pflB	PYR010 ΔaceE pflB::kan pJGG2	This study	
EH020-pflB	PYR020 ΔlpdA pflB::kan pJGG2	This study	
EH030-pflB	PYR003 ΔaceE pflB::kan pJGG2	This study	
EH040-pflB	PYR004 ∆aceE pflB::kan pJGG2	This study	

B P P P P P P

20

TABLE 1-continued

Strains and plasmids.									
Strains/ Plasmid	Genotype/Relevant characteristics	Reference							
Plasmids	_								
pBBR1-MSC5 pJGG2	pBBR oriT; P _{lac} ; Gent ^R pBBR1-MSC5 with adhB and pdc (PET cassette) from pLOI295; Gent ^R	[36] [36]							

Abbreviations: kan, kanamycin resistance gene; Gent^R, gentamicin resistance.

Characterization of Engineered Pyruvate Strains

Pyruvate production was characterized in the parent E. coli (BW25113) and four mutant strains PYR001, PYR002, PYR003 and PYR004 in M9 minimal medium supplemented with glucose (FIGS. 3A-3C). All mutant strains contain either an aceE or lpdA deletion, which prevents synthesis of acetyl-CoA from pyruvate via pyruvate dehydrogenase. As a result, acetate was added to the media for all four mutant strains to allow for acetyl-CoA synthesis and growth (Table 2). The four mutants grew slower than the parent strain, but produced pyruvate as predicted by the model (FIGS. 3A-3C), whereas the parent strain did not secrete any pyruvate. Strain PYR001 grew the slowest and only consumed ~40% of glucose (~4.0 mM) within 60 hours. However, PYR001 converted most of the glucose consumed to pyruvate (79% of the theoretical maximum yield, Table 2). Strains PYR003 and PYR004 both completed growth within 20 hours and produced 17.0 and 19.4 mM pyruvate, respectively (79% and 87% of theoretical maximum yield). Among the four mutants, PYR002 had the lowest pyruvate yield (43%) and also exhibited a slower growth rate.

The secretion of metabolic by-products, such as succinate, ³⁵ formate, acetate, lactate and ethanol, was analyzed using HPLC (FIG. 4). Acetate was the main byproduct of the parent strain (BW25113). PYR001 and PYR002 each produced ~1 to 2 mM acetate (which was surprising since they required exogenous acetate for growth), while PYR003 and PYR004 consumed acetate, presumably for acetyl-CoA production. PYR002 was the only strain that produced lactate (~9.8 mM), which explains its relatively low pyruvate yield. Succinate, formate, and ethanol were below the limits of detection by HPLC.

TABLE 2

	Production of pyruvate from the parent and mutant strains in shake flasks.													
					Pyruvate Pro	oduction Rate								
	M9 Medium with Grow		Growth	% of max.	Conversion [‡]	Pyruvate		Specific						
Strains	Glucose (g/L)	Acetate (g/L)	Rate (hour ⁻¹)	theoretical yield [†]	(g pyruvate/ g substrate)	Titer (g/L) [§]	Volumetric (g/L/hour)	(mmol/gDW/ hour)						
3W25113	2	0	0.59 ± 0.01	0	0	0	0	0						
YR001	1.9	0.1	0.02 ± 0.00	79.15 ± 4.63	0.78 ± 0.05	0.62 ± 0.04	0.01 ± 0.00	6.04 ± 0.24						
YR002	1.8	0.2 *	0.12 ± 0.01	43.24 ± 2.89	0.43 ± 0.03	0.91 ± 0.06	0.02 ± 0.00	5.47 ± 0.04						
YR003	1.9	0.1	0.45 ± 0.03	79.05 ± 0.63	0.75 ± 0.00	1.50 ± 0.01	0.08 ± 0.00	20.36 ± 0.47						
YR004	1.9	0.1	0.30 ± 0.00	86.60 ± 4.12	0.82 ± 0.04	1.71 ± 0.08	0.07 ± 0.01	19.11 ± 0.25						
YR010	1.98	0.02	0.20 ± 0.04	68.33 ± 7.81	0.67 ± 0.08	1.39 ± 0.16	0.06 ± 0.00	14.91 ± 1.68						
YR020	1.98	0.02	0.34 ± 0.00	95.23 ± 3.12	0.92 ± 0.03	1.95 ± 0.06	0.05 ± 0.00	23.73 ± 0.88						

* PYR002 required more acetate than other strains to start growth within 48 hour.

Percent of theoretical yield is calculated as the pyruvate concentration divided by the theoretical maximum production of pyruvate (2 mmol of pyruvate per mmol of glucose). Acetate was also taken account for calculating the theoretical maximum production (0.5 mmol of pyruvate per mmol of acetate). The yield was adjusted by the culture volume loss due to the liquid evaporation in shake flasks under aerobic conditions. Conversion is expressed as the gram of pyruvate produced per gram of total carbon source (including glucose and acetate). It was adjusted by the culture volume loss due to the liquid evaporation in shake flasks under aerobic conditions. The reported titer is the concentration determined by HPLC (and does not account for evaporative loss).

The specific production rate is the pyruvate production rate per gram of cell dry weight (gDW) during exponential growth.

The numbers that follow the ± sign are standard deviations (SD) from triplicate experiments.

Adaptive Evolution to Improve Pyruvate Productivity

Strains PYR003 and PYR004 showed high pyruvate productivity, while strains PYR001 and PYR002 exhibited low pyruvate yields and/or production rates. All four pyruvate producing strains were designed such that at their 5 maximum growth rate pyruvate production would be high. Therefore, an adaptive evolution approach was used to evolve PYR001 and PYR002 and select for faster growth, which should also select for higher pyruvate rates. Adaptive evolution was conducted under aerobic conditions for 20 passages at 37° C. in glucose+acetate M9 minimal medium. Acetate was added to the medium to enable cell growth, but the concentration was reduced over adaptive evolution (Table 2). Single colonies of the evolved populations, containing progenies of PYR001 and PYR002, were isolated 15 from the last passage and are referred to as PYR010 and PYR020, respectively. The evolved isolates' growth and pyruvate production were characterized (Table 2 and FIGS. 3D-F). The evolved strains had a 10-fold (PYR010) and 3-fold (PYR020) increase in growth rate and ~2-fold 20 increase in pyruvate titers (PYR010 and PYR020). In terms of pyruvate yield, PYR010 had a 10% lower yield than its unevolved strain (PYR001) while PYR020 had ~2-fold increase (PYR020). Interestingly, both evolved strains needed less acetate (5-fold and 10-fold decrease) in the 25 medium to support their growth. Among the four unevolved strains and two evolved strains, PYR020 performed best with respect to yield and titer, followed by PYR004. Both strains were selected for further characterization in bioreactors (Table 3). 30

Culture in High Concentration of Carbon Source and Lignocellulosic Biomass

Strains with high yields, titers and volumetric production rates are desired for industrial application. While our engineered strains achieved high yields in shake flasks, their 35 titers and volumetric production rate were low due to the low glucose concentrations in the medium. Therefore, a minimal salts medium with higher glucose concentrations (30 g/L) was used to evaluate production by two of the higher yielding pyruvate strains (PYR020 and PYR004). Acetate 40 was the limiting nutrient for both mutants, and thus two different concentrations were used in different experiments (0.9 g/L and 1.5 g/L for PYR020, and 1.5 g/L and 3 g/L for PYR004). Experiments were conducted in 1 L volume, pH-controlled bioreactors, and the dissolved oxygen level 45 was kept above 40% of saturation to maintain an aerobic environment.

PYR020 and PYR004 were first grown in batch bioreactors in minimal salts media with 30 g/L glucose plus acetate. Both PYR004 and PYR020 had slightly higher growth rates, 50 pyruvate yields and titers in media containing less acetate (1.5 g/L for PYR004 and 0.9 g/L for PYR020) (Table 3). For PYR004, higher acetate concentrations significantly reduced the time required to complete conversion of glucose to

pyruvate (from ~33 hours to ~20 hours, FIG. 5). However, at the same acetate concentration (1.5 g/L) PYR020 was faster than PYR004 (FIG. 5, Panel (A), and FIG. 6, Panel (B)), presumably because PYR020 was evolved to grow at lower acetate concentrations. In batch conditions, both strains exhibited higher volumetric productivities when grown with higher acetate levels (Table 3). The two strains produce pyruvate at varying amounts during different stages of batch growth. PYR004 produced a large amount of pyruvate after growth stopped (~27% and ~63% of total pyruvate produced for 3 and 1.5 g/L acetate, respectively) (FIG. 5), while PYR020 produced most of the pyruvate during growth (~91% and 71% for 1.5 and 0.9 g/L acetate, respectively) (FIG. 6). In addition, PYR020 had ~33% higher specific pyruvate production rates (measured in mmol pyruvate/gDW/h) during exponential growth than PYR004 (Table 3).

Both strains were also grown in fed-batch bioreactors, where additional acetate was added once growth slowed. Compared to the batch results with the same total amount of acetate (0.9 g/L for PYR020 and 3 g/L for PYR004), both strains produced less pyruvate (~ $1.9 \text{ and } \sim 2.2\%$ lower yields for PYR020 and PYR004, respectively) in fed-batch experiments (Table 3, FIG. 5 and FIG. 6). However, both strains had higher volumetric pyruvate production rates when grown in fed-batch compared to batch growth with the same total amount of acetate. In both batch and fed-batch operation, tradeoffs appear to exist between volumetric productivities and pyruvate yields, with PYR004 tending to have higher volumetric productivities and PYR020 tending to have higher yields in the conditions tested (Table 3).

Since PYR020 had slightly higher pyruvate yields in minimal salts media than PYR004, PYR020 was further characterized in media derived from lignocellosic biomass. AFEX-pretreated switchgrass hydrolysate (ASGH) was used in batch bioreactor experiments, and contained 48 g/L glucose and 2.6 g/L acetate. The natural presence of acetate in ASGH (and other plant hydrolysates) meant no acetate supplementation was required. Compared to glucose minimal salts media, PYR020 had a similar exponential growth rate in ASGH (~0.22 hour⁻¹), but entered into a slower linear growth phase after ~20 hours (FIG. 7). Growth stopped at ~80 hours, after all the glucose and most of the acetate (1.8 g/L) were utilized. However, xylose, another sugar present in ASGH, was hardly used. While pyruvate titers (40.7 g/L) and pyruvate yields (85.6%) were still high, the volumetric production rate was substantially lower in ASGH then minimal salts media due to slower growth (Table 3). Hydrolysates derived from lignocellulosic biomass contain microbial inhibitors (e.g., feruloyl amide) [135], whose presence reduces growth and xylose conversion. To further increase pyruvate production from lignocellulosic biomass, improvements in xylose conversion and inhibitor tolerance are likely needed.

TABLE 3

	Production of pyruvate from the mutant strains in bioreactors.													
			Pyruvate Production Rate											
		Medium [#] Grow		Growth	% of max.	of max. Conversion [‡]			Specific¶					
Strains	Bioreactor Mode	Glucose (g/L)	Acetate (g/L)	Rate (hour ⁻¹)	theoretical yield [†]	(g pyruvate/ g substrate)	Titer (g/L) [§]	Volumetric (g/L/hour)	(mmol/gDW/ hour)					
PYR020 PYR020 PYR020	Batch Batch Fed-batch	30 30 30	0.9 1.5 0.9	$\begin{array}{c} 0.25 \pm 0.02 \\ 0.23 \pm 0.00 \\ 0.27 \pm 0.02 \end{array}$	92.35 ± 0.41 89.95 ± 4.72 90.61 ± 1.46	0.89 ± 0.01 0.85 ± 0.05 0.86 ± 0.02	26.85 ± 1.60	1.01 ± 0.01 1.10 ± 0.07 1.14 ± 0.02	20.91 ± 1.60 20.06 ± 2.08 24.17 ± 2.05					

	TABLE 5-continued													
	Production of pyruvate from the mutant strains in bioreactors.													
	Pyruvate yield Pyruvate Production													
		Med	ium#	Growth	% of max.	Conversion [‡]	Pyruvate		Specific [¶]					
Strains	Bioreactor Mode	Glucose (g/L)	Acetate (g/L)	Rate (hour ⁻¹)	theoretical yield [†]	(g pyruvate/ g substrate)	Titer (g/L) [§]	Volumetric (g/L/hour)	(mmol/gDW/ hour)					
PYR004 PYR004 PYR004 PYR020	Batch Batch Fed-batch Batch*	30 30 30 48	1.5 3.0 3.0 2.6	$\begin{array}{c} 0.56 \pm 0.03 \\ 0.52 \pm 0.01 \\ 0.53 \pm 0.03 \\ 0.22 \pm 0.02 \end{array}$	91.17 ± 0.02 86.63 ± 0.40 84.70 ± 2.70 85.63 ± 3.54	0.87 ± 0.00 0.80 ± 0.01 0.77 ± 0.01 0.82 ± 0.04	$27.35 \pm 0.01 26.36 \pm 0.41 25.32 \pm 0.43 40.74 \pm 2.09$	$\begin{array}{c} 0.88 \pm 0.00 \\ 1.17 \pm 0.02 \\ 1.37 \pm 0.02 \\ 0.51 \pm 0.04 \end{array}$	$15.11 \pm 4.61 \\ 11.45 \pm 3.55 \\ 17.09 \pm 6.71 \\ 26.36 \pm 3.10$					

TARLE 3 continued

[#]The first six experiments were done in a minimal salts medium (not M9) supplemented with glucose and acetate (see methods for details). In the last experiment, the medium was ASGH hydrolysate which contained 48 g/L glucose, 27 g/L xylose and 2.6 g/L acetate (as determined by HPLC). ¹Percent of theoretical yield is calculated as the pyruvate concentration divided by the theoretical maximum production of pyruvate (2 mmol of pyruvate per mmol of glucose). Acetate was also taken account for calculating the theoretical maximum production (0.5 mmol of pyruvate per mmol of acetate). The yield was adjusted by the culture volume loss due to the liquid evaporation in shake flasks under aerobic conditions. ⁴Conversion is expressed as the gram of pyruvate produced per gram of total carbon source (including glucose and acetate). It was adjusted to account for the volume of added buffer to maintain the bioreactor at pH 7. ⁵The reported titer is the concentration determined by HPLC (and does not account for the volume of added buffer).

The specific production rate is the pyruvate production rate per gram of cell dry weight (gDW) during exponential growth.

The numbers that follow the ± sign are standard deviations (SD) from duplicate bioreactor experiments

Production of Ethanol by PYR-Derived Strains

Pyruvate is a precursor to many metabolites, fuels, and chemicals. To test whether the engineered pyruvate strains could produce other chemicals, we further engineered the ²⁵ strains to convert pyruvate into ethanol. The pJGG2 plasmid was added which contains the PET cassette-pyruvate decarboxylase (pdc) and alcohol dehydrogenase (adhB)from Zvmomonas mobilis under the control of an IPTG inducible lac promoter. Ethanol production was measured under anaerobic conditions since producing ethanol recycles NADH generated by glycolysis. However, under anaerobic conditions pyruvate formate lyase (PfIAB) converts pyruvate into acetyl-CoA and formate, and so pflB was addi- 35 tionally deleted from the pyruvate strains to create four ethanol strains: EH010-pflB, EH020-pflB, EH030-pflB and EH040-pflB.

Anaerobic fermentations in M9 minimal media supplemented with glucose (1.98 g/L) and acetate (0.02 g/L) were $_{40}$ carried out in hungate tubes. Three control strains were included: the parent strain (BW25113) with empty vector (pBBR1-MSC5), parent strain with pJGG2 plasmid, and an

ethanol production strain, GLBRCE1 (which lacks ackA, pflB, and ldhA and expresses the PET cassette from the chromosome and pJGG2 plasmid [36]). In the parent strain, expressing the PET cassette using pJGG2 increased the growth rate, ethanol yield (by ~66%), and ethanol production rate compared to the empty vector (Table 4). The improved growth and ethanol production is likely a result of enhanced NADH recycling. Compared to the parent strain with pJGG2, all strains engineered to produce ethanol (GL-BRCE1, EH010-pflB, EH020-pflB, EH030-pflB and EH040-pflB) had lower growth rates (Table 4). Three mutants (EH020-pflB, EH030-pflB and EH040-pflB) had between ~16% and ~21% higher ethanol yields compared to the parent strain with pJGG2, and had similar yields to GLBRCE1 (FIG. 8A). Two of these mutants (EH020-pflB and EH040-pflB) had higher volumetric productivity than both GLBRCE1 and the parent strain with pJGG2 (Table 4). Additional fermentations were performed using medium with more acetate (0.1 g/L with 1.9 g/L glucose) and/or reduced sampling frequency, and the ethanol yields and byproduct concentrations did not appear to change when more acetate was supplemented (FIGS. 8A and 8B).

TABLE 4

	Production of ethanol from the parent and mutant strains.												
				Ethano	l yield		Ethanol Production Rate						
	Growth	M9 Med	ium with	% of max. Conversi		Ethanol		Specific¶					
Strains§	Rate (hour ⁻¹)	Glucose (g/L)	Acetate (g/L)	theoretical yield [†]	(g pyruvate/ g substrate)	Titer (g/L)	Volumetric (g/L/hour)	(mmol/gDW/ hour)					
BW25113 + pBBR1-MSC5	0.28 ± 0.00	2	0	38.04 ± 1.70	0.19 ± 0.01	0.39 ± 0.02	0.02 ± 0.00	6.26 ± 0.10					
BW25113 + pJGG2	0.37 ± 0.02	2	0	63.06 ± 2.59	0.32 ± 0.01	0.64 ± 0.03	0.04 ± 0.00	11.71 ± 1.09					
GLBRCE1	0.16 ± 0.02	2	0	82.21 ± 0.91	0.42 ± 0.01	0.83 ± 0.01	0.03 ± 0.00	16.08 ± 0.78					
EH010-pflB	0.18 ± 0.01	1.98	0.02	61.81 ± 6.77	0.31 ± 0.03	0.62 ± 0.07	0.02 ± 0.00	16.61 ± 1.15					
EH020-pflB	0.25 ± 0.02	1.98	0.02	80.23 ± 4.84	0.41 ± 0.02	0.81 ± 0.05	0.04 ± 0.00	23.10 ± 1.48					
EH030-pflB	0.19 ± 0.05	1.98	0.02	79.47 ± 7.12	0.40 ± 0.04	0.80 ± 0.07	0.02 ± 0.00	19.29 ± 1.12					
EH040-pflB	0.22 ± 0.03	1.98	0.02	84.59 ± 7.03	0.43 ± 0.04	0.85 ± 0.07	0.04 ± 0.00	22.37 ± 2.28					

§Strains GLBRCE1, EH010-pflB, EH020-pflB, EH030-pflB, and EH040-pflB all contain pJGG2

[†]Percent of theoretical yield is calculated as the ethanol concentration divided by the theoretical maximum production of ethanol (2 mmol of ethanol per mmol of glucose). Acetate is also taken account for calculating the theoretical maximum production (0.67 mmol of ethanol per mmol of glucose). ¹The conversion is expressed as the gram of ethanol produced per gram of carbon.

[¶]The specific production rate is the pyruvate production rate per gram of cell dry weight (gDW) during exponential growth

The numbers that follow the ± sign are standard deviations (SD) from triplicate experiments.

Discussion

Optimizing production of a specific metabolite usually involves increasing synthesis of its precursors. Pyruvate is a starting compound for synthesizing a variety of biofuels (e.g., ethanol, 1-butanol and isobutanol) and chemicals. A 5 high-yield pyruvate producing strain has great potential for creating strains to produce valuable chemicals. In this study, a genome-scale metabolic model of *E. coli* and OptORF were used to identify gene deletion targets to improve pyruvate production. Strains constructed based on the com-10 putational predictions produced high levels of pyruvate and adaptive evolution of two strains increased pyruvate yields, titers and volumetric production rates. Further engineering of these platform pyruvate strains resulted in strains with high ethanol production. 15

25

All the designed strains over-produced pyruvate. The gene targets prevented pyruvate consumption by removing competing pathways and reduced growth by eliminating more energetically efficient routes for NADPH and gluta-mate production. The mutations involved shutting down the 20 pentose phosphate pathway, reducing TCA cycle flux, and lowering biomass production (FIGS. **2**A-**2**D). All of the mutants were predicted to have increased glycolytic fluxes and coupling between growth and pyruvate production. Two of the strains immediately exhibited high pyruvate yields, 25 while two other strains were adaptively evolved to improve production rates and/or yields.

All the pyruvate strains have pyruvate dehydrogenase subunits deleted (either aceE or lpdA). The model predicted that other pathways (besides pyruvate-formate lyase) could 30 be used to produce acetyl-CoA. Acetyl-CoA could be made from acetaldehyde via acetaldehyde dehydrogenase (MhpF), where acetaldehyde is produced by threonine degradation and other reactions. Acetyl-CoA could also be produced by 2-amino-3-ketobutyrate CoA ligase (Kbl) from threonine 35 degradation. However, all of the mutants were unable to grow in the absence of acetate, suggesting that these other pathways are not active at high enough levels. Acetate was consumed by all the pyruvate strains, except PYR001, presumably to generate acetyl-CoA by acetyl-CoA syn- 40 thetase. The amount of acetate available (0.34-3.4 mM) was greater than or close to the amount acetyl-CoA needed for biomass (estimated as the product of the biomass concentration and acetyl-CoA biomass requirement, which is 3.7 mmol acetyl-CoA per gDW) [37]. In the ethanol production 45 study, the mutants with increased fluxes of ethanol synthesis were observed to grow faster, which is also probably caused by the generation of acetaldehyde and then converted to acetyl-CoA, while another possibility is the balancing of NADH. 50

When the resulting pyruvate strains were re-engineered for ethanol production, three of the resulting strains achieved high ethanol yields (EH020-pflB, EH030-pflB and EH040-pflB) under anaerobic conditions. Deleting pflB and expressing the PET cassette increased ethanol as expected, 55 except for EH010-pflB. EH010-pflB (derived from PYR010), had the lowest yield of the mutants with pflB deletion and PET addition. Among all the strains tested, EH010-pflB is closest genetically to GLBRCE1. Both EH010-pflB and GLBRCE1 have ldhA, pta and pflB deletions. Even though EH010-pflB has two additional deletions, aceE and cyoA, neither gene would be expected to be expressed anaerobically [38]. Thus, the significantly lower ethanol yield in EH010-pflB compared with GLBRCE1 was unexpected. GLBRCE1 was derived from a closely-related background strain (MG1655, compared to BW25113) and has an extra chromosomal copy of the PET cassette. This

additional copy of the PET cassette could lead to higher PET expression levels and ethanol production in GLBRCE1. When compared to EH010, EH010-pflB should have reduced formate production (which it does, see FIG. 8A) and increased availability of pyruvate. However, EH010-pflB and EH010 exhibited similar ethanol yields (FIG. 8A). For the EH010-pflB strain, only 80% of the carbon was recovered in the biomass and measured products (which is lower than the other strains) and so it is possible that some other metabolite (not detected by HPLC) was secreted by EH010-pflB.

Yeast and bacterial strains have previously been engineered for pyruvate production [20, 22-24]. The strains usually require additional nutrients besides glucose (e.g., yeast extract, tryptone, thiamine) which will increase the cost for commercial production. An E. coli strain TC44 was previously reported to show the highest pyruvate production with 78% of theoretical yield and 1.2 g/L/hour production rate, when supplemented with thiamine. Our strain, PYR020, uses only mineral salt medium and reaches significantly higher yield (92% of theoretical yield) and a high production rate of 1.01 g/L/hour. This strain also could utilize cheaper hydrolysate feedstock to produce pyruvate with a high yield and titer. While PYR020 requires acetate for growth, acetate is commonly found in lignocellulosic hydrolysates. The PYR020 and PYR004 strains have the highest pyruvate production yield reported so far, and will be an ideal platform to create new strains to produce other important chemicals derived from pyruvate.

REFERENCES

- Ingram L O, Conway T, Clark D P, Sewell G W, Preston J F. Genetic-Engineering of Ethanol-Production in *Escherichia-Coli*. Appl Environ Microb. 1987; 53(10): 2420-5. PubMed PMID: WOS:A1987K354800024.
- Atsumi S, Hanai T, Liao J C. Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature. 2008; 451(7174):86-U13. doi: Doi 10.1038/ Nature06450. PubMed PMID: WOS:000252079300039.
- Steen E J, Kang Y S, Bokinsky G, Hu Z H, Schirmer A, McClure A, et al. Microbial production of fatty-acidderived fuels and chemicals from plant biomass. Nature. 2010; 463(7280):559-U182. doi: Doi 10.1038/Nature08721. PubMed PMID: WOS:000273981100055.
- Beller H R, Goh E B, Keasling J D. Genes Involved in Long-Chain Alkene Biosynthesis in *Micrococcus luteus*. Appl Environ Microb. 2010; 76(4):1212-23. doi: Doi 10.1128/Aem.02312-09. PubMed PMID: WOS: 000274328900029.
- Schirmer A, Rude M A, Li X Z, Popova E, del Cardayre S B. Microbial Biosynthesis of Alkanes. Science. 2010; 329(5991):559-62. doi: DOI 10.1126/science.1187936. PubMed PMID: WOS:000280483500035.
- Hawkins K M, Smolke C D. Production of benzylisoquinoline alkaloids in *Saccharomyces cerevisiae*. Nat Chem Biol. 2008; 4(9):564-73. doi: Doi 10.1038/Nchembio.105. PubMed PMID: WOS:000258597700015.
- 7. Pfeifer B A, Admiraal S J, Gramajo H, Cane D E, Khosla C. Biosynthesis of complex polyketides in a metabolically engineered strain of *E-coli*. Science. 2001; 291(5509): 1790-2. doi: DOI 10.1126/science.1058092. PubMed PMID: WOS:000167320600060.
- 65 8. Siewers V, San-Bento R, Nielsen J. Implementation of Communication-Mediating Domains for Non-Ribosomal Peptide Production in *Saccharomyces cerevisiae*. Bio-

technol Bioeng. 2010; 106(5):841-4. doi: Doi 10.1002/ Bit.22739. PubMed PMID: WOS:000280058800014.

- 9. Ro D K, Paradise E M, Ouellet M, Fisher K J, Newman K L, Ndungu J M, et al. Production of the antimalarial drug precursor artemisinic acid in engineered yeast. 5 Nature. 2006; 440(7086):940-3. doi: Doi 10.1038/Nature04640. PubMed PMID: WOS:000236736700042.
- 10. Leonard E, Ajikumar P K, Thayer K, Xiao W H, Mo J D, Tidor B, et al. Combining metabolic and protein 10engineering of a terpenoid biosynthetic pathway for overproduction and selectivity control. Proceedings of the National Academy of Sciences of the United States of America. 2010; 107(31):13654-9. doi: DOI 10.1073/ pnas.1006138107. PubMed PMID: 000280605900021.
- 11. Asadollahi M A, Maury J, Patil K R, Schalk M, Clark A, Nielsen J. Enhancing sesquiterpene production in Saccharomyces cerevisiae through in silico driven metabolic engineering. Metab Eng. 2009; 11(6):328-34. doi: DOI 20 23. Wang Z K, Gao C J, Wang Q, Liang Q F, Qi Q S. 10.1016/j.ymben.2009.07.001. PubMed PMID: WOS: 000272036700002.
- 12. Park J H, Lee K H, Kim T Y, Lee S Y. Metabolic engineering of Escherichia coli for the production of L-valine based on transcriptome analysis and in silico 25 gene knockout simulation. Proceedings of the National Academy of Sciences of the United States of America. 2007: 104(19):7797-802. doi: DOI 10.1073/WOS: pnas.0702609104. PubMed PMID: 30 000246461500015.
- 13. Fong S S, Burgard A P, Herring C D, Knight E M, Blattner F R, Maranas C D, et al. In silico design and adaptive evolution of Escherichia coli for production of lactic acid. Biotechnol Bioeng. 2005; 91(5):643-8. doi: 35 Doi 10.1002/Bit.20542. PubMed PMID: WOS: 000231523600012.
- 14. Zhang X L, Jantama K, Moore J C, Jarboe L R, Shanmugam K T, Ingram L O. Metabolic evolution of energy-conserving pathways for succinate production in 40 Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America. 2009; 106(48): 20180-5. doi: DOI 10.1073/pnas.0905396106. PubMed PMID: WOS:000272254400012.
- 15. Nakamura C E, Whited G M. Metabolic engineering for 45 28. Sawers G, Watson G. A glycyl radical solution: oxygenthe microbial production of 1,3-propanediol. Curr Opin Biotech. 2003; 14(5):454-9. doi: DOI 10.1016/j.copbio.2003.08.005. PubMed PMID: WOS: 000186448200002.
- Engineering of solvent-tolerant Pseudomonas putida S12 for bioproduction of phenol from glucose. Appl Environ Microb. 2005; 71(12):8221-7. doi: Doi 10.1128/ Aem.71.12.8221-8227.2005. PubMed PMID: WOS: 000234417600072. 55
- 17. Zha W J, Rubin-Pitel S B, Shao Z Y, Zhao H M. Improving cellular malonyl-CoA level in Escherichia coli via metabolic engineering. Metab Eng. 2009; 11(3):192-8. doi: DOI 10.1016/j.ymben.2009.01.005. PubMed PMID: WOS:000265565300008. 60
- 18. Ravi R, Gokarn M A E, Elliot Altman, inventorPyruvate carboxylase overexpression for enhanced production of oxaloacetate-derived biochemicals in microbial cells 1999.
- 19. Zhu Y H, Eitemnan M A, Altman R, Altman E. High 65 Glycolytic Flux Improves Pyruvate Production by a Metabolically Engineered Escherichia coli Strain. Appl Envi-

ron Microb. 2008; 74(21):6649-55. doi: Doi 10.1128/ PubMed Aem.01610-08. PMID: WOS: 000260429600020.

- 20. Tomar A, Eiteman M A, Altman E. The effect of acetate pathway mutations on the production of pyruvate in Escherichia coli. Applied Microbiology and Biotechnology. 2003; 62(1):76-82. doi: DOI 10.1007/s00253-003-1234-6. PubMed PMID: WOS:000184014000010.
- 21. Causey T B, Shanmugam K T, Yomano L P, Ingram L O. Engineering Escherichia coli for efficient conversion of glucose to pyruvate. Proceedings of the National Academy of Sciences of the United States of America. 2004; 101(8):2235-40. doi: DOI 10.1073/pnas.0308171100. PubMed PMID: WOS:000220140400004.
- WOS: 15 22. Xu G Q, Hua Q, Duan N J, Liu L M, Chen J. Regulation of thiamine synthesis in Saccharomyces cerevisiae for improved pyruvate production. Yeast. 2012; 29(6):209-17. doi: Doi 10.1002/Yea.2902. PubMed PMID: WOS: 000305078900002.
 - Production of pyruvate in Saccharomyces cerevisiae through adaptive evolution and rational cofactor metabolic engineering. Biochem Eng J. 2012; 67:126-31. doi: DOI 10.1016/j.bej.2012.06.006. PubMed PMID: WOS: 000310945100017.
 - 24. Wieschalka S, Blombach B, Eikmanns B J. Engineering Corynebacterium glutamicum for the production of pyruvate. Applied Microbiology and Biotechnology. 2012; 94(2):449-59. doi: DOI 10.1007/s00253-011-3843-9. PubMed PMID: WOS:000302035500014.
 - 25. Mark A, Eiteman E A, inventorMicrobial production of pyruvate and pyruvate derivatives patent US 20,100,304, 450. 2012.
 - 26. Kim J, Reed J L. OptORF: Optimal metabolic and regulatory perturbations for metabolic engineering of microbial strains. Bmc Syst Biol. 2010; 4. doi: Artn 53 Doi 10.1186/1752-0509-4-53. PubMed PMID: WOS: 000278257700002.
 - 27. Peng L, Shimizu K. Global metabolic regulation analysis for Escherichia coli K12 based on protein expression by 2-dimensional electrophoresis and enzyme activity measurement. Applied Microbiology and Biotechnology. 2003; 61(2):163-78. doi: DOI 10.1007/s00253-002-1202-6. PubMed PMID: WOS:000182702800011.
 - dependent interconversion of pyruvate formate-lyase. Molecular Microbiology. 1998; 29(4):945-54. doi: DOI 10.1046/j.1365-2958.1998.00941.x. PubMed PMID: WOS:000075451700002.
- 16. Wierckx N J P, Ballerstedt H, de Bont J A M, Wery J. 50 29. Bologna F P, Campos-Bermudez V A, Saavedra D D, Andreo C S, Drincovich M F. Characterization of Escherichia coli EutD: a Phosphotransacetylase of the Ethanolamine Operon. J Microbiol. 2010; 48(5):629-36. doi: DOI 10.1007/s12275-010-0091-0. PubMed PMID: WOS:000283630100012.
 - 30. Zhou L, Zuo Z R, Chen X Z, Niu D D, Tian K M, Prior B A, et al. Evaluation of Genetic Manipulation Strategies on d-Lactate Production by Escherichia coli. Curr Microbiol. 2011; 62(3):981-9. doi: DOI 10.1007/s00284-010-9817-9. PubMed PMID: WOS:000287754500044.
 - 31. Tarmy E M, Kaplan N O. Kinetics of Escherichia Coli B D-Lactate Dehydrogenase and Evidence for Pyruvate-Controlled Change in Conformation. Journal of Biological Chemistry. 1968; 243(10):2587-&. PubMed PMID: WOS:A1968B201700019.
 - 32. Sawers G, Hesslinger C, Muller N, Kaiser M. The glycyl radical enzyme TdcE can replace pyruvate formate-lyase

in glucose fermentation. Journal of Bacteriology. 1998; 180(14):3509-16. PubMed PMID: WOS: 000074720100003.

- 33. Nagy P L, Marolewski A, Benkovic S J, Zalkin H. Formyltetrahydrofolate Hydrolase, a Regulatory Enzyme 5 That Functions to Balance Pools of Tetrahydrofolate and One-Carbon Tetrahydrofolate Adducts in *Escherichia-Coli*. Journal of Bacteriology. 1995; 177(5):1292-8. PubMed PMID: WOS:A1995QJ43900023.
- 34. Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, et al. Construction of *Escherichia coli* K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol. 2006; 2. doi: Artn 2006.0008 Doi 10.1038/Msb4100050. PubMed PMID: WOS:000243245400009.
- 35. Mills T Y, Sandoval N R, Gill R T. Cellulosic hydrolysate toxicity and tolerance mechanisms in *Escherichia coli*. Biotechnol Biofuels. 2009; 2. doi: Artn 26 10.1186/ 1754-6834-2-26. PubMed PMID: WOS: 000272095400002.
- 36. Schwalbach M S, Keating D H, Tremaine M, Marner W D, Zhang Y P, Bothfeld W, et al. Complex Physiology and 20 Compound Stress Responses during Fermentation of Alkali-Pretreated Corn Stover Hydrolysate by an *Escherichia coli* Ethanologen. Appl Environ Microb. 2012; 78(9):3442-57. doi: Doi 10.1128/Aem.07329-11. PubMed PMID: WOS:00002807500047.
 25. Notice the Content of the strength of the strengt of the strength of the strength of the str
- Neidhardt F C, John L. Ingraham, and Moselio Schaechter. Physiology of the bacterial cell: a molecular approach Sunderland, Mass: Sinauer Associates; 1990.
- Toya Y, Nakahigashi K, Tomita M, Shimizu K. Metabolic regulation analysis of wild-type and arcA mutant ³⁰ *Escherichia coli* under nitrate conditions using different levels of omics data. Molecular bioSystems. 2012; 8(10): 2593-604. Epub 2012 Jul. 14. doi: 10.1039/c2mb25069a. PubMed PMID: 22790675.

- 39. Datsenko K A, Wanner B L. One-step inactivation of chromosomal genes in *Escherichia coli* K-12 using PCR products. Proceedings of the National Academy of Sciences of the United States of America. 2000; 97(12): 6640-5. doi: DOI 10.1073/pnas.120163297. PubMed PMID: WOS:0000875263000074.
- 40. Causey T B, Zhou S, Shanmugam K T, Ingram L O. Engineering the metabolism of *Escherichia coli* W3110 for the conversion of sugar to redox-neutral and oxidized products: Homoacetate production. Proceedings of the National Academy of Sciences of the United States of America. 2003; 100(3):825-32. doi: 10.1073/ pnas.0337684100. PubMed PMID: WOS: 000180838100014.
- 41. Baumler D J, Peplinski R G, Reed J L, Glasner J D, Perna N T. The evolution of metabolic networks of *E. coli*. Bmc Syst Biol. 2011; 5:182. doi: Artn 182 Doi 10.1186/ 1752-0509-5-182. PubMed PMID: WOS: 000297698400001.
- 42. Feist A M, Zielinski D C, Orth J D, Schellenberger J, Herrgard M J, Palsson B O. Model-driven evaluation of the production potential for growth-coupled products of *Escherichia coli*. Metab Eng. 2010; 12(3):173-86. doi: DOI 10.1016/j.ymben.2009.10.003. PubMed PMID: WOS:000276821400001.
- 43. Reed J L, Vo T D, Schilling C H, Palsson B O. An expanded genome-scale model of *Escherichia coli* K-12 (iJR904 GSM/GPR). Genome Biol. 2003; 4(9). doi: Artn R54 Doi 10.1186/Gb-2003-4-9-R54. PubMed PMID: WOS:000185048100007.
- 44. Miller. J. H. Experiments in Molecular Genetics. Cold Spring Harbor Laboratory, (1972), 433.

SEQUENCE LISTING

<160> NUMBER OF SEQ ID NOS: 48

```
<210> SEQ ID NO 1
```

```
<211> LENGTH: 2664
```

<212> TYPE: DNA <213> ORGANISM: Escherichia coli

<400> SEQUENCE: 1

atgtcagaac	gtttcccaaa	tgacgtggat	ccgatcgaaa	ctcgcgactg	gctccaggcg	60
atcgaatcgg	tcatccgtga	agaaggtgtt	gagcgtgctc	agtatctgat	cgaccaactg	120
cttgctgaag	cccgcaaagg	cggtgtaaac	gtagccgcag	gcacaggtat	cagcaactac	180
atcaacacca	tccccgttga	agaacaaccg	gagtatccgg	gtaatctgga	actggaacgc	240
cgtattcgtt	cagctatccg	ctggaacgcc	atcatgacgg	tgctgcgtgc	gtcgaaaaaa	300
gacctcgaac	tgggcggcca	tatggcgtcc	ttccagtctt	ccgcaaccat	ttatgatgtg	360
tgctttaacc	acttcttccg	tgcacgcaac	gagcaggatg	gcggcgacct	ggtttacttc	420
cagggccaca	tetecceggg	cgtgtacgct	cgtgctttcc	tggaaggtcg	tctgactcag	480
gagcagctgg	ataacttccg	tcaggaagtt	cacggcaatg	gcctctcttc	ctatccgcac	540
ccgaaactga	tgccggaatt	ctggcagttc	ccgaccgtat	ctatgggtct	gggtccgatt	600
ggtgctattt	accaggctaa	attcctgaaa	tatctggaac	accgtggcct	gaaagatacc	660
tctaaacaaa	ccgtttacgc	gttcctcggt	gacggtgaaa	tggacgaacc	ggaatccaaa	720
ggtgcgatca	ccatcgctac	ccgtgaaaaa	ctggataacc	tggtcttcgt	tatcaactgt	780

US 10,246,725 B2

31

-continued

aacctgcagc gtcttgacgg cccggtcacc ggtaacggca agatcatcaa cgaactggaa	840
ggcatcttcg aaggtgctgg ctggaacgtg atcaaagtga tgtggggtag ccgttgggat	900
gaactgctgc gtaaggatac cagcggtaaa ctgatccagc tgatgaacga aaccgttgac	960
ggcgactacc agacetteaa ategaaagat ggtgegtaeg ttegtgaaca ettetteggt	1020
aaatateetg aaacegeage actggttgea gaetggaetg aegageagat etgggeaetg	1080
aaccgtggtg gtcacgatcc gaagaaaatc tacgctgcat tcaagaaagc gcaggaaacc	1140
aaaggcaaag cgacagtaat ccttgctcat accattaaag gttacggcat gggcgacgcg	1200
gctgaaggta aaaacatege geaceaggtt aagaaaatga acatggaegg tgtgegteat	1260
atccgcgacc gtttcaatgt gccggtgtct gatgcagata tcgaaaaact gccgtacatc	1320
accttcccgg aaggttctga agagcatacc tatctgcacg ctcagcgtca gaaactgcac	1380
ggttatetge caageegtea geegaaette aeegagaage ttgagetgee gageetgeaa	1440
gactteggeg egetgttgga agageagage aaagagatet etaceaetat egetttegtt	1500
cgtgctctga acgtgatgct gaagaacaag tcgatcaaag atcgtctggt accgatcatc	1560
gccgacgaag cgcgtacttt cggtatggaa ggtctgttcc gtcagattgg tatttacagc	1620
ccgaacggtc agcagtacac cccgcaggac cgcgagcagg ttgcttacta taaagaagac	1680
gagaaaggtc agattetgea ggaagggate aacgagetgg gegeaggttg tteetggetg	1740
gcagcggcga cctcttacag caccaacaat ctgccgatga tcccgttcta catctattac	1800
tcgatgttcg gcttccagcg tattggcgat ctgtgctggg cggctggcga ccagcaagcg	1860
cgtggettee tgateggegg taetteeggt egtaceacee tgaaeggega aggtetgeag	1920
cacgaagatg gtcacagcca cattcagtcg ctgactatcc cgaactgtat ctcttacgac	1980
ccggcttacg cttacgaagt tgctgtcatc atgcatgacg gtctggagcg tatgtacggt	2040
gaaaaacaag agaacgttta ctactacatc actacgctga acgaaaacta ccacatgccg	2100
gcaatgccgg aaggtgctga ggaaggtatc cgtaaaggta tctacaaact cgaaactatt	2160
gaaggtagca aaggtaaagt teagetgete ggeteeggtt etateetgeg teaegteegt	2220
gaagcagctg agateetgge gaaagattae ggegtaggtt etgaegttta tagegtgaee	2280
teetteaceg agetggegeg tgatggteag gattgtgaae getggaacat getgeaeeeg	2340
ctggaaactc cgcgcgttcc gtatatcgct caggtgatga acgacgctcc ggcagtggca	2400
tetacegact atatgaaact gttegetgag caggteegta ettaegtaee ggetgaegae	2460
taccgcgtac tgggtactga tggcttcggt cgttccgaca gccgtgagaa cctgcgtcac	2520
cacttegaag ttgatgette ttatgtegtg gttgeggege tgggegaaet ggetaaaegt	2580
ggcgaaatcg ataagaaagt ggttgctgac gcaatcgcca aattcaacat cgatgcagat	2640
aaagttaacc cgcgtctggc gtaa	2664
<210> SEQ ID NO 2 <211> LENGTH: 887 <212> TYPE: PRT <213> ORGANISM: Escherichia coli	
<400> SEQUENCE: 2	
Met Ser Glu Arg Phe Pro Asn Asp Val Asp Pro Ile Glu Thr Arg Asp 1 5 10 15	
Trp Leu Gln Ala Ile Glu Ser Val Ile Arg Glu Glu Gly Val Glu Arg 20 25 30	
Ala Gln Tyr Leu Ile Asp Gln Leu Leu Ala Glu Ala Arg Lys Gly Gly	

-continued

Val	Asn 50	Val	Ala	Ala	Gly	Thr 55	Gly	Ile	Ser	Asn	Tyr 60	Ile	Asn	Thr	Ile
Pro 65	Val	Glu	Glu	Gln	Pro 70	Glu	Tyr	Pro	Gly	Asn 75	Leu	Glu	Leu	Glu	Arg 80
Arg	Ile	Arg	Ser	Ala 85	Ile	Arg	Trp	Asn	Ala 90	Ile	Met	Thr	Val	Leu 95	Arg
Ala	Ser	Lys	Lys 100	Asp	Leu	Glu	Leu	Gly 105	Gly	His	Met	Ala	Ser 110	Phe	Gln
Ser	Ser	Ala 115	Thr	Ile	Tyr	Asp	Val 120	Суз	Phe	Asn	His	Phe 125	Phe	Arg	Ala
Arg	Asn 130	Glu	Gln	Asp	Gly	Gly 135	Asp	Leu	Val	Tyr	Phe 140	Gln	Gly	His	Ile
Ser 145	Pro	Gly	Val	Tyr	Ala 150	Arg	Ala	Phe	Leu	Glu 155	Gly	Arg	Leu	Thr	Gln 160
Glu	Gln	Leu	Asp	Asn 165	Phe	Arg	Gln	Glu	Val 170	His	Gly	Asn	Gly	Leu 175	Ser
Ser	Tyr	Pro	His 180	Pro	Lys	Leu	Met	Pro 185	Glu	Phe	Trp	Gln	Phe 190	Pro	Thr
Val	Ser	Met 195	Gly	Leu	Gly	Pro	Ile 200	Gly	Ala	Ile	Tyr	Gln 205	Ala	Lys	Phe
Leu	Lys 210	Tyr	Leu	Glu	His	Arg 215	Gly	Leu	Lys	Asp	Thr 220	Ser	Lys	Gln	Thr
Val 225	Tyr	Ala	Phe	Leu	Gly 230	Asp	Gly	Glu	Met	Asp 235	Glu	Pro	Glu	Ser	Lys 240
Gly	Ala	Ile	Thr	Ile 245	Ala	Thr	Arg	Glu	Lys 250	Leu	Asp	Asn	Leu	Val 255	Phe
Val	Ile	Asn	Cys 260	Asn	Leu	Gln	Arg	Leu 265	Asp	Gly	Pro	Val	Thr 270	Gly	Asn
Gly	Lys	Ile 275	Ile	Asn	Glu	Leu	Glu 280	Gly	Ile	Phe	Glu	Gly 285	Ala	Gly	Trp
Asn	Val 290	Ile	Lys	Val	Met	Trp 295	Gly	Ser	Arg	Trp	Asp 300	Glu	Leu	Leu	Arg
Lys 305	Asp	Thr	Ser	Gly	Lys 310	Leu	Ile	Gln	Leu	Met 315	Asn	Glu	Thr	Val	Asp 320
Gly	Asp	Tyr	Gln	Thr 325	Phe	Lys	Ser	Lys	Asp 330	Gly	Ala	Tyr	Val	Arg 335	Glu
His	Phe	Phe	Gly 340	Lys	Tyr	Pro	Glu	Thr 345	Ala	Ala	Leu	Val	Ala 350	Asp	Trp
Thr	Asp	Glu 355	Gln	Ile	Trp	Ala	Leu 360	Asn	Arg	Gly	Gly	His 365	Asp	Pro	Lys
Lys	Ile 370	Tyr	Ala	Ala	Phe	Lys 375	Lys	Ala	Gln	Glu	Thr 380	Lys	Gly	Lys	Ala
Thr 385	Val	Ile	Leu	Ala	His 390	Thr	Ile	Lys	Gly	Tyr 395	Gly	Met	Gly	Asp	Ala 400
Ala	Glu	Gly	Lys	Asn 405	Ile	Ala	His	Gln	Val 410	Lys	Lys	Met	Asn	Met 415	Asp
Gly	Val	Arg	His 420	Ile	Arg	Asp	Arg	Phe 425	Asn	Val	Pro	Val	Ser 430	Asp	Ala
Asp	Ile	Glu 435		Leu	Pro	Tyr	Ile 440		Phe	Pro	Glu	Gly 445		Glu	Glu
His	Thr		Leu	His	Ala			Gln	Lys	Leu			Tyr	Leu	Pro
	450					455					460				

-continued

Ser 465	Arg	Gln	Pro	Asn	Phe 470	Thr	Glu	Lys	Leu	Glu 475	Leu	Pro	Ser	Leu	Gln 480
Asp	Phe	Gly	Ala	Leu 485	Leu	Glu	Glu	Gln	Ser 490	Lys	Glu	Ile	Ser	Thr 495	Thr
Ile	Ala	Phe	Val 500	Arg	Ala	Leu	Asn	Val 505	Met	Leu	Lys	Asn	Lys 510	Ser	Ile
Гла	Asp	Arg 515	Leu	Val	Pro	Ile	Ile 520	Ala	Asp	Glu	Ala	Arg 525	Thr	Phe	Gly
Met	Glu 530	Gly	Leu	Phe	Arg	Gln 535	Ile	Gly	Ile	Tyr	Ser 540	Pro	Asn	Gly	Gln
Gln 545	Tyr	Thr	Pro	Gln	Asp 550	Arg	Glu	Gln	Val	Ala 555	Tyr	Tyr	Lys	Glu	Asp 560
Glu	Lys	Gly	Gln	Ile 565	Leu	Gln	Glu	Gly	Ile 570	Asn	Glu	Leu	Gly	Ala 575	Gly
СЛа	Ser	Trp	Leu 580	Ala	Ala	Ala	Thr	Ser 585	Tyr	Ser	Thr	Asn	Asn 590	Leu	Pro
Met	Ile	Pro 595	Phe	Tyr	Ile	Tyr	Tyr 600	Ser	Met	Phe	Gly	Phe 605	Gln	Arg	Ile
Gly	Asp 610	Leu	Суз	Trp	Ala	Ala 615	Gly	Asp	Gln	Gln	Ala 620	Arg	Gly	Phe	Leu
Ile 625	Gly	Gly	Thr	Ser	Gly 630	Arg	Thr	Thr	Leu	Asn 635	Gly	Glu	Gly	Leu	Gln 640
His	Glu	Asp	Gly	His 645	Ser	His	Ile	Gln	Ser 650	Leu	Thr	Ile	Pro	Asn 655	Cys
Ile	Ser	Tyr	Asp 660	Pro	Ala	Tyr	Ala	Tyr 665	Glu	Val	Ala	Val	Ile 670	Met	His
Asp	Gly	Leu 675	Glu	Arg	Met	Tyr	Gly 680	Glu	Гла	Gln	Glu	Asn 685	Val	Tyr	Tyr
Tyr	Ile 690	Thr	Thr	Leu	Asn	Glu 695	Asn	Tyr	His	Met	Pro 700	Ala	Met	Pro	Glu
Gly 705	Ala	Glu	Glu	Gly	Ile 710	Arg	Lys	Gly	Ile	Tyr 715	Гүз	Leu	Glu	Thr	Ile 720
Glu	Gly	Ser	ГЛЗ	Gly 725	ГЛа	Val	Gln	Leu	Leu 730	Gly	Ser	Gly	Ser	Ile 735	Leu
Arg	His	Val	Arg 740	Glu	Ala	Ala	Glu	Ile 745	Leu	Ala	ГЛа	Asp	Tyr 750	Gly	Val
Gly	Ser	Asp 755	Val	Tyr	Ser	Val	Thr 760	Ser	Phe	Thr	Glu	Leu 765	Ala	Arg	Asp
Gly	Gln 770	Asp	Суз	Glu	Arg	Trp 775	Asn	Met	Leu	His	Pro 780	Leu	Glu	Thr	Pro
Arg 785	Val	Pro	Tyr	Ile	Ala 790	Gln	Val	Met	Asn	Asp 795	Ala	Pro	Ala	Val	Ala 800
Ser	Thr	Asp	Tyr	Met 805	Lys	Leu	Phe	Ala	Glu 810	Gln	Val	Arg	Thr	Tyr 815	Val
Pro	Ala	Asp	Asp 820	Tyr	Arg	Val	Leu	Gly 825	Thr	Asp	Gly	Phe	Gly 830	Arg	Ser
Asp	Ser	Arg 835	Glu	Asn	Leu	Arg	His 840	His	Phe	Glu	Val	Asp 845	Ala	Ser	Tyr
Val	Val 850	Val	Ala	Ala	Leu	Gly 855	Glu	Leu	Ala	Lys	Arg 860	Gly	Glu	Ile	Asp
Lys 865	Гуз	Val	Val	Ala	Asp 870	Ala	Ile	Ala	Гуз	Phe 875	Asn	Ile	Asp	Ala	Asp 880

-continued

Lys Val Asn Pro Arg Leu Ala 885

<210> SEQ ID NO 3 <211> LENGTH: 1893 <212> TYPE: DNA <213> ORGANISM: Escheri	ichia coli				
<400> SEQUENCE: 3					
atggctatcg aaatcaaagt a	accggacatc	ggggctgatg	aagttgaaat	caccgagatc	60
ctggtcaaag tgggcgacaa a	agttgaagcc	gaacagtcgc	tgatcaccgt	agaaggcgac	120
aaagcctcta tggaagttcc g	gtctccgcag	gcgggtatcg	ttaaagagat	caaagtctct	180
gttggcgata aaacccagac c	cggcgcactg	attatgattt	tcgattccgc	cgacggtgca	240
gcagacgctg cacctgctca g	ggcagaagag	aagaaagaag	cagctccggc	agcagcacca	300
gcggctgcgg cggcaaaaga c	cgttaacgtt	ccggatatcg	gcagcgacga	agttgaagtg	360
accgaaatcc tggtgaaagt t	cggcgataaa	gttgaagctg	aacagtcgct	gatcaccgta	420
gaaggcgaca aggcttctat g	ggaagtteeg	gctccgtttg	ctggcaccgt	gaaagagatc	480
aaagtgaacg tgggtgacaa a	agtgtctacc	ggctcgctga	ttatggtctt	cgaagtcgcg	540
ggtgaagcag gcgcggcagc t	ccggccgct	aaacaggaag	cageteegge	agcggcccct	600
gcaccagcgg ctggcgtgaa a	agaagttaac	gttccggata	tcggcggtga	cgaagttgaa	660
gtgactgaag tgatggtgaa a	agtgggcgac	aaagttgccg	ctgaacagtc	actgatcacc	720
gtagaaggcg acaaagcttc t	tatggaagtt	ccggcgccgt	ttgcaggcgt	cgtgaaggaa	780
ctgaaagtca acgttggcga t	taaagtgaaa	actggctcgc	tgattatgat	cttcgaagtt	840
gaaggegeag egeetgegge a	ageteetgeg	aaacaggaag	cggcagcgcc	ggcaccggca	900
gcaaaagctg aagccccggc a	agcagcacca	gctgcgaaag	cggaaggcaa	atctgaattt	960
gctgaaaacg acgcttatgt t	cacgcgact	ccgctgatcc	gccgtctggc	acgcgagttt	1020
ggtgttaacc ttgcgaaagt g	gaagggcact	ggccgtaaag	gtcgtatcct	gcgcgaagac	1080
gttcaggctt acgtgaaaga a	agctatcaaa	cgtgcagaag	cagctccggc	agcgactggc	1140
ggtggtatcc ctggcatgct g	geegtggeeg	aaggtggact	tcagcaagtt	tggtgaaatc	1200
gaagaagtgg aactgggccg c	catccagaaa	atctctggtg	cgaacctgag	ccgtaactgg	1260
gtaatgatcc cgcatgttac t	cacttcgac	aaaaccgata	tcaccgagtt	ggaagcgttc	1320
cgtaaacagc agaacgaaga a	agcggcgaaa	cgtaagctgg	atgtgaagat	caccccggtt	1380
gtcttcatca tgaaagccgt t	tgctgcagct	cttgagcaga	tgcctcgctt	caatagttcg	1440
ctgtcggaag acggtcagcg t	cctgaccctg	aagaaataca	tcaacatcgg	tgtggcggtg	1500
gataccccga acggtctggt t	cgttccggta	ttcaaagacg	tcaacaagaa	aggcatcatc	1560
gagctgtctc gcgagctgat g	gactatttct	aagaaagcgc	gtgacggtaa	gctgactgcg	1620
ggcgaaatgc agggcggttg c	cttcaccatc	tccagcatcg	gcggcctggg	tactacccac	1680
ttcgcgccga ttgtgaacgc g	gccggaagtg	gctatcctcg	gcgtttccaa	gtccgcgatg	1740
gagccggtgt ggaatggtaa a	agagttcgtg	ccgcgtctga	tgctgccgat	ttetetetee	1800
ttcgaccacc gcgtgatcga c	eggtgetgat	ggtgcccgtt	tcattaccat	cattaacaac	1860
acgctgtctg acattcgccg t	cctggtgatg	taa			1893

<210> SEQ ID NO 4 <211> LENGTH: 630 <212> TYPE: PRT -continued

<213> ORGANISM: Escherichia coli <400> SEQUENCE: 4 Met Ala Ile Glu Ile Lys Val Pro Asp Ile Gly Ala Asp Glu Val Glu Ile Thr Glu Ile Leu Val Lys Val Gly Asp Lys Val Glu Ala Glu Gln Ser Leu Ile Thr Val Glu Gly Asp Lys Ala Ser Met Glu Val Pro Ser Pro Gln Ala Gly Ile Val Lys Glu Ile Lys Val Ser Val Gly Asp Lys Thr Gln Thr Gly Ala Leu Ile Met Ile Phe Asp Ser Ala Asp Gly Ala Ala Asp Ala Ala Pro Ala Gln Ala Glu Glu Lys Lys Glu Ala Ala Pro Ala Ala Ala Pro Ala Ala Ala Ala Ala Lys Asp Val Asn Val Pro Asp Ile Gly Ser Asp Glu Val Glu Val Thr Glu Ile Leu Val Lys Val Gly Asp Lys Val Glu Ala Glu Gln Ser Leu Ile Thr Val Glu Gly Asp Lys Ala Ser Met Glu Val Pro Ala Pro Phe Ala Gly Thr Val Lys Glu Ile Lys Val Asn Val Gly Asp Lys Val Ser Thr Gly Ser Leu Ile Met Val Phe Glu Val Ala Gly Glu Ala Gly Ala Ala Ala Pro Ala Ala Lys Gln Glu Ala Ala Pro Ala Ala Ala Pro Ala Pro Ala Ala Gly Val Lys Glu Val Asn Val Pro Asp Ile Gly Gly Asp Glu Val Glu Val Thr Glu Val Met Val Lys Val Gly Asp Lys Val Ala Ala Glu Gln Ser Leu Ile Thr Val Glu Gly Asp Lys Ala Ser Met Glu Val Pro Ala Pro Phe Ala Gly Val Val Lys Glu Leu Lys Val Asn Val Gly Asp Lys Val Lys Thr Gly Ser Leu Ile Met Ile Phe Glu Val Glu Gly Ala Ala Pro Ala Ala Ala Pro Ala Lys Gln Glu Ala Ala Ala Pro Ala Pro Ala Ala Lys Ala Glu Ala Pro Ala Ala Ala Pro Ala Ala Lys Ala Glu Gly Lys Ser Glu Phe Ala Glu Asn Asp Ala Tyr Val His Ala Thr Pro Leu Ile Arg Arg Leu Ala Arg Glu Phe Gly Val Asn Leu Ala Lys Val Lys Gly Thr Gly Arg Lys Gly Arg Ile Leu Arg Glu Asp Val Gln Ala Tyr Val Lys Glu Ala Ile Lys Arg Ala Glu Ala Ala Pro Ala Ala Thr Gly Gly Gly Ile Pro Gly Met Leu Pro Trp Pro Lys Val Asp Phe Ser Lys Phe Gly Glu Ile

											-	COII		ueu					
Glu Gl	lu '	Val	Glu	Leu 405	Gly	Arg	Ile	Gln	Lys 410	Ile	Ser	Gly	Ala	Asn 415	Leu				
Ser Ai	rg .	Asn	Trp 420	Val	Met	Ile	Pro	His 425	Val	Thr	His	Phe	Asp 430	Lys	Thr				
Asp II		Thr 435	Glu	Leu	Glu	Ala	Phe 440	Arg	Lys	Gln	Gln	Asn 445	Glu	Glu	Ala				
Ala Ly 49	ys . 50	Arg	Lys	Leu	Asp	Val 455	Lys	Ile	Thr	Pro	Val 460	Val	Phe	Ile	Met				
Lys Al 465	la '	Val	Ala	Ala	Ala 470	Leu	Glu	Gln	Met	Pro 475	Arg	Phe	Asn	Ser	Ser 480				
Leu Se	er	Glu	Asp	Gly 485		Arg	Leu	Thr	Leu 490		Гла	Tyr	Ile	Asn 495					
Gly Va	al.	Ala			Thr	Pro	Asn			Val	Val	Pro			Lys				
Asp Va			500 Lys	Lys	Gly	Ile		505 Glu	Leu	Ser	Arg		510 Leu	Met	Thr				
Ile Se		515 Lys	Lys	Ala	Arq	Asp	520 Gly	Lys	Leu	Thr	Ala	525 Gly	Glu	Met	Gln				
53	30	-	-		-	535	-	-			540	_							
Gly GI 545	τy	cys	Pne	Thr	11e 550	Ser	Ser	IIe	GIY	555 555	Leu	GIŶ	Thr	Thr	H1S 560				
Phe Al	la	Pro	Ile	Val 565	Asn	Ala	Pro	Glu	Val 570	Ala	Ile	Leu	Gly	Val 575	Ser				
Lys Se	er.	Ala	Met 580	Glu	Pro	Val	Trp	Asn 585	Gly	Lys	Glu	Phe	Val 590	Pro	Arg				
Leu Me		Leu 595	Pro	Ile	Ser	Leu	Ser 600	Phe	Asp	His	Arg	Val 605	Ile	Asp	Gly				
Ala As 61	sp 10	Gly	Ala	Arg	Phe	Ile 615	Thr	Ile	Ile	Asn	Asn 620	Thr	Leu	Ser	Asp				
Ile Ai 625	rg .	Arg	Leu	Val	Met 630														
<210> <211> <212> <213>	LE: TY	NGTH PE :	I: 14 DNA	188	nerio	chia	col:	i											
<400>	SE	QUEN	ICE :	5															
gtggat							-	-	-					-		60 120			
tccgct																180			
actctt	tgg	cg g	ıtgti	tgc	ct ga	aacgt	ccggo	c tgt	tatco	cctt	ctaa	aagca	act ç	gctgo	cacgta	240			
gcaaaa	agt	ta t	cgaa	agaaq	ge ea	aaago	cgct	g gct	gaad	cacg	gtat	cgt	ett d	cggcg	gaaccg	300			
aaaaco	cga	ta t	cgad	caaga	at to	cgtad	cctg	g aaa	agaga	aaag	taat	caat	cca g	gctga	accggt	360			
ggtcto	ggc	tg g	gtato	ggcga	aa aq	ggccó	gcaaa	a gto	caaaç	gtgg	tcaa	acggi	cct o	gggta	aattt	420			
accggg	ggc	ta a	acaco	cctg	ga ag	gttga	aaggt	t gaq	gaaco	ggta	aaa	ccgt	gat d	caact	tcgac	480			
aacgco	gat	ca t	tgca	agcgę	gg ti	teteç	geecé	g att	caad	ctgc	cgtt	tati	ccc ç	gcato	yaagat	540			
ccgcgt																600			
gtaato																660			
cagatt																720			
aaagto	ctt	ta c	caa	gegta	at ca	agcaa	agaaa	a tto	caaco	ctga	tgct	ggaa	aac d	caaag	gttacc	780			

43

-continued

gaac ctcg	ccgca	-	-	-						atgg	aago	gcaaa	aaa a	agcad	ccgct	840	
ctco	-	age g	gttad	cgaco	ge eg	atad											
-	acad					9090	tggta	a geo	gatto	ggtc	gtgt	geeq	gaa (cggta	aaaac	900	
cago	, j.	cag g	gcaaa	agcto	gg cá	gtgga	aagtt	: gad	cgaco	cgtg	gtti	cato	ccg (gtto	gacaaa	960	
	etgeg	gta d	ccaa	cgta	cc go	cacat	ccttt	c get	catco	ggcg	atat	ccgt	cgg 1	cago	ccgatg	1020	
ctgg	gcaca	aca a	aaggt	tgtto	ca co	gaago	gtcad	c gtt	geeg	gctg	aagt	tato	cgc (ggta	agaaa	1080	
cact	actt	ccg a	atcco	gaaaq	gt ta	atcco	cgtco	ato	egeet	tata	ccga	aacca	aga a	agttç	gcatgg	1140	
gtag	ggtct	:ga d	ctga	gaaaq	ga aq	gcgaa	aagag	g aaa	aggca	atca	gcta	atgaa	aac (cgcca	accttc	1200	
ccgt	gggo	ctg d	ettet	tggt	cg tạ	gctai	ceget	t t c	cgact	gcg	caga	acggt	tat g	gacca	aagctg	1260	
attt	tcga	aca a	aagaa	atcto	ca co	cgtgi	gato	: ggt	ggtg	gcaa	ttgt	ccggt	cac 1	caaco	ggtggt	1320	
gago	ctgct	ad a	gtgaa	aatco	gg co	ctgg	caato	gaa	aatgo	ggtt	gtga	acgct	:ga a	agaca	atcgca	1380	
ctga	accat	ccc a	atgco	gcaco	cc ga	actci	cgcad	gaq	gtcto	gtgg	gcct	ggcé	ggc a	agaaq	gtgttc	1440	
gaaq	ggtag	gca t	taco	cgaco	ct go	ccgaa	acccç	g aaa	agega	aaga	agaa	agtaa	a			1488	
<211 <212 <213		ENGTH (PE : RGAN	H: 49 PRT ISM:	95 Escl	nerio	chia	coli	L									
)> SH	-			114 -	T	T	7		7	Dava	71-	a	7	Terra		
net 1	Авр	ASII	GIY	5	HIS	ГЛа	гув	ASII	10	Arg	P10	AIA	GIY	Авр 15	цув		
Tyr	Ile	Glu	Val 20	Met	Met	Ser	Thr	Glu 25	Ile	Lys	Thr	Gln	Val 30	Val	Val		
Leu	Gly	Ala 35	Gly	Pro	Ala	Gly	Tyr 40	Ser	Ala	Ala	Phe	Arg 45	Сув	Ala	Asp		
Leu	Gly 50	Leu	Glu	Thr	Val	Ile 55	Val	Glu	Arg	Tyr	Asn 60	Thr	Leu	Gly	Gly		
Val 65	Cys	Leu	Asn	Val	Gly 70	Суз	Ile	Pro	Ser	Lys 75	Ala	Leu	Leu	His	Val 80		
Ala	Lys	Val	Ile	Glu 85	Glu	Ala	Lys	Ala	Leu 90	Ala	Glu	His	Gly	Ile 95	Val		
Phe	Gly	Glu	Pro 100	Lys	Thr	Asp	Ile	Asp 105	Lys	Ile	Arg	Thr	Trp 110	Lys	Glu		
Lys	Val	Ile 115	Asn	Gln	Leu	Thr	Gly 120	Gly	Leu	Ala	Gly	Met 125	Ala	Lys	Gly		
Arg	Lys 130	Val	Lys	Val	Val	Asn 135	Gly	Leu	Gly	Lys	Phe 140	Thr	Gly	Ala	Asn		
Thr 145	Leu	Glu	Val	Glu	Gly 150	Glu	Asn	Gly	Lys	Thr 155	Val	Ile	Asn	Phe	Asp 160		
Asn	Ala	Ile	Ile	Ala 165	Ala	Gly	Ser	Arg	Pro 170	Ile	Gln	Leu	Pro	Phe 175	Ile		
Pro	His	Glu	Asp 180	Pro	Arg	Ile	Trp	Asp 185	Ser	Thr	Asp	Ala	Leu 190	Glu	Leu		
Lys	Glu	Val 195	Pro	Glu	Arg	Leu	Leu 200	Val	Met	Gly	Gly	Gly 205	Ile	Ile	Gly		
Leu	Glu 210	Met	Gly	Thr	Val	Tyr 215	His	Ala	Leu	Gly	Ser 220	Gln	Ile	Asp	Val		
Val	Glu	Met	Phe	Asp	Gln 230	Val	Ile	Pro	Ala	Ala 235	Asp	Lys	Asp	Ile	Val 240		
225																	

Thr Lys Val Thr Ala Val Glu Ala Lys Glu Asp Gly Ile Tyr Val Thr 260 265 270	
Met Glu Gly Lys Lys Ala Pro Ala Glu Pro Gln Arg Tyr Asp Ala Val 275 280 285	
Leu Val Ala Ile Gly Arg Val Pro Asn Gly Lys Asn Leu Asp Ala Gly 290 295 300	
Lys Ala Gly Val Glu Val Asp Asp Arg Gly Phe Ile Arg Val Asp Lys 305 310 315 320	
Gln Leu Arg Thr Asn Val Pro His Ile Phe Ala Ile Gly Asp Ile Val 325 330 335	
Gly Gln Pro Met Leu Ala His Lys Gly Val His Glu Gly His Val Ala 340 345 350	
Ala Glu Val Ile Ala Gly Lys Lys His Tyr Phe Asp Pro Lys Val Ile 355 360 365	
Pro Ser Ile Ala Tyr Thr Glu Pro Glu Val Ala Trp Val Gly Leu Thr 370 375 380	
Glu Lys Glu Ala Lys Glu Lys Gly Ile Ser Tyr Glu Thr Ala Thr Phe 385 390 395 400	
Pro Trp Ala Ala Ser Gly Arg Ala Ile Ala Ser Asp Cys Ala Asp Gly 405 410 415	
Met Thr Lys Leu Ile Phe Asp Lys Glu Ser His Arg Val Ile Gly Gly 420 425 430	
Ala Ile Val Gly Thr Asn Gly Gly Glu Leu Leu Gly Glu Ile Gly Leu 435 440 445	
Ala Ile Glu Met Gly Cys Asp Ala Glu Asp Ile Ala Leu Thr Ile His 450 455 460	
Ala His Pro Thr Leu His Glu Ser Val Gly Leu Ala Ala Glu Val Phe465470475480	
Glu Gly Ser Ile Thr Asp Leu Pro Asn Pro Lys Ala Lys Lys 485 490 495	
<210> SEQ ID NO 7 <211> LENGTH: 2802	
<212> TYPE: DNA <213> ORGANISM: Escherichia coli	
<400> SEQUENCE: 7	
atgcagaaca gcgctttgaa agcctggttg gactcttctt acctctctgg cgcaaaccag	60
agetggatag aacageteta tgaagaette ttaacegate etgaeteggt tgaegetaac	120
tggcgttcga cgttccagca gttacctggt acgggagtca aaccggatca attccactct caaacgcgtg aatatttccg ccgcctggcg aaagacgctt cacgttactc ttcaacgatc	240
tecgaccetg acaceaatgt gaageaggtt aaagteetge ageteattaa egeataecge	300
ttccgtggtc accagcatgc gaatctcgat ccgctgggac tgtggcagca agataaagtg	360
gccgatctgg atccgtcttt ccacgatctg accgaagcag acttccagga gaccttcaac	420
gtcggttcat ttgccagcgg caaagaaacc atgaaactcg gcgagctgct ggaagccctc	480
aagcaaacct actgoggcoc gattggtgoo gagtatatgo acattaccag cacogaagaa	540
aaacgctgga tccaacagog tatcgagtot ggtcgcgoga otttcaatag cgaagagaaa	600
aaacgcttct taagcgaact gaccgccgct gaaggtcttg aacgttacct cggcgcaaaa	660
tteeetggeg caaaaegett etegetggaa ggeggtgaeg egttaateee gatgettaaa	720
gagatgatcc gccacgctgg caacagcggc acccgcgaag tggttctcgg gatggcgcac	780

47

-continued

cgtggtcgtc tgaacgtgct ggtgaacgtg ctgggtaaaa aaccgcaaga cttgttcgac 840 gagttcgccg gtaaacataa agaacacctc ggcacgggtg acgtgaaata ccacatgggc 900 ttetegtetg actteeagae egatggegge etggtgeace tggegetgge gtttaaceeg 960 teteacettg agattgtaag eeeggtagtt ateggttetg ttegtgeeeg tetggaeaga 1020 cttgatgagc cgagcagcaa caaagtgctg ccaatcacca tccacggtga cgccgcagtg 1080 1140 accgggcagg gcgtggttca ggaaaccctg aacatgtcga aagcgcgtgg ttatgaagtt 1200 ggcggtacgg tacgtatcgt tatcaacaac caggttggtt tcaccacctc taatccgctg gatgcccgtt ctacgccgta ctgtactgat atcggtaaga tggttcaggc cccgattttc 1260 cacgttaacg cggacgatcc ggaagccgtt gcctttgtga cccgtctggc gctcgatttc 1320 cgtaacacct ttaaacgtga tgtcttcatc gacctggtgt gctaccgccg tcacggccac 1380 aacgaageeg acgageegag egeaaceeag eegetgatgt ateagaaaat eaaaaaacat 1440 1500 ccgacaccgc gcaaaatcta cgctgacaag ctggagcagg aaaaagtggc gacgctggaa gatgccaccg agatggttaa cctgtaccgc gatgcgctgg atgctggcga ttgcgtagtg 1560 1620 gcagagtggc gtccgatgaa catgcactct ttcacctggt cgccgtacct caaccacgaa tqqqacqaaq aqtacccqaa caaaqttqaq atqaaqcqcc tqcaqqaqct qqcqaaacqc 1680 atcagcacgg tgccggaagc agttgaaatg cagtctcgcg ttgccaagat ttatggcgat 1740 1800 cqccaqqcqa tqqctqccqq tqaqaaactq ttcqactqqq qcqqtqcqqa aaacctcqct tacgccacge tggttgatga aggcatteeg gttegeetgt egggtgaaga eteeggtege 1860 1920 ggtaccttct tccaccgcca cgcggtgatc cacaaccagt ctaacggttc cacttacacg ccgctgcaac atatccataa cgggcagggc gcgttccgtg tctgggactc cgtactgtct 1980 gaagaagcag tgctggcgtt tgaatatggt tatgccaccg cagaaccacg cactctgacc 2040 atctgggaag cgcagttcgg tgacttcgcc aacggtgcgc aggtggttat cgaccagttc 2100 atctcctctg gcgaacagaa atggggccgg atgtgtggtc tggtgatgtt gctgccgcac 2160 ggttacgaag ggcaggggcc ggagcactcc tccgcgcgtc tggaacgtta tctgcaactt 2220 tgtgctgagc aaaacatgca ggtttgcgta ccgtctaccc cggcacaggt ttaccacatg 2280 ctgcgtcgtc aggcgctgcg cgggatgcgt cgtccgctgg tcgtgatgtc gccgaaatcc 2340 ctgctgcgtc atccgctggc ggtttccagc ctcgaagaac tggcgaacgg caccttcctg 2400 ccagccatcg gtgaaatcga cgagcttgat ccgaagggcg tgaagcgcgt agtgatgtgt 2460 tctggtaagg tttattacga cctgctggaa cagcgtcgta agaacaatca acacgatgtc 2520 gccattgtgc gtatcgagca actctacccg ttcccgcata aagcgatgca ggaagtgttg 2580 cagcagtttg ctcacgtcaa ggattttgtc tggtgccagg aagagccgct caaccagggc 2640 gcatggtact gcagccagca tcatttccgt gaagtgattc cgtttggggc ttctctgcgt 2700 tatgcaggcc gcccggcctc cgcctctccg gcggtagggt atatgtccgt tcaccagaaa 2760 cagcaacaag atctggttaa tgacgcgctg aacgtcgaat aa 2802 <210> SEO TD NO 8

Met Gln Asn Ser Ala Leu Lys Ala Trp Leu Asp Ser Ser Tyr Leu Ser 5 10 15

<211> LENGTH: 933 <212> TYPE: PRT

<400> SEOUENCE: 8

1

<213> ORGANISM: Escherichia coli

GIY	Ala	Asn	Gln 20	Ser	Trp	Ile	Glu	Gln 25	Leu	Tyr	Glu	Asp	Phe 30	Leu	Thr
Asp	Pro	Asp 35	Ser	Val	Asp	Ala	Asn 40	Trp	Arg	Ser	Thr	Phe 45	Gln	Gln	Leu
Pro	Gly 50	Thr	Gly	Val	Lys	Pro 55	Aap	Gln	Phe	His	Ser 60	Gln	Thr	Arg	Glu
Tyr 65	Phe	Arg	Arg	Leu	Ala 70	Lys	Asp	Ala	Ser	Arg 75	Tyr	Ser	Ser	Thr	Ile 80
Ser	Aap	Pro	Asp	Thr 85	Asn	Val	Гλа	Gln	Val 90	Lys	Val	Leu	Gln	Leu 95	Ile
Asn	Ala	Tyr	Arg 100	Phe	Arg	Gly	His	Gln 105	His	Ala	Asn	Leu	Asp 110	Pro	Leu
Gly	Leu	Trp 115	Gln	Gln	Asp	Lys	Val 120	Ala	Asp	Leu	Asp	Pro 125	Ser	Phe	His
Aab	Leu 130	Thr	Glu	Ala	Asp	Phe 135	Gln	Glu	Thr	Phe	Asn 140	Val	Gly	Ser	Phe
Ala 145	Ser	Gly	LÀa	Glu	Thr 150	Met	rÀa	Leu	Gly	Glu 155	Leu	Leu	Glu	Ala	Leu 160
Lys	Gln	Thr	Tyr	Cys 165	Gly	Pro	Ile	Gly	Ala 170	Glu	Tyr	Met	His	Ile 175	Thr
Ser	Thr	Glu	Glu 180	Lys	Arg	Trp	Ile	Gln 185	Gln	Arg	Ile	Glu	Ser 190	Gly	Arg
Ala	Thr	Phe 195	Asn	Ser	Glu	Glu	Lys 200	Lys	Arg	Phe	Leu	Ser 205	Glu	Leu	Thr
Ala	Ala 210	Glu	Gly	Leu	Glu	Arg 215	Tyr	Leu	Gly	Ala	Lys 220	Phe	Pro	Gly	Ala
Lys	Arg	Phe	Ser	Leu	Glu	G1v	Glv	Agn	71 2	Len	T10	Pro	Met	Leu	Lare
225					230	U17	017	Ind	AIa	235	116	110		Dou	240
					230	Gly				235					240
Glu	Met	Ile	Arg	His 245	230 Ala		Asn	Ser	Gly 250	235 Thr	Arg	Glu	Val	Val 255	240 Leu
Glu Gly	Met Met	Ile Ala	Arg His 260	His 245 Arg	230 Ala Gly	Gly	Asn Leu	Ser Asn 265	Gly 250 Val	235 Thr Leu	Arg Val	Glu Asn	Val Val 270	Val 255 Leu	240 Leu Gly
Glu Gly Lys	Met Met Lys	Ile Ala Pro 275	Arg His 260 Gln	His 245 Arg Asp	230 Ala Gly Leu	Gly Arg	Asn Leu Asp 280	Ser Asn 265 Glu	Gly 250 Val Phe	235 Thr Leu Ala	Arg Val Gly	Glu Asn Lys 285	Val Val 270 His	Val 255 Leu Lys	240 Leu Gly Glu
Glu Gly Lys His	Met Met Lys Leu 290	Ile Ala Pro 275 Gly	Arg His 260 Gln Thr	His 245 Arg Asp Gly	230 Ala Gly Leu Asp	Gly Arg Phe Val	Asn Leu Asp 280 Lys	Ser Asn 265 Glu Tyr	Gly 250 Val Phe His	235 Thr Leu Ala Met	Arg Val Gly Gly 300	Glu Asn Lys 285 Phe	Val 270 His Ser	Val 255 Leu Lys Ser	240 Leu Gly Glu Asp
Glu Gly Lys His Phe 305	Met Met Lys Leu 290 Gln	Ile Ala Pro 275 Gly Thr	Arg His 260 Gln Thr Asp	His 245 Arg Asp Gly Gly	230 Ala Gly Leu Asp Gly 310	Gly Arg Phe Val 295	Asn Leu Asp 280 Lys Val	Ser Asn 265 Glu Tyr His	Gly 250 Val Phe His Leu	235 Thr Leu Ala Met Ala 315	Arg Val Gly Gly 300 Leu	Glu Asn Lys 285 Phe Ala	Val 270 His Ser Phe	Val 255 Leu Lys Ser Asn	240 Leu Gly Glu Asp Pro 320
Glu Gly Lys His Phe 305 Ser	Met Met Lys Leu 290 Gln His	Ile Ala Pro 275 Gly Thr Leu	Arg His 260 Gln Thr Asp Glu	His 245 Arg Asp Gly Gly Ile 325	230 Ala Gly Leu Asp Gly 310 Val	Gly Arg Phe Val 295 Leu	Asn Leu Asp 280 Lys Val Pro	Ser Asn 265 Glu Tyr His Val	Gly 250 Val Phe His Leu Val 330	235 Thr Leu Ala Met Ala 315 Ile	Arg Val Gly Gly 300 Leu Gly	Glu Asn Lys 285 Phe Ala Ser	Val 270 His Ser Phe Val	Val 255 Leu Lys Ser Asn Arg 335	240 Leu Gly Glu Asp Pro 320 Ala
Glu Gly Lys His Phe 305 Ser Arg	Met Met Lys Leu Gln His Leu	Ile Ala Pro 275 Gly Thr Leu Asp	Arg His 260 Gln Thr Asp Glu Arg 340	His 245 Arg Asp Gly Gly Ile 325 Leu	230 Ala Gly Leu Asp Gly 310 Val Asp	Gly Arg Phe Val 295 Leu Ser	Asn Leu Asp 280 Lys Val Pro Pro	Ser Asn 265 Glu Tyr His Val Ser 345	Gly 250 Val Phe His Leu Val 330 Ser	235 Thr Leu Ala Met Ala 315 Ile Asn	Arg Val Gly Gly Leu Gly Lys	Glu Asn Lys 285 Phe Ala Ser Val	Val Val 270 His Ser Phe Val Leu 350	Val 255 Leu Lys Ser Asn Arg 335 Pro	240 Leu Gly Glu Asp Pro 320 Ala Ile
Glu Gly Lys His Ser Arg Thr	Met Lys Leu 290 Gln His Leu Ile	Ile Ala Pro 275 Gly Thr Leu Asp His 355	Arg His 260 Gln Thr Asp Glu Arg 340 Gly	His 245 Arg Asp Gly Gly Ile 325 Leu Asp	230 Ala Gly Leu Asp Gly 310 Val Asp Ala	Gly Arg Phe Val 295 Leu Ser Glu	Asn Leu Asp 280 Lys Val Pro Pro Val 360	Ser Asn 265 Glu Tyr His Val Ser 345 Thr	Gly 250 Val Phe His Leu Val 330 Ser Gly	235 Thr Leu Ala Met Ala 315 Ile Asn Gln	Arg Val Gly Gly 300 Leu Gly Gly	Glu Asn Lys 285 Phe Ala Ser Val Val 365	Val 270 His Ser Phe Val Leu 350 Val	Val 255 Leu Lys Ser Asn Arg 335 Pro Gln	240 Leu Gly Glu Asp Pro 320 Ala Ile Glu
Glu Gly Lys His Ser Arg Thr	Met Lys Leu 290 Gln His Leu Ile Leu 370	Ile Ala Pro 275 Gly Thr Leu Asp His 355 Asn	Arg His 260 Gln Thr Asp Glu Arg 340 Gly Met	His 245 Arg Gly Gly Ile 325 Leu Asp Ser	230 Ala Gly Leu Asp Gly 310 Val Asp Ala	Gly Arg Phe Val 295 Leu Ser Glu Ala	Asn Leu Asp 280 Lys Val Pro Val 360 Arg	Ser Asn 265 Glu Tyr His Val Ser 345 Thr Gly	Gly 250 Val Phe His Leu Val 330 Ser Gly Tyr	235 Thr Leu Ala Ala 315 Ile Asn Gln Glu	Arg Val Gly Gly Gly Leu Gly Gly Val 380	Glu Asn Lys 285 Phe Ala Ser Val 365 Gly	Val 270 His Ser Phe Val Leu 350 Val Gly	Val 255 Leu Lys Ser Asn Arg 335 Pro Gln Thr	240 Leu Gly Glu Asp Pro 320 Ala Ile Glu Val
Glu Gly Lys His Ser Arg Thr Thr Arg 385	Met Lys Leu 290 Gln His Leu 11e Leu 370 Ile	Ile Ala Pro 275 Gly Thr Leu Asp His 355 Asn Val	Arg His 260 Gln Thr Asp Glu Arg 340 Gly Met Ile	His 245 Arg Gly Gly Ile 325 Leu Asp Ser Asn	230 Ala Gly Leu Asp Gly 310 Val Asp Ala Lys Asn 390	Gly Arg Phe Val 295 Leu Ser Glu Ala 375	Asn Leu Asp 280 Lys Val Pro Val 360 Arg Val	Ser Asn 265 Glu Tyr His Val Ser 345 Thr Gly Gly	Gly 250 Val His Leu Val 330 Ser Gly Tyr Phe	235 Thr Leu Ala Ala 315 Ile Asn Gln Glu Thr 395	Arg Val Gly Gly Leu Gly Gly Val 380 Thr	Glu Asn Lys 285 Phe Ala Ser Val 365 Gly Ser	Val 270 His Ser Phe Val Leu 350 Val Gly Asn	Val 255 Leu Lys Ser Asn Arg 335 Pro Gln Thr Pro	240 Leu Gly Glu Asp Pro 320 Ala Ile Glu Val Leu 400

Val Thr Arg Leu Ala Leu Asp Phe Arg Asn Thr Phe Lys Arg Asp Val

-continued

val	1111	435	цец	AIA	цец	чар	440	нгg	ASII	IIII	Pne	цув 445	Αrg	чар	val
Phe	Ile 450	Asp	Leu	Val	СЛа	Tyr 455	Arg	Arg	His	Gly	His 460	Asn	Glu	Ala	Asp
Glu 465	Pro	Ser	Ala	Thr	Gln 470	Pro	Leu	Met	Tyr	Gln 475	Lys	Ile	Lys	Lys	His 480
Pro	Thr	Pro	Arg	Lys 485	Ile	Tyr	Ala	Asp	Lys 490	Leu	Glu	Gln	Glu	Lys 495	Val
Ala	Thr	Leu	Glu 500	Asp	Ala	Thr	Glu	Met 505	Val	Asn	Leu	Tyr	Arg 510	Asp	Ala
Leu	Asp	Ala 515	Gly	Asp	Суз	Val	Val 520	Ala	Glu	Trp	Arg	Pro 525	Met	Asn	Met
His	Ser 530	Phe	Thr	Trp	Ser	Pro 535	Tyr	Leu	Asn	His	Glu 540	Trp	Asp	Glu	Glu
Tyr 545	Pro	Asn	Lys	Val	Glu 550	Met	Lys	Arg	Leu	Gln 555	Glu	Leu	Ala	Lys	Arg 560
Ile	Ser	Thr	Val	Pro 565	Glu	Ala	Val	Glu	Met 570	Gln	Ser	Arg	Val	Ala 575	Lys
Ile	Tyr	Gly	Asp 580	Arg	Gln	Ala	Met	Ala 585	Ala	Gly	Glu	ГЛа	Leu 590	Phe	Asp
Trp	Gly	Gly 595	Ala	Glu	Asn	Leu	Ala 600	Tyr	Ala	Thr	Leu	Val 605	Asp	Glu	Gly
Ile	Pro 610	Val	Arg	Leu	Ser	Gly 615	Glu	Asp	Ser	Gly	Arg 620	Gly	Thr	Phe	Phe
His 625	Arg	His	Ala	Val	Ile 630	His	Asn	Gln	Ser	Asn 635	Gly	Ser	Thr	Tyr	Thr 640
Pro	Leu	Gln	His	Ile 645	His	Asn	Gly	Gln	Gly 650	Ala	Phe	Arg	Val	Trp 655	Asp
Ser	Val	Leu	Ser 660	Glu	Glu	Ala	Val	Leu 665	Ala	Phe	Glu	Tyr	Gly 670	Tyr	Ala
Thr	Ala	Glu 675	Pro	Arg	Thr	Leu	Thr 680	Ile	Trp	Glu	Ala	Gln 685	Phe	Gly	Asp
Phe	Ala 690	Asn	Gly	Ala	Gln	Val 695	Val	Ile	Asp	Gln	Phe 700	Ile	Ser	Ser	Gly
Glu 705	Gln	Lys	Trp	Gly	Arg 710	Met	Суз	Gly	Leu	Val 715	Met	Leu	Leu	Pro	His 720
Gly	Tyr	Glu	Gly	Gln 725	Gly	Pro	Glu	His	Ser 730	Ser	Ala	Arg	Leu	Glu 735	Arg
Tyr	Leu	Gln	Leu 740	Суз	Ala	Glu	Gln	Asn 745	Met	Gln	Val	Суз	Val 750	Pro	Ser
Thr	Pro	Ala 755	Gln	Val	Tyr	His	Met 760	Leu	Arg	Arg	Gln	Ala 765	Leu	Arg	Gly
Met	Arg 770	Arg	Pro	Leu	Val	Val 775	Met	Ser	Pro	Lys	Ser 780	Leu	Leu	Arg	His
Pro 785	Leu	Ala	Val	Ser	Ser 790	Leu	Glu	Glu	Leu	Ala 795	Asn	Gly	Thr	Phe	Leu 800
	Ala	Ile	Gly	Glu 805		Asp	Glu	Leu	Asp 810		Lys	Gly	Val	Lys 815	
Val	Val	Met	-		Gly	Гла	Val	-		Asp	Leu	Leu			Arg
Arg	Lys		820 Asn	Gln	His	Asp		825 Ala	Ile	Val	Arg		830 Glu	Gln	Leu
Tyr	Pro	835 Phe	Pro	His	Lys	Ala	840 Met	Gln	Glu	Val	Leu	845 Gln	Gln	Phe	Ala
-					-										

855

His Val Lys Asp Phe Val Trp Cys Gln Glu Glu Pro Leu Asn Gln Gly

850

-continued

860

865 870 875 880 Ala Trp Tyr Cys Ser Gln His His Phe Arg Glu Val Ile Pro Phe Gly 885 890 895 Ala Ser Leu Arg Tyr Ala Gly Arg Pro Ala Ser Ala Ser Pro Ala Val 900 905 910 Gly Tyr Met Ser Val His Gln Lys Gln Gln Gln Asp Leu Val Asn Asp 915 920 925 Ala Leu Asn Val Glu 930 <210> SEQ ID NO 9 <211> LENGTH: 1218 <212> TYPE: DNA <213> ORGANISM: Escherichia coli <400> SEQUENCE: 9 atgagtageg tagatattet ggteeetgae etgeetgaat eegtageega tgeeacegte 60 gcaacctqqc ataaaaaacc cqqcqacqca qtcqtacqtq atqaaqtqct qqtaqaaatc 120 qaaactqaca aaqtqqtact qqaaqtaccq qcatcaqcaq acqqcattct qqatqcqqtt 180 ctggaagatg aaggtacaac ggtaacgtct cgtcagatcc ttggtcgcct gcgtgaaggc 240 300 aacaqcqccq qtaaaqaaac caqcqccaaa tctqaaqaqa aaqcqtccac tccqqcqcaa cgccagcagg cgtctctgga agagcaaaac aacgatgcgt taagcccggc gatccgtcgc 360 ctgctggctg aacacaatct cgacgccagc gccattaaag gcaccggtgt gggtggtcgt 420 ctgactcgtg aagatgtgga aaaacatctg gcgaaagccc cggcgaaaga gtctgctccg 480 gcagcggctg ctccggcggc gcaaccggct ctggctgcac gtagtgaaaa acgtgtcccg 540 atgactogoc tgogtaagog tgtggcagag ogtotgotgg aagogaaaaa otocacogoo 600 atgctgacca cgttcaacga agtcaacatg aagccgatta tggatctgcg taagcagtac 660 ggtgaagcgt ttgaaaaacg ccacggcatc cgtctgggct ttatgtcctt ctacgtgaaa 720 gcggtggttg aagcootgaa acgttacoog gaagtgaacg ottotatoga oggogatgac 780 gtggtttacc acaactattt cgacgtcagc atggcggttt ctacgccgcg cggcctggtg 840 acgccggttc tgcgtgatgt cgataccctc ggcatggcag acatcgagaa gaaaatcaaa 900 gagetggeag teaaaggeeg tgaeggeaag etgaeegttg aagatetgae eggtggtaae 960 ttcaccatca ccaacggtgg tgtgttcggt tccctgatgt ctacgccgat catcaacccg 1020 ccgcagagcg caattetggg tatgcacget atcaaagate gtecgatgge ggtgaatggt 1080 caqqttqaqa tcctqccqat qatqtacctq qcqctqtcct acqatcaccq tctqatcqat 1140 ggtcgcgaat ccgtgggctt cctggtaacg atcaaagagt tgctggaaga tccgacgcgt 1200 1218 ctgctgctgg acgtgtag <210> SEQ ID NO 10 <211> LENGTH: 405 <212> TYPE: PRT <213> ORGANISM: Escherichia coli <400> SEQUENCE: 10 Met Ser Ser Val Asp Ile Leu Val Pro Asp Leu Pro Glu Ser Val Ala 1 5 10 15 Asp Ala Thr Val Ala Thr Trp His Lys Lys Pro Gly Asp Ala Val Val

-continued

			20					25					30		
Arg	Asp	Glu 35	Val	Leu	Val	Glu	Ile 40	Glu	Thr	Asp	Гла	Val 45	Val	Leu	Glu
Val	Pro 50	Ala	Ser	Ala	Asp	Gly 55	Ile	Leu	Asp	Ala	Val 60	Leu	Glu	Asp	Glu
Gly 65	Thr	Thr	Val	Thr	Ser 70	Arg	Gln	Ile		Gly 75	Arg	Leu	Arg	Glu	Gly 80
Asn	Ser	Ala	Gly	Lys 85	Glu	Thr	Ser	Ala	Lys 90	Ser	Glu	Glu	Lys	Ala 95	Ser
Thr	Pro	Ala	Gln 100		Gln	Gln	Ala	Ser 105	Leu	Glu	Glu	Gln	Asn 110	Asn	Asp
Ala	Leu	Ser 115	Pro	Ala	Ile	Arg	Arg 120	Leu	Leu	Ala	Glu	His 125	Asn	Leu	Asp
Ala	Ser 130	Ala	Ile	Lys	Gly	Thr 135	Gly	Val	Gly	Gly	Arg 140	Leu	Thr	Arg	Glu
Asp 145	Val	Glu	Lys	His	Leu 150	Ala	Lys	Ala	Pro	Ala 155		Glu	Ser	Ala	Pro 160
Ala	Ala	Ala	Ala	Pro 165	Ala	Ala	Gln	Pro	Ala 170	Leu	Ala	Ala	Arg	Ser 175	Glu
Lys	Arg	Val	Pro 180	Met	Thr	Arg	Leu	Arg 185		Arg	Val	Ala	Glu 190	Arg	Leu
Leu	Glu	Ala 195	Гла	Asn	Ser	Thr	Ala 200	Met	Leu	Thr	Thr	Phe 205	Asn	Glu	Val
Asn	Met 210		Pro	Ile	Met	Asp 215	Leu	Arg	Гла	Gln	Tyr 220	Gly	Glu	Ala	Phe
Glu 225	Lys	Arg	His	Gly	Ile 230	Arg	Leu	Gly	Phe	Met 235	Ser	Phe	Tyr	Val	Lys 240
Ala	Val	Val	Glu	Ala 245	Leu	Гла	Arg	Tyr	Pro 250	Glu	Val	Asn	Ala	Ser 255	Ile
Asp	Gly	Asp	Asp 260		Val	Tyr	His	Asn 265	Tyr	Phe	Asp	Val	Ser 270	Met	Ala
Val	Ser	Thr 275	Pro	Arg	Gly	Leu	Val 280	Thr	Pro	Val	Leu	Arg 285	Asp	Val	Asp
Thr	Leu 290	Gly	Met	Ala	Asp	Ile 295	Glu	Lys	Lys	Ile	Lуз 300	Glu	Leu	Ala	Val
Lys 305				Gly		Leu	Thr						-	Gly	
Phe	Thr	Ile	Thr	Asn 325	Gly	Gly	Val	Phe	Gly 330	Ser	Leu	Met	Ser	Thr 335	Pro
Ile	Ile	Asn	Pro 340	Pro	Gln	Ser	Ala	Ile 345	Leu	Gly	Met	His	Ala 350	Ile	Lys
Asp	Arg	Pro 355	Met	Ala	Val	Asn	Gly 360	Gln	Val	Glu	Ile	Leu 365	Pro	Met	Met
Tyr	Leu 370	Ala	Leu	Ser	Tyr	Asp 375	His	Arg	Leu	Ile	Asp 380	Gly	Arg	Glu	Ser
Val 385	Gly	Phe	Leu	Val	Thr 390	Ile	Lys	Glu	Leu	Leu 395	Glu	Asp	Pro	Thr	Arg 400
Leu	Leu	Leu	Asp	Val 405											

<212> TYPE: DNA <213> ORGANISM: Escherichia coli

-continued

<400> SEOUENCE: 11 gtgtcccgta ttattatgct gatccctacc ggaaccagcg tcggtctgac cagcgtcagc 60 cttggcgtga tccgtgcaat ggaacgcaaa ggcgttcgtc tgagcgtttt caaacctatc 120 gctcagccgc gtaccggtgg cgatgcgccc gatcagacta cgactatcgt gcgtgcgaac 180 tettecacca cgaeggeege tgaacegetg aaaatgaget aegttgaagg tetgetttee 240 agcaatcaga aagatgtgct gatggaagag atcatcgcga actaccacgc taacaccaaa 300 gacgetgaag tegttetggt ggaaggtetg gteeegacae gtaageacea gtttgeeeag 360 tetetgaaet acgaaatege caaaaegetg aaegeagaaa tegtettegt tatgteteag 420 ggcactgata ctccggaaca gttgaaagag cgtatcgaac tgactcgcaa cagcttcggc 480 ggtgcaaaaa acaccaatat taccggcgtt atcgttaaca aactgaacgc tccggttgat 540 gagcagggtc gtacccgtcc ggatctgtcc gagatttttg acgactccac caaagcaaaa 600 gtgaacaacg ttgatccggc gaagctgcaa gaatccagcc cgctgccggt tctcggcgct 660 gtgccgtgga gctttgacct gatcgcgact cgtgcgatcg atatggctcg ccacctgaat 720 780 gegaceatea teaacgaagg egacateaat actegeegeg ttaaateegt eactteege gcacgcagca ttccgcacat gctggagcac ttccgtgccg gttctctgct ggtgacttcc 840 gcagaccgcc ctgacgtgct ggttgccgct tgcctggctg ccatgaacgg cgtagaaatc 900 960 qqtqccctqc tqctqactqq cqqctacqaa atqqacqcqc qcatttctaa actqtqcqaa cgtgctttcg ctactggcct gccggtattt atggtgaaca ccaacacctg gcagacttct 1020 1080 cttagcctgc agagettcaa cctggaagtt ccggttgacg atcatgageg tatcgaaaaa gttcaggaat acgtggctaa ctacatcaac gctgactgga tcgattctct gactgccact 1140 tetgagegea geegtegtet gteteegeea gegtteegtt ateagetgae tgaaettgeg 1200 cgcaaagcgg gcaaacgtat cgttctgccg gaaggtgacg aaccgcgtac cgttaaagca 1260 gccgctatct gtgctgaacg tggtatcgca acttgcgtac tgctgggtaa tccggcagag 1320 atcaaccgtg ttgcagcctc tcagggtgta gaactgggtg caggcattga aatcgttgat 1380 ccagaagtgg ttcgcgaaaa ctatgttggt cgtctggtcg aactgcgtaa gaacaaaggc 1440 atgaccgaaa ccgttgcccg cgaacagctg gaagacaacg tggttctcgg tacgctgatg 1500 ctggaacaag atgaagttga tggtctggtt tccggtgctg ttcacaccac cgcaaacacc 1560 atccgtccgc cgctgcagct gatcaaaact gcaccgggca gctccctggt atcttccgtg 1620 ttetteatge tgttgeegga acaggtttae gtttaeggtg actgtgegat caaceeggat 1680 ccgaccgcag aacagctggc agaaatcgcg attcagtccg ctgattccgc tgcggccttc 1740 ggtategaac egegegttge tatgetetee tactecaceg gtacttetgg tgetggtage 1800 gacgtagaaa aagttegega ageaactegt etggegeagg aaaaaegtee tgatetgatg 1860 atcgacggtc cgctgcagta cgacgctgcg gtaatggctg acgttgcgaa atccaaagca 1920 ccgaactete cggttgcagg tegegetace gtgtteatet teeeggatet gaacaeeggt 1980 aacaccacct acaaagcggt acagcgttct gctgacctga tctctatcgg accgatgctg 2040 cagggtatgc gcaagccggt taacgacctg tcccgtggcg cactggttga tgatatcgtc 2100 tacaccatcg cgctgactgc gattcagtct gcacagcagc agtaa 2145

<210> SEQ ID NO 12 <211> LENGTH: 714 <212> TYPE: PRT

<213	3 > OF	RGAN:	ISM:	Escl	neri	chia	col:	i							
<400)> SH	EQUEI	NCE :	12											
Met 1	Ser	Arg	Ile	Ile 5	Met	Leu	Ile	Pro	Thr 10	Gly	Thr	Ser	Val	Gly 15	Leu
Thr	Ser	Val	Ser 20	Leu	Gly	Val	Ile	Arg 25	Ala	Met	Glu	Arg	Lys 30	Gly	Val
Arg	Leu	Ser 35	Val	Phe	Lys	Pro	Ile 40	Ala	Gln	Pro	Arg	Thr 45	Gly	Gly	Азр
Ala	Pro 50	Asp	Gln	Thr	Thr	Thr 55	Ile	Val	Arg	Ala	Asn 60	Ser	Ser	Thr	Thr
Thr 65	Ala	Ala	Glu	Pro	Leu 70	Lys	Met	Ser	Tyr	Val 75	Glu	Gly	Leu	Leu	Ser 80
Ser	Asn	Gln	ГЛа	Asp 85	Val	Leu	Met	Glu	Glu 90	Ile	Ile	Ala	Asn	Tyr 95	His
Ala	Asn	Thr	Lys 100	Asp	Ala	Glu	Val	Val 105	Leu	Val	Glu	Gly	Leu 110	Val	Pro
Thr	Arg	Lys 115	His	Gln	Phe	Ala	Gln 120	Ser	Leu	Asn	Tyr	Glu 125	Ile	Ala	Lys
Thr	Leu 130	Asn	Ala	Glu	Ile	Val 135	Phe	Val	Met	Ser	Gln 140	Gly	Thr	Asp	Thr
Pro 145	Glu	Gln	Leu	Lys	Glu 150	Arg	Ile	Glu	Leu	Thr 155	Arg	Asn	Ser	Phe	Gly 160
_	Ala	-		165				-	170				-	175	
	Pro		180			-	-	185	-		_		190		
	Asp	195			-		200					205			-
	Gln 210					215				-	220			-	
225	Asp				230	-			_	235		-			240
	Thr			245			-		250		0	0		255	
	Thr		260					265					270		
	Gly	275					280					285			
	Ala 290	-				295		-			300	-			
305	Thr	-	-	-	310		-		-	315		-		-	320
-	Ala			325	-				330					335	
Trp	Gln	Thr	Ser 340	Leu	Ser	Leu	Gln	Ser 345	Phe	Asn	Leu	Glu	Val 350	Pro	Val
Asp	Asp	His 355	Glu	Arg	Ile	Glu	Lys 360	Val	Gln	Glu	Tyr	Val 365	Ala	Asn	Tyr
Ile	Asn 370	Ala	Asp	Trp	Ile	Asp 375	Ser	Leu	Thr	Ala	Thr 380	Ser	Glu	Arg	Ser
Arg 385	Arg	Leu	Ser	Pro	Pro 390	Ala	Phe	Arg	Tyr	Gln 395	Leu	Thr	Glu	Leu	Ala 400

-continued

Arg Lys Ala Gly Lys Arg Ile Val Leu Pro Glu Gly Asp Glu Pro Arg 405 410 415
Thr Val Lys Ala Ala Ile Cys Ala Glu Arg Gly Ile Ala Thr Cys 420 425 430
Val Leu Gly Asn Pro Ala Glu Ile Asn Arg Val Ala Ala Ser Gln 435 440 445
Gly Val Glu Leu Gly Ala Gly Ile Glu Ile Val Asp Pro Glu Val Val 450 455 460
Arg Glu Asn Tyr Val Gly Arg Leu Val Glu Leu Arg Lys Asn Lys Gly 465 470 475 480
Met Thr Glu Thr Val Ala Arg Glu Gln Leu Glu Asp Asn Val Val Leu 485 490 495
Gly Thr Leu Met Leu Glu Gln Asp Glu Val Asp Gly Leu Val Ser Gly 500 505 510
Ala Val His Thr Thr Ala Asn Thr Ile Arg Pro Pro Leu Gln Leu Ile 515 520 525
Lys Thr Ala Pro Gly Ser Ser Leu Val Ser Ser Val Phe Phe Met Leu 530 535 540
Leu Pro Glu Gln Val Tyr Val Tyr Gly Asp Cys Ala Ile Asn Pro Asp 545 550 555 560
Pro Thr Ala Glu Gln Leu Ala Glu Ile Ala Ile Gln Ser Ala Asp Ser 565 570 575
Ala Ala Ala Phe Gly Ile Glu Pro Arg Val Ala Met Leu Ser Tyr Ser 580 585 590
Thr Gly Thr Ser Gly Ala Gly Ser Asp Val Glu Lys Val Arg Glu Ala 595 600 605
Thr Arg Leu Ala Gln Glu Lys Arg Pro Asp Leu Met Ile Asp Gly Pro 610 615 620
Leu Gln Tyr Asp Ala Ala Val Met Ala Asp Val Ala Lys Ser Lys Ala 625 630 635 640
Pro Asn Ser Pro Val Ala Gly Arg Ala Thr Val Phe Ile Phe Pro Asp 645 650 655
Leu Asn Thr Gly Asn Thr Thr Tyr Lys Ala Val Gln Arg Ser Ala Asp
660 665 670 Leu Ile Ser Ile Gly Pro Met Leu Gln Gly Met Arg Lys Pro Val Asn
675 680 685 Asp Leu Ser Arg Gly Ala Leu Val Asp Asp Ile Val Tyr Thr Ile Ala
690 695 700 Leu Thr Ala Ile Gln Ser Ala Gln Gln Gln
705 710
<210> SEQ ID NO 13
<211> LENGTH: 1203 <212> TYPE: DNA
<213> ORGANISM: Escherichia coli
<400> SEQUENCE: 13
atgtcgagta agttagtact ggttctgaac tgcggtagtt cttcactgaa atttgccatc 60
atcgatgcag taaatggtga agagtacctt tctggtttag ccgaatgttt ccacctgccc 120
gaagcacgta tcaaatggaa aatggacggc aataaacagg aagcggcttt aggtgcaggc 180
geegeteaca gegaageget caactttate gttaataeta ttetggeaca aaaaceagaa 240
ctgtctgcgc agctgactgc tatcggtcac cgtatcgtac acggcggcga aaagtatacc 300
ageteegtag tgategatga gtetgttatt eagggtatea aagatgeage ttettttgea 360

63

ccgctgcaca acccggctca cctgatcggt atcgaagaag ctctgaaatc tttcccacag	420
ctgaaagaca aaaacgttgc tgtatttgac accgcgttcc accagactat gccggaagag	480
tettacetet acgecetgee ttacaaeetg tacaaagage acggeateeg tegttaegge	540
gcgcacggca ccagccactt ctatgtaacc caggaagcgg caaaaatgct gaacaaaccg	600
gtagaagaac tgaacatcat cacctgccac ctgggcaacg gtggttccgt ttctgctatc	660
cgcaacggta aatgcgttga cacctctatg ggcctgaccc cgctggaagg tctggtcatg	720
ggtaccegtt etggtgatat egateeggeg ateatettee acetgeaega eaceetggge	780
atgagegttg aegeaateaa caaaetgetg aeeaaagagt etggeetget gggtetgaee	840
gaagtgacca gcgactgccg ctatgttgaa gacaactacg cgacgaaaga agacgcgaag	900
cgcgcaatgg acgtttactg ccaccgcctg gcgaaataca tcggtgccta cactgcgctg	960
atggatggtc gtctggacgc tgttgtattc actggtggta tcggtgaaaa tgccgcaatg	1020
gttcgtgaac tgtctctggg caaactgggc gtgctgggct ttgaagttga tcatgaacgc	1080
aacctggctg cacgtttcgg caaatctggt ttcatcaaca aagaaggtac ccgtcctgcg	1140
gtggttatcc caaccaacga agaactggtt atcgcgcaag acgcgagccg cctgactgcc	1200
tga	1203
<210> SEQ ID NO 14 <211> LENGTH: 400 <212> TYPE: PRT <213> ORGANISM: Escherichia coli	
<400> SEQUENCE: 14	
Met Ser Ser Lys Leu Val Leu Val Leu Asn Cys Gly Ser Ser Ser Leu 1 5 10 15	
Lys Phe Ala Ile Ile Asp Ala Val Asn Gly Glu Glu Tyr Leu Ser Gly 20 25 30	
Leu Ala Glu Cys Phe His Leu Pro Glu Ala Arg Ile Lys Trp Lys Met 35 40 45	
Asp Gly Asn Lys Gln Glu Ala Ala Leu Gly Ala Gly Ala Ala His Ser 50 55 60	
Glu Ala Leu Asn Phe Ile Val Asn Thr Ile Leu Ala Gln Lys Pro Glu 65 70 75 80	
Leu Ser Ala Gln Leu Thr Ala Ile Gly His Arg Ile Val His Gly Gly 85 90 95	
Glu Lys Tyr Thr Ser Ser Val Val Ile Asp Glu Ser Val Ile Gln Gly 100 105 110	
Ile Lys Asp Ala Ala Ser Phe Ala Pro Leu His Asn Pro Ala His Leu 115 120 125	
Ile Gly Ile Glu Glu Ala Leu Lys Ser Phe Pro Gln Leu Lys Asp Lys 130 135 140	
Asn Val Ala Val Phe Asp Thr Ala Phe His Gln Thr Met Pro Glu Glu 145 150 155 160	
Ser Tyr Leu Tyr Ala Leu Pro Tyr Asn Leu Tyr Lys Glu His Gly Ile	
Arg Arg Tyr Gly Ala His Gly Thr Ser His Phe Tyr Val Thr Gln Glu	
180 185 190 Ala Ala Lys Met Leu Asn Lys Pro Val Glu Glu Leu Asn Ile Ile Thr	
195 200 205	
Cys His Leu Gly Asn Gly Gly Ser Val Ser Ala Ile Arg Asn Gly Lys	

6	5
U	э.

-continued

-continued		
210 215 220		
Cys Val Asp Thr Ser Met Gly Leu Thr Pro Leu Glu Gly Leu Val Met225230235240		
Gly Thr Arg Ser Gly Asp Ile Asp Pro Ala Ile Ile Phe His Leu His 245 250 255		
Asp Thr Leu Gly Met Ser Val Asp Ala Ile Asn Lys Leu Leu Thr Lys 260 265 270		
Glu Ser Gly Leu Leu Gly Leu Thr Glu Val Thr Ser Asp Cys Arg Tyr 275 280 285		
Val Glu Asp Asn Tyr Ala Thr Lys Glu Asp Ala Lys Arg Ala Met Asp 290 295 300		
Val Tyr Cys His Arg Leu Ala Lys Tyr Ile Gly Ala Tyr Thr Ala Leu 305 310 315 320		
Met Asp Gly Arg Leu Asp Ala Val Val Phe Thr Gly Gly Ile Gly Glu 325 330 335		
Asn Ala Ala Met Val Arg Glu Leu Ser Leu Gly Lys Leu Gly Val Leu 340 345 350		
Gly Phe Glu Val Asp His Glu Arg Asn Leu Ala Ala Arg Phe Gly Lys 355 360 365		
Ser Gly Phe Ile Asn Lys Glu Gly Thr Arg Pro Ala Val Val Ile Pro 370 375 380		
Thr Asn Glu Glu Leu Val Ile Ala Gln Asp Ala Ser Arg Leu Thr Ala 385 390 395 400		
<213> ORGANISM: Escherichia coli <400> SEQUENCE: 15	60	
atgaaacaaa cggttgcagc ttatatcgcc aaaacactcg aatcggcagg ggtgaaacgc	60	
atctggggag tcacaggcga ctctctgaac ggtcttagtg acagtcttaa tcgcatgggc	120	
accatcgagt ggatgtccac ccgccacgaa gaagtggcgg cctttgccgc tggcgctgaa gcacaactta gcggagaact ggcggtctgc gccggatcgt gcggccccgg caacctgcac	180 240	
ttaatcaacg geetgttega ttgecacege aatcaegtte eggtaetgge gattgeeget	300	
catatteect ccagegaaat tggcagegge tatttecagg aaacceacee acaagageta	360	
tteegegaat gtagteacta ttgegagetg gttteeagee eggageagat eecacaagta	420	
ctggcgattg ccatgcgcaa agcggtgctt aaccgtggcg tttcggttgt cgtgttacca	480	
ggcgacgtgg cgttaaaacc tgcgccagaa ggggcaacca tgcactggta tcatgcgcca	540	
caaccagtcg tgacgccgga agaagaagag ttacgcaaac tggcgcaact gctgcgttat	600	
tccagcaata tcgccctgat gtgtggcagc ggctgcgcgg gggcgcataa agagttagtt	660	
gagtttgccg ggaaaattaa agcgcctatt gttcatgccc tgcgcggtaa agaacatgtc	720	
gaatacgata atccgtatga tgttggaatg accgggttaa tcggcttctc gtcaggtttc	780	
cataccatga tgaacgccga cacgttagtg ctactcggca cgcaatttcc ctaccgcgcc	840	
ttctacccga ccgatgccaa aatcattcag attgatatca acccagccag catcggcgct	900	
cacagcaagg tggatatggc actggtcggc gatatcaagt cgactctgcg tgcattgctt	960	
ccattggtgg aagaaaaagc cgatcgcaag tttctggata aagcgctgga agattaccgc	1020	
	1000	

gacgcccgca aagggctgga cgatttagct aaaccgagcg agaaagccat tcacccgcaa 1080

67

-continued

tatctggcgc	agcaa	aattaq	g to	attt	tgcc	gco	cgate	gacg	cta	ttt	cac d	ctgto	gacgtt	1140
ggtacgccaa	cggtg	gtggg	c gg	gcace	gttat	cta	aaaaa	atga	acgo	gcaa	gog t	ccgco	tgtta	1200
ggttcgttta	accad	ggtt	c ga	atggo	ctaad	gco	catgo	ccgc	aggo	gct	ggg t	gege	caggcg	1260
acagagccag	aacgt	caggi	t gg	gtcgc	ccato	g tga	cggcá	gatg	gcg	gttt	tag d	catgt	tgatg	1320
ggcgatttcc	tctca	agtagi	t go	agat	gaaa	a ct <u>e</u>	gcca	gtga	aaat	ttgt	cgt (cttta	aacaac	1380
agcgtgctgg	gcttt	gtgg	c ga	atgga	agato	g aaa	agete	ggtg	gcta	attt	gac t	gaco	ggcacc	1440
gaactacacg	acaca	aacti	t tg	Jagad	gcatt	gco	cgaaq	gcgt	gcg	gcati	tac ç	gggta	atccgt	1500
gtagaaaaag	cgtct	gaag	t tg	gatga	agco	cto	gcaa	cgcg	ccti	tete	cat d	cgaco	ggtccg	1560
gtgttggtgg	atgto	ggtggi	t cg	gccaa	agaa	a gag	gttaq	gcca	ttco	cacco	gca q	gatca	aactc	1620
gaacaggcca	aaggt	ttca	g co	tgta	atato	g cto	gegeé	gcaa	tca	tcago	cgg a	acgco	ggtgat	1680
gaagtgatcg	aacto	gcga	a aa	caaa	actgo	g cta	aaggt	taa						1719
<210> SEQ <211> LENG <212> TYPE <213> ORGA	TH: 57 : PRT	72	eric	chia	coli									
<400> SEQU	ENCE :	16												
Met Lys Gl 1	n Thr	Val ž 5	Ala	Ala	Tyr	Ile	Ala 10	Lys	Thr	Leu	Glu	Ser 15	Ala	
Gly Val Ly	s Arg 20	Ile '	Trp	Gly	Val	Thr 25	Gly	Asp	Ser	Leu	Asn 30	Gly	Leu	
Ser Asp Se 35		Asn i	Arg	Met	Gly 40	Thr	Ile	Glu	Trp	Met 45	Ser	Thr	Arg	
His Glu Gl 50	u Val	Ala i		Phe 55	Ala	Ala	Gly	Ala	Glu 60	Ala	Gln	Leu	Ser	
Gly Glu Le 65	u Ala		Cys 70	Ala	Gly	Ser	Суз	Gly 75	Pro	Gly	Asn	Leu	His 80	
Leu Ile As	n Gly	Leu 1 85	Phe	Asp	Суз	His	Arg 90	Asn	His	Val	Pro	Val 95	Leu	
Ala Ile Al	a Ala 100	His :	Ile	Pro	Ser	Ser 105	Glu	Ile	Gly	Ser	Gly 110	Tyr	Phe	
Gln Glu Th 11		Pro (Gln	Glu	Leu 120	Phe	Arg	Glu	Суз	Ser 125	His	Tyr	Сүз	
Glu Leu Va 130	l Ser	Ser 1		Glu 135	Gln	Ile	Pro	Gln	Val 140	Leu	Ala	Ile	Ala	
Met Arg Ly 145	s Ala		Leu 150	Asn	Arg	Gly	Val	Ser 155	Val	Val	Val	Leu	Pro 160	
Gly Asp Va	l Ala	Leu 1 165	Lya	Pro	Ala	Pro	Glu 170	Gly	Ala	Thr	Met	His 175	Trp	
Tyr His Al	a Pro 180	Gln 1	Pro	Val	Val	Thr 185	Pro	Glu	Glu	Glu	Glu 190	Leu	Arg	
Lys Leu Al 19		Leu 1	Leu	Arg	Tyr 200	Ser	Ser	Asn	Ile	Ala 205	Leu	Met	Сув	
Gly Ser Gl 210	у Сув	Ala (-	Ala 215	His	Lys	Glu	Leu	Val 220	Glu	Phe	Ala	Gly	
Lys Ile Ly 225	s Ala		Ile 230	Val	His	Ala	Leu	Arg 235	Gly	Lys	Glu	His	Val 240	
Glu Tyr As	p Asn	Pro 2 245	Tyr	Asp	Val	Gly	Met 250	Thr	Gly	Leu	Ile	Gly 255	Phe	
Ser Ser Gl	y Phe	His '	Thr	Met	Met	Asn	Ala	Asp	Thr	Leu	Val	Leu	Leu	

-continued

Gly	Thr	Gln 275	Phe	Pro	Tyr	Arg	Ala 280	Phe	Tyr	Pro	Thr	Asp 285	Ala	Lys	Ile				
	Gln 290	Ile	Asp	Ile	Asn	Pro 295	Ala	Ser	Ile	Gly	Ala 300	His	Ser	Lys	Val				
Asp 305	Met	Ala	Leu	Val	Gly 310	Asp	Ile	Lys	Ser	Thr 315	Leu	Arg	Ala	Leu	Leu 320				
Pro	Leu	Val	Glu	Glu 325	Lys	Ala	Asp	Arg	Lys 330	Phe	Leu	Asp	Lys	Ala 335	Leu				
Glu	Asp	Tyr	Arg 340	Asp	Ala	Arg	Lys	Gly 345	Leu	Asp	Asp	Leu	Ala 350	Lys	Pro				
Ser	Glu	Lys 355	Ala	Ile	His	Pro	Gln 360	Tyr	Leu	Ala	Gln	Gln 365	Ile	Ser	His				
Phe	Ala 370	Ala	Aab	Asp	Ala	Ile 375	Phe	Thr	Cys	Asp	Val 380	Gly	Thr	Pro	Thr				
Val 385	Trp	Ala	Ala	Arg	Tyr 390	Leu	Lys	Met	Asn	Gly 395	Lys	Arg	Arg	Leu	Leu 400				
Gly	Ser	Phe	Asn	His 405	Gly	Ser	Met	Ala	Asn 410	Ala	Met	Pro	Gln	Ala 415	Leu				
Gly	Ala	Gln	Ala 420	Thr	Glu	Pro	Glu	Arg 425	Gln	Val	Val	Ala	Met 430	Cys	Gly				
Asp	Gly	Gly 435		Ser	Met	Leu	Met 440	Gly	Asp	Phe	Leu	Ser 445	Val	Val	Gln				
Met	Lys 450		Pro	Val	Lys	Ile 455		Val	Phe	Asn	Asn 460		Val	Leu	Gly				
Phe 465		Ala	Met	Glu	Met 470		Ala	Gly	Gly	Tyr 475		Thr	Asp	Gly	Thr 480				
Glu	Leu	His	Asp	Thr 485		Phe	Ala	Arg	Ile 490		Glu	Ala	Cys	Gly 495					
Thr	Gly	Ile	Arg 500		Glu	Lys	Ala	Ser 505		Val	Asp	Glu	Ala 510		Gln				
Arg	Ala	Phe 515	Ser	Ile	Asp	Gly	Pro 520	Val	Leu	Val	Asp	Val 525	Val	Val	Ala				
Lys	Glu 530		Leu	Ala	Ile	Pro 535		Gln	Ile	Lys	Leu 540		Gln	Ala	Lys				
Gly 545		Ser	Leu	Tyr	Met 550		Arg	Ala	Ile	Ile 555		Gly	Arg	Gly	Asp 560				
Glu	Val	Ile	Glu	Leu 565		Lys	Thr	Asn	Trp		Arg				200				
<210 <211 <212 <213 <400	.> LE :> TY :> OF	ENGTH PE : RGANI	H: 99 DNA [SM:	90 Esci	nerio	chia	coli	i											
atga	laact	cg d	ccgtt	tata	ag ca	acaaa	acaç	g tao	cgaca	aaga	agta	accto	gca a	acago	gtgaac		0		
															gctaaa	12 18			
															ccggtg tcaat	24			
99	,																		
aacg	itcaa	ICC T		qcaa	ac aa	aaaa	acto	1 000	act ca			Lucui	Lar i	, uuau		30	0		

71

cacegegeat ateagegtae eegtgaeget aaettetete tggaaggtet gaeeggettt 420
actatgtatg gcaaaacggc aggcgttatc ggtaccggta aaatcggtgt ggcaatgctg 480
cgcattetga aaggttttgg tatgegtetg etggegtteg atcegtatee aagtgeggeg 540
gcgctggaac teggtgtgga gtatgtegat etgecaacee tgttetetga ateagaegtt 600
atetetetge actgeceget gacaceggaa aactaceate tgttgaaega ageegeette 660
gatcasatga aaaatggcgt gatgatcgtc aataccagtc gcggtgcatt gattgattct 720
caggcggcaa ttgaagcgct gaaaaatcag aaaattggtt cgttgggtat ggacgtgtat 780
gagaacgaac gcgatctgtt ctttgaagat aaatccaacg acgtgatcca ggatgacgta 840
tteegteget tgtetgeetg ecacaaegtg ttgtttaeeg ggeaceagge atteetgaea 900
gcagaagctc tgaccagtat ttctcagact acgctgcaaa acttaagcaa tctggaaaaa 960
ggcgaaacct gcccgaacga actggtttaa 990
<210> SEQ ID NO 18 <211> LENGTH: 329 <212> TYPE: PRT <213> ORGANISM: Escherichia coli <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (222)(222) <223> OTHER INFORMATION: Xaa can be any naturally occurring amino acid
<400> SEQUENCE: 18
Met Lys Leu Ala Val Tyr Ser Thr Lys Gln Tyr Asp Lys Lys Tyr Leu 1 5 10 15
Gln Gln Val Asn Glu Ser Phe Gly Phe Glu Leu Glu Phe Phe Asp Phe 20 25 30
Leu Leu Thr Glu Lys Thr Ala Lys Thr Ala Asn Gly Cys Glu Ala Val 35 40 45
Cys Ile Phe Val Asn Asp Asp Gly Ser Arg Pro Val Leu Glu Glu Leu 50 55 60
Lys Lys His Gly Val Lys Tyr Ile Ala Leu Arg Cys Ala Gly Phe Asn 65 70 75 80
Asn Val Asp Leu Asp Ala Ala Lys Glu Leu Gly Leu Lys Val Val Arg 85 90 95
Val Pro Ala Tyr Asp Pro Glu Ala Val Ala Glu His Ala Ile Gly Met 100 105 110
Met Met Thr Leu Asn Arg Arg Ile His Arg Ala Tyr Gln Arg Thr Arg 115 120 125
Asp Ala Asn Phe Ser Leu Glu Gly Leu Thr Gly Phe Thr Met Tyr Gly 130 135 140
Lys Thr Ala Gly Val Ile Gly Thr Gly Lys Ile Gly Val Ala Met Leu 145 150 155 160
Arg Ile Leu Lys Gly Phe Gly Met Arg Leu Leu Ala Phe Asp Pro Tyr 165 170 175
Pro Ser Ala Ala Leu Glu Leu Gly Val Glu Tyr Val Asp Leu Pro 180 185 190
Thr Leu Phe Ser Glu Ser Asp Val Ile Ser Leu His Cys Pro Leu Thr 195 200 205
Pro Glu Asn Tyr His Leu Leu Asn Glu Ala Ala Phe Asp Xaa Met Lys
210 215 220
Asn Gly Val Met Ile Val Asn Thr Ser Arg Gly Ala Leu Ile Asp Ser 225 230 235 240

concinded	
Gln Ala Ala Ile Glu Ala Leu Lys Asn Gln Lys Ile Gly Ser Leu Gly 245 250 255	
Met Asp Val Tyr Glu Asn Glu Arg Asp Leu Phe Phe Glu Asp Lys Ser 260 265 270	
Asn Asp Val Ile Gln Asp Asp Val Phe Arg Arg Leu Ser Ala Cys His 275 280 285	
Asn Val Leu Phe Thr Gly His Gln Ala Phe Leu Thr Ala Glu Ala Leu 290 295 300	
Thr Ser Ile Ser Gln Thr Thr Leu Gln Asn Leu Ser Asn Leu Glu Lys 305 310 315 320	
Gly Glu Thr Cys Pro Asn Glu Leu Val 325	
<210> SEQ ID NO 19 <211> LENGTH: 948 <212> TYPE: DNA <213> ORGANISM: Escherichia coli	
<400> SEQUENCE: 19	
atgagactca ggaaatacaa taaaagtttg ggatggttgt cattatttgc aggcactgta	60
ttgeteagtg getgtaatte tgegetgtta gateeeaaag gacagattgg tetggageaa	120
cgttcactga tactgacggc atttggcctg atgttgattg tcgttattcc cgcaatcttg	180
atggetgttg gtttegeetg gaagtaeegt gegageaata aagatgetaa gtaeageeeg	240
aactggtcac actccaataa agtggaagct gtggtctgga cggtacctat cttaatcatc	300
atetteettg cagtaetgae etggaaaace aeteaegete ttgageetag caageegetg	360
gcacacgacg agaagcccat taccatcgaa gtggtttcca tggactggaa atggttcttc	420
atctacccgg aacagggcat tgctaccgtg aatgaaatcg ctttcccggc gaacactccg	480
gtgtacttca aagtgacctc caactccgtg atgaactcct tcttcattcc gcgtctgggt	540
agccagattt atgccatggc cggtatgcag actcgcctgc atctgatcgc caacgaaccc	600
ggcacttatg acggtatete egecagetae ageggeeegg getteteagg eatgaagtte	660
aaagctattg caacaccgga tcgcgccgca ttcgaccagt gggtcgcaaa agcgaagcag	720
togoogaaca coatgtotga catggotgog ttogaaaaac tggoogogoo tagogaatac	780
aaccaggtgg aatatttete caacgtgaaa ceagaettgt ttgeegatgt aattaacaag	840
tttatggete aeggtaagag catggacatg aeeeageeag aaggtgagea cagegeaeae	900
gaaggtatgg aaggcatgga catgagccac gcggaatccg cccattaa	948
<210> SEQ ID NO 20 <211> LENGTH: 315 <212> TYPE: PRT <213> ORGANISM: Escherichia coli	
<400> SEQUENCE: 20	
Met Arg Leu Arg Lys Tyr Asn Lys Ser Leu Gly Trp Leu Ser Leu Phe 1 5 10 15	
Ala Gly Thr Val Leu Leu Ser Gly Cys Asn Ser Ala Leu Leu Asp Pro 20 25 30	
Lys Gly Gln Ile Gly Leu Glu Gln Arg Ser Leu Ile Leu Thr Ala Phe 35 40 45	
Gly Leu Met Leu Ile Val Val Ile Pro Ala Ile Leu Met Ala Val Gly 50 55 60	
Phe Ala Trp Lys Tyr Arg Ala Ser Asn Lys Asp Ala Lys Tyr Ser Pro	

-continued

											-	con	tin	ued						
65					70					75					80				 	
Asn	Trp	Ser	His	Ser 85	Asn	ГЛЗ	Val	Glu	Ala 90	Val	Val	Trp	Thr	Val 95	Pro					
Ile	Leu	Ile	Ile 100	Ile	Phe	Leu	Ala	Val 105	Leu	Thr	Trp	Lys	Thr 110	Thr	His					
Ala	Leu	Glu 115	Pro	Ser	Lys	Pro	Leu 120	Ala	His	Asp	Glu	Lys 125	Pro	Ile	Thr					
Ile	Glu 130	Val	Val	Ser	Met	Asp 135	Trp	Lys	Trp	Phe	Phe 140	Ile	Tyr	Pro	Glu					
Gln 145	Gly	Ile	Ala	Thr	Val 150	Asn	Glu	Ile	Ala	Phe 155	Pro	Ala	Asn	Thr	Pro 160					
Val	Tyr	Phe	Lys	Val 165	Thr	Ser	Asn	Ser	Val 170	Met	Asn	Ser	Phe	Phe 175	Ile					
Pro	Arg	Leu	Gly 180	Ser	Gln	Ile	Tyr	Ala 185	Met	Ala	Gly	Met	Gln 190	Thr	Arg					
Leu	His	Leu 195	Ile	Ala	Asn	Glu	Pro 200	Gly	Thr	Tyr	Asp	Gly 205	Ile	Ser	Ala					
Ser	Tyr 210	Ser	Gly	Pro	Gly	Phe 215	Ser	Gly	Met	Lys	Phe 220	Гла	Ala	Ile	Ala					
Thr 225	Pro	Asp	Arg	Ala	Ala 230	Phe	Asp	Gln	Trp	Val 235	Ala	ГЛа	Ala	Lys	Gln 240					
	Pro	Asn	Thr	Met 245		Asp	Met	Ala	Ala 250		Glu	Lys	Leu	Ala 255						
Pro	Ser	Glu	Tyr 260		Gln	Val	Glu	Tyr 265		Ser	Asn	Val	Lys 270		Asp					
Leu	Phe	Ala 275		Val	Ile	Asn	Lys 280		Met	Ala	His	Gly 285		Ser	Met					
Asp	Met 290		Gln	Pro	Glu	Gly 295		His	Ser	Ala	His 300		Gly	Met	Glu					
-		Asp	Met	Ser		Ala	Glu	Ser	Ala		300									
305					310					315										
			D NO H: 19																	
	2 > T 3 > OI			Escl	neri	chia	col:	L												
<400)> S]	EQUEI	NCE :	21																
atgt	ttcg	gaa a	aatta	atca	ct t	gatgo	cagto	c cc	gttco	catg	aac	ctato	cgt (catgo	gttacg		60			
atco	gctg	gca 1	ttati	ttg	gg ag	ggtci	tggco	g cto	gtt	ggcc	tga	tcaci	tta (cttco	ggtaag	12	20			
tgga	accta	acc 1	tgtg	gaaa	ga g	tggci	tgaco	e teo	cgtc	gacc	ata	aacgo	cct ·	cggta	atcatg	1	80			
tata	atcal	tcg 1	tggc	gatto	gt g	atgti	tacto	g cgi	ggti	ttg	ctg	acgco	cat '	tatga	atgcgt	2.	40			
agco	cagea	agg (ctct	geet	tc g	acaa	gcgaa	a gco	gggti	tcc	tgc	cacci	tca	ccact	tacgat	3	00			
caga	atcti	tca (ccgcé	gcac	gg c	gtgai	ttato	g ato	ettet	tcg	tgg	cgate	gaa .	tttcç	gttatc	3	60			
ggto	ctgai	tga a	accto	ggtg	gt t	ccgci	tgcaq	g ato	cggcé	gcgc	gtg	acgti	tgc	gttco	ccgttc	4:	20			
ctca	aacaa	act 1	taago	ctte	tg g	ttta	ccgtt	: gti	ggt	gtga	ttc	tggti	taa	cgttt	ctctc	4	80			
ggcó	gtgg	gcg a	aatti	gcg	ca g	accg	gctg	g cto	ggeet	tatc	cac	cgcta	atc	gggaa	atagag	5	40			
taca	agtco	add a	gagto	cggt	gt c	gatta	actgo	g ata	atgga	agtc	tcc	agcta	atc (cggta	ataggt	6	00			
acga	acgci	tta	ccggt	tate	aa c'	ttcti	tcgtt	c aco	catto	ctga	aga	tgcg	cgc .	accgę	ggcatg	6	60			
acca	atgti	tca a	agato	gcca	gt a	ttta	cctg	g gca	atca	ctgt	gcg	caaa	cgt .	actga	attatt	7:	20			

77

-continued

-continued	
gcttccttcc caattctgac ggttaccgtc gcgttgttga ccctggatcg ctatctgggc	780
acccatttct ttaccaacga tatgggtggc aacatgatga tgtatatcaa cctgatttgg	840
gcctggggcc acccggaagt ttacatcttg atcctgcctg tattcggtgt gttctccgaa	900
attgeggeaa etttetegeg taaaegtetg tttggttata eetegetggt atgggeaaee	960
gtetgtatea eegtgetgte gtteategtt tggetgeace aettetttae gatgggtgeg	1020
ggcgcgaacg taaacgcott otttggtato accaccatga ttatogocat occaacoggg	1080
gtgaagatet teaactgget gtteaceatg tateagggee geategtgtt eeattetgeg	1140
atgetgtgga ceateggttt tategteace tteteggtgg geggtatgae aggegtgetg	1200
ctggcagtac ctggcgcaga cttcgttctg cataacagcc tgttcctgat tgcacacttc	1260
cataacgtga tcatcggcgg cgtggtcttc ggctgcttcg cagggatgac ctactggtgg	1320
cctaaagcgt tcggtttcaa actgaacgaa acctggggta aacgcgcgtt ctggttctgg	1380
atcatcggct tettegttge etttatgeeg etgtatgegt tgggetttat ggggatgaee	1440
cgtcgtttga gccagcagat tgacccgcag ttccacacca tgctgatgat tgcagccagc	1500
ggtgeggtae tgattgeget gggtattete tgeetegtta tteagatgta egtttetatt	1560
cgcgaccgcg accagaaccg tgacctgact ggcgacccgt ggggtggccg tacgctggag	1620
tgggcaacct cttcccccgcc tccgttctat aactttgccg ttgtgccgca cgttcacgaa	1680
cgtgatgcat tctgggaaat gaaagagaaa ggcgaagcgt acaaaaagcc tgaccactat	1740
gaagaaattc atatgccaaa aaacagcggt gccggtatcg tcattgcggc tttctccacc	1800
atetteggtt tegecatgat etggeatate tggtggetgg egattgttgg ettegeagge	1860
atgatcatca cctggatcgt gaaaagcttc gacgaggacg tggattacta cgtgccggtg	1920
gcagaaatcg aaaaactgga aaaccagcat ttcgatgaga ttactaaggc agggctgaaa	1980
aatggcaact ga	1992
<210> SEQ ID NO 22 <211> LENGTH: 663 <212> TYPE: PRT <213> ORGANISM: Escherichia coli	
<400> SEQUENCE: 22	
Met Phe Gly Lys Leu Ser Leu Asp Ala Val Pro Phe His Glu Pro Ile 1 5 10 15	
Val Met Val Thr Ile Ala Gly Ile Ile Leu Gly Gly Leu Ala Leu Val	
20 25 30	
Gly Leu Ile Thr Tyr Phe Gly Lys Trp Thr Tyr Leu Trp Lys Glu Trp 35 40 45	
Leu Thr Ser Val Asp His Lys Arg Leu Gly Ile Met Tyr Ile Ile Val	
50 55 60	
Ala Ile Val Met Leu Leu Arg Gly Phe Ala Asp Ala Ile Met Met Arg 65 70 75 80	
Ser Gln Gln Ala Leu Ala Ser Ala Gly Glu Ala Gly Phe Leu Pro Pro 85 90 95	
His His Tyr Asp Gln Ile Phe Thr Ala His Gly Val Ile Met Ile Phe 100 105 110	
Phe Val Ala Met Pro Phe Val Ile Gly Leu Met Asn Leu Val Val Pro	
115 120 125	
Leu Gln Ile Gly Ala Arg Asp Val Ala Phe Pro Phe Leu Asn Asn Leu 130 135 140	

-continued

Ser 145	Phe	Trp	Phe	Thr	Val 150	Val	Gly	Val	Ile	Leu 155	Val	Asn	Val	Ser	Leu 160
Gly	Val	Gly	Glu	Phe 165	Ala	Gln	Thr	Gly	Trp 170	Leu	Ala	Tyr	Pro	Pro 175	Leu
Ser	Gly	Ile	Glu 180	Tyr	Ser	Pro	Gly	Val 185	Gly	Val	Asp	Tyr	Trp 190	Ile	Trp
Ser	Leu	Gln 195	Leu	Ser	Gly	Ile	Gly 200	Thr	Thr	Leu	Thr	Gly 205	Ile	Asn	Phe
Phe	Val 210	Thr	Ile	Leu	Lys	Met 215	Arg	Ala	Pro	Gly	Met 220	Thr	Met	Phe	Lys
Met 225	Pro	Val	Phe	Thr	Trp 230	Ala	Ser	Leu	Суз	Ala 235	Asn	Val	Leu	Ile	Ile 240
Ala	Ser	Phe	Pro	Ile 245	Leu	Thr	Val	Thr	Val 250	Ala	Leu	Leu	Thr	Leu 255	Asp
Arg	Tyr	Leu	Gly 260	Thr	His	Phe	Phe	Thr 265	Asn	Asp	Met	Gly	Gly 270	Asn	Met
Met	Met	Tyr 275	Ile	Asn	Leu	Ile	Trp 280	Ala	Trp	Gly	His	Pro 285	Glu	Val	Tyr
Ile	Leu 290	Ile	Leu	Pro	Val	Phe 295	Gly	Val	Phe	Ser	Glu 300	Ile	Ala	Ala	Thr
Phe 305	Ser	Arg	Lys	Arg	Leu 310	Phe	Gly	Tyr	Thr	Ser 315	Leu	Val	Trp	Ala	Thr 320
Val	Суз	Ile	Thr	Val 325	Leu	Ser	Phe	Ile	Val 330	Trp	Leu	His	His	Phe 335	Phe
Thr	Met	Gly	Ala 340	Gly	Ala	Asn	Val	Asn 345	Ala	Phe	Phe	Gly	Ile 350	Thr	Thr
Met	Ile	Ile 355	Ala	Ile	Pro	Thr	Gly 360	Val	Lys	Ile	Phe	Asn 365	Trp	Leu	Phe
Thr	Met 370	Tyr	Gln	Gly	Arg	Ile 375	Val	Phe	His	Ser	Ala 380	Met	Leu	Trp	Thr
Ile 385	Gly	Phe	Ile	Val	Thr 390	Phe	Ser	Val	Gly	Gly 395	Met	Thr	Gly	Val	Leu 400
Leu	Ala	Val	Pro	Gly 405	Ala	Asp	Phe	Val	Leu 410	His	Asn	Ser	Leu	Phe 415	Leu
Ile	Ala	His	Phe 420	His	Asn	Val	Ile	Ile 425	Gly	Gly	Val	Val	Phe 430	Gly	Сув
Phe	Ala	Gly 435	Met	Thr	Tyr	Trp	Trp 440	Pro	Гла	Ala	Phe	Gly 445	Phe	Lys	Leu
Asn	Glu 450	Thr	Trp	Gly	Гла	Arg 455	Ala	Phe	Trp	Phe	Trp 460	Ile	Ile	Gly	Phe
Phe 465	Val	Ala	Phe	Met	Pro 470	Leu	Tyr	Ala	Leu	Gly 475	Phe	Met	Gly	Met	Thr 480
Arg	Arg	Leu	Ser	Gln 485	Gln	Ile	Asp	Pro	Gln 490	Phe	His	Thr	Met	Leu 495	Met
Ile	Ala	Ala	Ser 500	Gly	Ala	Val	Leu	Ile 505	Ala	Leu	Gly	Ile	Leu 510	Суз	Leu
Val	Ile	Gln 515	Met	Tyr	Val	Ser	Ile 520	Arg	Asp	Arg	Asp	Gln 525	Asn	Arg	Asp
Leu	Thr 530	Gly	Asp	Pro	Trp	Gly 535	Gly	Arg	Thr	Leu	Glu 540	Trp	Ala	Thr	Ser
Ser 545	Pro	Pro	Pro	Phe	Tyr 550	Asn	Phe	Ala	Val	Val 555	Pro	His	Val	His	Glu 560
Arg	Asp	Ala	Phe	Trp	Glu	Met	Lys	Glu	Lys	Gly	Glu	Ala	Tyr	Lys	Lys

continued

-continued	
565 570 575	
Pro Asp His Tyr Glu Glu Ile His Met Pro Lys Asn Ser Gly Ala Gly 580 585 590	
Ile Val Ile Ala Ala Phe Ser Thr Ile Phe Gly Phe Ala Met Ile Trp 595 600 605	
His Ile Trp Trp Leu Ala Ile Val Gly Phe Ala Gly Met Ile Ile Thr 610 615 620	
Trp Ile Val Lys Ser Phe Asp Glu Asp Val Asp Tyr Tyr Val Pro Val 625 630 635 640	
Ala Glu Ile Glu Lys Leu Glu Asn Gln His Phe Asp Glu Ile Thr Lys 645 650 655	
Ala Gly Leu Lys Asn Gly Asn 660	
<210> SEQ ID NO 23 <211> LENGTH: 615 <212> TYPE: DNA <213> ORGANISM: Escherichia coli <400> SEQUENCE: 23 atggcaactg atactttgac gcacgcgact gcccacgcgc acgaacacgg gcaccacgat	60
gcaggcggaa ccaaaatttt cggattttgg atctacctga tgagcgactg cattctgttc	120
tctatcttgt ttgctaccta tgccgttctg gtgaacggca ccgcaggcgg cccgacaggt	180
aaqqacattt tcqaactqcc qttcqttctq qttqaaactt tcttqctqtt gttcaqctcc	240
atcacctatg gcatggcggc tatcgccatg tacaaaaaca acaaaagcca ggtgatctcc	300
tggctggcgt tgacatggtt gtttggtgcc ggatttatcg ggatggaaat ctatgaattc	360
catcacctga ttgttaacgg catgggtccg gatcgcagcg gcttcctgtc agcgttcttt	420
gcgttggtcg gcacgcacgg tctgcacgtc acttccggtc ttatctggat ggcggtgctg	480
atggtgcaaa tegecegteg eggeetgaee ageaetaaee gtaeeegeat eatgtgtetg	540
ageetgttet ggeaetteet ggatgtggtt tggatetgtg tgtteaetgt tgtttatetg	600
atggggggga tgtaa	615
<210> SEQ ID NO 24 <211> LENGTH: 204 <212> TYPE: PRT <213> ORGANISM: Escherichia coli <400> SEQUENCE: 24	
Met Ala Thr Asp Thr Leu Thr His Ala Thr Ala His Ala His Glu His	
1 5 10 15 Gly His His Asp Ala Gly Gly Thr Lys Ile Phe Gly Phe Trp Ile Tyr	
20 25 30	
Leu Met Ser Asp Cys Ile Leu Phe Ser Ile Leu Phe Ala Thr Tyr Ala 35 40 45	
Val Leu Val Asn Gly Thr Ala Gly Gly Pro Thr Gly Lys Asp Ile Phe 50 55 60	
Glu Leu Pro Phe Val Leu Val Glu Thr Phe Leu Leu Leu Phe Ser Ser65707580	
Ile Thr Tyr Gly Met Ala Ala Ile Ala Met Tyr Lys Asn Asn Lys Ser 85 90 95	
Gln Val Ile Ser Trp Leu Ala Leu Thr Trp Leu Phe Gly Ala Gly Phe 100 105 110	

-continued

130 135 140 Thr His Gly Leu His Val Thr Ser Gly Leu Ihr Tp Met Ala Val Leu 155 160 Met Val Gln He Ala Arg Arg Gly Leu Thr Ser Thr Asn Arg Thr Arg 165 170 He Met Cys Leu Ser Leu Phe Tr His Phe Leu Asp Val Val Trp He 180 170 Cys Val Phe Thr Val Val Tyr Leu Met Gly Ala Met 195 170 Cys Val Phe Thr Val Val Tyr Leu Met Gly Ala Met 195 170 Calls EKKUM: 330 200
The His Gly Leu His Val The Ser Gly Leu The Ser The Asen Arg The Arg 160 Met Val Gln He Ala Arg Arg Gly Leu The Ser The Asen Arg The Arg 160 160 160 (200 (
145 150 155 160 Met Val Gin lie Ala Arg Arg Giy Leu Thr Ser Thr Aen Arg Thr Arg 175 175 Ile Met Cys Leu Ser Leu Phe Try His Phe Leu Asp Val Val Try Ile 180 175 175 Cys Val Phe Thr Val Val Tyr Leu Met Gly Ala Met 195 185 185 185 Cys Val Phe Thr Val Val Tyr Leu Met Gly Ala Met 195 180 185 180 Calo SEQ ID NO 25 200 181 180 180 Calo SEQUENCE: 25 110 EMONETIC: 100 120 gettratec tgegateat etergaegge gegeged teccategge agetgataa gatetggg 120 180 gettratec tgegateat etergaegge digeed atecagatg aggetgaa gateggae 120 gettrate tgegateat etergaegge etergaegge aggetgaa atatgaegge 120 gettrate tgegateat etergaegge digeedaa 300 categgetg getteetgea catagaatae aaateagatg aaggetggaa tatgaeggea 240 ttytgettra acegtgetaat categecate teggttgtgg getceattig gattatgtgg 300 categget getteetgea catagaatae aaateagatg aaggetggaa tatgaeggea 330 categget getteetgea catagaatae aaateagatg aaggetggaa tatgaeggea 240 ttytgettra acegtgetaat categecate cteggettgg getceattig gattatgtgg 300 categget getteetgea categeege eteg file file leu Thr Val Ile Pro 30<
Met Val Gin Ile Ala Arg Arg Giy Leu Thr Ser Thr Aen Arg Thr Arg 165 160 160 160 160 160 160 160 160
<pre>Ile Met Cyo Leu Ser Leu Phe Try His Phe Leu Asp Val Val Try Ile 180</pre>
180185190Cye Val Phe Thr Val Val Tyr Leu Met Gly Ala Met 195200<2110 LENGTH: 330 (2112 LENGTH: 330) (212) TYPE: DNA (213) ORGANISM: Escherichia coli<400> SEQUENCE: 25atgagtcatt ctaacgtgag cggcggcgg tcccatggca gcgtaaaaac ctacatgaca60 ggctttacc tgtcgatcat ctggacggtg attocgttct ggatggtgat gacaggggcgggcttatcc tgtcgatcat ctggacggt attocgtct ggatggtgat gacaggggcg120 ggcctcatcgg cgtaatca aatcagatg aaggctgaa tatgacggcacatctggtg gcttcogca catgaatacc aaatcagatg aaggctgaa tatgacgga240 tttgtcttca cogtgctaat categccatc ctggttgtgg gctccattg gattatgtgcalo SEO ID NO 26 (212) TIPE: PR1300 aacctcaact acaacatgat gatgcactacalo SEO ID NO 26 (212) TIPE: PR130calis Thre PR1 20010calis Thre PR1 (213) ORGANISM: Escherichia colic400> SEQUENCE: 26Met Ser His Ser Asm Val Ser Gly Gly Ala Ser His Gly Ser Val Lys 10Thr Tyr Met Thr Gly Phe ILe Leu Ser ILe ILe Leu Thr Val ILe Pro 20Phe Tyr Met Thr Gly Phe ILe Leu Ser ILe ILe Leu Thr Val ILe Pro 20So To 55Phe Lau Ala Met Ala Val Val Gln ILe Leu Val His Leu Val Cys 50Sp Leu His Met Asm Thr Lys Ser Asp Glu Gly Trp Asm Met Thr Ala 85Phe Val Phe Thr Val Leu ILe ILe Ala ILe Leu Val Val Gly Ser ILe 90calis Leu Tir Ber RT 100calis Leu Tir Ber RT 90calis Leu Tir Ber RT 90
195 200 210> SEQ ID NO 25 211> LENGTH: 330 212> TYPE: DNA 213> ORGANISM: Escherichia coli 2400> SEQUENCE: 25 atgagtcatt ctaacgtgag cggcggcgcg tcccatggca gcgtaaaaac ctacatgaca 60 ggctttatcc tgtcgatcat tctgacggtg attccgttct ggatggtgat gacaggggct 120 gcctccccgg ccgtaatct gggaacaatc ctggcaatgg cagtggtaca gattctggtg 180 catctggtg cgttcctgca catgaatacc aaatcagatg aaggctggaa tatgacggca 240 tttgtcttca ccgtgctaat catcgccatc ctggtggtgg gctccattg gattagcggaa 240 tttgtcttca ccgtgctaat catcgccatc ctggtggtgg gctccattg gattagcggaa 240 tttgtcttra ccgtgctaat catcgccatc ctggtggtgg gctccattg gattagcggaa 240 catctggtg t gcttcctgca catgaatacc aaatcagatg aaggctggaa tatgacggca 240 tttgtcttra ccgtgctaat catcgccatc ctggtggtgg gctccattg gattagtgg 300 aacctcaact acaacatgat gatgcactaa 330 210> SEQ ID NO 26 211> LENGTH: 109 212> TYPE: PRT 213> ORGANISM: Bscherichia coli 2400> SEQUENCE: 26 Met Ser His Ser Asn Val Ser Gly Gly Ala Ser His Gly Ser Val Lyg 1 5 Thr Tyr Met Thr Gly Phe I Leu Ser I le I Leu Thr Val I le Pro 20 20 Phe Typ Met Val Met Thr Gly Ala Ala Ser Pro Ala Val I le Leu Gly 35 Thr I Le Leu Ala Met Ala Val Val Gln I le Leu Val His Leu Val Cys 50 50 Fhe Leu His Met Asn Thr Lys Ser Asp Glu Gly Trp Asn Met Thr Ala 65 70 Fhe Val Phe Thr Val Leu I le I le Ala I le Leu Val Val Gly Ser I le 80 Phe Val Phe Thr Val Leu J le I le Ala I le Leu Val Val Gly Ser I le 90 210> SEQ ID NO 27 211> LENGTH: 891 212> ORGANISM: Escherichia coli 210> SEQ UD NO 27 211> LENGTH: 891 212> ORGANISM: Escherichia coli 210> SEQ UD NO 27 211> LENGTH: 891 212> ORGANISM: Escherichia coli 210> SEQ UD NO 27 211> LENGTH: 891 212> ORGANISM: Escherichia coli 210> SEQUENCE: 27 211
<pre><11> tENGTH: 330 <212> TYPE: DNA <213> ORGANISM: Escherichia coli <400> SEQUENCE: 25 atgagtcatt ctaacgtgag cggoggogg tcccatggca gcgtaaaaac ctacatgaca 60 ggetttatce tgtogatcat tctgacggtg attccgtte ggatggtgat gacagggget 120 gccteccgg ccgtaattet gggaacaate etggecatgg cagtggtaca gatteggtg 180 catetggtg gettectgca catgaatace aaatcagatg aaggetggaa tatgacggea 240 tttgtettea ecgtgetaat categecate etggttgg getecattg gattatggg 300 aaceteaact acaacatgat gatgecataa 330 </pre>
atgagtcatt ctaacgtgag cggcgcgocg tcccatggca gcgtaaaac ctacatgaca 60 ggctttatcc tgtcgatcat tctgacggtg attccgttct ggatggtag gacaggggct 120 gcctctccgg ccgtaattct gggaacaatc ctggcaatgg cagtggtaca gattctggtg 180 catctggtg gcttcctgca catgaatacc aaatcagatg aaggctggaa tatgacggca 240 tttgtcttca ccgtgctaat catcgccatc ctggtgtgg gctcattg gattatggg 300 aacctcaact acaacatgat gatgcactaa 330 <210> SEQ ID NO 26 330 <211> LENGTH: 109 330 <212> TYPE: PFT 300 <20> SEQUENCE: 26 10 Met Ser His Ser Asm Val Ser Gly Gly Ala Ser His Gly Ser Val Lys 15 Thr Tyr Met Thr Gly Phe Ile Leu Ser Ile Ile Leu Thr Val Ile Pro 20 20 25 30 Fhe Leu His Met Asm Thr Lys Ser Asp Glu Gly Trp Asm Met Thr Ala 80 Fhe Val Phe Thr Val Leu Ile Ile Ala Ile Leu Val Val Gly Ser Ile 95 Phe Val Phe Thr yash Leu Asm Tyr Asm Met Met His 10 10 10 10 <210> SEQ ID NO 27 30 <210> SEQ UENCE: 27 30 <210> SEQ UENCE: 27 30 <210> SEQUENCE: 27 30
ggetttatee tytegateat tetgaeggtg atteggtet gaeagggget 120 geettetee ggaaattet gggaacaate etggeaatgg eagtggtae gaeagggget 120 catetggtgt getteetgea eatgaataee aaateagatg aaggetggaa tatgaeggea 240 tttgtettea eegtgetaat eategeeate etggttgtgg geteeattg gattatgtgg 300 aaceteaaet acaacatgat gatgeaetaa 330 <210> SEQ ID NO 26 <211> LENOTH: 109 <212> TYPE: PRT <213> ORGANISM: Becherichia coli <400> SEQUENCE: 26 Met Ser His Ser Asn Val Ser Gly Gly Ala Ser His Gly Ser Val Lys 1 5 10 15 Thr Tyr Met Thr Gly Phe Ile Leu Ser Ile Ile Leu Thr Val Ile Pro 20 25 Phe Trp Met Val Met Thr Gly Ala Ala Ser Pro Ala Val Ile Leu Gly 40 45 Thr Ile Leu Ala Met Ala Val Val Gln Ile Leu Val His Leu Val Cys 50 Phe Leu His Met Asn Thr Lys Ser Asp Glu Cly Trp Asn Met Thr Ala 65 Phe Val Phe Thr Val Leu Ile Ile Ala Ile Leu Val Val Gly Ser Ile 90 Phe Val Phe Thr Val Leu Ile Ile Ala Ile Leu Val Val Gly Ser Ile 91 Trp Ile Met Trp Asn Leu Asn Tyr Asn Met Met His 100 105
<pre>gcctctccgg ccgtaattct gggaacaatc ctggcaatgg cagtggtaca gattctggtg 180 catctggtgt gcttcctgca catgaatacc aaatcagatg aaggctggaa tatgacggca 240 tttgtcttca ccgtgctaat catcgccatc ctggttgtgg gctccatttg gattatgtgg 300 aacctcaact acaacatgat gatgcactaa 330 <<110> SEQ ID NO 26 <111> LENOTH: 109 <122> TYPE: PRT <211> ORGANISM: Escherichia coli <400> SEQUENCE: 26 Met Ser His Ser Aan Val Ser Gly Gly Ala Ser His Gly Ser Val Lys 1 15 Thr Tyr Met Thr Gly Phe Ile Leu Ser Ile Ile Leu Thr Val Ile Pro 20 Phe Trp Met Val Met Thr Gly Ala Ala Ser Pro Ala Val Ile Leu Gly 35 Thr Ile Leu Ala Met Ala Val Val Gln Ile Leu Val His Leu Val Cys 50 Phe Leu His Met Asn Thr Lys Ser Asp Glu Gly Trp Asn Met Thr Ala 65 Trp Ile Met Trp Asn Leu Asn Tyr Asn Met Met His 100</pre>
<pre>catctggtgt gcttcctgca catgaatacc aaatcagatg aaggctggaa tatgacggca 240 tttgtcttca ccgtgctaat catcgccatc ctggttgtgg gctccatttg gattatgtgg 300 aacctcaact acaacatgat gatgcactaa 330 <<210> SEQ ID NO 26 <211> LENGTH: 109 <212> TYPE: PRT <213> ORGANISM: Escherichia coli <400> SEQUENCE: 26 Met Ser His Ser Asn Val Ser Gly Gly Ala Ser His Gly Ser Val Lys 1 5 10 Thr Tyr Met Thr Gly Phe Ile Leu Ser Ile Ile Leu Thr Val Ile Pro 20 75 Phe Trp Met Val Met Thr Gly Ala Ala Ser Pro Ala Val Ile Leu Gly 35 40 Thr Ile Leu Ala Met Ala Val Val Gln Ile Leu Val His Leu Val Cys 50 75 Phe Leu His Met Asn Thr Lys Ser Asp Glu Gly Trp Asn Met Thr Ala 65 70 75 80 Phe Val Phe Trp Asn Leu Asn Tyr Asn Met Met His 100 105 </pre>
tttgtcttca ccgtgctaat catcgccatc ctggttgtgg gctccatttg gattatgtgg 300 aacctcaact acaacatgat gatgcactaa 330 <210> SEQ ID NO 26 330 <211> LENGTH: 109 330 <212> TYPE: PRT 300 <213> ORGANISM: Escherichia coli 400> SEQUENCE: 26 Met Ser His Ser Asm Val Ser Gly Gly Ala Ser His Gly Ser Val Lys 1 1 5 10 15 Thr Tyr Met Thr Gly Phe Ile Leu Ser Ile Ile Leu Thr Val Ile Pro 20 20 35 40 45 Thr Ile Leu Ala Met Ala Val Val Gln Ile Leu Val His Leu Val Cys 50 Phe Leu His Met Asm Thr Lys Ser Asp Glu Gly Trp Asm Met Thr Ala 60 Phe Val Phe Thr Val Leu Ile Ile Ala Ile Leu Val Val Gly Ser Ile 95 Trp Ile Met Trp Asm Leu Asm Tyr Asm Met Met Met His 95 C210> SEQ ID NO 27 21 C211> SEQ ID NO 27 21 C213> ORGANISM: Escherichia coli 400 C400> SEQUENCE: 27 30
<pre>aacctcaact acaacatgat gatgcactaa 330 </pre> <pre>330 </pre> <pre>3210> SEQ ID NO 26 </pre> <pre>2211> LENGTH: 109 </pre> <pre>2212> TYPE: PRT </pre> <pre>2213> ORGANISM: Escherichia coli </pre> <pre>440> SEQUENCE: 26 Met Ser His Ser Asn Val Ser Gly Gly Ala Ser His Gly Ser Val Lys 1</pre>
<pre><pre><code code="" code<="" td=""></code></pre></pre>
<pre><400> SEQUENCE: 26 Met Ser His Ser Asn Val Ser Gly Gly Ala Ser His Gly Ser Val Lys 1</pre>
Met Ser His Ser Asn Val Ser Gly Gly Ala Ser His Gly Val Lys Thr Tyr Met Thr Gly Me Ile Lue Ser Ile Ile Lue Thr Ser No Thr Val Ile Pro Phe Tyr Met Thr Gly Me Ile Lue Ser Pro Ala Val Thr Val Ile Pro So Jus Ile Lue Thr Val Ile Lue Gly Ala Ala Val Val Lue Gly Ala Val Val Mut Mut </td
1 5 10 15 Thr Tyr Met Thr Gly Phe Ile Leu Ser Ile Ile Leu Thr Val Ile Pro 30 Phe Trp Met Val Met Thr Gly Ala Ala Ser Pro Ala Val Ile Leu Gly 35 Thr Ile Leu Ala Met Ala Val Val Gln Ile Leu Val His Leu Val Cys 60 Phe Leu His Met Asn Thr Lys Ser Asp Glu Gly Trp Asn Met Thr Ala 80 Phe Val Phe Thr Val Leu Ile Ile Ala Ile Leu Val Val Gly Ser Ile 90 Trp Ile Met Trp Asn Leu Asn Tyr Asn Met Met Met His 95 <210> SEQ ID NO 27 105 <213> ORGANISM: Escherichia coli 400 <400> SEQUENCE: 27 27
20 25 30 Phe Trp Met Val Met Thr Gly Ala Ala Ser Pro Ala Val Ile Leu Gly 40 45 Thr Ile Leu Ala Met Ala Val Val Gln Ile Leu Val His Leu Val Cys 50 60 Phe Leu His Met Asn Thr Lys Ser Asp Glu Gly Trp Asn Met Thr Ala 80 Phe Val Phe Thr Val Leu Ile Ile Ala Ile Leu Val Val Gly Ser Ile 90 Store 90 Seq ID NO 27 <212> TYPE: DNA <213> ORGANISM: Escherichia coli <400> SEQUENCE: 27
35 40 45 Thr Ile Leu Ala Met Ala Val Val Gln Ile Leu Val His Leu Val Cys 60 Phe Leu His Met Asn Thr Lys Ser Asp Glu Gly Trp Asn Met Thr Ala 80 Phe Val Phe Thr Val Leu Ile Ile Ala Ile Leu Val Val Gly Ser Ile 90 90 90 95 Trp Ile Met Trp Asn Leu Asn Tyr Asn Met Met His 105 <210> SEQ ID NO 27 105 <211> LENGTH: 891 2212> TYPE: DNA <213> ORGANISM: Escherichia coli 400> SEQUENCE: 27 atgatgttta agcaatacct gcaagtaacg aaaccaggca tcatctttgg caacctgatc 60
50 55 60 Phe Leu His Met Asn Thr Lys Ser Asp Glu Gly Trp Asn Met Thr Ala 65 Leu His Met Asn Thr Lys Ser Asp Glu Gly Trp Asn Met Thr Ala 80 Phe Val Phe Thr Val Leu Ile Ala Ile Leu Val Val Gly Ser Ile Phe Val Phe Thr Val Leu Ile Ala Ile Leu Val Val Gly Ser Ile 100 Phe Asn Leu Asn Typ Asn Met Met His <210> SEQUINC 27 SEQUENCE: 27 Sequence: 213 ORGANISM: Escherichia coli 60 400> SEQUENCE: 27 Sequence: 214 Sequence: 215 Sequence: 215 Sequence: <td< td=""></td<>
65 70 75 80 Phe Val Phe Thr Val Leu Ile Ile Ala Ile Leu Val Val Gly Ser Ile 85 90 95 Trp Ile Met Trp Asn Leu Asn Tyr Asn Met Met Mis 100 105 <210> SEQ ID NO 27 <211> LENGTH: 891 <212> TYPE: DNA <213> ORGANISM: Escherichia coli <400> SEQUENCE: 27 atgatgttta agcaatacct gcaagtaacg aaaccaggca tcatctttgg caacctgatc 60
85 90 95 Trp Ile Met Trp Asn Leu Asn Tyr Asn Met Met Met His 100 105 <210> SEQ ID NO 27 <211> LENGTH: 891 <212> TYPE: DNA <213> ORGANISM: Escherichia coli <400> SEQUENCE: 27 atgatgttta agcaatacct gcaagtaacg aaaccaggca tcatctttgg caacctgatc 60
<pre>100 105 <210> SEQ ID NO 27 <211> LENGTH: 891 <212> TYPE: DNA <213> ORGANISM: Escherichia coli <400> SEQUENCE: 27 atgatgttta agcaatacct gcaagtaacg aaaccaggca tcatctttgg caacctgatc 60</pre>
<211> LENGTH: 891 <212> TYPE: DNA <213> ORGANISM: Escherichia coli <400> SEQUENCE: 27 atgatgttta agcaatacct gcaagtaacg aaaccaggca tcatctttgg caacctgatc 60
atgatgttta agcaatacct gcaagtaacg aaaccaggca tcatctttgg caacctgatc 60
teggtgattg ggggatteet getggeetea aagggeagea ttgattatee eetgtttate 120

85

-continued

										-	con	tin	led					
tacacgct	gg t	tggg	gtgt	c ac	ctggt	tgtg	a acé	gtcgo	ggtt	gtgt	gtt	aa d	caact	tacatc	180			
gacaggga	ita t	cgac	cagaa	ia ga	atgga	aaago	g acq	gaaga	aatc	gggt	gctq	ggt g	gaaag	ggcctg	240			
atctctcc	tg c	tgto	ctcgc	t ge	gtgta	acgco	c acç	gttgo	ctgg	gtat	tget	gg d	ttta	atgctg	300			
ctgtggtt	tg g	ledee	gaato	c go	ctggo	cctgo	tgq	gctgg	3 3 33	tgat	gggo	ett (gtgg	gtttat	360			
gtcggcgt	tt a	tago	ctgt	a ca	atgaa	aacgo	c cad	ctcto	gtct	acgo	gcaco	gtt g	gatto	ggttcg	420			
ctctccgg	lcd c	tgcc	geege	c go	gtgat	ccggo	tao	tgtg	gegg	taad	ccggt	ga g	gttco	gatagc	480			
ggcgcagc	ga t	cctg	getge	jc ta	atctt	ccago	c ctç	gtggo	caga	tgco	ctcad	etc o	state	gccatc	540			
gccatttt	cc g	lctt	aagg	ja ti	tacca	aggeg	g gca	aaaca	attc	cggt	catto	gee a	agtgg	gtaaaa	600			
ggcattto	gg t	ggcg	jaaga	a to	cacat	ccace	g cto	gtata	atca	tcgo	cctt	gc (gttg	gecacg	660			
ctgatgct	ct c	tctt	ggcg	gg tt	tacgo	ctggg	g tat	caaat	atc	tggt	ggt	cgc (gagg	gcggtt	720			
agcgtctc	ggt g	gtta	aggt <i>a</i>	at go	getet	cgcgo	c ggt	tata	aaag	ttgo	ctgat	ga (cagaa	atctgg	780			
gcgcgcaa	ıgc t	gtto	ggct	t ct	tctat	ccato	e geo	catca	actg	ccct	cctcç	ggt g	gatga	atgtcc	840			
gttgattt	ta t	ggta	accgo	ga ct	tegea	ataco	g ctç	gctgg	gctg	ctgt	gtgę	gta a	a		891			
<210> SE <211> LE <212> TY <213> OF <400> SE	ENGTH PE: RGANI	I: 29 PRT SM:	96 Esch	nerio	chia	coli	Ĺ											
Met Met				Tvr	Leu	Gln	Val	Thr	Lvs	Pro	Glv	Ile	Ile	Phe				
1		-1	5	- 1 -				10	-1		1		15					
Gly Asn		Ile 20	Ser	Val	Ile	Gly	Gly 25	Phe	Leu	Leu	Ala	Ser 30	Lys	Gly				
Ser Ile	Asp 35	Tyr	Pro	Leu	Phe	Ile 40	Tyr	Thr	Leu	Val	Gly 45	Val	Ser	Leu				
Val Val 50	Ala	Ser	Gly	Суз	Val 55	Phe	Asn	Asn	Tyr	Ile 60	Asp	Arg	Asp	Ile				
Asp Arg 65	Lys	Met	Glu	Arg 70	Thr	Lys	Asn	Arg	Val 75	Leu	Val	Lys	Gly	Leu 80				
Ile Ser	Pro	Ala	Val 85	Ser	Leu	Val	Tyr	Ala 90	Thr	Leu	Leu	Gly	Ile 95	Ala				
Gly Phe		Leu 100	Leu	Trp	Phe	Gly	Ala 105	Asn	Pro	Leu	Ala	Cys 110	Trp	Leu				
Gly Val	Met 115	Gly	Phe	Val	Val	Tyr 120	Val	Gly	Val	Tyr	Ser 125	Leu	Tyr	Met				
Lys Arg 130	His	Ser	Val	Tyr	Gly 135	Thr	Leu	Ile	Gly	Ser 140	Leu	Ser	Gly	Ala				
Ala Pro 145	Pro	Val	Ile	Gly 150	Tyr	Cya	Ala	Val	Thr 155	Gly	Glu	Phe	Asp	Ser 160				
Gly Ala	Ala	Ile	Leu 165	Leu	Ala	Ile	Phe	Ser 170	Leu	Trp	Gln	Met	Pro 175	His				
Ser Tyr		Ile 180	Ala	Ile	Phe	Arg	Phe 185	Lys	Asp	Tyr	Gln	Ala 190	Ala	Asn				
Ile Pro	Val 195	Leu	Pro	Val	Val	Lys 200	Gly	Ile	Ser	Val	Ala 205	ГЛа	Asn	His				
Ile Thr 210	Leu	Tyr	Ile	Ile	Ala 215	Phe	Ala	Val	Ala	Thr 220	Leu	Met	Leu	Ser				
Leu Gly 225	Gly	Tyr	Ala	Gly 230		Lys	Tyr	Leu	Val 235		Ala	Ala	Ala	Val 240				
				200					ردم					210				

87

Ser Val Trp Trp Leu Gly Met Ala Leu Arg Gly Tyr Lys Val Ala Asp 245 250 255	
Asp Arg Ile Trp Ala Arg Lys Leu Phe Gly Phe Ser Ile Ile Ala Ile 260 265 270	
Thr Ala Leu Ser Val Met Met Ser Val Asp Phe Met Val Pro Asp Ser	
275 280 285	
His Thr Leu Leu Ala Ala Val Trp 290 295	
<210> SEQ ID NO 29 <211> LENGTH: 1779 <212> TYPE: DNA <213> ORGANISM: Escherichia coli	
<400> SEQUENCE: 29	
gtggggtgtg tgatgaaatt gccagtcaga gaatttgatg cagttgtgat tggtgctggc	60
ggcgcaggta tgcgcgggg gctgcaaatt tcccagagtg gccagacctg tgcgctgctc	120
totaaagtot toocgacoog ttoccataco gtttotgogo aaggtggtat tacogttgog	180
ctgggtaata cccatgaaga taactgggaa tggcatatgt acgacaccgt aaaagggtcg	240
gactatatcg gtgaccagga cgcgattgaa tatatgtgta aaaccgggcc ggaagcgatt	300
ctggaactgg aacatatggg cctgccgttc tcgcgtcttg atgatggtcg tatctatcaa	360
cgtccgtttg gcggtcagtc gaaaaacttc ggcggcgagc aggcggcacg tactgcggcg	420
gctgccgacc gtaccggtca cgcactgttg cacacgcttt atcagcagaa cctgaaaaac	480
cacaccacca ttttctccga gtggtatgcg ctggatctgg tgaaaaacca ggatggcgca	540
gtggtcggtt gtaccgcact gtgcatcgaa actggtgaag tggtttactt taaagctcgc	600
gcgacagtge tggegaetgg eggggeaggg egtatttate agteeaceae caaegeeeae	660
attaacactg gcgacggtgt cggcatggct atccgtgcag gcgtaccggt acaggatatg	720
gaaatgtggc agttccaccc gaccggtatt gccggtgcgg gcgtactggt caccgaaggt	780
tgccgtggtg aaggeggtta tetgetgaae aaacatggeg aaegetttat ggaaegttat	840
gcgccgaacg ccaaagacct ggcgggccgt gacgtggtgg cgcgttccat catgatcgaa	900
atccgtgaag gccgcggctg tgatggtccg tggggggccac acgcaaaact gaaacttgac	960
catctgggga aagaagttet tgaateeegt etgeegggta teettgaaet eteeegeaee	1020
ttegeteacg ttgateeggt gaaagageeg atteeggtta teeeaacetg teactacatg	1080
atgggcggta ttccgaccaa agtgaccggt caggcgctga ctgtgaatga gaaaggcgaa	1140
gatgtggttg ttccggggct atttgccgtt ggtgaaatcg cttgtgtatc ggtacatggc	1200
gctaaccgtc tgggcggcaa ctcgctgctg gacctggtcg tatttggtcg tgcggcaggt	1260
ctgcatctgc aagagtctat cgccgagcag ggcgcactgc gcgatgccag cgagtctgat	1320
gtagaagcgt ctctggatcg cctgaaccgc tggaacaata accgtaacgg tgaagatccg	1380
gtggcgatcc gtaaagcact gcaagaatgt atgcagcata acttctcggt cttccgtgaa	1440
ggtgatgcga tggcgaaagg gcttgagcag ttgaaagtta tccgcgagcg tttgaaaaat	1500
gcccgtctgg atgacacttc aagtgagttc aatacccagc gcgttgagtg cctggaactg	1560
gataacctga tggaaacggc gtatgcaacg gctgtttctg ccaacttccg taccgaaagc	1620
cgtggcgcgc atagccgctt cgacttcccg gatcgcgatg atgaaaactg gctgtgccac	1680
tccctgtatc tgccagagtc ggaatccatg acgcgccgaa gcgtcaacat ggaaccgaaa	1740
ctgcgcccgg cattcccgcc gaagattcgt acttactaa	1779

<210> SEQ ID NO 30 <211> LENGTH: 592 <212> TYPE: PRT <213> ORGANISM: Escherichia coli <400> SEQUENCE: 30 Met Gly Cys Val Met Lys Leu Pro Val Arg Glu Phe Asp Ala Val Val Ile Gly Ala Gly Gly Ala Gly Met Arg Ala Ala Leu Gln Ile Ser Gln Ser Gly Gln Thr Cys Ala Leu Leu Ser Lys Val Phe Pro Thr Arg Ser His Thr Val Ser Ala Gln Gly Gly Ile Thr Val Ala Leu Gly Asn Thr His Glu Asp Asn Trp Glu Trp His Met Tyr Asp Thr Val Lys Gly Ser 65 70 75 80 Asp Tyr Ile Gly Asp Gln Asp Ala Ile Glu Tyr Met Cys Lys Thr Gly 85 90 95 Pro Glu Ala Ile Leu Glu Leu Glu His Met Gly Leu Pro Phe Ser Arg Leu Asp Asp Gly Arg Ile Tyr Gln Arg Pro Phe Gly Gly Gln Ser Lys Asn Phe Gly Gly Glu Gln Ala Ala Arg Thr Ala Ala Ala Ala Asp Arg Thr Gly His Ala Leu Leu His Thr Leu Tyr Gln Gln Asn Leu Lys Asn His Thr Thr Ile Phe Ser Glu Trp Tyr Ala Leu Asp Leu Val Lys Asn Gln Asp Gly Ala Val Val Gly Cys Thr Ala Leu Cys Ile Glu Thr Gly Glu Val Val Tyr Phe Lys Ala Arg Ala Thr Val Leu Ala Thr Gly Gly Ala Gly Arg Ile Tyr Gln Ser Thr Thr Asn Ala His Ile Asn Thr Gly Asp Gly Val Gly Met Ala Ile Arg Ala Gly Val Pro Val Gln Asp Met Glu Met Trp Gln Phe His Pro Thr Gly Ile Ala Gly Ala Gly Val Leu Val Thr Glu Gly Cys Arg Gly Glu Gly Gly Tyr Leu Leu Asn Lys His Gly Glu Arg Phe Met Glu Arg Tyr Ala Pro Asn Ala Lys Asp Leu Ala Gly Arg Asp Val Val Ala Arg Ser Ile Met Ile Glu Ile Arg Glu Gly Arg Gly Cys Asp Gly Pro Trp Gly Pro His Ala Lys Leu Lys Leu Asp His Leu Gly Lys Glu Val Leu Glu Ser Arg Leu Pro Gly Ile Leu Glu Leu Ser Arg Thr Phe Ala His Val Asp Pro Val Lys Glu Pro Ile Pro Val Ile Pro Thr Cys His Tyr Met Met Gly Gly Ile Pro Thr Lys Val Thr Gly Gln Ala Leu Thr Val Asn Glu Lys Gly Glu Asp Val Val Val

- C	ontinued
370 375 380	
Pro Gly Leu Phe Ala Val Gly Glu Ile Ala Cys Val S 385 390 395	er Val His Gly 400
Ala Asn Arg Leu Gly Gly Asn Ser Leu Leu Asp Leu V 405 410	al Val Phe Gly 415
Arg Ala Ala Gly Leu His Leu Gln Glu Ser Ile Ala G 420 425	lu Gln Gly Ala 430
Leu Arg Asp Ala Ser Glu Ser Asp Val Glu Ala Ser I 435 440 4	eu Asp Arg Leu 45
Asn Arg Trp Asn Asn Asn Arg Asn Gly Glu Asp Pro V 450 455 460	al Ala Ile Arg
Lys Ala Leu Gln Glu Cys Met Gln His Asn Phe Ser V 465 470 475	al Phe Arg Glu 480
Gly Asp Ala Met Ala Lys Gly Leu Glu Gln Leu Lys V 485 490	al Ile Arg Glu 495
Arg Leu Lys Asn Ala Arg Leu Asp Asp Thr Ser Ser G 500 505	lu Phe Asn Thr 510
Gln Arg Val Glu Cys Leu Glu Leu Asp Asn Leu Met G 515 520 5	lu Thr Ala Tyr 25
Ala Thr Ala Val Ser Ala Asn Phe Arg Thr Glu Ser A 530 535 540	rg Gly Ala His
Ser Arg Phe Asp Phe Pro Asp Arg Asp Asp Glu Asn T 545 550 555	rp Leu Cys His 560
Ser Leu Tyr Leu Pro Glu Ser Glu Ser Met Thr Arg A 565 570	rg Ser Val Asn 575
Met Glu Pro Lys Leu Arg Pro Ala Phe Pro Pro Lys I 580 585	le Arg Thr Tyr 590
<210> SEQ ID NO 31 <211> LENGTH: 717 <212> TYPE: DNA <213> ORGANISM: Escherichia coli	
<400> SEQUENCE: 31	
atgagactog agttttoaat ttatogotat aacooggatg ttgat	gatgc tccgcgtatg 60
caggattaca ccctggaagc ggaagaaggt cgcgacatga tgctg	ctgga tgcgcttatt 120
cagetgaaag agaaagatee cageetgteg tteegeeget eetge	cgtga aggtgtgtgc 180
ggttccgacg gtctgaacat gaacggtaag aatggtctgg cctgt	attac cccgatttcg 240
gcactcaacc agccgggcaa gaagattgtg attcgcccgc tgcca	ggttt accggtgatc 300
cgcgatttgg tggtagacat gggacaattc tatgcgcaat atgag	aaaat taagcettae 360
ctgttgaata atggacaaaa tccgccagct cgcgagcatt tacag	atgcc agagcagcgc 420
gaaaaactcg acgggttgta tgaatgtatt ctctgcgcat gttgt	tcaac ctcttgtccg 480
tetttetggt ggaateeega taagtttate ggeeeggeag gette	ttagc ggcatatcgt 540
tteetgateg atageegtga taeegagaet gaeageegee tegae	ggttt gagcgatgca 600
ttcagtgtat tccgctgtca cagcatcatg aactgcgtca gtgta	tgtcc gaaggggctg 660
aacccgacgc gcgccatcgg ccatatcaag tcgatgttgt tgcaa	ogtaa tgogtaa 717
-2105 SEC ID NO 22	

<210> SEQ ID NO 32 <211> LENGTH: 238 <212> TYPE: PRT <213> ORGANISM: Escherichia coli <400> SEQUENCE: 32

CHOOP SEQUENCE: 52
Met Arg Leu Glu Phe Ser Ile Tyr Arg Tyr Asn Pro Asp Val Asp Asp 1 5 10 15
Ala Pro Arg Met Gln Asp Tyr Thr Leu Glu Ala Glu Glu Gly Arg Asp 20 25 30
Met Met Leu Leu Asp Ala Leu Ile Gln Leu Lys Glu Lys Asp Pro Ser 35 40 45
Leu Ser Phe Arg Arg Ser Cys Arg Glu Gly Val Cys Gly Ser Asp Gly 50 55 60
Leu Asn Met Asn Gly Lys Asn Gly Leu Ala Cys Ile Thr Pro Ile Ser 65 70 75 80
Ala Leu Asn Gln Pro Gly Lys Lys Ile Val Ile Arg Pro Leu Pro Gly 85 90 95
Leu Pro Val Ile Arg Asp Leu Val Val Asp Met Gly Gln Phe Tyr Ala 100 105 110
Gln Tyr Glu Lys Ile Lys Pro Tyr Leu Leu Asn Asn Gly Gln Asn Pro 115 120 125
Pro Ala Arg Glu His Leu Gln Met Pro Glu Gln Arg Glu Lys Leu Asp 130 135 140
Gly Leu Tyr Glu Cys Ile Leu Cys Ala Cys Cys Ser Thr Ser Cys Pro 145 150 155 160
Ser Phe Trp Trp Asn Pro Asp Lys Phe Ile Gly Pro Ala Gly Leu Leu 165 170 175
Ala Ala Tyr Arg Phe Leu Ile Asp Ser Arg Asp Thr Glu Thr Asp Ser 180 185 190
Arg Leu Asp Gly Leu Ser Asp Ala Phe Ser Val Phe Arg Cys His Ser 195 200 205
Ile Met Asn Cys Val Ser Val Cys Pro Lys Gly Leu Asn Pro Thr Arg 210 215 220
Ala Ile Gly His Ile Lys Ser Met Leu Leu Gln Arg Asn Ala 225 230 235
<210> SEQ ID NO 33 <211> LENGTH: 405 <212> TYPE: DNA <213> ORGANISM: Escherichia coli <400> SEQUENCE: 33
atgtgggcgt tattcatgat aagaaatgtg aaaaaacaaa gacctgttaa tctggaccta
cagaccatec ggtteeeegt caeggegata gegteeatte teeategegt tteeggtgtg
atcacetttg ttgeagtggg cateetgetg tggettetgg gtaceageet etetteeeet
gaaggtttcg agcaagcttc cgcgattatg ggcagcttct tcgtcaaatt tatcatgtgg
ggcateetta eegetetgge atateaegte gtegtaggta ttegeeaeat gatgatggat
tttggctatc tggaagaaac attcgaagcg ggtaaacgct ccgccaaaat ctcctttgtt
attactgtcg tgctttcact tctcgcagga gtcctcgtat ggtaa
<210> SEQ ID NO 34 <211> LENGTH: 134 <212> TYPE: PRT <213> ORGANISM: Escherichia coli
<400> SEQUENCE: 34
Met Trp Ala Leu Phe Met Ile Arg Asn Val Lys Lys Gln Arg Pro Val 1 5 10 15

-continued

Asn Leu Asp Leu Gln Thr Ile Arg Phe Pro Val Thr Ala Ile Ala Ser Ile Leu His Arg Val Ser Gly Val Ile Thr Phe Val Ala Val Gly Ile Leu Leu Trp Leu Leu Gly Thr Ser Leu Ser Ser Pro Glu Gly Phe Glu Gln Ala Ser Ala Ile Met Gly Ser Phe Phe Val Lys Phe Ile Met Trp Gly Ile Leu Thr Ala Leu Ala Tyr His Val Val Val Gly Ile Arg His Met Met Met Asp Phe Gly Tyr Leu Glu Glu Thr Phe Glu Ala Gly Lys Arg Ser Ala Lys Ile Ser Phe Val Ile Thr Val Val Leu Ser Leu Leu Ala Gly Val Leu Val Trp <210> SEQ ID NO 35 <211> LENGTH: 348 <212> TYPE: DNA <213> ORGANISM: Escherichia coli <400> SEOUENCE: 35 atggtaagca acgcctccgc attaggacgc aatggcgtac atgatttcat cctcgttcgt gctaccgcta tcgtcctgac gctctacatc atttatatgg tcggtttttt cgctaccagt ggcgagctga catatgaagt ctggattggt ttcttcgcct ctgcgttcac caaagtgttc accetgetgg egetgtttte tatettgate catgeetgga teggeatgtg geaggtgttg accgactacg ttaaaccgct ggccttgcgc ctgatgctgc aactggtgat tgtcgttgca ctggtggttt acgtgattta tggattcgtt gtggtgtggg gtgtgtga <210> SEQ ID NO 36 <211> LENGTH: 115 <212> TYPE: PRT <213> ORGANISM: Escherichia coli <400> SEQUENCE: 36 Met Val Ser Asn Ala Ser Ala Leu Gly Arg Asn Gly Val His Asp Phe Ile Leu Val Arg Ala Thr Ala Ile Val Leu Thr Leu Tyr Ile Ile Tyr Met Val Gly Phe Phe Ala Thr Ser Gly Glu Leu Thr Tyr Glu Val Trp Ile Gly Phe Phe Ala Ser Ala Phe Thr Lys Val Phe Thr Leu Leu Ala Leu Phe Ser Ile Leu Ile His Ala Trp Ile Gly Met Trp Gln Val Leu Thr Asp Tyr Val Lys Pro Leu Ala Leu Arg Leu Met Leu Gln Leu Val Ile Val Val Ala Leu Val Val Tyr Val Ile Tyr Gly Phe Val Val Val Trp Gly Val

97

<211> LENGTH: 1407

-continued

<212> TYPE: DNA <213> ORGANISM: Escherichia coli <400> SEQUENCE: 37 atgtcaaagc aacagatcgg cgtagtcggt atggcagtga tgggggggcaa ccttgcgctc 60 aacatcgaaa gtcgtggtta taccgtctct attttcaacc gttcccgtga aaagacggaa 120 gaagtgattg ccgaaaatcc aggcaaaaaa ctggttcctt actatacggt gaaagagttt 180 gttgaatete tggaaaegee tegtegeate etgttaatgg tgaaageagg tgeaggeaeg 240 gatgctgcta ttgattccct caagccatac ctcgataaag gtgacatcat cattgatggt 300 ggtaatacet tettecagga caccattegt egtaacegtg agetttetge egaaggettt 360 aacttcattg gtaccggtgt ctccggtggt gaagaaggcg cgctgaaagg tccttccatt 420 atgeetggtg ggeagaaaga ageetatgaa ettgttgege egateetgae caaaategee 480 540 gcaqtqqctq aaqacqqtqa qccatqcqtt acctatattq qtqccqatqq cqcaqqtcac tatqtqaaqa tqqttcacaa cqqtattqaa tacqqaqata tqcaactqat tqctqaaqcc 600 tattetetge ttaaaggtgg cetgaacete aceaacgaag aactggegea gacetttace 660 720 gaqtqgaata acqqtgaact gaqcaqctac ctgatcqaca tcaccaaaga tatcttcacc aaaaaagatg aagatggtaa ctacctggtt gatgtgatcc tggatgaagc agcaaacaaa 780 ggcacgggca aatggaccag ccagagtgcg ctggatctcg gcgaaccgct gtcgctgatt 840 accgagtetg tgtttgcacg ttatatetet tetetgaaag atcagegtgt tgeegeatet 900 960 aaagttetet etggeeegea ageacageea geaggegaea aggetgagtt eategaaaaa gttcgccgtg cgctgtatct tggcaaaatc gtttcttacg ctcagggctt ctctcagctg 1020 cgtgctgcgt ctgaagagta caactgggat ctgaactacg gtgaaatcgc gaagattttc 1080 cgtgctggct gcatcatccg tgcgcagttc ctgcagaaaa tcaccgatgc ttatgccgaa 1140 aateegeaga tegetaacet getgetgget eegtaettea ageaaattge egatgaetae 1200 cagcaggete tgegtgatgt egttgettat geagtacaga aeggtateee ggtteegaee 1260 ttcgccgctg cggttgccta ttacgatagc taccgtgccg ctgttctgcc tgcgaacctg 1320 atccaggcac agcgtgacta tttcggtgca catacttata agcgcattga taaagaaggt 1380 gtgttccata ctgaatggct ggattaa 1407 <210> SEQ ID NO 38 <211> LENGTH: 468 <212> TYPE: PRT <213> ORGANISM: Escherichia coli <400> SEQUENCE: 38 Met Ser Lys Gln Gln Ile Gly Val Val Gly Met Ala Val Met Gly Arg 10 1 Asn Leu Ala Leu Asn Ile Glu Ser Arg Gly Tyr Thr Val Ser Ile Phe 20 25 30 Asn Arg Ser Arg Glu Lys Thr Glu Glu Val Ile Ala Glu Asn Pro Gly 35 40 45 Lys Lys Leu Val Pro Tyr Tyr Thr Val Lys Glu Phe Val Glu Ser Leu 50 55 Glu Thr Pro Arg Arg Ile Leu Leu Met Val Lys Ala Gly Ala Gly Thr 65 70 75 80 Asp Ala Ala Ile Asp Ser Leu Lys Pro Tyr Leu Asp Lys Gly Asp Ile

90

95

-continued

Ile Ile Asp Gly Gly Asn Thr Phe Phe Gln Asp Thr Ile Arg Arg Asn Arg Glu Leu Ser Ala Glu Gly Phe Asn Phe Ile Gly Thr Gly Val Ser Gly Gly Glu Glu Gly Ala Leu Lys Gly Pro Ser Ile Met Pro Gly Gly Gln Lys Glu Ala Tyr Glu Leu Val Ala Pro Ile Leu Thr Lys Ile Ala Ala Val Ala Glu Asp Gly Glu Pro Cys Val Thr Tyr Ile Gly Ala Asp Gly Ala Gly His Tyr Val Lys Met Val His Asn Gly Ile Glu Tyr Gly Asp Met Gln Leu Ile Ala Glu Ala Tyr Ser Leu Leu Lys Gly Gly Leu Asn Leu Thr Asn Glu Glu Leu Ala Gln Thr Phe Thr Glu Trp Asn Asn Gly Glu Leu Ser Ser Tyr Leu Ile Asp Ile Thr Lys Asp Ile Phe Thr Lys Lys Asp Glu Asp Gly Asn Tyr Leu Val Asp Val Ile Leu Asp Glu Ala Ala Asn Lys Gly Thr Gly Lys Trp Thr Ser Gln Ser Ala Leu Asp Leu Gly Glu Pro Leu Ser Leu Ile Thr Glu Ser Val Phe Ala Arg Tyr Ile Ser Ser Leu Lys Asp Gln Arg Val Ala Ala Ser Lys Val Leu Ser Gly Pro Gln Ala Gln Pro Ala Gly Asp Lys Ala Glu Phe Ile Glu Lys Val Arg Arg Ala Leu Tyr Leu Gly Lys Ile Val Ser Tyr Ala Gln Gly Phe Ser Gln Leu Arg Ala Ala Ser Glu Glu Tyr Asn Trp Asp Leu Asn Tyr Gly Glu Ile Ala Lys Ile Phe Arg Ala Gly Cys Ile Ile Arg Ala Gln Phe Leu Gln Lys Ile Thr Asp Ala Tyr Ala Glu Asn Pro Gln Ile Ala Asn Leu Leu Ala Pro Tyr Phe Lys Gln Ile Ala Asp Asp Tyr Gln Gln Ala Leu Arg Asp Val Val Ala Tyr Ala Val Gln Asn Gly Ile Pro Val Pro Thr Phe Ala Ala Ala Val Ala Tyr Tyr Asp Ser Tyr Arg Ala Ala Val Leu Pro Ala Asn Leu Ile Gln Ala Gln Arg Asp Tyr Phe Gly Ala His Thr Tyr Lys Arg Ile Asp Lys Glu Gly Val Phe His Thr Glu Trp Leu Asp <210> SEQ ID NO 39

<211> LENGTH: 1344
<211> TYPE: DNA
<213> ORGANISM: Escherichia coli

101

-continued

<400> SEQUENCE: 39												
atggatcaga catattetet ggagteatte etcaaceatg tecaaaageg egaeeegaat	60											
caaaccgagt tegegeaage egttegtgaa gtaatgaeea eactetggee ttttettgaa	120											
caaaatccaa aatatcgcca gatgtcatta ctggagcgtc tggttgaacc ggagcgcgtg	180											
atccagtttc gcgtggtatg ggttgatgat cgcaaccaga tacaggtcaa ccgtgcatgg	240											
cgtgtgcagt tcagetetge categgeeeg tacaaaggeg gtatgegett ecateegtea	300											
gttaacettt eeatteteaa atteetegge tttgaacaaa eetteaaaaa tgeeetgaet	360											
actctgccga tgggcggtgg taaaggcggc agcgatttcg atccgaaagg aaaaagcgaa	420											
ggtgaagtga tgcgtttttg ccaggcgctg atgactgaac tgtatcgcca cctgggcgcg	480											
gataccgacg ttccggcagg tgatatcggg gttggtggtc gtgaagtcgg ctttatggcg	540											
gggatgatga aaaagetete caacaatace geetgegtet teaeeggtaa gggeetttea	600											
tttggcggca gtcttattcg cccggaagct accggctacg gtctggttta tttcacagaa	660											
gcaatgctaa aacgccacgg tatgggtttt gaagggatgc gcgtttccgt ttctggctcc	720											
ggcaacgtcg cccagtacgc tatcgaaaaa gcgatggaat ttggtgctcg tgtgatcact	780											
gcgtcagact ccagcggcac tgtagttgat gaaagcggat tcacgaaaga gaaactggca	840											
cgtcttatcg aaatcaaagc cagccgcgat ggtcgagtgg cagattacgc caaagaattt	900											
ggtctggtct atctcgaagg ccaacagccg tggtctctac cggttgatat cgccctgcct	960											
tgcgccaccc agaatgaact ggatgttgac gccgcgcatc agcttatcgc taatggcgtt	1020											
aaagccgtcg ccgaaggggc aaatatgccg accaccatcg aagcgactga actgttccag	1080											
caggcaggcg tactatttgc accgggtaaa gcggctaatg ctggtggcgt cgctacatcg	1140											
ggcctggaaa tggcacaaaa cgctgcgcgc ctgggctgga aagccgagaa agttgacgca	1200											
cgtttgcatc acatcatgct ggatatccac catgcctgtg ttgagcatgg tggtgaaggt	1260											
gagcaaacca actacgtgca gggcgcgaac attgccggtt ttgtgaaggt tgccgatgcg	1320											
atgetggege agggtgtgat ttaa	1344											
<210> SEQ ID NO 40 <211> LENGTH: 447 <212> TYPE: PRT <213> ORGANISM: Escherichia coli												
<400> SEQUENCE: 40												
Met Asp Gln Thr Tyr Ser Leu Glu Ser Phe Leu Asn His Val Gln Lys 1 5 10 15												
Arg Asp Pro Asn Gln Thr Glu Phe Ala Gln Ala Val Arg Glu Val Met 20 25 30												
Thr Thr Leu Trp Pro Phe Leu Glu Gln Asn Pro Lys Tyr Arg Gln Met 35 40 45												
Ser Leu Leu Glu Arg Leu Val Glu Pro Glu Arg Val Ile Gln Phe Arg 50 55 60												
Val Val Trp Val Asp Asp Arg Asn Gln Ile Gln Val Asn Arg Ala Trp 65 70 75 80												
Arg Val Gln Phe Ser Ser Ala Ile Gly Pro Tyr Lys Gly Gly Met Arg 85 90 95												
Phe His Pro Ser Val Asn Leu Ser Ile Leu Lys Phe Leu Gly Phe Glu 100 105 110												
Gln Thr Phe Lys Asn Ala Leu Thr Thr Leu Pro Met Gly Gly Gly Lys 115 120 125												

-continued

Gly Gly Ser Asp Phe Asp Pro Lys Gly Lys Ser Glu Gly Glu Val Met 130 135 140													
Arg Phe Cys Gln Ala Leu Met Thr Glu Leu Tyr Arg His Leu Gly Ala 145 150 155 160													
Asp Thr Asp Val Pro Ala Gly Asp Ile Gly Val Gly Gly Arg Glu Val 165 170 175													
Gly Phe Met Ala Gly Met Met Lys Lys Leu Ser Asn Asn Thr Ala Cys 180 185 190													
Val Phe Thr Gly Lys Gly Leu Ser Phe Gly Gly Ser Leu Ile Arg Pro 195 200 205													
Glu Ala Thr Gly Tyr Gly Leu Val Tyr Phe Thr Glu Ala Met Leu Lys 210 215 220													
Arg His Gly Met Gly Phe Glu Gly Met Arg Val Ser Val Ser Gly Ser225230235240													
Gly Asn Val Ala Gln Tyr Ala Ile Glu Lys Ala Met Glu Phe Gly Ala 245 250 255													
Arg Val Ile Thr Ala Ser Asp Ser Ser Gly Thr Val Val Asp Glu Ser260265270													
Gly Phe Thr Lys Glu Lys Leu Ala Arg Leu Ile Glu Ile Lys Ala Ser 275 280 285													
Arg Asp Gly Arg Val Ala Asp Tyr Ala Lys Glu Phe Gly Leu Val Tyr290295300													
Leu Glu Gly Gln Gln Pro Trp Ser Leu Pro Val Asp Ile Ala Leu Pro 305 310 315 320													
Cys Ala Thr Gln Asn Glu Leu Asp Val Asp Ala Ala His Gln Leu Ile 325 330 335													
Ala Asn Gly Val Lys Ala Val Ala Glu Gly Ala Asn Met Pro Thr Thr 340 345 350													
Ile Glu Ala Thr Glu Leu Phe Gln Gln Ala Gly Val Leu Phe Ala Pro 355 360 365													
Gly Lys Ala Ala Asn Ala Gly Gly Val Ala Thr Ser Gly Leu Glu Met 370 375 380													
Ala Gln Asn Ala Ala Arg Leu Gly Trp Lys Ala Glu Lys Val Asp Ala 385 390 395 400													
Arg Leu His His Ile Met Leu Asp Ile His His Ala Cys Val Glu His 405 410 415													
Gly Gly Glu Gly Glu Gln Thr Asn Tyr Val Gln Gly Ala Asn Ile Ala 420 425 430													
Gly Phe Val Lys Val Ala Asp Ala Met Leu Ala Gln Gly Val Ile 435 440 445													
<210> SEQ ID NO 41 <211> LENGTH: 2283 <212> TYPE: DNA <213> ORGANISM: Escherichia coli													
<400> SEQUENCE: 41													
atgtccgagc ttaatgaaaa gttagccaca gcctgggaag gttttaccaa aggtgactgo cagaatgaag taaacgtccg tgacttcatt cagaaaaaact acactccgta cgagggtgac													
gagteettee tggetggege tactgaageg accaceace tgtgggacaa agtaatggaa													
ggcgttaaac tggaaaaccg cactcacgcg ccagttgact ttgacaccgc tgttgcttcc													
accatcacct ctcacgacgc tggctacatc aacaagcagc ttgagaaaat cgttggtctg													

105

4.5

106

-continued	
cagactgaag ctccgctgaa acgtgctctt atcccgttcg gtggtatcaa aatgatcgaa	360
ggttcctgca aagcgtacaa ccgcgaactg gatccgatga tcaaaaaaat cttcactgaa	420
taccgtaaaa ctcacaacca gggcgtgttc gacgtttaca ctccggacat cctgcgttgc	480
cgtaaatctg gtgttctgac cggtctgcca gatgcatatg gccgtggccg tatcatcggt	540
gactaccgtc gcgttgcgct gtacggtatc gactacctga tgaaagacaa actggcacag	600
ttcacttctc tgcaggctga tctggaaaac ggcgtaaacc tggaacagac tatccgtctg	660
cgcgaagaaa tcgctgaaca gcaccgcgct ctgggtcaga tgaaagaaat ggctgcgaaa	720
tacggctacg acatetetgg teeggetace aaegeteagg aagetateea gtggaettae	780
ttcggctacc tggctgctgt taagtctcag aacggtgctg caatgtcctt cggtcgtacc	840
tccaccttcc tggatgtgta catcgaacgt gacctgaaag ctggcaagat caccgaacaa	900
gaagegeagg aaatggttga ceacetggte atgaaaetge gtatggtteg etteetgegt	960
acteeggaat aegatgaact gttetetgge gaeeegatet gggeaaeega atetateggt	1020
ggtatgggcc tcgacggtcg taccctggtt accaaaaaca gcttccgttt cctgaacacc	1080
ctgtacacca tgggtccgtc tccggaaccg aacatgacca ttctgtggtc tgaaaaactg	1140
ccgctgaact tcaagaaatt cgccgctaaa gtgtccatcg acacctcttc tctgcagtat	1200
gagaacgatg acctgatgcg tccggacttc aacaacgatg actacgctat tgcttgctgc	1260
gtaageeega tgategttgg taaacaaatg cagttetteg gtgegegtge aaacetggeg	1320
aaaaccatgc tgtacgcaat caacggcggc gttgacgaaa aactgaaaat gcaggttggt	1380
ccgaagtctg aaccgatcaa aggcgatgtc ctgaactatg atgaagtgat ggagcgcatg	1440
gatcacttca tggactggct ggctaaacag tacatcactg cactgaacat catccactac	1500
atgcacgaca agtacageta cgaageetet etgatggege tgeaegaeeg tgaegttate	1560
cgcaccatgg cgtgtggtat cgctggtctg tccgttgctg ctgactccct gtctgcaatc	1620
aaatatgega aagttaaace gattegtgae gaagaeggte tggetatega ettegaaate	1680
gaaggcgaat acccgcagtt tggtaacaat gatccgcgtg tagatgacct ggctgttgac	1740
ctggtagaac gtttcatgaa gaaaattcag aaactgcaca cctaccgtga cgctatcccg	1800
actcagtctg ttctgaccat cacttctaac gttgtgtatg gtaagaaaac gggtaacacc	1860
ccagacggtc gtcgtgctgg cgcgccgttc ggaccgggtg ctaacccgat gcacggtcgt	1920
gaccagaaag gtgcagtagc ctctctgact tccgttgcta aactgccgtt tgcttacgct	1980
aaagatggta teteetacae ettetetate gtteegaaeg caetgggtaa agaegaegaa	2040
gttcgtaaga ccaacctggc tggtctgatg gatggttact tccaccacga agcatccatc	2100
gaaggtggtc agcacctgaa cgttaacgtg atgaaccgtg aaatgctgct cgacgcgatg	2160
gaaaacccgg aaaaatatcc gcagctgacc atccgtgtat ctggctacgc agtacgtttc	2220
aactcgctga ctaaagaaca gcagcaggac gttattactc gtaccttcac tcaatctatg	2280
taa	2283
<210> SEQ ID NO 42 <211> LENGTH: 760 <212> TYPE: PRT <213> ORGANISM: Escherichia coli	

1

<213> ORGANISM: Escherichia coli

5

Met Ser Glu Leu Asn Glu Lys Leu Ala Thr Ala Trp Glu Gly Phe Thr

10

15

<400> SEQUENCE: 42

108

											-	con	LIII	uea	
Lys	Gly	Asp	Trp 20	Gln	Asn	Glu	Val	Asn 25	Val	Arg	Asp	Phe	Ile 30	Gln	Lys
Asn	Tyr	Thr 35	Pro	Tyr	Glu	Gly	Asp 40	Glu	Ser	Phe	Leu	Ala 45	Gly	Ala	Thr
Glu	Ala 50	Thr	Thr	Thr	Leu	Trp 55	Asp	Lys	Val	Met	Glu 60	Gly	Val	Lys	Leu
Glu 65	Asn	Arg	Thr	His	Ala 70	Pro	Val	Asp	Phe	Asp 75	Thr	Ala	Val	Ala	Ser 80
Thr	Ile	Thr	Ser	His 85	Asp	Ala	Gly	Tyr	Ile 90	Asn	ГЛЗ	Gln	Leu	Glu 95	Lys
Ile	Val	Gly	Leu 100	Gln	Thr	Glu	Ala	Pro 105	Leu	Lys	Arg	Ala	Leu 110	Ile	Pro
Phe	Gly	Gly 115	Ile	ГЛа	Met	Ile	Glu 120	Gly	Ser	Суз	ГЛа	Ala 125	Tyr	Asn	Arg
Glu	Leu 130	Asp	Pro	Met	Ile	Lys 135	Lys	Ile	Phe	Thr	Glu 140	Tyr	Arg	Lys	Thr
His 145	Asn	Gln	Gly	Val	Phe 150	Asp	Val	Tyr	Thr	Pro 155	Asp	Ile	Leu	Arg	Cys 160
Arg	Lys	Ser	Gly	Val 165	Leu	Thr	Gly	Leu	Pro 170	Asp	Ala	Tyr	Gly	Arg 175	Gly
Arg	Ile	Ile	Gly 180	Asp	Tyr	Arg	Arg	Val 185	Ala	Leu	Tyr	Gly	Ile 190	Asp	Tyr
Leu	Met	Lys 195	Asp	Гла	Leu	Ala	Gln 200	Phe	Thr	Ser	Leu	Gln 205	Ala	Asp	Leu
Glu	Asn 210	Gly	Val	Asn	Leu	Glu 215	Gln	Thr	Ile	Arg	Leu 220	Arg	Glu	Glu	Ile
Ala 225	Glu	Gln	His	Arg	Ala 230	Leu	Gly	Gln	Met	Lys 235	Glu	Met	Ala	Ala	Lys 240
Tyr	Gly	Tyr	Asp	Ile 245	Ser	Gly	Pro	Ala	Thr 250	Asn	Ala	Gln	Glu	Ala 255	Ile
Gln	Trp	Thr	Tyr 260	Phe	Gly	Tyr	Leu	Ala 265	Ala	Val	Lys	Ser	Gln 270	Asn	Gly
Ala	Ala	Met 275	Ser	Phe	Gly	Arg	Thr 280	Ser	Thr	Phe	Leu	Asp 285	Val	Tyr	Ile
Glu	Arg 290	Asp	Leu	ГЛа	Ala	Gly 295	Lys	Ile	Thr	Glu	Gln 300	Glu	Ala	Gln	Glu
Met 305	Val	Asp	His	Leu	Val 310	Met	Lys	Leu	Arg	Met 315	Val	Arg	Phe	Leu	Arg 320
Thr	Pro	Glu	Tyr	Asp 325	Glu	Leu	Phe	Ser	Gly 330	Asp	Pro	Ile	Trp	Ala 335	Thr
Glu	Ser	Ile	Gly 340	Gly	Met	Gly	Leu	Asp 345	Gly	Arg	Thr	Leu	Val 350	Thr	Lys
Asn	Ser	Phe 355	Arg	Phe	Leu	Asn	Thr 360	Leu	Tyr	Thr	Met	Gly 365	Pro	Ser	Pro
Glu	Pro 370	Asn	Met	Thr	Ile	Leu 375	Trp	Ser	Glu	Lys	Leu 380	Pro	Leu	Asn	Phe
Lys 385		Phe	Ala	Ala	Lys 390		Ser	Ile	Asp	Thr 395		Ser	Leu	Gln	Tyr 400
	Asn	Asp	Asp			Arg	Pro	Asp			Asn	Asp	Aap		
Ile	Ala	Сүз	-	405 Val	Ser	Pro	Met		410 Val	Gly	Lys	Gln		415 Gln	Phe
Phe	Gly	Ala	420 Arg	Ala	Asn	Leu	Ala	425 Lys	Thr	Met	Leu	Tyr	430 Ala	Ile	Asn
	-		-												

109

435 440 445											
Gly Gly Val Asp Glu Lys Leu Lys Met Gln Val Gly Pro Lys Ser Glu 450 455 460											
Pro Ile Lys Gly Asp Val Leu Asn Tyr Asp Glu Val Met Glu Arg Met465470475480											
Asp His Phe Met Asp Trp Leu Ala Lys Gln Tyr Ile Thr Ala Leu Asn 485 490 495											
Ile Ile His Tyr Met His Asp Lys Tyr Ser Tyr Glu Ala Ser Leu Met 500 505 510											
Ala Leu His Asp Arg Asp Val Ile Arg Thr Met Ala Cys Gly Ile Ala 515 520 525											
Gly Leu Ser Val Ala Ala Asp Ser Leu Ser Ala Ile Lys Tyr Ala Lys 530 535 540											
Val Lys Pro Ile Arg Asp Glu Asp Gly Leu Ala Ile Asp Phe Glu Ile 545 550 555 560											
Glu Gly Glu Tyr Pro Gln Phe Gly Asn Asn Asp Pro Arg Val Asp Asp 565 570 575											
Leu Ala Val Asp Leu Val Glu Arg Phe Met Lys Lys Ile Gln Lys Leu 580 585 590											
His Thr Tyr Arg Asp Ala Ile Pro Thr Gln Ser Val Leu Thr Ile Thr 595 600 605											
Ser Asn Val Val Tyr Gly Lys Lys Thr Gly Asn Thr Pro Asp Gly Arg 610 615 620											
Arg Ala Gly Ala Pro Phe Gly Pro Gly Ala Asn Pro Met His Gly Arg 625 630 635 640											
Asp Gln Lys Gly Ala Val Ala Ser Leu Thr Ser Val Ala Lys Leu Pro 645 650 655											
Phe Ala Tyr Ala Lys Asp Gly Ile Ser Tyr Thr Phe Ser Ile Val Pro 660 665 670											
Asn Ala Leu Gly Lys Asp Asp Glu Val Arg Lys Thr Asn Leu Ala Gly 675 680 685											
Leu Met Asp Gly Tyr Phe His His Glu Ala Ser Ile Glu Gly Gly Gln 690 695 700											
His Leu Asn Val Asn Val Met Asn Arg Glu Met Leu Leu Asp Ala Met 705 710 715 720											
Glu Asn Pro Glu Lys Tyr Pro Gln Leu Thr Ile Arg Val Ser Gly Tyr 725 730 735											
Ala Val Arg Phe Asn Ser Leu Thr Lys Glu Gln Gln Gln Asp Val Ile 740 745 750											
Thr Arg Thr Phe Thr Gln Ser Met 755 760											
<pre><210> SEQ ID NO 43 <211> LENGTH: 768 <212> TYPE: DNA <213> ORGANISM: Escherichia coli <400> SEQUENCE: 43</pre>											
atgggccaca totggagaaa cacogoaatg toagttattg gtogoattoa otootttgaa	60										
teetgtggaa eegtagaegg eeegggtatt egetttatea eettttteea gggetgeetg	120										
atgegetgee tgtattgtea taacegegae acetgggata egeatggegg taaagaagtt	180										
accgttgaag atttgatgaa ggaagtggtg acctatcgcc actttatgaa cgcttccggc	240										
ggcggcgtta ccgcatccgg cggtgaggca atcctacaag ctgagtttgt tcgtgactgg	300										

111

-continued

	360
cgttacgatc cggtgattga tgaactgctg gaagtaaccg acctggtaat gctcgatctc	420
aaacagatga acgacgagat ccaccaaaat ctggttggag tttccaacca ccgcacgctg	480
gagttegeta aatatetgge gaacaaaaat gtgaaggtgt ggateegeta tgttgttgte	540
ccaggetggt etgaegatga egatteageg eategeettg gtgaatttae eegtgatatg	600
ggcaacgttg agaaaatcga gctcctcccc taccacgaac tgggcaaaca caaatgggtg	660
gcaatgggtg aagaatacaa actcgatggt gttaaaccac cgaagaaaga gaccatggaa	720
cgcgtgaaag gcattettga geagtaeggt eataaggtea tgttetaa	768
<210> SEQ ID NO 44 <211> LENGTH: 255 <212> TYPE: PRT <213> ORGANISM: Escherichia coli	
<400> SEQUENCE: 44	
Met Gly His Ile Trp Arg Asn Thr Ala Met Ser Val Ile Gly Arg Ile 1 5 10 15	
His Ser Phe Glu Ser Cys Gly Thr Val Asp Gly Pro Gly Ile Arg Phe 20 25 30	
Ile Thr Phe Phe Gln Gly Cys Leu Met Arg Cys Leu Tyr Cys His Asn 35 40 45	
Arg Asp Thr Trp Asp Thr His Gly Gly Lys Glu Val Thr Val Glu Asp 50 55 60	
Leu Met Lys Glu Val Val Thr Tyr Arg His Phe Met Asn Ala Ser Gly 65 70 75 80	
Gly Gly Val Thr Ala Ser Gly Gly Glu Ala Ile Leu Gln Ala Glu Phe 85 90 95	
Val Arg Asp Trp Phe Arg Ala Cys Lys Lys Glu Gly Ile His Thr Cys 100 105 110	
Leu Asp Thr Asn Gly Phe Val Arg Arg Tyr Asp Pro Val Ile Asp Glu 115 120 125	
Leu Leu Glu Val Thr Asp Leu Val Met Leu Asp Leu Lys Gln Met Asn 130 135 140	
Asp Glu Ile His Gln Asn Leu Val Gly Val Ser Asn His Arg Thr Leu 145 150 155 160	
Glu Phe Ala Lys Tyr Leu Ala Asn Lys Asn Val Lys Val Trp Ile Arg 165 170 175	
Tyr Val Val Pro Gly Trp Ser Asp Asp Asp Ser Ala His Arg 180 185 190	
Leu Gly Glu Phe Thr Arg Asp Met Gly Asn Val Glu Lys Ile Glu Leu 195 200 205	
Leu Pro Tyr His Glu Leu Gly Lys His Lys Trp Val Ala Met Gly Glu 210 215 220	
Glu Tyr Lys Leu Asp Gly Val Lys Pro Pro Lys Lys Glu Thr Met Glu 225 230 235 240	
Arg Val Lys Gly Ile Leu Glu Gln Tyr Gly His Lys Val Met Phe 245 250 255	
-210- SEO ID NO 45	

<210> SEQ ID NO 45 <211> LENGTH: 1707 <212> TYPE: DNA <213> ORGANISM: Zymomonas mobilis <220> FEATURE:

-	-	-
		- 4

-continued

60

120

180

240

300

360

420

480

540

600

660 720

780

840

900 960

<221> NAME/KEY: misc_feature <222> LOCATION: (622)..(622) <223> OTHER INFORMATION: n is a, c, g, or t <400> SEQUENCE: 45 atgagttata ctgtcggtac ctatttagcg gagcggcttg tccagattgg tctcaagcat cacttogcag togogggoga ctacaacoto gtoottottg acaacotgot tttgaacaaa aacatggagc aggtttattg ctgtaacgaa ctgaactgcg gtttcagtgc agaaggttat gctcgtgcca aaggcgcagc agcagccgtc gttacctaca gcgtcggtgc gctttccgca tttgatgeta teggtggege etatgeagaa aacetteegg ttateetgat eteeggtget ccgaacaaca atgaccacgc tgctggtcac gtgttgcatc acgctcttgg caaaaccgac tatcactatc agttggaaat ggccaagaac atcacggccg ccgctgaagc gatttatacc ccggaagaag ctccggctaa aatcgatcac gtgattaaaa ctgctcttcg tgagaagaag ccqqtttatc tcqaaatcqc ttqcaacatt gcttccatqc cctgcqccqc tcctqqaccq gcaagcgcat tgttcaatga cgaagccagc gacgaagctt ctttgaatgc agcggttgaa gaaaccetga aatteatege enacegegae aaagttgeeg teetegtegg eageaagetg cgcgcagctg gtgctgaaga agctgctgtc aaatttgctg atgctcttgg tggcgcagtt gctaccatgg ctgctgcaaa aagcttcttc ccagaagaaa acccgcatta catcggtacc tcatggggtg aagtcagcta tccgggcgtt gaaaagacga tgaaagaagc cgatgcggtt atcgctctgg ctcctgtctt taacgactac tccaccactg gttggacgga tattcctgat cctaagaaac tggttctcgc tgaaccgcgt tctgtcgtcg ttaacggcat tcgcttcccc agcgtccatc tgaaagacta tctgacccgt ttggctcaga aagtttccaa gaaaaccggt 1020 gctttggact tcttcaaatc cctcaatgca ggtgaactga agaaagccgc tccggctgat 1080 ccgagtgctc cgttggtcaa cgcagaaatc gcccgtcagg tcgaagctct tctgaccccg 1140 aacacgacgg ttattgctga aaccggtgac tcttggttca atgctcagcg catgaagctc 1200 ccgaacggtg ctcgcgttga atatgaaatg cagtggggtc acattggttg gtccgttcct 1260 geogeetteg gttatgeogt eggtgeteog gaaegtegea acateeteat ggttggtgat 1320 ggttccttcc agctgacggc tcaggaagtc gctcagatgg ttcgcctgaa actgccggtt 1380 atcatcttct tgatcaataa ctatggttac accatcgaag ttatgatcca tgatggtccg 1440 tacaacaaca tcaagaactg ggattatgcc ggtctgatgg aagtgttcaa cggtaacggt 1500 ggttatgaca gcggtgctgg taaaggcctg aaggctaaaa ccggtggcga actggcagaa 1560 gctatcaagg ttgctctggc aaacaccgac ggcccaaccc tgatcgaatg cttcatcggt 1620 cgtgaagact gcactgaaga attggtcaaa tggggtaagc gcgttgctgc cgccaacagc 1680 cgtaageetg ttaacaaget eetetag 1707 <210> SEO ID NO 46 <211> LENGTH: 568 <212> TYPE: PRT <213> ORGANISM: Zymomonas mobilis <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (208)..(208) <223> OTHER INFORMATION: Xaa can be any naturally occurring amino acid <400> SEQUENCE: 46 Met Ser Tyr Thr Val Gly Thr Tyr Leu Ala Glu Arg Leu Val Gln Ile 5 10 15

-continued

Gly	Leu	Lys	His 20	His	Phe	Ala	Val	Ala 25	Gly	Asp	Tyr	Asn	Leu 30	Val	Leu
Leu	Asp	Asn 35	Leu	Leu	Leu	Asn	Lys 40	Asn	Met	Glu	Gln	Val 45	Tyr	Суз	Сув
Asn	Glu 50	Leu	Asn	Суз	Gly	Phe 55	Ser	Ala	Glu	Gly	Tyr 60	Ala	Arg	Ala	Lya
Gly 65	Ala	Ala	Ala	Ala	Val 70	Val	Thr	Tyr	Ser	Val 75	Gly	Ala	Leu	Ser	Ala 80
Phe	Asp	Ala	Ile	Gly 85	Gly	Ala	Tyr	Ala	Glu 90	Asn	Leu	Pro	Val	Ile 95	Leu
Ile	Ser	Gly	Ala 100	Pro	Asn	Asn	Asn	Asp 105	His	Ala	Ala	Gly	His 110	Val	Leu
His	His	Ala 115	Leu	Gly	Lys	Thr	Asp 120	Tyr	His	Tyr	Gln	Leu 125	Glu	Met	Ala
Lys	Asn 130	Ile	Thr	Ala	Ala	Ala 135	Glu	Ala	Ile	Tyr	Thr 140	Pro	Glu	Glu	Ala
Pro 145	Ala	Lys	Ile	Asp	His 150	Val	Ile	Lys	Thr	Ala 155	Leu	Arg	Glu	Lys	Lys 160
Pro	Val	Tyr	Leu	Glu 165	Ile	Ala	Cys	Asn	Ile 170	Ala	Ser	Met	Pro	Cys 175	Ala
Ala	Pro	Gly	Pro 180	Ala	Ser	Ala	Leu	Phe 185	Asn	Asp	Glu	Ala	Ser 190	Asp	Glu
Ala	Ser	Leu 195	Asn	Ala	Ala	Val	Glu 200	Glu	Thr	Leu	Lys	Phe 205	Ile	Ala	Xaa
Arg	Asp 210	Lys	Val	Ala	Val	Leu 215	Val	Gly	Ser	Lys	Leu 220	Arg	Ala	Ala	Gly
Ala 225	Glu	Glu	Ala	Ala	Val 230	Lys	Phe	Ala	Asp	Ala 235	Leu	Gly	Gly	Ala	Val 240
Ala	Thr	Met	Ala	Ala 245	Ala	Lys	Ser	Phe	Phe 250	Pro	Glu	Glu	Asn	Pro 255	His
Tyr	Ile	Gly	Thr 260	Ser	Trp	Gly	Glu	Val 265	Ser	Tyr	Pro	Gly	Val 270	Glu	Lys
Thr	Met	Lys 275	Glu	Ala	Asp	Ala	Val 280	Ile	Ala	Leu	Ala	Pro 285	Val	Phe	Asn
Asp	Tyr 290	Ser	Thr	Thr	Gly	Trp 295	Thr	Asp	Ile	Pro	Asp 300	Pro	Lys	Lys	Leu
Val 305	Leu	Ala	Glu	Pro	Arg 310	Ser	Val	Val	Val	Asn 315	Gly	Ile	Arg	Phe	Pro 320
Ser	Val	His	Leu	Lys 325	Asp	Tyr	Leu	Thr	Arg 330	Leu	Ala	Gln	Lys	Val 335	Ser
Lys	Lys	Thr	Gly 340	Ala	Leu	Asp	Phe	Phe 345	Lys	Ser	Leu	Asn	Ala 350	Gly	Glu
Leu	Lys	Lys 355	Ala	Ala	Pro	Ala	Asp 360	Pro	Ser	Ala	Pro	Leu 365	Val	Asn	Ala
Glu	Ile 370	Ala	Arg	Gln	Val	Glu 375	Ala	Leu	Leu	Thr	Pro 380	Asn	Thr	Thr	Val
Ile 385		Glu	Thr	Gly	Asp 390	Ser	Trp	Phe	Asn	Ala 395	Gln	Arg	Met	Lys	Leu 400
	Asn	Gly	Ala	Arg 405		Glu	Tyr	Glu	Met 410		Trp	Gly	His	Ile 415	
Trp	Ser	Val			Ala	Phe	Gly	-		Val	Gly	Ala			Arg
Arg	Asn	Ile	420 Leu	Met	Val	Gly	Asp	425 Gly	Ser	Phe	Gln	Leu	430 Thr	Ala	Gln

-continued 435 440 445 Glu Val Ala Gln Met Val Arg Leu Lys Leu Pro Val Ile Ile Phe Leu 450 460 11e Ann Asn Tyr Gly Tyr Thr Ile Glu Val Met Ile His Asp Gly Pro 475 475 477 Tyr Asn Asn Ile Lys Asn Trp Asp Tyr Ala Gly Leu Met Glu Val Phe 485 480 Gly Asn Gly Gly Tyr Asp Ser Gly Ala Gly Lys Gly Leu Lys Ala 510 500 Tyr Asp Ser Gly Ala Gly Lys Gly Leu Lys Ala 515 50 70 Thr Leu Ile Glu Cys Phe Ile Gly Arg Glu Asp Cys 530 535 536 Thr Asp Gly Pro Thr Leu Ile Glu Cys Phe Ile Gly Arg Glu Asp Cys 535 555 55 55 55 56 Arg Lys Pro Val Asn Lys Lyr Gly Lys Arg Val Ala Ala Ala Asn Ser 545 550 70 Gly Lys Arg Val Ala Ala Ala Ala Asn Ser 545 520 70 Gly Lys Arg Val Ala Ala Ala Asn Ser 545 520 70 Gly Lys Arg Val Ala Ala Ala Asn Ser 547 550 70 Gly Lys Arg Val Ala Ala Ala Asn Ser 548 520 70 Gly Control 100 47 4313 ORGMINSM: Zymoonas mobilis 400> SEQUENCE: 47 atggcttett caacttett a tatteette gecaacgaa tgggegaag teegettga attetgetg ttatagatg egttatgeeg aacceagetg ttacgeagt teegage 410 ottaagatee tgaaggata caatteage teegateg taggegaaget ag 420 ottaagatee tgaaggata caateagae teegategt taggatega 420 ottaagatee tgaaggata caateagae teegategt taggatega 420 ottaagatee tgaaggata caateagae teegategt taggegaaget 200 catagaeteg caaageetta egeegeege acceagateg taggegaaget ag 420 ottaagatee tgaaggata caateagae teegatege teegatege 420 420 ottaagatee tgaaggata caateagae teegeaget tagaagee acceagaetge 420 420 ottaagatee tgaaegae egettetge teaceacaa gtaggetae taggeegee 420 420 ottaagatee tgaaegae egettetge teaceacaa gtagaetee 540 420 ottaagatee tgaaegae egettetge teaceacaa gtaggetege 420 420 ottaagatee tgaaegae egettetge teaceacaa gtaggeege 420 420 ottaagatee tgaaegae egettetge tageaegae gtaggeeget tagaaegaetge 720 420 ottaagatee tgaaegae gegttetge tageaegaet tegeteet fagaagteege 420 420 ottaagatee tgaaegae egettetge tageaegaetge tegetetge 720 420 ottaagaatee tgaaegaetge gegttetge tagaageege 720 420 ottaagaatee tegetegee acceagaet tegetegee tegetege 720 420 ottaagaetge tegeteege agedeege tegetegeege 420 420 ottaaga		
Glu Val Ala Gin Met Val Arg Leu Lyø Leu Pro Val Ile Ile Phe Leu 450 11e Asn Asn Tyr Gly Tyr Thr Ile Glu Val Met Ile His Asp Gly Pro 465 Asn Gly Asn Gly Gly Tyr Asp Ser Gly Ala Gly Leu Met Glu Val Phe 485 485 486 485 485 485 485 485 485 485 485	435 440 445	
450 455 460 e Aan Aan Tyr Gly Tyr Thr Ile Glu Val Met Ile His Aap Gly Pro 470 470 470 475 480 r Aan Aan Ile Lys Aan Trp Aap Tyr Ala Gly Leu Met Glu Val Phe 485 480 n Gly Aan Gly Gly Tyr Asp Ser Gly Ala Gly Lys Gly Leu Lys Ala 500 520 177 Asp Ser Gly Ala Gly Lys Gly Leu Ja Aan 510 525 r Aap Gly Gly Gly Glu Leu Ala Glu Ala Ile Lys Val Ala Leu Ala Aan 515 520 755 540 r Glu Glu Leu Val Lys Trp Gly Lys Arg Val Ala Ala Ala Asp Ser 550 555 560 555 560 g Lys Pro Val Aan Lys Leu Leu 565 10> SEQ ID NO 47 11> LENGTH: 1152 12> TYPE: DNA 13> ORGANISM: Zymomonas mobilis 000> SEQUENCE: 47 ggettett caactttta tatteette gteaacgaaa tgggegaagg tteggettgaa 60 ageaatea aggatettaa eggeagege tttaaaaatg egetgategt tetggaagg 240 taagaate tgaaggata caatteage ttegteate ceeteggig tggtteetee 300 tgaetge ceaaageet egettege geaecag gtagetge tetggaagge 240 taagaate tgaaggata caatteage ttegteate ceeteggig tggttetee 300 tgaetge ceaaageet egettege geaecag gtagetge taegaage 120 taggett ettagatge egettetge tetgeatet geagaget 240 taggett etgaaagea egettetge tetgeatet 360 aggetateg acaateta gaaacetgee etgeettga tgeaagea caegaeget 420 taggett etgaaagea egettetge tetgeaecag gtagetgeage teegeage 480 ggeettett etgaaagea egettetge tetgeaecag gtagetgeage teegeage 480 ggeettet tegaaage gegettetge tetgeaecag gtagetgeae etgetgeage 480 ggeettet tegaaagee gegettetge tetgeaecag gtagetgeae etgetgeage 480 ggeettet tegaaagee gaecaece tegeetge teaeagaet 180 ggeettet tegaaagee gaecaece tegeetge teaeagaet 180 ggeettet tegaaagee gaecaece gaecaeceg teegeaece tegetgee 720 aagtetge taaaagee gaecaece gaeceaece gaeageet teegeaece 720 agetateg etaaagee gaecee tegeetge tegeaece 720 agetateg etaagee atteege gaecaece tegeetge tegeaece 720 agetateg etaagee atteege gaecaece tegeetge tegeaece 720 agetateg etatgeeea atteegee tegeaece 720 agetateg etatgeeea atteegee gettetge tegeaece 720 agetateg etatgeeea atteegee gettetge tegeaece 720 agetateg etatgeeea atteegee tegeageet tegeagee 720 agetateg etatgeeea atteegee getateeea acetgeegeea tegetge 720 a		
te Asn Asn Tyr Gly Tyr Thr 11e Glu Val Met 11e His Asp Gly Pro 455 Asn Asn Ile Lys Asn Trp Asp Tyr Ala Gly Leu Met Glu Val Phe 495 Asn Gly Gly Tyr Asp Ser Gly Ala Gly Lys Gly Leu Lys Ala 500 IV Jrr Asn Ser Gly Ala Glu Leu Ala Glu Ala Ile Lys Val Ala Leu Ala Asn 515 Sin Gly Gly Glu Leu Ala Glu Ala Ile Lys Val Ala Leu Ala Asn 515 Sin Gly Dro Thr Leu Ile Glu Cys Phe Ile Gly Arg Glu Asp Cys 530 Tr Asp Gly Pro Thr Leu Jle Gly Lys Arg Val Ala Ala Ala Asn Ser 550 Sin Gly Glu Leu Val Lys Trp Gly Lys Arg Val Ala Ala Ala Asn Ser 550 Sin		
470 475 480 yr Asn Asn Ile Lys Asn Trp Asp Tyr Ala Gly Leu Met Glu Val Phe 485 480 an Gly Asn Gly Gly Tyr Asp Ser Gly Ala Gly Lys Gly Leu Mat Glu Val Phe 500 505 yr Thr Gly Gly Glu Leu Ala Glu Ala Glu Ala Gly Lys Gly Leu Masn 515 500 yr Br Gly Pro Thr Leu Ile Glu Cys Phe Ile Gly Arg Glu Asp Cys 530 535 r Glu Glu Leu Val Lys Trp Gly Lys Arg Val Ala Ala Ala Asn Ser 550 550 rg Lys Pro Val Asn Lys Leu Leu 565 555 210> SEQ ID NO 47 520 211> LENGTH: 1152 520 212> TYPE: DNA 213> ORGANISM: Zymomonas mobilis 400> SEQUENCE: 47 60 ccatgaaca aatccggtgt tgtgaagcag gttgctgacc tgttgaaagc acagggtatt 180 attctgetg tttatgatgg cgttatgecg aacccgatg ttaccgcagt tctggaaggc 240 ctatagatec tgaaggata caattcagac ttegtcact cecteggtg tggtgaagc acaggegt 1 300 attctgetg ctgaaagac gegtttege ctacaccat gtgggaag caagaget 240 300 atgagtatg acaaateta gaaacetgee ctgeettg gtgaage caagaged 240 300 attctgetg tttatgatg cgttatgecg acccat gtggtggaag caagaget 240 300 attctgetg tttatgatg cgttatgecg acccat gtggtggg gtggggg gtgggggg gtgggggg gtgggggg		
485 490 495 en Gly Asn Gly Gly Tyr Asp Ser Gly Ala Gly Lys Gly Leu Lys Ala 500 Thr Gly Gly Glu Leu Ala Glu Ala Ile Lys Val Ala Leu Ala Asn 515 510 520 hr Asp Gly Pro Thr Leu Ile Glu Cys Phe Ile Gly Arg Glu Asp Cys 530 530 Fr Gly Glu Leu Val Lys Trp Gly Lys Arg Val Ala Ala Ala Asn Ser 530 550 550 550 550 550 550 560 hr Glu Glu Leu Val Lys Trp Gly Lys Arg Val Ala Ala Ala Asn Ser 550 550 550 550 550 560 100 SEQ ID NO 47 2110 LEWGHY: 1152 2120 TYPE: DNA 2130 ORGANISM: Zymomonas mobilis 4000 SEQUENCE: 47 tggettett caactttta tatteette gteaacgaaa tgggegaagg ttegettgaa aageaatca aggatettaa eggeagegge ttegateg ttegaaggat 1800 attedged ttatgatgg egttatgeg aaccegatg ttaccegat tetggaagge 2400 ttaagatee tgaaggataa caatteagae ttegteatet ceeteggtg tggttetee 300 atggetage ceaaageet egeteggte geaaceaatg gtggtgaagt caaagaetae 360 aaggtateg acaaatetaa gaaacetgee etgettga tggaagte teegettag 420 ttaagatee tgaaggataa caatteage ttegteatet ceeteggtg tggttetee 300 atggeeatg ttagaagge gettetge ateateaetg atgaagtee teegettag 420 ttaagatee gaaageet geettetge ateateaetg atgaagtee teegett 420 gtaeggett etgaaagge gegttetge ateateaetg atgaagtee teegett 420 gtaeggett etgaaage gegttetge ateateaetg atgaagtee teegett 420 gtaeggett etgaaagae gegttetge ateateaetg atgaagtee teegett 420 600 aagettatt etteaaegge agetaeteeg ategetteet teaaegaet teegttagt 540 ttegtatge caaaageet gaeegeegee acegtatg atgetetge ceaegatet 600 aagettatt etteaaegge agetaeteeg ateaeceg tegeett gaaggetteg 660 ceatgateg etaagaatet gaagaecegt tegeaaeae gtaaggatat geeageett 720 aagetatg etatgeeta eegttetege ttaaeegee ttegeett gaaggettege 440 aegettet getteegea tteeteget getteete teaacaaege ttegetteg 740 aagetatg etatgeeta eegttetege tataeegee tegeettege 740 aagetatg etatgeeta eegttetege tegeaaeae feegeettege 740 aagettet getteegea tteeteget getteetee teaacaaege ttegettege 740 aagettet getteegea tegeettege gettetee aaceege tegeettege 740 aagettet getteegea tteeteget getteetee tegaaggaeae 740 aagettet getteegea tegeettege gettetee tegaaggaeae		
<pre>sm Gly Asn Gly Gly Tyr Asp Ser Gly Ala Gly Lys Gly Leu Lys Ala 500 ys Thr Gly Gly Glu Leu Ala Glu Ala Ile Lys Val Ala Leu Ala Asn 515 515 hr Asp Gly Pro Thr Leu Ile Glu Cys Phe Ile Gly Arg Glu Asp Cys 530 hr Glu Glu Leu Val Lys Tp Gly Lys Arg Val Ala Ala Ala Asn Ser 45 55 10 ys Pro Val Asn Lys Leu Leu 565 210 > SEQ ID NO 47 211 > LENGTH: 1152 212 > TYPE: DNA 213 > ORGANISM: Zymomonas mobilis 400 > SEQUENCE: 47 tggcttctt caactttta tattcctttc gtcaacgaaa tgggcgaagg ttcgcttgaa 60 aagcaatca aggatctaa cggcagcggc tttaaaaatg cgctgatcgt ttctgatgct 120 tcatgaaca aatccggtg tgtgaagcag gttgctgacc tgttgaaagc acagggtatt 180 attctgctg tttatgatgg cgttatgccg aacccgatg ttaccgcagt tctggaaggc 240 ttaagatct gaaggataa caattcagc tcgtcttga tgtgaagt caaagacta 360 aaggtattg acaaatctaa gaaacctgc ctgcctttga tgtcaatcaa cacgacggt 420 ttaagatcg ccaaagccat cgctctggtc gcaaccaatg gtggtgaagt caaagacta 360 aaggtatg ccaaagccat cgctctggt gcaacccaatg gtggtgaagt caaggact 420 gtacggctt ctgaaatgac ggtttctgc atcatcatg atgaagtcg tccgttaag 480 tggccattg ttgacgca cgttacccg atggtttcg tcaacgatc tctgtdagg 540 ttggtatgc caaaagcct gaccgcag atggtttcg tcaacgatc tctgtdag 540 ttggctatt ctgaaatgac gcgtttctg atcatcatg atgaagtcg tcacgttagg 480 tggccattg ttgacgcac ggttacccg atggtttcg tcaacgatc tctgtdag 540 ttggctatt ctgaaatgac gcgtttctg atcatcatg atgaagtcg tcacgttag 480 tggccattg ttgaccgtca cgttacccg atggtttcg tcaacgatc tctgttgatg 540 ttggtatgc caaaagcct gaccgcag cacggtatg atgctctgac ccacgcatt 600 aagctatt cttcaacggc agcatcccg atggttcg tcaacaacg ttcggttag 540 ttggtatg ctaaggatct gaagaccgt tgcgacaca gtaggtat gccagctg 720 aagctatg ctatggcca attcctog tggacgacg ttaccgat gtaggttgg 660 ccatgatcg ctaaggatct gaagaccgt tgcgacaca gtaggatat gccagctg 720 aagctatg ctatggcca cagttgggc ggctactaca acctgccgca tggtgtctg 840 acgctgtt tgctccca tgctctggt tatacgcc tgtgcgtag 890 aagacgttg gtgttgctat gggttcgat atcgccaat tcggtgata agaaggcga 960 aagacgttg gtgttgctat gggtctcgat atcgccaat tcggtgatagca 1020</pre>		
ys Thr Gly Gly Glu Leu Ala Glu Ala Ile Lys Val Ala Leu Ala Asn 515 S20		
515520525hr Asp Gly Pro Thr Leu Ile Glu Cys Phe Ile Gly Arg Glu Asp Cys 530535hr Glu Glu Leu Val Lys Trp Gly Lys Arg Val Ala Ala Ala Asn Ser 550560rg Lys Pro Val Asn Lys Leu Leu 565565210> SEQ ID NO 47 211> LENGTHH: 1152 212> TYPE: DNA 213> ORGANISM: Zymomonas mobilis400> SEQUENCE: 47tgggetett caacttttta tatteette gteaacgaaa tgggegaagg ttegettgat atteggetg ttatagagg egttageg accegaetg ttacegeagt tetggaagge 240taagaca aateeggtg tggaageag gtggtgaee tggtagag caagggtatt 180atteggetg eaaaatee ggetgetge eaaaatee ggegagget tegetaag atteggetg eaaaatee ggetgetge tegetagagaa 240taagatee tgaaggataa caatteagae ttegteatee ceeteggtg tggtagat caaagaetae aggetate gaaaatetaa gaaacetgee dgeetege tegetaga tegetgaag ttagaagea gegttetge tegeaatea gaagtee tegeaagata 240taagateg eaaaatetaa gaaacetgee ctgeeteg tggaagte caaagaetae ggeeattg ttgacegee accegatag atgeetegae teegeateg gtacegeet egtaagae acaeggeet tegaagae 240ttggtatge caaaaggeet gaegetteeg acceedag atgeetegae ceaegeatt tggeeattg ttgacegee accegtatg atgeetegae ceaegeet 240ttggtatge caaaaggeet gaegeece accegtatg atgeetegae ceaegeatt aagettat etteaaegge agetacteeg atgeetega tegeagae tegeeteg 240ttggtatge caaaaggeet gaegeece accegtatg atgeetegae ceaegeet 240ttggtatge ctatgeece atteecega tgetgeet teaeaaag feegetteg 240ttggtatge caaaaggeet gaegeece tegeagae gtaaggatat geeageeteg 240ttggtatge caaaaggeet gaegeece accegtatg atgeetegae ceaegeete 240ttagaeegeet tegaaagee getteega atgeedee tegeageeteg 240ttagaeegeet tegaaagee getteega atgeetegae ceaegeete 240ttggtatge caaaaggeet gaege		
hr Asp Gly Pro Thr Leu Ile Glu Cys Phe Ile Gly Arg Glu Asp Cys 530 530 hr Glu Glu Leu Val Lys Trp Gly Lys Arg Val Ala Ala Ala Asn Ser 550 rg Lys Pro Val Asn Lys Leu Leu 565 210> SEQ ID NO 47 211> LENGTH: 1152 212> TYPE: DNA 213> ORGANISM: Zymomonas mobilis 400> SEQUENCE: 47 tggcttctt caactttta tattcctttc gtcaacgaaa tgggcgaagg ttcgcttgaa 60 aagcaatca aggatctaa cggcagcggc tttaaaaatg cgctgatcgt ttctgatgct 120 tcatgaaca aatccggtg tgtgaagcag gttgctgacc tgttgaaagc acagggtatt 180 attctgctg tttatgatgg cgttatgceg aacccgactg ttaccgcagt tctggaaggc 240 ttaagatce tgaaggataa caattcagae ttcgtcatc ccctcggtgg tggttctccc 300 atgactgcg ccaaagccat cgctctggt ggaaccaatg gtggtgaagt caaagactac 360 aaggtatcg acaaatctaa gaaacctgce ctgcetttg tgtcaatcaa cacgacgget 420 gtacggett ctgaaatgac gcgttctge atcatcactg atgaagtcg tcacgttagg 480 ttggtcatg tcaaaagcat gacgccgce accggtatg atgctctgac ctacgttagg 480 ttggtcatg tcaaaagcet gacgccgce accggtatg atgctctgac ccacgagget 420 gtacggett ctgaaatgac gcgttctge atcatccatg atgaagtcg tcacgttagg 480 ttggtcatg tcaaaagcet gacgccgce accggtatg atgctctgac ccacgaggt 480 ttggtcatg ccaaaaggect gacgccgce accggtatg atgctctgac ccacgattf 490 aagctatt cttcaacgge agctactceg atcaccgatg cttgcgcctt gaaggctgeg 400 aagctatg ctaagaatct gaagaccgt tgcgacaacg gtaaggatat gccagctgg 400 aagctatg ctatgccca attcccgc ggtatggcet tcaacaacg ttcgttggt 400 aagctatg ctatgccca ttcccgc ggtatggcet tcaacaacg ttcgcttgg 400 aagctatg ctatggcta ccagttgge ggtatacaa acctgccga tggtgtctge 400 aagctggt ttgttgctat gggtctcgat atcgccaatc tcggtgataa agaaggcga 400 aagcacgttg gtgtgctat gggtctcgat atcgccaatc tcggtgataa agaaggcga 400		
530535540hr Glu Glu Leu Val Lys Trp Gly Lys Arg Val Ala Ala Ala Ala Asn Ser 550560rg Lys Pro Val Asn Lys Leu Leu 565555210> SEQ ID NO 47 211> LENGTH: 1152 212> TYPE: DNA 213> ORGANISM: Zymomonas mobilis400> SEQUENCE: 47tggcttctt caacttttta tattcctttc gtcaacgaaa tgggcgaagg ttcgcttgaa60aagcaatca aggatcttaa cggcagegge tttaaaaatg cgctgatcgt ttctgatgct120tcatgaaca aatccggtgt tgtgaagcag gttgctgacc tgttgaaagc acagggtatt180attctgctg tttatgatgg cgttatgceg aacccgactg ttaccgcagt tctggaaggc240ttaagatce tgaaggataa caattcagae ttegtcatct coctcggtgg tggttctccc300atgactgeg ccaaagccat cgctcggtc gcaaccaatg gtggtgaagt caaagactag360adgacgtt tggaagcag dtggtttcg tcaacgatag tteggagge240ttaagatce tgaaggataa caattcagae ttegtcatct coctcggtgg tggttctccc300atggcatgeg ccaaagccat cgctcggtc gcaaccaatg gtggtgaagt caaagactag360aaggtatg caaaatctaa gaacctgce ctgcctttga tgtcaatcaa cacgacgget420gtacggett ctgaaatgae gegtttctge atcatcactg atgaagtceg tcacgttagg420aggcatgg ctaaagact gacgccgce accggtatgg atgctcgae ccacgactt360aaggtatg caaaaggect gacgcgcge tgcaacag gtaaggtat gcacgtcgg370aagtctat cttcaacgge agetactceg atgacged ctagacgacg ttegetgae370370371371372373373374374374374374374374 </td <td></td> <td></td>		
15 550 555 560 rg Lys Pro Val Asm Lys Leu Leu 565 560 565 560 210> SEQ ID NO 47 1152 212 77PE: DNA 213> ORGANISM: Zymomonas mobilis 60 400> SEQUENCE: 47 47 120 120 120 120 ccatgaaca aatccggtgt tgtgaagcag gttgctgacc tgttgaaagc acagggtatt 180 180 adgcaatca aggatcttaa cggcagcggc tttaaaaatg cgctgatcgt ttctgaaggc 240 ccatgaaca aatccggtgt tgtgaagcag gttgctgacc tgttgaaagc acagggtatt 180 attctgctg tttatgatgg cgttatgccg aacccgactg ttaccgcagt tctggaaggc 240 ctaagatcc tgaaggataa caattcagac ttcgtcatct ccctcggtgg tggttctccc 300 atggtatcg ccaaagccat cgctctggtc gcaaccaatg gtggtgaagt caaagactac 360 aggtatcg ccaaagccat cgctctggtc gtacccatg atgaagtccg tcacgttaag 480 cggccattg ttgacegtca cgttacccg atggtttcg tcaacgaact tctgtgatg 540 ctggtatge caaaaggcct gacgcgcgc accggtatg atgetctgac ccacgactt 600 caagctatg ctaagaatct gaagaccgc tgcgccgca accggtatg atgetctgac ccacgatg 480 cggccattg ttgacegtca cgttacccg atggtttcg tcaacgaatc tgatggcg 600 caaggtatg ctaagaatct gaagaccgc tgcgccgca accggtatg atgctggcc tgcacgatgg 660 ccaaggttg ctaagaatct gaagaccgcg		
rg Lys Pro Val Asn Lys Leu Leu 565 210> SEQ ID NO 47 211> LENGTH: 1152 212> TYPE: DNA 213> ORGANISM: Zymomonas mobilis 200> SEQUENCE: 47 200 SEQUENCE:		
565 210> SEQ ID NO 47 211> LENGTH: 1152 212> TYPE: DNA 213> ORGANISM: Zymomonas mobilis 200> SEQUENCE: 47 233 240 240 241 241 241 241 241 241 241 241		
<pre>11> LENGTH: 1152 12> TYPE: DNA 13> ORGANISM: Zymomonas mobilis 00> SEQUENCE: 47 ggcttctt caacttttta tattcctttc gtcaacgaaa tgggcgaagg ttcgcttgaa 60 agcaatca aggatcttaa cggcagcggc tttaaaaatg cgctgatcgt ttctgatgct 120 catgaaca aatccggtgt tgtgaagcag gttgctgacc tgttgaaagc acagggtatt 180 ttctgctg tttatgatgg cgttatgccg aacccgactg ttaccgcagt tctggaaggc 240 taagatcc tgaaggataa caattcagac ttcgtcatct ccctcggtgg tggttctccc 300 tgactgg ccaaagccat cgctctggt gcaaccaatg gtggtgaagt caaagactac 360 aggtatcg acaaatctaa gaaacctgcc ctgcctttga tgtcaatcaa cacgacggct 420 tacggctt ctgaaatgac gcgtttctge atcatcactg atgaagtccg tcacgttaag 480 ggccattg ttgacegtca cgttacccg atggttcg tcaacgate tctgttgatg 540 tggtatgc caaaaggcct gaccaccg atggttcg tcaacgate tctgttgatg 540 tggtatgc caaaaggcct gacagcgcc accggtatgg atgctctgac ccacgcattt 600 agcttatt cttcaacggc agctactccg atcaccgatg cttgcgcctt gaaggctgcg 660 catgatcg ctaagaatct gaagaccgt tgcgacacag gtaaggata gccagtcgt 720 agctatgg ctatgccca attcctcgct ggtatggcc tcaacaacg ttcgcttgg 780 tgtcccatg ctatggctca ccagttgggc ggctactaca acctgccga tggtgtctgc 840 cgctgttc tgcttccga tgtctggc tatacccg atcgccatc ctgtcgtg tggtcgtcg 900 agacgttg gtgttgctat gggtctcgat atcgccaatc tcggtgataa gaaggccg 960 agccaca ttcaggctg tcgcgatctg gctgcttca ttggtattcc agcaatcg 1020</pre>		
<pre>H1> LENGTH: 1152 H2> TYPE: DNA H3> ORGANISM: Zymomonas mobilis H3> ORGANISM: Zymomonas mobilis H3> ORGANISM: Zymomonas mobilis H3> SEQUENCE: 47 H3> Gegetttt caactttta tattcette gteaacgaaa tgggegaagg ttegettgaa acaggaatea aggatettaa eggeagegge tttaaaaatg egetgategt ttetgatget 120 Haageaatea aggatettaa eggeagegge tttaaaaatg egetgategt ttetgatget 120 Haageaatea agteeggtg tgtgageeg gttgetgaee tgttgaaage acagggtatt 180 Httetgetg tttatgatgg egttatgeeg aaceegaetg ttacegeagt teeggaagge 240 Haagatee tgaaggataa caatteagae ttegteatet eceteggtg tggtteteee 300 Htgaetgeg ecaaageeat egetetgge geaaceaatg gtggtgaagt caaagaetae 360 Haggtateg acaaatetaa gaaacetgee etgeettga tgteaateaa caegaegget 420 Haeggeett etgaaatgae gegtteege ateateaetg atgaagteeg teaegtaag 480 Heggeeattg ttgaeegtea egetaeceeg atggtteeg teaegatee teegttgatg 540 Heggeeattg ecaaaaggeet gaeegeege aceggtatgg atgeeettga ecaegaetg 660 Hageetatt etteaaegge agetaeteeg ateaecegatg ettgegeett gaaggetgeg 660 Hageetatt etteaaegge agetaeteeg ateaecegatg ettgegeett gaaggetgeg 720 Hageetatg etaagaatet gaagaeeget tgegaeaaeg gtaaggatat geeageteg 720 Hageetatg etaaggetea eegttegge ggetaetaea aceegeege tegetegtg 780 Hageetatg ettatgeeea tgeteege ggeteetaa aceegeege tegetege 900 Hageetgte tgetteegea tgteegget tataaceee tegetgataa agaaggeega 960 Hageetgtte tgetteegea tgteeggateg geegeteeta teggtgataa agaaggeega 960 Hageetgtte tgetteegea tgteeggateg geegetee teggtgataa agaaggeega 960 Hageetgtte tegegatetg eggeteegg getgetteea teggtgataa agaaggeega 960 Hageetgtte tegegatetg getgeteegg getgetteea teggtgataa agaaggeega 960 Hageetgtte tegegatetg eggeteeggateg getgetteea teggtgataa agaaggeega 960 Hageetgtte tegegatetg tegegatetg getgetteea teggtgatae agaaggeega 960 Hageetgtte tegegatetg eggeteeggateg getgetteea teggtgatae agaaggeega 960 Hageetgtte tegegatetg eggetteeggateggetteea teggtgatee ageaaateeg 1020</pre>		
13> ORGANISM: Zymomonas mobilis 200> SEQUENCE: 47 2990ttett caactttta tatteette gteaaegaaa tgggegaagg ttegettgaa 60 aageaatea aggatettaa eggeagegge tttaaaaatg egetgategt teetgatget 120 catgaaca aateeggtg tgtgaageag gtgetgaee tgttgaaage acagggtatt 180 teetgetg tttatgatgg egttatgeeg aaceegaetg tteeggaagge 240 taagatee tgaaggataa caatteagae teegteatet eceteggtg tggtteteee 300 teagaeteg ecaaageeat egetetggte geaaecaatg gtggtgaagt caaagaetae 360 aggtateg acaaatetaa gaaaeetgee etgeettga tgteaateaa caegaegget 420 taeggett etgaaatgae gegttetge ateateaetg atgatggtaagt caaagaetae 360 aggtateg acaaatetaa gaaaeetgee etgeettga tgteaateaa caegaegget 420 taeggett etgaaatgae gegttetge ateateaetg atgaagteeg teaegtaag 480 ggeeattg ttgacegtea egttaeeeg atggtteeg teaaegatee tetgttgatg 540 taggtateg caaaaggeet gaeegeegee aceggtatgg atgetetgae ceaegeatt 600 aagettatt etteaaegge agetaeteeg ateaeegatg ettegeeet gaaggetgeg 660 eatgateg etaagaatet gaagaeeget tgegaeaaeg gtaaggatat geeageteg 720 aagetatgg ettatgeeea atteetget ggtatgeet teaaeaaege ttegettggt 780 egetgtte tgetteegea tgttetgget tataaegeet etgetgge tggtegtee 840 egetgtte tgetteegea tgttetgget tataaegeet etgetggte tggtegtetge 840 eagetatg etatgeeea tgteetget ategeeate etgetgge tggtegtee 900 aageagttg gtgttgeea tggteeget tataaegeet etgetgget tggtegtetg 900 aageagttg gtgttgeeat gggeteegat ategeeaate teggtgataa agaaggeega 960	1> LENGTH: 1152	
ggettett eaacttttta tatteettte gteaacgaaa tgggegaagg ttegettgaa 60 ageaatea aggatettaa eggeagegge tttaaaaatg egetgategt ttetgatget 120 eatgaaca aateeggtgt tgtgaageag gttgetgace tgttgaaage acagggtatt 180 etetgetg tttatgatgg egttatgeeg aaceegaetg ttacegeagt tetggaagge 240 eaagatee tgaaggataa caatteagae ttegteatet eeeteggtgg tggtteteee 300 eggetgeg eeaaageeat egetetggte geaaceagt gtggtgaagt eaaagaetae 360 aggtateg acaaatetaa gaaacetgee etgeettga tgteaatea eaegaegget 420 eaeggett etgaaatgae gegttetge ateateeeg atggagteeg teaegtaag 480 eggetatg teaaaageet gaeegeege aceeggatgg atgetetgae eeaegaetg 540 eaggtatge eaaaageet gaeegeege aceeggatgg atgetetgae ceaegeatt 600 aggetatg etaaagae gegtteeg ateaeega gtaggeegt gaaggeegg 660 eaggetatg etaagaatet gaagaeeget tgegaeaeg gtagggatat geeageteg 720 ageetatg etaagaatet gaagaeeget tgegaeaeg gtagggatat geeageteg 780 eggetatgg etaaggeea ateeetege ggtatggee teaeaaaege ttegettggt 780 eggetgte tgetteegea tgteetge tataaeege teggtegteg 840 egetgtte tgetteegea tgteetgge tataaeege etggtegteg 900 agaeegttg gtgttgetat gggtetegat ateeceaa eetggetgg tggtegtetg 900 agaeegttg gtgttgetat gggtetegat ategeeaate teggtgataa agaaggeega 960 agaeeacea tteaggetgt tegegatetg getgetteea ttggtatee ageaaatetg 1020		
agcaatca aggatettaa eggeagegge tttaaaaatg egetgategt ttetgatget 120 catgaaca aateeggtgt tgtgaageag gttgetgaee tgttgaaage acagggtatt 180 ttetgetg tttatgatgg egttatgeeg aaceegaetg ttaeegeagt tetggaagge 240 taagatee tgaaggataa caatteagae ttegteatet eeeteggtgg tggtteteee 300 tgaetgeg ecaaageeat egetetggte geaaceaatg gtggtgaagt eaaagaetae 360 aggtateg acaaatetaa gaaacetgee etgeettga tgteaateaa eaegaegget 420 taeggett etgaaatgee gegttetge ateateaetg atgaagteeg teaegtaag 480 ggeeattg ttgaeegtea egttaeeeg atggtteeg teaaegatee tetgttgatg 540 tggtatge caaaaggeet gaeegeege aceggtatgg atgetetgae tetgttgatg 540 tggtatge caaaaggeet gaeegeege aceggtatgg atgetetge teaegtaag 660 aggetatt etteaaegge agetaeteeg ateaeegatg ettgegeett gaaggetgeg 660 catgateg etaagaatet gaagaeeget tgegaeaaeg gtaaggatat geeagetge 720 ageetatg etatgeeea atteeege ggtatggeet teaaeaaege ttegettggt 780 tgteeatg etatgeeea atteetget ggtatggeet teaaeaaege teggtetge 840 egetgtte tgetteegea tgttetgge tataaegeet etgetggte ggtegtetge 900 agaeegttg gtgttgeta gggtetegat ategeeaate teggtgataa agaaggeega 960 ageeacea tteaggetgt tegegateg getgeteea teggtgataa agaaggeega 960 ageeacea tteaggetgt tegegateg getgeteea teggtattee ageaaatetg 1020	0> SEQUENCE: 47	
Catagaacaaatcoggtgttgtgaagcaggttgctgacctgttgaaagcacagggtattattotgetgttatgatggcgttatgecgaaccegactgttacegcagttetggaaggcattotgetgttatgatggcgttatgecgaaccegactgttacegcagttetggaaggcatgactetgaaggataacaatteagacttegtcatetceeteggtggtggtteteeceatgactgegceaaagecatcgetetggtegeaacceatggtggtgaagtcaaagactac360aaggtategacaaatetaagaaacetgeectgeetttgatgteaateaacaagactac420gtacggettetgaaatgaegegtttetgeateateactgatgaagteegteaeggget420gtacggettetgaaatgaegegtttetgeateateactgatgaagteegteaeggget420gtacggettetgaaatgaegegtttetgeateateactgatgaagteegteaeggget420gtacggettetgaaatgaegegtttetgeateateactgatgaagteegteaeggget420gtacggettetgaaatgaegegtttetgeateateactgatgaagteegteaeggget420gtacggettetgaaatgaegegtttetgeatgateegteaeggget420gtacggettetgaaatgaegegttteegatgateegteaeggetge420gtacggettetgaaatgaegegttteegatgateegteaeggetge540ctggecattgttgacegecaccegetggteaeggetgefe600aagettatgetaaaaggeegaagaeeggetggegteeggetgefe720aagetatggetaggeteggtatggeeteaeaca	gcttett caaettttta tatteettte gteaaegaaa tgggegaagg ttegettgaa	60
ttetgetg tttatgatgg egttatgeeg aaceegaetg ttacegeagt tetggaagge 240 taagatee tgaaggataa caatteagae ttegteatet eeeteggtgg tggtteteee 300 tgaetgeg eeaaageeat egetetggte geaaceaatg gtggtgaagt eaaagaetae 360 aggtateg acaaatetaa gaaacetgee etgeettga tgteaateaa eaegaegget 420 taeggett etgaaatgae gegtttetge ateateaetg atgaagteeg teaegtaag 480 ggeeattg ttgaeegtea egttaceeg atggtteeg teaaegatee tetgttgatg 540 tggtatge eaaaaggeet gaeegeegee aceggtatgg atgetetgae eeaegatt 600 agettatt etteaaegge agetaeteeg ateaecegat ettgegeett gaaggetgeg 660 eatgateg etaagaatet gaagaeeget tgegaeaaeg gtaaggatat geeagetegt 720 agetatgg ettatgeeea atteeteget ggtatggeet teaaecaege ttegettggt 780 tgteeatg etatggetea eeagttgge ggetaetaea acetgeegea tggtgtetge 840 egetgtte tgetteegea tgtteegge ggetaetaea acetgeegea tggtgtetge 900 agaeegttg gtgttgetat gggtetegat ategeeate teggtgataa agaaggeega 960 ageeacea tteaggetgt tegegatetg getgetteea ttggtattee ageaaatetg 1020	gcaatca aggatettaa eggeagegge tttaaaaatg egetgategt ttetgatget	120
taagatee tgaaggataa caatteagae ttegteatet eettegtegte gegetetee 300 atgaetgeg eeaaageeat egetetggte geaaceaatg gtggtgaagt eaaagaetae 360 aaggtateg acaaatetaa gaaacetgee etgeetttga tgteaateaa eaegaegget 420 ataeggett etgaaatgae gegtttetge ateateaetg atgaagteeg teaegttaag 480 ggeeattg ttgaeegtea egttaeceeg atggttteeg teaaegatee tetgttgatg 540 atggtatge eaaaaggeet gaeegeegee aceggtatgg atgetetgae eeaegatt 600 aageettatt etteaaegge agetaeteeg ateaecegat getgeeett gaaggetgeg 660 aeatgateg etaagaatet gaagaeeget tgegaeaaeg gtaaggatat geeagetegt 720 aageetatg etatgeeea ateeetege ggtatggeet teaaeaege ttegettggt 780 atggteatg etatgeeea ateeetege ggetaetee aeetgeege teaeettget 9840 aegeetgte tgetteegea tgttetgget tataaeegeet etgetegte 9900 aagaegttg gtgttgetat gggtetegat ategeeaate teggtgataa agaaggeega 960 aageeaeea tteaggetgt tegegatetg getgetteea ttggtattee ageaaatetg 1020	atgaaca aatccggtgt tgtgaagcag gttgctgacc tgttgaaagc acagggtatt	180
tgactgcg ccaaagccat cgctctggtc gcaaccaatg gtggtgaagt caaagactac 360 aggtatcg acaaatctaa gaaacctgcc ctgcctttga tgtcaatcaa cacgacggct 420 tacggctt ctgaaatgac gcgtttctgc atcatcactg atgaagtccg tcacgttaag 480 ggccattg ttgaccgtca cgttaccccg atggtttccg tcaacgatcc tctgttgatg 540 tggtatgc caaaaggcct gaccgccgcc accggtatgg atgctctgac ccacgcattt 600 agcttatt cttcaacggc agctactccg atcaccgatg cttgcgcctt gaaggctgcg 660 catgatcg ctaagaatct gaagaccgct tgcgacaacg gtaaggatat gccagctcgt 720 agctatgg cttatgccca attecteget ggtatggcct tcaaccaacg ttcgcttggt 780 tgtccatg ctatggctca ccagttggc ggctactaca acctgccgca tggtgtctgc 840 cgctgttc tgcttccgca tgttctggc tataacgcct ctgtcgttg tggtcgtcg 900 agacgttg gtgttgctat gggtctcgat atcgccaatc tcggtgataa agaaggcgca 960 agccacca ttcaggctgt tcgcgatctg gctgcttcca ttggtattcc agcaaatctg 1020	tetgetg tttatgatgg egttatgeeg aaceegaetg ttaeegeagt tetggaagge	240
aggtateg acaaatetaa gaaacetgee etgeetttga tgteaateaa eaegaegget 420 taeggett etgaaatgae gegtttetge ateateaetg atgaagteeg teaegttaag 480 ggeeattg ttgaeegtea egttaeeeeg atggtteeg teaaegatee tetgttgatg 540 tggtatge eaaaaggeet gaeegeegee aceggtatgg atgetetgae eeaegeattt 600 agettatt etteaaegge agetaeteeg ateaeegatg ettgegeett gaaggetgeg 660 eatgateg etaagaatet gaagaeeget tgegaeaaeg gtaaggatat geeagetegt 720 agetatgg ettatgeeea atteeteget ggtatggeet teaaeagget tegetetggt 780 tgteeatg etatggetea eeagttgge ggetaetaea aeetgeegea tggtgtetge 840 egetgtte tgetteegea tgteegget tataaeegeet etgetgtge tggtegtetg 900 agaeegttg gtgttgetat gggtetegat ategeeaate teggtgataa agaaggeega 960 ageeeae tteaggeegt tegegatetg getgetteea ttggtattee ageaaatetg 1020	aagatcc tgaaggataa caattcagac ttcgtcatct ccctcggtgg tggttctccc	300
gtacggettctgaaatgacgcgtttetgeateateaetgatgaagteegteaecgttaagggeeattgttgacegteacgttacecegatggttteegteaaegateetetgttgatgstggtatgecaaaaggeetgacegeegeeaccggtatggatgetetgae660aagettattetteaaeggegacgaeegeegacggeegeeaccggtatgg660caatgategettaagaatetgaagaeegettgegaeaaeggtaaggatatgeeagetegeaagetatggettatgeecaatteetegetgga720aagetatggettatgeecaatteetegetgga720aagetatggettatgeecaatteetegetgga720aagetatggettatgeecaatteetegetgga720aagetatggettatgeecaatteetegetgga780atgteeatettaggeteggatatggeeteaaeaaegettegettggtatgteeatettaggeteaecagttgggeggetaetaeaacetgeegaaagaegttgettetggeteaecagttggeetataaegeetetgetegeaagaegttggtgttgetatgggtetegatategeeaategeaaatetgaagaecaceatteaggetgttegegatetggetgetteegeaaatetgaagaecaceatteaggetgttegegatetggetgetteeagaaatetgaagaecaceatteaggetgtgetgetteeategeaaatetg1020	gactgcg ccaaagccat cgctctggtc gcaaccaatg gtggtgaagt caaagactac	360
ggccattg ttgaccgtca cgttaccccg atggtttccg tcaacgatcc tctgttgatg 540 tggtatgc caaaaggcct gaccgccgcc accggtatgg atgctctgac ccacgcattt 600 agcttatt cttcaacggc agctactccg atcaccgatg cttgcgcctt gaaggctgcg 660 catgatcg ctaagaatct gaagaccgct tgcgacaacg gtaaggatat gccagctcgt 720 agctatgg cttatgccca attcctcgct ggtatggcct tcaacaacgc ttcgcttggt 780 tgtccatg ctatggctca ccagttgggc ggctactaca acctgccgca tggtgtctgc 840 cgctgttc tgcttccgca tgtctggct tataacgcct ctgtcgttgc tggtcgtctg 900 agacgttg gtgttgctat gggtctcgat atcgccaatc tcggtgataa agaaggcgca 960 agccacca ttcaggctgt tcgcgatctg gctgcttcca ttggtattcc agcaaatctg 1020	ggtatcg acaaatctaa gaaacctgcc ctgcctttga tgtcaatcaa cacgacggct	420
tggtatge caaaaggeet gacegeegee aceggtatgg atgetetgae ceaegeattt 600 agettatt etteaaegge agetaeteeg ateaeegatg ettgegeett gaaggetgeg 660 eatgateg etaagaatet gaagaeeget tgegaeaaeg gtaaggatat geeagetegt 720 agetatgg ettatgeeea atteeteget ggtatggeet teaaeaaege ttegettggt 780 tgteeatg etatggetea eeagttggge ggetaetaea acetgeegea tggtgtetge 840 egetgtte tgetteegea tgttetgget tataaegeet etgtegttge tggtegtetg 900 agaeegttg gtgttgetat gggtetegat ategeeaate teggtgataa agaaggeegea 960 ageeaeea tteaggetgt tegegatetg getgetteea ttggtattee ageaaatetg 1020	acggett etgaaatgae gegtttetge ateateaetg atgaagteeg teaegttaag	480
aagettatt etteaaegge agetaeteeg ateaeegatg ettgegeett gaaggetgeg 660 eeatgateg etaagaatet gaagaeeget tgegacaaeg gtaaggatat geeagetegt 720 aagetatgg ettatgeeea atteeteget ggtatggeet teaaeaaege ttegettggt 780 atgteeatg etatggetea eeagttggge ggetaetaea acetgeegea tggtgtetge 840 aegeetgtte tgetteegea tgttetgget tataaegeet etgetgtege tggtegtetg 900 aagaegttg gtgttgetat gggtetegat ategeeaate teggtgataa agaaggegea 960 aageeacea tteaggetgt tegegatetg getgetteea ttggtattee ageaaatetg 1020	gccattg ttgaccgtca cgttaccccg atggtttccg tcaacgatcc tctgttgatg	540
ccatgatcg ctaagaatct gaagaccgct tgcgacaacg gtaaggatat gccagctcgt 720 aagctatgg cttatgccca atteeteget ggtatggeet teaacaacge ttegettggt 780 atgteeatg etatggetea ecagttggge ggetaetaea acetgeegea tggtgtetge 840 acgetgtte tgetteegea tgttetgget tataacgeet etgtegttge tggtegtetg 900 aagaegttg gtgttgetat gggtetegat ategeeaate teggtgataa agaaggegea 960 aageeacea tteaggetgt tegegatetg getgetteea ttggtattee ageaaatetg 1020	ggtatge caaaaggeet gaeegeegee aceggtatgg atgetetgae ceaegeattt	600
aagctatgg cttatgccca atteeteget ggtatggeet teaacaaege ttegettggt 780 atgteeatg etatggetea eeagttggge ggetaetaea acetgeegea tggtgtetge 840 aegeegtte tgetteegea tgttetgget tataaegeet etgtegttge tggtegtetg 900 aagaegttg gtgttgetat gggtetegat ategeeaate teggtgataa agaaggegea 960 aageeacea tteaggetgt tegegatetg getgetteea ttggtattee ageaaatetg 1020	gettatt etteaaegge agetaeteeg ateaeegatg ettgegeett gaaggetgeg	660
atgtccatg ctatggctca ccagttgggc ggctactaca acctgccgca tggtgtctgc 840 acgctgttc tgcttccgca tgttctggct tataacgcct ctgtcgttgc tggtcgtctg 900 aagacgttg gtgttgctat gggtctcgat atcgccaatc tcggtgataa agaaggcgca 960 aagccacca ttcaggctgt tcgcgatctg gctgcttcca ttggtattcc agcaaatctg 1020	atgatcg ctaagaatct gaagaccgct tgcgacaacg gtaaggatat gccagctcgt	720
acgetgtte tgetteegea tgttetgget tataaegeet etgtegttge tggtegtetg 900 aagaegttg gtgttgetat gggtetegat ategeeaate teggtgataa agaaggegea 960 aageeacea tteaggetgt tegegatetg getgetteea ttggtattee ageaaatetg 1020	gctatgg cttatgccca attcctcgct ggtatggcct tcaacaacgc ttcgcttggt	780
aagacgttg gtgttgctat gggtctcgat atcgccaatc tcggtgataa agaaggcgca 960 aagccacca ttcaggctgt tcgcgatctg gctgcttcca ttggtattcc agcaaatctg 1020	gtocatg ctatggotca ccagttgggo ggotactaca acctgoogca tggtgtotgo	840
aagccacca ttcaggctgt tcgcgatctg gctgcttcca ttggtattcc agcaaatctg 1020	getgtte tgetteegea tgttetgget tataaegeet etgtegttge tggtegtetg	900
	gacgttg gtgttgctat gggtctcgat atcgccaatc tcggtgataa agaaggcgca	960
		1020
jettgtgete tgaccaacce gegteagggt gateagaaag aagttgaaga actetteetg 1140		
agegetttet aa 1152	juliu aa	1122

<400> SEQUENCE: 48

Met 1	Ala	Ser	Ser	Thr 5	Phe	Tyr	Ile	Pro	Phe 10	Val	Asn	Glu	Met	Gly 15	Glu
Gly	Ser	Leu	Glu 20	LÀa	Ala	Ile	Lys	Asp 25	Leu	Asn	Gly	Ser	Gly 30	Phe	Lys
Asn	Ala	Leu 35	Ile	Val	Ser	Asp	Ala 40	Phe	Met	Asn	Lys	Ser 45	Gly	Val	Val
Lys	Gln 50	Val	Ala	Asp	Leu	Leu 55	Гла	Ala	Gln	Gly	Ile 60	Asn	Ser	Ala	Val
Tyr 65	Asp	Gly	Val	Met	Pro 70	Asn	Pro	Thr	Val	Thr 75	Ala	Val	Leu	Glu	Gly 80
Leu	Lys	Ile	Leu	Lys 85	Asp	Asn	Asn	Ser	Asp 90	Phe	Val	Ile	Ser	Leu 95	Gly
Gly	Gly	Ser	Pro 100	His	Asp	Сув	Ala	Lys 105	Ala	Ile	Ala	Leu	Val 110	Ala	Thr
Asn	Gly	Gly 115	Glu	Val	LÀa	Asp	Tyr 120	Glu	Gly	Ile	Asp	Lys 125	Ser	Lys	Lys
Pro	Ala 130	Leu	Pro	Leu	Met	Ser 135	Ile	Asn	Thr	Thr	Ala 140	Gly	Thr	Ala	Ser
Glu 145	Met	Thr	Arg	Phe	Суз 150	Ile	Ile	Thr	Asp	Glu 155	Val	Arg	His	Val	Lys 160
Met	Ala	Ile	Val	Asp 165	Arg	His	Val	Thr	Pro 170	Met	Val	Ser	Val	Asn 175	Asp
Pro	Leu	Leu	Met 180	Val	Gly	Met	Pro	Lys 185	Gly	Leu	Thr	Ala	Ala 190	Thr	Gly
Met	Asp	Ala 195	Leu	Thr	His	Ala	Phe 200	Glu	Ala	Tyr	Ser	Ser 205	Thr	Ala	Ala
Thr	Pro 210	Ile	Thr	Asp	Ala	Cys 215	Ala	Leu	Lys	Ala	Ala 220	Ser	Met	Ile	Ala
Lys 225	Asn	Leu	Lys	Thr	Ala 230	СЛа	Asp	Asn	Gly	Lys 235	Asp	Met	Pro	Ala	Arg 240
Glu	Ala	Met	Ala	Tyr 245	Ala	Gln	Phe	Leu	Ala 250	Gly	Met	Ala	Phe	Asn 255	Asn
Ala	Ser	Leu	Gly 260	Tyr	Val	His	Ala	Met 265	Ala	His	Gln	Leu	Gly 270	Gly	Tyr
Tyr	Asn	Leu 275	Pro	His	Gly	Val	Cys 280	Asn	Ala	Val	Leu	Leu 285	Pro	His	Val
Leu	Ala 290	Tyr	Asn	Ala	Ser	Val 295	Val	Ala	Gly	Arg	Leu 300	Lys	Asp	Val	Gly
Val 305	Ala	Met	Gly	Leu	Asp 310	Ile	Ala	Asn	Leu	Gly 315	Asp	Lys	Glu	Gly	Ala 320
Glu	Ala	Thr	Ile	Gln 325	Ala	Val	Arg	Asp	Leu 330	Ala	Ala	Ser	Ile	Gly 335	Ile
Pro	Ala	Asn	Leu 340	Thr	Glu	Leu	Gly	Ala 345	Lys	Lys	Glu	Asp	Val 350	Pro	Leu
Leu	Ala	Asp 355	His	Ala	Leu	Lys	Asp 360	Ala	Cys	Ala	Leu	Thr 365	Asn	Pro	Arg
Gln	Gly 370	Asp	Gln	Гла	Glu	Val 375	Glu	Glu	Leu	Phe	Leu 380	Ser	Ala	Phe	

10

30

45

We claim:

1. A microorganism comprising activity-reducing or activity-ablating mutations in endogenous genes encoding pyruvate dehydrogenase, pyruvate oxidase, succinate dehydrogenase, and 6-phosphogluconate dehydrogenase.

2. The microorganism of claim 1, further comprising an activity-reducing or activity-ablating mutation in an endogenous gene encoding an enzyme selected from the group consisting of a pyruvate formate lyase and a pyruvate formate lyase activating enzyme.

3. The microorganism of claim **1**, wherein the microorganism comprises one or more recombinant genes encoding one or more enzymes selected from the group consisting of a pyruvate decarboxylase and an alcohol dehydrogenase.

4. The microorganism of claim **3**, further comprising an ¹⁵ activity-reducing or activity-ablating mutation in an endogenous gene encoding an enzyme selected from the group consisting of a pyruvate formate lyase and a pyruvate formate lyase activating enzyme.

5. The microorganism of claim **1**, wherein the activity-²⁰ reducing or activity-ablating mutations in the endogenous genes are independently selected from the group consisting of a nucleotide substitution in the endogenous gene, a nucleotide insertion in the endogenous gene, a partial deletion of the endogenous gene, and a complete deletion of the ²⁵ endogenous gene.

6. The microorganism of claim 1, wherein the microorganism is a bacterium or a yeast.

7. The microorganism of claim 1, wherein the microorganism is a bacterium.

8. The microorganism of claim **1**, wherein the microorganism is produced by sequentially culturing a precursor microorganism in media comprising decreasing concentrations of acetate, wherein the precursor microorganism comprises the activity-reducing or activity-ablating mutations of ³⁵ the microorganism, and wherein the microorganism produced from sequentially culturing the precursor microorganism exhibits one or more of increased growth rate compared to the precursor microorganism and increased pyruvate production compared to the precursor microorganism. ⁴⁰

9. The microorganism of claim 8, wherein the concentrations of acetate in the media in which the precursor microorganism is sequentially cultured to produce the microorganism range from about 0.1 mg/L acetate to about 3 g/L acetate.

10. A method for producing a chemical comprising culturing the microorganism as recited in claim **1**.

11. The method of claim 10, wherein the microorganism further comprises:

- an activity-reducing or activity-ablating mutation in an endogenous gene encoding an enzyme selected from the group consisting of a pyruvate formate lyase and a pyruvate formate lyase activating enzyme; and
- one or more recombinant genes encoding one or more enzymes selected from the group consisting of a pyruvate decarboxylase and an alcohol dehydrogenase.

12. The method of claim 10, wherein the culturing comprises culturing the microorganism in a medium, the chemical is selected from the group consisting of pyruvate and ethanol, and the method further comprises purifying the chemical from the medium.

13. The method of claim **10**, wherein the culturing comprises culturing the microorganism in a medium comprising a biomass hydrolysate.

14. The microorganism of claim 1, further comprising an activity-reducing or activity-ablating mutation in an endogenous gene encoding a pyruvate formate lyase.

15. The microorganism of claim **14**, further comprising recombinant genes encoding a pyruvate decarboxylase and an alcohol dehydrogenase.

16. The microorganism of claim **1**, further comprising an activity-reducing or activity-ablating mutation in an endogenous gene encoding a pyruvate formate lyase activating enzyme.

17. The microorganism of claim **16**, further comprising recombinant genes encoding a pyruvate decarboxylase and an alcohol dehydrogenase.

18. The microorganism of claim **1**, further comprising recombinant genes encoding a pyruvate decarboxylase and an alcohol dehydrogenase.

19. The microorganism of claim **18**, further comprising an activity-reducing or activity-ablating mutation in an endogenous gene encoding an enzyme selected from the group consisting of a pyruvate formate lyase and a pyruvate formate lyase activating enzyme.

20. The method of claim **10**, wherein the microorganism $_{40}$ further comprises:

an activity-reducing or activity-ablating mutation in an endogenous gene encoding an enzyme selected from the group consisting of a pyruvate formate lyase and a pyruvate formate lyase activating enzyme; and

recombinant genes encoding a pyruvate decarboxylase and an alcohol dehydrogenase.

* * * * *