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1
APPARATUS AND METHOD FOR
BIAS-FREE BRANCH PREDICTION

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH

This invention was made with government support under
1318298 and 1116450 awarded by the National Science
Foundation. The government has certain rights in the inven-
tion.

BACKGROUND OF THE INVENTION

The present invention relates to computer processors, and
more particularly, to branch predictors for computer proces-
SOIS.

In computer architecture, a branch predictor is a digital
circuit that attempts to determine which direction a condi-
tional branch may follow in an instruction stream. Branch-
ing is usually implemented with a conditional jump instruc-
tion, and once encountered, a branch may be “taken” or “not
taken.” If taken, the instruction flow may continue in a first
direction, and if “not taken,” the instruction flow may
continue in a second direction. One example of a conditional
branch is an “if-then-else” structure used in computer pro-
gramming.

High-performance processors, which tend to be deeply
pipelined, typically rely on branch predictors to continu-
ously supply the core with instructions. Branch predictors
essentially improve the flow of instructions in the pipeline to
keep the pipeline full and maintain performance. Without
branch prediction, the processor would have to wait until the
conditional jump instruction has passed the execute stage
before the next instruction could enter the pipeline. Branch
predictors attempt to avoid this delay by predicting whether
the conditional jump is most likely to be taken or not taken.

Research around a class of predictors referred to as
neurally-inspired perceptron branch predictors has shown
certain improvements in prediction accuracy by exploiting
correlations in long branch histories. However, systems with
moderate hardware budgets, such as on the order of 32 to 64
KB, typically restrict such predictors from correlating
beyond 32 to 64 branches in a dynamic execution stream. As
some correlations may only become evident over larger
distances, such as on the order of 512 to 1024 branches
apart, such predictors are consequently limited in their
prediction ability.

Some attempts at correlating branches over larger dis-
tances have included increasing the branch prediction hard-
ware budget, such as to 1 MB, in an effort to track more
branches. However, such larger data structures undesirably
result in increased access latencies and increased power
consumption. Also, such larger data structures undesirably
cause increased training times for the neural-based percep-
tron predictors.

A need therefore exists to provide a branch predictor with
increased performance that eliminates one or more of the
foregoing disadvantages.

SUMMARY OF THE INVENTION

The inventors have recognized that “biased” conditional
branches, or branch instructions that are consistently skewed
toward one direction or outcome, serve little correlation
benefit for predicting the direction or outcome of “non-
biased” conditional branches. ‘“Non-biased” branches
resolve in both directions, whereas branches that display
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only one behavior during the execution of a program may be
considered “biased” branches. Biased conditional branches
merely reinforce a prediction decision already established by
correlation with a non-biased branch in the global history. As
such, biased conditional branches may be filtered from
limited hardware resources available to a branch predictor in
favor of non-biased conditional branches such that more
non-biased conditional branches may be captured over
larger separation distances. Accordingly, effective correla-
tions may be established much deeper in the global history
to provide greater prediction accuracy.

The inventors have also recognized that by tracking only
the latest occurrence of a “non-biased” conditional branches,
even more distant branch correlations, such as of the order
01 2000 branches deep, can be made. Consequently, predic-
tion accuracy can be further improved with increased opti-
mization.

In accordance with an embodiment of the invention, an
apparatus for branch prediction may comprise a branch
history buffer for capturing a plurality of conditional
branches provided by an instruction stream; a biased branch
filter for distinguishing between biased conditional branches
and non-biased conditional branches and permitting only the
non-biased conditional branches to be included in the branch
history buffer, wherein non-biased conditional branches
follow a first branch direction in a first instance during
execution of the instruction stream and follow a second
branch direction in a second instance during execution of the
instruction stream; and a correlation element for correlating
between non-biased conditional branches captured in the
branch history buffer to predict a direction for the pending
conditional branch.

A duplicate branch filter may also be included for detect-
ing a second non-biased conditional branch that is a dupli-
cate of a first non-biased conditional branch held in the
branch history buffer and causing the first non-biased con-
ditional branch to be evicted from the branch history buffer
in favor of the second non-biased conditional branch.

It is thus a feature of at least one embodiment of the
invention to capture even more distant branch correlations
and further improve prediction accuracy by only tracking the
most recent occurrence of a non-biased conditional branch.

Including a non-biased conditional branch in the branch
history buffer may result in a least-recently-seen non-biased
conditional branch to be evicted from the branch history
buffer.

It is thus a feature of at least one embodiment of the
invention to introduce simple changes to the branch predic-
tor’s circuit to minimize perturbations induced by the occur-
rences of newly detected non-biased branches in the branch
history buffer at runtime.

The biased branch filter may be configured to maintain a
branch status table for tracking conditional branches as
being at least one of a biased conditional branch and a
non-biased conditional branch.

It is thus a feature of at least one embodiment of the
invention to provide a data structure for tracking and quickly
referencing the states of encountered branches.

The correlation element may implement a neural-based
perceptron predictor, and the branch history buffer may
include some recent conditional branches regardless of their
biased or non-biased states to address perceptron predictor
artifacts during initial training phase.

It is thus a feature of at least one embodiment of the
invention to provide a branch prediction unit that improves
upon learning-based predictors and minimizes the impact of
initial training time.
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These particular objects and advantages may apply to
only some embodiments falling within the claims, and thus
do not define the scope of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

Preferred exemplary embodiments of the invention are
illustrated in the accompanying drawings in which like
reference numerals represent like parts throughout, and in
which:

FIG. 1 is a simplified block diagram of a computer
processor and system in accordance with an embodiment of
the invention;

FIG. 2 is a simplified block diagram of a branch predic-
tion unit in accordance with an embodiment of the inven-
tion;

FIG. 3 is a simplified block diagram of a control flow
graph in accordance with an embodiment of the invention;

FIG. 4 is a simplified block diagram of a finite state
machine for a branch prediction apparatus in accordance
with an embodiment of the invention;

FIG. 5 is a simplified schematic of a recency stack in
accordance with an embodiment of the invention;

FIG. 6 is a simplified schematic of a multi-stage predic-
tion system which may implement an embodiment of the
invention; and

FIG. 7 is a simplified schematic illustrating bias-free
history generation for the multi-stage prediction system of
FIG. 6.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

Retelling now to FIG. 1, an embodiment of the present
invention will be described in the exemplar context of a
computer system 10 and a processor 12. The processor 12
may be one of many processors in the computer system 10
and may include various interfaces and buses for commu-
nicating with external components, such as a cache 14, a
memory controller 16 and a main memory 18. The processor
12 includes core logic 20 providing a plurality of execution
units 22, which may be deeply pipelined, wide-issue execu-
tion units in a preferred embodiment. The processor 12 may
also include a local cache 24 containing an instruction
stream for processing and execution by the core logic 20 and
the execution units 22. The instruction stream may be
provided by hierarchical storage elements, including the
cache 14 and the main memory 18 as directed by the
memory controller 16, to achieve maximal performance as
understood in the art.

The processor 12 further includes a branch prediction unit
26 in communication with the core logic 20. The branch
prediction unit 26 may consider conditional branch instruc-
tions during execution flow, such as a conditional jump
instruction assembled from an “if-then-else” structure, and
process to determine directional outcomes for the condi-
tional branches. Accordingly, the branch prediction unit 26
may operate to steer instructions to the core logic 20 and the
execution units 22 corresponding to the predicted directional
outcome to continuously supply the core with instructions
and minimize processing delays.

In a preferred embodiment, the branch prediction unit 26
may implement a neurally-inspired perceptron predictor
providing “neural branch prediction,” although any suitable
type of branch predictor may be employed. A perceptron is
a learning device that takes a set of input values and
combines them with a set of weights learned through train-
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ing to produce an output value. Each weight represents the
degree of correlation between the behavior of a past branch
and the behavior of the branch being predicted. Positive
weights may represent positive correlation and negative
weights may represent negative correlation. To make a
prediction, each weight may contribute in proportion to its
magnitude in the following manner. If its corresponding
branch was taken, the weight may be added; otherwise the
weight may be subtracted. If the resulting sum is positive,
the branch may be predicted as “taken;” otherwise, the
branch may be predicted as “not taken.” The branch history
may use “1” to represent taken and “-1” to represent not
taken. The perceptrons may be trained according to a
learning rule that increments a weight when the branch
outcome agrees with the behavior of a past branch and
decrements the weight otherwise.

In various embodiments, the branch prediction unit 26
may implement various control and data structures, such as
history registers that track prior branch history, weight tables
that reflect relative weights or strengths of predictions,
and/or target data structures that store addresses that are
predicted to be targets. Accordingly, the branch prediction
unit 26 may exploit long histories with, essentially linear
resource growth.

Also, it will be appreciated that the branch prediction unit
26, though preferably implemented in a processor, may be
implemented in other structures in which branch prediction
may be desirable, including for example, microcontrollers,
programmable logic, and so forth.

Referring now to FIG. 2, a simplified block diagram of the
branch prediction unit 26 is provided in accordance with an
embodiment of the invention. A branch history buffer 30
captures a plurality of conditional branches provided by an
instruction stream. The branch history buffer 30 may com-
prise an address array (“A”) 32 and a position array (“P”) 34.
The address array 32 provides addresses for past executed
non-biased conditional branches. If a non-biased conditional
branch is executed, the branch’s address is shifted into the
first position of the address array 32. The address array 32
is not updated with respect to biased branches. The position
array 34 provides the absolute distance in the past global
history for corresponding non-biased branches captured in
the address array 32. Similarly, the position array 34 is not
updated with respect to biased brandies.

A correlation element 36 provides correlation between
non-biased conditional branches held in the branch history
buffer 30 to predict branch directions for pending condi-
tional branches. The correlation element 36 may comprise a
weight table 38 that includes a bias weight array (“W,”) 40
and a correlating weight array (“W,,”) 42 having “i” rows.
In a preferred embodiment, the bias weight array 40 may be
a one-dimensional integer array for providing 6-bit bias
weights, and the correlating weight array 42 may be a
two-dimensional integer array providing 6-bit perceptron
correlating weights.

In addition, a global history register (“GHR”) 44 is
maintained for providing a number of history bits (“h”) for
tracking non-biased conditional branch outcomes, such as
“1” for a taken branch or “0” for a not-taken branch, to
thereby facilitate non-biased branch correlations. The GHR
44 only accumulates outcomes of non-biased branches as
they are executed. The GE-JR 44 may be a shift register in
which branch outcomes are shifted into the first position.

A logic element 46 may implement a biased branch filter
(“F1) 48 and/or a duplicate branch filter (“F2) 50. The
biased branch filter 48 may operate to distinguish between
biased conditional branches and non-biased conditional
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branches provided by an instruction stream when enabled or
applied. Accordingly, the biased branch filter 48 may permit
only non-biased conditional branches to be considered by
the aforementioned elements of the branch prediction unit
26 for the pending conditional branch.

By way of example, referring briefly to FIG. 3, an
instruction stream 52 may provide conditional branches
“A” “B.” “C,” “D” and “E,” with each branch having two
possible directions based on outcomes, one representing
“taken” and another representing “not-taken,” Branch A may
result in either a first direction 54, which includes branch B,
or a second direction 56, which includes branches D and E.
However, whether branch A follows the first direction 54 or
the second direction 56, branch A will lead to branch E,
which may be a pending branch for prediction. Branch E
may be predicted as “taken” or “not-taken” depending on
whether the first direction 54 or the second direction 56, both
from branch A, was followed (the path history). However,
branch E may produce the opposite outcome depending on
whether the execution path, or path history, leading to
branch E from branch A follows the first direction 54 or the
second direction 56.

As such, branch A may be considered a non-biased
conditional branch in that branch A may follow either of two
directions, and branches B, C and D may be considered
biased conditional branches which are consistently skewed
toward one direction during a program execution. Since
biased branches B or C and D execute only on one of the
program paths to branch E, the weights associated with
branches B or C and D along the two path histories may
develop strong correlations to influence the prediction deci-
sion of branch E. However, it is the non-biased branch A that
steers the control flow through either branch B or branches
C and D that subsequently leads up to the branch E.
Accordingly, the biased branch filter 48 may permit only
branch A to be included in the branch history buffer 30 for
the pending branch E. The correlations associated with
branch B or branches C and D merely reinforce the predic-
tion decision of branch £ that can independently be estab-
lished by correlating only with non-biased branch A.

Referring briefly to FIG. 4, the biased branch filter 48 may
implement a finite state machine 60 to distinguish between
biased conditional branches and non-biased conditional
branches in accordance with an embodiment of the inven-
tion. Until a branch is encountered for the first time, the
finite state machine 60 relating to a conditional branch may
stay in a “Not found” state 62. When a prediction is to be
made for a conditional branch detected in the “Not found”
state 62, aggregated correlations from the perceptrons need
not be considered. However, when this conditional branch is
committed for the first time, the finite state machine 60
transitions from the “Not found” state 62 to the “Taken”
state 64 or the “Not taken” state 66, depending on the
outcome of the branch. The “Taken” and “Not taken” states
64 and 66 essentially exist to record the “bias” direction of
previously unknown branches and to predict the future
instances of those branches.

In the event a branch that is in the “Taken” state 64 or the
“Not taken” state 66 subsequently executes in the opposite
direction that differs from the recorded state, the finite state
machine 60 transitions to the “Non-biased” state 68. Then,
any future instances of this branch may be predicted using
aggregated correlations according to the branch prediction
unit 26. In other words, branches begin by being considered
biased, and after the system determines a conditional branch
to be non-biased, the system includes the conditional branch
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in the branch history buffer 30 to develop correlations of this
branch with other non-biased branches.

Turning back to FIG. 2, the biased branch filter 48 may
maintain a branch status table (“BST”’) 80 for recording the
statuses of a branch by the finite state machine 60 according
to the aforementioned states. In essence, the branch status
table 80 may serve as a direct-mapped data structure that
records and identifies information relating to the past behav-
iors of conditional branches.

Taken together, the GHR 44, the address array 32 and the
position array 34 provide the path history for a current
branch to be predicted. An accumulator (“accum™) 82 pro-
vides an integer dot product of the weights vector chosen
and the GHR 44.

Below is an exemplar prediction flow for the branch
prediction unit 26 in accordance with an embodiment of the
invention:

function prediction (pc: integer) : { taken, not_taken }
if pc is biased branch then
prediction < bias_ direction
else
accum < W, [pc mod n]
fori <1 .. hdo in parallel
row__index < hash (pc xor A[i] xor P[i]) mod n
accum < accum + W,, [row__index, i] * GHR [i]
end for
if accum = 0 then
prediction < taken
else
prediction < not_taken
end if
end if

For each non-biased branch captured in the address array
32, a prediction flow hash function 84 hashes the branch
address, the address of the non-biased branch in the address
array 32 and the branch’s absolute distance in history
recorded in the position array 34, to select a row in the
weight table 38 and map to a column in the correlating
weight array 42. That is, for every non-biased branch of
every path, the prediction unit 26 may track the correlation
of that branch in conjunction with its recorded absolute
distance in the history. Correlations computed in this way for
each component of the current path are then aggregated to
make a prediction according to the dot product computation.
A mixed analog/digital implementation may be used to
perform the dot-product computation with decreased latency
and power.

As branches are committed, the weights used to predict a
non-biased branch are updated. This may provide, for
example, perceptron training/learning if a prediction is
incorrect, or if the sum used to make a prediction has a
magnitude less than a training threshold, then each weight
may be adjusted. Correlating weights may be incremented if
the outcome of the current branch is the same as the outcome
of the corresponding branch in the address array 32. Oth-
erwise, correlating weights may be decremented. Also, the
bias weight may be incremented if the current branch was
taken or decremented if the current branch was not taken.
Weights are not updated if a biased branch commits. How-
ever, when a non-biased branch commits, the GHR 44, the
address array 32 and the position array 34 are updated, such
as with the branch’s outcome, the program counter and/or
distance in the history.

The duplicate branch filter 50 may operate to detect
conditional branches, which could selectively be biased
conditional branches and/or non-biased conditional
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branches, that are duplicative of branches in the branch
history buffer 30. For example, with respect to non-biased
conditional branches, when a non-biased conditional branch
is encountered that is a duplicate of a non-biased conditional
branch included in the branch history buffer 30, the duplicate
branch filter 50 may operate to evict the older non-biased
conditional branch as used in the branch prediction unit 26
in favor of the more recent non-biased conditional branch.
This essentially minimizes the footprint of a single non-
biased conditional branch in the path history of a branch, and
thus, in turn, assists in including any highly correlated
branch from deeper in the global history within a modest
length global history register. In other words, tracking
multiple instances of a non-biased conditional branch is
avoided to permit tracking more total non-biased conditional
branches overall.

In operation, for an embodiment with respect to non-
biased branches, when a non-biased branch is committed,
the address array 32 and the position array 34 are scanned to
find the last occurrence of that branch. If an entry with the
last occurrence of the branch is found, it is evicted from the
address array 32, the position array 34 and the GHR 44. The
set of locations from the first position to the matching entry
in the GHR 44, the address array 32 and the position array
34 are shifted by one and adjusted accordingly to fill the
evicted slot. The current occurrence of the non-biased
branch, with the branch’s direction and absolute distance in
the history, is shifted into the first position of the GHR 44,
the address array 32 and the position array 34.

The duplicate branch filter 50 may maintain a recency-
stack-like structure to retain the most recent occurrence of a
conditional branch, which could selectively be a biased
conditional branches or a non-biased branch, in the branch
history buffer 30. Referring now to FIG. 5, a simplified
schematic of a 4-entry recency-stack-structure 100 is pro-
vided in accordance with an embodiment of the invention.
PC,, PC, and PC, indicate the program counters (“PC”) 102
of the three most recent branches present in the recency
stack 100. En operation, when a non-biased branch PC,, 106
is committed, the recency stack 100 is scanned to find the
last occurrence of that branch. If the branch PC,, 106 hits in
the recency stack, then it is moved to the top of the recency
stack and updated with its recent outcome. The set of
locations from the first position in the recency stack to the
hitting entry are shifted by one position. The associated OR
gate 108 of the hitting entry guarantees that downstream
flip-flops to be clock are gated. This results in downstream
flip-flops to retain the most recent outcome of other non-
biased branches. In case of no entry is found with PC,, 106,
the recency stack structure 100 acts like a conventional shift
register. The storage elements 104 may have a length
corresponding to the number of history bits “h.”” As such, the
GHR 44 in conjunction with the address array 32 and the
position array 34 essentially may operate as a recency stack
100.

Referring again to FIG. 2, the absolute distance captured
in the position array 34 essentially may assist to learn
different correlations for different instances of a branch with
the recent occurrence of a non-biased branch present in the
recency stack 100. As used herein, absolute distance refers
to the distance of a non-biased conditional branch in the
branch history from the current pending conditional branch
to be predicted.

In a preferred embodiment, the correlating weight array
42 may be configured as a one-dimensional integer array
having “p” entries. Configuring the correlating weight array
42 as a one-dimensional array essentially reduces perturba-
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tions induced by the occurrences of newly detected non-
biased branches in the branch history buffer 30. This, in turn,
assists previously detected non-biased branches in avoiding
re-learning of correlations in a different depth of the branch
history buffer 30. For each non-biased branch captured in the
address array 32, a prediction flow hash function 84 may
hash the branch address, the address of the non-biased
branch in the address array 32 and the branch’s absolute
distance in history recorded in the position array 34 to select
an entry in the one-dimensional correlating weight array 42.

The biased branch filter 48 may also be configured to
enable or apply after an initial plurality of consecutive
conditional branches are included in the branch history
buffer without regard to biased or non-biased states. As such,
the prediction unit 26 may accumulate a stream of branches
and build correlations using an unfiltered history with the
advantage of expediting start up conditions and initial learn-
ing. The prediction unit 26 may be configured to include few
recent conditional branches in the branch history buffer
without regard to their biased or non-biased states. This
essentially assists non-biased conditional branches captured
in the branch history buffer to avoid mis-predictions during
the initial learning phase.

In order to further improve accuracy and reduce aliasing
with respect to perceptron entries in the weight table 38, for
each non-biased branch captured in the address array 32, the
hash function 84, to index the perceptron counters in the
weight table 38, may also include global history bits from
the non-biased branch leading to the pending branch to be
predicted. If the number of global history bits exceeds the
number of bits used in the predictor index function, the
global history bits may be “folded” using a bit-wise XOR of
groups of consecutive history bits, and hashed down to the
required number of bits for the predictor index. Such history
folding is implemented by taking advantage of the fact that
instead of folding a random value, a global history value
derived from the previous history value is folded.)

A loop predictor 90 may also be implemented in the
branch prediction unit 26 to identify regular loops with a
constant number of iterations, and provide the global pre-
diction to the core logic 20 when a loop has successively
been executed a certain number of times, e.g., 7, with the
same number of iterations. Otherwise, the loop predictor 90
may simply forward the output of the accumulator 82 in
providing the global prediction.

The branch prediction unit 26 may be compact in size and
scale larger as technology for the processor 12 allows. For
example, the branch prediction unit 26 may be sized small
enough, for example, to limit tracking to no more than 64
conditional branches, while still capturing distant branch
correlations (of the order of 2000 branches deep). In other
words, the branch prediction unit may be advantageously
sized to provide a tracked-branch to branch-separation-
distance ratio of at least 8 and up to 32.

Referring now to FIG. 6, a simplified schematic of a
multi-stage prediction system is provided which may imple-
ment an embodiment of the invention. An exemplar four
component tagged geometric length (“TAGE”) predictor
120 may include a base predictor 122, for providing a basic
prediction, backed by several tagged predictor components
124 indexed using increasingly more history bits. Predictor
selection may be performed through a tree of multiplexors.
Accordingly, the tagged predictor components 124 may
implement aspects of the branch prediction unit 26 in
accordance with embodiments of the invention. For
example, in one embodiment, the tagged predictor compo-
nents 124 may each implement aspects of the branch pre-
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diction unit 26 with successively increasing numbers of
history bits in each. Permitting only the non-biased condi-
tional branches to be included in the branch history buffer
120, in conjunction with the recency-stack-like management
policy, may realize a TAGE-style predictor to boost accu-
racy with same number of tables or achieve similar accuracy
with fewer tables. In a preferred embodiment employing a
TAGE-style predictor, the branch history buffer may be
configured to hold no more than 150-180 conditional
branches. Other embodiments may provide more or fewer
stages, or implement alternative architectures or styles,
without departing from the spirit of the invention.

FIG. 7 provides a simplified schematic illustrating a
bias-free history generation system 130 for the multi-stage
prediction system of FIG. 6. Here, the long global history
132 may essentially be divided into non-overlapping seg-
ments, each of which may be handled by smaller recency
stacks 134. At prediction time the per-segment recency
stacks 134, in increasing depth of histories act together as
the branch history buffer. The sizes of the non-overlapping
segments form a geometric series. Each of the segmented
recency stacks 134 includes only a single instance of a
non-biased branch from the corresponding history segment.
For example, the recency stack RS, may capture the recent
instance of non-biased branches from the segment that
covers past global histories from depth of L, to L,,. The size
of the per-segment recency stacks 134 (RS, RS,, ..., RS)
is much smaller than the history segments that they cover,
resulting in capturing long global histories (on the order of
2000 branches) in about 150-200 bits of the bias-free global
history register (BF-GHR).

It will be appreciated that while some embodiments of the
invention have been described in the context of conditional
jump instructions, if-then-else structures and two-way
branching, more complex instructions, programming struc-
tures and multi-way branching may be similarly provided
without departing from the spirit of the invention. The
invention offers distinct advantages in numerous computing
environments, including with respect to multi-processor
systems and multi-core processors.

It is specifically intended that the present invention not be
limited to the embodiments and illustrations contained
herein, but include modified forms of those embodiments
including portions of the embodiments and combinations of
elements of different embodiments as come within the scope
of the following claims.

When introducing elements or features of the present
disclosure and the exemplary embodiments, the articles “a,”
“an,” “the” and “‘said” are intended to mean that there are
one or more of such elements or features. The terms “com-
prising,” “including” and “having” are intended to be inclu-
sive and mean that there may be additional elements or
features other than those specifically noted. It is further to be
understood that the method steps, processes, and operations
described herein are not to be construed as necessarily
requiring their performance in the particular order discussed
or illustrated, unless specifically identified as an order of
performance. It is also to be understood that additional or
alternative steps may be employed.

References to “a microprocessor” and “a processor” or
“the microprocessor” and “the processor” can be understood
to include one or more microprocessors that can communi-
cate in a standalone and/or a distributed environment(s), and
can thus be configured to communicate via wired or wireless
communications with other processors, where such one or
more processor can be configured to operate on one or more
processor-controlled devices that can be similar or different
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devices. Furthermore, references to memory, unless other-
wise specified, can include one or more processor-readable
and accessible memory elements and/or components that
can be internal to the processor-controlled device, external
to the processor-controlled device, and can be accessed via
a wired or wireless network.

We claim:

1. An apparatus for branch prediction comprising:

a branch history buffer for capturing addresses of non-
biased conditional branches provided by an instruction
stream and positions of the non-biased conditional
branches during execution of the instruction stream;

a biased branch filter distinguishing between biased con-
ditional branches and non-biased conditional branches
and selectively blocking the distinguished biased con-
ditional branches from being included in the branch
history buffer, wherein biased conditional branches are
consistently skewed toward one direction during
execution of the instruction stream and non-biased
conditional branches resolve in either direction during
execution of the instruction stream; and

a circuit correlating earlier non-biased conditional
branches captured in the branch history buffer to pend-
ing non-biased conditional branches and not correlating
earlier distinguished biased conditional branches that
are not captured in the branch history buffer to pending
non-biased conditional branches, the circuit compris-
ing:

a weight table including a plurality of weights corre-
sponding to weights for only the non-biased condi-
tional branches captured in the branch history buffer;
and

a global history register accumulating branch directions
for only the non-biased conditional branches captured
in the branch history buffer during execution of the
instruction stream,

wherein the circuit makes a prediction for a pending
non-biased conditional branch according to weights
and branch directions based on the earlier non-biased
conditional branches and not on the earlier distin-
guished biased conditional branches, and

further comprising a duplicate branch filter for detecting
a second non-biased conditional branch that is a dupli-
cate of a first non-biased conditional branch held in the
branch history buffer and causing the first non-biased
conditional branch to be evicted from the branch his-
tory buffer in favor of the second non-biased condi-
tional branch, wherein the detecting comprises scan-
ning an address array and a position array to find a last
occurrence of the second non-biased conditional
branch.

2. The apparatus of claim 1, wherein the apparatus is
implemented in at least one stage of a tagged geometric
length (TAGE) predictor.

3. The apparatus of claim 2, further comprising a plurality
of recency stacks, wherein each recency stack captures
instances of non-biased conditional branches corresponding
to a segment of global history.

4. The apparatus of claim 2, wherein the branch history
buffer is configured to hold no more than 180 conditional
branches.

5. The apparatus of claim 1, wherein the biased branch
filter is configured to maintain a branch status table for
tracking conditional branches as being at least one of a
biased conditional branch and a non-biased conditional
branch.
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6. The apparatus of claim 1, wherein the biased branch
filter is configured to apply after an initial plurality of
consecutive branches are included in the branch history
buffer.

7. The apparatus of claim 1, wherein the branch history
buffer is configured to hold no more than 64 conditional
branches.

8. The apparatus of claim 1, wherein the branch history
buffer is configured to include non-biased conditional
branches that are at least 512 conditional branches apart in
the instruction stream.

9. The apparatus of claim 1, wherein, for each non-biased
conditional branch captured in the branch history buffer, a
hash function is operable to map the non-biased conditional
branch to a correlating perceptron weight.

10. The apparatus of claim 1, wherein the circuit includes
a one-dimensional bias weight array.

11. The apparatus of claim 1, wherein the biased branch
filter includes a state machine distinguishing between biased
conditional branches and non-biased conditional branches,
wherein the state machine indicates a first state for a
conditional branch when the conditional branch is executed
a first time in a first direction, then the state machine
indicates a second state for the conditional branch when the
conditional branch is executed a second time in a second
direction, wherein only the second state indicates a non-
biased conditional branch.

12. The apparatus of claim 1, wherein the circuit makes
the prediction by computing an integer dot product of the
weights and the global history register.

13. An apparatus for branch prediction comprising:

a branch history buffer for capturing addresses of non-
biased conditional branches provided by an instruction
stream and positions of the non-biased conditional
branches during execution of the instruction stream;

a biased branch filter distinguishing between biased con-
ditional branches and non-biased conditional branches
and selectively blocking the distinguished biased con-
ditional branches from being included in the branch
history buffer, wherein biased conditional branches are
consistently skewed toward one direction during
execution of the instruction stream and non-biased
conditional branches resolve in either direction during
execution of the instruction;

a duplicate branch filter detecting a second non-biased
conditional branch that is a recent duplicate of a first
non-biased conditional branch held in the branch his-
tory buffer, and causing the first non-biased conditional
branch to be evicted from the branch history buffer in
favor of the second non-biased conditional branch,
wherein the detecting comprises scanning an address
array and a position array to find a last occurrence of
the second non-biased conditional branch; and

a circuit correlating earlier non-biased conditional
branches captured in the branch history buffer to pend-
ing non-biased conditional branches and not correlating
earlier distinguished biased conditional branches not
captured in the branch history buffer to pending non-
biased conditional branches, the circuit comprising:

a weight table including a plurality of weights corre-
sponding to weights for only the non-biased condi-
tional branches captured in the branch history buffer;
and

a global history register accumulating branch directions
for only the non-biased conditional branches captured
in the branch history buffer during execution of the
instruction stream,
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wherein the circuit makes a prediction for a pending
conditional branch according to weights and branch
directions on the earlier non-biased conditional
branches and not on the earlier distinguished biased
conditional branches.

14. The apparatus of claim 13, further comprising main-
taining a branch status table for tracking conditional
branches as being at least one of a biased conditional branch
and a non-biased conditional branch.

15. The apparatus of claim 13, wherein the apparatus is
implemented in at least one stage of a tagged geometric
length (TAGE) predictor.

16. A computer processor comprising:

a cache for holding an instruction stream;

an execution unit for executing instructions from the
instruction stream; and

a branch prediction unit for steering the instructions to the
execution unit, wherein the branch prediction unit
comprises:

(a) a branch history buffer for capturing addresses of
non-biased conditional branches provided by the
instruction stream and positions of the non-biased
conditional branches during execution of the instruc-
tion stream;

(b) a biased branch filter distinguishing between biased
conditional branches and non-biased conditional
branches and selectively blocking the distinguished
biased conditional branches from being included in the
branch history buffer, wherein biased conditional
branches are consistently skewed toward one direction
during execution of the instruction stream and non-
biased conditional branches resolve in either direction
during execution of the instruction stream;

(c) a circuit correlating earlier non-biased conditional
branches captured in the branch history buffer to pend-
ing non-biased conditional branches, not correlating
earlier distinguished biased conditional branches that
are not captured in the branch history buffer to pending
non-biased conditional branches and steering instruc-
tions to the execution unit corresponding to predicted
branch directions, the circuit comprising:

a weight table including a plurality of weights corre-
sponding to weights for only the non-biased condi-
tional branches captured in the branch history buffer;
and

a global history register accumulating branch directions
for only the non-biased conditional branches captured
in the branch history buffer during execution of the
instruction stream,

wherein the circuit makes a prediction for a pending
non-biased conditional branch according to weights
and branch directions based on the earlier non-biased
conditional branches and not on the earlier distin-
guished biased conditional branches; and

(d) a duplicate branch filter for detecting a second non-
biased conditional branch that is a duplicate of a first
non-biased conditional branch held in the branch his-
tory buffer and causing the first non-biased conditional
branch to be evicted from the branch history buffer in
favor of the second non-biased conditional branch,
wherein the detecting comprises scanning an address
array and a position array to find a last occurrence of
the second non-biased conditional branch.

#* #* #* #* #*
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