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(57) ABSTRACT 

Various aspects of the present disclosure are directed to 
characterizing objects or other items, which as may be 
implemented in a machine-vision type approach. As may be 
implemented with one or more embodiments, some of which 
may involve a Fourier transform analysis, object regions 
(one or more objects) are identified in image data depicting 
several objects, and the size of each object-region is iden­
tified. Respective ratios of the size of each object-region to 
the size of each of the other object regions are determined, 
and object regions having a higher total number of ratios that 
round to one (relative to the other object regions) are 
identified. An expected (e.g., average) individual object size 
is determined based on the sizes of the identified object 
regions, and a total number of the objects in the image is 
determined based on the expected individual object size and 
the sizes of the object regions. 
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OBJECT CHARACTERIZATION 

FEDERALLY-SPONSORED RESEARCH AND 
DEVELOPMENT 

This invention was made with government support under 
1031416 awarded by the National Science Foundation. The 
government has certain rights in the invention. 

FIELD 

Aspects of various embodiments are directed to charac­
terizing objects, such as by characterizing a number of 
objects in an image. 

BACKGROUND 

Many approaches have been used for characterizing 
objects in images for a variety of implementations. For 
example, objects in images may be desirably counted or 
otherwise characterized without necessarily involving 
human interaction. 

In some applications, it can be desirable to characterize a 
number, shape, size or other aspect of plants, as may be 
useful for agricultural implementations. For instance, it can 
be desirable to field test agricultural products for several 
growing cycles to determine the yield and stability of a 
desired phenotypic trait. This can be a very costly and 
time-consuming process, as accurately characterizing 
aspects of objects can be difficult and may require human 
intervention or otherwise be difficult to automate. 

2 
in the image is determined based on the determined indi­
vidual object size and the sizes of the object regions. 

Another embodiment is directed to a non-transitory com­
puter-readable medium having instructions stored thereupon 

5 that, when executed by a computer processor, cause the 
computer processor to carry out the aforementioned method­
based steps. Other embodiments are directed to an apparatus 
having an imaging device that captures an image of a 
plurality of objects as noted above, and a computer proces-

lO sor that carries out the above method-based steps using 
image data for the objects as captured by the imaging device. 

Other embodiments are directed to characterizing ears of 
corn, such as by characterizing one or both of corn ovules 

15 
(before kernels grow) and corn kernels. According to a 
particular embodiment, image data from an image of an ear 
of corn is processed, and a portion of the image data 
including the corn ear is identified relative to a portion of the 
image data corresponding to a background of the image. A 

20 Fourier transform is applied to the gradient (e.g., a first 
derivative of image pixel values with respect to distance 
along the ear of corn) of the portion of the image data 
including at least some of the ear of corn, and transformed 
image data is provided therefrom. A frequency of peaks in 

25 the transformed image data is determined and used to 
estimate a length of each ovule or kernel. In some imple­
mentations, a rectangular window having a size that is less 
than the ear of corn is subjected to a Fourier transform, and 
that window is slid around the ear image. The average of the 

30 major frequency determined in each tile is taken as the 
kernel length. A frequency of peaks in the transformed 
image data is determined and a length of each kernel or 
ovule in the ear of corn is estimated based on the determined 

Accordingly, it can be challenging to characterize objects, 
such as to acquire extensive phenotypic data early in the 
development process of agricultural products, in order to 
maximize the ability to achieve successful field trials. These 35 

and other matters have presented challenges to object char­
acterization, for a variety of applications. 

peak frequency. In various embodiments, the steps of pro­
cessing, applying, determining and estimating are carried 
out for a plurality of ears of corn from a common batch, in 
which some of the ears are analyzed prior to kernel growth 
and others are analyzed after kernel growth, with the analy­
sis used to determine yield. SUMMARY 

Various example embodiments are directed to methods, 
apparatuses (including computer-readable media), and their 
implementation, as may be applicable for characterizing 
objects. 

40 In some embodiments, the image data is thresholded and 
used to identify the portion of the image data including the 
corn ear. The image is separated data into color channels and 
the Fourier transform is calculated of the gradient of one of 
the color channels along an axial length of the ear. Positive 

Various embodiments are directed to addressing chal­
lenges to accurately identifying and characterizing objects in 

45 and negative values of the gradient of the one of the color 
channels is decomposed with a sliding window Fourier 
transform, a frequency of a peak amplitude for each sliding 
widow is determined and an average peak frequency is 
determined across sliding windows for both the positive and 

an image using a machine-vision type approach, as is 
particularly application to images of a multitude of objects 
that may include individual objects and groups of objects 
clustered together. According to one such embodiment, data 
from an image of a plurality of objects is processed for 
identifying object regions that represent objects or groups of 
touching or connected objects in the image, based on dif­
ferences between the object regions of the image and a 
background of the image. The size ( e.g., area or periphery) 55 

of each object-region is determined, and used to determine 

50 negative parts of the gradient. A cosine wave having the 
determined average peak frequency is plotted along the 
length of the ear, and the average ovule length or kernel 
length is estimated based upon a period T of the cosine 
wave. 

an average individual object size for the objects in the image 
as follows. For each object-region, respective ratios of the 
size of the object-region to the size of each of the other 
object regions is determined, and therefrom a total number 60 

of the ratios that round to one are determined ( e.g., ratios 
greater than ½ and greater than 1 ½). A subset of the object 
regions having a highest total number of the ratios that round 
to one, relative to the other object regions, is identified and 
an expected (e.g., average) individual object size is deter- 65 

mined based on the sizes of the object regions in the subset 
(e.g., an average of the sizes). A total number of the objects 

The above discussion/summary is not intended to describe 
each embodiment or every implementation of the present 
disclosure. The figures and detailed description that follow 
also exemplify various embodiments. 

DESCRIPTION OF THE FIGURES 

Various example embodiments may be more completely 
understood in consideration of the following detailed 
description in connection with the accompanying drawings, 
in which: 

FIG. 1 shows a method and apparatus for characterizing 
objects, in accordance with an example embodiment; 
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FIG. 2 shows a system for characterizing objects, in 
accordance with another example embodiment; 

FIG. 3 shows plots of profile characteristics of a gray 
scale image along an ear of com, in accordance with another 
example embodiment; 

FIG. 4 shows an ear of com with a resulting profile as 
shown in FIG. 3, superimposed on the ear of corn (from 
which the profile is obtained), in accordance with another 
example embodiment; and 

4 
Various embodiments are directed to non-transitory media 

having instructions stored thereupon, which cause a com­
puter or other processor-type circuit to carry out various 
functions as characterized herein, when executed. Such 

5 media may, for example, include software stored in a data 
storage circuit, which may then be transferred to another 
data storage circuit or media. In some implementations, the 
instructions are stored on a local device, which receives 

FIG. 5 shows an approach involving six sliding window 10 

FFT transformations with an image of an ear of com, in 
accordance with another example embodiment. 

input image data from remote providers. The local device 
executes the instructions with the input image data and 
provides an output or outputs that characterize objects in the 
image data. This output can be used locally, returned to the 
remote provider(s) from which the image data is obtained, or 

While various embodiments discussed herein are ame­
nable to modifications and alternative forms, aspects thereof 
have been shown by way of example in the drawings and 15 

will be described in detail. It should be understood, however, 
that the intention is not to limit the invention to the particular 
embodiments described. On the contrary, the intention is to 
cover all modifications, equivalents, and alternatives falling 
within the scope of the disclosure including aspects defined 20 

in the claims. In addition, the term "example" as used 
throughout this application is only by way of illustration, 
and not limitation. 

otherwise provided for use in characterizing the objects. 
In accordance with certain embodiments, object regions 

are identified in a digital image of a plurality of objects, in 
which the object regions represent objects or groups of 
objects in the image, based on differences between the object 
regions of the image and a background of the image. Such 
differences may include, for example, shape characteristics 
such as color or edges in an image. For instance, edge 
detection approaches may be employed, using mathematical 
methods for identifying points in digital data representing 

DETAILED DESCRIPTION 

Aspects of the present disclosure are believed to be 
applicable to a variety of different types of apparatuses, 
systems and methods involving the characterization of 
objects. While not necessarily so limited, various aspects 
may be appreciated through a discussion of examples using 
this context. 

25 the image. Such approaches may involve, for example, 
detecting value-based aspects of the digital data that char­
acterize aspects of the image such as brightness and/or 
gradients, and used these detected aspects to differentiate 
object-regions from background. Differences in values can 

30 thus represent brightness changes. One such approach 
involves identifying edges or lines as changes in image 
brightness in data representing portions of the image, and 
identifying the edges or lines as object regions. For general 
information regarding edge detection, and for specific infor-

Various example embodiments are directed to automati­
cally characterizing objects from an image, which may 
include images of individual objects as well as objects 
grouped in clusters. Certain embodiments are directed to 
characterizing plant-type objects, such as kernels of corn in 
which the width and height of each kernel can be deter­
mined, or either kernels or ovules on an ear of com. Other 
embodiments are directed to characterizing ears of com. Still 40 

other embodiments involve a combination of characterizing 
kernels of com and ears from which the kernels are obtained 
from, such as by characterizing com ovules or kernels 
attached to the ears. Various such embodiments may involve 
characterizing kernels or ovules on an ear of corn, which can 

35 mation regarding edge detection approaches that may be 
implemented in connection with one or more embodiments 
herein, reference may be made to PCT Patent Publication 
No. WO2007044828, which is fully incorporated herein by 
reference. 

A size of each object-region is determined and used to 
determine an average individual size of the objects (e.g., 
area or perimeter) as follows. For each object-region, ratios 
of the size of the object-region to the size of each of the other 
object regions is determined and, therefrom, a total number 

45 of the ratios that round to one. A subset of the object regions 
having a highest total number of the ratios that round to one, 
relative to the other object regions, is identified. For 
instance, with objects having a generally consistent size, 
some objects may be clustered into a single object-region, 

be useful in characterizing yield ( e.g., by characterizing 
ovules prior to seeding, and resulting kernel yield for ears 
that are pollinated and grow kernels). In this context (and in 
consideration of the above), various embodiments involving 
the characterization of com kernels and ovules may be 
applied to the characterization of a plurality of different 
types of objects. Further, various embodiments described 
herein as characterizing kernels may be implemented for 
characterizing ovules. 

In a more particular embodiment involving the charac­
terization of com, individual kernels and clusters of kernels 
are imaged and processed in accordance with one or more 
embodiments herein. This approach may address challenges 
to manual-based approaches, such as those involving mea­
suring a 100 maize kernel ( seed) weight and kernel packing 
parameters such as kernel depth and width ( e.g., along major 
and minor directions of the kernel), which can be important 
for understanding maize crop yield. Various implementa­
tions employ an algorithm that analyzes images of kernels 
and returns a total kernel count as well as measurements of 
kernel width and kernel height as may be provided for each 
individual kernel. 

50 such that certain object regions have two, three or more 
objects clustered together, whereas other object regions are 
of a single object. Using a statistical approach, where a 
highest likelihood is that object regions include only a single 
object, those object regions having a single object will 

55 exhibit the largest collective number of ratios that round to 
one (i.e., ratios of object-region to object-region in which 
both object regions have a single object of similar size). 

Using the aforementioned information, an expected, or 
average, individual object size is determined based on the 

60 sizes of the object regions in the subset (e.g., via averaging). 
A total number of objects in the image is determined based 
on the determined average expected object size and the sizes 
of the object regions. This approach may, for example, 
involve determining a total area of all object regions in the 

65 image and dividing the total area by the average individual 
object size, based on the determined average individual 
object size. 
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In some embodiments, binary objects containing single 
objects are obtained as follows. Each (nth) object in an 
image is treated as if it were a single kernel. The respective 
areas of the remaining objects are divided by the nth area 
and rounded. The number of objects which report a single 5 

kernel is recorded in a vector M. The mode of vector M, m, 
is the number of single kernels. The binary objects which 
give rise to the mode of vector M, m, are considered single 
kernels. The average area of the single kernels is calculated 
as A. A divides the area of the binary objects and the number 10 

of objects in each cluster is counted by rounding this ratio. 
This approach can be used, for example, in connection with 
those approaches discussed herein with regard to identifying 

6 
be used to estimate the kernel length. In certain implemen­
tations, the aforementioned steps are carried out for ears of 
corn from a common batch. The length of each ovule and 
number of ovules in the each ear of a first set are determined 
(before kernel growth), and the length of each kernel and 
number of kernels in each ear of a second set are determined 
(after kernel growth). Yield for the batch can thus be based 
upon the estimated number of ovules and the estimated 
number of kernels. 

In a more particular embodiment, the image of the ear of 
corn is processed as follows. The image data is thresholded 
( e.g., via an Otsu threshold) to identify the corn ear relative 
to the background in the image, and the image is separated 
into color channels, such as the (four) CMYK channels, a group of objects for an number ofN objects that exhibit the 

most ratios (relative to the other objects) that round to 1. 15 RGB channels or a greyscale version thereof. The Fourier 
transform of the gradient of the one of the color channels 
( e.g., the Y channel) is calculated along an axial length of the 
ear, and both positive and negative values of the gradient of 

In some embodiments, less than all of the objects in an 
image are used to provide an estimate of the total number of 
objects in the image. For instance, a subset of objects (e.g., 
from less than half of an entire image) can be evaluated and 
used to extrapolate over a much larger image, to provide a 20 

reasonable estimate of object size. The average individual 
object size can thus be attributed to an average object size in 
the sample portion, and the average object size from the 
sample portion can be used as an estimate of a total average 
object size for the image and, therein, to calculate an 25 

estimation of a total number of objects in the image. 
In some implementations, a number of objects can be 

determined for an entire image while an average size is 
computed using only a subset as above. This approach 
facilitates a reduced computational budget, relative to using 30 

the entire image to obtain an average object size. Accord­
ingly, the object regions in the sample portion are evaluated 
to compute an average object area in the sample portion, and 
that area is used as an estimate of a total average object area 
for the image. A total area of all object regions in the image 35 

is then determined and divided by the average individual 
object area. 

Object regions are identified using a variety of 
approaches. In some embodiments, the image data is filtered 
to identify object regions having a size that is greater than a 40 

minimum threshold. This approach may, for example, ensure 
that dirt or other items in the image that are not consistent 
with the objects to be evaluated are not inadvertently used. 
In certain embodiments, object regions are filtered by cross 
section, to ensure that objects having a sufficiently similar 45 

area to those objects to be counted but that are differentiable 
are not included. For example, where generally round or 
square objects are expected, longer strands in an image ( e.g., 
plant matter or other contaminants) that are not of an 
expected cross section can be filtered out of any calculation. 50 

the color channel are decomposed with a sliding window 
Fourier transform. A frequency of a peak amplitude for each 
sliding widow is determined along with an average peak 
frequency across sliding windows for both the positive and 
negative parts of the gradient (channel). The length of each 
kernel is estimated by plotting a cosine wave having the 
determined average peak frequency along the length of the 
ear, and estimating the average kernel length based upon a 
period T of the cosine wave. For instance, an estimated 
period signal with the peaks corresponding to the center of 
mass located at a kernel and the troughs corresponding to 
valleys between kernels can be used to estimate the kernel 
size. 

A variety of approaches to imaging kernels can be imple-
mented with the embodiments herein. In a particular 
embodiment, a handful of kernels are weighed and then 
scattered across the imaging surface of a flatbed document 
scanner (e.g., at 1200 dots per inch (dpi)). In some imple-
mentations, contrast between the maize ears and the back­
ground is provided by leaving a lid of the scanner open such 
that the background is black. Scans are taken and saved ( e.g., 
to a lossless image format). 

The number of kernels represented in an image as above 
(or otherwise obtained) are determined as followed, in 
accordance with a particular embodiment. Kernels are sepa­
rated from the background of the image ( e.g., black in the 
example above) such as by using a thresholding technique). 
For all objects on the image ( e.g., which may be greater than 
a threshold), the area is measured and the results are stored 
in an area vector A. A matrix N is created from the column 
area vector A as follows: 

where * is the outer product and A°C-l) is the Hadamard 
mverse. 

In a more particular embodiment, kernels of corn are 
characterized as the objects in the above discussion, and 
further characterization is carried out for the ear from which 
the kernels are obtained. An image of the ear is processed for 
identifying the ear relative to background image data, and a 
Fourier transform is applied to an image gradient of the ear 
( e.g., along an axial direction/length of the ear). A frequency 

Vector G, the estimated number of single kernels, is 
55 created as follows: 

G~sum(round(N)~~l,1). 

of peaks in the transformed image data is determined and 
used to estimate a length of each kernel. In some imple­
mentations, some or all of the kernels are individually 
imaged while still on the ear of corn, for determining a size 
thereof. In some implementations, a Fourier transform is 
also applied to the image of the ear of com, and the 
frequency of peaks in the transformed image data for the ear 

The value K, which is the number of kernels on the image 

60 
which are not touching, is defined as: 

of com is used along with the frequency of peaks for the 65 

image gradient to estimate the length of each kernel. For 
instance, a corresponding period of the frequency peaks can 

K~mode(G). 

The average area of a single kernel is defined as: 

v~mean(A(G~~K)). 

The number of kernels in a cluster of touching kernels is 
estimated by dividing the area of a cluster by the average 
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area of a single kernel. The total number of kernels is 
estimated as the sum of the kernels in each cluster and the 
number of single kernels. 

8 
5) Obtain a new choices or options based on more probable 
choices or options. 
6) If the new choices are the same as initialized or previous 
choices, then stop. Kernel packing measurements such as kernel width and 

depth are measured on each single kernel and reported ( e.g., 
in a comma separated value file). The data can be used in a 
variety of manners, such as by calculating the 100 kernel 
weight as (W) Weight of kernels on a scanner divided by the 
number of kernels on the scanner multiplied by 100. 

5 7) If the new choices are different than the initialized or 
previous choices, initialize the algorithm with the new 
choices and repeat the above steps beginning at step 3. 
Such approaches may, for example, be used in selecting 
objects such as corn kernels, and may be implemented with 

Various embodiments are directed to characterizing corn 
ovules. The tip of a kernel is preliminarily identified from 
among points around a contour of the kernel that could be a 
tip. This may, for example, be carried out using machine 
vision and line definition, such as characterized herein. For 
a group ( e.g., 50 or 100) of the kernels, the respective 
estimated tips are used as a baseline and several character­
istics of each kernel are computed using the preliminary tips 
as a baseline set of characteristics to work from. Such 

10 one or more embodiments herein. 
In a particular embodiment, the above algorithm is imple­

mented for making decisions based on experience. For 
example, a corn breeder might walk a field containing 1000 
newly created inbred lines and be expected to choose a set 

15 that should be tested for yield, or a person might select a 
product from many other products but not fully appreciate 
why the product choice was made. The aforementioned 
approach can be implemented for making and automating 
such decisions. characteristics may include, for example, one or more of 

symmetry about the a putative tip point centroid axis, depth, 20 

width, depth:width ratio, curvature for a portion of the base 
of the corn ( e.g., opposite the tip), curvature for portion of 
an apex of the corn, and overall curvature. The character­
istics are then recomputed for additional potential tips of 
each kernel, and the recomputed characteristics for each 25 

potential tip is compared to the baseline characteristics. For 
any such potential tip that exhibits computed characteristics 
having a better match to the baseline characteristics than 
computed characteristics for the preliminarily-identified 
tips, the potential tip is identified as the new tip. After some 30 

or all of the kernels are processed in this context, the 
baseline characteristics are recomputed using any newly­
identified potential tips exhibiting the better match. The 
above steps can then be carried out with the recomputed 
baseline characteristics, and the process can be repeated. It 35 

has been discovered/recognized that repeating the process 
twice can be adequate as the identified tip points are unlikely 
to change after two iterations. 

In a more specific embodiment, the objects include corn 
kernels the expected individual object size is determined as 40 

follows. A point of maximum contour curvature of each 
kernel is determined, as is a centroid of each kernel. Features 
characterizing each kernel are computed, and an n-dimen­
sional distribution of the features is generated. For each 
kernel, the features are calculated for respective contour 45 

points on the kernel, using each contour point as a putative 
tip point. The calculated features for each contour point are 
compared with then-dimensional distribution, and the prob­
ability of each contour point being a true tip of the kernel is 
assessed based on the calculated features for both the 50 

In accordance with a more particular embodiment, ears of 
corn are characterized as follows. Image data including an 
image of the ear of corn is processed and a portion of the 
image data that includes the corn ear is identified, relative to 
a portion of the image data corresponding to a background 
of the image. For instance, two or more ears may be placed 
on a scanner bed and imaged accordingly, with background 
information being removed. A Fourier transform is applied 
to an image gradient of the portion of the image data 
including the ear of corn, and transformed image data is 
provided therefrom. A frequency of peaks is identified for 
the transformed image data, and a length of each kernel in 
the ear of corn is estimated based on the determined peak 
frequency. These approaches can be implemented to extract 
information about the shape of kernels packed along the ear, 
max ear width, ear width along the major axis of the ear and 
ear length. In certain implementations, the kernels are 
removed from the ear and the bare cob is scanned, with 
width and length measured again by similar image analysis, 
which can be used in further characterizing the kernels that 
were removed (relative to scanning with the kernels in place 
on the cob). 

In a more particular implementation, the image data from 
the image of the ear of corn is thresholded for identifying the 
ear relative to the background, and the Fourier transform is 
applied to a gradient of a color channel from separated color 
channels of the image data, along an axial length of the ear. 
Positive and negative values of the gradient of the color 
channel are separately decomposed with a sliding window 
Fourier transform (e.g., 1200 and 1600 pixels for a Y color 
channel). A frequency of a peak amplitude for each sliding 
widow is then determined, and an average peak frequency 
across sliding windows for both the positive and negative 
parts of the gradient is then determined. The length of each 
kernel on the ear is estimated by plotting a cosine wave 

contour point and the n-dimensional distribution. For those 
contour point exhibiting a probability that matches a peak of 
the n-dimensional distribution better than the determined 
point of maximum contour curvature for the kernel, the 
n-dimensional distribution is updated using the calculated 
feature data for the contour point. The steps of calculating, 
comparing and assessing are repeated for each kernel. 

55 having the determined average peak frequency along the 
length of the ear, and estimating the average kernel length 
based upon a period T of the cosine wave. 

Various approaches to identifying a desirable selection are 
implemented in accordance with the following algorithm, in 
accordance with one or more embodiments. 
1) Initialize an algorithm with choices or options. 
2) Measure features of each selected and unselected choices 
or options (e.g., measure object features). 
3) Create a probability distribution of features for those 
choices or options chosen. 
4) Obtain a probability of each choice or option being 
chosen based on its features. 

In some embodiments, the ears are scanned two-dimen­
sionally, rotated, and scanned one or more additional times. 

60 This approach facilitates the analysis of kernels on the ear 
from two or more perspectives, and the results can be 
combined. Furthermore, the kernels may be subsequently 
removed from the ears and imaged separately, using tech­
niques as above for estimating average size and weight of 

65 the kernels on the ear. 
Characteristics of the ears can be obtained in a variety of 

manners. In some implementations, maximum ear length 



US 10,186,029 B2 
9 10 

separately analyzing the positive and negative parts of the 
signal with a FFT. The gradient of the signal serves to 
dampen the low frequency noise relative to the slightly 
higher kernel signal. The positive and negative halves of the 

and width are determined by the size of a bounding box 
which encompasses the ear. The width along the length of 
the ear is measured by integrating the thresholded ear image 
along the width of the ear and dividing by two. The average 
ear width is taken over the length of the ear. This approach 
can thus facilitate high throughput measurements of kernel 
loading on an ear of corn and ear size, providing valuable 
data for consistent yield measurements. 

5 signal are separately analyzed to maintain the proper peri­
odicity. The peak frequencies of the positive and negative 
halves of the signal are averaged together to obtain the 
average frequency for a given window, with results as shown 
at 330. Turning now to the figures, FIG. 1 shows a method and 

apparatus for characterizing objects, in accordance with 10 

another example embodiment. Each of the blocks as shown 
may be carried out in method-based embodiments, or as 
blocks of an apparatus ( e.g., progranimed computer) or of an 
algorithm executed by a processor based on instructions 
stored on a non-transitory medium. At block 110, image data 15 

for an image of a plurality of objects ( e.g., as obtained from 
a scanner or other imaging device) is received and processed 
for identifying object regions that represent objects or 
groups of objects in the image, based on differences between 
the object regions of the image and a background of the 20 

image. This object region data is then processed at block 120 
at which a size of each object-region is determined, and the 
determined sizes are provided for determining an average 
individual object size for the objects at block 130. 

At block 132, object-specific size ratios are determined 25 

for each object region, relative to the size of each of the other 
object regions, and a total number of the ratios for each 
object region that round to one is determined. At block 134, 
a subset of the object regions having a highest total number 
of the ratios that round to one, relative to the other object 30 

regions, is identified. In some implementations, this subset 

FIG. 4 shows an ear of corn 400 with a resulting profile 
410 as shown in FIG. 3, superimposed on the ear of corn 
(from which the profile is obtained). For this example, the 
max ear width is 1986 pixels, the ear length is 6731 pixels 
and the average kernel length is 280 pixels. The width and 
length are found from the bounding box encapsulating the 
ear and the kernel length is approximated from the average 
period found from the sliding windows. 

FIG. 5 shows an approach involving six sliding window 
FFT transformations with an image of an ear of corn. The 
positive (left) and negative (right) parts of the vertical image 
gradient are separately analyzed and the results of all the 
sliding windows are averaged together to create an approxi­
mation of the kernel length. The positive parts are repre­
sented in plots 510, 512 and 514 for 1200, 1400 and 1600 
pixels, respectively. The negative parts are represented in 
plots 520, 522 and 524, also for 1200, 1400 and 1600 pixels, 
respectively. For the example ear presented here, the average 
period is 280 pixels, or 6 cm. 

The following embodiments may be implemented in 
connection with or in a similar marmer as one or more of the 
above-discussed embodiments, in an experimental or other 
context. In one embodiment, four flatbed scanners are placed 
on a table with two scarmers on each side of the table and an 
ear sheller is placed between each pair of flatbed scanners. 
Maize ears enter the workflow at the head of the table, where 
three ears of a single genotype are placed on a flatbed 
scanner. 24 bit RGB (red, green blue) images are taken at 
1200 dpi and the genotype is recorded in a spreadsheet. The 
ears are passed through a sheller and kernels are collected. 

is identified as a subset of regions having a single object, 
based on a probability that the largest group of object 
regions will include only a single object. At block 136, the 
average individual object size in the image is determined by 35 

averaging the sizes of the object regions in the subset. This 
average individual object size is provided to block 140, at 
which a total number of the objects in the image is deter­
mined based on the determined average individual object 
size and sizes of the object regions. 

FIG. 2 shows a system 200 for characterizing objects, in 
accordance with another example embodiment. The system 
includes an imaging device 210 (e.g., a scarmer or camera) 
and a computer processor 220 that is coupled to receive 
digital image data from the imaging device 210. The com- 45 

puter processor 220 is configured/programmed to carry out 
processing steps in accordance with one or more embodi­
ments herein, such as those shown in FIG. 1 for determining 

40 Images of the cobs are collected at 24 bit RGB with 1200 dpi 
and are saved for further measurements. Approximately 100 
kernels are placed on a flatbed scanner and again RGB 
images are acquired at 24 bit and 1200 dpi. In total, a single 
genotype has three ears that produce two images of three 
ears, one image of three cobs and one image of pooled 
kernels. 

Each RGB ear image contains three ears on a black 
background. First, each RGB image is converted into a gray 
scale image and smoothed with a Gaussian kernel to blend 
out high frequency noise such as dust, scratches and silk 
from the background. Otsu's threshold method is applied to 
obtain a global threshold value for the image and a binary 
mask is obtained. Small binary objects are removed which 
are smaller than X pixels in size and holes within the image 

an average object size of objects in the image. In some 
embodiments, the system 200 includes multiple imaging 50 

devices, also including 212, 214 and 216 (or more), and 
operates to receive the image data remotely from each 
device, to process the data and return a result indicative of 
the average object size and/or other information, such as 
total number of objects. 

FIG. 3 shows plots of profile characteristics of a gray 
scale image along an ear of corn, in accordance with another 
example embodiment. At 310, an example profile is shown, 
and the example profile with a low frequency signal imposed 
thereupon is shown at 320. The lobs correspond to kernels, 60 

and the troughs correspond to the valley between kernels. 
With the ideal model, one could use a Fast Fourier Trans­
form (FFT), select the major frequency, and use the period 

55 are filled. A bounding surrounding the mask is created and 
the ear length and width are found by measuring the length 
and width of the bounding box. 

to approximate the kernel length along the ear. However, the 
low frequency tones superimposed on the example profile 65 

(in an actual measurement) can complicate a FFT analysis 
and are accounted for by taking a gradient of the signal and 

The measured kernel length along the ear is one measure­
ment of kernel size that affects test weight and kernel 
packing along the ear. The Fourier transform is a signal 
processing method that measures the amplitude and phase 
information needed to reconstruct a periodic signal. 

Approximately 100 kernels are weighed, placed on a 6x6 
inch area of the flatbed scarmer and 24-bit RGB images are 
taken at 1200 dpi. The lid of the flatbed scanner is left open 
to provide a black background. The images are converted to 
gray scale, smoothed with a Gaussian kernel (sigma=X) and 
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with one set of instructions and the second module includes 
a second CPU hardware circuit with another set of instruc­
tions. 

Certain embodiments are directed to a computer program 

Otsu's threshold method is applied to obtain a binary mask 
for clusters of kernels. The area of each binary object is 
obtained and stored in a set Ak where k indexes the k th 

cluster. The set Mi/ is created by rounding the ratio of the i th 

object by the j th object (Equation 1). 

Equ (1) 

5 product ( e.g., nonvolatile memory device), which includes a 
machine or computer-readable medium having stored 
thereon instructions which may be executed by a computer 
( or other electronic device) to perform these operations/ 

Subsequently the set NJ is obtained by counting the number 
of objects that round to one for the j th object (Equation 2). 

10 

N;=l{xEM)Mu=l}I Equ (2) 15 

The mode of the set NJ is considered to be the number of 
single kernels in the image. The areas of single-kernel 
clusters are averaged together to obtain the average area of 
a single kernel, A. The total kernels, T, in the image are 
obtained by summing the rounded ratio of the area setAk by 20 

the average area, A. 

activities. 
Based upon the above discussion and illustrations, those 

skilled in the art will readily recognize that various modi­
fications and changes may be made to the various embodi­
ments without strictly following the exemplary embodi-
ments and applications illustrated and described herein. For 
example, various embodiments involve characterizing only 
kernels of corn, other embodiments involve characterizing 
only ears of corn, and some embodiments involve charac­
terizing both ears and kernels, in accordance with embodi-
ments herein. Still other embodiments involve the charac­
terization of other agricultural products, and of object that 
are not agricultural in nature. Further, other manners to 
separate background information from image data, to esti­
mate sizes, or to average sizes and relate those sizes to an 

T=~[~] 25 overall group or ear can be made to effect similar function. 
Reference to dimensions such as "height" and "length" may 
be interpreted as either height or length, or other dimen­
sional components to suit particular applications and related 
orientation. In addition, the various embodiments described 

For each single-kernel cluster, the major and minor axis is 
measured along with the area. 

After the kernels are removed from the ear the three cobs 
are placed on the flatbed scanner and scanned at 1200 dpi. 

30 herein may be combined in certain embodiments, and vari­
ous aspects of individual embodiments may be implemented 
as separate embodiments. Such modifications do not depart 
from the true spirit and scope of various aspects of the 
invention, including aspects set forth in the claims. 

To obtain an image that can easily be segmented, the cobs 
are scanned with a neon green background. The RGB 
images are transformed to HSY (hue, saturation, value 
(brightness)) color space, a Gaussian Filter is applied and 35 

Otsu's threshold method is used on the hue channel to isolate 
the cobs from the background. As with the ear images, a 
bounding box is drawn around each cob and the length and 
width of the bounding box directly measures the width and 
length of the cob. For general information regarding Otsu's 40 

threshold, and for specific information regarding the imple­
mentation of Otsu's threshold in accordance with one or 
more embodiments herein, reference may be made to Otsu, 
N, "A Threshold Selection Method from Gray-Level Histo­
grams," Systems, Man and Cybernetics, IEEE Transactions 45 

on 1979, 9:62-66, which is fully incorporated herein by 
reference. 

Various blocks, modules or other circuits may be imple­
mented to carry out one or more of the operations and 
activities described herein and/or shown in the figures. In 50 

these contexts, a "block" (also sometimes "logic circuitry" 
or "module") is a circuit that carries out one or more of these 
or related operations/activities ( e.g., thresholding, Fourier 
transforming, or averaging). For example, in certain of the 
above-discussed embodiments, one or more modules are 55 

discrete logic circuits, computer processor circuits or pro­
grammable logic circuits configured and arranged for imple­
menting these operations/activities, as in the circuit modules 
shown in FIG. 2. In certain embodiments, such a program­
mable circuit is one or more computer circuits programmed 60 

to execute a set (or sets) of instructions (and/or configuration 
data). The instructions (and/or configuration data) can be in 
the form of firmware or software stored in and accessible 
from a memory (circuit). As an example, first and second 
modules include a combination of a CPU hardware-based 65 

circuit and a set of instructions in the form of firmware, 
where the first module includes a first CPU hardware circuit 

What is claimed is: 
1. A method comprising: 
processing first image data for an image of a plurality of 

objects, and identifying therefrom object regions in the 
first image data, at least one of the object regions 
including a cluster of at least two of the plurality of 
objects, based on value differences between data char­
acterizing the object-regions and data characterizing a 
background region of the image; 

determining a size, including an area or perimeter-based 
dimension, of each object-region; 

determining an individual object size for the plurality of 
objects by 
for each object-region, determining respective ratios of 

the size of the object-region to the size of each of the 
other object regions, 

identifying ones of the object regions having a higher 
total number of the ratios that round to one, relative 
to the other object regions, and 

determining an expected individual object size based 
on the sizes of the identified ones of the object 
regions; and 

determining a total number of the objects in the image 
based on the determined expected individual object size 
and the sizes of the object regions, by using the 
determined expected individual object size and the size 
of each object region to detect a number of objects 
within each object region. 

2. The method of claim 1, wherein 
identifying the ones of the object regions having a higher 

total number of the ratios that round to one, relative to 
the other object regions, includes identifying said ones 
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of the object regions as individual objects and identi­
fying said other object regions as including clusters of 
the objects, 

determining the expected individual object size includes 
determining an average individual object size, by aver- 5 

aging the sizes of the identified ones of the object 
regions, and 

determining the total number of the objects in the image 
includes determining a total area of all object regions in 
the image and dividing the total area by the average 10 

individual object size, based on the determined average 
individual object size. 

3. The method of claim 1, wherein determining respective 
ratios of the size of the object-region to the size of each of 
the other object regions includes, for each object-region, 15 

respectively dividing the determined size of the object­
region by the size of each of the other object regions to 
provide a plurality of ratios of the object-region to each of 
the other object regions. 

4. The method of claim 1, wherein 20 

identifying the object regions includes identifying object 
regions in a sample portion of the image that is less than 
half of the image, the expected individual object size 
being an average object size in the sample portion, and 

determining the total number of the objects in the image 25 

includes using the average object size from the sample 
portion as an estimate of a total expected object size for 
the image. 

5. The method of claim 1, wherein 
determining a size of each object-region includes deter- 30 

mining the area of each object region, and determining 
the expected individual object size for the plurality of 
objects includes determining the average individual 
object area by 
identifying the object regions in a sample portion of the 35 

image that is less than half of the image, the average 
individual object area being an average object area in 
the sample portion, and 

determining the total number of the objects in the 
image includes, using the average object area from 40 

the sample portion as an estimate of a total average 
object area for the image, determining a total area of 
all object regions in the image and dividing the total 
area by the average individual object area. 

6. The method of claim 1, wherein identifying the object 45 

regions includes filtering the first image data by identifying 
the object regions as object regions having a size that is 
greater than a minimum threshold. 

7. The method of claim 1, wherein identifying the object 
regions includes filtering the first image data by identifying 50 

the object regions as object regions having a shape within a 
cross-sectional threshold. 

8. A method comprising: 
processing first image data for an image of a plurality of 

objects that include at least one of corn ovules and corn 55 

kernels, and identifying therefrom object regions in the 
first image data that represent objects or groups of 
objects in the image based on value differences 
between data characterizing the objects and data char-
acterizing a background region of the image; 60 

determining a size, including an area or perimeter-based 
dimension, of each object-region; 

determining an individual object size for the plurality of 
objects by 
for each object-region, determining respective ratios of 65 

the size of the object-region to the size of each of the 
other object regions, 

14 
identifying ones of the object regions having a higher 

total number of the ratios that round to one, relative 
to the other object regions, and 

determining an expected individual object size based 
on the sizes of the identified ones of the object 
regions; 

determining a total number of the objects in the image 
based on the determined expected individual object size 
and the sizes of the object regions; 

processing second image data from an image of a corn ear, 
and identifying therefrom a portion of the second image 
data including the corn ear relative to a portion of the 
second image data corresponding to a background of 
the image; 

applying a Fourier transform to an image gradient of the 
portion of the second image data including the corn ear, 
and providing transformed image data therefrom; 

determining a frequency of peaks in the transformed 
image data; and 

estimating a length of each ovule or kernel based on the 
determined peak frequency. 

9. The method of claim 8, wherein the image of the 
plurality of objects includes images of kernels of corn while 
they are attached to the corn ear. 

10. The method of claim 8, wherein the image gradient is 
a gradient along an axial direction of the corn ear. 

11. The method of claim 8, further including applying a 
Fourier transform to the image of the corn ear, wherein the 
determining the frequency of peaks in the transformed 
image data includes determining a frequency of peaks in the 
transformed image data for the corn ear and for the image 
gradient. 

12. The method of claim 8, wherein estimating the length 
of each ovule or kernel based on the determined peak 
frequency includes using a corresponding period of the 
frequency peaks to estimate the length of each ovule or 
kernel. 

13. The method of claim 8, wherein 
processing the second image data from the image of the 

corn ear includes thresholding the image data, and 
wherein identifying the portion of the second image 
data including the corn ear includes using the thresh­
olded image data, 

applying the Fourier transform includes separating the 
second image data into color channels and calculating 
the Fourier transform of a gradient channel within the 
color channels along an axial length of the ear, 

determining the frequency of the peaks includes sepa­
rately decomposing positive and negative values of the 
gradient of the one of the color channels with a sliding 
window Fourier transform, determining a frequency of 
a peak amplitude for each sliding window, and deter­
mining an average peak frequency across sliding win­
dows for both the positive and negative parts of the 
gradient, and 

estimating the length of each ovule or kernel includes 
plotting a cosine wave having the determined average 
peak frequency along the length of the ear, and esti­
mating an average length of the kernels based upon a 
period T of the cosine wave. 

14. The method of claim 8, wherein the image of the 
plurality of objects includes images of corn ovules on the 
corn ear. 

15. The method of claim 1, wherein the plurality of 
objects include corn kernels, and wherein determining the 
expected individual object size for the plurality of objects 
includes: 
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determining a point of maximum contour curvature of 
each kernel; 

determine a centroid of each kernel; 

16 
regions, and wherein the subset of the object regions are 
identified as individual objects, and said other object regions 
are identified as including clusters of the objects. 

computing a plurality of features characterizing each 
kernel; 

creating an n-dimensional distribution of the plurality of 
features; 

20. The non-transitory computer-readable medium of 
5 claim 17, wherein the instructions, when executed by the 

computer processor, cause the computer processor to 

for each kernel, 
calculating the plurality of features for respective con­

tour points on the kernel, using each contour point as 10 

a putative tip point, 
comparing the calculated features at each contour point 

with the n-dimensional distribution, and 
assessing the probability of each contour point being a 

true tip of the kernel based on the calculated features 15 

for the contour point and the n-dimensional distri­
bution, 

for each contour point exhibiting a probability that 
matches a peak of the n-dimensional distribution 
better than the determined point of maximum con- 20 

tour curvature for the kernel, updating the n-dimen­
sional distribution of the plurality of features using 
the contour point; and 

repeating the steps of calculating, comparing and assess­
ing for each kernel. 25 

16. The method of claim 15, wherein computing the 
plurality of features includes computing a plurality of fea­
tures selected from the group consisting of putative tip 
point-centroid axis, depth, width, depth:width ratio, curva­
ture for a portion of a base of the kernel, curvature for a 30 

portion of the apex of the kernel, and overall curvature of the 
kernel. 

17. A non-transitory computer-readable medium having 
instructions stored thereupon that, when executed by a 
computer processor, cause the computer processor to: pro- 35 

cess first image data from an image of a plurality of objects, 
and identify therefrom object regions in the first image data 
that represent objects or groups of objects in the image, at 
least one of the object regions including a cluster of at least 
two of the plurality of objects, based on value differences 40 

between data characterizing the object regions of the image 
and data characterizing a background of the image; deter­
mine a size, including an area or perimeter-based dimension, 
of each object-region; determine an average individual 
object size for the plurality of objects by for each object- 45 

region, determine respective ratios of the size of the object­
region to the size of each of the other object regions, identify 

identify the object regions by identifying object regions in 
a sample portion of the image that is less than the entire 
image, the expected individual object size being an 
average object size in the sample portion, and 

determine the total number of the objects in the image by 
using the average object size from the sample portion 
as an estimate of a total average object size for the 
image. 

21. The non-transitory computer-readable medium of 
claim 17, wherein the objects are kernels from a corn ear and 
the instructions, when executed by the computer processor, 
cause the computer processor to 

process second image data from an image of the corn ear, 
and identify therefrom a portion of the second image 
data including the corn ear relative to a portion of the 
second image data corresponding to a background of 
the image; 

apply a Fourier transform to an image gradient of the 
portion of the second image data including the corn ear, 
and provide transformed image data therefrom; 

determine a frequency of peaks in the transformed image 
data; and 

estimate a length of each kernel based on the determined 
peak frequency. 

22. The non-transitory computer-readable medium of 
claim 21, wherein the instructions, when executed by the 
computer processor, cause the computer processor to 

process the second image data from the image of the corn 
ear by thresholding the image data, and to identify the 
portion of the second image data including the corn ear 
by using the thresholded image data, 

apply the Fourier transform by separating the second 
image data into color charmels and calculating the 
Fourier transform of the gradient of one of the color 
channels along an axial length of the ear, 

determine the frequency of the peaks by separately 
decomposing positive and negative values of the gra­
dient of the one of the color channels with a sliding 
window Fourier transform, determining a frequency of 
a peak amplitude for each sliding window, and deter-
mining an average peak frequency across sliding win­
dows for both the positive and negative parts of the 
gradient, and 

estimate the length of each kernel by plotting a cosine 
wave having the determined average peak frequency 
along the length of the ear, and estimating the average 
kernel length based upon a period T of the cosine wave. 

23. An apparatus comprising: an imaging device config-

a subset of the object regions, in which the object regions 
have a higher total number of the ratios that round to one 
relative to the other object regions, and determine an 50 

expected individual object size based on the sizes of the 
object regions in the subset; and determine a total number of 
the objects in the image based on the determined expected 
individual object size and the sizes of the object regions, by 
using the determined expected individual object size and the 
size of each object region to detect a number of objects 
within each object region. 

55 ured and arranged to capture an image of a plurality of 
objects; and a computer processor circuit configured and 
arranged with stored instructions to: process first image data 
from an image of a plurality of objects, and identify there­
from object regions in the first image data that represent 

18. The non-transitory computer-readable medium of 
claim 17, wherein the instructions, when executed by the 
computer processor, cause the computer processor to deter­
mine a total number of the objects in the image by deter­
mining a total area of all object regions in the image and 
dividing the total area by the expected individual object size, 
based on the determined expected individual object size. 

19. The non-transitory computer-readable medium of 
claim 17, wherein the size of the object regions is one of an 
area of the object regions or a perimeter of the object 

60 objects or groups of objects in the image, at least one of the 
object regions including a cluster of at least two of the 
plurality of objects, based on differences between the object 
regions of the image and a background of the image; 
determine a size, including an area or perimeter-based 

65 dimension, of each object-region; determine an expected 
individual object size for the plurality of objects by for each 
object-region, determining respective ratios of the size of the 
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object-region to the size of each of the other object regions, 
identifying ones of the object regions having a higher total 
number of the ratios that round to one, relative to the other 
object regions, and determining the average individual 
object size by averaging the sizes of the ones of the object 5 

regions; and determine a total number of the objects in the 
image based on the determined average individual object 
size and the sizes of the object regions, by using the 
determined expected individual object size and the size of 
each object region to detect a number of objects within each 10 

object region. 
24. The apparatus of claim 23, wherein identifying said 

ones of the object regions includes differentiating clusters of 
the objects from individual ones of the objects by identifying 
the individual objects as ones of the object regions having a 15 

higher total number of the ratios that round to one, relative 
to the other object regions, and identifying the other regions 
as including clusters of the objects. 

* * * * * 
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