
I 1111111111111111 1111111111 1111111111 1111111111 11111 11111 111111111111111111

c12) United States Patent
Gupta et al.

(54) COMPUTER ARCHITECTURE FOR
SPECULATIVE PARALLEL EXECUTION

(71) Applicant: Wisconsin Alumni Research
Foundation, Madison, WI (US)

(72) Inventors: Gagan Gupta, Madison, WI (US);
Gurindar S. Sohi, Fitchburg, WI (US)

(73) Assignee: Wisconsin Alumni Research
Foundation, Madison, WI (US)

(*) Notice: Subject to any disclaimer, the term ofthis
patent is extended or adjusted under 35
U.S.C. 154(b) by 598 days.

(21) Appl. No.: 14/728,162

(22) Filed:

(65)

Jun. 2, 2015

Prior Publication Data

US 2016/0357608 Al Dec. 8, 2016

(51) Int. Cl.
G06F 9/38
G06F 9/50

(52) U.S. Cl.

(2018.01)
(2006.01)

CPC G06F 9/3842 (2013.01); G06F 9/38
(2013.01); G06F 9/5038 (2013.01)

(58) Field of Classification Search
CPC G06F 9/5038; G06F 9/3842; G06F 9/38
See application file for complete search history.

29----.._

RECEIVE PROGRAM

RECORD DYNAMIC
PROGRAM ORDER

ALLOCATE NEXTTASK
TO FREE PROCESSOR

ENROLL IN
REORDER LIST

OBTAIN TOKENS

CHECKPOINT ACCESSED
DATA

NEXTTASK

USO 10209997B2

(IO) Patent No.: US 10,209,997 B2
Feb.19,2019 (45) Date of Patent:

(56) References Cited

U.S. PATENT DOCUMENTS

6,345,351 Bl*

6,665,708 Bl *

9,727,370 B2 *
2004/0158549 Al *
2007/0192545 Al*

2008/0256074 Al *
2010/0070740 Al
2011/0209154 Al *

2011/0209155 Al *

2012/0066690 Al
2012/0180062 Al
2014/0259024 Al

* cited by examiner

2/2002 Holmberg G06F 12/1036
711/203

12/2003 Tikekar G06F 9/52
709/215

8/2017 Greiner G06F 12/084
8/2004 Matena G06F 11/2097
8/2007 Gara G06F 9/3842

711/141
10/2008 Lev G06F 9/466
3/2010 Allen et al.
8/2011 Gooding G06F 9/467

718/103
8/2011 Giampapa G06F 9/467

718/103
3/2012 Gupta et al.
7/2012 Sohi et al.
9/2014 Sridharan et al.

Primary Examiner - Benjamin C Wu
(74) Attorney, Agent, or Firm - Boyle Fredrickson, S.C.

(57) ABSTRACT

A system for parallel execution of program portions on
different processors permits speculative execution of the
program portions before a determination is made as to
whether there is a data dependency between the portion and
older but unexecuted portions. Before commitment of the
program portions in a sequential execution order, data
dependencies are resolved through a token system that
tracks read access and write access to data elements
accessed by the program portions.

20 Claims, 4 Drawing Sheets

54

56

58

60

61

SQUASH
YOUNGER TASKS

U.S. Patent Feb.19,2019 Sheet 1 of 4 US 10,209,997 B2

18 20

29
28
30
32

FIG. 1

18~

1 20 1 s2

1

2

3

4

5

6

7

8

9

TASK A() { ____ - @
;~~K ~1 (; - - i--1 @-s=,'----+-1-.1--1

.... // A2 1 50
1.1.1 TASK D () 1 Cl

,___. _ ___,,1---1----1

,.,.// A3
}

TASK B () { 1

10 //81--'
11 TASK C 0
12 // 82

13 }

14

I

I

I

15

16

17
18

TASK CO f I

WRITEO//Cl - J

}

19 TASK DO {

20 READO// D1

21 }

I

I
I

I

I

I

I
I

FIG.2

1.2

2

2.1

3

34

--- 36 38 40

NU

NL2

NL3

FIG. 3

CD
I

t1 @ A1

t2 ©CD @) @ I l l I I IA2l81 l 2

~CT) @ @ @) I I I IA3,D1tf3181 I t3 3
'-----,..----' -- ,.. ,., 6,50 @ @ @) 'f] D1 ~ 82 (1 ~J t4 B2 CTI) (P] 01 V}2 82 Cl

tS @ ® I I I I !1~s2l
B:

t6 @) I I I I I P}i§J

t7 I I I I I I I I

t8 I

........-

F!G.4

36, 38 40 34

l'.0 I 1 I 1 CI I 0
A1 A1 I O I 1 I 1 l I I I l

~
A2 Io Io 11 101-2.11 ~

B1,A3,A2 B1 Io Io 11 lc-1.1.1!01-2.1)

~
A3,A2,C1 (1

~ I O I 1 I O lc-1.1.11

~
A2,A3,B2 A2,B2 I O I O I 1 I D-2.1 I)

A3,D A3-D I O I 1 I 1 I I ~

I I I I I I I \

e
•
00
•
~
~
~
~ = ~

"f'j

g.
....
1,0
~

N
0
1,0

rJ'1
=­('D

a
N

0
.i;...

d
r.,;_

"'""' = 'N = \0
\0
\0
-....l

= N

U.S. Patent

29~

Feb.19,2019 Sheet 3 of 4

54

RECEIVE PROGRAM

56

RECORD DYNAMIC
PROGRAM ORDER

58

ALLOCATE NEXTTASK)
TO FREE PROCESSOR

60
ENROLL IN

REORDER UST

OBTAIN TOKENS

YES

,-------'------. 69

CHECKPOINT ACCESSED
DATA

NEXTTASK

F!G.5

US 10,209,997 B2

SQUASH
YOUNGER TASKS

67

U.S. Patent

29,

Feb.19,2019 Sheet 4 of 4 US 10,209,997 B2

NO

.-----~----..64
REMOVE FROM
REORDER UST

FLUSH CHECKPOINT
RETURN TOKEN

FIG. 6

65

US 10,209,997 B2
1

COMPUTER ARCHITECTURE FOR
SPECULATIVE PARALLEL EXECUTION

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT

This invention was made with government support under
0963737 awarded by the National Science Foundation. The
government has certain rights in the invention.

CROSS REFERENCE TO RELATED
APPLICATION

Background of the Invention

2
U.S. patent application Ser. No. 12/543,354 filed Aug. 18,

2009 (the "Serialization" patent), assigned to the same
assignee as the present invention and hereby incorporated by
reference, describes a system for parallelizing programs

5 written using a sequential program model during an execu­
tion of that program. In this invention, "serializers" are
associated with groups of instructions ("computational
operations") to be executed before execution of their asso­
ciated computational operations. The serializers may thus

10 positively identify the data accessed by the computational
operation to assign the computational operation to a par­
ticular processing queue. Computational operations operat­
ing on the same data are assigned to the same queue to
preserve their serial execution order. Computational opera-

15 tions operating on disjoint data may be assigned to different
queues for parallel execution. By performing the paralleliza­
tion during execution of the program, many additional
opportunities for parallelization may be exploited beyond

The present invention relates to computer architectures
for executing computer programs in parallel on multiple
processors and in particular to an architecture that allows for
speculative execution of program tasks before data depen- 20
dencies for those tasks are resolved.

those which may be identified statically.
This serialization method may also be used where the

datasets of computational operations are not completely
disjoint through the use of a "call" instruction which col­
lapses parallel execution when a data dependency may exist,
causing the program to revert to conventional serial execu-

Substantial improvements in program execution speeds
have been realized through more powerful processors that
can handle larger data "words" and can execute a higher
number of instructions per second.

An alternative way to increase program execution speed
divides the program into portions that are executed in
parallel on multiple processors. Ideally, as more perfor­
mance is required, more processors may be added to the
system. This approach can be extended to processors having
multiple "cores" and further extended with cores that can
run more than one program simultaneously (termed "mul­
tithreaded cores" such as should be distinguished from the
software technique of multi-threading).

25 tion. This approach slows executions of concurrent parallel
instruction groups and limits the discovery of potential
parallelism downstream from the "call" instruction while the
"call" is in force.

A more flexible accommodation of datasets that are not
30 completely disjoint is taught in US patent application 2012/

0066690 also assigned the same assignee as the present
invention and incorporated by reference. In this approach,
overlapping datasets are linked to tokens (in one embodi­
ment: read and write tokens) whose availability indicates

35 that there are no unresolved data dependencies. When data
dependencies exist, tasks may be placed in a waiting queue
to obtain the tokens.

Improved execution speed of a program using these
techniques depends on the ability to divide a program into
portions that may be executed in parallel on the different
processors. Parallel execution in this context requires iden­
tifying portions of the program that are independent such
that they do not simultaneously operate on the same data. Of 40

principal concern are portions of the program that may write

SUMMARY OF THE INVENTION

The present invention recognizes that a token technique
may be used to allow speculative execution of program
portions even when data dependencies have not yet been
resolved. In one embodiment, a reorder list is used to ensure
completion of the program portions in sequential execution
order and the token system used to squash program portions

to the same data, "write-write" dependency, and portions of
the program that may implement a reading of data subse­
quent to a writing of that data, "read-write" dependency, or
a writing of data subsequent to a reading of the data, 45

"write-read" dependency. Errors can result if any of these
reads and writes change in order as a result of parallel
execution.

that were prematurely executed as indicated by later discov­
ered data dependencies. By eliminating the need to wait until
late in program execution to detect or resolve dependencies, Many current programs are written using a sequential

programming model expressed as a series of steps operating
on data. This model provides a simple, intuitive program­
ming interface because, at each step, the generator of the
program (for example, the programmer, compiler, and/or
some other form of translator) can assume the previous steps
have been completed and the results are available for use.
However, the implicit dependence between each step
obscures possible independence among instructions needed
for parallel execution. To statically parallelize a program
written using the sequential programming model, the pro­
gram generator must analyze all possible inputs to different
portions of the program to establish their independence.
Such automatic static parallelization works for programs
which operate on regularly structured data but has proven
difficult for general programs. In addition, such static analy­
sis carmot identify opportunities for parallelization that can
be determined only at the time of execution when the data
being read from or written to can be positively identified.

50 improved processor utilization may be had. Advancing the
execution of program portions that ultimately do not expe­
rience data dependency problems can have a ripple-through
affect reducing later data dependencies as well.

Specifically, the present invention provides a multipro-
55 cessor computer architecture having at least two computer

processors and a memory for holding a non transient stored
program comprised of separately executable tasks and a
dataset operated on by the tasks. A runtime system operates
to: (a) identify a sequential execution order of the tasks

60 based on the sequential execution order of the program; (b)
allocate tasks to different processors out of sequential execu­
tion order for execution on the different processors; (c)
checkpointing modification by the tasks of accessed ele­
ments of the dataset to preserve an unmodified version of the

65 accessed data element; (d) commit execution of the tasks
according to the sequential execution order; (e) squash
earlier allocated tasks before a given task is committed in the

US 10,209,997 B2
3 4

It is thus a feature of at least one embodiment of the
invention to permit a compact checkpoint storage mecha­
nism that may be implemented in hardware.

sequential execution order if the earlier allocated tasks are
data dependent on the given task, the squashing ceasing
execution of the earlier allocated tasks and restoring ele­
ments of the dataset accessed by the earlier tasks to the
unmodified versions per the checkpointing.

The different processors are different cores or different
5 execution contexts of a single core.

It is thus a feature of at least one embodiment of the
invention to provide a method that flexibly accommodates
different mechanisms for parallel execution.

It is thus a feature of at least one embodiment of the
invention to provide a system that may speculatively execute
program tasks before determination of whether there is a
data dependency thus improving processor utilization. The runtime system includes hardware and software and

10 the hardware may include hardware unique to the runtime
system.

The multiprocessor computer architecture may further
include a reorder list receiving an identification of each
allocated task at the time of allocation and holding the
identification in the sequential execution order before com­
mitment and wherein step (d) commits the oldest task in the

15
reorder list.

It is thus a feature of at least one embodiment of the
invention to provide an architecture that can be implemented
in specialize circuitry for high-speed execution.

The data elements may be data objects.
It is thus a feature of at least one embodiment of the

invention to provide a simple method of coarse-grain iden­
tification of common memory elements. Identifying data
objects permits considering multiple variable addresses

It is thus a feature of at least one embodiment of the
invention to ensure commitment of the tasks in sequential
execution order regardless of their execution order thereby
allowing out of order execution while maintaining the
correctness ensured by sequential execution.

The commitment may remove the identification of the
committed task from the reorder list.

20 together for the purpose of dependency tracking reducing
the amount of storage required.

It is thus a feature of at least one embodiment of the
invention to provide a compact ordering structure that can be 25

practically implemented in software or hardware.
The data dependency may be detected by monitoring

access to elements of the dataset by each task and detecting
whether a younger task has accessed a given data element
before allocation of an older task accessing the given data 30

element to a processor, where one of the accesses is a write
access.

These particular objects and advantages may apply to
only some embodiments falling within the claims and thus
do not define the scope of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a simplified block diagram of a multiprocessor
system that may incorporate the present invention showing
a runtime system that may be implemented in hardware and
software including a reorder list, a history buffer, a sequen-
tial execution order store (which may be integrated into the
reorder list), read and write tokens, and a requester list; It is thus a feature of at least one embodiment of the

invention to provide a way to detect actual runtime data
dependency that can accommodate changes in data depen­
dency during runtime and that can ignore potential data
dependency which fails to materialize.

FIG. 2 is an example program having multiple tasks in a
35 sequential execution order, two of the tasks exhibiting a data

dependency and showing an assignment of an expandable,
fractional sequence number to each of the tasks;

FIG. 3 is a diagram of the tasks arranged by nesting level
and task number;

FIG. 4 is a chart showing the execution of the tasks of
FIG. 2 according to the present invention and illustrating the
assignment of tasks to different processors and the use of the
reorder list, read and write tokens and a requester list;

The data elements may be associated with read and write
tokens that must be acquired by a task to access a data
element and wherein multiple read tokens may be granted to 40

tasks for a given data element only if no write token has been
granted, and where a write token may be granted to a task
only if a read token has not been granted to any task and
wherein data dependency is detected when a younger task
obtains the token before an older task and at least one of the
younger and older tasks acquired the write token. It is thus

FIG. 5 is a flowchart of the process implemented in FIG.
45 4 in allocating program portions to processors; and

a feature of at least one embodiment of the invention to
provide a simple mechanism that is readily implemented in
computer architectures for detecting data dependency prob-
lems. 50

The multiprocessor computer architecture may further
include a requester list storing tasks that request tokens and
indicating a sequential execution order of the tasks and
wherein the requester list is used to identify for squashing a
younger task that obtains a token before an older task. It is 55

thus a feature of at least one embodiment of the invention to
provide a flexible method of identifying a task that must be
squashed when a data dependency error is detected.

FIG. 6 is a flowchart of the process of committing
completed program portions.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

Referring now to FIG. 1, a multi-processor system 10 may
include multiple processors 12 each allowing independent
execution of programs. The multiple processors 12 may be
full microprocessors, processor cores, or execution contexts
of an individual processor or core that allow maintenance of
multiple execution states for simultaneous or time-shared
execution of programs.

The processors 12 may communicate with a shared The squashing may reallocate the squashed task after the
squashing.

It is thus a feature of at least one embodiment of the
invention to ensure completion of each of the parallel tasks
despite squashing.

60 memory 14 intended to represent both local memory struc­
tures such as caches, buffers and the like as well as structures
such as random access memory and disk drives. Importantly,
each of the processors 12 may read and write data in

The commitment may erase data stored for the committed
task in the checkpointing of step (c).

The commitment may erase the request for the committed
task from the requester list.

65

common with the other processors 12.
The memory 14 may generally include an operating

system 16 as well as one or more application programs 18.
Each of the application programs 18 may be made up of

US 10,209,997 B2
5

separate tasks 20 that may be susceptible to parallel execu­
tion. The memory 14 may also hold a dataset 21 accessed by
application programs 18.

6
either as part of different instantiated objects or repeated
calls to a given function), each different instance may have
a different read set and write set dynamically determined

A runtime system 22 to implement the present invention
may include both dedicated hardware 24 and software 5

features 26 as will be generally understood in the art from
the following description. The runtime system 22 provides
for a number of data structures including: a reorder list 28;

during the execution of the application program 18.
During parallel execution, the tasks 20 may be executed

in a parallel execution order that changes dynamically
during run time and that differs from the sequential execu­
tion order.

a history buffer 30; a sequential execution order store 32
identifying a sequential execution order of tasks 20 of a
program 18; a data element access table 34 providing
identifiers 36 for identifying data elements accessed by the
tasks 20 and, for each identified data element, read tokens 38
for controlling the reading of data elements and write tokens
40 for controlling the writing to data elements; and a request
list 42 recording an identity of tasks 20 requesting tokens.
The runtime system 22 also provides for a firmware or
software operating program 29 as will be discussed below.
Portions of this operating program 29 may be incorporated
into the operating system 16. As a practical matter, the
sequential execution order store 32 may be incorporated into
the reorder list 28 providing storage of the sequential order
number 52 of tasks in the reorder list 28 as will be discussed
below.

Each of the processors 12 may also communicate via I/O
circuitry 44 with external devices, for example, a program­
ming terminal, networks and the like for receiving programs
18 and instructions from a user.

Referring now to FIG. 2, an example program 18 may
10 comprise tasks 20 labeled A, B, C and D, each comprised of

smaller tasks 20 having instructions (or groups of instruc­
tions) designated by line numbers. For example, a first task
20 (task A: lines 1-7 may execute some instructions com­
prising a smaller task Al and then make a call to a second

15 task 20 (task B) followed by the execution of additional
instructions (task A2) followed by a call to a third task 20
(task D) followed by the execution of additional instructions
(task A3). Task B (lines 9-13) when called, may in tum
execute some additional instructions (task Bl) and then may

20 call a fourth task 20 (task C) followed by the execution of
some additional instructions (task B2). Each of task C (lines
15-17) and task D (lines 19-21) may execute smaller tasks
Cl and Dl respectively. Importantly task Cl performs a
write to a data element designated O and task Dl performs

25 a read of the same data element O thus establishing a data
dependency 50 of task Dl on task Cl that is violated if task
Dl is executed before task Cl.

The program 18 will be comprised of multiple computer
executable instructions (for example, instructions of the C++ 30

programming language) collected into tasks 20. A task 20,

A task that calls other tasks is called a parent task. All
tasks transitively called from a parent task are said to be the
descendants of the parent task. In the above example, task C
is descendent of task B, and tasks B, C, and D are descen-

for example, may be a function, a subroutine, an object
method, or other natural logical division of the application
program 18 and may be comprised of different methods or
multiple invocations of the same method. The program 18 35

may be generated using a sequential programming model,
meaning that all or part of the program was generated as if

dants of task A.
Each of these tasks 20 may be given a unique sequential

execution order number 52 establishing a definitive order
according to the sequential execution order of the program
18. In this example, that sequential execution order will be
Al, Bl, Cl, B2, A2, Dl, A3 as may be established progres­
sively as the program executes The sequential execution
order number 52 is desirably expressed as a decimal fraction

it would be executed on a single processor or as a single
thread.

The sequential execution order will allow the determina­
tion of an order of any two tasks 20 even if the exact number

40 to capture this order while allowing expansions within the
order, for example, caused by multiple executions of a given
task 20 during actual program execution (for example, in a
loop) without the need to renumber the other tasks 20.

of tasks 20 changes dynamically during runtime. Thus, for
example, a loop may invoke a task for a number of times
determined by a variable available only at run time. Nev­
ertheless, each loop iteration, comprising a different task 20,
can be placed in a definitive order within the looping and
with respect to other tasks using the sequential execution
order which considers how the program would execute on a
single processor and single thread. Likewise a task that is
executed conditionally (and thus may not execute at all) may 50

still be given a definitive ordering with respect to other tasks
20.

Referring momentarily to FIG. 3, the sequential execution
45 order numbers 52 for any given task 20 may reflect the

sequential execution order number 52 of its parent(s) adding
an additional decimal for each nested level that the task 20
is removed from its parent. The final digit of the decimal
fraction will indicate the order of the task 20 at a given
nesting level. Thus, for example, task Al has a decimal
fraction of 1 and tasks Bl and B2 that have Al as a parent
have respective decimal numbers of 1.1 and 1.2 indicating
their parent task (Al) and their order within that particular
nested level. Likewise, a decimal number of 1.1.1 for Cl

Generally, each task 20 will access the dataset 21 held in
the shared memory 14 by reading or writing data elements
to or from the dataset 21. Each task 20 may identify a write
set and a read set indicating at execution using unique
identifiers of the data written to and read by the tasks 20
(hence its argument(s) and value(s)), for example, by vari­
able addresses or instanced object identifiers. It will be
understood that the underlying data of the write set and read
set may not be resolved or known at the time of program
generation but determined only when the program is run­
ning. For this reason, the actual addresses of the read set and
write set will frequently not be known by the program
generator.

When given task 20 of the application program 18 is
executed multiple times in different instances (for example,

55 indicates that its parent task has the number 1.1 (Bl). It will
be appreciated that if task B2 were to loop, multiple addi­
tional tasks 1.3, 1.4, etc. could be generated without upset­
ting the numbering of all of the other tasks as established by
sequential execution order. Thus the sequential execution

60 order number 52 may be expanded at run time but in
accordance with the sequential execution order.

Referring now to FIGS. 4 and 5, the operating program 29
of FIG. 1 may be executed in the present invention as
indicated by process block 54 beginning with receipt of the

65 program 18. At process block 56, the sequential execution
order may be determined for each task 20, for example, per
the numbering system of FIG. 2 assigning a sequential

US 10,209,997 B2
7 8

execution order number 52 to each task 20. The mapping
between sequential execution order number 52 and tasks 20
determined as tasks 20 are enrolled in the reorder list 28 and
held in a sequential order store 32 as part of the data held in
the reorder list 28 for each task for reference during execu- 5

tion of the program 18.

menting the value from one to a value of two. In other
embodiments, other ways of maintaining and managing the
read tokens could be implemented.

The runtime system 22 enforces a set of rules for obtain-
ing the read tokens 38 and write tokens 40 as follows. A task
20 that wishes to read or write to a data object must have a
token. Only as long as the single write token 40 has not been
granted (indicated by a one value for the write token 40 in

At process block 58, the tasks 20 of the program 18 are
assigned to available processors 12 which for simplicity are
assumed to be three in number: Pl-P3. In this example, task
Al will be assigned a processor Pl at epoch t1 (the term 10

epoch indicating only a relative time order rather than a
particular length of time). Upon this allocation, as indicated

the data element access table 34 in this example), multiple
read tokens 38 can be simultaneously granted. Each granting
of a read token 38 causes a incrementing of the read token
38 value. Only as long as no read tokens have been granted
(indicated by a one value in the read token 38 in the data

by process block 60, an identifier for the task Al, for
example, its unique sequential execution order number 52,
may be enrolled in the reorder list 28 following the sequen- 15

tial execution order where the "oldest" task 20 is at the

element access table 34 in this example), the write token
may be granted. Write token is granted by decrementing of
the write token 40 value from 1 to 0. Other embodiments
could be implemented to manage the read and write tokens.

rightmost position as depicted.
These following process blocks apply only to cases where

the task 20 accesses the dataset 21. Here it is assumed that
no such access occurs for task Al and accordingly the
program loops back to process block 58.

At epoch t2, and referring also to FIG. 6, it is assumed for
this example that task Al completes. Because task Al is the
oldest task in the reorder list 28, as determined by decision
block 62, it is removed from the reorder list 28 (retired) as
indicated by process block 64. As will be discussed in more
detail below, there was no memory access by this task Al,
so the remaining process blocks of FIG. 6 may be skipped
and the program loops back to decision block 62. If Al had
accessed memory and had been enrolled in the request list
42, that entry in the request list 42 would be removed at
process block 64 as will be discussed below.

Referring again back to FIG. 5, also at epoch t2, new tasks
A2 and Bl are assigned to processors Pl and P2. Note that
this assignment is not necessarily according to the sequential
execution order (which would assign Bl and Cl next) but
may be independent of sequential execution order. The tasks
A2 and Bl are nevertheless given an ordering in the reorder
list 28 that is consistent with the ordering of the sequential
execution order with respect to all other tasks in the reorder
list 28. That is task Bl, older than younger task A2 is placed
to the right of task A2 per the above described convention.
Neither of these tasks access memory (by assumption for
this example) and accordingly the program loops back to
process block 58.

At epoch t3, is assumed that task A2 completes. At
decision block 62, this task A2 is not the oldest task in the
sequential execution order (which would be Bl) and accord­
ingly task A2 remains in the reorder list 28 (shaded to show
it is complete).

Also at this epoch t3, tasks Dl and A3 are allocated to
processors (P2 and Pl) to begin execution. In this example,
task Dl accesses memory by reading the memory object 0

In this case, because the write token 40 is present in the
20 data element access table 34, the task Dl may obtain a read

permission indicated by the read token 38. This read access
is provided despite the lack of any knowledge at this point
as to whether there is a data dependency in task Dl (and in
fact there is such a data dependency) and accordingly this

25 execution of task Dl is being performed speculatively.
At the time the read token 38 is acquired, also at process

block 61, task Dl also enrolls its identifier and sequential
execution order number 52 (e.g., Dl-2.1) in the request list
42 indexed by the data object 0. The data object O being

30 accessed by task Dl is next checkpointed in history buffer 30
indexed to task Dl, at process block 69, meaning a copy is
made of this data object O for modification so that any
modification of this data object by task Dl can be undone if

35
task Dl is later squashed.

Referring still to FIGS. 4, 5 and 6, at epoch t4, tasks Bl
and A3 complete. New tasks Cl and B82 are allocated to
processors 12 and identifiers for these tasks 20 are added to
the reorder list 28, not at the end but according to the

40 sequential execution order so that they follow task Bl and
move task A2 and other pre-existing tasks to the left. This
movement is provided by determining the sequential execu­
tion number 52 of tasks Cl and B2 and comparing those
numbers to the sequential execution number associated with

45 the tasks currently in the reorder list 28 being part of the
sequential order store 3 2 so that all tasks in the reorder list
are in the order of their sequential execution numbers 52. Per
decision block 62, task Bl is retired as being a completed
task that is the oldest task in the reorder lists 28.

50

(as indicated in FIG. 2) and accordingly after being entered
into the reorder list 28 task Dl must obtain a read token 38 55

Significantly, task Cl requires a writing to data object 0
and accordingly is directed to the data element access table
34 and the row entry for data object O in order to obtain the
write token 40, The write token 40 may not be released
under the rules enforced by the runtime system 22, however,
because a read token 38 is missing, having been taken by
task Dl previously, as detected at decision block 66. from the data element access table 34 as indicated by process

block 61. The access target of O is used to identify a row of
the data element access table 34 per identifier 36 or, if there
is no pre-existing row, to create a new row. The present
invention contemplates that the identifier 36 may be of any
form so long as it definitively identifies accessed memory,
including a memory address, a memory address range, and
a data object identifier, or the like.

Because task Dl requires a reading of data object 0, in
one embodiment the read token 38 is given to task D
indicated by a incrementing of a value recording a number
of issued read tokens 38, for example, in this case incre-

The runtime system 22, detecting this conflict of task Cl
and being unable to obtain a write token 40, then reads the
request list 42 (which now also holds the request by task Cl)

60 and determines that the missing read token 38 has been taken
by a younger task Dl. The relative age of these tasks is
simply determined by comparing the sequential execution
order number 52 of task Dl of 2.1 to the sequential execu­
tion order number 52 of task Cl of 1.1. In this comparison

65 process, the left decimal places are dispositive and right
decimal places are only considered if the immediately left
decimal places are equal. Generally, this process may iden-

US 10,209,997 B2
9

tify one or more younger tasks depending on how many read
tokens 38 are missing. Such tasks, Dl in this case, are said
to be misspeculated.

This younger task(s), in this case only task Dl, is then
squashed as indicated by process block 67 which removes 5

the task Dl from execution on its current processor 12 and
restores the variable(s) modified by the task Dl (in this case
data element 0) to its earlier state using the checkpoint value
of the history buffer 30. In some embodiments, all tasks that
are data dependent or control dependent on task Dl (descen- 10

dant tasks) will also be squashed along with task Dl as
determined by the sequential order numbers 52. Alterna­
tively, in another embodiment, speculation may be blocked
for any tasks that would be data dependent or control
dependent on a currently speculated task that is not yet 15

committed.
In the current example, the read token 38 taken by task Dl

is returned and the information about squashed task Dl
removed from the request list 42. After restoration of data
element 0 caused by the squashing, that checkpoint value is 20

removed from the history buffer 30 as no longer needed.
Task Cl then obtains the write token 40 it requires at

decision block 66 and checkpoints the data it will be
accessing at process block 69.

It is also possible that misspeculated computations have 25

completed when the misspeculation is detected. For
example, above when task Cl tries to acquire the token for
0 in epoch t4, the younger task Dl which had acquired token
for 0 may have already completed and returned it's token.
Although now the token for 0 will be available for Cl to 30

acquire, the runtime will detect the misspeculation because
Dl's token request will still be in the request list 42. In this
case, Dl which is completed but not retired is squashed, as
are tasks dependent on Dl and the descendants of Dl,
meaning that checkpoints of Dl, any dependent computa- 35

tions, and descendant computations are used to restore the
state they may have modified. Cl is submitted for execution
and once it completes, Dl and its dependent computations
are restarted.

Squashing of a task causes the task and its descendant 40

tasks, if any, to be removed from the reorder list.
As shown at epoch t5, task Cl may then complete.

Because task Cl is now the oldest task in the reorder list 28,
at decision block 62, it is removed from the reorder list 28
and its write token 40 is returned and its checkpoint data is 45

released per process block 65. Because Cl is retired, its
information is removed from the request list 42. Because Cl
is complete, the dependent task Dl may now be re-allocated.

10
"below" refer to directions in the drawings to which refer­
ence is made. Terms such as "front", "back", "rear", "bot­
tom" and "side", describe the orientation of portions of the
component within a consistent but arbitrary frame of refer­
ence which is made clear by reference to the text and the
associated drawings describing the component under dis­
cussion. Such terminology may include the words specifi­
cally mentioned above, derivatives thereof, and words of
similar import. Similarly, the terms "first", "second" and
other such numerical terms referring to structures do not
imply a sequence or order unless clearly indicated by the
context.

The term "architecture" is intended to broadly include all
features of the computer whether they are implemented in
hardware, firmware, software or a combination of these.

When introducing elements or features of the present
disclosure and the exemplary embodiments, the articles "a",
"an", "the" and "said" are intended to mean that there are
one or more of such elements or features. The terms "com­
prising", "including" and "having" are intended to be inclu­
sive and mean that there may be additional elements or
features other than those specifically noted. It is further to be
understood that the method steps, processes, and operations
described herein are not to be construed as necessarily
requiring their performance in the particular order discussed
or illustrated, unless specifically identified as an order of
performance. It is also to be understood that additional or
alternative steps may be employed.

References to a "processor" should include the concepts
of separate processors, core, and processing contexts, for
example, in a multithreaded core. The term "task" may each
be understood to be portions of one or more interacting
programs as context requires.

References to memory, unless otherwise specified, can
include one or more processor-readable and accessible
memory elements and/or components that can be internal to
the processor-controlled device, external to the processor­
controlled device, and can be accessed via a wired or
wireless network.

The description of structures and operations herein should
be understood to indicate logical structures and operations
and therefore to include structures and operations that pro­
duce the same logical result. For example, removal of data
from the reorder list should be understood to mean logical
removal which may, for example, keep the data in the
reorder list but market that data as using a flag or the like.
Similarly, lists or tables need only provide that logical
organization and do not require contiguous data locations or
row and column alignment and physical memory.

It is specifically intended that the present invention not be
limited to the embodiments and illustrations contained
herein and the claims should be understood to include
modified forms of those embodiments including portions of
the embodiments and combinations of elements of different

As shown at epoch to, task B2 may next complete
allowing both it and previously completed task A2 to be 50

retired in sequential execution order. Task D is then re­
allocated to a processor 12 and takes its place ahead of task
A3 (which is already completed) per the sequential execu­
tion order. Again task Dl takes the read token 38 and enrolls
itself in the request list 42. 55 embodiments as conic within the scope of the following

claims. All of the publications described herein, including
patents and non-patent publications, are hereby incorporated
herein by reference in their entireties.

At epoch t7 task Dl may complete and tasks Dl and A3
can be retired in task order. At this time task Dl returns the
read token 38 for data element 0.

It will be appreciated that in cases where there is no data
dependence, the execution tasks 20 may be much acceler- 60

ated by the speculation allowed in the present invention
allowing the processors 12 to be fully utilized and later
tasks, dependent on the executing tasks, advanced in execu­
tion.

Certain terminology is used herein for purposes of refer- 65

ence only, and thus is not intended to be limiting. For
example, terms such as "upper", "lower", "above", and

What we claim is:
1. A multiprocessor computer architecture comprising:
at least two computer processors;
a memory for holding a non-transient stored program

comprised of separately executable tasks and a dataset
operated on by the tasks; and

a runtime system operating to:
(a) identify a sequential execution order of the tasks based

on a serial execution of the program;

US 10,209,997 B2
11

(b) allocate tasks to different processors out of sequential
execution order for execution on the different proces­
sors;

(c) checkpointing modification by the tasks of accessed
elements of the dataset, such modification generating a 5

changed value of the accessed elements of the dataset,
to preserve an umnodified version of the accessed
elements unaffected by the generated changed value of
the accessed elements;

(d) commit execution of the tasks according to the 10

sequential execution order;
(e) before a given task is committed, squash earlier

allocated tasks that are before the given task in the
sequential execution order, if the earlier allocated tasks
are data dependent on the given task, in which one of 15

the earlier allocated tasks and the given task modify
shared data accessed by both the earlier allocated tasks
and the given task, the squashing nullifying results of
any execution of the earlier allocated task and restoring
any elements of the dataset accessed by the earlier tasks 20

to the umnodified versions per the checkpointing; and
(f) allow reexecution of the squashed, earlier allocated

tasks only after determination of whether the given task
has completed accessing the shared data.

2. The multiprocessor computer architecture of claim 1 25

wherein the sequential execution order is the order that the
program would execute on a single processor as a single
thread.

12
given task, in which one of the earlier allocated tasks
and the given task modify data accessed by both the
earlier allocated tasks and the given task, the squashing
nullifying results of any execution of the earlier allo­
cated task and ensuring any elements of the dataset
accessed by the earlier tasks conform to the umnodified
versions per the checkpointing; and

(f) allow reexecution of the squashed, earlier allocated
tasks only upon completion of execution of the given
task;

wherein data dependency is detected by monitoring
access to elements of the dataset by each task and
detecting whether a younger task has accessed a given
data element before allocation of an older task access­
ing the given data element to a processor, where one of
the accesses is a write access;

wherein the data elements are associated with read and
write tokens that must be acquired by a task to access
a data element, and wherein multiple read tokens may
be granted to tasks for a given data element only if no
write token has been granted, and wherein a write token
may be granted to a task only if a read token has not
been granted to any task, and wherein data dependency
is detected when a younger task is found to have
obtained a token necessary to access a data element
before an older task and one of the younger and older
tasks acquired a write token.

7. The multiprocessor computer architecture of claim 6 3. The multiprocessor computer architecture of claim 1
further including a reorder list receiving an identification of
each allocated task at the time of allocation and holding the
identification in the sequential execution order before com­
mitment and wherein step (d) commits an oldest task in the
reorder list.

30 further including a requester list storing tasks that request
tokens and indicating a sequential execution order of the
tasks, and wherein the requester list is used to identify for
squashing a younger task that prevents an older task from

4. The multiprocessor computer architecture of claim 3 35

wherein commitment removes the identification of commit­
ted tasks from the reorder list.

obtaining a token.
8. The multiprocessor computer architecture of claim 1

wherein the squashing of (e) reallocates a squashed task
after the squashing. 5. The multiprocessor computer architecture of claim 1

wherein data dependency is detected by monitoring access
to elements of the dataset by each task and detecting whether
a younger task has accessed a given data element before
allocation of an older task accessing the given data element
to a processor, where one of the accesses is a write access.

6. A multiprocessor computer architecture comprising:
at least two computer processors;
a memory for holding a non-transient stored program

comprised of separately executable tasks and a dataset
operated on by the tasks; and

a runtime system operating to:
(a) identify a sequential execution order of the tasks based

on a serial execution of the program;
(b) allocate tasks to different processors out of sequential

execution order for execution on the different proces­
sors;

(c) checkpointing modification by the tasks of accessed
elements of the dataset, such modification changing
values of the accessed elements of the dataset, to
preserve an unmodified version of the accessed ele­
ments allowing the accessed elements of the dataset to

9. The multiprocessor computer architecture of claim 1
40 wherein the committing erases data stored for a committed

task in the checkpointing of step (c).
10. The multiprocessor computer architecture of claim 1

wherein the different processors are different cores.
11. The multiprocessor computer architecture of claim 1

45 wherein the different processors are different execution
contexts of a single core.

12. The multiprocessor computer architecture of claim 1
wherein the runtime system includes hardware and software.

13. The multiprocessor computer architecture of claim 12
50 wherein the hardware includes hardware unique to the

runtime system.
14. The multiprocessor computer architecture of claim 1

wherein the data elements are data objects.
15. A method of executing programs on a multiprocessor

55 computer having at least two computer processors and a
memory for holding a non-transient stored program com­
prised of separately executable tasks and a dataset operated
on by the tasks;

the method comprising:
be restored to a value before the modification unaf- 60

fected by the generated changed value of the accessed
elements;

(a) identifying a sequential execution order of the tasks
based on a serial execution of the program;

(b) allocating tasks to different processors out of sequen­
tial execution order for execution on the different (d) commit execution of the tasks according to the

sequential execution order;
(e) squash earlier allocated tasks that are before a given 65

task is committed in the sequential execution order if
the earlier allocated tasks are data dependent on the

processors;
(c) checkpointing modification by the tasks of accessed

elements of the dataset, such modification generating a
changed value of the accessed elements of the dataset,

US 10,209,997 B2
13

to preserve an unmodified version of the accessed
elements unaffected by the generated changed value of
the accessed elements;

(d) committing execution of the tasks according to the
sequential execution order; and 5

(e) before a given task is committed, squashing earlier
allocated tasks that are before the given task in the
sequential execution order, if the earlier allocated tasks
are data dependent on the given task, in which one of
the earlier allocated tasks and the given task modify
shared data accessed by both the earlier allocated tasks

10

and the given task, the squashing nullifying results of
any execution of the earlier allocated task and ensuring
any elements of the dataset accessed by the earlier tasks
conform to the unmodified versions per the checkpoint­
ing; and 15

(f) allow reexecution of the squashed, earlier allocated
tasks only after a determination of whether the given
task has completed accessing the shared data.

16. The method of claim 15 wherein the sequential
execution order is the order that the program would execute 20

on a single processor as a single thread.
17. The method of claim 15 further including receiving an

identification of each allocated task at a time of allocation in
a reorder list and holding the identification in the sequential
execution order before commitment and wherein (d) com- 25

mits an oldest task in the reorder list.
18. The method of claim 15 wherein data dependency is

detected by monitoring access to elements of the dataset by
each task and detecting whether a younger task has accessed
a given data element for allocation by an older task access- 30

ing the given data element to a processor, where one of the
accesses is a write access.

19. A method of executing programs on a multiprocessor
computer having at least two computer processors and a
memory for holding a non-transient stored program com- 35

prised of separately executable tasks and a dataset operated

14
(c) checkpointing modification by the tasks of accessed

elements of the dataset, such modification generating a
changed value of the accessed elements of the dataset,
to preserve an unmodified version of the accessed
elements unaffected by the generated changed value of
the accessed elements;

(d) committing execution of the tasks according to the
sequential execution order; and

(e) squashing earlier allocated tasks that are before a
given task is committed in the sequential execution
order if the earlier allocated tasks are data dependent on
the given task, in which one of the earlier allocated
tasks and the given task modify data accessed by both
the earlier allocated tasks and the given task, the
squashing nullifying results of any execution of the
earlier allocated task and ensuring any elements of the
dataset accessed by the earlier tasks conform to the
unmodified versions per the checkpointing; and

(f) allowing reexecution of the squashed, earlier allocated
tasks only upon completion of execution of the given
task;

wherein data dependency is detected by monitoring
access to elements of the dataset by each task and
detecting whether a younger task has accessed a given
data element for allocation by an older task accessing
the given data element to a processor, where one of the
accesses is a write access;

wherein the data elements are associated with read and
write tokens that must be acquired by a task to access
a data element, and wherein multiple read tokens may
be granted to tasks for a given data element only if no
write token has been granted, and wherein a write token
may be granted to a task only if a read token has not
been granted to any task, and wherein data dependency
is detected when an older task cannot obtain a token
necessary to access a data element. on by the tasks;

the method comprising:
(a) identifying a sequential execution order of the tasks

based on a serial execution of the program;
(b) allocating tasks to different processors out of sequen­

tial execution order for execution on the different

20. The method of claim 19 further including a requester
list storing tasks that request tokens and indicating a sequen-

40 tial execution order of the tasks and wherein the requester
list is used to identify for squashing a younger task that
prevents an older task from obtaining a token.

processors; * * * * *

