a2 United States Patent

US009665290B2

10) Patent No.: US 9,665,290 B2

(54)

(71)

(72)

(73)

")

@

(22)

(65)

(62)

(1)

Foundation, Madison, W1 (US)

Wang et al. 45) Date of Patent: May 30, 2017
MEMORY CONTROLLER FOR (52) US.CL
HETEROGENEOUS COMPUTER CpPC ... GOG6F 3/0611 (2013.01); GOG6F 3/0659
(2013.01); GO6F 3/0685 (2013.01)
Applicant: Wisconsin Alumni Research (58) Field of Classification Search

GOGF 3/0611; GO6F 3/0659
711/151

Inventors: Hao Wang, Madison, W1 (US); Nam See application file for complete search history.
Sung Kim, Middleton, WI (US)
(56) References Cited
Assignee: Wisconsin Alumni Research
Foundation, Madison, W1 (US) U.S. PATENT DOCUMENTS
Notice: Subject to any disclaimer, the term of this 2008/0151670 AL* 62008 Kawakubo Gll%g/sl/gg

patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

Appl. No.: 15/348,157
Filed: Nov. 10, 2016
Prior Publication Data

US 2017/0060441 Al Mar. 2, 2017

Related U.S. Application Data

Division of application No. 14/465,126, filed on Aug.
21, 2014, now Pat. No. 9,501,227.

* cited by examiner

Primary Examiner — Jae Yu
(74) Attorney, Agent, or Firm — Boyle Fredrickson, S.C.

(57) ABSTRACT

A memory controller for heterogeneous computer proces-
sors dynamically adjusts access priorities by the different
processors to maximize performance in the execution of a
single parallel application program on both processor archi-
tectures. In one embodiment, the memory controller predicts
sequential memory accesses by the processor having higher
memory latency or fewer access requests to lockout the
other processor during those sequences for improved imple-

Int. CL mentation of the intended prioritization.
GO6F 12/12 (2016.01)
GO6F 3/06 (2006.01) 12 Claims, 3 Drawing Sheets
63y .| DESIGNATE CPU,
1 GPUTASKS
"""" “&E&W‘
85z .| = Lt SR TOTH
= APPLICATION 7| MEASURETOTAL 1~
- EXECUTION THME 82
82, [ABIUST MEVORY |
887 ccess Bias ADIUSTMEMORY |
7 | ACCESS PRIORITY Py | 64
a5h EXECUTE
APPLICATION)
] | START APPLICATION] »
gﬁs\ﬁ ADRIST MEMORY -
' ACCESS BIAS TN T8
i < UNEXECUTED NG
656 .| EXECUIE ~.._ PORTIONS
~_APPLICATION T~z 4T3
! LYES / .7} MEASUREFIRST
85d_- EXECHTE ALOCATETD - 7. ANDLABT GPU
AP?&&%M%GN FREE CPUS, GPUS |7 # BANK ACCESS
8&p . EXECUTE T §
~1 appuicATioN ADIUST CPU BANK
ACCESS LOCKOUT
E TIME Ny

t
t

U.S. Patent May 30, 2017 Sheet 1 of 3 US 9,665,290 B2

3.2\\ t4a {\
) i
14h =t
e g b ﬁ}’wm\‘ig
T4
28 15 ,;L ‘
3 ¥
— T

Qoo on
e ponQ
LRGN

nounoo

34

)'__‘/gfg’
é
k1
e““v t
§
—
3oy L ; §
, /-
H
E‘{fﬁ n ~
o !
i4a g
1453\ g
QOnogn t
Womooon f
k
N
i
4
§
3
}
&

U.S. Patent May 30, 2017 Sheet 2 of 3 US 9,665,290 B2
63 - DESIGNATE CPU,
~ 1 GPUTASKS
|
858 oy [VEASURETOTAL |
_— EXECUTIONTIME [62
62, TADIUSTMEWORY | §
64" aceess Bl ADJUSTMEMORY |
: ~~.__ | ACCESS PRIORITY Py |~ ©4
65b_ -~ EXECUTE
APPLICATION :
! [STARY APPLICATION|
giw\ ADJUSTMEMORY | 7
® 7 | _ACCESSBIAS | ./ TN 6
! : A UNEXECUTED ™ _NO
§5c - EXECUIE PORTIONS "
> | APPLICATION Y b
A . {YEs /1 <7 MEASUREFIRST
65¢_ ., BAECUIE ALGCATETD 1 o | ANDLASTCPU
ﬁmﬁé‘ﬂ?iﬂﬁ “ | | FrEEcPus.Gpus |Lo1 P71 BANKACCESS
~ § 7
o EXECUTE ' SECUTE e 5 e
BN oo b L PEGTE IS T nIUST CPU BANK
71 , ~oi 74, ACCESS LOCKOUY
T DONE i i
E * T~ TIME f\iw
H
§
FG. 3
B4~
A 66 i\
70 NO "/fm?g . YES 88
. f
‘\:} \ \/ S <\
QUEUE FROM GPU QUEUE FROM GPU
REQUEST BUFFER REQUEST BUFFER

HG. 4

U.S. Patent May 30, 2017 Sheet 3 of 3 US 9,665,290 B2

R
M*J‘f@-\\&maﬁﬁ& >

~ 82

YESy 81 Z

- \

¥ g
< L? i>___w o
RN C e

83 | D=3 N

INC. ©
CLEAR D
o
N
3
88".“\\ ,,m»-».‘f' \\ Y
< ?@m T YES) CLEAR a

2 w‘% 88
NO EXECUTE |
REQUEST
89
EXECUTE |/
REQUEST

US 9,665,290 B2

1
MEMORY CONTROLLER FOR
HETEROGENEOUS COMPUTER

CROSS REFERENCE TO RELATED
APPLICATION

This application is a divisional application of U.S. Pat.
No. 9,501,227 filed Aug. 21, 2014 as patent application Ser.
No. 14/465,126.

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT

This invention was made with government support under
1217102 awarded by the National Science Foundation. The
government has certain rights in the invention.

BACKGROUND OF THE INVENTION

The present invention relates to heterogeneous computer
architectures employing multiple processor types (for
example, CPUs and GPUs) and, in particular, to a memory
controller providing improved access to common memory
when a single parallel application is divided among hetero-
geneous processors.

Modern computer systems may provide heterogeneous
processor architectures, for example, employing one or more
conventional computer processing units (CPUs) operating in
tandem with specialized graphical processing units (GPUs)
the latter tailored to a high-speed streaming processing.
Such systems can be performance limited by the speed of
off-chip memory access.

One method of improving the speed of offchip memory
access in such systems is to provide access priority to CPU
cores. This priority reflects a general understanding that the
CPU cores represent a relatively small proportion of
memory accesses (minimizing their overall impact on GPU
memory accesses) and that CPU cores are less able to
tolerate long memory access latency. In contrast GPUs can
offset long memory access latency by implementing a large
number of hardware threads.

Deciding how to prioritize memory access for one pro-
cessor type in a heterogeneous processor architecture is
difficult because of the unknown relative importance of each
task with respect to system performance. Accordingly such
systems rely heavily on preserving “fairness” in the alloca-
tion; that is, priority systems in which each processor type
is guaranteed a given minimum amount of memory access.

SUMMARY OF THE INVENTION

The present inventors have recognized that current prior-
ity allocation systems for memory requests in heterogeneous
processor systems are suboptimal for an important class of
problems where the system executes a single parallel appli-
cation using both the CPU and the GPU, in this case, the
system performance can be evaluated in view of the mea-
sured completion of the entire application and fairness may
not be a primary consideration. Accordingly, the present
invention provides a memory access control system that
measures the execution time of the single parallel applica-
tion running on the different processors and operates to
minimize the execution time. The priority may be dynami-
cally adjusted during runtime.

In one embodiment, the invention prevents high-priority
memory access requests from being blocked behind more
frequent but lower priority memory access requests, defeat-

20

25

30

35

40

45

50

55

60

65

2

ing the intended prioritization. The invention recognizes that
high-priority memory access requests may tend to cluster in
many important program types and accordingly locks out the
lower priority memory access requests for an adjustable
lockout period after a first memory request in a cluster is
detected. The cluster size may be determined by the address
mapping scheme used by the memory controller and the
assumption of sequential memory addresses by the program,
although the invention is not limited to this approach. The
lockout period may be dynamically adjusted during runtime.

Specifically then, at least one embodiment of the inven-
tion provides a computer for heterogeneous computing
having a first processor having a first architecture and a
second processor having a second architecture different from
the first architecture. A memory controller communicating
memory access requests from the first and second processor
to a memory gives changing levels of priority to memory
access requests from the first processor according to a
multivalue priority value. A priority value adjuster measures
execution time of a single parallel application using the first
and second processor, which is the longest of execution
times of the first processor and the second processor, and
adjusts the priority value to minimize this execution time.

It is thus one feature of at least one embodiment of the
invention to provide improved execution of single parallel
programs in a heterogeneous environment.

The first processor may be at least one general-purpose
computer processing unit providing a first instruction set and
the second processor may be at least one graphic processing
unit providing a second instruction set different from the first
instruction set.

It is thus one feature, of at least one embodiment of the
invention to provide improved memory access in common
heterogeneous computers having a CPU and a GPU.

The computer also may include, a memory access lockout
to lockout memory access requests from the second proces-
sor to a portion of the memory for an adjustable lockout
period after a memory access request from the first processor
to the portion of the memory.

It is thus one feature of at least one embodiment of the
invention to prevent a large memory access request rate
from, the second processor from defeating an attempt to give
high priority to memory access requests from the first
processor by the sheer number of requests from the second
processor. The natural clustering of access requests provides
a way of promoting the high-priority memory access
requests in the situation.

The lockout period may be a time value.

It is thus one feature of at least one embodiment of the
invention to provide a flexible technique of defining a
lockout window.

The lockout period adjuster may measure the time interval
of successive memory access requests from the first proces-
sor to the portion of the memory during execution of the
single parallel application and adjust the lockout period
according to that measurement.

It is thus one feature of at least one embodiment of the
invention to provide a dynamically adjustable lockout that
accommodates changing program behavior to promote high-
priority memory access requests without unduly delaying
low-priority memory access requests.

The lockout period adjuster may combine multiple mea-
sures of successive memory access requests to determine the
lockout period to be representative of an expected number of
successive memory accesses.

It is thus one feature of at least one embodiment of the
invention to provide a predictive adjustment of the lockout

US 9,665,290 B2

3

that is not destabilized to introduce inefficiencies when there
is volatility in the clustering of instructions.

The electronic memory may include different indepen-
dently accessible memory banks and the lockout period may
independently control the lockout period for each bank.

It is thus one feature of at least one embodiment of the
invention to provide separate lockout control for each bank,
reflecting the ability of the banks to independently serve
memory requests without conflict.

Either or both of the lockout period adjuster and priority
value adjuster may be implemented in part in a program
executing on one of the first and second processors.

It is thus one feature of at least one embodiment of the
invention, to permit the invention to be implemented, at least
in portion, on existing hardware or with minor modifications
to that hardware.

The computer may include a program allocator allocating
portions of the single parallel application between the first
and second processor and adjusting the allocation during the
execution of the single parallel application to minimize
execution time of the single parallel application.

It is thus one feature of at least one embodiment of the
invention to provide a system that can complement an
existing system for efficiently dividing a single parallel
program up among heterogeneous processors. Adjustment of
memory access priority works independently of such allo-
cation to fine tune the results of such allocation.

The memory controller may give priority to memory
access by the first processor according to the priority value
by applying the priority value as a threshold to a random
number.

It is thus one feature of at least one embodiment of the
invention to provide a simple way of implementing a
multivalued priority using a random number generator that
can be easily fabricated as part of a hardware controller.

The single parallel application may compute at least one
value dependent on the execution of all portions of the single
parallel application on the first and second processor.

It is thus one feature of at least one embodiment of the
invention to provide a system that works with the division of
single application programs among multiple processors as
opposed to the division of unrelated parallel tasks among the
multiple processors.

These particular features and advantages may apply to
only some embodiments falling within the claims and thus
do not define the scope of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a simplified block diagram of a computer
providing two different heterogeneous processors commu-
nicating with a common memory through a memory con-
troller to jointly execute a single parallel application;

FIG. 2 is a detailed block diagram of the memory con-
troller showing the flow path of memory access requests
through input buffers, a scheduling buffer, and a bus arbi-
tration buffer;

FIG. 3 is a simplified flowchart of the steps implemented
by the computer of the present invention under the control
of a runtime layer to adjust memory access priorities and
lockouts among the first and second processor;

FIG. 4 is a flowchart showing the implementation of a
priority value when loading the scheduling buffer; and

FIG. 5 is a flowchart showing the implementation of a
lockout time value when loading of the scheduling buffer.

20

25

30

35

40

45

50

55

60

65

4

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

Hardware Structure

Referring now to FIG. 1, a heterogeneous computer 10
may have one or more general processing units 14a and one
or more specialized processing units 145, these two pro-
cessing units 14a and 145 each having a different architec-
ture. The two processing units 14a and 1456 may be in the
form of single-chip heterogeneous processor (SCHP) system
12 invigorating the processor units 14a and 145 on a single
integrated circuit substrate 15. The processor system 12 may
communicate with an external memory 18, for example,
comprised of dynamic random access memory (DRAM).
This communication may be managed by a memory con-
troller 20 as will be discussed further below.

The general processing unit 14q, typically termed com-
puter processing unit (CPU), may execute a complex
instruction set for general-purpose scalar processing.
Examples, of such general processors include those support-
ing the x86 instruction set architecture capable of executing
standard operating systems such as Windows, OSX, Linux
and the like.

In contrast, the specialized processing units 145 may
execute a specialized instruction set, for example, on stream
or vector data. Examples of specialized processing units 141
are graphic processing units (GPUs) or visual processing
units (VPUs) operating on video stream data or audio
processors operating on audio stream data, each amenable to
highly parallelizable processes. Henceforth these devices
will be termed GPUs without intending loss of generality.

General processing units 14a normally have less tolerance
to latency in acquiring data from external memory than
special processing units 145. Latency is the delay between
making a memory request and receiving the requested data
and is distinct from the data rate at which data can be
obtained from external memory after an initial delay.
Because of this characteristic, general processor units 14a
will be termed latency-sensitive processors and special
processing units 145 will be termed latency-insensitive
processors. In addition, the general processing units 14a
normally require less memory bandwidth and process fewer
memory access requests in a given time than the special
processing units 145 which can produce a high rate of
memory access requests.

The external memory 18 may include an operating system
21 together with other runtime programs as well as appli-
cation programs such as a single parallel program 22 and
application program data 24. As will be discussed further
below, the present invention contemplates that the single
parallel program 22 will be parallelizable to be executed
concurrently on the general processor units 14a and special
processing units 145. Consequently the memory space hold-
ing the single parallel program 22 and application program
data 24 would be Shared by the general processor units 14a
and special processing units 145 requiring a mechanism to
provide efficient conflict joint access. A single parallel
program may be defined as one which can be divided to be
executed as different portions among different processors,
but were all of the portions need to be complete for the
program to be complete, for example, to provide value
output from the program which may be dependent on each
of the portions. More generally, the variables of the single
parallel program may exhibit interdependency among the
portions. The external memory 18 may also include runtime
programs 19 working in conjunction with hardware and

US 9,665,290 B2

5

firmware of the processor system 12 to implement the
present invention as described below.

The external memory 18 may be organized in banks, each
of' which can independently process memory access requests
(bank-level parallelism) while individually servicing only
one memory access request at a time.

The computer 10 may also provide for one or more
interface circuits 26 allowing the computer 10 to commu-
nicate with external devices 28 such as network connections,
user interfaces (including monitors and keyboards and the
like) or other computer peripherals known in the art.

Referring now also to FIG. 2, the general processing unit
14a may, for example, be a multicore processor having
multiple processor cores 30 each executing a general
instruction set with multiple registers and the like and
including one or more hardware timers 32 that can measure
instruction clock cycles or time. The special processing unit
145 may also be composed of multiple thread execution
units 34, typically in much greater number than the cores 30.
These thread execution units 34 tend to have a reduced
instruction set with respect to the cores 30 and fewer or no
unique registers compared to the cores 30.

Both the general processing unit 14a and special process-
ing unit 145 may communicate with the memory controller
20 through memory access input buffers 36a and 365,
respectively, which allow the general processing unit 14a
and special processing unit 145 to submit memory access
registers defining memory addresses from which data is
sought and may receive responsive memory data for those
addresses through memory response queues 38a and 385,
respectively.

The outputs of the memory access input buffers 36a and
36b are received by a demultiplexer 40 controlled by an
arbitration circuit 43 which selects among the outputs of the
memory access input buffers 36a and 365 in first-in, first-out
(FIFO) order, particularly requests for enrollment in a sched-
uling buffer 42 according to a set of rules as will be
described below and a priority value 49 (P,) that may
change during execution of the single parallel program 22
(shown in FIG. 1) as will be discussed. Generally, an
arbitration circuit 43 using the priority value 49 (P,
controls the demultiplexer 40 to select requests from the
different memory access input buffers 36a and 365 for
populating the scheduling buffer 42.

Within the scheduling buffer 42 each scheduling request
44 is linked to an origin value 46 identifying the source of
the scheduling request 44 from either general processing
unit 14a or special processing unit 145. The scheduling
buffer 42 also provides for a Priority flag 48 indicating
particular requests that will receive priority within the
normal FIFO order of the scheduling buffer 42. The requests
44 may be held in the order in which they are received so
that information about the order in which the scheduling
requests 44 were received is preserved.

Requests 44 in the scheduling buffer 42 are submitted to
a bus arbitration buffer 50 according to a scheduling circuit
52. The scheduling circuit 52 may implement a general
first-row first-come, first-served (FR-FCFS) policy modified
as will be described below. As is understood in the art, an
FR-FCFS policy serves the first scheduling requests 44
received while providing limited priority to scheduling
requests 44 on banks, pages, or row buffers that are currently
open and which can be served faster. This policy may set or
reset priority flags 48 that may also be set or reset by the
present invention allowing for the integration of two over-
lapping priority rule sets.

20

25

30

35

40

45

50

55

60

65

6

The arbitration buffer 50 includes separate buffer ele-
ments 56 associated with different banks 58 of the memory
18. As described above, each bank 58 can serve a single
request at a time and thus presents independent access
delays from a point at which the request to the bank 58 is
submitted to the point at which data is retrieved from the
bank 58.

A lockout time value 54 (N,.) may be dynamically
adjusted during execution of the single application program
22 as will be discussed below. Execution statistics and
control of memory access will be implemented by a set of
lockout timer/counters 59 (designated A, B, C and D)
associated with each buffer element 56 of the bus arbitration
buffer 50. These timer/counters will hold data related to
historical access to corresponding bank 58 memory 18 by
request from general processing unit 14a. In operation, the
scheduling, circuit 52 generally allocates requests 44 from
the scheduling buffer 42 to particular ones of the separate
buffer elements 56, depending on the appropriate bank 58
where the requested data is held, and according to data held
in the lockout timer/counters 59 and according to the value
of N, .. The value of the lockout time value 54 (N,.) is
adjusted dynamically using the data from lockout timer/
counters 59 as will be discussed below.

The memory controller 20 may also provide for a random
number generator 61, for example, generating a random
number within a desired range.

Runtime Operation
1. Program Division

Referring now to FIGS. 1-3, the operating system 21, or
one or more runtime services under that operating system,
will typically execute on one of the cores 30 of the general
processing unit 14a to oversee the execution of the single
parallel program 22 on both the general processing unit 14a
and special processing unit 145. In a first step of this process,
the single parallel program 22 is divided into portions that
should be directed specifically to general processing units
14a and the special processing unit 145, for example,
according to the specialized abilities of the general process-
ing unit 14a and special processing unit 145, per process
block 60. This step may he skipped in cases where the single
parallel program 22 is divisible into portions that are equally
executable by the special processing unit 146 and the
general processing unit 14a This division, which may occur
when the program is being written or during compilation
identifies portions of the single parallel program 22 that can
be executed separately with minimal interaction with the
other portions, provides for paths of that interaction (for
example, semaphores or locked variables).

In one embodiment, during an execution, unexecuted
portions of the single parallel program 22 are allocated to
ones of a pool of general processing units 14a and special
processing units 145 as they become available. Specifically
at process block 67, the execution may begin and at decision
block 69 the portions of the single application program 22
examined to see if they have all been completely executed.
If so, the program iteration completes as indicated by
process block 71. If the program portions have not all been
completed then at process block 73 uncompleted program
portions are allocated to free ones of the general processing
units 14a or special processing units 146 from a pool
according to availability and aptitude for the particular
unexecuted portion. Those portions are then executed as
indicated by process block 75.

US 9,665,290 B2

7

The invention also contemplates that specific portions of
the single parallel program 22 may be specifically assigned,
for example using a schedule, to particular ones of the
general processing units 14a and 141, according to methods
known in the art, to preemptively attempt to balance the load
among all processing units. Any such balancing may be
performed independently of the present invention.

II. Memory Access Priority

After the single parallel program 22 has been allocated to
the general processing unit 14a and special processing unit
145, it may execute one iteration at process block 65a. After
this iteration 65a, the time required to complete the execu-
tion of each assigned portions of the single parallel program
22 by the general processing unit 14a and special processing
unit 145 may be measured. Generally it is anticipated that
the single parallel program 22 will be executed multiple
times in multiple iterations (65a-65¢) and, accordingly,
measurement of execution time may simply measure the
time at which each execution of one iteration begins and
concludes. Alternatively and equivalently a measure may be
made of the time it takes for all portions of one iteration to
be executed on the given group of the general processing
units 14a or special processing units 145 which are last to
complete their assigned portions. Timers 32 of the general
processor units 14a¢ may be used for this purpose under
control of the operating system.

These measurements of process block 62 may be used to
determine the priority value 49 (P,;,) used to control the
priority of memory access between the general processing
unit 14a and the special processing unit 145 that minimizes
the execution time for a portion of the single parallel
program 22 having the longest execution time. One way of
determining the optimal value of the priority value 49 (P,
is to vary the value of the priority value 49 (P,,) over
different iterations of execution of the single parallel pro-
gram 22 and to identify the value of priority value 49 (P,
that produces the shortest execution time of the single
parallel program 22. This process can be done occasionally,
for example, over the first few iterations only, and can
execute a greedy algorithm in which the process stops as
soon as minimum execution time is identified (a drop and
then rise in execution time).

For example, the priority value 49 (P, may be defined
to vary from O to 1 in increments of 0.1. With successive
iterations in the execution of the single parallel program 22,
the value of priority value 49 (P,) may be increased from
zero by steps of 0.1 for each iteration with higher values of
priority value 49 (P,,) giving greater priority to the general
processing unit 14a. At each iteration, the execution time of
each of the portions of the single parallel program 22
executing on different processors may be measured to com-
pute a total execution time equal to the longest (maximum)
of the execution times of each of the portions. As soon as the
total execution time drops in successive iterations, that value
of priority value 49 (P,;) is used.

This value of priority value 49 (P,;;) will be the one that
roughly equalizes the execution times of the different por-
tions of the single parallel program 22 as allocated among
the general processing unit 14a and special processing unit
145 and thus which minimizes execution time of the single
parallel program 22.

A current value P, is then provided to the arbitration
circuit 43, as indicated by process block 64, for use as will
be described below.

20

25

30

35

40

45

50

55

60

65

8

As rioted above, it is anticipated that the process of
adjusting the memory access priority P, per process box
62, 64, may be done following only a first, or first few of the
iterations 65 and then on a less periodic basis consistent with
the expectation that the value of P,, Will be essentially
constant for giving computer system and application pro-
gram 22.

Referring now to FIG. 4, process block 64, which may
execute concurrently with the other process blocks of FIG.
3, controls the allocation of requests from input buffers 36a
and 365 according to the value of P, as indicated by
decision block 66.

In one example, the values of P, may range from 0 to 1
in 0.1 increments. A decision as to whether to fill the
scheduling buffer 42 from memory input buffers 36a asso-
ciated with general processing unit 14a as indicated by
process block 68 or to fill the scheduling buffer 42 from
memory input buffers 365 associated with special processing
unit 145 per process block 70 will generate a random
number using random number generator 61 between zero
and one and compare that result against the value P,,. If the
random number is less than P, the scheduling, buffer 42 is
filled per process block 68. This process is then repeated for
each subsequent filling of the scheduling buffer 42. It will be
understood, in this example, that the higher the value of P,
the greater priority scheduling requests from the general
processing unit 14a is provided.

Referring again to FIG. 3 in this way, the priority of
memory requests from the general processing unit 14a is
adjusted to better equalize the execution speed of the
assigned portions of the single parallel program 22 on the
general processing unit 14a and special processing unit 145.

II1. Access Lockout

Concurrently or sequentially with process blocks 62 and
64, the process 63 may measure the patterns of requests for
each bank 58 of the memory 18 as indicated by process
block 72. This measurement attempts to detect patterns of
sequential memory accesses by general processing unit 14a
of a given bank 58 to prevent those accesses from being
interrupted by the more numerous memory access requests
44 by the special processing unit 145. Accordingly, upon a
first memory access request 44 within a time window for a
given bank 58 by the general processing unit 14a (after a
request from the general processing unit 14a from any other
bank 58) process 63 stores a time value (or similar proxy for
times such as instruction counter values, access request
numbers etc., henceforth collectively termed time values) in
the start register 59. Likewise, the last memory access
request 44 within the same time window for the given bank
58 by the general processing unit 14a before it makes a
request of another bank 58 is stored as a time value in the
stop register 59 to provide a general indication of the time
window during which a pattern of sequential requests by the
general processing unit 14a is historically made for that
given bank. The present inventors have identified that a
regular pattern of punctuated sequential access of a given
bank by the general processing unit 14¢ is relatively com-
mon across a range of parallel programs and further that this
sequence of requests be unduly delayed by intervening
requests by the special processing unit 145 which typically
have a higher request bandwidth. The measurements and
data stored by the lockout timer/counters 59 are used to
develop a lockout time value 54 (N,) which blocks access
requests 44 from the special processing unit 145 during the
lockout time value 54 per process block 74.

US 9,665,290 B2

9

Generally the lockout time value 54 (N;) may provide
for a rolling average of successive measurements made by
the start and stop registers 59, for example, by taking an
average of the current lockout time value 54 (N,) and the
most recently calculated difference between the stop and
start registers 59. This averaging process provides improved
stability to the value of N; . providing it with better predic-
tive value.

The foregoing process blocks 60, 62, 64, 72, and 74 are
shown arranged sequentially for clarity but may be executed
in different orders or may execute concurrently as is gener-
ally understood in the art.

Referring now to FIGS. 2 and 5, the lockout time value 54
(N;) is used by the scheduling circuit 52. When the
scheduling circuit 52 receives a request 44 from the sched-
uling buffer 42, the scheduling circuit 52 identifies the
source of the request as being either the general processing
unit 14a or special processing unit 144. If the request is from
the general processing unit 14a, per decision block 80, the
scheduling circuit 52 proceeds to decision block 81 to
determine if timer D of the lockout timer counters 59 has a
value of zero. Timer D is a countdown timer stopping at zero
when it has fully counted down. When timer D has a value
of zero, it indicates that the request from decision block 80
is a first request for the particular bank 58.

Assuming that this request is a first request and that timer
D has a value of zero, then at process block 82, timer A is
set with the current lockout value N, .. Timer A is also a
countdown timer stopping at zero. Tinier A will generally
indicate whether or not the bank 58 is locked. In addition
timer B is set to zero, Timer B is a count up timer. Further,
counter C is set to one. Counter C is a count up counter that
counts the number of accesses by the general processing unit
14a in each cluster. Finally timer D is set to 2N, , a value that
establishes a window during which a cluster is presumed to
fall. The process then proceeds to decision block 84.

If at decision block 81, the value of tinier D is not zero,
indicating that the recent request is not the first request of a
cluster, the program proceeds to process block 83 and
counter C is incremented. The process then passes to deci-
sion block 84.

At decision block 84, the value of counter C is compared
to a predetermined number R being the expected number of
memory access requests by the general processing unit 14a
in a cluster. As noted above, this number may be pre-
determined by evaluating type of memory address map used
indicating the mapping from linear address space to loca-
tions in the physical memory devices and assumptions that
the single application program 22 will generally access
memory sequentially. Thus if the bank bits are put closer to
most significant bit, it will be expected that the value of R
will he larger and vice versa.

By way of example, consider a simple system having 2
banks, each bank having 2 rows and each row having four
columns (blocks). An address for such a memory would be
4 bits long with

1 bit providing a bank index (B)

1 bit providing a row index (R) and

2 bits providing a column index (C).

In this case, one address mapping might be: RBCC
meaning an address, from left to right, where the 1st bit
decides the row index, the 2nd bit decides bank index, and
the 3rd & 4th hits together decides column index. In this
case, the address 1011 points to bank 0, row 1, column 3 (11
in binary).

For this mapping, in a sequential access, we would expect
four consecutive requests to the same bank before the

20

25

30

35

40

45

50

55

60

65

10
requests move to another bank. Far example: 0000-0001-
0010-0011 all to bank 0, then 0100 to bank 1.

Now consider an alternative address map of: RCBC. In
this case, address 1011 points to bank 1, row 1, column 1 (01
in binary). For the same sequential access we would expect
2 consecutive requests to the same bank. For example,
0000-0001 to bank 0, then 0010 to bank 1. In this way, the
address mapping can be used to predetermine the value R.

If at decision block 84 the value of counter C is less than
R, it can be assumed that the expected cluster is not complete
and the process proceeds to decision block 86. On the other
hand if the value of counter C equal to R, it is assumed that
the cluster has been completed and the program proceeds to
process block 85 where timer B is stopped and saved for
calculating or updating N; », and the value of timer D is set
to zero indicating that the cluster is complete.

At decision block 86 the value of timer D is evaluated to
see if it has timed out (equals zero) which will always be the
case following process block 85 and which may sometimes
he the case following decision block 84. If so, timer A, B and
counter C are set equal to zero or cleared.

In either case following process block 87 or decision
block 86, the process proceeds to process block 88 and the
access requested is executed. Next at process block 89 the
next request is fetched.

If at decision block 80 the request was not from a general
processing unit 14a but instead from a special processing
unit 145, the program proceeds to decision block 80 to see
if timer A has reached zero indicating the end of the lockout
period.

If so, the request may execute at process block 88 but if
not, the request is deferred and the next request obtained at
process block 89. The deferral process may simply move the
request back one place in the scheduling queue 42 so that the
request is again considered promptly after the conclusion of
the lockout period.

It will be understood that this process allows uninter-
rupted runs of successive accesses to a given bank 58 by the
general processing unit 14a so as to keep such requests from
being blocked by more frequent access requests by the
special processing unit 145, thus blocking from undoing the
intended priority of the request by the general processing
unit 14a. Generally this process gives priority to the general
processing unit 14a expected to provide fewer memory
requests and/or to be more sensitive to latency.

Certain terminology is used herein for purposes of refer-
ence only, and thus is not intended to be limiting. For
example, terms such as “upper,” “lower” “above,” and
“below” refer to directions in the drawings to which refer-
ence is made. Terms such as “front,” “back,” “rear,” “bot-
tom,” “side,” “left” and “right” describe the orientation of
portions of the component within a consistent but arbitrary
frame of reference which is made clear by reference to the
text and the associated drawings describing the component
under discussion. Such terminology may include the words
specifically mentioned above, derivatives thereof, and words
of similar import. Similarly, the terms “first,” “second” and
other such numerical terms referring to structures do not
imply a sequence or order unless clearly indicated by the
context. The term “multivalue” as used herein means at least
three different values to distinguish from a simple on or off
state.

When introducing elements or features of the present
disclosure and the exemplary embodiments, the articles “a,”
“an,” “the” and “said” are intended to mean that there are
one or more of such elements or features. The terms “com-

29 <l

prising,” “including” and “having” are intended to be inclu-

US 9,665,290 B2

11

sive and mean that there may be additional elements or
features other than those specifically noted. It is further to be
understood that the method steps, processes, and operations
described herein are not to be construed as necessarily
requiring their performance in the particular order discussed
or illustrated, unless specifically identified as an order of
performance. It is also to be understood that additional or
alternative steps may be employed.

All of the publications described herein including patents
and non-patent publications are hereby incorporated herein
by reference in their entireties.

We claim:

1. A computer for heterogeneous computing of a single
parallel application comprising;

a first processor having a first architecture;

a second processor having a second architecture different

from the first architecture;

an electronic memory; and

a memory controller communicating memory access

requests from the first and second processor to the
memory, the memory controller giving priority to
memory access requests from the first processor to a
portion of the memory during a predetermined lockout
period after a first memory access request from the first
processor to the portion of the memory following a
memory access request from the first processor to a
different portion of memory.

2. The computer of claim 1 wherein the first processor has
at least one of greater sensitivity to memory latency than the
second processor, and a lower rate of memory access
requests than the second processor.

3. The computer of claim 1 further including a lockout
period adjuster measuring successive memory access
requests from the first processor to the portion during
execution of the single parallel application and adjusting the
lockout period according to that measurement.

4. A memory controller comprising:

inputs adapted to receive memory requests from a first

processor having a first architecture and a second
processor having a second architecture different from
the first architecture;

outputs adapted to communicate memory requests

received from the first and second processors to all
electronic memory to obtain data requested by the
memory requests; and

20

25

30

35

40

12

a memory request lockout giving priority to memory
access requests from the first processor to a portion of
the memory during a predetermined lockout period
after a first memory access request from the first
processor to the portion of the memory following a
memory access request from the first processor to a
different portion of memory;

wherein the first processor has at least one of greater
sensitivity to memory latency than the second proces-
sor, and a lower rate of memory access requests than
the second processor.

5. The computer of claim 4 further including a lockout
period adjuster measuring successive memory access
requests from the first processor to the portion during
execution of the single parallel application and adjusting the
lockout period according to that measurement.

6. The computer of claim 5 wherein the lockout period
adjuster combines multiple measures of successive memory
access requests to determine the lockout period to be rep-
resentative of an expected number of successive memory
accesses.

7. The computer of claim 1 wherein the lockout period
adjuster combines multiple measures of successive memory
access requests to determine the lockout period to be rep-
resentative of an expected number of successive memory
accesses.

8. The computer of claim 7 wherein the lockout period
adjuster is at least in part a program executing on one of the
first and second processors.

9. The computer of claim 1 wherein the electronic
memory includes different hanks, and wherein the portion is
a given bank and the lockout period adjuster independently
controls a lockout period for each bank.

10. The computer of claim 1 wherein the first processor
has greater sensitivity to memory latency than the second
processor.

11. The computer of claim 1 wherein the first processor
makes fewer memory access requests than the second pro-
Ccessor.

12. The computer of claim 1 wherein the first processor is
at least one general-purpose computer processing unit pro-
viding a first instruction set and the second processor is at
least one graphic processing unit providing a second instruc-
tion set different from the first instruction set.

#* #* #* #* #*

	Bibliography
	Abstract
	Drawings
	Description
	Claims

