
c12) United States Patent
Sankaralingam et al.

(54) MEMORY PROCESSING CORE
ARCHITECTURE

(71) Applicant: Wisconsin Alumni Research
Foundation, Madison, WI (US)

(72) Inventors: Karthikeyan Sankaralingam, Madison,
WI (US); Jaikrishnan Menon,
Madison, WI (US); Lorenzo De Carli,
Madison, WI (US)

(73) Assignee: Wisconsin Alumni Research
Foundation, Madison, WI (US)

(*)

(21)

(22)

(65)

Notice: Subject to any disclaimer, the term ofthis
patent is extended or adjusted under 35
U.S.C. 154(b) by 136 days.

Appl. No.: 14/453,990

Filed: Aug. 7, 2014

Prior Publication Data

US 2016/0041856 Al

(51) Int. Cl.

Feb. 11, 2016

(2018.01)
(2006.01)
(2006.01)

G06F 9/30
G06F 12100
G06F 15178

(52) U.S. Cl.
CPC G06F 1517821 (2013.01); Y02D 10/12

(2018.01); Y02D 10/13 (2018.01)
(58) Field of Classification Search

(56)

CPC G06F 15/7821; Y02B 60/1207; Y02B
60/1225

See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS

5,974,543 A * 10/1999 Hilgendorf G06F 9/3806
712/240

6,349,322 Bl* 2/2002 Shaylor G06F 9/52
718/107

1s I

~

I 1111111111111111 1111111111 1111111111 11111 11111 11111 111111111111111 IIII IIII
US010289604B2

(IO) Patent No.: US 10,289,604 B2
May 14, 2019 (45) Date of Patent:

2006/0005072 Al * 1/2006 Philippe Conti G06F 21/82
714/5.11

2010/0005217 Al* 1/2010 Jeddeloh . GllC 5/02
711/1

(Continued)

OTHER PUBLICATIONS

Leidel, etc., "HMC-Slim: A Simulation Framework for Hybrid
Memory Cube Devices", IEEE, Dec. 4, 2014, pp. 1-4.*

(Continued)

Primary Examiner - S. Sough
Assistant Examiner - Phuong N Hoang
(74) Attorney, Agent, or Firm - Boyle Fredrickson, S.C.

(57) ABSTRACT

Aspects of the present invention provide a memory system
comprising a plurality of stacked memory layers, each
memory layer divided into memory sections, wherein each
memory section connects to a neighboring memory section
in an adjacent memory layer, and a logic layer stacked
among the plurality of memory layers, the logic layer
divided into logic sections, each logic section including a
memory processing core, wherein each logic section con
nects to a neighboring memory section in an adjacent
memory layer to form a memory vault of connected logic
and memory sections, and wherein each logic section is
configured to communicate directly or indirectly with a host
processor. Accordingly, each memory processing core may
be configured to respond to a procedure call from the host
processor by processing data stored in its respective memory
vault and providing a result to the host processor. As a result,
increased performance may be provided.

24 Claims, 5 Drawing Sheets

22

L

;

(56) References Cited

US 10,289,604 B2
Page 2

U.S. PATENT DOCUMENTS

2011/0119508 Al* 5/2011 Heller, Jr. G06F 15/7896
713/320

2012/0151159 Al* 6/2012 Muralimanohar A0lN 65/00
711/154

2013/0336082 Al* 12/2013 Khawshe GllC 5/005
365/233.12

2014/0040532 Al 2/2014 Watanabe et al.
2014/0181361 Al* 6/2014 Kegel G06F 12/0804

711/102
2014/0281311 Al* 9/2014 Walker G06F 3/0631

711/162
2015/0357010 Al* 12/2015 Jeddeloh G06F 1/3225

710/317

OTHER PUBLICATIONS

HMC, "Inside the Hybrid Memory Cube", Sep. 2013, pp. 1-6.*
Hybrid Memory Cube Specification 1.0; 2013 Altera Corporation,
ARM Ltd., Hewlett-Packard Company, International Business Machines
Corporation. Micron Technology, Inc; pp. 1-122; US.
J. Thomas Pawlowski; Hybrid Memory Cube (HMC); 2011 Micron
Technology, Inc.; pp. 1-24; US.
Venray Technology Ltd; Implementations; website-http://www.
venraytechnology.com/Implementations.htm; 2005-2014 Venray Tech
nology Ltd.; pp. 1-2; US.
JED EC Standard; High Bandwidth Memory (HBM) DRAM; JED EC
Solid State Technology Association; Oct. 2013; Published by ©
JED EC Solid State Technology Association 2013; pp. 1-124; Arling
ton, VA.
Joe Jeddeloh et al,; Hybrid Memory Cube New DRAM Architecture
Increases Density and Performance; VLSI Technology (VLSIT),
Jun. 12-14, 2012 Symposium; pp. 87-88; Honolulu, HI.

* cited by examiner

U.S. Patent May 14, 2019 Sheet 1 of 5 US 10,289,604 B2

,--10

,---~---------

1a I
~-

\

14h
_

14c 14b I

,.,/ 7 I 12a
r---+-r---~-,--~+-,--,..,...,..,,..,,," I / ~.,.

t
14d

20d

FIG. 1

1~-a !
14f

38 40

)

(

14c 14b

25
19

....__.,.,...,... ___ _

12a
_J'

14f

25

FIG. 2

22

l
- - - - - J..

r18
20c

)

-

20b I
J

34

.,/

r »- --F=:-.3 6

40

e
•
00
•
~
~
~
~ = ~

~
~
.i;...
~

N
0
1,0

rJJ
=('D

a
N

0
Ul

d
r.,;_

"'""' = 'N
00
\0
O'I = ~
= N

U.S. Patent May 14, 2019 Sheet 3 of 5 US 10,289,604 B2

,,,--so

PARTITION A

PARTITION B ~~

PARTITION C
$

$

@

52 ~--·-- PARTITION D

VAULT VAULT VAULT VAULT
3 2 1 0

26d 26c 26b 26a

FIG. 3

U.S. Patent

104

CORE

120

~-

May 14, 2019 Sheet 4 of 5

102

/

' ~,

146

/
/

116

'
142 '

144

110

$RAM

148

106

STORE
BUFFER

-
LS

MASKi--H-H-'----'
ss AGEMASK

LOGIC

156 158 160 162 150

FIG.4

114

118

128

154

US 10,289,604 B2

~100

<I>

*;_-_-_-_-_-_-__,--.

134 130 \
129

HOST PROCESSOR
(THREAD)

l
CALLA

CALLB

CALLC

l
WA!T

l
COLLECT A

COLLECT B

COLLECT(

+

180

-

..

·-

-:;:

...
-

'

182 MEMORY PROCESSING CORES (THREADS)
/

/ ' /" ' I' '
2 1 0

MAILBOX
(OUTBOUND)

QUEUE A - ----
.. PROCESS QUEUE B r---.

PARTITION A r--------QUEUEC
I\\. ~ PROCESS

\ PARTITION B

PROCESS
PARTITION C

MAILBOX
(INBOUND)

RESULT A --
-RESULT B -

RESULTC ., ..

) ,,
_/ .,,,!

\186
190 ·-....__ 188__184

FIG. 5

e
•
r:J)_
•
~
~
~
~ = ~

~
~
~ ...
N
0
1,0

rJJ
=('D
('D
Ul

0
Ul

d
r.,;_

"'""' = 'N
00
\0
O'I = ~
= N

US 10,289,604 B2
1

MEMORY PROCESSING CORE
ARCHITECTURE

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH

This invention was made with government support under
1228782 awarded by the National Science Foundation. The
government has certain rights in the invention.

BACKGROUND OF THE INVENTION

The present invention relates to computer technologies,
and more particularly, to memory systems for computers.

Modem computer architectures typically provide one or
more multi-core processors connected to a tiered memory
structure that includes various levels of caches and a main
memory. As a processor executes application code that is
part of an instruction stream, the processor must continually
retrieve instructions and data from the tiered memory struc
ture for processing. If a faster, proximally closer memory,
such as a Level 1 cache, does not contain the necessary
instructions or data required by the processor, the processor
must typically wait for a slower, more distant memory, such
as a Level 2 or 3 cache or a main memory, to provide the
information.

2
On the programming model and the execution side,

memory remote procedure calls may be used to offload
pieces of computation to memory processing cores con
tained in memory vaults. A memory remote procedure call

5 is a call made by a host processor to a memory processing
core in a memory vault such that the host processor offloads
computation of a partition of application code to the memory
processing core in the memory vault containing instructions
and/or data for the partition. On the hardware side, cache-

IO less, non-speculative, low-frequency, ultra-short pipeline
memory processing cores are integrated closely with
memory to provide faster processing with less power con
sumption. As a result, an application program is effectively

15
broken up for execution among a plurality of processing
cores in close proximity to memory to achieve faster pro
cessing with reduced power consumption.

In operation, a host processor loads data, performs ini
tialization, initiates computation via remote procedure calls

20 and retrieves results. Memory processing cores execute the
memory-intensive part of the workload, and calls may be
triggered using a host processor executed Application Pro
gram Interface (API) that sends commands to a memory
processing controller. The memory processing controller

25 may examine the target address of each request and route the
request to the correct memory vault. The memory vault may,
in tum, retrieve partitioned instructions and/or data stored in
the memory vault and process the information via the

Such architectures are inefficient to the extent that sig
nificant time and energy are consumed to move information
between the processor cores and the tiered memory struc
ture. For example, if a closer memory does not contain the 30

necessary instructions or data required by the processor,
depending on the distance between the processor and the
memory containing the required information, the computer
system could suffer from significantly greater access laten
cies and power consumed simply by transferring bits 35

between circuits than would otherwise be necessary.

memory processing cores embedded in the memory vault.
With memory vaults including multiple memory process

ing cores, each memory vault can allow multiple computa
tions to proceed in parallel. In addition, computations in
different memory vaults can proceed concurrently, thereby
optimizing performance.

Also, using a queue-based mechanism allows a single
host processor thread to issue a large number of memory
processing unit commands to memory processing cores
without competing for a shared resource, i.e., without block
ing. This enables massively parallel workloads in the

One approach toward mitigating access latency is to
provide a three-dimensional (3D) memory with a helper
processor as described in U.S. patent application Ser. No.
13/567,958, titled "Stacked Memory Device with Helper
Processor." In this approach, layers of memory are stacked
and connected through the use of "through-silicon vias"
(TSV's) and a helper processor is provided to perform
certain memory-intensive operations. Although this
approach provides some improvement with respect to speed
and bandwidth, it continues to rely on a conventional
approach of linearly organizing instructions and data.

A need therefore exists to provide an improved architec
ture capable of meeting increasing performance demands
while improving access latencies with minimized power
consumptions.

SUMMARY OF THE INVENTION

40 memory system with the memory processing cores with
fewer host threads managing them, and with consequent
power/energy savings.

In accordance with an embodiment, a memory system
may comprise: a plurality of stacked memory layers, each

45 memory layer divided into memory sections, wherein
memory sections are vertically connected to other memory
sections in the stacked memory layers to form a plurality of
memory colunms and a logic layer divided into logic sec
tions, each logic section including at least one memory

50 processing core, wherein each logic section connects to a
memory colunm to form a memory vault of a connected
logic and memory sections, and wherein each logic section
is configured to communicate directly or indirectly with a
host processor. Each memory processing core may be con-

55 figured to respond to a procedure call from the host proces
sor wherein a memory processing core processes a partition
of instructions or data stored in its respective memory vault
for the host processor and provides a result back to the host

The present inventors have recognized that by tightly
coupling memory processing unit cores with sections of
stacked memory layers, combined as memory "vaults" in
hardware, and by segmenting application code into discrete
partitions (or "shards") in software for storage in such
memory vaults, a host processor can efficiently offload entire 60

pieces of computation to obtain higher system performance
with increased power efficiency. Accordingly, implementing
memory processing cores in close proximity to memory
layers, which cores are balanced by the bandwidth and the
natural bank organization of the memory layers, and parti- 65

tioning application code to utilize such memory processing
cores, significantly improves the benefit of3D die-stacking.

processor.
The host processor may execute an application code

divided into a plurality of partitions, and each partition is
allocated for storage in a memory vault.

It is thus a feature of at least one embodiment to segment
application code into discrete partitions for storage in
memory sections for offloading entire pieces of computation
from the host processor to combined processing core and
memory sections.

US 10,289,604 B2
3

Each logic section may include a particular number of
memory processing cores according to the number of
memory layers. For Example, one embodiment may provide
at least one memory processing core per memory layer, and
another embodiment may provide at least one memory
processing core per two memory layers.

It is thus a feature of at least one embodiment to provide
a distribution of processing cores with respect to memory
layers to provide optimal processing capability localized to
a memory section targeted for a partition of application code
at runtime.

Each memory section may comprise a plurality of DRAM
memory banks, and each logic section may include at least
one memory processing core per DRAM memory bank.

It is thus a feature of at least one embodiment to provide
maximal efficiency for transferring bits with reduced power
consumption while providing localized processing capabil
ity.

4
adjacent memory layers are shown, including an upper
memory layer 12a and a lower memory layer 12b.

The memory layers 12 may implement any of a variety of
memory cell architectures, including, but not limited to,

5 volatile memory architectures such as Dynamic Random
Access Memory (DRAM) and Static Random Access
Memory (SRAM), or non-volatile memory architectures,
such as Read-Only Memory (ROM), flash memory, and the
like. The example implementations of the memory layers 12

10 are described herein in the example, non-limiting context of
a DRAM architecture.

The memory layers 12 are each divided into a plurality of
memory sections 14. Division into the memory sections 14
may be made according to the type of memory implemented

15 and the optimal organization of that memory for high speed
data storage and retrieval with the least amount of transfer
ring of bits between circuits. In this example, for simplicity,
the memory layers 12 each implement four memory sections

Also disclosed are a computer system and a method for 20

executing application code implementing one or more of the
above features.

14, which may comprise DRAM, and each memory section
14 may include two memory banks 16 (which may comprise
DRAM banks). A memory bank is a logical unit of storage
which may be determined by a memory controller along
with the physical organization of the memory circuitry.
Memory sections 14 are vertically connected to other

These particular objects and advantages may apply to
only some embodiments falling within the claims, and thus
do not define the scope of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

Preferred exemplary embodiments of the invention are
illustrated in the accompanying drawings in which like
reference numerals represent like parts throughout, and in
which:

FIG. 1 is a simplified block diagram of a computer system
in accordance with an embodiment of the invention;

FIG. 2 is a simplified block diagram of a computer system
using an interposer in accordance with an embodiment of the
invention;

FIG. 3 is an exemplar depiction of application code
divided into partitions (or "shards") allocated for storage in
memory vaults in accordance with an embodiment of the
invention;

FIG. 4 is a more detailed block diagram of a computer
system in accordance with an embodiment of the invention;
and

25 memory sections 14 in the stacked memory layers 12 to form
a plurality of memory colunms 15, such as memory column
15a formed by memory sections 14a and 14e.

The computer system 10 also includes a logic layer 18,
which in an embodiment may be stacked among the plurality

30 of memory layers 12. In this example, for simplicity, one
logic layers is shown stacked among the memory layers 12.
Alternatively, referring briefly to FIG. 2, instead of being
stacked among the memory layers, the logic layer 18 may be
connected to the memory layers 12 via an interposer 19,

35 such as another silicon component or a Printed Circuit Board
(PCB).

Referring again to FIG. 1, the logic layer 18 is similarly
divided into logic sections 20. Division into the logic
sections 20 may be made according to the divisions made of

40 the memory layers 12 into the memory sections 14. For
example, the logic layer 18 may be divided into a number of
logic sections 20 equal to the number of memory sections 14
in a given memory layer 12, which is thereby sufficient to

FIG. 5 is an exemplar depiction of execution flow for 45

partitioned application code in accordance with an embodi
ment of the invention.

support the memory sections 14 of a memory colunm 15.
Computation elements in the logic layer 18 should be
balanced with bandwidth and the natural bank organization
of the memory layers 12 to exploit the benefits of memory
die-stacking.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

Referring now to FIG. 1, an embodiment of the present
invention will be described in the context of a computer
system 10. The computer system 10 could be implemented
in a variety of applications, including, for example, a laptop,
tablet, smart phone or other mobile computing device, a
desktop computer, a server, a network router, switch or hub,
and the like.

In the computer system 10, a plurality of memory layers
12 are "stacked," or arranged in a three-dimensional (3D)
configuration in which layers are physically arranged one
over the other, such as by wafer-on-wafer or die-on-wafer
processes, with the memory layers 12 physically being
coupled together. Each memory layer 12 comprises a sepa
rate die or "chip" in which one is fabricated over the other,
or stacked adjacently, using conventional monolithic 3D
fabrication techniques. In this example, for simplicity, two

In an embodiment, a vertically stacked memory system
50 22, comprising the memory layers 12 and the logic layer 18,

are connected together such that electrical power and sig
naling (data and command) may be transmitted between the
memory layers 12 and the logic layer 18 using a vertical
interconnect, such as an array of "through-silicon vias"

55 (TSV's) 24. The TSV's 24 may be dispersed throughout the
memory layers 12 and the logic layer 18 in the memory
system 22 such that each section of each layer is adjacently
connected together with wide data paths. For example, as
shown in the example of FIG. 1, each memory section

60 vertically connects to memory sections in adjacent memory
layers, such as memory section 14a connecting to memory
section 14e, and each logic section connects to a memory
column of memory sections, such as logic section 20a
connecting to memory colunm 15a, using TSV's 24. As a

65 result, the TSVs 24 connect from the memory layers 12 to
the logic layer 18 to form a plurality of memory vaults or
cross-sections of the vertically stacked memory system 22.

US 10,289,604 B2
5

In other words, the TSVs 24 run from the logic layer 18 to
the top-most memory layer 12, with "taps" into the logic
layer 18 and each memory layer 12. Referring briefly to FIG.

6
processing cores 28 based on target addresses of the proce
dure calls corresponding to memory vaults 26 of the respec
tive memory processing cores 28. In turn, the memory

2, alternatively, the TSVs 24 could run from the top-most
memory layer 12a to the bottom-most memory layer 12b, 5

then to the interposer 19, with connections 25 to another set
of the TSVs 24 connecting to the logic layer 18 side-by-side,
with "taps" into each memory layer 12 and the logic layer
18.

processing cores 28 respond to the procedure calls by
efficiently processing data stored in their respective memory
vaults 26 and providing a result to the host processor 32.

In alternative embodiments, greater or fewer memory
layers 12, and a plurality oflogic layers 18 may be provided,
and each may be divided into greater or fewer sections. Also,

Referring back to FIG. 1, accordingly, a single memory
vault 26, such as memory vault 26a, could include 32 data
signals TSV's 24 clocked at 2 GHz, in addition to command
signals and power TSV's 24. Consequently, each memory
vault 26 provides extremely high bandwidth between the
memory sections 14 and the logic sections 20 with low
latency and low energy consumption due to their close
proximities.

10 the ordering and/or arrangement of memory and logic layers
may be modified without departing from the spirit of the
present invention. In addition, the functionality of various
components, such as the communication logic 30, the
memory system controller 38 and the memory processing

15 controller 40 could be implemented in various areas of the
computer system 10 with various levels of integration.

Referring now to FIG. 3, an exemplar depiction of appli
cation code 50, which may be executing on the host pro
cessor 32, is divided into partitions 52 (or "shards") which

20 are allocated for addressable storage in memory vaults 26 in
accordance with an embodiment of the invention. The
programming model establishes partitions 52 of the appli
cation code 50 such that each partition 52 is optimized for

Accordingly, a plurality of memory "vaults" comprising
connected memory sections of a memory column and a logic
section are formed, such as memory vault 26a comprising
memory sections 14a and 14e of memory colunm 15a and
logic section 20a, connected by TSV's 24. A single package
containing multiple memory die and one logic die stacked
together using TSV technology, and resulting memory
"vaults," are described in the Hybrid Memory Cube Speci- 25

fication 1.0, 2013, provided by the Hybrid Memory Cube
("HMC") Consortium, which publication is hereby incor
porated by reference in its entirety. In effect, the memory
system 22 may be implemented as a single package with a
capacity of 1, 2 or 4 GB or greater.

storage in a separate memory vault 26.
For example, "Partition A" may be allocated to memory

vault 26a ("Vault O"), "Partition B" may be allocated to
memory vault 26b ("Vault 1"), and so forth. The partitions
52 need not be contiguous with respect to the application
code 50, and multiple partitions 52 may be allocated to the

30 same memory vault 26. In effect, the programming model
establishes a separation of data across memory vaults. In embodiments of the invention, each logic section 20

includes at least one memory processing core 28, and in a
preferred embodiment, a plurality of memory processing
cores 28, each capable of executing instructions and pro
cessing data. The memory processing cores 28 may com
prise, for example, cacheless, non-speculative, low-fre
quency, low-power, short pipeline processing units
integrated closely with the memory to provide efficient
processing. The memory processing cores 28 could be
Cortex-M3 processors comprising three stage pipelines
(fetch, decode and execute stages) as described by ARM
Limited. In embodiments, the logic sections 20 may provide
at least one memory processing core 28 per number of
memory layers 12 or at least one memory processing core 28
per DRAM memory bank 16.

Each logic section 20, and/or memory vault 26, and/or
memory system 22, also includes communication logic 30
(which may implement SERDES links for I/O) for commu
nicating with one or more host processors 32 via intercon
nect 34. The host processor 32 may comprise multiple host
processing cores 36, a memory system controller 38, such as
a packet based HMC controller, and a memory processing
controller 40.

By way of comparison, clock frequencies of the memory
processing cores 28 may be substantially less than a clock
frequency of the host processor 32 or the host processing
cores 36 thereby optimizing power. For example, clock
frequencies of the memory processing cores 28 might oper
ate at about 250 MHz in an embodiment, as compared to
greater than GHz operation of the host processor 32.

The host processor 32 may communicate remote proce
dure calls to the memory processing controller 40, and the
memory processing controller 40 may route the procedure
calls directly or indirectly to the memory processing cores
28 (such as through the memory system controller 38 and the
communication logic 30). The memory processing control
ler 40 routes the procedure calls to the appropriate memory

Accordingly, a memory processing core 28, upon receiv
ing a procedure call from the host processor 32 routed by the
memory processing controller 40, may respond to the pro-

35 cedure call by processing the partitioned data stored in its
respective memory vault 26 and providing a processed result
back to the host processor 32. With memory vaults 26
advantageously including multiple memory processing
cores 28, each memory vault 26 can allow multiple com-

40 putations to proceed in parallel. In addition, computations in
different memory vaults 26 can proceed concurrently.

Referring now to FIG. 4, a more detailed block diagram
of a computer system 100 is provided in accordance with an
embodiment of the invention. The computer system 100

45 includes one or more host processors 102 and a memory
system 120. Referring first to the host processor 102, one or
more host processing cores 104 of the host processor 102
operate to execute application code according to one or more
threads. The host processing cores 104, in tum, communi-

50 cate with a memory processing controller 106 which, in tum,
communicates with a memory system controller 108. The
memory processing controller 106 interfaces the host pro
cessing cores 104, which make procedure calls (to offload
computation), such as via Application Program Interface

55 (API) calls, to the memory system controller 108 which
communicates the procedure calls to the memory system
120. The memory processing controller 106 may uses
memory-mapped I/O to communicate with the host process
ing cores 104 and receive messages (which may be 64-bits

60 in size). The memory processing controller 106 converts
such messages to fully formatted standard memory system
messages (with custom message ID's) which are sent to the
memory system controller 108 for transmission.

The memory processing controller 106 may include an
65 SRAM buffer 110 that serves as a mailbox addressable by

host processing cores 104, such as using memory-mapped
I/O. Procedure call commands are written to the SRAM

US 10,289,604 B2
7

buffer 110, such as via 64-bit uncacheable store, and results
from the memory processing cores are similarly read from
the SRAM buffer 110. A single memory processing control-

8

ler 106 may serve all host processing cores 104 of the host
processor 102, and consequently, context status registers 112 5

are provided. In an embodiment, a single context could
provide, for example, queuing 512 procedure call commands

compute scheduler. Return values are delivered back to the
memory processing controller 106 by the compute fabric
152 by generating response packets that are delivered by the
vault controller 140.

The compute fabric 152 comprises the memory process
ing cores 154 and an 8-entry store buffer for each core
(maintained outside the cores). Embodiments may provide
enough compute capability to sustain accesses to 8 banks
and perform computation. As described above with respect
to FIG. 1, the memory processing cores 154 may be Cortex
M3 cores with short pipelines (three stages) and may contain

in flight, and providing 16 contexts could support a host
processor execute 16 threads concurrently providing a
(512*16*8) 64 KB SRAM buffer. In tum, a packet generator 10

114 converts and formats procedure call commands, via
send buffer 116, for sending to the memory system controller
108, and procedure call results, via receive buffer 118, for
receiving from the memory system controller 108. The
memory system controller 108, in tum, communicates with 15

the memory system 120.

private small (16 KB) Level-I Data and Instruction SRAM
memories for maintaining stack values and the program
respectively. The memory processing cores 154 also each
contain a 16-byte data register for sized to match the
minimum size of the reads returned by the memory sections.

Referring next to the memory system 120, formatted
procedure call commands and results may be first handled
by a SERDES (Serializer/Deserializer) 122, followed by an
interconnection network 124 to a plurality of logic sections 20

126 (eight shown) implemented in a logic layer 128. Similar

With a plurality of lower clock speed and efficiently run
memory processing cores close to memory, increased per
formance may be realized without relying on tiered caches
and/or speculative execution.

The memory processing cores 154 access memory
through the bank scheduler 146 which keeps track of the
status of all banks in the memory vault and schedules
accesses to these banks while adhering to DRAM or other
memory timing requirements. Accordingly, the memory
processing cores 154 execute instructions with information

to the embodiment described above with respect to FIG. 1,
the logic layer 128 may be stacked among a plurality of
connected memory layers divided into memory sections 130
(eight shown) to form a memory colunm 129, with the logic 25

section 126 connected to the memory colunm 129 to form a
memory vault. Alternatively, similar to the embodiment
described above with respect to FIG. 2, the logic layer 128
could be connected alongside the plurality of memory layers
divided into the memory sections 130, such as via an 30

stored in their respective memory vault, interfacing to the
memory sections 130 and the DRAM banks 132 via the bank
scheduler 146.

The ordering logic 150 observes all memory requests in
interposer.

Consequently, the memory system 120 provides eight
distinct memory vaults with extremely close and wide data
paths. In addition, each memory section 130 may include
two DRAM banks 132, providing a total of 256 DRAM
banks in the memory system 120.

Each logic section 126 may include an individual vault
controller 140 in communication with the interconnection
network 124. The vault controller 140, in turn, may com
municate with a compute the comprising a buffer 142 to a
compute scheduler 144, and a bank scheduler 146 to a
context registers 148. The bank scheduler 146 and the
context registers 148, in turn, communicate with ordering
logic 150 and with a compute fabric 152 comprising an array
of memory processing cores 154 (eight shown). With eight
logic sections 126, the memory system 120 may include
sixty-four memory processing cores 154 (which may run
sixty-four different programs concurrently), and with sixteen
logic sections 126, the memory system 120 may include one
hundred and twenty-eight memory processing cores 154
(which may run one hundred and twenty-eight different
programs concurrently), scaling accordingly. The memory
processing cores 154 could also implement increased fault
tolerance by executing in lock-step redundancy, such as in
pairs (or more) executing identical partitions within or
between memory vaults.

The compute scheduler 144 receives procedure call com
mands and assigns procedure calls to next available memory
processing cores 154. The compute scheduler 144 dequeus
requests in-order, tracks the availability of the memory
processing cores 154, and schedules requests to available the
cores. The process of"assigning" a request entails delivering
input arguments for the request (parameters for the function/
kernel code) to the compute fabric 152 and the specific
memory processing core 154. Once assigned, the core
executes the kernel code and on-termination (indicated by
asserting an IRQ line) notifies its completion status to the

the memory vault and ensures sequential semantics. The
ordering logic 150 ensures that stores from a "later" memory
processing core 154, if they issue before loads from an
"earlier" memory processing core 154 and are to the same

35 address, are "squashed." Accordingly, the ordering logic 150
the memory vault is configured to store data processed by a
first memory processing core responding to an earlier pro
cedure call before storing data processed by a second
memory processing core responding to a later procedure

40 call. Approximate storage and hash functions to perform
approximate matches with false positives are provided.

The ordering logic 150 maintains a per-bank read and
write signature sets for each memory processing core 154
(total of 64 separate signatures). It is 8-way partitioned for

45 the 8 memory processing cores 154, and each of the parti
tions has a write set and a read set to detect ordering
conflicts. On every load and store the following conditions
are checked: 1.) stores issued from head core search for
matching load in later cores and squash (case SL); 2.) stores

50 issued from head core search for matching store in later
cores and squash (case SS): and 3). loads issued from
non-head cores search for matching stores in earlier cores
and squash self (case LS).

The write set consists of a bank steering logic 156,
55 followed by hash units 158 (eight), followed by signature

bits 160 (eight) for each bank, and followed by a mask
concatenate logic 162. When a store from a memory pro
cessing core 154 reaches the ordering logic, it checks loads
and stores of other memory processing cores 154 (forwarded

60 to corresponding address bank by the bank steeling logic
156) with the hash units 158. The hash units 158 output the
hash results and create the per-bank signature bits 160,
which then form "SL" and "SS" mask bits. These per-bank
SL and SS mask bits are concatenated and collected by the

65 age-based mask concatenate logic 162. The mask concat
enate logic 162 keeps track of the memory processing cores
154 in a logical circular buffer to determine the temporal

US 10,289,604 B2
9

ordering of cores in terms of requests, and creates a final
flush mask to flush all memory processing core 154 requests

10
vault could be configured to generate an out-of-vault excep
tion whenever execution of a partition attempts to access
memory outside of its current partition. This exception may
be reflected to the host processor, which may issue a read for

in later temporal order. A read set follows the same process
except it checks preceding stores. A squash implementation
may operate to discard store buffer entries and restart
requests.

5 data on another partition to send back to the memory vault
that generated the exception for resuming execution.

Finally, results from each memory vault thread may be
returned to the host processor, such as by queuing the results
from the partitions in another temporary memory buffer or

Referring now to FIG. 5, an exemplar depiction of execu
tion flow for partitioned application code is provided in
accordance with an embodiment of the invention. Here,
remote memory procedure calls are used to offload compu
tations of a particular granularity to memory. Memory
processing cores perform the computations on behalf of a
host processor making the memory procedure calls. These
computations or "kernels" typically entail executing a
memory intensive aspect of a workload being executed with
a remaining aspect being executed on the host processor.

10 mailbox (inbound) 190 also allocated at run time. For
example, upon the Memory Vault 0 Thread 184 completing
processing of the Partition A, the Memory Vault O may
return a Result A to the host processor via the mailbox
(inbound) 190. Similarly, the Memory Vaults 1 and 2 may

15 also return Results B and C, respectively, to the host
processor via the mailbox (inbound) 190, which results may
be provided in or out of order. The host processor may then
collect the results for further processing in the host core
thread 180.

A kernel may perform arbitrary computations, and any
sequence of memory accesses. The host processor may
interfaces to the memory processing cores via a queue
abstraction. Memory procedure calls may be queued for 20

processing by memory processing cores with results subse
quently provided.

For example, a core of a host processor may execute a
host core thread 180 representing an application code
divided into Partitions A, B and C, among others. Instruc- 25

tions and/or data for the Partitions A, B and C may be stored
in Memory Vaults 0, 1 and 2, respectively. As the host
processor executes the host core thread 180, the host pro
cessor makes memory procedure calls with respect to Par
titions A, B and C, such as by queuing such partitions in a 30

temporary memory buffer or mailbox (outbound) 182 allo
cated at run time.

The mailbox (outbound) 182 and the mailbox (inbound)
190 may serve as the primary interface between the appli
cation running on the host processor and the memory
processing cores. Outbound calls and inbound results may
be communicated, for example, via API calls.

In some embodiments, procedure calls that are dispatched
to memory vaults may be executed out of order. As such,
memory vaults may be configured to enable execution (or
processing) of a later procedure call by a first memory
processing core before execution (or processing) of an
earlier procedure call by a second memory processing core.
Such execution may also include completion of the process-
ing, out of order, such that procedures are allowed to finish
with their states stored, such as in a store buffer. Memory
vaults may also re-execute (or re-process) these logically

35 later procedure calls as necessary, such as if during execu
tion of another thread it is determined that an address is

Next, and in some embodiments with assistance of a
memory processing controller, the Partitions A, B and C are
dispatched to the appropriate Memory Vaults 0, 1 and 2, for
information retrieval and local processing, based on target
addresses of the Partitions A, B and C. For example, a
memory procedure call with respect to Partition A may
contain a target address corresponding to Memory Vault 0.
Accordingly, the memory procedure call for Partition A may 40

be dispatched to Memory Vault O for retrieval of instructions
and data from the Memory Vault O and for processing a
Memory Vault 0 Thread 184 by a memory processing core

accessed where a logically "earlier" procedure call (or
thread) that executed later in time was stored.

It is specifically intended that the present invention not be
limited to the embodiments and illustrations contained
herein, but include modified forms of those embodiments
including portions of the embodiments and combinations of
elements of different embodiments as come within the scope
of the following claims.

Certain terminology is used herein for purposes of refer-
ence only, and thus is not intended to be limiting. For
example, terms such as "upper," "lower," "above," and
"below" refer to directions in the drawings to which refer
ence is made. Terms such as "vertical," "vertically," "hori-

in the Memory Vault 0. Partitions B and C may be similarly
dispatched to Memory Vaults 1 and 2 for processing a 45

Memory Vault 1 Thread 186 and a Memory Vault 2 Thread
188, respectively. While the memory vault threads are
executing, the host processor may wait idly for results and/or
execute other aspects of the application code which may be
less memory intensive.

The memory processing unit architecture essentially pro
vides an abstraction of multiple, independent address spaces
for partitions as opposed to a flat memory space. Partitions
are constrained to only access data within defined address
spaces with different execution streams accessing different 55

address spaces. Consequently, a partition represents the
largest size for a monolithic data set. This allows efficient
hardware design that reduces latency by bringing computa
tion close to memory. Programming according to partition
ing data layout is intuitive and does not significantly com- 60

plicate application design.

50 zontal," "horizontally," "column(s)," "row(s)," "front,"
"back," "rear," "bottom," "side," "left" and "right" describe
orientations within a consistent but arbitrary frame of ref
erence which is made clear by reference to the text and the

A partition may be instantiated with a hash table of a
desired size, and if a target size exceeds a partition, a
program may instantiate multiple copies of the hash table
mapped to different partitions and statically assign work- 65

loads among memory vaults based on the multiple parti
tions. Also, if a target size exceeds a partition, a memory

associated drawings describing the component or system
under discussion. For example, a vertically stacked memory
configuration having memory colunms could alternatively
be viewed as a horizontally stacked memory configuration
having memory rows. Also, such terminology may include
the words specifically mentioned above, derivatives thereof,
and words of similar import. Similarly, the terms "first,"
"second" and other such numerical terms referring to struc-
tures do not imply a sequence or order unless clearly
indicated by the context.

When introducing elements or features of the present
disclosure and the exemplary embodiments, the articles "a,"
"an," "the" and "said" are intended to mean that there are
one or more of such elements or features. The terms "com-

US 10,289,604 B2
11

prising," "including" and "having" are intended to be inclu
sive and mean that there may be additional elements or
features other than those specifically noted. It is further to be
understood that the method steps, processes, and operations
described herein are not to be construed as necessarily 5

requiring their performance in the particular order discussed

12
wherein each memory processing core is configured to

respond to different procedure calls from the host
processor, and

wherein the host processor executes the application code
divided into a plurality of partitions, and each partition
is allocated for storage in a memory vault.

or illustrated, unless specifically identified as an order of
performance. It is also to be understood that additional or
alternative steps may be employed.

References to "a microprocessor" and "a processor" or
"the microprocessor" and "the processor" can be understood

3. The memory system of claim 1, wherein each logic
section includes at least one memory processing core per
memory layer.

10 4. The memory system of claim 1, further comprising a

to include one or more microprocessors that can communi
cate in a stand-alone and/or a distributed environment(s),
and can thus be configured to communicate via wired or

15
wireless communications with other processors, where such
one or more processor can be configured to operate on one
or more processor-controlled devices that can be similar or
different devices. Furthermore, references to memory, unless
otherwise specified, can include one or more processor- 20
readable and accessible memory elements and/or compo
nents that can be internal to the processor-controlled device,
external to the processor-controlled device, and can be
accessed via a wired or wireless network.

compute scheduler in each logic section, wherein the com
pute scheduler assigns the procedure call to a next available
memory processing core.

5. The memory system of claim 1, wherein each memory
section comprises a plurality of DRAM memory banks.

6. The memory system of claim 5, wherein each logic
section includes at least one memory processing core per
DRAM memory bank.

7. The memory system of claim 1, wherein clock frequen
cies of the memory processing cores are less than a clock
frequency of the host processor.

8. The memory system of claim 1, further comprising at
least first and second memory processing cores associated

We claim:
1. A memory system for a host processor executing an

application program, the memory system comprising:

25 with each memory vault, wherein the memory system is
configured to enable execution of a later procedure call by
a first memory processing core before execution of an earlier
procedure call by a second memory processing core.

a plurality of physically continuous memory layers, each
memory layer providing for data storage and divided
into memory sections, wherein memory sections of
each layer are vertically, electrically connected to other
memory sections in other memory layers in a physical
stack to form a plurality of separate memory colunms
communicating through the memory colunm; and

9. The memory system of claim 1, wherein the logic layer
30 is stacked among the plurality of memory layers, and

wherein the memory vaults are connected by through-silicon

35

a logic layer divided into logic sections, each logic section
including at least one memory processing core, the
memory processing core providing for fetch, decode,
and execute cycles during which instructions are
fetched and executed, wherein each logic section con- 40

nects to a corresponding memory colunm to form a
memory vault of connected logic and memory sections
operable in parallel, and wherein each logic section
further includes communication logic configured to
communicate directly or indirectly with the host pro- 45

cessor;
wherein each memory processing core is configured to

respond to a procedure call from the host processor
designating a set of application code instructions and a
target address of a given memory by:

(a) receiving the set of instructions of the application
program being executed by the host processor at the
given memory vault, wherein the set of instructions is
configured to be executed by a memory processing core

50

of the given memory vault using data from the memory 55

column of the data vault as a procedure call;
(b) retrieving data stored in a memory column connected

to a logic section including the memory processing
core;

(c) executing the set of instructions designated by the 60

procedure call with the data to produce a result; and
(d) providing the result back to the host processor in

response to the procedure call.
2. The memory system of claim 1, wherein each logic

section provides for multiple independent memory process- 65

ing cores each providing for fetch, decode, and execute
cycles during which instructions are fetched and executed,

VJaS.

10. A computer system comprising:
a host processor comprising at least one host processing

core and a memory processing controller and adapted
to execute an application program of instructions;

a plurality of physically continuous memory layers, each
memory layer providing for data storage and divided
into memory sections, wherein memory sections of
each layer are vertically, electrically connected to other
memory sections in other memory layers in a physical
stack to form a plurality of separate memory colunms
communicating through the memory colunm; and

a logic layer divided into logic sections, each logic section
including at least one memory processing core, the
memory processing core providing for fetch, decode,
and execute cycles during which instructions are
fetched and executed, wherein each logic section con
nects to a corresponding memory colunm to form an
addressable memory vault of connected logic and
memory sections operable in parallel, and wherein each
logic section further includes communication logic in
communication with the host processor through the
memory processing controller;

wherein the host processor communicates procedure calls,
designating sets of application code instructions and a
target address of a given memory vault, to the memory
processing controller, and the memory processing con
troller routes the procedure calls directly or indirectly
to memory processing cores based on the target
addresses of the procedure calls corresponding to
memory vaults of the memory processing cores; and

wherein the memory processing cores respond to the
procedure calls by:

(a) receiving the sets of instructions of the application
program being executed by the host processor, wherein
the set of instructions are configured to be executed by

US 10,289,604 B2
13

a memory processing core of a memory vault of a target
address using data from the memory colunm of the data
vault as a procedure call;

(b) retrieving data stored in memory colunms connected
directly without intervening cache structures to logic 5

sections including the memory processing cores;
(c) executing the sets of instructions designated by the

procedure call with the data to produce results; and

14
!ogic ~ayer divided into logic sections, each logic section
mcludmg at least one memory processing core, the memory
processing core providing for fetch, decode, and execute
cycles during which instructions are fetched and executed
wherein each logic section connects to a correspondin~
memory colunm to form an addressable memory vault of
connected logic and memory sections, wherein each logic
section further includes communication logic configured to
communicate directly or indirectly with the host processor, (d) providing the results back to the host processor in

response to the procedure calls. 10 the method comprising:

11. The computer system of claim 10, wherein the host
processor executes the application code divided into parti
tions, wherein each partition is allocated for storage in a
memory vault and the procedure call refers to the first and
second partition.

12. The computer system of claim 10, wherein each logic
section includes at least one memory processing core per
memory layer.

13. The computer system of claim 12, further comprising

15

a compute scheduler in each logic section, wherein the 20

compute scheduler assigns procedure calls to next available
memory processing cores.

14. The computer system of claim 10, wherein each
memory section comprises a plurality of DRAM memory
banks.

15. The computer system of claim 14, wherein each logic
section includes at least one memory processing core per
DRAM memory bank.

25

16. The computer system of claim 10, wherein clock
frequencies of the memory processing cores are less than a 30

clock frequency of the host processor.
17. The computer system of claim 10, further comprising

at least first and second memory processing cores in a
memory vault, wherein the memory vault is configured to
enable execution of a later procedure call by a first memory 35

processing core before execution of an earlier procedure call
by a second memory processing core.

18. The computer system of claim 10, wherein the logic
layer is stacked among the plurality of memory layers, and
wherein the memory vaults are connected using through- 40

silicon vias.

(a) allocating partitions of the application code to memory
vaults;

(b) communicating a procedure call designating a set of
application code instructions executable by the host
processor from the host processor to a memory pro
cessing core based on a target address of the procedure
call corresponding to a memory vault of the memory
processing core; and

(c) operating the memory processing core to respond to
the procedure call by:
(i) receiving the set of instructions of the application

progra_m being executed by the host processor,
wherem the set of instructions is configured to be
executed by a memory processing core of a memory
vault using data from the memory colunm of the data
vault;

(ii) retrieving data stored in a memory colunm con
nected directly without intervening cache structures
to a logic section including the memory processing
core;

(iii) executing the set of instructions designated by the
procedure call with the data to produce a result; and

(iv) providing the result back to the host processor in
response to the procedure call.

21. The memory system of claim 1, wherein each memory
processing core is further configured to respond by retriev
ing the set of instructions from the memory colunm con
nected to the logic section including the memory processing
core.

22. The memory system of claim 1, further comprising a
memory controller operable to route the procedure call to the
memory processing core. 19. The computer system of claim 10, wherein the host

processor queues a plurality of procedure calls in a single
thread, and wherein a plurality of memory processing cores
each execute a thread for responding to a procedure call.

20. A method for executing application code in a com
puter system comprising a host processor, a plurality of
physically stacked memory layers, each memory layer pro
viding for data storage and divided into memory sections,
w~erein memory sections of each layer are vertically, elec
tncally connected to other memory sections in other
memory layers to form a plurality of separate memory
colunms communicating through the memory column, and a

23. The memory system of claim 1 wherein the commu
nication logic of each logic section configured to commu-

45 nicate directly or indirectly with the host processor includes
a serializer/ deserializer.

24. The memory system of claim 1 wherein each pro
cessing core includes a volatile random access memory for
holding multiple instructions of the procedure call and

50 provides an instruction set including: addition, multiplica
tion, left shift, right shift, bitwise Boolean operations and
conditional branch statements.

* * * * *

