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(57) ABSTRACT 

Aspects of the present invention provide a memory system 
comprising a plurality of stacked memory layers, each 
memory layer divided into memory sections, wherein each 
memory section connects to a neighboring memory section 
in an adjacent memory layer, and a logic layer stacked 
among the plurality of memory layers, the logic layer 
divided into logic sections, each logic section including a 
memory processing core, wherein each logic section con­
nects to a neighboring memory section in an adjacent 
memory layer to form a memory vault of connected logic 
and memory sections, and wherein each logic section is 
configured to communicate directly or indirectly with a host 
processor. Accordingly, each memory processing core may 
be configured to respond to a procedure call from the host 
processor by processing data stored in its respective memory 
vault and providing a result to the host processor. As a result, 
increased performance may be provided. 
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MEMORY PROCESSING CORE 
ARCHITECTURE 

CROSS REFERENCE TO RELATED 
APPLICATION 

This application is a continuation of U.S. patent applica­
tion Ser. No. 14/453,990 filed Aug. 7, 2014 hereby incor­
porated in its entirety by reference. 

STATEMENT REGARDING FEDERALLY 
SPONSORED RESEARCH 

This invention was made with govermnent support under 
1228782 awarded by the National Science Foundation. The 
govermnent has certain rights in the invention. 

BACKGROUND OF THE INVENTION 

The present invention relates to computer technologies, 
and more particularly, to memory systems for computers. 

Modem computer architectures typically provide one or 
more multi-core processors connected to a tiered memory 
structure that includes various levels of caches and a main 

2 
pieces of computation to obtain higher system performance 
with increased power efficiency. Accordingly, implementing 
memory processing cores in close proximity to memory 
layers, which cores are balanced by the bandwidth and the 

5 natural bank organization of the memory layers, and parti­
tioning application code to utilize such memory processing 
cores, significantly improves the benefit of3D die-stacking. 

On the programming model and the execution side, 
memory remote procedure calls may be used to offload 

10 pieces of computation to memory processing cores con­
tained in memory vaults. A memory remote procedure call 
is a call made by a host processor to a memory processing 
core in a memory vault such that the host processor offloads 

15 
computation of a partition of application code to the memory 
processing core in the memory vault containing instructions 
and/or data for the partition. On the hardware side, cache­
less, non-speculative, low-frequency, ultra-short pipeline 
memory processing cores are integrated closely with 

20 memory to provide faster processing with less power con­
sumption. As a result, an application program is effectively 
broken up for execution among a plurality of processing 
cores in close proximity to memory to achieve faster pro-
cessing with reduced power consumption. 

In operation, a host processor loads data, performs ini-
tialization, initiates computation via remote procedure calls 
and retrieves results. Memory processing cores execute the 
memory-intensive part of the workload, and calls may be 
triggered using a host processor executed Application Pro-

memory. As a processor executes application code that is 25 

part of an instruction stream, the processor must continually 
retrieve instructions and data from the tiered memory struc­
ture for processing. If a faster, proximally closer memory, 
such as a Level 1 cache, does not contain the necessary 
instructions or data required by the processor, the processor 
must typically wait for a slower, more distant memory, such 

30 gram Interface (API) that sends commands to a memory 
processing controller. The memory processing controller 
may examine the target address of each request and route the 
request to the correct memory vault. The memory vault may, 

as a Level 2 or 3 cache or a main memory, to provide the 
information. 

Such architectures are inefficient to the extent that sig­
nificant time and energy are consumed to move information 
between the processor cores and the tiered memory struc­
ture. For example, if a closer memory does not contain the 
necessary instructions or data required by the processor, 
depending on the distance between the processor and the 
memory containing the required information, the computer 
system could suffer from significantly greater access laten­
cies and power consumed simply by transferring bits 
between circuits than would otherwise be necessary. 

One approach toward mitigating access latency is to 
provide a three-dimensional (3D) memory with a helper 
processor as described in U.S. patent application Ser. No. 
13/567,958, titled "Stacked Memory Device with Helper 
Processor." In this approach, layers of memory are stacked 
and connected through the use of "through-silicon vias" 
(TSV's) and a helper processor is provided to perform 
certain memory-intensive operations. Although this 
approach provides some improvement with respect to speed 
and bandwidth, it continues to rely on a conventional 
approach of linearly organizing instructions and data. 

A need therefore exists to provide an improved architec­
ture capable of meeting increasing performance demands 
while improving access latencies with minimized power 
consumptions. 

SUMMARY OF THE INVENTION 

The present inventors have recognized that by tightly 
coupling memory processing unit cores with sections of 
stacked memory layers, combined as memory "vaults" in 
hardware, and by segmenting application code into discrete 
partitions ( or "shards") in software for storage in such 
memory vaults, a host processor can efficiently offload entire 

35 
in tum, retrieve partitioned instructions and/or data stored in 
the memory vault and process the information via the 
memory processing cores embedded in the memory vault. 

With memory vaults including multiple memory process­
ing cores, each memory vault can allow multiple computa-

40 tions to proceed in parallel. In addition, computations in 
different memory vaults can proceed concurrently, thereby 
optimizing performance. 

Also, using a queue-based mechanism allows a single 
host processor thread to issue a large number of memory 

45 processing unit commands to memory processing cores 
without competing for a shared resource, i.e., without block­
ing. This enables massively parallel workloads in the 
memory system with the memory processing cores with 
fewer host threads managing them, and with consequent 

50 power/energy savings. 
In accordance with an embodiment, a memory system 

may comprise: a plurality of stacked memory layers, each 
memory layer divided into memory sections, wherein 
memory sections are vertically connected to other memory 

55 sections in the stacked memory layers to form a plurality of 
memory columns; and a logic layer divided into logic 
sections, each logic section including at least one memory 
processing core, wherein each logic section connects to a 
memory colunm to form a memory vault of a connected 

60 logic and memory sections, and wherein each logic section 
is configured to communicate directly or indirectly with a 
host processor. Each memory processing core may be con­
figured to respond to a procedure call from the host proces­
sor wherein a memory processing core processes a partition 

65 of instructions or data stored in its respective memory vault 
for the host processor and provides a result back to the host 
processor. 
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The host processor may execute an application code 
divided into a plurality of partitions, and each partition is 
allocated for storage in a memory vault. 

4 
configuration in which layers are physically arranged one 
over the other, such as by wafer-on-wafer or die-on-wafer 
processes, with the memory layers 12 physically being 

It is thus a feature of at least one embodiment to segment 
application code into discrete partitions for storage in 5 

memory sections for offloading entire pieces of computation 
from the host processor to combined processing core and 
memory sections. 

coupled together. Each memory layer 12 comprises a sepa­
rate die or "chip" in which one is fabricated over the other, 
or stacked adjacently, using conventional monolithic 3D 
fabrication techniques. In this example, for simplicity, two 
adjacent memory layers are shown, including an upper 
memory layer 12a and a lower memory layer 12b. Each logic section may include a particular number of 

memory processing cores according to the number of 10 

memory layers. For Example, one embodiment may provide 

The memory layers 12 may implement any of a variety of 
memory cell architectures, including, but not limited to, 
volatile memory architectures such as Dynamic Random 
Access Memory (DRAM) and Static Random Access 
Memory (SRAM), or non-volatile memory architectures, 
such as Read-Only Memory (ROM), flash memory, and the 
like. The example implementations of the memory layers 12 

at least one memory processing core per memory layer, and 
another embodiment may provide at least one memory 
processing core per two memory layers. 

It is thus a feature of at least one embodiment to provide 15 

a distribution of processing cores with respect to memory 
layers to provide optimal processing capability localized to are described herein in the example, non-limiting context of 

a DRAM architecture. a memory section targeted for a partition of application code 
at runtime. 

Each memory section may comprise a plurality of DRAM 20 

memory banks, and each logic section may include at least 
one memory processing core per DRAM memory bank. 

The memory layers 12 are each divided into a plurality of 
memory sections 14. Division into the memory sections 14 
may be made according to the type of memory implemented 
and the optimal organization of that memory for high speed 
data storage and retrieval with the least amount of transfer­
ring of bits between circuits. In this example, for simplicity, 

It is thus a feature of at least one embodiment to provide 
maximal efficiency for transferring bits with reduced power 
consumption while providing localized processing capabil- 25 

ity. 
the memory layers 12 each implement four memory sections 
14, which may comprise DRAM, and each memory section 

Also disclosed are a computer system and a method for 
executing application code implementing one or more of the 
above features. 

These particular objects and advantages may apply to 30 

only some embodiments falling within the claims, and thus 

14 may include two memory banks 16 (which may comprise 
DRAM banks). A memory bank is a logical unit of storage 
which may be determined by a memory controller along 
with the physical organization of the memory circuitry. 
Memory sections 14 are vertically connected to other 

do not define the scope of the invention. 

BRIEF DESCRIPTION OF THE DRAWINGS 

Preferred exemplary embodiments of the invention are 
illustrated in the accompanying drawings in which like 
reference numerals represent like parts throughout, and in 
which: 

FIG. 1 is a simplified block diagram of a computer system 
in accordance with an embodiment of the invention; 

FIG. 2 is a simplified block diagram of a computer system 
using an interposer in accordance with an embodiment of the 
invention; 

FIG. 3 is an exemplar depiction of application code 
divided into partitions ( or "shards") allocated for storage in 
memory vaults in accordance with an embodiment of the 
invention; 

FIG. 4 is a more detailed block diagram of a computer 
system in accordance with an embodiment of the invention; 
and 

FIG. 5 is an exemplar depiction of execution flow for 
partitioned application code in accordance with an embodi­
ment of the invention. 

DETAILED DESCRIPTION OF THE 
PREFERRED EMBODIMENT 

Referring now to FIG. 1, an embodiment of the present 
invention will be described in the context of a computer 
system 10. The computer system 10 could be implemented 
in a variety of applications, including, for example, a laptop, 
tablet, smart phone or other mobile computing device, a 
desktop computer, a server, a network router, switch or hub, 
and the like. 

In the computer system 10, a plurality of memory layers 
12 are "stacked," or arranged in a three-dimensional (3D) 

35 

memory sections 14 in the stacked memory layers 12 to form 
a plurality of memory colunms 15, such as memory column 
15a formed by memory sections 14a and 14e. 

The computer system 10 also includes a logic layer 18, 
which in an embodiment may be stacked among the plurality 
of memory layers 12. In this example, for simplicity, one 
logic layers is shown stacked among the memory layers 12. 
Alternatively, referring briefly to FIG. 2, instead of being 

40 stacked among the memory layers, the logic layer 18 may be 
connected to the memory layers 12 via an interposer 19, 
such as another silicon component or a Printed Circuit Board 
(PCB). 

Referring again to FIG. 1, the logic layer 18 is similarly 
45 divided into logic sections 20. Division into the logic 

sections 20 may be made according to the divisions made of 
the memory layers 12 into the memory sections 14. For 
example, the logic layer 18 may be divided into a number of 
logic sections 20 equal to the number of memory sections 14 

50 in a given memory layer 12, which is thereby sufficient to 
support the memory sections 14 of a memory colunm 15. 
Computation elements in the logic layer 18 should be 
balanced with bandwidth and the natural bank organization 
of the memory layers 12 to exploit the benefits of memory 

55 die-stacking. 
In an embodiment, a vertically stacked memory system 

22, comprising the memory layers 12 and the logic layer 18, 
are connected together such that electrical power and sig­
naling ( data and command) may be transmitted between the 

60 memory layers 12 and the logic layer 18 using a vertical 
interconnect, such as an array of "through-silicon vias" 
(TSV's) 24. The TSV's 24 may be dispersed throughout the 
memory layers 12 and the logic layer 18 in the memory 
system 22 such that each section of each layer is adjacently 

65 connected together with wide data paths. For example, as 
shown in the example of FIG. 1, each memory section 
vertically connects to memory sections in adjacent memory 
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layers, such as memory section 14a connecting to memory 
section 14e, and each logic section connects to a memory 
colunm of memory sections, such as logic section 20a 
connecting to memory colunm 15a, using TSV's 24. As a 
result, the TSVs 24 connect from the memory layers 12 to 
the logic layer 18 to form a plurality of memory vaults or 
cross-sections of the vertically stacked memory system 22. 
In other words, the TSVs 24 run from the logic layer 18 to 
the top-most memory layer 12, with "taps" into the logic 
layer 18 and each memory layer 12. Referring briefly to FIG. 
2, alternatively, the TSVs 24 could run from the top-most 
memory layer 12a to the bottom-most memory layer 12b, 
then to the interposer 19, with connections 25 to another set 
of the TSVs 24 connecting to the logic layer 18 side-by-side, 
with "taps" into each memory layer 12 and the logic layer 
18. 

Referring back to FIG. 1, accordingly, a single memory 
vault 26, such as memory vault 26a, could include 32 data 
signals TSV's 24 clocked at 2 GHz, in addition to command 
signals and power TSV's 24. Consequently, each memory 
vault 26 provides extremely high bandwidth between the 
memory sections 14 and the logic sections 20 with low 
latency and low energy consumption due to their close 
proximities. 

Accordingly, a plurality of memory "vaults" comprising 
connected memory sections of a memory column and a logic 
section are formed, such as memory vault 26a comprising 
memory sections 14a and 14e of memory colunm 15a and 
logic section 20a, connected by TSV's 24. A single package 
containing multiple memory die and one logic die stacked 
together using TSV technology, and resulting memory 
"vaults," are described in the Hybrid Memory Cube Speci­
fication 1.0, 2013, provided by the Hybrid Memory Cube 
("HMC") Consortium, which publication is hereby incor­
porated by reference in its entirety. In effect, the memory 
system 22 may be implemented as a single package with a 
capacity of 1, 2 or 4 GB or greater. 

In embodiments of the invention, each logic section 20 
includes at least one memory processing core 28, and in a 
preferred embodiment, a plurality of memory processing 
cores 28, each capable of executing instructions and pro­
cessing data. The memory processing cores 28 may com­
prise, for example, cacheless, non-speculative, low-fre­
quency, low-power, short pipeline processing units 
integrated closely with the memory to provide efficient 
processing. The memory processing cores 28 could be 
Cortex-M3 processors comprising three stage pipelines 
(fetch, decode and execute stages) as described by ARM 
Limited. In embodiments, the logic sections 20 may provide 
at least one memory processing core 28 per number of 
memory layers 12 or at least one memory processing core 28 
per DRAM memory bank 16. 

Each logic section 20, and/or memory vault 26, and/or 
memory system 22, also includes communication logic 30 
(which may implement SERDES links for I/O) for commu­
nicating with one or more host processors 32 via intercon­
nect 34. The host processor 32 may comprise multiple host 
processing cores 36, a memory system controller 38, such as 
a packet based HMC controller, and a memory processing 
controller 40. 

By way of comparison, clock frequencies of the memory 
processing cores 28 may be substantially less than a clock 
frequency of the host processor 32 or the host processing 
cores 36 thereby optimizing power. For example, clock 
frequencies of the memory processing cores 28 might oper­
ate at about 250 MHz in an embodiment, as compared to 
greater than GHz operation of the host processor 32. 

6 
The host processor 32 may communicate remote proce­

dure calls to the memory processing controller 40, and the 
memory processing controller 40 may route the procedure 
calls directly or indirectly to the memory processing cores 

5 28 (such as through the memory system controller 38 and the 
communication logic 30). The memory processing control­
ler 40 routes the procedure calls to the appropriate memory 
processing cores 28 based on target addresses of the proce­
dure calls corresponding to memory vaults 26 of the respec-

10 tive memory processing cores 28. In turn, the memory 
processing cores 28 respond to the procedure calls by 
efficiently processing data stored in their respective memory 
vaults 26 and providing a result to the host processor 32. 

In alternative embodiments, greater or fewer memory 
15 layers 12, and a plurality of logic layers 18, may be 

provided, and each may be divided into greater or fewer 
sections. Also, the ordering and/or arrangement of memory 
and logic layers may be modified without departing from the 
spirit of the present invention. In addition, the functionality 

20 of various components, such as the communication logic 30, 
the memory system controller 38 and the memory process­
ing controller 40 could be implemented in various areas of 
the computer system 10 with various levels of integration. 

Referring now to FIG. 3, an exemplar depiction of appli-
25 cation code 50, which may be executing on the host pro­

cessor 32, is divided into partitions 52 (or "shards") which 
are allocated for addressable storage in memory vaults 26 in 
accordance with an embodiment of the invention. The 
programming model establishes partitions 52 of the appli-

30 cation code 50 such that each partition 52 is optimized for 
storage in a separate memory vault 26. 

For example, "Partition A" may be allocated to memory 
vault 26a ("Vault 0"), "Partition B" may be allocated to 
memory vault 26b ("Vault 1 "), and so forth. The partitions 

35 52 need not be contiguous with respect to the application 
code 50, and multiple partitions 52 may be allocated to the 
same memory vault 26. In effect, the programming model 
establishes a separation of data across memory vaults. 

Accordingly, a memory processing core 28, upon receiv-
40 ing a procedure call from the host processor 32 routed by the 

memory processing controller 40, may respond to the pro­
cedure call by processing the partitioned data stored in its 
respective memory vault 26 and providing a processed result 
back to the host processor 32. With memory vaults 26 

45 advantageously including multiple memory processing 
cores 28, each memory vault 26 can allow multiple com­
putations to proceed in parallel. In addition, computations in 
different memory vaults 26 can proceed concurrently. 

Referring now to FIG. 4, a more detailed block diagram 
50 of a computer system 100 is provided in accordance with an 

embodiment of the invention. The computer system 100 
includes one or more host processors 102 and a memory 
system 120. Referring first to the host processor 102, one or 
more host processing cores 104 of the host processor 102 

55 operate to execute application code according to one or more 
threads. The host processing cores 104, in tum, communi­
cate with a memory processing controller 106 which, in tum, 
communicates with a memory system controller 108. The 
memory processing controller 106 interfaces the host pro-

60 cessing cores 104, which make procedure calls (to offload 
computation), such as via Application Program Interface 
(API) calls, to the memory system controller 108 which 
communicates the procedure calls to the memory system 
120. The memory processing controller 106 may uses 

65 memory-mapped I/O to communicate with the host process­
ing cores 104 and receive messages (which may be 64-bits 
in size). The memory processing controller 106 converts 
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such messages to fully formatted standard memory system 
messages (with custom message ID's) which are sent to the 
memory system controller 108 for transmission. 

8 
processing cores 154, and schedules requests to available the 
cores. The process of"assigning" a request entails delivering 
input arguments for the request (parameters for the function/ 
kernel code) to the compute fabric 152 and the specific 
memory processing core 154. Once assigned, the core 
executes the kernel code and on-termination (indicated by 
asserting an IRQ line) notifies its completion status to the 
compute scheduler. Return values are delivered back to the 
memory processing controller 106 by the compute fabric 

The memory processing controller 106 may include an 
SRAM buffer 110 that serves as a mailbox addressable by 5 

host processing cores 104, such as using memory-mapped 
I/O. Procedure call commands are written to the SRAM 
buffer 110, such as via 64-bit uncacheable store, and results 
from the memory processing cores are similarly read from 
the SRAM buffer 110. A single memory processing control­
ler 106 may serve all host processing cores 104 of the host 
processor 102, and consequently, context status registers 112 
are provided. In an embodiment, a single context could 
provide, for example, queuing 512 procedure call commands 

10 152 by generating response packets that are delivered by the 
vault controller 140. 

in flight, and providing 16 contexts could support a host 15 

processor execute 16 threads concurrently, providing a 
(512*16*8) 64 KB SRAM buffer. In tum, a packet generator 
114 converts and formats procedure call commands, via 
send buffer 116, for sending to the memory system controller 
108, and procedure call results, via receive buffer 118, for 20 

receiving from the memory system controller 108. The 
memory system controller 108, in tum, communicates with 
the memory system 120. 

Referring next to the memory system 120, formatted 
procedure call commands and results may be first handled 25 

by a SERDES (Serializer/Deserializer) 122, followed by an 
interconnection network 124 to a plurality of logic sections 
126 (eight shown) implemented in a logic layer 128. Similar 
to the embodiment described above with respect to FIG. 1, 
the logic layer 128 may be stacked among a plurality of 30 

connected memory layers divided into memory sections 130 
(eight shown) to form a memory colunm 129, with the logic 
section 126 connected to the memory colunm 129 to form a 
memory vault. Alternatively, similar to the embodiment 
described above with respect to FIG. 2, the logic layer 128 35 

could be connected alongside the plurality of memory layers 
divided into the memory sections 130, such as via an 
interposer. 

Consequently, the memory system 120 provides eight 
distinct memory vaults with extremely close and wide data 40 

paths. In addition, each memory section 130 may include 
two DRAM banks 132, providing a total of 256 DRAM 
banks in the memory system 120. 

Each logic section 126 may include an individual vault 
controller 140 in communication with the interconnection 45 

network 124. The vault controller 140, in turn, may com­
municate with a compute tile comprising a buffer 142 to a 
compute scheduler 144, and a bank scheduler 146 to a 
context registers 148. The bank scheduler 146 and the 
context registers 148, in turn, communicate with ordering 50 

logic 150 and with a compute fabric 152 comprising an array 
of memory processing cores 154 ( eight shown). With eight 
logic sections 126, the memory system 120 may include 
sixty-four memory processing cores 154 (which may run 
sixty-four different programs concurrently), and with sixteen 55 

logic sections 126, the memory system 120 may include one 
hundred and twenty-eight memory processing cores 154 
(which may run one hundred and twenty-eight different 
programs concurrently), scaling accordingly. The memory 
processing cores 154 could also implement increased fault 60 

tolerance by executing in lock-step redundancy, such as in 
pairs ( or more) executing identical partitions within or 
between memory vaults. 

The compute scheduler 144 receives procedure call com­
mands and assigns procedure calls to next available memory 65 

processing cores 154. The compute scheduler 144 dequeus 
requests in-order, tracks the availability of the memory 

The compute fabric 152 comprises the memory process­
ing cores 154 and an 8-entry store buffer for each core 
(maintained outside the cores). Embodiments may provide 
enough compute capability to sustain accesses to 8 banks 
and perform computation. As described above with respect 
to FIG. 1, the memory processing cores 154 may be Cortex­
M3 cores with short pipelines (three stages) and may contain 
private small (16 KB) Level-I Data and Instruction SRAM 
memories for maintaining stack values and the program 
respectively. The memory processing cores 154 also each 
contain a 16-byte data register for sized to match the 
minimum size of the reads returned by the memory sections. 
With a plurality of lower clock speed and efficiently run 
memory processing cores close to memory, increased per­
formance may be realized without relying on tiered caches 
and/or speculative execution. 

The memory processing cores 154 access memory 
through the bank scheduler 146 which keeps track of the 
status of all banks in the memory vault and schedules 
accesses to these banks while adhering to DRAM or other 
memory timing requirements. Accordingly, the memory 
processing cores 154 execute instructions with information 
stored in their respective memory vault, interfacing to the 
memory sections 130 and the DRAM banks 132 via the bank 
scheduler 146. 

The ordering logic 150 observes all memory requests in 
the memory vault and ensures sequential semantics. The 
ordering logic 150 ensures that stores from a "later" memory 
processing core 154, if they issue before loads from an 
"earlier" memory processing core 154 and are to the same 
address, are "squashed." Accordingly, the ordering logic 150 
the memory vault is configured to store data processed by a 
first memory processing core responding to an earlier pro­
cedure call before storing data processed by a second 
memory processing core responding to a later procedure 
call. Approximate storage and hash functions to perform 
approximate matches with false positives are provided. 

The ordering logic 150 maintains a per-bank read and 
write signature sets for each memory processing core 154 
(total of 64 separate signatures). It is 8-way partitioned for 
the 8 memory processing cores 154, and each of the parti­
tions has a write set and a read set to detect ordering 
conflicts. On every load and store the following conditions 
are checked: 1.) stores issued from head core search for 
matching load in later cores and squash (case SL); 2.) stores 
issued from head core search for matching store in later 
cores and squash (case SS); and 3.) loads issued from 
non-head cores search for matching stores in earlier cores 
and squash self (case LS). 

The write set consists of a bank steering logic 156, 
followed by hash units 158 (eight), followed by signature 
bits 160 (eight) for each bank, and followed by a mask 
concatenate logic 162. When a store from a memory pro­
cessing core 154 reaches the ordering logic, it checks loads 
and stores of other memory processing cores 154 (forwarded 
to corresponding address bank by the bank steering logic 
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tion close to memory. Programming according to partition­
ing data layout is intuitive and does not significantly com­
plicate application design. 

A partition may be instantiated with a hash table of a 

156) with the hash units 158. The hash units 158 output the 
hash results and create the per-bank signature bits 160, 
which then form "SL" and "SS" mask bits. These per-bank 
SL and SS mask bits are concatenated and collected by the 
age-based mask concatenate logic 162. The mask concat­
enate logic 162 keeps track of the memory processing cores 
154 in a logical circular buffer to determine the temporal 
ordering of cores in terms of requests, and creates a final 
flush mask to flush all memory processing core 154 requests 
in later temporal order. A read set follows the same process 
except it checks preceding stores. A squash implementation 
may operate to discard store buffer entries and restart 
requests. 

5 desired size, and if a target size exceeds a partition, a 
program may instantiate multiple copies of the hash table 
mapped to different partitions and statically assign work­
loads among memory vaults based on the multiple parti­
tions. Also, if a target size exceeds a partition, a memory 

Referring now to FIG. 5, an exemplar depiction of execu­
tion flow for partitioned application code is provided in 
accordance with an embodiment of the invention. Here, 
remote memory procedure calls are used to offload compu­
tations of a particular granularity to memory. Memory 
processing cores perform the computations on behalf of a 
host processor making the memory procedure calls. These 
computations or "kernels" typically entail executing a 
memory intensive aspect of a workload being executed with 

10 vault could be configured to generate an out-of-vault excep­
tion whenever execution of a partition attempts to access 
memory outside of its current partition. This exception may 
be reflected to the host processor, which may issue a read for 
data on another partition to send back to the memory vault 

15 that generated the exception for resuming execution. 
Finally, results from each memory vault thread may be 

returned to the host processor, such as by queuing the results 
from the partitions in another temporary memory buffer or 
mailbox (inbound) 190 also allocated at run time. For 

a remaining aspect being executed on the host processor. 

20 example, upon the Memory Vault O Thread 184 completing 
processing of the Partition A, the Memory Vault O may 
return a Result A to the host processor via the mailbox 
(inbound) 190. Similarly, the Memory Vaults 1 and 2 may 
also return Results B and C, respectively, to the host 

A kernel may perform arbitrary computations, and any 
sequence of memory accesses. The host processor may 
interfaces to the memory processing cores via a queue 
abstraction. Memory procedure calls may be queued for 
processing by memory processing cores with results subse-

25 processor via the mailbox (inbound) 190, which results may 
be provided in or out of order. The host processor may then 
collect the results for further processing in the host core 
thread 180. 

quently provided. 30 

For example, a core of a host processor may execute a 
host core thread 180 representing an application code 
divided into Partitions A, B and C, among others. Instruc­
tions and/or data for the Partitions A, B and C may be stored 

35 
in Memory Vaults 0, 1 and 2, respectively. As the host 
processor executes the host core thread 180, the host pro­
cessor makes memory procedure calls with respect to Par­
titions A, B and C, such as by queuing such partitions in a 
temporary memory buffer or mailbox ( outbound) 182 allo- 40 

cated at run time. 

The mailbox ( outbound) 182 and the mailbox (inbound) 
190 may serve as the primary interface between the appli­
cation running on the host processor and the memory 
processing cores. Outbound calls and inbound results may 
be communicated, for example, via API calls. 

In some embodiments, procedure calls that are dispatched 
to memory vaults may be executed out of order. As such, 
memory vaults may be configured to enable execution ( or 
processing) of a later procedure call by a first memory 
processing core before execution ( or processing) of an 
earlier procedure call by a second memory processing core. 
Such execution may also include completion of the process­
ing, out of order, such that procedures are allowed to finish 
with their states stored, such as in a store buffer. Memory 
vaults may also re-execute (or re-process) these logically 
later procedure calls as necessary, such as if during execu-

Next, and in some embodiments with assistance of a 
memory processing controller, the Partitions A, B and C are 
dispatched to the appropriate Memory Vaults 0, 1 and 2, for 
information retrieval and local processing, based on target 
addresses of the Partitions A, B and C. For example, a 
memory procedure call with respect to Partition A may 
contain a target address corresponding to Memory Vault 0. 
Accordingly, the memory procedure call for Partition A may 

45 tion of another thread it is determined that an address is 

be dispatched to Memory Vault O for retrieval of instructions 50 

and data from the Memory Vault O and for processing a 
Memory Vault O Thread 184 by a memory processing core 
in the Memory Vault 0. Partitions B and C may be similarly 
dispatched to Memory Vaults 1 and 2 for processing a 
Memory Vault 1 Thread 186 and a Memory Vault 2 Thread 55 

188, respectively. While the memory vault threads are 
executing, the host processor may wait idly for results and/or 
execute other aspects of the application code which may be 
less memory intensive. 

The memory processing unit architecture essentially pro- 60 

vides an abstraction of multiple, independent address spaces 
for partitions as opposed to a flat memory space. Partitions 
are constrained to only access data within defined address 
spaces with different execution streams accessing different 
address spaces. Consequently, a partition represents the 65 

largest size for a monolithic data set. This allows efficient 
hardware design that reduces latency by bringing computa-

accessed where a logically "earlier" procedure call ( or 
thread) that executed later in time was stored. 

It is specifically intended that the present invention not be 
limited to the embodiments and illustrations contained 
herein, but include modified forms of those embodiments 
including portions of the embodiments and combinations of 
elements of different embodiments as come within the scope 
of the following claims. 

Certain terminology is used herein for purposes of refer­
ence only, and thus is not intended to be limiting. For 
example, terms such as "upper," "lower," "above," and 
"below" refer to directions in the drawings to which refer­
ence is made. Terms such as "vertical," "vertically," "hori­
zontal," "horizontally," "column(s)," "row(s)," "front," 
"back," "rear," "bottom," "side," "left" and "right" describe 
orientations within a consistent but arbitrary frame of ref­
erence which is made clear by reference to the text and the 
associated drawings describing the component or system 
under discussion. For example, a vertically stacked memory 
configuration having memory colunms could alternatively 
be viewed as a horizontally stacked memory configuration 
having memory rows. Also, such terminology may include 
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the words specifically mentioned above, derivatives thereof, 
and words of similar import. Similarly, the terms "first," 
"second" and other such numerical terms referring to struc­
tures do not imply a sequence or order unless clearly 
indicated by the context. 

When introducing elements or features of the present 
disclosure and the exemplary embodiments, the articles "a," 
"an," "the" and "said" are intended to mean that there are 
one or more of such elements or features. The terms "com-
prising," "including" and "having" are intended to be inclu- 10 

sive and mean that there may be additional elements or 
features other than those specifically noted. It is further to be 
understood that the method steps, processes, and operations 
described herein are not to be construed as necessarily 
requiring their performance in the particular order discussed 15 

or illustrated, unless specifically identified as an order of 
performance. It is also to be understood that additional or 
alternative steps may be employed. 

References to "a microprocessor" and "a processor" or 
"the microprocessor" and "the processor" can be understood 20 

to include one or more microprocessors that can communi­
cate in a stand-alone and/or a distributed environment(s), 
and can thus be configured to communicate via wired or 
wireless communications with other processors, where such 
one or more processor can be configured to operate on one 25 

or more processor-controlled devices that can be similar or 
different devices. Furthermore, references to memory, unless 
otherwise specified, can include one or more processor­
readable and accessible memory elements and/or compo­
nents that can be internal to the processor-controlled device, 30 

external to the processor-controlled device, and can be 
accessed via a wired or wireless network. 

We claim: 

12 
2. The memory system of claim 1, wherein each logic 

section provides for multiple independent memory process­
ing cores each providing for fetch, decode, and execute 
cycles during which instructions are fetched and executed, 

wherein each memory processing core is configured to 
respond to different message from the host processor, 
and 

wherein the host processor executes the application code 
divided into a plurality of partitions, and each partition 
is allocated for storage in a memory vault. 

3. The memory system of claim 1, wherein each logic 
section includes at least one memory processing core per 
memory layer. 

4. The memory system of claim 1, further comprising a 
compute scheduler in each logic section, wherein the com­
pute scheduler assigns the execution of a set of instructions 
designated by a message to a next available memory pro­
cessing core. 

5. The memory system of claim 1, wherein each memory 
section comprises a plurality of DRAM memory banks. 

6. The memory system of claim 5, wherein each logic 
section includes at least one memory processing core per 
DRAM memory bank. 

7. The memory system of claim 1, wherein clock frequen­
cies of the memory processing cores are less than a clock 
frequency of the host processor. 

8. The memory system of claim 1, further comprising at 
least first and second memory processing cores associated 
with each memory vault, wherein the memory system is 
configured to enable execution of instructions associated 
with a later message from the host processor by a first 
memory processing core before execution of instructions 
associated with an earlier message from the host processor 

1. A memory system for a host processor executing an 
application program, the memory system comprising: 

35 by a second memory processing core. 

a plurality of physically stacked memory layers, each of 
the memory layers providing data storage divided into 
memory sections, wherein corresponding ones of the 
memory sections of each of the memory layers are 40 

vertically, electrically connected to form a plurality of 
memory colunms; and 

a logic layer divided into logic sections, each of the logic 
sections including communication logic configured to 
communicate directly or indirectly with the host pro- 45 

cessor and at least one memory processing core, the 
memory processing core providing for fetch, decode, 
and execute cycles during which instructions are 
fetched and executed, wherein each of the logic sec­
tions connects to a corresponding one of the memory 50 

columns to form a respective memory vault of con­
nected logic and memory sections, the memory vaults 
operable in parallel; 

wherein for each of a plurality of the memory vaults, the 
corresponding memory processing core is configured to 55 

respond to a message from the host processor desig­
nating a set of instructions of the application program 
and an address in the memory vault by: 

(a) executing the set of instructions of the application 
program; 

(b) in response to the executing instructions, retrieving 
data stored at the address in the corresponding memory 
vault; 

( c) in response to the executing instructions and the 
retrieving data, producing a result; and 

( d) returning the result to the host processor in response 
to the message. 

60 

65 

9. The memory system of claim 1, wherein the logic layer 
is stacked among the plurality of memory layers, and 
wherein the memory vaults are connected by through-silicon 
VJaS. 

10. A computer system comprising: 
a host processor comprising at least one host processing 

core and a memory processing controller and adapted 
to execute an application program of instructions; 

a plurality memory layers, each memory layer providing 
for data storage and divided into memory sections, 
wherein memory sections of each layer are vertically, 
electrically connected to other memory sections in 
other memory layers in a physical stack to form a 
plurality of separate memory columns communicating 
through the memory column; and 

a logic layer divided into logic sections, each logic section 
including at least one memory processing core, the 
memory processing core providing for fetch, decode, 
and execute cycles during which instructions are 
fetched and executed, wherein each logic section con­
nects to a corresponding memory colunm to form an 
addressable memory vault of connected logic and 
memory sections operable in parallel, and wherein each 
logic section further includes communication logic in 
communication with the host processor through the 
memory processing controller, 

wherein the host processor communicates messages des­
ignating sets of application code instructions and a 
target address of a given memory vault, to the memory 
processing controller, and the memory processing con­
troller routes the messages directly or indirectly to 
memory processing cores based on the target addresses 
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of the messages corresponding to memory vaults of the 
memory processing cores; and 

wherein the memory processing cores respond to the 
messages by: 

14 
w~erein memory sections of each layer are vertically, elec­
tncally connected to other memory sections in other 
memory layers to form a plurality of separate memory 
colunms communicating through the memory colunm, and a 

(a) receiving the sets of instructions of the application 5 

program being executed by the host processor, wherein 
the set of instructions are configured to be executed by 

logic layer divided into logic sections, each logic section 
including at least one memory processing core, the memory 
processing core providing for fetch, decode, and execute 
cycles during which instructions are fetched and executed 
wherein each logic section connects to a correspondin~ 

a memory processing core of a memory vault of a target 
address using data from the memory colunm of the data 
vault; 

(b) retrieving data stored in memory colunms connected 
directly without intervening cache structures to logic 
sections including the memory processing cores; 

( c) executing the sets of instructions designated by the 
message with the data to produce results; and 

( d) providing the results back to the host processor in 
response to the messages. 

10 memory colunm to form an addressable memory vault of 
connected logic and memory sections, wherein each logic 
section further includes communication logic configured to 
communicate directly or indirectly with the host processor, 
the method comprising: 

15 (a) allocating partitions of the application code to memory 
vaults; 

11. The computer system of claim 10, wherein the host 
processor executes the application code divided into parti­
tions, wherein each partition is allocated for storage in a 20 

memory vault and the message refers to the first and second 
partition. 

(b) communicating a message designating a set of appli­
cation code instructions executable by the host proces­
sor from the host processor to a memory processing 
core based on a target address of the message corre­
sponding to a memory vault of the memory processing 
core; and 

( c) operating the memory processing core to respond to 
the message by: 

12. The computer system of claim 10, wherein each logic 
section includes at least one memory processing core per 
memory layer. 

13. The computer system of claim 12, further comprising 
a compute scheduler in each logic section, wherein the 
compute scheduler assigns messages to next available 
memory processing cores for processing. 

25 (i) receiving the set of instructions of the application 
progra_m being executed by the host processor, 
wherem the set of instructions is configured to be 
executed by a memory processing core of a memory 
vault using data from the memory colunm of the data 

14. The computer system of claim 10, wherein each 30 

memory section comprises a plurality of DRAM memory 
banks. 

vault; 
(ii) retrieving data stored in a memory colunm con­

nected directly without intervening cache structures 
to a logic section including the memory processing 
core; 

1?. T~e computer system of claim 14, wherein each logic 
sect10n mcludes at least one memory processing core per 
DRAM memory bank. 

16. The computer system of claim 10, wherein clock 
frequencies of the memory processing cores are less than a 
clock frequency of the host processor. 

17. The computer system of claim 10, further comprising 
at least first and second memory processing cores in a 
memory vault, wherein the memory vault is configured to 
enable execution of instructions of a later message from the 
host processor by a first memory processing core before 
execution of instructions of an earlier message from the host 
processor by a second memory processing core. 

18. The computer system of claim 10, wherein the logic 
layer i_s stacked among the plurality of memory layers, and 
wherem the memory vaults are connected using through­
silicon vias. 

19. The computer system of claim 10, wherein the host 
processor queues a plurality of messages in a single thread, 
and wherein a plurality of memory processing cores each 
execute a thread for responding to a message. 

20. A method for executing application code in a com­
puter system comprising a host processor, a plurality of 
P~)'.sically stacked memory layers, each memory layer pro­
v1dmg for data storage and divided into memory sections, 

35 (iii) executing the set of instructions designated by the 
message with the data to produce a result; and 

(iv) providing the result back to the host processor in 
response to the message. 

21. The memory system of claim 1, wherein each memory 
40 processing core is further configured to respond by retriev­

ing the set of instructions from the memory colunm con­
nected to the logic section including the memory processing 
core. 

22. The memory system of claim 1, further comprising a 
45 memory controller operable to route the message to the 

memory processing core. 
23. The memory system of claim 1 wherein the commu­

nication logic of each logic section configured to commu­
nicate directly or indirectly with the host processor includes 

50 a serializer/deserializer. 
24. The memory system of claim 1 wherein each pro­

cessing core includes a volatile random access memory for 
holding multiple instructions designated by the message and 
provides an instruction set including: addition, multiplica-

55 tion, left shift, right shift, bitwise Boolean operations and 
conditional branch statements. 

* * * * * 


