
c12) United States Patent
Sankaralingam et al.

(54) MEMORY PROCESSING CORE
ARCHITECTURE

(71) Applicant: Wisconsin Alumni Research
Foundation, Madison, WI (US)

(72) Inventors: Karthikeyan Sankaralingam, Madison,
WI (US); Jaikrishnan Menon,
Madison, WI (US); Lorenzo De Carli,
Madison, WI (US)

(73) Assignee: Wisconsin Alumni Research
Foundation, Madison, WI (US)

(*) Notice: Subject to any disclaimer, the term ofthis
patent is extended or adjusted under 35
U.S.C. 154(b) by O days.

This patent is subject to a terminal dis­
claimer.

(21) Appl. No.: 16/398,713

(22) Filed:

(65)

Apr. 30, 2019

Prior Publication Data

US 2019/0258601 Al Aug. 22, 2019

Related U.S. Application Data

(63) Continuation of application No. 14/453,990, filed on
Aug. 7, 2014, now Pat. No. 10,289,604.

(51) Int. Cl.
G06F 15178 (2006.01)

(52) U.S. Cl.
CPC G06F 1517821 (2013.01); Y02D 10/00

(2018.01)
(58) Field of Classification Search

CPC G06F 15/7821; Y02D 10/13; Y02D 10/12;
Y02D 10/00

See application file for complete search history.

I 1111111111111111 1111111111 111111111111111 IIIII IIIII IIIII lll111111111111111
US010936536B2

(IO) Patent No.: US 10,936,536 B2
(45) Date of Patent: *Mar. 2, 2021

(56) References Cited

U.S. PATENT DOCUMENTS

9,406,361 B2 * 8/2016 Ryoo
2008/0043559 Al* 2/2008 Norman .

(Continued)

OTHER PUBLICATIONS

GllC 8/06
GllC 5/02

365/226

Hybrid Memory Cube Specification 1.0; 2013 Altera Corporation,
ARM Ltd., Hewlett-Packard Company, International Business Machines

Corporation, Micron Technology, Inc; pp. 1-122; US.

(Continued)

Primary Examiner - Doon Y Chow
Assistant Examiner - Phuong N Hoang
(74) Attorney, Agent, or Firm - Boyle Fredrickson, S.C.

(57) ABSTRACT

Aspects of the present invention provide a memory system
comprising a plurality of stacked memory layers, each
memory layer divided into memory sections, wherein each
memory section connects to a neighboring memory section
in an adjacent memory layer, and a logic layer stacked
among the plurality of memory layers, the logic layer
divided into logic sections, each logic section including a
memory processing core, wherein each logic section con­
nects to a neighboring memory section in an adjacent
memory layer to form a memory vault of connected logic
and memory sections, and wherein each logic section is
configured to communicate directly or indirectly with a host
processor. Accordingly, each memory processing core may
be configured to respond to a procedure call from the host
processor by processing data stored in its respective memory
vault and providing a result to the host processor. As a result,
increased performance may be provided.

24 Claims, 5 Drawing Sheets

22

___________ l
14c

12a

~

36

(56) References Cited

U.S. PATENT DOCUMENTS

US 10,936,536 B2
Page 2

2012/0278530 Al* 11/2012 Ebsen G06F 13/1673
711/103

2014/0040532 Al 2/2014 Watanabe et al.
2014/0185376 Al* 7/2014 Sinclair GllC 11/5628

365/185.03

OTHER PUBLICATIONS

J. Thomas Pawlowski; Hybrid Memory Cube (HMC); 2011 Micron
Technology, Inc.; pp. 1-24; US.
Venray Technology Ltd; Implementations; website-http://www.
venraytechnology.corn/Implementations.htm; 2005-2014 Venray Tech­
nology Ltd.; pp. 1-2; US.
JED EC Standard; High Bandwidth Memory (HBM) DRAM; JED EC
Solid State Technology Association; Oct. 2013; Published by ©
JED EC Solid State Technology Association 2013; pp. 1-124; Arling­
ton, VA.
Joe Jeddeloh et al.; Hybrid Memory Cube New DRAM Architecture
Increases Density and Performance; VLSI Technology (VLSIT),
Jun. 12-14, 2012 Symposium; pp. 87-88; Honolulu, HI.

* cited by examiner

U.S. Patent Mar.2,2021 Sheet 1 of 5

14c 14b

1s I

~
(

20d

FIG. 1

US 10,936,536 B2

I
12a

I/ ~-

f I
I 12b

✓
I

b

)

38 40

r
!

!

/'
,t

19

14c

I '-F:'.'.-~ ..J
I
'

- - - - -- -- -- -- -- --

14b

25

25

22

___ .,,,,,,,,,, ____ ·-:--····1

20d

20c

-j

20a
24-,J

r18

-

20b !

0

">

J
34

·-- -- -- -- -.,.,. ---,.
/

FIG. 2

-36

38

e
•
00
•
~
~
~
~ = ~

~
~
:-:
N

'"
N
0
N

rJJ
=-('D
('D
N
0
Ul

d
rJl.

"'""' --= \0 w
0--,

tit w
0--,

= N

U.S. Patent Mar.2,2021

PARTITION A
PARTITION B

Sheet 3 of 5 US 10,936,536 B2

PARTITION C t--~--
• • •

PARTITION D

VAULT VAULT VAULT VAULT
3 2 1 0

26d 26c 26b -~26a

FIG. 3

U.S. Patent Mar.2,2021

-102

CORE

116

120

~

Sheet 4 of 5

,.,.,-;s.----, 11 0
!

SRAM

PACKETG

r106

114

sE Rev r 1
118

,..._,._,._,., ,,,,w,,..,,...,..._;,._.,.,,,.,, ,..·~,,~

148

.---128

US 10,936,536 B2

122/ 124 /

=--.,_-_,...,..,. __ ,4_0_1s_o _____ -.. __ -_. -Lr \
134 130 \

129
.I"----_-_-_-_-_-_-_-_-_-_-_-_-_-.......,.--.· LS ~:J~F~~

MASKi-,.+.+f+s'--
SS AGEMASK

LOGIC

156 158 160 162 150-

FIG.4

!
f
f
{

HOST PROCESSOR
(THREAD)

j
CALLA

CALLB

CALLC

!
WAIT

l
! I COLLECT A
1

l COLLECTB
l ~
I ~
f ! ! COLLECT(!

!.· + l
f I
J, ~ l)

180

J I

.~ ''

-
~ -

182
·~
J

MAILBOX
(OUTBOUND)

QUEUE A r..,,_,
...........,

QUEUE B -
QUEUEC

MAILBOX
(INBOUND}

l
!

RESULT A I~
l
1

RESULTB
1
t«
l
!

RESULTC
!

b

')
190

FIG. 5

MEMORY PROCESSING CORES {THREADS)

2

PROCESS
PARTITION C

l

·- 188

l 1

PROCESS
PARTmON B

\
~186

!
,.

0 !
!
!
!
l
I

r I
I
I

PROCESS !
I
1

PART!TION A

---~-...,..,..-/,

"'--184

e
•
00
•
~
~
~
~ = ~

~
~
:-:
N ...
N
0
N

rJJ
=­('D
('D
Ul

0
Ul

d
r.,;,

"'""' ... =
\0
w
0--,

tit
w
0--,

= N

US 10,936,536 B2
1

MEMORY PROCESSING CORE
ARCHITECTURE

CROSS REFERENCE TO RELATED
APPLICATION

This application is a continuation of U.S. patent applica­
tion Ser. No. 14/453,990 filed Aug. 7, 2014 hereby incor­
porated in its entirety by reference.

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH

This invention was made with govermnent support under
1228782 awarded by the National Science Foundation. The
govermnent has certain rights in the invention.

BACKGROUND OF THE INVENTION

The present invention relates to computer technologies,
and more particularly, to memory systems for computers.

Modem computer architectures typically provide one or
more multi-core processors connected to a tiered memory
structure that includes various levels of caches and a main

2
pieces of computation to obtain higher system performance
with increased power efficiency. Accordingly, implementing
memory processing cores in close proximity to memory
layers, which cores are balanced by the bandwidth and the

5 natural bank organization of the memory layers, and parti­
tioning application code to utilize such memory processing
cores, significantly improves the benefit of3D die-stacking.

On the programming model and the execution side,
memory remote procedure calls may be used to offload

10 pieces of computation to memory processing cores con­
tained in memory vaults. A memory remote procedure call
is a call made by a host processor to a memory processing
core in a memory vault such that the host processor offloads

15
computation of a partition of application code to the memory
processing core in the memory vault containing instructions
and/or data for the partition. On the hardware side, cache­
less, non-speculative, low-frequency, ultra-short pipeline
memory processing cores are integrated closely with

20 memory to provide faster processing with less power con­
sumption. As a result, an application program is effectively
broken up for execution among a plurality of processing
cores in close proximity to memory to achieve faster pro-
cessing with reduced power consumption.

In operation, a host processor loads data, performs ini-
tialization, initiates computation via remote procedure calls
and retrieves results. Memory processing cores execute the
memory-intensive part of the workload, and calls may be
triggered using a host processor executed Application Pro-

memory. As a processor executes application code that is 25

part of an instruction stream, the processor must continually
retrieve instructions and data from the tiered memory struc­
ture for processing. If a faster, proximally closer memory,
such as a Level 1 cache, does not contain the necessary
instructions or data required by the processor, the processor
must typically wait for a slower, more distant memory, such

30 gram Interface (API) that sends commands to a memory
processing controller. The memory processing controller
may examine the target address of each request and route the
request to the correct memory vault. The memory vault may,

as a Level 2 or 3 cache or a main memory, to provide the
information.

Such architectures are inefficient to the extent that sig­
nificant time and energy are consumed to move information
between the processor cores and the tiered memory struc­
ture. For example, if a closer memory does not contain the
necessary instructions or data required by the processor,
depending on the distance between the processor and the
memory containing the required information, the computer
system could suffer from significantly greater access laten­
cies and power consumed simply by transferring bits
between circuits than would otherwise be necessary.

One approach toward mitigating access latency is to
provide a three-dimensional (3D) memory with a helper
processor as described in U.S. patent application Ser. No.
13/567,958, titled "Stacked Memory Device with Helper
Processor." In this approach, layers of memory are stacked
and connected through the use of "through-silicon vias"
(TSV's) and a helper processor is provided to perform
certain memory-intensive operations. Although this
approach provides some improvement with respect to speed
and bandwidth, it continues to rely on a conventional
approach of linearly organizing instructions and data.

A need therefore exists to provide an improved architec­
ture capable of meeting increasing performance demands
while improving access latencies with minimized power
consumptions.

SUMMARY OF THE INVENTION

The present inventors have recognized that by tightly
coupling memory processing unit cores with sections of
stacked memory layers, combined as memory "vaults" in
hardware, and by segmenting application code into discrete
partitions (or "shards") in software for storage in such
memory vaults, a host processor can efficiently offload entire

35
in tum, retrieve partitioned instructions and/or data stored in
the memory vault and process the information via the
memory processing cores embedded in the memory vault.

With memory vaults including multiple memory process­
ing cores, each memory vault can allow multiple computa-

40 tions to proceed in parallel. In addition, computations in
different memory vaults can proceed concurrently, thereby
optimizing performance.

Also, using a queue-based mechanism allows a single
host processor thread to issue a large number of memory

45 processing unit commands to memory processing cores
without competing for a shared resource, i.e., without block­
ing. This enables massively parallel workloads in the
memory system with the memory processing cores with
fewer host threads managing them, and with consequent

50 power/energy savings.
In accordance with an embodiment, a memory system

may comprise: a plurality of stacked memory layers, each
memory layer divided into memory sections, wherein
memory sections are vertically connected to other memory

55 sections in the stacked memory layers to form a plurality of
memory columns; and a logic layer divided into logic
sections, each logic section including at least one memory
processing core, wherein each logic section connects to a
memory colunm to form a memory vault of a connected

60 logic and memory sections, and wherein each logic section
is configured to communicate directly or indirectly with a
host processor. Each memory processing core may be con­
figured to respond to a procedure call from the host proces­
sor wherein a memory processing core processes a partition

65 of instructions or data stored in its respective memory vault
for the host processor and provides a result back to the host
processor.

US 10,936,536 B2
3

The host processor may execute an application code
divided into a plurality of partitions, and each partition is
allocated for storage in a memory vault.

4
configuration in which layers are physically arranged one
over the other, such as by wafer-on-wafer or die-on-wafer
processes, with the memory layers 12 physically being

It is thus a feature of at least one embodiment to segment
application code into discrete partitions for storage in 5

memory sections for offloading entire pieces of computation
from the host processor to combined processing core and
memory sections.

coupled together. Each memory layer 12 comprises a sepa­
rate die or "chip" in which one is fabricated over the other,
or stacked adjacently, using conventional monolithic 3D
fabrication techniques. In this example, for simplicity, two
adjacent memory layers are shown, including an upper
memory layer 12a and a lower memory layer 12b. Each logic section may include a particular number of

memory processing cores according to the number of 10

memory layers. For Example, one embodiment may provide

The memory layers 12 may implement any of a variety of
memory cell architectures, including, but not limited to,
volatile memory architectures such as Dynamic Random
Access Memory (DRAM) and Static Random Access
Memory (SRAM), or non-volatile memory architectures,
such as Read-Only Memory (ROM), flash memory, and the
like. The example implementations of the memory layers 12

at least one memory processing core per memory layer, and
another embodiment may provide at least one memory
processing core per two memory layers.

It is thus a feature of at least one embodiment to provide 15

a distribution of processing cores with respect to memory
layers to provide optimal processing capability localized to are described herein in the example, non-limiting context of

a DRAM architecture. a memory section targeted for a partition of application code
at runtime.

Each memory section may comprise a plurality of DRAM 20

memory banks, and each logic section may include at least
one memory processing core per DRAM memory bank.

The memory layers 12 are each divided into a plurality of
memory sections 14. Division into the memory sections 14
may be made according to the type of memory implemented
and the optimal organization of that memory for high speed
data storage and retrieval with the least amount of transfer­
ring of bits between circuits. In this example, for simplicity,

It is thus a feature of at least one embodiment to provide
maximal efficiency for transferring bits with reduced power
consumption while providing localized processing capabil- 25

ity.
the memory layers 12 each implement four memory sections
14, which may comprise DRAM, and each memory section

Also disclosed are a computer system and a method for
executing application code implementing one or more of the
above features.

These particular objects and advantages may apply to 30

only some embodiments falling within the claims, and thus

14 may include two memory banks 16 (which may comprise
DRAM banks). A memory bank is a logical unit of storage
which may be determined by a memory controller along
with the physical organization of the memory circuitry.
Memory sections 14 are vertically connected to other

do not define the scope of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

Preferred exemplary embodiments of the invention are
illustrated in the accompanying drawings in which like
reference numerals represent like parts throughout, and in
which:

FIG. 1 is a simplified block diagram of a computer system
in accordance with an embodiment of the invention;

FIG. 2 is a simplified block diagram of a computer system
using an interposer in accordance with an embodiment of the
invention;

FIG. 3 is an exemplar depiction of application code
divided into partitions (or "shards") allocated for storage in
memory vaults in accordance with an embodiment of the
invention;

FIG. 4 is a more detailed block diagram of a computer
system in accordance with an embodiment of the invention;
and

FIG. 5 is an exemplar depiction of execution flow for
partitioned application code in accordance with an embodi­
ment of the invention.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

Referring now to FIG. 1, an embodiment of the present
invention will be described in the context of a computer
system 10. The computer system 10 could be implemented
in a variety of applications, including, for example, a laptop,
tablet, smart phone or other mobile computing device, a
desktop computer, a server, a network router, switch or hub,
and the like.

In the computer system 10, a plurality of memory layers
12 are "stacked," or arranged in a three-dimensional (3D)

35

memory sections 14 in the stacked memory layers 12 to form
a plurality of memory colunms 15, such as memory column
15a formed by memory sections 14a and 14e.

The computer system 10 also includes a logic layer 18,
which in an embodiment may be stacked among the plurality
of memory layers 12. In this example, for simplicity, one
logic layers is shown stacked among the memory layers 12.
Alternatively, referring briefly to FIG. 2, instead of being

40 stacked among the memory layers, the logic layer 18 may be
connected to the memory layers 12 via an interposer 19,
such as another silicon component or a Printed Circuit Board
(PCB).

Referring again to FIG. 1, the logic layer 18 is similarly
45 divided into logic sections 20. Division into the logic

sections 20 may be made according to the divisions made of
the memory layers 12 into the memory sections 14. For
example, the logic layer 18 may be divided into a number of
logic sections 20 equal to the number of memory sections 14

50 in a given memory layer 12, which is thereby sufficient to
support the memory sections 14 of a memory colunm 15.
Computation elements in the logic layer 18 should be
balanced with bandwidth and the natural bank organization
of the memory layers 12 to exploit the benefits of memory

55 die-stacking.
In an embodiment, a vertically stacked memory system

22, comprising the memory layers 12 and the logic layer 18,
are connected together such that electrical power and sig­
naling (data and command) may be transmitted between the

60 memory layers 12 and the logic layer 18 using a vertical
interconnect, such as an array of "through-silicon vias"
(TSV's) 24. The TSV's 24 may be dispersed throughout the
memory layers 12 and the logic layer 18 in the memory
system 22 such that each section of each layer is adjacently

65 connected together with wide data paths. For example, as
shown in the example of FIG. 1, each memory section
vertically connects to memory sections in adjacent memory

US 10,936,536 B2
5

layers, such as memory section 14a connecting to memory
section 14e, and each logic section connects to a memory
colunm of memory sections, such as logic section 20a
connecting to memory colunm 15a, using TSV's 24. As a
result, the TSVs 24 connect from the memory layers 12 to
the logic layer 18 to form a plurality of memory vaults or
cross-sections of the vertically stacked memory system 22.
In other words, the TSVs 24 run from the logic layer 18 to
the top-most memory layer 12, with "taps" into the logic
layer 18 and each memory layer 12. Referring briefly to FIG.
2, alternatively, the TSVs 24 could run from the top-most
memory layer 12a to the bottom-most memory layer 12b,
then to the interposer 19, with connections 25 to another set
of the TSVs 24 connecting to the logic layer 18 side-by-side,
with "taps" into each memory layer 12 and the logic layer
18.

Referring back to FIG. 1, accordingly, a single memory
vault 26, such as memory vault 26a, could include 32 data
signals TSV's 24 clocked at 2 GHz, in addition to command
signals and power TSV's 24. Consequently, each memory
vault 26 provides extremely high bandwidth between the
memory sections 14 and the logic sections 20 with low
latency and low energy consumption due to their close
proximities.

Accordingly, a plurality of memory "vaults" comprising
connected memory sections of a memory column and a logic
section are formed, such as memory vault 26a comprising
memory sections 14a and 14e of memory colunm 15a and
logic section 20a, connected by TSV's 24. A single package
containing multiple memory die and one logic die stacked
together using TSV technology, and resulting memory
"vaults," are described in the Hybrid Memory Cube Speci­
fication 1.0, 2013, provided by the Hybrid Memory Cube
("HMC") Consortium, which publication is hereby incor­
porated by reference in its entirety. In effect, the memory
system 22 may be implemented as a single package with a
capacity of 1, 2 or 4 GB or greater.

In embodiments of the invention, each logic section 20
includes at least one memory processing core 28, and in a
preferred embodiment, a plurality of memory processing
cores 28, each capable of executing instructions and pro­
cessing data. The memory processing cores 28 may com­
prise, for example, cacheless, non-speculative, low-fre­
quency, low-power, short pipeline processing units
integrated closely with the memory to provide efficient
processing. The memory processing cores 28 could be
Cortex-M3 processors comprising three stage pipelines
(fetch, decode and execute stages) as described by ARM
Limited. In embodiments, the logic sections 20 may provide
at least one memory processing core 28 per number of
memory layers 12 or at least one memory processing core 28
per DRAM memory bank 16.

Each logic section 20, and/or memory vault 26, and/or
memory system 22, also includes communication logic 30
(which may implement SERDES links for I/O) for commu­
nicating with one or more host processors 32 via intercon­
nect 34. The host processor 32 may comprise multiple host
processing cores 36, a memory system controller 38, such as
a packet based HMC controller, and a memory processing
controller 40.

By way of comparison, clock frequencies of the memory
processing cores 28 may be substantially less than a clock
frequency of the host processor 32 or the host processing
cores 36 thereby optimizing power. For example, clock
frequencies of the memory processing cores 28 might oper­
ate at about 250 MHz in an embodiment, as compared to
greater than GHz operation of the host processor 32.

6
The host processor 32 may communicate remote proce­

dure calls to the memory processing controller 40, and the
memory processing controller 40 may route the procedure
calls directly or indirectly to the memory processing cores

5 28 (such as through the memory system controller 38 and the
communication logic 30). The memory processing control­
ler 40 routes the procedure calls to the appropriate memory
processing cores 28 based on target addresses of the proce­
dure calls corresponding to memory vaults 26 of the respec-

10 tive memory processing cores 28. In turn, the memory
processing cores 28 respond to the procedure calls by
efficiently processing data stored in their respective memory
vaults 26 and providing a result to the host processor 32.

In alternative embodiments, greater or fewer memory
15 layers 12, and a plurality of logic layers 18, may be

provided, and each may be divided into greater or fewer
sections. Also, the ordering and/or arrangement of memory
and logic layers may be modified without departing from the
spirit of the present invention. In addition, the functionality

20 of various components, such as the communication logic 30,
the memory system controller 38 and the memory process­
ing controller 40 could be implemented in various areas of
the computer system 10 with various levels of integration.

Referring now to FIG. 3, an exemplar depiction of appli-
25 cation code 50, which may be executing on the host pro­

cessor 32, is divided into partitions 52 (or "shards") which
are allocated for addressable storage in memory vaults 26 in
accordance with an embodiment of the invention. The
programming model establishes partitions 52 of the appli-

30 cation code 50 such that each partition 52 is optimized for
storage in a separate memory vault 26.

For example, "Partition A" may be allocated to memory
vault 26a ("Vault 0"), "Partition B" may be allocated to
memory vault 26b ("Vault 1 "), and so forth. The partitions

35 52 need not be contiguous with respect to the application
code 50, and multiple partitions 52 may be allocated to the
same memory vault 26. In effect, the programming model
establishes a separation of data across memory vaults.

Accordingly, a memory processing core 28, upon receiv-
40 ing a procedure call from the host processor 32 routed by the

memory processing controller 40, may respond to the pro­
cedure call by processing the partitioned data stored in its
respective memory vault 26 and providing a processed result
back to the host processor 32. With memory vaults 26

45 advantageously including multiple memory processing
cores 28, each memory vault 26 can allow multiple com­
putations to proceed in parallel. In addition, computations in
different memory vaults 26 can proceed concurrently.

Referring now to FIG. 4, a more detailed block diagram
50 of a computer system 100 is provided in accordance with an

embodiment of the invention. The computer system 100
includes one or more host processors 102 and a memory
system 120. Referring first to the host processor 102, one or
more host processing cores 104 of the host processor 102

55 operate to execute application code according to one or more
threads. The host processing cores 104, in tum, communi­
cate with a memory processing controller 106 which, in tum,
communicates with a memory system controller 108. The
memory processing controller 106 interfaces the host pro-

60 cessing cores 104, which make procedure calls (to offload
computation), such as via Application Program Interface
(API) calls, to the memory system controller 108 which
communicates the procedure calls to the memory system
120. The memory processing controller 106 may uses

65 memory-mapped I/O to communicate with the host process­
ing cores 104 and receive messages (which may be 64-bits
in size). The memory processing controller 106 converts

US 10,936,536 B2
7

such messages to fully formatted standard memory system
messages (with custom message ID's) which are sent to the
memory system controller 108 for transmission.

8
processing cores 154, and schedules requests to available the
cores. The process of"assigning" a request entails delivering
input arguments for the request (parameters for the function/
kernel code) to the compute fabric 152 and the specific
memory processing core 154. Once assigned, the core
executes the kernel code and on-termination (indicated by
asserting an IRQ line) notifies its completion status to the
compute scheduler. Return values are delivered back to the
memory processing controller 106 by the compute fabric

The memory processing controller 106 may include an
SRAM buffer 110 that serves as a mailbox addressable by 5

host processing cores 104, such as using memory-mapped
I/O. Procedure call commands are written to the SRAM
buffer 110, such as via 64-bit uncacheable store, and results
from the memory processing cores are similarly read from
the SRAM buffer 110. A single memory processing control­
ler 106 may serve all host processing cores 104 of the host
processor 102, and consequently, context status registers 112
are provided. In an embodiment, a single context could
provide, for example, queuing 512 procedure call commands

10 152 by generating response packets that are delivered by the
vault controller 140.

in flight, and providing 16 contexts could support a host 15

processor execute 16 threads concurrently, providing a
(512*16*8) 64 KB SRAM buffer. In tum, a packet generator
114 converts and formats procedure call commands, via
send buffer 116, for sending to the memory system controller
108, and procedure call results, via receive buffer 118, for 20

receiving from the memory system controller 108. The
memory system controller 108, in tum, communicates with
the memory system 120.

Referring next to the memory system 120, formatted
procedure call commands and results may be first handled 25

by a SERDES (Serializer/Deserializer) 122, followed by an
interconnection network 124 to a plurality of logic sections
126 (eight shown) implemented in a logic layer 128. Similar
to the embodiment described above with respect to FIG. 1,
the logic layer 128 may be stacked among a plurality of 30

connected memory layers divided into memory sections 130
(eight shown) to form a memory colunm 129, with the logic
section 126 connected to the memory colunm 129 to form a
memory vault. Alternatively, similar to the embodiment
described above with respect to FIG. 2, the logic layer 128 35

could be connected alongside the plurality of memory layers
divided into the memory sections 130, such as via an
interposer.

Consequently, the memory system 120 provides eight
distinct memory vaults with extremely close and wide data 40

paths. In addition, each memory section 130 may include
two DRAM banks 132, providing a total of 256 DRAM
banks in the memory system 120.

Each logic section 126 may include an individual vault
controller 140 in communication with the interconnection 45

network 124. The vault controller 140, in turn, may com­
municate with a compute tile comprising a buffer 142 to a
compute scheduler 144, and a bank scheduler 146 to a
context registers 148. The bank scheduler 146 and the
context registers 148, in turn, communicate with ordering 50

logic 150 and with a compute fabric 152 comprising an array
of memory processing cores 154 (eight shown). With eight
logic sections 126, the memory system 120 may include
sixty-four memory processing cores 154 (which may run
sixty-four different programs concurrently), and with sixteen 55

logic sections 126, the memory system 120 may include one
hundred and twenty-eight memory processing cores 154
(which may run one hundred and twenty-eight different
programs concurrently), scaling accordingly. The memory
processing cores 154 could also implement increased fault 60

tolerance by executing in lock-step redundancy, such as in
pairs (or more) executing identical partitions within or
between memory vaults.

The compute scheduler 144 receives procedure call com­
mands and assigns procedure calls to next available memory 65

processing cores 154. The compute scheduler 144 dequeus
requests in-order, tracks the availability of the memory

The compute fabric 152 comprises the memory process­
ing cores 154 and an 8-entry store buffer for each core
(maintained outside the cores). Embodiments may provide
enough compute capability to sustain accesses to 8 banks
and perform computation. As described above with respect
to FIG. 1, the memory processing cores 154 may be Cortex­
M3 cores with short pipelines (three stages) and may contain
private small (16 KB) Level-I Data and Instruction SRAM
memories for maintaining stack values and the program
respectively. The memory processing cores 154 also each
contain a 16-byte data register for sized to match the
minimum size of the reads returned by the memory sections.
With a plurality of lower clock speed and efficiently run
memory processing cores close to memory, increased per­
formance may be realized without relying on tiered caches
and/or speculative execution.

The memory processing cores 154 access memory
through the bank scheduler 146 which keeps track of the
status of all banks in the memory vault and schedules
accesses to these banks while adhering to DRAM or other
memory timing requirements. Accordingly, the memory
processing cores 154 execute instructions with information
stored in their respective memory vault, interfacing to the
memory sections 130 and the DRAM banks 132 via the bank
scheduler 146.

The ordering logic 150 observes all memory requests in
the memory vault and ensures sequential semantics. The
ordering logic 150 ensures that stores from a "later" memory
processing core 154, if they issue before loads from an
"earlier" memory processing core 154 and are to the same
address, are "squashed." Accordingly, the ordering logic 150
the memory vault is configured to store data processed by a
first memory processing core responding to an earlier pro­
cedure call before storing data processed by a second
memory processing core responding to a later procedure
call. Approximate storage and hash functions to perform
approximate matches with false positives are provided.

The ordering logic 150 maintains a per-bank read and
write signature sets for each memory processing core 154
(total of 64 separate signatures). It is 8-way partitioned for
the 8 memory processing cores 154, and each of the parti­
tions has a write set and a read set to detect ordering
conflicts. On every load and store the following conditions
are checked: 1.) stores issued from head core search for
matching load in later cores and squash (case SL); 2.) stores
issued from head core search for matching store in later
cores and squash (case SS); and 3.) loads issued from
non-head cores search for matching stores in earlier cores
and squash self (case LS).

The write set consists of a bank steering logic 156,
followed by hash units 158 (eight), followed by signature
bits 160 (eight) for each bank, and followed by a mask
concatenate logic 162. When a store from a memory pro­
cessing core 154 reaches the ordering logic, it checks loads
and stores of other memory processing cores 154 (forwarded
to corresponding address bank by the bank steering logic

US 10,936,536 B2
9 10

tion close to memory. Programming according to partition­
ing data layout is intuitive and does not significantly com­
plicate application design.

A partition may be instantiated with a hash table of a

156) with the hash units 158. The hash units 158 output the
hash results and create the per-bank signature bits 160,
which then form "SL" and "SS" mask bits. These per-bank
SL and SS mask bits are concatenated and collected by the
age-based mask concatenate logic 162. The mask concat­
enate logic 162 keeps track of the memory processing cores
154 in a logical circular buffer to determine the temporal
ordering of cores in terms of requests, and creates a final
flush mask to flush all memory processing core 154 requests
in later temporal order. A read set follows the same process
except it checks preceding stores. A squash implementation
may operate to discard store buffer entries and restart
requests.

5 desired size, and if a target size exceeds a partition, a
program may instantiate multiple copies of the hash table
mapped to different partitions and statically assign work­
loads among memory vaults based on the multiple parti­
tions. Also, if a target size exceeds a partition, a memory

Referring now to FIG. 5, an exemplar depiction of execu­
tion flow for partitioned application code is provided in
accordance with an embodiment of the invention. Here,
remote memory procedure calls are used to offload compu­
tations of a particular granularity to memory. Memory
processing cores perform the computations on behalf of a
host processor making the memory procedure calls. These
computations or "kernels" typically entail executing a
memory intensive aspect of a workload being executed with

10 vault could be configured to generate an out-of-vault excep­
tion whenever execution of a partition attempts to access
memory outside of its current partition. This exception may
be reflected to the host processor, which may issue a read for
data on another partition to send back to the memory vault

15 that generated the exception for resuming execution.
Finally, results from each memory vault thread may be

returned to the host processor, such as by queuing the results
from the partitions in another temporary memory buffer or
mailbox (inbound) 190 also allocated at run time. For

a remaining aspect being executed on the host processor.

20 example, upon the Memory Vault O Thread 184 completing
processing of the Partition A, the Memory Vault O may
return a Result A to the host processor via the mailbox
(inbound) 190. Similarly, the Memory Vaults 1 and 2 may
also return Results B and C, respectively, to the host

A kernel may perform arbitrary computations, and any
sequence of memory accesses. The host processor may
interfaces to the memory processing cores via a queue
abstraction. Memory procedure calls may be queued for
processing by memory processing cores with results subse-

25 processor via the mailbox (inbound) 190, which results may
be provided in or out of order. The host processor may then
collect the results for further processing in the host core
thread 180.

quently provided. 30

For example, a core of a host processor may execute a
host core thread 180 representing an application code
divided into Partitions A, B and C, among others. Instruc­
tions and/or data for the Partitions A, B and C may be stored

35
in Memory Vaults 0, 1 and 2, respectively. As the host
processor executes the host core thread 180, the host pro­
cessor makes memory procedure calls with respect to Par­
titions A, B and C, such as by queuing such partitions in a
temporary memory buffer or mailbox (outbound) 182 allo- 40

cated at run time.

The mailbox (outbound) 182 and the mailbox (inbound)
190 may serve as the primary interface between the appli­
cation running on the host processor and the memory
processing cores. Outbound calls and inbound results may
be communicated, for example, via API calls.

In some embodiments, procedure calls that are dispatched
to memory vaults may be executed out of order. As such,
memory vaults may be configured to enable execution (or
processing) of a later procedure call by a first memory
processing core before execution (or processing) of an
earlier procedure call by a second memory processing core.
Such execution may also include completion of the process­
ing, out of order, such that procedures are allowed to finish
with their states stored, such as in a store buffer. Memory
vaults may also re-execute (or re-process) these logically
later procedure calls as necessary, such as if during execu-

Next, and in some embodiments with assistance of a
memory processing controller, the Partitions A, B and C are
dispatched to the appropriate Memory Vaults 0, 1 and 2, for
information retrieval and local processing, based on target
addresses of the Partitions A, B and C. For example, a
memory procedure call with respect to Partition A may
contain a target address corresponding to Memory Vault 0.
Accordingly, the memory procedure call for Partition A may

45 tion of another thread it is determined that an address is

be dispatched to Memory Vault O for retrieval of instructions 50

and data from the Memory Vault O and for processing a
Memory Vault O Thread 184 by a memory processing core
in the Memory Vault 0. Partitions B and C may be similarly
dispatched to Memory Vaults 1 and 2 for processing a
Memory Vault 1 Thread 186 and a Memory Vault 2 Thread 55

188, respectively. While the memory vault threads are
executing, the host processor may wait idly for results and/or
execute other aspects of the application code which may be
less memory intensive.

The memory processing unit architecture essentially pro- 60

vides an abstraction of multiple, independent address spaces
for partitions as opposed to a flat memory space. Partitions
are constrained to only access data within defined address
spaces with different execution streams accessing different
address spaces. Consequently, a partition represents the 65

largest size for a monolithic data set. This allows efficient
hardware design that reduces latency by bringing computa-

accessed where a logically "earlier" procedure call (or
thread) that executed later in time was stored.

It is specifically intended that the present invention not be
limited to the embodiments and illustrations contained
herein, but include modified forms of those embodiments
including portions of the embodiments and combinations of
elements of different embodiments as come within the scope
of the following claims.

Certain terminology is used herein for purposes of refer­
ence only, and thus is not intended to be limiting. For
example, terms such as "upper," "lower," "above," and
"below" refer to directions in the drawings to which refer­
ence is made. Terms such as "vertical," "vertically," "hori­
zontal," "horizontally," "column(s)," "row(s)," "front,"
"back," "rear," "bottom," "side," "left" and "right" describe
orientations within a consistent but arbitrary frame of ref­
erence which is made clear by reference to the text and the
associated drawings describing the component or system
under discussion. For example, a vertically stacked memory
configuration having memory colunms could alternatively
be viewed as a horizontally stacked memory configuration
having memory rows. Also, such terminology may include

US 10,936,536 B2
11

the words specifically mentioned above, derivatives thereof,
and words of similar import. Similarly, the terms "first,"
"second" and other such numerical terms referring to struc­
tures do not imply a sequence or order unless clearly
indicated by the context.

When introducing elements or features of the present
disclosure and the exemplary embodiments, the articles "a,"
"an," "the" and "said" are intended to mean that there are
one or more of such elements or features. The terms "com-
prising," "including" and "having" are intended to be inclu- 10

sive and mean that there may be additional elements or
features other than those specifically noted. It is further to be
understood that the method steps, processes, and operations
described herein are not to be construed as necessarily
requiring their performance in the particular order discussed 15

or illustrated, unless specifically identified as an order of
performance. It is also to be understood that additional or
alternative steps may be employed.

References to "a microprocessor" and "a processor" or
"the microprocessor" and "the processor" can be understood 20

to include one or more microprocessors that can communi­
cate in a stand-alone and/or a distributed environment(s),
and can thus be configured to communicate via wired or
wireless communications with other processors, where such
one or more processor can be configured to operate on one 25

or more processor-controlled devices that can be similar or
different devices. Furthermore, references to memory, unless
otherwise specified, can include one or more processor­
readable and accessible memory elements and/or compo­
nents that can be internal to the processor-controlled device, 30

external to the processor-controlled device, and can be
accessed via a wired or wireless network.

We claim:

12
2. The memory system of claim 1, wherein each logic

section provides for multiple independent memory process­
ing cores each providing for fetch, decode, and execute
cycles during which instructions are fetched and executed,

wherein each memory processing core is configured to
respond to different message from the host processor,
and

wherein the host processor executes the application code
divided into a plurality of partitions, and each partition
is allocated for storage in a memory vault.

3. The memory system of claim 1, wherein each logic
section includes at least one memory processing core per
memory layer.

4. The memory system of claim 1, further comprising a
compute scheduler in each logic section, wherein the com­
pute scheduler assigns the execution of a set of instructions
designated by a message to a next available memory pro­
cessing core.

5. The memory system of claim 1, wherein each memory
section comprises a plurality of DRAM memory banks.

6. The memory system of claim 5, wherein each logic
section includes at least one memory processing core per
DRAM memory bank.

7. The memory system of claim 1, wherein clock frequen­
cies of the memory processing cores are less than a clock
frequency of the host processor.

8. The memory system of claim 1, further comprising at
least first and second memory processing cores associated
with each memory vault, wherein the memory system is
configured to enable execution of instructions associated
with a later message from the host processor by a first
memory processing core before execution of instructions
associated with an earlier message from the host processor

1. A memory system for a host processor executing an
application program, the memory system comprising:

35 by a second memory processing core.

a plurality of physically stacked memory layers, each of
the memory layers providing data storage divided into
memory sections, wherein corresponding ones of the
memory sections of each of the memory layers are 40

vertically, electrically connected to form a plurality of
memory colunms; and

a logic layer divided into logic sections, each of the logic
sections including communication logic configured to
communicate directly or indirectly with the host pro- 45

cessor and at least one memory processing core, the
memory processing core providing for fetch, decode,
and execute cycles during which instructions are
fetched and executed, wherein each of the logic sec­
tions connects to a corresponding one of the memory 50

columns to form a respective memory vault of con­
nected logic and memory sections, the memory vaults
operable in parallel;

wherein for each of a plurality of the memory vaults, the
corresponding memory processing core is configured to 55

respond to a message from the host processor desig­
nating a set of instructions of the application program
and an address in the memory vault by:

(a) executing the set of instructions of the application
program;

(b) in response to the executing instructions, retrieving
data stored at the address in the corresponding memory
vault;

(c) in response to the executing instructions and the
retrieving data, producing a result; and

(d) returning the result to the host processor in response
to the message.

60

65

9. The memory system of claim 1, wherein the logic layer
is stacked among the plurality of memory layers, and
wherein the memory vaults are connected by through-silicon
VJaS.

10. A computer system comprising:
a host processor comprising at least one host processing

core and a memory processing controller and adapted
to execute an application program of instructions;

a plurality memory layers, each memory layer providing
for data storage and divided into memory sections,
wherein memory sections of each layer are vertically,
electrically connected to other memory sections in
other memory layers in a physical stack to form a
plurality of separate memory columns communicating
through the memory column; and

a logic layer divided into logic sections, each logic section
including at least one memory processing core, the
memory processing core providing for fetch, decode,
and execute cycles during which instructions are
fetched and executed, wherein each logic section con­
nects to a corresponding memory colunm to form an
addressable memory vault of connected logic and
memory sections operable in parallel, and wherein each
logic section further includes communication logic in
communication with the host processor through the
memory processing controller,

wherein the host processor communicates messages des­
ignating sets of application code instructions and a
target address of a given memory vault, to the memory
processing controller, and the memory processing con­
troller routes the messages directly or indirectly to
memory processing cores based on the target addresses

US 10,936,536 B2
13

of the messages corresponding to memory vaults of the
memory processing cores; and

wherein the memory processing cores respond to the
messages by:

14
w~erein memory sections of each layer are vertically, elec­
tncally connected to other memory sections in other
memory layers to form a plurality of separate memory
colunms communicating through the memory colunm, and a

(a) receiving the sets of instructions of the application 5

program being executed by the host processor, wherein
the set of instructions are configured to be executed by

logic layer divided into logic sections, each logic section
including at least one memory processing core, the memory
processing core providing for fetch, decode, and execute
cycles during which instructions are fetched and executed
wherein each logic section connects to a correspondin~

a memory processing core of a memory vault of a target
address using data from the memory colunm of the data
vault;

(b) retrieving data stored in memory colunms connected
directly without intervening cache structures to logic
sections including the memory processing cores;

(c) executing the sets of instructions designated by the
message with the data to produce results; and

(d) providing the results back to the host processor in
response to the messages.

10 memory colunm to form an addressable memory vault of
connected logic and memory sections, wherein each logic
section further includes communication logic configured to
communicate directly or indirectly with the host processor,
the method comprising:

15 (a) allocating partitions of the application code to memory
vaults;

11. The computer system of claim 10, wherein the host
processor executes the application code divided into parti­
tions, wherein each partition is allocated for storage in a 20

memory vault and the message refers to the first and second
partition.

(b) communicating a message designating a set of appli­
cation code instructions executable by the host proces­
sor from the host processor to a memory processing
core based on a target address of the message corre­
sponding to a memory vault of the memory processing
core; and

(c) operating the memory processing core to respond to
the message by:

12. The computer system of claim 10, wherein each logic
section includes at least one memory processing core per
memory layer.

13. The computer system of claim 12, further comprising
a compute scheduler in each logic section, wherein the
compute scheduler assigns messages to next available
memory processing cores for processing.

25 (i) receiving the set of instructions of the application
progra_m being executed by the host processor,
wherem the set of instructions is configured to be
executed by a memory processing core of a memory
vault using data from the memory colunm of the data

14. The computer system of claim 10, wherein each 30

memory section comprises a plurality of DRAM memory
banks.

vault;
(ii) retrieving data stored in a memory colunm con­

nected directly without intervening cache structures
to a logic section including the memory processing
core;

1?. T~e computer system of claim 14, wherein each logic
sect10n mcludes at least one memory processing core per
DRAM memory bank.

16. The computer system of claim 10, wherein clock
frequencies of the memory processing cores are less than a
clock frequency of the host processor.

17. The computer system of claim 10, further comprising
at least first and second memory processing cores in a
memory vault, wherein the memory vault is configured to
enable execution of instructions of a later message from the
host processor by a first memory processing core before
execution of instructions of an earlier message from the host
processor by a second memory processing core.

18. The computer system of claim 10, wherein the logic
layer i_s stacked among the plurality of memory layers, and
wherem the memory vaults are connected using through­
silicon vias.

19. The computer system of claim 10, wherein the host
processor queues a plurality of messages in a single thread,
and wherein a plurality of memory processing cores each
execute a thread for responding to a message.

20. A method for executing application code in a com­
puter system comprising a host processor, a plurality of
P~)'.sically stacked memory layers, each memory layer pro­
v1dmg for data storage and divided into memory sections,

35 (iii) executing the set of instructions designated by the
message with the data to produce a result; and

(iv) providing the result back to the host processor in
response to the message.

21. The memory system of claim 1, wherein each memory
40 processing core is further configured to respond by retriev­

ing the set of instructions from the memory colunm con­
nected to the logic section including the memory processing
core.

22. The memory system of claim 1, further comprising a
45 memory controller operable to route the message to the

memory processing core.
23. The memory system of claim 1 wherein the commu­

nication logic of each logic section configured to commu­
nicate directly or indirectly with the host processor includes

50 a serializer/deserializer.
24. The memory system of claim 1 wherein each pro­

cessing core includes a volatile random access memory for
holding multiple instructions designated by the message and
provides an instruction set including: addition, multiplica-

55 tion, left shift, right shift, bitwise Boolean operations and
conditional branch statements.

* * * * *

