

US010006057B2

(12) United States Patent

Piotrowski et al.

(54) RECOMBINANT YEAST HAVING ENHANCED GAMMA VALEROLACTONE TOLERANCE AND METHODS OF USE

- (71) Applicants: Wisconsin Alumni Research
 Foundation, Madison, WI (US);
 Regents of the University of
 Minnesota, Minneapolis, MN (US)
- (72) Inventors: Jeff S. Piotrowski, Madison, WI (US); Trey K. Sato, Madison, WI (US); Chad L. Myers, Arden Hills, MN (US)
- (73) Assignee: Wisconsin Alumni Research Foundation, Madison, WI (US)
- (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days. days.
- (21) Appl. No.: 14/848,440
- (22) Filed: Sep. 9, 2015

(65) **Prior Publication Data**

US 2016/0068869 A1 Mar. 10, 2016

Related U.S. Application Data

- (60) Provisional application No. 62/048,458, filed on Sep. 10, 2014.
- (51) Int. Cl.

C12P 7/10	(2006.01)
C12N 1/14	(2006.01)
C12N 15/81	(2006.01)

(10) Patent No.: US 10,006,057 B2

(45) **Date of Patent:** Jun. 26, 2018

- (52) U.S. Cl. CPC C12P 7/10 (2013.01); C12N 1/14 (2013.01); C12N 15/81 (2013.01); Y02E 50/16 (2013.01)
- (58) **Field of Classification Search** None See application file for complete search history.

(56) **References Cited**

U.S. PATENT DOCUMENTS

2007/0141690 A1*	6/2007	Karhumaa C12N 9/0006
2016/0040153 A1*	2/2016	Froehlich

OTHER PUBLICATIONS

Mukai et al., "PAD1 and FDC1 are essential for the decarboxylation of phenylacrylic acids in *Saccharomyces cerevisiae*", Journal of Bioscience and Bioengineering, vol. 109, No. 6, pp. 564-569, 2010.*

* cited by examiner

Primary Examiner - Richard C Ekstrom

(74) Attorney, Agent, or Firm - Boyle Fredrickson S.C.

(57) **ABSTRACT**

The present invention relates to materials and methods for the production of ethanol. More particularly, the present invention provides genetically modified strains of *Saccharomyces cerevisiae* having enhanced tolerance for gamma valerolactone (GVL) toxicity. Also provided are methods of using such genetically engineered yeast strains for improved GVL-mediated hydrolysis of lignocellulosic biomass for industrial-scale ethanol production.

22 Claims, 10 Drawing Sheets

∢

FIGS. 1A-1B, CONTINUED

ထ

U.S. Patent

∢

FIGS. 2A-2C, CONTINUED

FIGS. 3A-3C

<

O

Ð

RECOMBINANT YEAST HAVING ENHANCED GAMMA VALEROLACTONE TOLERANCE AND METHODS OF USE

CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Patent Application No. 62/048,458, filed Sep. 10, 2014; which is incorporated herein by reference as if set forth in its ¹⁰ entirety.

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT

This invention was made with government support under DE-FC02-07ER64494 awarded by the U.S. Department of Energy. The government has certain rights in the invention.

FIELD OF THE INVENTION

Broadly, the present invention relates to materials and methods for the production of ethanol. In particular, the present invention relates to genetically modified yeast ₂₅ strains useful for glucose and xylose fermentation and, more specifically, to strains of *Saccharomyces cerevisiae* genetically engineered for enhanced tolerance for gamma valerolactone (GVL) toxicity and methods of using the same for improved GVL-mediated hydrolysis of lignocellulosic bio-³⁰ mass for industrial-scale ethanol production.

BACKGROUND

Cellulosic biomass is a vast source of renewable energy 35 and an abundant substrate for biofuel production. As an alternative to corn-based ethanol, bioethanol can be generated from lignocellulosic (LC) sugars derived from cellulosic biomass of renewable and sustainable plant feedstocks. Energy of cellulosic biomass is primarily stored as the 40 recalcitrant polysaccharide cellulose, which is difficult to hydrolyze because of the highly crystalline structure, and in hemicellulose, which presents challenges because of its structural diversity and complexity. Many microbes cannot natively ferment pentose sugars (e.g., xylose) from complex 45 lignocellulosic biomass, which is composed of cellulose, hemicellulose and lignin fractions. Even when engineered to express the minimal enzymes from native pentose sugarmetabolizing organisms, S. cerevisiae cannot ferment xylose from innocuous lab media at industrially-acceptable rates. 50 Laluce et al., Applied Microbiol. Biotech. 166:1908 (2012); Almeida et al., Biotech. J. 6:286 (2011). Xylose is a prevalent sugar in both woody and herbaceous plants and a major component of hemicelluloses. Bioconversion of both xylose and glucose is required for the production of cellulosic 55 biofuels. To further complicate matters, plant biomass must be chemically, mechanically, or thermally pretreated prior to enzymatic hydrolysis ex situ in order to produce fermentable glucose and xylose monomers. Such pretreatment processes generate a diverse array of degradation products derived 60 from plant cell walls, such as hemicellulose and ligninderived acetate and aromatic molecules, many of which inhibit cellular metabolism in S. cerevisiae and induce microbial stress during hydrolysate fermentation. Taylor et al., Biotechnology J. 7:1169 (2012); Liu, Applied Microbiol. 65 Biotech. 90:809 (2011). At present, little is known about how such inhibitors impact xylose fermentation, particularly

under strict industrially relevant, anaerobic conditions where ethanol production is maximized.

In view of the current state of the biofuel industry, particularly ethanol production based on glucose- and xylose-containing feedstocks, it can be appreciated that there remains a need for efficient and cost-effective processes for breaking down cellulose and hemicellulose into their constituent sugars.

SUMMARY OF THE INVENTION

The present invention is largely related the inventors' research efforts to better understand xylose utilization for microbial engineering. The invention relates generally to methods and compositions for digesting lignocellulosic material and more particularly to methods that involve exposing the material to genetically engineered *Saccharomyces cerevisiae* (*S. cerevisiae*) variants having enhanced tolerance for or resistance to gamma valerolactone (GVL)-mediated toxicity.

In a first aspect, provided herein is a recombinant yeast that has been genetically engineered to exhibit a reduced amount of functional PAD1 polypeptide. The recombinant yeast has increased tolerance to gamma valerolactone (GVL) toxicity relative to a wild-type yeast or another recombinant yeast not exhibiting a reduced amount of functional PAD1 polypeptide. The recombinant yeast can further exhibit a reduced amount of functional FDC1 polypeptide, wherein the recombinant yeast has increased tolerance to gamma valerolactone (GVL) toxicity relative to a wild-type yeast or another recombinant yeast not exhibiting reduced amounts of functional PAD1 and FDC1 polypeptides. In some cases, a recombinant yeast comprises a disabling mutation in a gene encoding PAD1 polypeptide. The recombinant yeast can further comprise a disabling mutation in a gene encoding FDC1 polypeptide. The gene encoding PAD1 polypeptide can be SEQ ID NO:8. The gene encoding FDC1 polypeptide can be SEQ ID NO:10.

In some cases, a recombinant yeast further exhibits reduced or undetectable amounts of functional ISU1, GRE3, and IRA2 polypeptides, wherein the recombinant yeast is capable of increased aerobic or anaerobic xylose fermentation relative to a wild-type yeast or another recombinant yeast not exhibiting reduced amounts of functional PAD1, ISU1, GRE3, and IRA2 polypeptides. The recombinant yeast can have disabling mutation at each of loci isu1, gre3, and ira2, whereby the mutations result in reduced amounts of functional ISU1, GRE3, and IRA2 polypeptides, respectively. The disabling mutation at the gre3 locus can comprise a substitution of a threonine for the alanine at amino acid residue position 46 of SEQ ID NO:4. The disabling mutation at the ira2 locus can comprise a substitution of a stop codon for the glutamate at amino acid residue at position 2927 of SEQ ID NO:2. The disabling mutation at the isu1 locus can comprise a substitution of a tyrosine for the histidine at amino acid residue position 138 of SEQ ID NO:6. The recombinant yeast can produce ethanol at an increased rate relative to a wild-type yeast or another recombinant yeast not exhibiting reduced or undetectable amounts of functional ISU1, GRE3, and IRA2 polypeptides. The increased rate of ethanol production can occur under anaerobic conditions. The recombinant yeast can be of the genus Saccharomyces. The recombinant yeast can be of the species Saccharomyces cerevisiae. A portion of an extrachromosomal vector stably maintained in the recombinant yeast can comprise the disabling mutation. A nucleic acid sequence comprising the disabling mutation can be integrated into a chromosome of the recombinant yeast.

In another aspect, a yeast inoculum is provided herein. The yeast inoculum can comprise a recombinant yeast as described herein and a culture medium.

In a further aspect of the invention, a method for fermenting cellulosic material into ethanol is provided. The method comprises contacting a GVL-treated hydrosylate to a recombinant yeast or a yeast inoculum provided herein for a period of time sufficient to allow fermentation of at least a portion 10 of the cellulosic material to ethanol, whereby the rate of fermentation of cellulosic material of the GVL-treated hydrosylate to ethanol is increased relative to the fermentation rate of a GVL-treated hydrosylate not contacted to the recombinant yeast or the yeast inoculum. The method can 15 further comprise separating the ethanol from fermented cellulosic material. The GVL-treated hydrolysate can comprise xylose. The recombinant yeast can be Saccharomyces cerevisiae. The cellulosic material can comprise lignocellulosic biomass. In some cases, the lignocellulosic biomass 20 comprises at least one material selected from the group consisting of agricultural residues, wood, municipal solid wastes, paper and pulp industry wastes, and herbaceous crops.

These and other features, objects, and advantages of the ²⁵ present invention will become better understood from the description that follows. In the description, reference is made to the accompanying drawings, which form a part hereof and in which there is shown by way of illustration, not limitation, embodiments of the invention. The descrip-³⁰ tion of preferred embodiments is not intended to limit the invention to cover all modifications, equivalents and alternatives. Reference should therefore be made to the claims recited herein for interpreting the scope of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will be better understood and features, aspects and advantages other than those set forth above will become apparent when consideration is given to 40 the following detailed description thereof. Such detailed description makes reference to the following drawings, wherein:

FIGS. 1A-1B show production of GVL hydrolysates and relative toxicity. Lignocellulosic biomass is heated with 45 GVL to convert the cellulose and hemicellulose to sugar monomers, the result is a hydrolysate of sugars, amino acids, lignocellulosic derived fermentation inhibitors, and residual GVL that cannot be recovered (~1-3%) (A). The half-maximal inhibitory concentration (IC₅₀) of GVL in rich 50 media is 2.7% (B).

FIGS. **2**A-**2**C show chemical genomic profiling of GVL. Chemical genomic profiling (A) revealed a significant enrichment for genes involved in late endosome to vacuole (p<0.01) among the top gene mutants sensitive to GVL (B). 55 Single mutant validations of these individual mutants confirmed they were significantly more sensitive to GVL (C). (Mean±S.E., n=3).

FIGS. **3**A-**3**C demonstrate that GVL rapidly compromises membrane integrity and is synergistic with ethanol. GVL ⁶⁰ compromises membrane integrity as determined by dye uptake after treatment, and this effects is apparent with as little as 2.5% GVL (A, B). GVL is significantly synergistic with ethanol (C). (Mean \pm S.E, n=3).

FIGS. **4**A-**4**D present genes mediating GVL toxicity by 65 deletion and overexpression mutant profiling. Among deletion mutants significantly resistant to GVL, we saw signifi-

4

cant enrichment for genes in phenylpropanoid metabolism (p<0.001), driven by the mutants of the decarboxylases Pad1p and Fdc1p (A). Individual mutants in these genes were more tolerant of GVL (B). Overexpression profiling using MoBY-ORF transformed Y133 demonstrated that overexpression of PAD1 conferred significant GVL sensitivity (C). Increased expression of PAD1 significantly reduced GVL tolerance in single mutant cultures (D). (Mean±S.E, n=3).

FIGS. **5**A-**5**D demonstrate that deletion of PAD1 and FDC1 confers tolerance of GVL in a xylose fermenting yeast. A two-step PCR approach was used to simultaneously delete PAD1 and FDC1 in Y133, which are adjacent on chromosome IV (A), and confirmed deletion by PCR (B). The Y133 pad1 Δ fdc1 Δ mutant had significantly greater (p<0.01) tolerance of GVL (C), and also had faster growth, sugar consumption, and ethanol production under anaerobic conditions in synthetic hydrolysate with 1% GVL (D).

FIGS. **6A-6D** demonstrate that vinyl products of PAD1 and FDC1 are more toxic than the acid precursors, and are synergistic with GVL. The decarboxylase Pad1p converts phenolic acids to a vinyl form (A). The vinyl derivative of coumaric acid (4-vinylphenol) is significantly more toxic than the acid form (B, p<0.001). 4-vinylphenol is significantly synergistic with GVL (C). Deletion of PAD1 and FDC1 confers resistance to coumaric acid (D).

While the present invention is susceptible to various modifications and alternative forms, exemplary embodiments thereof are shown by way of example in the drawings and are herein described in detail. It should be understood, however, that the description of exemplary embodiments is not intended to limit the invention to the particular forms disclosed, but on the contrary, the intention is to cover all modifications, equivalents and alternatives falling within the spirit and scope of the invention as defined by the appended claims.

DETAILED DESCRIPTION OF THE INVENTION

In General

Before the present materials and methods are described, it is understood that this invention is not limited to the particular methodology, protocols, materials, and reagents described, as these may vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to limit the scope of the present invention, which will be limited only by the appended claims.

It must be noted that as used herein and in the appended claims, the singular forms "a," "an," and "the" include plural reference unless the context clearly dictates otherwise. As well, the terms "a" (or "an"), "one or more" and "at least one" can be used interchangeably herein. It is also to be noted that the terms "comprising," "including," and "having" can be used interchangeably.

Unless defined otherwise, all technical and scientific terms used herein have the same meanings as commonly understood by one of ordinary skill in the art to which this invention belongs. Although any methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, the preferred methods and materials are now described. All publications and patents specifically mentioned herein are incorporated by reference for all purposes including describing and disclosing the chemicals, cell lines, vectors, animals, instruments, statistical analysis and methodologies which are reported in the publications which might be used in connection with the invention. All references cited in this specification are to be taken as indicative of the level of skill in the art. Nothing herein is to be construed as an admission that the invention is not entitled to antedate such disclosure ⁵ by virtue of prior invention.

The practice of the present invention will employ, unless otherwise indicated, conventional techniques of molecular biology, microbiology, recombinant DNA, and immunology, which are within the skill of the art. Such techniques are explained fully in the literature. See, for example, Molecular Cloning A Laboratory Manual, 2nd Ed., ed. by Sambrook, Fritsch and Maniatis (Cold Spring Harbor Laboratory Press: 1989); DNA Cloning, Volumes I and II (D. N. Glover ed., 15 1985); Oligonucleotide Synthesis (M. J. Gait ed., 1984); Mullis et al. U.S. Pat. No. 4,683,195; Nucleic Acid Hybridization (B. D. Hames & S. J. Higgins eds. 1984); Transcription And Translation (B. D. Hames & S. J. Higgins eds. 1984); Culture Of Animal Cells (R. I. Freshney, Alan R. 20 Liss, Inc., 1987); Immobilized Cells And Enzymes (IRL Press, 1986); B. Perbal, A Practical Guide To Molecular Cloning (1984); the treatise, Methods In Enzymology (Academic Press, Inc., N.Y.); Gene Transfer Vectors For Mammalian Cells (J. H. Miller and M. P. Calos eds., 1987, Cold 25 Spring Harbor Laboratory); Methods In Enzymology, Vols. 154 and 155 (Wu et al. eds.), Immunochemical Methods In Cell And Molecular Biology (Mayer and Walker, eds., Academic Press, London, 1987); and Handbook Of Experimental Immunology, Volumes I-IV (D. M. Weir and C. C. 30 Blackwell, eds., 1986).

The nucleotides which occur in the various nucleotide sequences appearing herein have their usual single-letter designations (A, G, T, C or U) used routinely in the art. In the present specification and claims, references to Greek 35 letters may either be written out as alpha, beta, etc. or the corresponding Greek letter symbols (e.g., α , β , etc.) may sometimes be used.

As used herein, the term polynucleotide generally refers to any polyribonucleotide or polydeoxyribonucleotide, 40 which may be unmodified RNA or DNA or modified RNA or DNA. Polynucleotides include, without limitation, singleand double-stranded DNA, DNA that is a mixture of singleand double-stranded regions or single-, double- and triplestranded regions, single- and double-stranded RNA, and 45 RNA that is mixture of single- and double-stranded regions, hybrid molecules comprising DNA and RNA that may be single-stranded or, more typically, double-stranded, or triple-stranded regions, or a mixture of single- and doublestranded regions. As used herein, the term polynucleotide 50 also includes DNAs or RNAs as described above that contain one or more modified bases. Thus, DNAs or RNAs with backbones modified for stability or for other reasons are "polynucleotide(s)" as that term is intended herein. Moreover, DNAs or RNAs comprising unusual bases, such 55 as inosine, or modified bases, such as tritylated bases, to name just two examples, are polynucleotides as the term is used herein. It will be appreciated that a great variety of modifications have been made to DNA and RNA that serve many useful purposes known to those of skill in the art. The 60 term polynucleotide as it is employed herein embraces such chemically, enzymatically or metabolically modified forms of polynucleotides, as well as the chemical forms of DNA and RNA characteristic of viruses and cells, including, for example, simple and complex cells. The term polynucleotide 65 also embraces short polynucleotides often referred to as oligonucleotide(s).

6

The term "isolated nucleic acid" as used herein means a nucleic acid isolated from its natural environment or prepared using synthetic methods such as those known to one of ordinary skill in the art. Complete purification is not required in either case. The nucleic acids of the invention can be isolated and purified from normally associated material in conventional ways such that in the purified preparation the nucleic acid is the predominant species in the preparation. At the very least, the degree of purification is such that the extraneous material in the preparation does not interfere with use of the nucleic acid of the invention in the manner disclosed herein. The nucleic acid is preferably at least about 85% pure, more preferably at least about 95% pure and most preferably at least about 99% pure.

Further, an isolated nucleic acid has a structure that is not identical to that of any naturally occurring nucleic acid or to that of any fragment of a naturally occurring genomic nucleic acid spanning more than three separate genes. An isolated nucleic acid also includes, without limitation, (a) a nucleic acid having a sequence of a naturally occurring genomic or extrachromosomal nucleic acid molecule but which is not flanked by the coding sequences that flank the sequence in its natural position; (b) a nucleic acid incorporated into a vector or into a prokaryote or eukaryote genome such that the resulting molecule is not identical to any naturally occurring vector or genomic DNA; (c) a separate molecule such as a cDNA, a genomic fragment, a fragment produced by polymerase chain reaction (PCR), or a restriction fragment; and (d) a recombinant nucleotide sequence that is part of a hybrid gene. Specifically excluded from this definition are nucleic acids present in mixtures of clones, e.g., as those occurring in a DNA library such as a cDNA or genomic DNA library. An isolated nucleic acid can be modified or unmodified DNA or RNA, whether fully or partially single-stranded or double-stranded or even triplestranded. A nucleic acid can be chemically or enzymatically modified and can include so-called non-standard bases such as inosine, as described in a preceding definition.

Compositions of the Invention

Efficient biochemical conversion and fermentation of renewable lignocellulosic feedstocks is essential for the production of biofuels and other bioproducts from plant materials. While S. cerevisiae excel at fermentation of glucose from corn and sugar cane, the fermentation of renewable lignocellulosic biomass presents a significant challenge. Xylose, which is a pentose sugar and a major component of hemicellulose, can comprise almost 30% of total cell wall carbohydrate in grasses. Its conversion, along with glucose, into ethanol is critical for any economicallyviable cellulosic biofuel process. Biomass pretreatments and enzymatic hydrolysis are viable but costly ways of depolymerizing cellulose and hemicellulose fractions of biomass to produce soluble carbohydrates. Large-scale depolymerization cellulose and hemicellulose fractions of biomass is increasingly economically feasible as the cost of pretreatment reagents drops. Acid-catalyzed hydrolysis methods are generally less expensive than enzyme-catalyzed methods. Gamma-valerolactone (GVL) is an inexpensive solvent that can be derived from cellulose or hemicelluloses. GVL promotes thermocatalytic saccharification through complete solubilization of all lignocellulosic biomass components including lignin, which makes GVL-mediated hydrolysis of lignocellulosic biomass a potentially transformative technology for biofuel production. Luterbacher et al., Science 343:277-280 (2014); see also Bond et al., Integrated Catalytic Conversion of y-Valerolactone to Liquid Alkenes for Transportation Fuels, Science 26: (2010). Standard methods

of GVL-mediated hydrosylation yields hydrolysates having high sugar levels (glucose and xylose) but also having residual levels of GVL that are toxic to fermentative microcorganisms such as yeast. Current GVL-mediated hydrolysis methods yield hydrosylates comprising about 2.3% residual GVL. The present invention is based, at least in part, on the Inventors' discovery of genetic modifications that increase a yeast strain's tolerance for GVL toxicity and increase its growth rate in the presence of GVL.

Accordingly, one aspect of the present invention relates to 10 eukaryotic host cells genetically engineered for improved tolerance to GVL toxicity. In particular, the present invention provides eukaryotic cells that have been genetically engineered to have enhanced GVL toxicity tolerance, enhanced anaerobic and/or aerobic xylose fermentation, and 15 increased ethanol production relative to an unmodified cell or a recombinant cell not genetically engineered as described herein. Modified cells of the present invention are well-suited for producing a variety of fermentation products, including ethanol, in fermentation processes that use xylose 20 or a combination of xylose and glucose as carbon sources.

As used herein, a "host cell" is a cell which has been transformed or transfected, or is capable of transformation or transfection by an exogenous polynucleotide sequence. A host cell that has been transformed or transfected may be 25 more specifically referred to as a "recombinant host cell." A preferred host cell is a host cell that is naturally capable of alcoholic fermentation, preferably, anaerobic alcoholic fermentation. Host cells may also exhibit a high tolerance to ethanol, low pH, organic acids, and/or elevated tempera- 30 tures. Such characteristics or activities of the host cell may be naturally present in the host cell or may be introduced or modified by genetic modification. Preferred host cells for the present invention include yeast cells, particularly yeast cells of the genus Saccharomyces. Preferred yeast species as host 35 cells include Saccharomyces cerevisiae, S. bulderi, S. barnetti, S. exiguus, S. uvarum, S. diastaticus, K. lactis, K. marxianus, and K. fragilis, of which yeast cells of the genus Saccharomyces and yeast cells of the species Saccharomyces cerevisiae (S. cerevisiae) are preferred. Yeasts of the 40 genus Saccharomyces posses both a metabolic pathway and a fermentative pathway for respiration.

"Yeasts" are eukaryotic micro-organisms classified in the kingdom Fungi. Most reproduce asexually by budding, although some yeasts undergo sexual reproduction by meio-45 sis. Yeasts are unicellular, although some species with yeast forms may become multi-cellular through the formation of a string of connected budding cells known as pseudohyphae, or false hyphae, as seen in most molds. Yeasts do not form a single taxonomic or phylogenetic grouping. The term 50 "yeast" is often taken as a synonym for *Saccharomyces cerevisiae*, but the phylogenetic diversity of yeasts is illustrated by their assignment to two taxonomic classes of fungi, the ascomycetes and the basidiomycetes.

In exemplary embodiments, a genetically modified yeast 55 of the present invention comprises one or more genetic modifications that reduce or disrupt expression of functional PAD1 (phenylacrylic acid decarboxylase) polypeptide or functional FDC1 (ferulic acid decarboxylase) polypeptide. PAD1 and FDC1 are phenylacrylic acid decarboxylases that 60 decarboxylate aromatic phenylacrylic acids (e.g., ferulic acid, p-coumaric acid, cinnamic acid) in *S. cerevisiae*. See Clausen et al., *Gene* 142(1):107-12 (1994); Mukai et al., *J. Bioscience & Bioengineering* 109(6):564-569 (2010). Fulllength PAD1 (NCBI Gene ID: 852150) polypeptide is 242 65 amino acids. Full-length FDC1 (NCBI Gene ID: 852152) polypeptide is 503 amino acids. By "delete or disrupt", it is 8

meant that the entire coding region of the gene is eliminated (deletion), or the gene or its promoter and/or terminator region is modified (such as by deletion, insertion, or mutation) such that the gene no longer produces a partially or fully non-functional polypeptide (i.e., lacking enzymatic activity), or produces an enzyme with severely reduced activity. The deletion or disruption can be accomplished by genetic engineering methods, forced evolution or mutagenesis, and/or selection or screening.

In some cases, a recombinant yeast of the present invention comprises a genetic modification that deletes or disrupts a Pad1 nucleic acid that encodes PAD1 polypeptide, whereby the genetically modified yeast produces a reduced level of functional PAD1 polypeptide. In some cases, such genetically modified yeast produce no or substantially no functional PAD1 polypeptide. In other embodiments, a recombinant yeast of the present invention comprises a genetic modification that deletes or disrupts a Fdc1 nucleic acid that encodes FDC1 polypeptide, whereby the genetically modified yeast produces a reduced level of functional FDC1 polypeptide. In some cases, such a genetically modified yeast produces no or substantially no functional PAD1 polypeptide. In some cases, it will be advantageous to genetically modify a host cell to comprise genetic modifications that cause reduced levels of both functional polypeptides, PAD1 and FDC1. Recombinant yeast comprising one or more of the genetic modifications described herein exhibit improve fermentation rates relative to unmodified yeast or yeast not comprising the genetic modifications described herein. Such recombinant yeast also exhibit increased tolerance to GVL toxicity and improved growth rates in hydrosylates comprising residual GVL following GVL-mediated hydrolysis.

It is contemplated that certain additional genetic modifications may be advantageous or necessary to produce other desirable characteristics and/or to enable the yeast cell to produce certain products at industrially-acceptable levels. For example, genetic modifications that reduce or eliminate functional PAD1 polypeptide or functional FDC1 polypeptide can be introduced into S. cerevisiae yeast of the GLBRCY133 ("Y133") strain (a GLBRCY128 derivative). Yeast of the GLBRCY128 ("Y128") strain were evolved for robust, anaerobic xylose metabolism under industrially relevant conditions and high yields of extracellular ethanol. Forced evolution of the Y128 yeast strain from a background strain designated NRRL YB-210/GLBRCY0 (Mortimer and Johnston, *Genetics* 113(1):35-43 (1986)), has been described elsewhere. See U.S. Application No. 61/978,585, filed Apr. 11, 2014. Yeast of the Y133 strain comprise the genotype of GLBRCY128, but with the loxP-KanMX-loxP marker excised by Cre as previously described (Parreiras et al., PLoS One. 2014; 9(9):e107499).

Accordingly, in some cases, a recombinant yeast of the present invention comprises a genetic modification that deletes or disrupts a Pad1 nucleic acid that encodes PAD1 polypeptide and further comprises a disabling mutation at each of loci isu1, gre3, and ira2, whereby the mutations result in reduced amounts of functional ISU1, GRE3, and IRA2 polypeptides.

The degree of GVL's toxicity to a microorganism such as yeast depends on the yeast's growth conditions. Generally, yeast grown in a minimal medium are more sensitive to chemical stress, while yeast grown in a nutrient-rich medium are more tolerant of chemical stress. Recombinant yeast of the present invention tolerate higher levels of GVL relative to a wild type yeast or yeast not comprising a genetic modification described herein when grown in either a nutrient-rich medium or minimal medium. In exemplary embodiments, a recombinant yeast of the present invention that comprises a genetic modification resulting in reduced levels of functional PAD1 polypeptide has significantly more GVL tolerance (P<0.05) than a yeast having the same genetic 5 background but having normal levels of functional PAD1 polypeptide, even when growth under industrially relevant conditions in a minimal medium with high sugar loading (osmotically stressful). In general, toxicity is expressed as the "half maximal inhibitory concentration" or " IC_{50} ." The 10 terms "half maximal inhibitory concentration" and "IC50" are used interchangeably and, as used herein, refer to a concentration of the compound that is required to inhibit a given biological or biochemical function by half. In a standard yeast lab strain, the IC_{50} is about 1.98% GVL, $_{15}$ while a PAD1 deletion mutant in the standard lab strain background has an IC₅₀ of about 2.4% GVL and FDC1 deletion mutant in the standard lab strain background has an IC₅₀ of about 2.1% GVL. In other words, a yeast having a genetic modification (in a standard lab strain background) 20 that eliminates functional PAD1 polypeptide can tolerate GVL toxicity wherein GVL comprises about 2.4% of the hydrosylate. Similarly, yeast having a genetic modification (in a standard lab strain background) that eliminates functional FDC1 polypeptide can tolerate GVL toxicity wherein 25 GVL comprises about 2.1% of the hydrosylate.

The GVL IC_{50} for a genetically modified yeast of the present invention, when grown anaerobically in a minimal medium, is in the range between about 1.15% GVL and about 1.28% GVL, as compared to an IC_{50} of about 1.0% for 30 unmodified yeast of the xylose-fermenting background strain (Y128). When grown in a nutrient-rich media, yeast of the Y128 xylose-fermenting strain have an IC_{50} of about 2.2% GVL, whereas genetically modified yeast of the present invention have an IC_{50} of about 2.4% GVL to about 2.5% 35 GVL. When grown in a nutrient-rich media, yeast of the Y133 xylose-fermenting strain have an IC_{50} of about 2.7% GVL, whereas yeast of the genetically modified strain (e.g., Y133 pad1 Δ fdc1 Δ) of the present invention has an IC_{50} of about 2.9% GVL.

In some cases, a suitable host yeast cell comprises at least one native gene (a "xylose isomerase gene") that produces an active xylose isomerase enzyme that is capable of catalyzing the interconversion of D-xylose to D-xylulose. Xylose isomerase can also catalyze the interconversion of 45 D-ribose to D-ribulose and D-glucose to D-fructose. The enzyme can be specific to the reduction of xylose or nonspecific (i.e., capable of catalyzing the conversion of a range of pentose sugars). In some cases, a suitable host yeast cell is genetically engineered to contain an expression cassette 50 containing Clostridium phytofermentans xylose isomerase (CphytoXylA), which can confer anaerobic xylose fermentation by S. cerevisiae with additional genetic modifications (see Brat et al., Applied Environmental Microbiol. 75:2304 (2009)), driven by the ScerTDH3 promoter. In exemplary 55 embodiments, the expression cassette further comprises ScerTAL1, a Pentose Phosphate Pathway transaldolase enzyme that can improve xylose metabolism when overexpressed (see Ni et al., Applied Environmental Microbiol. 73:2061 (2007); Walfridsson et al., Applied Environmental 60 Microbiol. 61:4184 (1995)), and SstipXYL3 driven by the ScerPGK1 and ScerTEF2 promoters, respectively. For example, the host yeast cell can comprise a TAL1-XylA-XYL3 gene expression cassette.

Genetic modification of the host cell can be accomplished 65 in one or more steps via the design and construction of appropriate vectors and transformation of the host cell with 10

those vectors. Nucleic acid constructs useful in the invention may be prepared in conventional ways, by isolating the desired genes from an appropriate host, by synthesizing all or a portion of the genes, or combinations thereof. Similarly, the regulatory signals, the transcriptional and translational initiation and termination regions, may be isolated from a natural source, be synthesized, or combinations thereof. The various fragments may be subjected to endonuclease digestion (restriction), ligation, sequencing, in vitro mutagenesis, primer repair, or the like. The various manipulations are well known in the literature and will be employed to achieve specific purposes.

The various nucleic acids and/or fragments thereof may be combined, cloned, isolated and sequenced in accordance with conventional ways. After each manipulation, the DNA fragment or combination of fragments may be inserted into the cloning vector, the vector transformed into a cloning host, e.g., *E. coli*, the cloning host grown up, lysed, the plasmid isolated and the fragment analyzed by restriction analysis, sequencing, combinations thereof, or the like.

Targeted integration can be accomplished by designing a vector having regions that are homologous to the upstream (5'-) and downstream (3'-) flanks of the target gene. Either of both of these regions may include a portion of the coding region of the target gene. The gene cassette (including associated promoters and terminators if different from those of the target gene) and selection markers (with associated promoters and terminators as may be needed) can reside on a vector between the regions that are homologous to the upstream and downstream flanks of the target gene. Targeted cassette insertion can be verified by any appropriate method such as, for example, PCR. A host cell may be transformed according to conventional methods that are known to practitioners in the art. Electroporation and/or chemical (such as calcium chloride- or lithium acetate-based) transformation methods can be used. The DNA used in the transformations can either be cut with particular restriction enzymes or used as circular DNA. Methods for transforming yeast strains are described in WO 99/14335, WO 00/71738, WO 02/42471, WO 03/102201, WO 03/102152 and WO 03/049525; these methods are generally applicable for transforming host cells in accordance with this invention. Other methods for transforming eukaryotic host cells are well known in the art such as from standard handbooks, such as Sambrook and Russel (2001) "Molecular Cloning: A Laboratory Manual (3rd edition)," Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, or F. Ausubel et al., eds., "Current protocols in molecular biology," Green Publishing and Wiley Interscience, New York (1987).

In another aspect, compositions of the present invention further include yeast inocula comprising recombinant yeast as provided herein. A yeast inoculum of the present invention comprises (a) a recombinant yeast as provided herein and (b) a culture medium. In exemplary embodiments, the recombinant yeast is *S. cerevisiae* and the culture medium is a liquid culture medium. Yeast inocula of the present invention include large-scale preparations of sufficient quantities of viable yeast cells for use in, for example, xylose fermentation and other industrial ethanol-producing methods. When contacted to a GVL-treated hydrosylate comprising some level of residual GVL, a yeast inoculum of the present invention exhibits improved xylose fermentation rates and increased growth rates relative to a yeast inoculum that does not comprises a recombinant yeast of the present invention.

Methods of the Invention

The methods provided by the present invention involve the discovery and incorporation of genetic modifications into genes encoding certain polypeptides into a single host organism and the use of those organisms to convert xylose to ethanol. In particular, the present invention provides a method of fermenting cellulosic material comprising the 5-carbon sugar xylose into ethanol, where the method com- 5 prises use of a recombinant yeast having enhanced tolerance of GVL relative to wild type yeast or a recombinant yeast not comprising the genetic modifications described herein.

In exemplary embodiments, recombinant yeast of the present invention are used to make ethanol by converting 10 xylose and other sugars under appropriate fermentation conditions. The sugars can come from a variety of sources including, but not limited to, cellulosic material. The cellulosic material can be lignocellulosic biomass. As used herein, the term "lignocellulosic biomass" refers to any 15 materials comprising cellulose, hemicellulose, and lignin, wherein the carbohydrate polymers (cellulose and hemicelluloses) are tightly bound to the lignin. Generally, lignocellulosic material for making ethanol is feedstock such as corn stover, which consists of the stems, cobs, and leaves from 20 the corn plants (i.e., the non-grain material). Corn stover is typically shredded by mechanical means and incorporated by tillage into topsoil for decomposition. In addition to lignocellulosic ethanol production from corn stover, other feedstocks such as sorghum, wheat, or another grain can be 25 used. In some cases, lignocellulosic biomass comprises material selected from the group consisting of materials that comprise at least 75% cellulose, cellulose/hemicelluloses, xylose, biomass, and chitin. In other cases, the lignocellulosic biomass comprises at least one material selected from 30 the group consisting of agricultural residues, wood, municipal solid wastes, paper and pulp industry wastes, and herbaceous crops. As used herein, the term "biomass" refers to a renewable energy source, is biological material from living or recently living organisms. As an energy source, biomass 35 can either be used directly, or converted into other energy products such as biofuel. Biomass includes plant or animal matter that can be converted into fibers or other industrial chemicals, including biofuels. Industrial biomass can be grown from numerous types of plants, including miscanthus, 40 switchgrass, hemp, corn, poplar, willow, sorghum, sugarcane, bamboo, and a variety of tree species, ranging from eucalyptus to oil palm (palm oil). Thus, biomass can include wood biomass and non-wood biomass.

In some cases, methods of the present invention include 45 a hydrolyzation step. For example, when cellulosic material is used in the methods disclosed herein, the material can be hydrolyzed to produce a hydrolysate comprising xylose and glucose, which is subsequently contacted to one or more recombinant yeasts of the present invention. As used herein, 50 the term "hydrolysate" refers to a fermentable sugar-containing product produced from cellulosic material (e.g., biomass), typically through pretreatment and saccharification processes. In exemplary embodiments, cellulosic material is pretreated using a solvent comprising gamma-vale- 55 tinuously, batch-wise, or some combination thereof. rolactone (GVL or y-valerolactone). Such a pretreatment may also comprise one or more physical or chemical treatments such as grinding, milling, cutting, base treatment such as with ammonia or NaOH, and acid treatment.

In some cases, GVL-mediated hydrolysis further com- 60 prises an enzymatic saccharification treatment. Enzymatic saccharification typically makes use of an enzyme composition or blend to break down cellulose and/or hemicellulose and to produce a GVL-treated hydrolysate containing 6-carbon sugars (e.g., glucose) and 5-carbon sugars (e.g., xylose, 65 arabinose) For review of saccharification enzymes, see Lynd et al., Microbiol. Mol. Biol. Rev. 66:506-577 (2002). Sac-

charification enzymes may be obtained commercially. In some cases, saccharification enzymes may be produced using recombinant microorganisms that have been engineered to express one or more saccharifying enzymes.

Following hydrolyzation, a GVL-treated hydrosylate is contacted with one or more of the genetically engineered yeasts disclosed herein (e.g., a yeast strain genetically modified to exhibit reduced amounts of functional PAD1 polypeptide and/or functional FDC1 polypeptide) under conditions suitable for fermentation. Fermentation conditions can comprise aerobic or anaerobic conditions. In exemplary embodiments, a method of the invention comprises contacting under anaerobic conditions a recombinant yeast as provided herein to a GVL-treated hydrosylate for a period of time sufficient to allow fermentation of at least a portion of the cellulosic material into ethanol. In exemplary embodiments, a recombinant yeast used according to the methods provided herein is Saccharomyces cerevisiae. As used herein, "anaerobic fermentation" refers to a fermentation process run in the absence of oxygen or in which substantially no oxygen is consumed, preferably less than 5, 2.5, or 1 mmol/L/h, more preferably 0 mmol/L/h is consumed (i.e., oxygen consumption is not detectable), and where organic molecules serve as both electron donor and electron acceptors. In the absence of oxygen, NADH produced in glycolysis and biomass formation cannot be oxidized by oxidative phosphorylation.

In another aspect, the present invention provides a method of fermenting cellulosic material comprising the 5-carbon sugar xylose into ethanol, where the method comprises use of a recombinant yeast having enhanced tolerance of GVL relative to a wild type yeast or a recombinant yeast not comprising the genetic modifications described herein. In particular, the present invention provides a method whereby the rate of fermentation of cellulosic material in a GVLtreated hydrosylate to ethanol is increased relative to the fermentation rate of a GVL-treated hydrosylate not contacted to a recombinant yeast or yeast inoculum provided by the present invention. In such cases, the method comprises contacting a GVL-treated hydrosylate to a recombinant yeast having increased tolerance to GVL toxicity, whereby cellulosic material of the contacted hydrosylate is fermented to produce ethanol at an enhanced rate relative to fermentation of a GVL-treated hydrosylate that has not been contacted to a recombinant yeast of the present invention.

In some cases, methods of the present invention further comprise an ethanol separation or extraction step. Following conversion of sugars into ethanol, the ethanol can be separated from a fermentation culture using, for example, a standard distillation method or by filtration using membranes or membrane systems known in the art. Methods of separating or extracting are not restricted to those disclosed herein.

Methods of the present invention can be conducted con-

In some cases, a genetically engineered yeast disclosed herein can be used to produce ethanol from glycerol. Glycerol is a by-product of biodiesel production, which, using a recombinant yeast of the present invention, could be further converted to ethanol. In some cases, a method of converting glycerol to ethanol can comprise contacting glycerol to one or more of the genetically engineered yeasts disclosed herein (e.g., a yeast strain genetically modified to exhibit reduced amounts of functional PAD1 polypeptide and/or functional FDC1 polypeptide) under appropriate fermentation conditions. For example, a method of converting glycerol into ethanol can comprise contacting under anaerobic conditions

a recombinant yeast as provided herein to glycerol for a period of time sufficient to allow fermentation of at least a portion of the glycerol into ethanol. In exemplary embodiments, a recombinant yeast used according to the methods provided herein is *Saccharomyces cerevisiae* (*S. cerevisiae*). ⁵ In some cases, the glycerol is crude glycerol.

Following conversion of glycerol into ethanol, the ethanol can be separated from a fermentation culture using, for example, a standard distillation method or by filtration using membranes or membrane systems known in the art. Methods ¹⁰ of separating or extracting are not restricted to those disclosed or exemplified herein.

Articles of Manufacture

In a further aspect, the present invention provides an article of manufacture containing any one or more of the ¹⁵ recombinant yeasts disclosed herein is provided. An article of manufacture can contain one of the microorganisms disclosed herein (e.g., one or more of the yeast strains), or an article of manufacture can contain two or more of the microorganisms disclosed herein. Articles of manufacture ²⁰ disclosed herein also can include, for example, components necessary for growth of the particular microorganism(s).

While the present invention is susceptible to various modifications and alternative forms, specific embodiments thereof have been shown by way of example in the drawings ²⁵ and are herein described in detail. It should be understood, however, that the description herein of specific embodiments is not intended to limit the invention to the particular forms disclosed, but on the contrary, the intention is to cover all modifications, equivalents and alternatives falling within the ³⁰ spirit and scope of the invention as defined by the appended claims.

The present invention will be more fully understood upon consideration of the following non-limiting Examples. All papers and patents disclosed herein are hereby incorporated ³⁵ by reference as if set forth in their entirety.

EXAMPLES

Genetic Engineering and Directed Evolution of a S. 40 cerevisiae Strain Tolerant to GVL Toxicity

Lignocellulosic biomass derived fuels and chemicals provide a suite sustainable bioproducts. Before biomass can be converted to fuel or compounds, it must be converted to fermentable sugars (pre-treatment and hydrolysis), and these 45 sugars converted to fuels by microorganisms. Both pretreatment and hydrolysis can imbue the resultant hydrolysates with toxicity arising from residual pre-treatment chemicals or biomass derived inhibitors [2, 3], which throttle fermentation rates at a substantial economic cost [4]. 50

Fermentation inhibitors come in many forms, and the landscape of these inhibitors is constantly changing as new pre-treatment, hydrolysis, and feedstocks technologies are developed [2]. Enzymatic hydrolysis of biomass for fermentation releases small acids, phenolics, and furans that are a 55 ubiquitous challenge to bioconversion [3, 5]. Chemical hydrolysis methods such as y-valerolactone (GVL) and ionic liquids offer an enzyme free route to fermentable sugars, but come with their own challenges [6-8]. In addition to the small acid inhibitors, the chemicals used for hydrolysis can 60 persist in residual amounts into the resultant hydrolysate, and these compounds are not biologically benign to fermentative microorganisms [7, 8]. Further, as these chemical catalyst are used in relatively large amounts during hydrolysis, they residual concentrations are often much higher 65 than the small acid and phenolic inhibitors generated from the biomass.

GVL is a promising, new chemical hydrolysis technology to breakdown the cellulose polysaccharides to fermentable sugar monomers [6]. The advantage of GVL is that it is a recoverable and renewable chemical. One challenge of this method is the toxicity of residual GVL to fermentative microbes. GVL is mildly toxic to yeast, but this toxicity can be magnified when in combination with other inhibitors and the ethanol produced. As such, engineering GVL tolerant microbes is a means of overcoming toxicity, minimizing the costs of reagent recovery, and improving biofuels produced via ionic liquid hydrolysis.

We have used chemical genomics to discover the genomewide response to toxicity. Using this information we have identified specific genes that mediate toxicity, and have engineered these specific mutations into an industrially viable, xylose-fermenting strain of *Saccharomyces cerevisiae*. This approach offer a rapid method of tailoring existing strains to specific chemical stressors found in industrial bioconversion.

GVL is the Major Inhibitor Found in GVL Hydrolysates: GVL produced hydrolysates (FIG. 1A) are still largely unstudied, as such, our first goal was to identify the major inhibitors of GVL hydrolyates. LC/MS of hydrolysates revealed that three inhibitory compounds were highly abundant in the GVL hydrolysates: GVL, levulinic acid, and hydroxymethylfurfural (HMF); other lignocellulosic derived inhibitors were present, but at orders of magnitude lower concentrations (Table 1). GVL hydrolysates have a high level of residual GVL (230 mM), and as such this is the most toxic major inhibitor in GVL hydrolysates, given its half maximal inhibitory concentration (IC₅₀) is 270 mM (FIG. 1B). Because of this, we focused on understanding GVL toxicity and developing GVL-tolerant yeast strains.

TABLE 1

Inhibitor	mM					
GVL	100-230					
Acetate	30.27					
Formate	25.12					
Levulinic acid	17.13					
HMF	10.80					
Acetaldehyde	1.98					
Furfural	1.33					
2-ketoglutaric acid	0.15					
Furoic Acid	0.13					
Coumaric acid	0.11					

Chemical Genomic Predicts GVL Targets Cellular Membranes and Membrane Bound Processes:

To understand the mode of action of GVL toxicity we conducted chemical genomic analysis (FIG. 2A). This is a reverse genetics method that uses collections of defined gene mutants, and uses the response of these mutants in the presence of a chemical stress to gain functional insight into the chemical's mode of action and cellular target. We first challenged the yeast deletion collection with media containing 230 mM GVL and used barcode sequencing to identify the fitness response of the individual deletion mutants.

Among the top 10 sensitive deletion mutants, we found significant enrichment for genes involved in late endosome to vacuole transport (p<0.01, FIG. 2B), driven by deletion mutants of SEC28, VPS38, DID2. We validated mutants within this GO terms using single mutants culture, and found all had a lower IC_{50} compared to the control strain (FIG.

2C). Deletion mutants of these 3 genes have increased sensitivity to ethanol, heat, and membrane disrupting agents such as miconazole and nigercin. When we correlated the chemical genomic profile of GVL with the yeast genetic interaction network [10], we found significant enrichment 5 for genes involved in golgi-vesicle mediated transport among the top 10 correlations (p=0.001). RET2 was consistently predicted as the top correlation for the GVL chemical genomic profile. Ret2p is a subunit of the coatomer complex involved in retrograde transport between Golgi and 10 ER is also involved in golgi transport of vesicles [11]. RET2 mutants similarity show increased sensitivity to heat and membrane disrupting agents. We correlated the chemical genomic profile to GVL to existing chemical genomic datasets, and found its profile was significantly similar to 15 profiles of nigericin (p<0.01) and papuamide (p<0.01), membrane destabilizing compounds. Taken together, these data suggest GVL could exert toxicity by damaging membrane integrity.

GVL Damages Membranes and is Synergistic with Etha- 20 nol:

To confirm if GVL treatment can rapidly affect cell integrity, we assessed cell permeability after GVL treatment. Using FACS analysis combined with a dye that is only taken up by cells with damaged membranes, we found a rapid and 25 dose dependent effect of GVL on leakage (FIGS. 3A, 3B), similar to the effects of ethanol but with a greater magnitude (FIG. 3B). Given that both GVL and ethanol can damage cellular membranes, we also tested if these compounds are synergistic. We found a strong synergism between GVL and ethanol in both our lab strain and xylose fermenting strain (FIG. 3C). At a 1% GVL concentration and 4% ethanol concentration, we saw a significant synergistic interaction between GVL and ethanol (p < 0.01). This suggest that as ethanol titers increase during fermentation, the toxic effects 35 of GVL and ethanol will magnify each other, which ultimately affects yield.

Deletion of the Decarboxylases Pad1p and Fdc1p Enhance GVL Tolerance:

Importantly for our goal, we also looked for gene dele- 40 tions that increased resistance to GVL. Among the top GVL resistance mutants we found a significant enrichment for genes involved in phenylpropanoid metabolic process (p<0.002, FIG. 4A), driven by deletion mutants of PAD1 and FDC1. Single mutant validations reveals deletion of these 45 genes improved GVL tolerance (FIG. 4B). Pad1p is phenylacrylic acid decarboxylase with a reported role in aromatic acid catabolism and the ability to detoxify cinnamic acid [12, 13]. Like Pad1p, Fdc1p is thought to be a similar phenylacrylic acid decarboxylase involved in detoxifying 50 a vinyl form, and are thought to "detoxify" ferulic and ferulic acid [13].

Using chemical genomics guided biodesign, we identified 2 genes that are key in mediating GVL tolerance of the fermentative yeast S. cerevisiae. Deletion of the genes encoding acid decarboxylases Pad1 and Fdc1 conferred 55 greater tolerance to GVL. These specific mutations were introduced into to an industrially viable, xylose fermenting yeast (GLBRCY-128) to create a ethanol producing yeast (GVL-R1) specifically tailored for GVL hydrolysates. Yeast of the GVL-R1 strain has the advantage of being able to 60 grow and ferment both glucose and xylose faster than the GLBRC-Y128 strain in up to 2.5% residual GVL. Under our test conditions, GLBRC-Y128 required 72 hours to completely ferment all glucose, whereas engineered strain GVL-R1 achieved this in 48 hours. Importantly, engineered strain 65 GVL-R1 was also able to ferment xylose, allowing for greater ethanol yields.

Overexpression Chemical Genomic Profiling Confirms Pad1p Mediates GVL Toxicity:

We wanted to extend our chemical genomic analysis to industrially an industrially relevant, xylose ferment yeast strain. Presently there are no available genome-wide deletion mutant collections in industrial yeast, so we took a complementary approach. The MoBY-ORF 2.0 plasmid collection is with barcoded versions of 95% of all S. cerevisiae genes each expressed on a 2µ plasmid [14]. This collection of plasmids can be pooled and transformed into any yeast to allow investigations of the effect of gene dose under stress conditions. We transformed a version of the xylose-fermenting yeast GLBRC-Y133 [15] en masse with the pooled plasmid collection and selected over 50K individual transformants (10× genome coverage). We grew this pooled transformant collection in the presence of 2.5% GVL or a water control under anaerobic conditions in glucose/ xylose containing media and assessed the effects of increased gene dose on growth in the presence of GVL. We found the Pad1p overexpression mutant was one of the top sensitive strains (p<0.01, FIG. 4C). We confirmed with single mutant cultures that overexpression of PAD1 causes GVL sensitivity. The IC_{50} of Y133⁺ pPAD1 was 2.2%, compared to 2.56% of vector control (FIG. 4D, p<0.001).

Deletion of PAD1 and FDC1 in a Xylose Fermenting Strain Confers GVL Tolerance:

Chemical genomic profiling and validation of individual mutants confirmed that the decarboxylase Pad1p (and Fdc1p) were involved in GVL toxicity. We chose to engineer these deletions into a xylose fermenting yeast strain GLBRC Y133 (henceforth Y133). PAD1 and FDC1 are adjacent on chromosome IV, and as such we were able to delete both at the same time using transformation with PCR product of the antibiotic resistance marker KanMX flanked by homologous regions upstream of PAM and downstream of FDC1 (FIG. 4A). We confirmed deletion of both genes by PCR (FIG. 4B).

The IC₅₀ concentration of GVL of the Y133 pad1 Δ fdc1 Δ strain was significantly higher than the Y133 background (FIG. 5C; p<0.01). Finally, we tested the performance of the Y133 pad1 Δ fdc1 Δ strain under industrially relevant anaerobic conditions in a synthetic hydrolysate containing 1% GVL. The double KO strain grew, consumed sugars, and produced ethanol, whereas the Y133 background strain did not (FIG. 5D).

Vinyl Products of Pad1p Decarboxylation are Synergistic with GVL:

PAD1 and FDC1 are known to convert phenolic acids into coumaric acids; however, we posit that the vinyl derivatives (see FIG. 6A) may be more toxic than the acid forms. We found that the IC₅₀ values of the vinyl derivative of coumaric acid, 4-vinylphenol, was an order of magnitude lower than that of coumaric acid (FIG. 6B). Further, we found a statistically significant synergistic interaction between the vinyl derivative of coumaric acid, 4-vinylphenol, and GVL (FIG. 6C, p<0.01). Chemical genomic profiling of 4-vinylphenol revealed that, similar to GVL, RET2 was the top genetic interaction network correlation, and this compound was similarly predicted to target the membrane bound processes such as vesicle mediated transport. Deletion of PAD1 and FDC1 may reduce production of membrane damaging vinyls, which are synergistic with GVL. Our Y133 pad1 Δ fdc1 Δ has a statistically significantly greater tolerance of coumaric acid (FIG. 6D, p<0.01), and we contend this is because less of the more toxic vinyl form is being generated.

Discussion

Through chemical genomic analysis we predicted and confirmed the chemical hydrolysis reagent gamma-valerolactone exerts toxicity by damaging cellular membranes, similar to ethanol and other membrane damaging drugs. 5 Further, this compound is synergistic with ethanol. While this compound is less toxic than other fermentation inhibitors (e.g., furfural, HMF), the abundance of residual GVL in hydrolysates my ultimately limit ethanol production through a documented synergism with end-product fuels such as 10 ethanol or isobutanol. The toxic effects of GVL can be alleviated by specific deletion of the cellular decarboxylases Pad1p and Fdc1p, which convert phenolic acids into a more toxic vinyl form that is synergistic with GVL. While these specific decarboxylases have been studied for their role in 'detoxifying' hydrolysates by converting phenolic acids, the vinyl products may ultimately have a greater effect on growth in phenolic rich hydrolysates.

17

The process technologies of lignocellulosic biofuel production are still evolving, and as a result the landscape of fermentation inhibitors is dynamic. Strain development is necessary to keep pace with these new chemical stressors. Industry relies on tried and true industrial yeast strains with favorable performance and may be hesitant to adopt new genetic backgrounds, no matter how well they are predicted to perform. We have used a functional genomics approach to identify points of rational engineering. As our discovery system is based on *Saccharomyces cerevisiae*, the primary bioethanol organism, these genes identified can be directly modified in other yeast strains to rapidly tailor proven strains to new purposes. 30

This approach can also be applied to other bioproducts. Through synthetic biology drugs, green chemicals, and next-generation fuels can be produced by yeast and other engineered microbes, and many of these end-products can be toxic to the producing biocatalyst. The genome-wide, functional view of their effects provided by chemical genomics could be useful in improving production. This system is not limited to yeast, genomic wide mutant and overexpression collections exist in a number of industrial relevant microbes, such as *E. coli* and *Zymomonas mobilis*, and as such, the same approach is translatable.

Methods

Compounds, Initial Screening, and IC₅₀ Determination: Compounds tested were purchased from Sigma. Cells of

S. cerevisiae (MAT α pdr1 Δ ::natMX pdr3 Δ ::KI.URA3 snq2 Δ ::KI.LEU2 can1 Δ ::STE2pr-Sp_his5 lyp1 Δ his3 Δ 1 ⁴⁵ leu2 Δ 0 ura3 Δ 0 met15 Δ 0), referred to as control strain, were grown in 200 µl cultures at 30° C. in YPD, with a drug or DMSO control. Plates were read on a TECAN M1000 over a 48 h growth period. The specific growth rate was calculated using GCAT analysis software (available at gcat3pub.glbrc.org on the world wide web) [16]. When presented, IC₅₀ values for growth inhibition were calculated from triplicate 8 point dose curves and SigmaPlot 12.0. When presented, error bars are Mean±Standard error of at least 3 replicates.

Chemical Genomic Analysis:

Chemical genomic analysis of poacic acid was performed as described as described previously [17, 18]. The tested yeast deletion collection had ~4000 strains using the genetic background described in Andrusiak (2012) [19]. The optimal inhibitory concentration of poacic acid for chemical genomic profiling (70-80% growth versus solvent control in YP-galactose media after 24 hours of growth) was determined using an 8 point dose curve. A concentration of 88 µg/ml inhibited growth within this range. 200 µl cultures of the pooled, deletion collection of *S. cerevisiae* deletion ⁶⁵ mutants were grown with 88 µg/ml poacic acid or a DMSO control in triplicate for 48 h at 30° C. Genomic DNA was

extracted using the Epicentre MasterPure™ Yeast DNA purification kit. Mutant-specific molecular barcodes were amplified with specially designed multiplex primers [20]. The barcodes were sequenced using an Illumina MiSeq. 3 replicates of each condition (poacic acid vs DMSO) were sequenced. One DMSO control was lost due to poor sequencing reads. The barcode counts for each yeast deletion mutant in the presence of poacic acid were normalized against the DMSO control conditions to define sensitivity or resistance of individual strains. To determine a p-value for each top sensitive and resistant mutant, we used the EdgeR package [21, 22]. A Bonferroni-corrected hypergeometric distribution test was used to search for significant enrichment of GO terms among the top 10 sensitive and resistant deletion mutants [23]. To understand the pathways that were most affected by poacic acid we developed a protein complex/pathway score based on the summation of the z-scores for each complex/pathway (Pathway z-score). Correlation of the chemical genomic profile of poacic acid with the yeast genetic interaction network to was done as described in Costanzo et al. (2010) [10].

MoBY-ORF Profiling:

MoBY-ORF profiling of GVL was conducted by first generating a pooled collection of the yeast GLBRC-Y133 containing the plasmid collection. The plasmid pool for transformation was generated as described previously (HO). For yeast transformation, the plasmids were extracted from 150 mL of E. coli culture MAXI Prep. Plasmid was used to transform GLBRC-Y133 via high efficiency LiAc transformation. Transformed yeast were plated to YPD+Geneticin (G418) agar plates and incubated until colonies appeared. A total of 50,000 colonies were washed from the plates using 1×PBS, mixed 1:1 with 50% glycerol, and stored until use. For MoBY-ORF profiling, 25 mL of media containing YPD+2.5% GVL+G418 was allowed to degas overnight in an anerobic chamber, and then inoculated with 100 µL of the transformed yeast pool (n=3). Cells were grown in culture for 48 hours. Genomic DNA was extracted from 1 mL from each culture using modified mini-prep with with zymolyase 40 and glass beads. Gene specific barcodes were amplified, processed, sequenced, and analyzed as described above.

Growth and Sugar Conversion Experiments:

6 25-mL anaerobic flasks were prepared with Synthetic hydrolysate (SynH) (6% glucose/3% xylose)+1% GVL, pH 5.0. Flasks were inoculated with rinsed 133 or 133 pad1 Δ fdc1 Δ cells to bring the initial OD to approximately 0.1. The tubes were grown for 72 hours with agitation anaerobically at 30° C. 1 mL samples were taken every 24 hours. Initial and daily samples were measured for OD and submitted for HPLC analysis to quantify sugar consumption and ethanol production.

Cell Leakage Assays:

A FungaLight[™] cell viability assay (Invitrogen L34952) was used to determine if poacic acid caused membrane damage we used using a Guava Flow Cytometer (Millipore, USA). The population of stained cells (damaged integrity) vs non-stained cells can be determined by flow cytometry. Caspofungin (50 ng/ml) was included as a positive control. MMS and DMSO were included as a non-cell wall targeting and solvent control respectively. To test the effects of the compounds on both active and arrested cells, log-phase cultures were washed with 1×PBS and resuspended to an OD of 0.5 in either YPD media or YP (no carbon source) in the presence of the drugs (n=3) for 4 hours at 30° C. The cells were then stained and immediately read by flow cytometry. A one-way ANOVA and Tukey's test was used to calculate the difference between drug treatments among cells with arrested growth.

Synergy Screening:

To test for synergy, a 6×6 dose matrix was initially used to identify potentially synergistic dose combinations, these points were then confirmed in triplicate. 200 µl cultures were grown with combinations of with poacic acid (125 µg/ml), caspofungin (12.5 ng/ml) and fluconazole (3.8 µg/ml) and the relevant single agent and solvent controls their OD measured after 24 h. Synergy was determined by comparing actual optical density in the presence of compound combinations to an expected value calculated using the multiplicative hypothesis. This assumes that, in the absence of an interaction, each compound would decrease the OD of the cell culture by the same fraction in the presence of the other compound as it does when applied alone, i.e., E=A*B/C, where E is the expected OD, A is OD when compound A is applied alone, B is OD when compound B is applied alone, and C is OD of the control culture (DMSO). In the presence of synergy, the actual OD value is lower than the expected OD. A paired t-test was used to confirm statistical significance of this difference in 3 replicates of the experiment.

Determination of Ferulate and Diferulates by RP-HPLC- 20 HR/AM-MS in Hydrolysates:

ACSH samples were diluted 1:10 and 20 μ L samples were analyzed by reverse phase (C18) HPLC—high resolution/ accurate mass spectrometry. Peak areas of peaks matching in retention time and accurate mass+/-10 ppm of authentic 25 reference standards were used to calculate concentrations by comparison to an external standard curve.

GVL Synergy Experiments:

The synergistic interaction between GVL and ethanol was initially discovered using a 6-point dose matrix of the two compounds. We identified the points of the greatest synergy and perform triplicate growth curves of GLBRY-128 using a TECAN M1000 microplate reader. To confirm the GVL-R1 strain was less sensitive to the synergism between GVL and ethanol, used a 6-point dose matrix as described above with both GLBRCY-128 or GVL-R1 in a TECAN ³⁵ microplate reader for 48 hours at 30° C. Data from the most synergistic combination is presented (2% GVL-5% ethanol).

REFERENCES

- 1. Ho et al., Combining functional genomics and chemical biology to identify targets of bioactive compounds. *Curr Opin Chem Biol* 2011, 15:66-78.
- Piotrowski et al., Death by a thousand cuts: the challenges and diverse landscape of lignocellulosic hydrolysate 45 inhibitors. *Front Microbiol* 2014, 5.

3. Palmqvist and Hahn-Hägerdal, Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. *Bioresour Technol* 2000, 74:25-33.

4. Keating et al., Aromatic inhibitors derived from ammonia-pretreated lignocellulose hinder bacterial ethanologenesis by activating regulatory circuits controlling inhibitor efflux and detoxification. *Microb Physiol Metab* 2014, 5:402.

5. Almeida et al., Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by *Saccharomyces* 55 *cerevisiae. J Chem Technol Biotechnol* 2007, 82:340-349.

20

- Luterbacher et al., Nonenzymatic Sugar Production from Biomass Using Biomass-Derived γ-Valerolactone. Science 2014, 343:277-280.
- 7. Ouellet et al., Impact of ionic liquid pretreated plant biomass on *Saccharomyces cerevisiae* growth and biofuel production. *Green Chem* 2011, 13:2743.
- Docherty et al., Toxicity and antimicrobial activity of imidazolium and pyridinium ionic liquids. *Green Chem* 2005, 7:185-189.
- 10 9. McNew et al., Gos1p, a Saccharomyces cerevisiae SNARE protein involved in Golgi transport. FEBS Lett 1998, 435:89-95.
 - 10. Costanzo et al., The genetic landscape of a cell. *Science* 2010, 327:425-431.
- 15 11. Cosson et al., Delta- and zeta-COP, two coatomer subunits homologous to clathrin-associated proteins, are involved in ER retrieval. *EMBO J* 1996, 15:1792-1798.
 - 12. Clausen et al., PAD1 encodes phenylacrylic acid decarboxylase which confers resistance to cinnamic acid in *Saccharomyces cerevisiae*. *Gene* 1994, 142:107-112.
 - 13. Mukai et al., PAD1 and FDC1 are essential for the decarboxylation of phenylacrylic acids in *Saccharomyces cerevisiae*. J Biosci Bioeng 2010, 109:564-569.
 - 14. Magtanong et al., Dosage suppression genetic interaction networks enhance functional wiring diagrams of the cell. *Nat Biotechnol* 2011, 29:505-511.
 - 15. Parreiras et al., Engineering and Two-Stage Evolution of a Lignocellulosic Hydrolysate-Tolerant *Saccharomyces cerevisiae* Strain for Anaerobic Fermentation of Xylose from AFEX Pretreated Corn Stover. *PLoS ONE* 2014, 9:e107499.
 - 16. Sato et al., Harnessing genetic diversity in Saccharomyces cerevisiae for improved fermentation of xylose in hydrolysates of alkaline hydrogen peroxide pretreated biomass. Appl Environ Microbiol 2013:AEM.01885-13.
 - 17. Fung S-Y et al., Unbiased screening of marine sponge extracts for anti-inflammatory agents combined with chemical genomics identifies girolline as an inhibitor of protein synthesis. *ACS Chem Biol* 2013.
- 40 18. Parsons et al., Exploring the mode-of-action of bioactive compounds by chemical-genetic profiling in yeast. *Cell* 2006, 126:611-625.
 - Andrusiak K: Adapting S. cerevisiae Chemical Genomics for Identifying the Modes of Action of Natural Compounds. Thesis; 2012.
 - 20. Smith et al., Quantitative phenotyping via deep barcode sequencing. *Genome Res* 2009, 19:1836-1842.
 - 21. Robinson et al., Design and analysis of bar-seq experiments. G3 *GenesGenomesGenetics* 2014, 4:11-18.
 - 22. Robinson et al., edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. *Bioinforma Oxf Engl* 2010, 26:139-140.
 - Boyle et al., GO::TermFinder—open source software for accessing Gene Ontology information and finding significantly enriched Gene Ontology terms associated with a list of genes. *Bioinformatics* 2004, 20:3710-3715.

SEQUENCE LISTING

<160> NUMBER OF SEQ ID NOS: 10

<210> SEQ ID NO 1 <211> LENGTH: 12012 <212> TYPE: DNA <213> ORGANISM: Saccharomyces cerevisiae

21

-continued

<220> FEATURE: <221> NAME/KEY: misc_feature <223> OTHER INFORMATION: IRA2 coding sequence <400> SEQUENCE: 1 ataccgatac tttccatacg cacttgattt agaggccggc tccactatcg agattgaaaa 60 tcagtatgga gaagtgatct tcttgggcaa gtatggctct tctccaatga ttaacttaag 120 gccaccttca agattatctg cagaaagttt acaggcatcc caagagccat tttactcctt 180 tcaaatcgat acgttaccag aactggatga ctctagtatc atcagtacat ccatttcact 240 ctcttatgac ggtgacgaca atgaaaaagc cctgacttgg gaagaactct aggtcaaact 300 ctatttttat acagcaatga gtaccttttc acatacacat aaatatatta aatataataa 360 atacaataaa tataaaataa cccttttcga aactctttac ttcctaaggc ctctcattac 420 ttatcaccta gcatcatgct cttcatacat gccatctact ttcaaacgat atacggctaa 480 ccagaaaagt acggacaatc agggacgagc agggacatga cgccttccgc acagatccca 540 gagaaaagca gggaaacaag aaaataagaa aacaagaaaa acagtagtta cccttgtaag 600 tgtcatccac aacagaacca atactcttac tcttccgctc attccccgca gaatgataga 660 actattctaa atccccttgc cttgcttggc cttgacttgg gttgggactt ggacctctag 720 aaccqatqtq ccttcaaaca tcttaqcqaq ataaqaqtct qccattaatq catcqaqcca 780 atatettgga etagtaegag gtteaegtag eettettge aeggeaeeag egteeeacee 840 caagttettt getataetga eegeettaea eattttagtg tgatteeaae eeaagtage 900 tcctcaaaaa gggtcacccg atcggtgaat caatccgcgg cgcagaaatg ttcgtagagc 960 tetegtttet tetagaacge teeettgatg aaacgaaaat tteeateaca ataaageteg 1020 cacgcetttt tgaaaaceee aagetttget gtgtettett gtgaaaagtt ttgeeeaacg 1080 attatctatt ctacatataa ccggggagtt aagcacatcc tattgcccta cattctctcc 1140 gettaettea ttgtetagag eteetgggaa acaaaagaee gaaaaagega aaacaaaate 1200 agaacaaggc ttaagtactt tttcaccaat tgtagcaaac atttaaccac attttagcac 1260 actagcatat agcattgtcc tctgttattc gttttgcttt tctcctttag tgttactttt 1320 cccccaacgt tacaccattt tttgatatca actaaactgt atacattatc tttcttcagg 1380 gagaagcatg tcccagccca ctaagaataa gaagaaagaa cacgggaccg attccaagtc 1440 atcccgcatg actcggacgt tggttaatca tattcttttt gaaagaattc tcccgatcct 1500 tccggtggag tctaatctaa gtacctattc ggaagtggaa gagtattcct cattcatttc 1560 atgcagatet gtgeteatta acgttacegt tteeegagat geaaatgeta tggtggaagg 1620 caccttggag ttgatagaat cgcttcttca agggcacgaa atcatttcag ataagggtag 1680 cagtgacgtt attgaatcaa tactgattat actaagattg ttaagtgatg cgctagagta 1740 taattqqcaa aatcaaqaaa qccttcatta caacqacatt tcqactcacq taqaacatqa 1800 ccaagaacag aagtacagac caaagcttaa cagtattetg ecegactaet egtegaetea 1860 ttccaatggc aacaaacact ttttccacca gagcaaacct caggcactga taccggaact 1920 ggcatcgaaa ttgcttgaga gttgcgcgaa gttgaagttc aatacaagaa ctttgcaaat 1980 tttacaaaat atgatcagtc atgttcatgg aaacattcta acgactttga gttcctcgat 2040 tetteeeege cacaaateet atetgacaag geacaaceat eetteteatt gtaaaatgat 2100 tgactctact ctaggccata ttctccgatt tgtagcggct tccaatccgt ccgagtattt 2160

tgaatttatc agaaagagtg tgcaagtgcc cgtaacacag acacacacgc attcacactc

2220

23

-continued

				-contir	nued	
ccattcacac	tctttgccat	cttccgttta	taacagcata	gtgccccact	ttgatctttt	2280
cagcttcatc	tatttaagca	agcataattt	taagaaatac	ttggaactca	tcaaaaactt	2340
atcggtgacg	ttaaggaaaa	cgatttatca	ttgcctactt	ttgcattaca	gcgccaaagc	2400
aataatgttt	tggataatgg	ctaggcctgc	ggaatattat	gaactcttca	acttattaaa	2460
agataataac	aatgaacact	cgaaatcctt	aaacacgtta	aaccatacac	ttttcgagga	2520
gatccattcg	acttttaatg	tgaatagcat	gataaccacc	aatcaaaatg	ctcatcaagg	2580
ctcatcttcc	ccttcgtcct	cctcgccatc	gtcaccacct	agctcatcat	catcggataa	2640
caacaatcaa	aacataatag	caaaatcctt	aagtcgtcag	ctttctcacc	accagtcata	2700
cattcaacag	cagtctgaaa	gaaaactaca	ttcttcatgg	actacaaact	ctcaatcctc	2760
tacttcactg	tcatcttcaa	cgtctaattc	aacaacaact	gatttctcta	ctcacactca	2820
accaggagaa	tatgaccctt	ccttaccaga	tactcccacg	atgtctaaca	tcactattag	2880
tgcatcttca	ttattatctc	aaactccaac	tccaacaaca	caattgcaac	agcggttgaa	2940
ctcagcagct	gcagccgccg	ccgcagctgc	ttcaccatcg	aattccaccc	caactggata	3000
cacagcagag	caacaaagtc	gcgcttcata	cgatgcacac	aaaactggcc	atactggtaa	3060
ggattatgac	gaacattttt	tgtctgtcac	tcgtttggat	aatgttttgg	agttatacac	3120
gcactttgat	gatactgagg	tactaccaca	cacatccgta	ctgaagtttt	taactacttt	3180
gacaatgttc	gatattgacc	tttttaatga	attaaacgct	acatcattca	aatatattcc	3240
tgattgtact	atgcatcgtc	caaaagaaag	aacaagttct	ttcaataata	ctgcacacga	3300
gacaggttcc	gaaaagactt	cgggtataaa	acatattaca	caaggcttaa	agaaattaac	3360
ttctttacct	tcctcaacca	aaaaaactgt	aaaatttgtg	aagatgttgc	taagaaattt	3420
aaatgggaat	caagctgtat	cagatgttgc	cctcttagat	acaatgaggg	ccttactatc	3480
attctttaca	atgacttctg	cggtctttct	cgtggataga	aacttaccct	cagtactttt	3540
tgccaagaga	ctcatcccca	taatggggac	aaatttaagc	gtcggtcaag	actggaattc	3600
aaaaataaat	aacagtttga	tggtttgttt	gaaaaaaaac	tccaccacgt	ttgttcaatt	3660
acaattaata	ttettetett	cagctattca	attcgatcat	gaattattac	tggcacgtct	3720
gagcatcgat	acaatggcca	acaatttaaa	catgcagaag	ctatgccttt	atactgaagg	3780
attcaggata	ttcttcgaca	taccaagtaa	gaaggaattg	cggaaggcaa	ttgcggttaa	3840
aatttctaaa	tttttcaaaa	cattattctc	cattatagca	gatattett	tacaagaatt	3900
tccgtatttt	gatgagcaaa	tcaccgacat	agttgcttcc	attcttgacg	gtacaattat	3960
caatgagtat	ggtacgaaga	aacatttcaa	ggggagctca	ccctctttat	gttcgacaac	4020
ccggtcaaga	tcaggatcta	catctcaaag	ttcaatgaca	ccagtttctc	cgctgggact	4080
ggatactgat	atatgtccaa	tgaacaccct	gtctttagtt	ggttcaagta	cttcaagaaa	4140
ttctgacaac	gttaattcat	taaacagttc	accaaagaac	ttgtcttctg	atccatactt	4200
gtcacatctt	gtggccccaa	gagcgcgtca	tgctttaggt	gggccatcta	gtattataag	4260
gaataaaata	ccgactacat	tgacttcacc	tccaggaacg	gaaaaatctt	caccagtaca	4320
acgtccgcaa	acggaaagca	tcagtgccac	accaatggcc	ataacaaatt	ctactccatt	4380
atcgtcggca	gcattcggaa	ttcgatcgcc	tttgcagaaa	ataagaacga	ggcgttattc	4440
cgatgaaagt	ttaggaaaat	tcatgaaatc	aacaaataat	tacattcaag	aacatttgat	4500
accaaaagat	ttgaatgaag	caactcttca	agatgctaga	agaataatga	ttaatatttt	4560
cagtatttt	aagagaccga	atagttactt	catcattcct	cacaatataa	actcgaattt	4620
	2					

25

-continued

				-contir	nued	
acaatgggtt	tcgcaggatt	ttagaaatat	tatgaaaccg	attttcgtcg	ccatcgtaag	4680
tccggatgta	gatttacaga	atactgctca	atcattcatg	gataccttat	tatcgaatgt	4740
tattacttat	ggtgaatcag	atgagaatat	cagtattgaa	gggtatcatc	ttctttgcag	4800
ttacactgta	acattatttg	caatgggcct	tttcgatttg	aaaattaata	atgaaaagcg	4860
tcaaattctc	ttggatataa	ctgtcaagtt	tatgaaggtt	agatcacatt	tagcagggat	4920
cgcggaggcc	tcacaccaca	tggaatacat	aagtgattct	gaaaaactca	cctttccgct	4980
gattatgggg	actgttggta	gggccctatt	tgtttcatta	tactctagtc	aacaaaaaat	5040
tgaaaagact	ttaaagattg	cttacacaga	gtatctttct	gcaatcaatt	ttcatgagag	5100
gaatattgat	gatgctgata	aaacttgggt	tcataatatt	gagtttgtag	aagcgatgtg	5160
tcatgacaac	tacacaactt	ctggttcaat	tgctttccaa	aggaggacaa	gaaataatat	5220
tttacgattt	gctactattc	ctaacgctat	cttacttgat	tctatgagga	tgatctataa	5280
gaagtggcat	acttacacac	acagtaaaag	tttagaaaaa	caagaacgga	acgacttcag	5340
aaatttcgcg	ggtattttag	cctctttgtc	gggtatccta	ttcatcaata	aaaagatatt	5400
gcaagaaatg	tatccatacc	tactcgacac	cgtttcagaa	ttgaaaaaaa	atatagactc	5460
ttttatctca	aaacaatgcc	aatggttaaa	ctatccggat	ttattaacga	gagaaaattc	5520
aagagatatt	ctaagtgtag	aactgcatcc	tttgtctttt	aacttacttt	ttaataattt	5580
gaggctcaag	ttaaaagaac	ttgcttgttc	agacttatca	ataccagaaa	atgaaagttc	5640
ctatgtttta	ttagaacaaa	taatcaaaat	gctgcggaca	atcctaggtc	gtgatgatga	5700
caattatgta	atgatgcttt	tttccacaga	gattgtagat	cttattgatt	tattgacaga	5760
tgaaataaaa	aaaataccag	cctattgtcc	aaaatatctc	aaggcaatta	ttcaaatgac	5820
caaaatgttc	agtgccttgc	agcactcaga	ggttaattta	ggtgtcaaaa	atcattttca	5880
cgttaaaaat	aaatggttga	ggcaaatcac	tgattggttt	caagtgagta	ttgcgagaga	5940
gtacgatttc	gaaaacttgt	caaaacctct	aaaagaaatg	gatttggtaa	aaagagacat	6000
ggatattcta	tacatagata	cggcaatcga	agcttcaacc	gctattgcgt	acctcacgag	6060
acatactttc	ttagagattc	cacctgccgc	gtcagatccc	gaactatctc	gatctaggtc	6120
tgtgatattt	gggttttatt	tcaacatctt	aatgaaaggc	cttgaaaaaa	gtagtgatcg	6180
tgacaattac	ccagtattct	tgaggcacaa	aatgagtgtc	ctcaacgaca	atgtaatact	6240
ttcattaaca	aatctttcaa	acaccaatgt	tgatgcgagt	ttgcagttca	ccttaccgat	6300
gggctattcc	ggaaatcgaa	acattaggaa	tgcatttttg	gaggtcttca	ttaatatcgt	6360
tacgaactat	cggacataca	cggctaaaac	tgaccttgga	aaattagagg	cagcagacaa	6420
atttttgcga	tatacgattg	aacatcccca	gctatcgtcc	tttggagcag	cggtttgtcc	6480
cgctagcgat	attgatgctt	atgctgctgg	cttaataaat	gcatttgaaa	cgaggaatgc	6540
cacccacatt	gtagtggcac	agttgattaa	aaatgaaatt	gaaaaatctt	ccagacctac	6600
ggatatcctt	agaagaaata	gctgtgctac	gagatcatta	tctatgctag	ccaggtccaa	6660
gggtaacgaa	tatttgattc	gcactttgca	accattacta	aaaaaatta	tccagaacag	6720
agatttttt	gaaattgaga	aactaaaacc	ggaagattca	gatgctgaac	gtcaaataga	6780
gctcttcgtt	aaatacatga	atgaattatt	ggaatccata	tccaactccg	tatcttattt	6840
tcccctcct	ttattttata	tttgccaaaa	catttataaa	gttgcgtgtg	aaaaatttcc	6900
ggatcacgca	attatcgccg	ctgggtcttt	cgtgtttta	cggtttttt	gtcctgcttt	6960
agtcagccct	gattctgaaa	atatcataga	tatttctcac	ttgagcgaaa	agcgtacctt	7020

27

				-contir	nued	
catcagcttg	gctaaagtta	tccaaaatat	tgccaatggc	tcagaaaatt	tctccagatg	7080
gccagctttg	tgttcccaaa	aggattttct	taaggaatgt	agcgatagaa	ttttcagatt	7140
cctagctgaa	ctttgtagaa	cagatcgcac	gatagacatc	caagtgagaa	cagacccaac	7200
gccaattgca	tttgactatc	aattccttca	ttcctttgtt	tacctttacg	gtcttgaggt	7260
gagaaggaat	gtgctaaatg	aagcaaaaca	tgatgatggt	gacattgatg	gtgacgattt	7320
ctataagacc	acatttttac	ttattgatga	tgttcttggc	caattaggcc	aacctaaaat	7380
ggaattttcc	aatgaaatac	caatatacat	aagagaacat	atggacgact	atccggaact	7440
gtatgagttc	atgaataggc	acgcgttcag	aaacattgag	acttcaacag	cgtacagccc	7500
aagcgttcac	gagtccacct	caagtgaagg	cattccaatt	attacgttaa	caatgtcaaa	7560
tttctcagac	agacatgtgg	acattgatac	agttgcttac	aagttcttgc	aaatttatgc	7620
tcgaatctgg	accaccaaac	actgtttaat	aatcgactgt	acagaatttg	acgagggagg	7680
gcttgatatg	aggaaattta	tttctttggt	tatgggacta	ttaccagaag	ttgcacccaa	7740
aaattgtata	ggctgttact	actttaacgt	aaacgagaca	tttatggata	attatggaaa	7800
atgtttggac	aaagacaacg	tatatgtttc	ctcgaaaatt	cctcattatt	tcattaatag	7860
taactctgat	gaaggactta	tgaaatctgt	gggtataact	ggacaagggt	tgaaggttct	7920
gcaagatatt	cgtgtctctc	tgcatgatat	cacgctttat	gacgaaaaaa	gaaatagatt	7980
tacgccggta	tcgttgaaaa	taggcgatat	ttactttcaa	gtcttgcatg	aaactcctag	8040
gcaatataaa	ataagggaca	tgggtacttt	attcgacgta	aaattcaatg	atgtctacga	8100
aattagccga	atatttgaag	tacatgtttc	gtcaataact	ggagtggcag	ctgaatttac	8160
agtaactttt	caggacgaga	gaaggttgat	ttttagtagt	ccgaaatacc	ttgaaattgt	8220
gaagatgttc	tattacgcac	agatccggtt	agaaagtgaa	tatgaaatgg	ataataattc	8280
gagtacctcc	tccccaaatt	caaacaacaa	ggacaaacag	cagaaagaga	gaacaaaact	8340
attgtgccac	ctactgttag	tatctcttat	tggtctgttt	gatgagagta	aaaaaatgaa	8400
aaacagttcg	tataacctaa	tagctgccac	tgaggcgtca	tttggtttga	actttggctc	8460
ccattttcat	cgctctcccg	aggtgtacgt	ccccgaagat	actacaacat	ttttaggtgt	8520
tattggaaag	tctcttgcag	agtctaatcc	agaactcaca	gcctatatgt	ttatctatgt	8580
tttggaggca	ttgaagaaca	acgtaattcc	tcacgtttac	atccctcata	ccatttgcgg	8640
tttgtcttat	tggatcccta	atttatacca	acatgtgtat	ttggctgatg	atgaagaagg	8700
ccccgaaaac	atatctcaca	ttttccgaat	tcttatcagg	ctctctgtga	gagagactga	8760
ctttaaagcc	gtatacatgc	aatatgtttg	gttgctactt	ttagatgatg	gccgcttaac	8820
tgacattatc	gttgatgaag	ttattaatca	tgcgttagaa	agagactccg	aaaaccgcga	8880
ttggaagaaa	acaatatcgt	tactgactgt	cctacccact	actgaggttg	ctaataatat	8940
tattcaaaaa	atattggcaa	aaattagatc	atttttaccg	tcattgaagt	tagaagctat	9000
gacccaaagt	tggtctgaac	taacaatatt	agttaagata	agcatccacg	tttttttga	9060
aacttctttg	ctggtacaga	tgtacttacc	agagatcctg	tttatcgtat	ccttattaat	9120
tgatgttggt	ccaagggaac	tcagatcatc	actacaccag	ctattaatga	atgtatgcca	9180
ttccttggct	attaactcag	ctttaccaca	agatcataga	aataatctag	atgaaataag	9240
tgatatattt	gcacatcaaa	aggtgaagtt	tatgtttggg	ttcagcgagg	acaaaggacg	9300
aattttacag	atttttagcg	cttcttcttt	tgcaagcaag	tttaatattc	tggatttctt	9360
catcaataat	atattattgc	tgatggaata	ttcttcaacg	tacgaagcaa	acgtgtggaa	9420
	-		_			

29

				-contir	nued			
gacaagatac	aagaaatatg	tcttggaatc	tgtgtttaca	agtaattctt	ttctttcggc	9480		
acgttcaatc	atgattgttg	gtataatggg	taaatcttac	ataactgaag	ggttatgcaa	9540		
ggctatgtta	attgaaacca	tgaaagttat	cgccgaacca	aagattactg	acgagcatct	9600		
tttcttagcc	atatctcata	tttttactta	ttccaaaatt	gttgaaggtt	tggatcccaa	9660		
ccttgactta	atgaagcact	tattttggtt	ttcaacactc	ttccttgaat	cacgtcaccc	9720		
gataattttt	gagggtgccc	ttctctttgt	gtcaaactgt	ataaggcgcc	tatacatggc	9780		
ccagtttgaa	aatgaaagcg	aaacatcatt	gataagtact	ttacttaagg	ggagaaagtt	9840		
tgctcatacc	tttttaagca	agatagagaa	tcttagtggt	attgtttgga	atgaagataa	9900		
ttttacacac	attctgattt	tcatcattaa	taaaggacta	tccaatcctt	tcattaagag	9960		
tacggctttt	gatttcttga	agatgatgtt	tagaaactcc	tactttgagc	atcaaatcaa	10020		
tcagaaatct	gatcattatt	tgtgctatat	gttcctattg	tattttgttt	taaactgcaa	10080		
tcaatttgag	gaacttttag	gtgacgttga	ttttgaagga	gaaatggtta	acattgaaaa	10140		
caagaacacc	attcctaaaa	ttttgttaga	gtggttgagt	tcggataacg	aaaatgcaaa	10200		
cattaccctc	tatcaaggtg	cgatactgtt	caaatgttca	gttacggatg	aaccaagtag	10260		
atttaggttt	gcgttgatta	ttaggcatct	attgacaaag	aaacccattt	gtgcattgcg	10320		
tttttacagt	gttattcgta	acgaaataag	aaaaatatca	gcatttgagc	aaaattcgga	10380		
ttgtgttcca	cttgctttcg	atattttaaa	cttattagtg	acgcattcag	agtctaattc	10440		
gttagaaaaa	cttcacgaag	aatccattga	acgtctaacc	aaaagaggtt	tatcgattgt	10500		
gacttcttct	ggtatatttg	cgaagaactc	cgacatgatg	atacctttag	atgtaaaacc	10560		
tgaagatatc	tatgaacgta	agagaataat	gacaatgatt	ttatcaagga	tgtcatgttc	10620		
tgcttagagg	tgttacataa	actaatgaaa	gaaatatcaa	tatctatctg	taagcatgaa	10680		
tgtacatatc	tcatgttagg	gttttcttat	cgctaatttt	tcgcaatttg	ttacgtgggt	10740		
tgcttttata	cagctacaat	ttttatatat	tctatcgtgt	aatgaatggc	tcagtaaatt	10800		
caagcgccac	atagactaat	gtacatacca	atgcatttta	attgtaagaa	taaaaggggc	10860		
cattcatcta	ccgtcttagt	tgaaagtgtt	tctgtgaatt	ttttcaaatt	ccgttttttc	10920		
ctttttatat	aatagcatgg	tggcacgagc	atcttcgact	gaagaatgct	caccttcttg	10980		
aatggaaatt	tttaaaacct	ccctggttaa	tttctttaag	ctgggtgttt	tacccttagc	11040		
atacaacttc	ctgaatggga	ggtgtcttga	agtgtccctg	agtagtgact	ttgggtggga	11100		
taacatcaat	gcttcgagat	catgctttaa	agcgtgccct	acaagaattc	taccttccag	11160		
aatatccgca	gtctttttt	gagcttcttt	gaatgtaatg	gcatttttca	tatgetetgg	11220		
tttaatacca	ctaacccaag	ttctccattc	tacaactttc	tctcttggct	taacaaattc	11280		
atcgaggacg	acatgtccaa	aataatttac	gattgatatt	ctagctaacg	cagactcttt	11340		
accctcggga	ccaacgccta	caaattcaca	atccatggcg	atgtatttcc	caatttcttt	11400		
actcttatta	ctattaatac	gagtatcttc	cgaaataccc	acttttactg	gctctttaat	11460		
agtagtacta	gtatttgctt	tatttgggtt	gaattcaaac	acttttccct	cgagcttgtc	11520		
tttctcatgc	ttactaatct	ccttgttcat	gttatatacc	atgtccataa	ttttactgcc	11580		
gtttttgcgc	tttcgagggg	catattgggt	tgtactactg	acatttactg	ttttgctaac	11640		
tttcttaacg	tttctgattt	tcctatttga	ttgcttattc	tttccattgg	aggtaggatt	11700		
gctttcggag	gctaatagtg	cctgccagtt	tgaagagaga	gccattaaaa	ctgtacgcta	11760		
tctactttat	taaatctgta	aacgtctatg	aagcctctag	aaccaggctt	taaatggatt	11820		
	-	-	-					

2	1
Э	L

gtggtt	ggg	ga t	gago	gttaç	gt ti	caact	tttç	g aaa	attt	tct	ttt	tttt	agc (cgaco	cttaca	11880
tatcaç	gee	cg c	gtca	aaaaa	aa ta	ataco	ggtat	: aat	caatt	cctc	aata	agat	aca g	ggeta	actgaa	11940
caggaa	aaa	ct a	iaata	aaaa	ca gi	gtti	gtaa	a aad	cccc	cacc	aca	ccat	aat a	aagao	cgataa	12000
tggaca	acg	gt g	Ja													12012
<210> <211> <212> <213>	LEI TYI OR(NGTH PE : GANI	I: 30 PRT SM:)79 Saco	charo	omyce	es ce	erev	lsiae	9						
<400>																
Met Se 1	er (Gln	Pro	Thr 5	Lys	Asn	Lys	Lys	Lys 10	Glu	His	Gly	Thr	Asp 15	Ser	
Lys Se	er :	Ser	Arg 20	Met	Thr	Arg	Thr	Leu 25	Val	Asn	His	Ile	Leu 30	Phe	Glu	
Arg Il		Leu 35	Pro	Ile	Leu	Pro	Val 40	Glu	Ser	Asn	Leu	Ser 45	Thr	Tyr	Ser	
Glu Va 50		Glu	Glu	Tyr	Ser	Ser 55	Phe	Ile	Ser	Суз	Arg 60	Ser	Val	Leu	Ile	
Asn Va 65	al '	Thr	Val	Ser	Arg 70	Asp	Ala	Asn	Ala	Met 75	Val	Glu	Gly	Thr	Leu 80	
Glu Le	eu :	Ile	Glu	Ser 85	Leu	Leu	Gln	Gly	His 90	Glu	Ile	Ile	Ser	Asp 95	Lys	
Gly Se	er :	Ser	Asp 100	Val	Ile	Glu	Ser	Ile 105	Leu	Ile	Ile	Leu	Arg 110	Leu	Leu	
Ser As	-	Ala 115		Glu	Tyr	Asn	Trp 120		Asn	Gln	Glu	Ser 125		His	Tyr	
Asn As 13	ap 1		Ser	Thr	His	Val 135		His	Asp	Gln	Glu 140		Lys	Tyr	Arg	
Pro Ly 145		Leu	Asn	Ser	Ile 150		Pro	Asp	Tyr	Ser 155		Thr	His	Ser	Asn 160	
Gly As	an 1	Lys	His	Phe 165		His	Gln	Ser	Lys 170		Gln	Ala	Leu	Ile 175		
Glu Le	eu i	Ala			Leu	Leu	Glu			Ala	Гла	Leu	-		Asn	
Thr Ar	rg '	Thr	180 Leu	Gln	Ile	Leu	Gln	185 Asn	Met	Ile	Ser	His	190 Val	His	Gly	
Asn Il		195 Leu	Thr	Thr	Leu	Ser	200 Ser	Ser	Tle	Leu	Pro	205 Arg	His	Lvs	Ser	
21	LO					215					220					
Tyr Le 225	eu '	Thr	Arg	His	Asn 230	His	Pro	Ser	His	Суз 235	ГЛЗ	Met	Ile	Asp	Ser 240	
Thr L€	eu (Gly	His	Ile 245	Leu	Arg	Phe	Val	Ala 250	Ala	Ser	Asn	Pro	Ser 255	Glu	
Tyr Ph	ne (Glu	Phe 260	Ile	Arg	Lys	Ser	Val 265	Gln	Val	Pro	Val	Thr 270	Gln	Thr	
His Tł		His 275	Ser	His	Ser	His	Ser 280	His	Ser	Leu	Pro	Ser 285	Ser	Val	Tyr	
Asn Se 29		Ile	Val	Pro	His	Phe 295	Asp	Leu	Phe	Ser	Phe 300	Ile	Tyr	Leu	Ser	
 Lys Hi 305		Asn	Phe	Lys	Lys 310		Leu	Glu	Leu	Ile 315		Asn	Leu	Ser	Val 320	
Thr Le	eu i	Arg	Lys			Tyr	His	Суз			Leu	His	Tyr			
				325					330					335		

-continued

Lys	Ala	Ile	Met 340	Phe	Trp	Ile	Met	Ala 345	Arg	Pro	Ala	Glu	Tyr 350	Tyr	Glu
Leu	Phe	Asn 355	Leu	Leu	Гла	Asp	Asn 360	Asn	Asn	Glu	His	Ser 365	Lys	Ser	Leu
Asn	Thr 370	Leu	Asn	His	Thr	Leu 375	Phe	Glu	Glu	Ile	His 380	Ser	Thr	Phe	Asn
Val 385	Asn	Ser	Met	Ile	Thr 390	Thr	Asn	Gln	Asn	Ala 395	His	Gln	Gly	Ser	Ser 400
Ser	Pro	Ser	Ser	Ser 405	Ser	Pro	Ser	Ser	Pro 410	Pro	Ser	Ser	Ser	Ser 415	Ser
Asp	Asn	Asn	Asn 420		Asn	Ile	Ile	Ala 425		Ser	Leu	Ser	Arg 430		Leu
Ser	His	His 435	Gln	Ser	Tyr	Ile	Gln 440	Gln	Gln	Ser	Glu	Arg 445	Lys	Leu	His
Ser	Ser 450		Thr	Thr	Asn	Ser 455	Gln	Ser	Ser	Thr	Ser 460		Ser	Ser	Ser
Thr 465	Ser	Asn	Ser	Thr	Thr 470		Asp	Phe	Ser	Thr 475		Thr	Gln	Pro	Gly 480
	Tyr	Asp	Pro	Ser 485		Pro	Asp	Thr	Pro 490		Met	Ser	Asn	Ile 495	
Ile	Ser	Ala	Ser 500		Leu	Leu	Ser	Gln 505		Pro	Thr	Pro	Thr 510		Gln
Leu	Gln			Leu	Asn	Ser	Ala 520		Ala	Ala	Ala			Ala	Ala
Ser	Pro	515 Ser	Asn	Ser	Thr			Gly	Tyr	Thr		525 Glu	Gln	Gln	Ser
Arg	530 Ala	Ser	Tyr	Asp	Ala	535 His	Lys	Thr	Gly	His	540 Thr	Gly	Lys	Asp	Tyr
545 Asp	Glu	His	Phe	Leu	550 Ser	Val	Thr	Ara	Leu	555 Asp	Asn	Val	Leu	Glu	560 Leu
-				565				-	570	_				575	
-	Thr		580	-	-			585					590		
Lys	Phe	Leu 595	Thr	Thr	Leu	Thr	Met 600	Phe	Asp	Ile	Asp	Leu 605	Phe	Asn	Glu
Leu	Asn 610	Ala	Thr	Ser	Phe	Lys 615	Tyr	Ile	Pro	Asp	Суз 620	Thr	Met	His	Arg
Pro 625	Lys	Glu	Arg	Thr	Ser 630	Ser	Phe	Asn	Asn	Thr 635	Ala	His	Glu	Thr	Gly 640
Ser	Glu	Lys	Thr	Ser 645	Gly	Ile	Гла	His	Ile 650	Thr	Gln	Gly	Leu	Lys 655	Lys
Leu	Thr	Ser	Leu 660	Pro	Ser	Ser	Thr	Lys 665	Lys	Thr	Val	Lys	Phe 670	Val	Lys
Met	Leu	Leu 675	Arg	Asn	Leu	Asn	Gly 680	Asn	Gln	Ala	Val	Ser 685	Asp	Val	Ala
Leu	Leu 690	Asp	Thr	Met	Arg	Ala 695	Leu	Leu	Ser	Phe	Phe 700	Thr	Met	Thr	Ser
Ala 705	Val	Phe	Leu	Val	Asp 710		Asn	Leu	Pro	Ser 715		Leu	Phe	Ala	Lys 720
	Leu	Ile	Pro			Gly	Thr	Asn			Val	Gly	Gln		
Asn	Ser	Lys	Ile	725 Asn	Asn	Ser	Leu	Met	730 Val	Суз	Leu	Lys	Lys	735 Asn	Ser
			740					745					750		

Thr Thr Phe Val Gln Leu Gln Leu Ile Phe Phe Ser Ser Ala Ile Gln

-continued

1111	1111	755	vai	GIII	цец	GIII	<u>л</u> ец 760	тте	rne	rile	: 20	76		мта	TTE	GIII
Phe	Asp 770	His	Glu	Leu	Leu	Leu 775	Ala	Arg	Leu	. Ser	Il 78		ab	Thr	Met	Ala
Asn 785	Asn	Leu	Asn	Met	Gln 790	Lys	Leu	Суз	Leu	. Tyr 795		ır Gl	lu	Gly	Phe	e Arg 800
Ile	Phe	Phe	Asp	Ile 805	Pro	Ser	Lys	ГЛЗ	Glu 810		. Ar	g Lì	/S .	Ala	Ile 815	e Ala
Val	Гла	Ile	Ser 820	Lys	Phe	Phe	Lys	Thr 825	Leu	. Phe	Se	er Il		Ile 830	Ala	ı Asp
Ile	Leu	Leu 835	Gln	Glu	Phe	Pro	Tyr 840	Phe	Asp	Glu	. G1	n I] 84		Thr	Asp) Ile
Val	Ala 850	Ser	Ile	Leu	Asp	Gly 855	Thr	Ile	Ile	Asn	Gl 86	-	/r	Gly	Thr	LYa
Lys 865	His	Phe	Lys	Gly	Ser 870	Ser	Pro	Ser	Leu	. Cys 875		er Tł	ır	Thr	Arg	9 Ser 880
Arg	Ser	Gly	Ser	Thr 885	Ser	Gln	Ser	Ser	Met 890		Pr	ro Va	al	Ser	Pro 895) Leu
Gly	Leu	Asp	Thr 900	Asp	Ile	Сүз	Pro	Met 905	Asn	Thr	Le	eu Se		Leu 910	Val	. Gly
Ser	Ser	Thr 915	Ser	Arg	Asn	Ser	Asp 920	Asn	Val	Asn	Se	er Le 92		Asn	Ser	Ser
Pro	Lys 930	Asn	Leu	Ser	Ser	Asp 935	Pro	Tyr	Leu	. Ser	Ні 94		eu	Val	Ala	n Pro
Arg 945	Ala	Arg	His	Ala	Leu 950	Gly	Gly	Pro	Ser	Ser 955		.e Il	le .	Arg	Asn	1 Lys 960
Ile	Pro	Thr	Thr	Leu 965	Thr	Ser	Pro	Pro	Gly 970		Gl	u Ly	/5	Ser	Ser 975	Pro
Val	Gln	Arg	Pro 980	Gln	Thr	Glu	Ser	Ile 985	Ser	Ala	. Th	ır Pı		Met 990	Ala	ı Ile
Thr	Asn	Ser 995	Thr	Pro	Leu	Ser	Ser 100		a Al	a Ph	ie G	-	[]e		rg S	Ser Pro
Leu	Gln 1010	-	; Ile	e Arç	g Th:	r Arg 10:	-	rg T	yr S	er A	-	Glu 1020		er 1	Leu	Gly
Lys	Phe 1025		: Ly:	s Sei	r Thi	r Ası 10:		sn T	yr I	le G		Glu 1035		is 1	Leu	Ile
Pro	Lys 1040	Asp) Lei	ı Ası	ı Glı		a Tl	hr L	eu G	ln A			A	rg i	Arg	Ile
Met	Ile	Asr	n Ile	e Phe	e Sei	r Ile	e Pl	he Lj	ys A	rg P		Asn	S	er '	Fyr	Phe
Ile	1055 Ile	Pro	> Hi:	s Ası	n Ile		n Se	er A	sn L	eu G	ln	_	v	al :	Ser	Gln
Asp	1070 Phe		g Ası	n Ile	e Met		s P:	ro I	le P	'he V		1080 Ala		le V	Val	Ser
Pro	1085 Asp		l Ası	p Lei	ı Glı	109 h Ası		hr A	la G	ln S		1095 Phe		et i	Asp	Thr
	1100 Leu	1	-			110	05					1110)		-	
	1115	i				112	20		-			1125	5			
	Ile 1130	1				11:	35					1140)			
Phe	Ala 1145		: Gl <u>}</u>	y Leu	ı Phe	e Asj 11!		eu Ly	ys I	le A		Asn 1155		lu 1	Lys	Arg

Gl	n Ile 116		Leu	Asp	Ile	Thr 1165	Val	Lys	Phe	Met	Lys 1170		Arg	Ser
Hi	s Leu 117!		Gly	Ile	Ala	Glu 1180		Ser	His	His	Met 1185	Glu	Tyr	Ile
Se	r Asp 119		Glu	Lys	Leu	Thr 1195		Pro	Leu	Ile	Met 1200		Thr	Val
Gl	y Arg 120		Leu	Phe	Val	Ser 1210	Leu	Tyr	Ser	Ser	Gln 1215	Gln	Lys	Ile
Gl	u Lys 1220		Leu	Lys	Ile	Ala 1225	Tyr	Thr	Glu	Tyr	Leu 1230		Ala	Ile
As	n Phe 123!		Glu	Arg	Asn	Ile 1240	-	Asp	Ala	Asp	Lys 1245	Thr	Trp	Val
Hi	s Asn 125		Glu	Phe	Val	Glu 1255	Ala	Met	Суа	His	Asp 1260		Tyr	Thr
Th	r Ser 126!		Ser	Ile	Ala	Phe 1270		Arg	Arg	Thr	Arg 1275		Asn	Ile
Le	u Arg 128		Ala	Thr	Ile	Pro 1285	Asn	Ala	Ile	Leu	Leu 1290		Ser	Met
Ar	g Met 129!		Tyr	Lys	Lys	Trp 1300		Thr	Tyr	Thr	His 1305		Lys	Ser
Le	u Glu 1310	-	Gln	Glu	Arg	Asn 1315	Asp	Phe	Arg	Asn	Phe 1320		Gly	Ile
Le	u Ala 132!		Leu	Ser	Gly	Ile 1330	Leu	Phe	Ile	Asn	Lys 1335		Ile	Leu
Gl	n Glu 1340		Tyr	Pro	Tyr	Leu 1345	Leu	Asp	Thr	Val	Ser 1350	Glu	Leu	Lys
Ly	s Asn 135!		Asp	Ser	Phe	Ile 1360	Ser	Гла	Gln	Сув	Gln 1365	Trp	Leu	Asn
ту	r Pro 1370	-	Leu	Leu	Thr	Arg 1375		Asn	Ser	Arg	Asp 1380		Leu	Ser
Va	l Glu 138		His	Pro	Leu	Ser 1390	Phe	Asn	Leu	Leu	Phe 1395	Asn	Asn	Leu
Ar	g Leu 140		Leu	Lys	Glu	Leu 1405	Ala	Суз	Ser	Asp	Leu 1410		Ile	Pro
Gl	u Asn 141!		Ser	Ser	Tyr	Val 1420	Leu	Leu	Glu	Gln	Ile 1425	Ile	Lys	Met
Le	u Arg 1430		Ile	Leu	Gly	Arg 1435	Asp	Asp	Asp	Asn	Tyr 1440	Val	Met	Met
Le	u Phe 144!		Thr	Glu	Ile	Val 1450	Asp	Leu	Ile	Asp	Leu 1455		Thr	Asp
Gl	u Ile 146		Lys	Ile	Pro	Ala 1465	Tyr	Сув	Pro	Lys	Tyr 1470		Lys	Ala
11	e Ile 147		Met	Thr	Lys	Met 1480	Phe	Ser	Ala	Leu	Gln 1485	His	Ser	Glu
Va	l Asn 149		Gly	Val	Lys	Asn 1495	His	Phe	His	Val	Lys 1500		ГÀа	Trp
Le	u Arg 150!		Ile	Thr	Asp	Trp 1510	Phe	Gln	Val	Ser	Ile 1515		Arg	Glu
ту	r Asp 1520		Glu	Asn	Leu	Ser 1525	Lys	Pro	Leu	Гла	Glu 1530		Asp	Leu
Va	l Lys 153!	-	Asp	Met	Asp	Ile 1540	Leu	Tyr	Ile	Asp	Thr 1545	Ala	Ile	Glu

-continued

Ala	Ser 1550	Thr	Ala	Ile	Ala	Tyr 1555	Leu	Thr	Arg	His	Thr 1560	Phe	Leu	Glu
Ile	Pro 1565	Pro	Ala	Ala	Ser	Asp 1570	Pro	Glu	Leu	Ser	Arg 1575	Ser	Arg	Ser
Val	Ile 1580	Phe	Gly	Phe	Tyr	Phe 1585	Asn	Ile	Leu	Met	Lys 1590	Gly	Leu	Glu
ГЛа	Ser 1595	Ser	Asp	Arg	Asp	Asn 1600	-	Pro	Val	Phe	Leu 1605	Arg	His	Lys
Met	Ser 1610	Val	Leu	Asn	Asp	Asn 1615	Val	Ile	Leu	Ser	Leu 1620	Thr	Asn	Leu
Ser	Asn 1625	Thr	Asn	Val	Asp	Ala 1630	Ser	Leu	Gln	Phe	Thr 1635	Leu	Pro	Met
Gly	Tyr 1640	Ser	Gly	Asn	Arg	Asn 1645	Ile	Arg	Asn	Ala	Phe 1650	Leu	Glu	Val
Phe	Ile 1655	Asn	Ile	Val	Thr	Asn 1660	_	Arg	Thr	Tyr	Thr 1665	Ala	LYa	Thr
Asp	Leu 1670	Gly	Lys	Leu	Glu	Ala 1675	Ala	Asp	Гла	Phe	Leu 1680	Arg	Tyr	Thr
Ile	Glu 1685	His	Pro	Gln	Leu	Ser 1690	Ser	Phe	Gly	Ala	Ala 1695	Val	Суз	Pro
Ala	Ser 1700	Asp	Ile	Asp	Ala	Tyr 1705	Ala	Ala	Gly	Leu	Ile 1710	Asn	Ala	Phe
Glu	Thr 1715	Arg	Asn	Ala	Thr	His 1720	Ile	Val	Val	Ala	Gln 1725	Leu	Ile	Гуз
Asn	Glu 1730	Ile	Glu	Lys	Ser	Ser 1735	Arg	Pro	Thr	Asp	Ile 1740	Leu	Arg	Arg
Asn	Ser 1745	Суз	Ala	Thr	Arg	Ser 1750	Leu	Ser	Met	Leu	Ala 1755	Arg	Ser	Гуз
Gly	Asn 1760	Glu	Tyr	Leu	Ile		Thr	Leu	Gln	Pro		Leu	Lys	ГЛа
Ile	Ile 1775	Gln	Asn	Arg	Asp			Glu	Ile	Glu		Leu	ГÀа	Pro
Glu	Asp	Ser	Asp	Ala	Glu	Arg		Ile	Glu	Leu	Phe	Val	LYa	Tyr
Met	1790 Asn	Glu	Leu	Leu	Glu	1795 Ser	Ile	Ser	Asn	Ser	1800 Val	Ser	Tyr	Phe
Pro	1805 Pro	Pro	Leu	Phe	Tyr	1810 Ile	Cys	Gln	Asn	Ile	1815 Tyr	Lys	Val	Ala
	1820 Glu					1825					1830			
-	1835	-			_	1840					1845	-		
	Phe 1850		-			1855					1860		-	
Glu	Asn 1865	Ile	Ile	Asp	Ile	Ser 1870	His	Leu	Ser	Glu	Lys 1875	Arg	Thr	Phe
Ile	Ser 1880	Leu	Ala	Lys	Val	Ile 1885	Gln	Asn	Ile	Ala	Asn 1890	Gly	Ser	Glu
Asn	Phe 1895	Ser	Arg	Trp	Pro	Ala 1900	Leu	Cys	Ser	Gln	Lys 1905	Asp	Phe	Leu
Lys	Glu 1910	Сүз	Ser	Asp	Arg	Ile 1915	Phe	Arg	Phe	Leu	Ala 1920	Glu	Leu	Суя
Arg	Thr 1925	Asp	Arg	Thr	Ile	Asp 1930	Ile	Gln	Val	Arg	Thr 1935	Asp	Pro	Thr

														~
Pro	Ile 1940	Ala	Phe	Asp	Tyr	Gln 1945	Phe	Leu	His	Ser	Phe 1950	Val	Tyr	Leu
Tyr	Gly 1955	Leu	Glu	Val	Arg	Arg 1960	Asn	Val	Leu	Asn	Glu 1965	Ala	Lys	His
Asp	Asp 1970	-	Asp	Ile	Asp	Gly 1975	Aab	Asp	Phe	Tyr	Lys 1980	Thr	Thr	Phe
Leu	Leu 1985	Ile	Asp	Asp	Val	Leu 1990	Gly	Gln	Leu	Gly	Gln 1995	Pro	ГЛа	Met
Glu	Phe 2000		Asn	Glu	Ile	Pro 2005	Ile	Tyr	Ile	Arg	Glu 2010	His	Met	Asp
Asp	Tyr 2015	Pro	Glu	Leu	Tyr	Glu 2020	Phe	Met	Asn	Arg	His 2025	Ala	Phe	Arg
Asn	Ile 2030	Glu	Thr	Ser	Thr	Ala 2035	Tyr	Ser	Pro	Ser	Val 2040	His	Glu	Ser
Thr	Ser 2045	Ser	Glu	Gly	Ile	Pro 2050	Ile	Ile	Thr	Leu	Thr 2055	Met	Ser	Asn
Phe	Ser 2060		Arg	His	Val	Asp 2065	Ile	Asp	Thr	Val	Ala 2070	Tyr	Lys	Phe
Leu	Gln 2075	Ile	Tyr	Ala	Arg	Ile 2080	Trp	Thr	Thr	Lys	His 2085	Сүз	Leu	Ile
Ile	Asp 2090	-	Thr	Glu	Phe	Asp 2095	Glu	Gly	Gly	Leu	Asp 2100	Met	Arg	Гла
Phe	Ile 2105	Ser	Leu	Val	Met	Gly 2110	Leu	Leu	Pro	Glu	Val 2115	Ala	Pro	Lys
Asn	Cys 2120	Ile	Gly	Суз	Tyr	Tyr 2125	Phe	Asn	Val	Asn	Glu 2130	Thr	Phe	Met
Aap	Asn 2135	Tyr	Gly	Lys	Суз	Leu 2140	Asp	Lys	Asp	Asn	Val 2145	Tyr	Val	Ser
Ser	Lys 2150	Ile	Pro	His	Tyr	Phe 2155	Ile	Asn	Ser	Asn	Ser 2160	Asp	Glu	Gly
Leu	Met 2165	Гла	Ser	Val	Gly	Ile 2170	Thr	Gly	Gln	Gly	Leu 2175	Lys	Val	Leu
Gln	Asp 2180	Ile	Arg	Val	Ser	Leu 2185	His	Asp	Ile	Thr	Leu 2190	Tyr	Asp	Glu
Lya	Arg 2195	Asn	Arg	Phe	Thr	Pro 2200	Val	Ser	Leu	Гла	Ile 2205	Gly	Asp	Ile
Tyr	Phe 2210		Val	Leu	His	Glu 2215	Thr	Pro	Arg	Gln	Tyr 2220	Lys	Ile	Arg
Asp	Met 2225	Gly	Thr	Leu	Phe	Asp 2230	Val	Lys	Phe	Asn	Asp 2235	Val	Tyr	Glu
Ile	Ser 2240	Arg	Ile	Phe	Glu	Val 2245	His	Val	Ser	Ser	Ile 2250	Thr	Gly	Val
Ala	Ala 2255	Glu	Phe	Thr	Val	Thr 2260	Phe	Gln	Asp	Glu	Arg 2265	Arg	Leu	Ile
Phe	Ser 2270	Ser	Pro	Lys	Tyr	Leu 2275	Glu	Ile	Val	Lys	Met 2280	Phe	Tyr	Tyr
Ala	Gln 2285	Ile	Arg	Leu	Glu	Ser 2290	Glu	Tyr	Glu	Met	Asp 2295	Asn	Asn	Ser
Ser	Thr 2300	Ser	Ser	Pro	Asn	Ser 2305	Asn	Asn	Lys	Asp	Lys 2310	Gln	Gln	Lys
Glu	Arg 2315	Thr	Lys	Leu	Leu	Сув 2320	His	Leu	Leu	Leu	Val 2325	Ser	Leu	Ile

Gly	Leu 2330	Phe	Asp	Glu	Ser	Lys 2335	Lys	Met	Lys	Asn	Ser 2340	Ser	Tyr	Asn
Leu	Ile 2345	Ala	Ala	Thr	Glu	Ala 2350	Ser	Phe	Gly	Leu	Asn 2355	Phe	Gly	Ser
His	Phe 2360	His	Arg	Ser	Pro	Glu 2365	Val	Tyr	Val	Pro	Glu 2370	_	Thr	Thr
Thr	Phe 2375	Leu	Gly	Val	Ile	Gly 2380	Lys	Ser	Leu	Ala	Glu 2385	Ser	Asn	Pro
Glu	Leu 2390	Thr	Ala	Tyr	Met	Phe 2395	Ile	Tyr	Val	Leu	Glu 2400	Ala	Leu	Гуз
Asn	Asn 2405	Val	Ile	Pro	His	Val 2410	Tyr	Ile	Pro	His	Thr 2415	Ile	Суз	Gly
Leu	Ser 2420	Tyr	Trp	Ile	Pro	Asn 2425	Leu	Tyr	Gln	His	Val 2430	-	Leu	Ala
Asp	Asp 2435	Glu	Glu	Gly	Pro	Glu 2440	Asn	Ile	Ser	His	Ile 2445	Phe	Arg	Ile
Leu	Ile 2450	Arg	Leu	Ser	Val	Arg 2455	Glu	Thr	Asp	Phe	Lys 2460	Ala	Val	Tyr
Met	Gln 2465	Tyr	Val	Trp	Leu	Leu 2470	Leu	Leu	Asp	Asp	Gly 2475	Arg	Leu	Thr
Asp	Ile 2480	Ile	Val	Asp	Glu	Val 2485	Ile	Asn	His	Ala	Leu 2490	Glu	Arg	Asp
Ser	Glu 2495	Asn	Arg	Asp	Trp	Lys 2500	-	Thr	Ile	Ser	Leu 2505	Leu	Thr	Val
Leu	Pro 2510	Thr	Thr	Glu	Val	Ala 2515	Asn	Asn	Ile	Ile	Gln 2520	Lys	Ile	Leu
Ala	Lys 2525	Ile	Arg	Ser	Phe	Leu 2530	Pro	Ser	Leu	Lys	Leu 2535	Glu	Ala	Met
Thr	Gln 2540	Ser	Trp	Ser	Glu	Leu 2545	Thr	Ile	Leu	Val	Lys 2550	Ile	Ser	Ile
His	Val 2555	Phe	Phe	Glu	Thr	Ser 2560	Leu	Leu	Val	Gln	Met 2565	Tyr	Leu	Pro
Glu	Ile 2570	Leu	Phe	Ile	Val	Ser 2575	Leu	Leu	Ile	Asp	Val 2580	Gly	Pro	Arg
Glu	Leu 2585	Arg	Ser	Ser	Leu	His 2590	Gln	Leu	Leu	Met	Asn 2595	Val	Суз	His
Ser	Leu 2600	Ala	Ile	Asn	Ser	Ala 2605	Leu	Pro	Gln	Asp	His 2610	Arg	Asn	Asn
Leu	Asp 2615	Glu	Ile	Ser	Asp	Ile 2620	Phe	Ala	His	Gln	Lys 2625	Val	Lys	Phe
Met	Phe 2630	Gly	Phe	Ser	Glu	Asp 2635	Lys	Gly	Arg	Ile	Leu 2640	Gln	Ile	Phe
Ser	Ala 2645	Ser	Ser	Phe	Ala	Ser 2650	Lys	Phe	Asn	Ile	Leu 2655	Asp	Phe	Phe
Ile	Asn 2660	Asn	Ile	Leu	Leu		Met	Glu	Tyr	Ser	Ser 2670	Thr	Tyr	Glu
Ala	Asn 2675	Val	Trp	Lys	Thr		Tyr	Lys	Lys	Tyr		Leu	Glu	Ser
Val	2675 Phe 2690	Thr	Ser	Asn	Ser		Leu	Ser	Ala	Arg		Ile	Met	Ile
Val	Gly	Ile	Met	Gly	Lys	Ser	Tyr	Ile	Thr	Glu	Gly	Leu	Суз	Гла
	2705					2710					2715			

-continued

Ala	Met 2720	Leu	Ile	Glu	Thr	Met 2725	Lys	Val	Ile	Ala	Glu 2730	Pro	ГÀа	Ile
Thr	Asp 2735	Glu	His	Leu	Phe	Leu 2740	Ala	Ile	Ser	His	Ile 2745	Phe	Thr	Tyr
Ser	Lys 2750	Ile	Val	Glu	Gly	Leu 2755	Aab	Pro	Asn	Leu	Asp 2760	Leu	Met	Lys
His	Leu 2765	Phe	Trp	Phe	Ser	Thr 2770	Leu	Phe	Leu	Glu	Ser 2775	Arg	His	Pro
Ile	Ile 2780	Phe	Glu	Gly	Ala	Leu 2785	Leu	Phe	Val	Ser	Asn 2790	Cys	Ile	Arg
Arg	Leu 2795	Tyr	Met	Ala	Gln	Phe 2800	Glu	Asn	Glu	Ser	Glu 2805	Thr	Ser	Leu
Ile	Ser 2810	Thr	Leu	Leu	Lys	Gly 2815	Arg	Lys	Phe	Ala	His 2820	Thr	Phe	Leu
Ser	Lys 2825	Ile	Glu	Asn	Leu	Ser 2830	Gly	Ile	Val	Trp	Asn 2835	Glu	Asp	Asn
Phe	Thr 2840	His	Ile	Leu	Ile	Phe 2845	Ile	Ile	Asn	ГЛа	Gly 2850	Leu	Ser	Asn
Pro	Phe 2855	Ile	Lys	Ser	Thr	Ala 2860	Phe	Asp	Phe	Leu	Lys 2865	Met	Met	Phe
Arg	Asn 2870	Ser	Tyr	Phe	Glu	His 2875	Gln	Ile	Asn	Gln	Lys 2880	Ser	Asp	His
Tyr	Leu 2885	Сүз	Tyr	Met	Phe	Leu 2890	Leu	Tyr	Phe	Val	Leu 2895	Asn	Cys	Asn
Gln	Phe 2900	Glu	Glu	Leu	Leu	Gly 2905	Asp	Val	Asp	Phe	Glu 2910	Gly	Glu	Met
Val	Asn 2915	Ile	Glu	Asn	Lys	Asn 2920	Thr	Ile	Pro	Lys	Ile 2925	Leu	Leu	Glu
Trp	Leu 2930	Ser	Ser	Asp	Asn	Glu 2935	Asn	Ala	Asn	Ile	Thr 2940	Leu	Tyr	Gln
Gly	Ala 2945	Ile	Leu	Phe	Lys	Суз 2950	Ser	Val	Thr	Asp	Glu 2955	Pro	Ser	Arg
Phe	Arg 2960	Phe	Ala	Leu	Ile	Ile 2965	Arg	His	Leu	Leu	Thr 2970	Lys	Lys	Pro
Ile	Cys 2975	Ala	Leu	Arg	Phe	Tyr 2980	Ser	Val	Ile	Arg	Asn 2985	Glu	Ile	Arg
ГЛЗ	Ile 2990	Ser	Ala	Phe	Glu	Gln 2995	Asn	Ser	Asp	Сүз	Val 3000	Pro	Leu	Ala
Phe	Asp 3005	Ile	Leu	Asn	Leu	Leu 3010	Val	Thr	His	Ser	Glu 3015	Ser	Asn	Ser
Leu	Glu 3020	rÀa	Leu	His	Glu	Glu 3025	Ser	Ile	Glu	Arg	Leu 3030	Thr	ГÀа	Arg
Gly	Leu 3035	Ser	Ile	Val	Thr	Ser 3040	Ser	Gly	Ile	Phe	Ala 3045	Lys	Asn	Ser
Asp	Met 3050	Met	Ile	Pro	Leu	Asp 3055	Val	Lys	Pro	Glu	Asp 3060	Ile	Tyr	Glu
Arg	Lys 3065	Arg	Ile	Met	Thr	Met 3070		Leu	Ser	Arg	Met 3075	Ser	Сүз	Ser

Ala

<210> SEQ ID NO 3 <211> LENGTH: 1278 <212> TYPE: DNA <213> ORGANISM: Saccharomyces cerevisiae

<220> FEATURE: <221> NAME/KEY: misc_feature

-continued

<pre><221> NAME/KEI: MISC_Feature <223> OTHER INFORMATION: GRE3 coding sequence</pre>
<400> SEQUENCE: 3
cttctagggg gcctatcaag taaattactc ctggtacact gaagtatata agggatatag
aagcaaatag ttgtcagtgc aatccttcaa gacgattggg aaaatactgt aatataaatc
gtaaaggaaa attggaaatt ttttaaagat gtcttcactg gttactctta ataacggtct
gaaaatgccc ctagtcggct tagggtgctg gaaaattgac aaaaaagtct gtgcgaatca
aatttatgaa gctatcaaat taggctaccg tttattcgat ggtgcttgcg actacggcaa
cgaaaaggaa gttggtgaag gtatcaggaa agccatctcc gaaggtcttg tttctagaaa
ggatatattt gttgtttcaa agttatggaa caattttcac catcctgatc atgtaaaatt
agetttaaag aagaeettaa gegatatggg aettgattat ttagaeetgt attatattea
cttcccaatc gccttcaaat atgttccatt tgaagagaaa taccctccag gattctatac
gggcgcagat gacgagaaga aaggtcacat caccgaagca catgtaccaa tcatagatac
gtaccgggct ctggaagaat gtgttgatga aggcttgatt aagtctattg gtgtttccaa
ctttcaggga agettgattc aagatttatt aegtggttgt agaatcaage eegtggettt
gcaaattgaa caccatcctt atttgactca agaacaccta gttgagtttt gtaaattaca
cgatatccaa gtagttgctt actcctcctt cggtcctcaa tcattcattg agatggactt
acagttggca aaaaccacgc caactctgtt cgagaatgat gtaatcaaga aggtctcaca
aaaccatcca ggcagtacca cttcccaagt attgcttaga tgggcaactc agagaggcat
tgccgtcatt ccaaaatctt ccaagaagga aaggttactt ggcaacctag aaatcgaaaa
aaagttcact ttaacggagc aagaattgaa ggatatttct gcactaaatg ccaacatcag
atttaatgat ccatggacct ggttggatgg taaattcccc acttttgcct gatccagcca
gtaaaatcca tactcaacga cgatatgaac aaatttccct cattccgatg ctgtatatgt
gtataaattt ttacatgctc ttctgtttag acacagaaca gctttaaata aaatgttgga
tatacttttt ctgcctgt
<210> SEQ ID NO 4 <211> LENGTH: 327
<212> TYPE: PRT <213> ORGANISM: Saccharomyces cerevisiae
<400> SEQUENCE: 4
Met Ser Leu Val Thr Leu Asn Asn Gly Leu Lys Met Pro Leu Val
1 5 10 15
Gly Leu Gly Cys Trp Lys Ile Asp Lys Lys Val Cys Ala Asn Gln Ile 20 25 30
Tyr Glu Ala Ile Lys Leu Gly Tyr Arg Leu Phe Asp Gly Ala Cys Asp 35 40 45
Tyr Gly Asn Glu Lys Glu Val Gly Glu Gly Ile Arg Lys Ala Ile Ser 50
Glu Gly Leu Val Ser Arg Lys Asp Ile Phe Val Val Ser Lys Leu Trp 65 70 75 80
Asn Asn Phe His His Pro Asp His Val Lys Leu Ala Leu Lys Lys Thr 85 90 95

-continued

Leu	Ser	Asb	Met 100	Gly	Leu	Asp	Tyr	Leu 105	Asp	Leu	Tyr	Tyr	Ile 110	His	Phe				
Pro	Ile	Ala 115	Phe	Lys	Tyr	Val	Pro 120	Phe	Glu	Glu	Lys	Tyr 125	Pro	Pro	Gly				
Phe	Tyr 130	Thr	Gly	Ala	Asp	Asp 135	Glu	Lys	Lys	Gly	His 140	Ile	Thr	Glu	Ala				
His 145	Val	Pro	Ile	Ile	Asp 150	Thr	Tyr	Arg	Ala	Leu 155	Glu	Glu	Cys	Val	Asp 160				
	Gly	Leu	Ile	-		Ile	Gly	Val			Phe	Gln	Gly						
Ile	Gln	Asp	Leu	165 Leu	Arg	Gly	Суз	Arg	170 Ile	Lys	Pro	Val	Ala	175 Leu	Gln				
Tle	Glu	His	180 His	Pro	Tvr	Leu	Thr	185 Gln	Glu	His	Leu	Val	190 Glu	Phe	Cvs				
		195			-		200					205			-				
ГЛа	Leu 210	His	Asp	Ile	Gln	Val 215	Val	Ala	Tyr	Ser	Ser 220	Phe	Gly	Pro	Gln				
Ser 225	Phe	Ile	Glu	Met	Asp 230	Leu	Gln	Leu	Ala	Lys 235	Thr	Thr	Pro	Thr	Leu 240				
Phe	Glu	Asn	Asp	Val 245	Ile	Lys	Lys	Val	Ser 250	Gln	Asn	His	Pro	Gly 255	Ser				
Thr	Thr	Ser	Gln 260	Val	Leu	Leu	Arg	Trp 265	Ala	Thr	Gln	Arg	Gly 270	Ile	Ala				
Val	Ile		Lys	Ser	Ser	Гла	-	Glu	Arg	Leu	Leu	-	Asn	Leu	Glu				
Ile	Glu	275 Lys	Lys	Phe	Thr	Leu	280 Thr	Glu	Gln	Glu	Leu	285 Lys	Asp	Ile	Ser				
	290					295					300								
Ala 305	Leu	Asn	Ala	Asn	Ile 310	Arg	Phe	Asn	Asp	Pro 315	Trp	Thr	Trp	Leu	Asp 320				
Gly	Lys	Phe	Pro	Thr 325	Phe	Ala													
<21: <21: <21: <22: <22: <22: <22:	D> SH L> LH 2> TY 3> OH D> FH L> N₽ 3> OY	ENGTH (PE: RGANI EATUH AME/H THER	H: 64 DNA ISM: RE: KEY: INFO	18 Saco miso DRMAT	c_fea	ature	9				ce								
tct	caaat	cec a	ataa	gaaca	at co	cctt	cata	c aad	caat	tgaa	taa	ggaaa	aac a	acaad	cacata	60			
aca	catat	tt a	aacct	gato	gc ti	tcct	gttai	c aad	cgaga	attt	gca	aggco	ctg d	ctctç	gatggc	120			
cat	cagao	ect ç	gtgaa	atgco	ca tọ	99999	gttti	c gaç	gagco	gtcc	agc	ataa	cga a	aaago	gcttta	180			
															zaaaaa	240			
															gaggtt tttgg	300 360			
-	-			-					-	-	-				gacctt	420			
gga	cgato	aca é	gcaaa	aaatt	ca aq	gaaca	actga	a aat	tget	taag	gag	ttga	get t	geed	ccagt	480			
caa	gttgo	cat t	geto	ctato	gt ta	agcgo	gaaga	a tgo	cgato	caag	gca	gcta	tta a	aggad	ctacaa	540			
atc	caaga	aga a	aacad	ctcca	aa co	catgi	ttat	c gta	aatga	aata	aga.	agata	aac d	cggga	acaaga	600			
aca	agato	caa a	accct	cact	ca at	tcaa	caagi	t tg	gacti	taat	ttg	tgcaa	a			648			

-continued

<pre>c211 > LENGTH: 165 c212> TYPE PRT c213> ORGANISM: Saccharomyces cerevisiae c400> SEQUENCE: 6 Met Leu Pro Val 11e Thr Arg Phe Ala Arg Pro Ala Leu Met Ala 11e 15 Arg Pro Val Ann Ala Met Gly Val Leu Arg Ala Ser Ser 11e Thr Lys 20 Arg Leu Tyr His Pro Lys Val 11e Glu His Tyr Thr Hie Pro Arg Asn 35 Arg Ser Leu Asp Lys Lys Leu Pro Asn Val Gly Thr Gly Leu Val 50 Ang Ser Thr Gly Val 1e Glu Asp Val Lyg Phe Lys Thr Phe Gly Cys 90 Sly Ser Ala 11e Ala Ser Ser Ser Tyr Met Thr Glu Leu Val Gln Gly 100 Met Thr Leu Asp Asp Ala Ala Lys 11e 120 Slu Leu Ser Leu Pro Pro Val Lys Leu His Cys Ser Met Leu Ala Glu 130 App Ala 11e Lys Ala Ala 11e Lys Asp Tyr Lys Ser Lys Arg Asn Thr 145 Scoop Sex Oth No 7 Scoop Sex Charced acctacat a dectacata full full full sex Charactagag accatataa actacata full full full accaaggaa taccaagga taccaattaa tagggtcag caacaaggaa tittagaacga Sex Coattag degtectta tagaaggaa tetaatat for Sex Coattaga actacatat full Sex Coattag acccataga full full full full full full Sex Sex Sex Sex Sex Sex Sex Sex Sex Sex</pre>		
<pre><212 > ORGANISM: Saccharomyces cerevisiae <2400> SEQUENCE: 6 Wet Leu Pro Val IIe Thr Arg Phe Ala Arg Pro Ala Leu Met Ala IIe 15 Arg Pro Val Asm Ala Met Gly Val Leu Arg Ala Ser Ser IIe Thr Lys 20 Arg Leu Tyr His Pro Lys Val IIe Glu His Tyr Thr His Pro Arg Asm 35 Arg Leu Tyr His Pro Lys Val IIe Glu His Tyr Thr His Pro Arg Asm 40 55 Soly Ala Pro Ala Cys Gly Asp Val Met Arg Leu Gln IIe Lys Val Asm 50 Arg Ser Thr Gly Val IIe Glu Asp Val Lys Phe Lys Thr Phe Gly Cys 90 Soly Ser Ala IIe Ala Ser Ser Ser Tyr Met Thr Glu Leu Val Gln Gly 100 Met Thr Leu Asp Asp Ala Ala Lys IIe Lys Asm Thr Glu IIe Ala Lys 125 Solu Leu Ser Leu Pro Pro Val Lys Jeu His Cys Ser Met Leu Ala Glu 130 Met Thr Leu Asp Asp Ala Ala Lys De Lys Arg Asm Thr 150 Fro Thr Met Leu Ser 165 2010 SEQ ID NO 7 2011 LENNTH: 729 202 202 SEQUENCE: 7 Argetcat ttccaagaag aactaatata gocttttca aaacaacagg cattttgot 60 aatttcctt tgctaaggtag taccaactcg ccccaagac caaaggagat tggtaggaa Atagagaga taaccagg attgatacaa tggggtgga caaacaagag attagaacaa 300 gagtggagaa ccgatgagg dggggcttg tgcactggg attgataat tittcctcg 400 aggagagaa taaagagaa tcgtaagtt ttacaagag attagataga attgaacaa 300 gagtggaac cgcatgacgt gtgggctt ttacaagag attgatagg attaaat tittcctcg 400 attactagga taaacaag attgtagt cccaagag attagagag attagatagg 40 Attagaaca ctagttgg ttttaaaaa tggggtgga caacaatgaa ataggaacca 300 gagtggaac cgcatgacgt gtgggcttg tttacaagag attagaaca 300 gagttggaac cccatttggt attacaaactgg tttaaattat tttcctccg 400 attactagga taacaaggaa tcgtaagtt ttacaagga attagaaca 30 300 300 300 300 300 300 300 300 300</pre>	<210> SEQ ID NO 6	
And Sequence: 6 Mat Leu Pro Val Ile Thr Arg Phe Ala Arg Pro Ala Leu Met Ala Ile 10 10 10 10 10 10 10 10 10 10	<211> LENGTH: 165 <212> TYPE: PRT	
<pre>Met Leu Pro Val Ile Thr Arg Phe Ala Arg Pro Ala Leu Met Ala Ile 15 Arg Pro Val Aem Ala Met Gly Val Leu Arg Ala Ser Ser Ile Thr Lys 20 Arg Leu Tyr His Pro Lys Val Ile Glu His Tyr Thr His Pro Arg Asm 45 Val Gly Ser Leu Asp Lys Lys Leu Pro Asm Val Gly Thr Gly Leu Val 55 Gly Ala Pro Ala Cys Gly Asp Val Met Arg Leu Gln Ile Lys Val Asm 75 Arg Ser Thr Gly Val I Glu Asp Val Lys Phe Lys Thr Phe Gly Cys 95 Gly Ser Ala Ile Ala Ser Ser Ser Tyr Met Thr Glu Leu Val Gln Gly 100 Met Thr Leu Asp Asp Ala Ala Lys Ile Lys Asm Thr Glu Ile Ala Lys 115 Glu Leu Ser Leu Pro Pro Val Lys Lys Lys Ser Lys Arg Asm Thr 150 Pro Thr Met Leu Ser 155 Callo SEQ ID NO 7 Call> EXECUTE: 7 Acgotext ttccaagaag acctatata gccttttca aaacaacagg cattttgpt 60 aatttcctt tgctaggtag aaccattaca acttccaccat cttccttac acataaactg 120 tcaaaggaag taaccaggg dtcaacttcg cctcaagac caaagagaat tgttgtcgca 130 aggategtagaa cccattagg tgtgaagtat ctacgggtag aggaataaa 7 Ala page group aggagat taaccagg dtcattt tgcaaggag attaatt tttcctcog 600 aggatectag actgtttg caccacgg gcaccattc cttatagaaca aaggagttgg 66 aggatectag actgtttg caccacgg gcactttt ttcatagaaca aaggagttg 20 Gla Asp Ala Ala Ala Gly Cys Cys Arg Asm Thr 150 Action SEQUENCE: 7 Action SEQUENCE: 7 Action SEQUENCE: 7 Action SEQUENCE: 7 Action SEQUENCE: 7 Action SEQUENCE: 7 Action Asp Ala Cacaggag attaatata gccttttca aaacaacagg catttttgct 60 Aspathagaa taaccaggag attaccattag cattagaact ctacaagtaga attagaaca 300 agataggaa cycatggg ggggcctg gcaaccaaga catactcg tcgtaggt 3 Ataatagaaga taaccaggg attacaat tggggtcgag cacacattga atatgaaca 300 agataggaa cycatgg ggggcctg gcaaccaaga catactcg tcgtaggt 3 Ataatagaaga taaccaggaa tcgtaagtt tcacagagg attaatta aagagctgc 440 Aspathagaataca tagtgtgtttt taggaggag attaatta aagagctgc 440 Aspathagaataca tagtgtgttt tagaagagg attaat ttgcaggaa cyctagaat tgtaggta 440 Aspathagaataca tagtgttt tagaagagg cttaagagg attaat tttcctccog 640 Aspathagaataca tagtgtttt ttagaagag cttaagaat ctatagaaca aagtgttgg 660 Aspathagaataga actgtttgt cttatagaagag cttatagaaca aagtgttgg 660 Aspathagaatactag attgttgt 5 Aspathag</pre>	<213> ORGANISM: Saccharomyces cerevisiae	
1 5 10 15 Arg Pro Val Aon Ala Met Gly Val Leu Arg Ala Ser Ser Ile Thr Lys 30 Arg Leu Tyr His Pro Lys Val Ile Glu His Tyr Thr His Pro Arg Asn 30 Val Gly Ser Leu Asp Lys Lys Leu Pro Asn Val Gly Thr Gly Leu Val 50 Sol Pro Ala Cys Gly Asp Val Met Arg Leu Gln Ile Lys Val Asn 80 Arg Ser Thr Gly Val Ile Glu Asp Val Lys Phe Lys Thr Phe Gly Cys 90 Sol Sy Ser Ala Ile Ala Ser Ser Ser Tyr Met Thr Glu Leu Val Gln Gly 110 Met Thr Leu Asp Asp Ala Ala Lys Ile Lys Asn Thr Glu Ile Ala Lys 125 Slu Leu Ser Leu Pro Pro Val Lys Leu His Cys Ser Met Leu Ala Glu 130 Aap Ala Ile Lys Ala Ala Ile Lys Asp Tyr Lys Ser Lys Arg Asn Thr 160 130 135 155 160 140 135 160 125 Scalp Ser Ibn N 75 160 160 130 135 155 160 160 130 135 160 160 160 160 130 135 155 160 160 160 160 130 135 155 160 160 160 160 160 160 160	<400> SEQUENCE: 6	
Arg Pro Val Asn Ala Met Gly Val Leu Arg Ala Ser Ser Ile Thr Lys 20Arg Leu Tyr His Pro Lys Val Ile Glu His Tyr Thr His Pro Arg Asn 35Arg Leu Tyr His Pro Lys Val Ile Glu His Tyr Thr His Pro Arg Asn 35Val Gly Ser Leu Asp Lys Lys Lys Leu Pro Asn Val Gly Thr Gly Leu Val 50Sol Yala Pro Ala Cys Gly Asp Val Met Arg Leu Gln Ile Lys Val Asn 85Arg Ser Thr Gly Val Ile Glu Asp Val Lys Phe Lys Thr Phe Gly Cys 95Sol Sol Y Ser Ala Ile Ala Ser Ser Ser Tyr Met Thr Glu Leu Val Gln Gly 100Met Thr Leu Asp Asp Ala Ala Lys Ile Lys Asn Thr Glu Ile Ala Lys 115Sol Leu Ser Leu Pro Pro Val Lys Leu His Cys Ser Met Leu Ala Glu 130Asp Ala Ile Lys Ala Ala Ile Lys Asp Tyr Lys Ser Lys Arg Asn Thr 150160Pro Thr Met Leu Ser 115210> SEQ UENCE: 7Attoct t tyctaggtag acctatea actteaceat cttree tacaataactg200> SEQUENCE: 7Attoct t tyctaggtag taccattee actteaceat cttree tacaataactg200attactegtg cyactgdgt t tecatggga atcagactte tacaagtget aaagtgtt200> sequada cocatteg gedeget tecatagg attacaacteg200> sequada cocatteg gedeget tecatage attacaa tegegttee200> sequada taccaagge attacaactee cttree200> sequada taccaagge attacaactee cttree200> sequada taccaagge tecatetee ctccaaga actactata ta gedettee200> sequada taccaagge attacaactee200> sequada taccaagge attacaatata gedettee200> sequada taccaagge attacaatata gedettee200> sequada taccaatte	Met Leu Pro Val Ile Thr Arg Phe Ala Arg Pro Ala	a Leu Met Ala Ile
202530Arg Leu TyrHis Pro Lys Val11e Glu His TyrThr His Pro Arg Asn 40Mal GlySer Leu Asp Lys Lys Leu Pro Asn ValGly Thr Gly Leu Val 50Sly AlaPro AlaCys Gly Asp ValMet Arg Leu Gln Ile Lys Val Asn 75Sly AlaPro AlaCys Gly Asp Val Lys PheLys Thr Phe Gly Cys 90Sag Ser Thr Gly Val Ile Glu Asp Val Lys PheLys Thr Glu Ile Ala Lys 110Met Thr Leu Asp Asp Ala AlaLys Ile Lys Asn Thr Glu Ile Ala Lys 115Slu Leu Ser Leu Pro Pro Val Lys Leu His CysSer Met Leu Ala Glu 135Asp Ala 1le Lys Ala Ala Ile Lys Asp Tyr Lys Ser Lys Arg Asn Thr 150Pro Thr Met Leu Ser 115C210> SEQ ID NO 7 (211) LENGTHY: Proma (212) ORGANISM: Saccharomyces cerevisiaeC400> SEQUENCE: 7Attoct t tyctaggtag accattaca acttaca acttacaC400C410Attactggt g cactggt t tycactggga atcagactC420+ SEQ ID NO 7 (212) Leu Gly Ser Lys Asp CattacaC410> SEQUENCE: 7Attactggt g cactagatg acctataca acttacaC400> SEQUENCE: 7Attactggt g cactagatg acctatacta gccttttcaAttactggt g cactaggt g tycactggga atcagactC400> SEQUENCE: 7Attactggt g cactaggt g tycactggga atcagactAttactggt g cactaggt g tycactggga tycactggga tacacattagC400> SEQUENCE: 7Attactggt g cactaggt g tycactggga atcagact g cacaaga attatacaC400> SEQUENCE: 7Attactggt g cactaggt g tycactggga atcagact g cacaaga at tytigtig gactgagaC400> SEQUENCE: 7Attactggt g cactaggt g tycactggga atcagact g cacaaga a	1 5 10	15
354045Val Gly Ser Leu Asp Lys Lys Lys Leu Pro Asn Val Gly Thr Gly Leu Val 5060Sily Ala Pro Ala Cys Gly Asp Val Met Arg Leu Gln Ile Lys Val Asn 6580Amp Ser Thr Gly Val Ile Glu Asp Val Lys Phe Lys Thr Phe Gly Cys 9590Sily Ala Ile Ala Ser Ser Ser Tyr Met Thr Glu Leu Val Gln Gly 100100Met Thr Leu Asp Asp Ala Ala Lys Ile Lys Asn Thr Glu Ile Ala Lys 1125110Silu Leu Ser Leu Pro Pro Val Lys Leu His Cys Ser Met Leu Ala Glu 130135Amp Asp Ala Ala Lie Lys Asp Tyr Lys Ser Lys Arg Asn Thr 150160Pro Thr Met Leu Ser 165160Pro Thr Met Leu Ser 165160Pro Thr Met Leu Ser 165125200 SEQUENCE: 77attect tyctaggag accattaca acttcaccat ctttccttac acataaactg 2120 ctaaaggaag taaccaggge atcaactteg cctcaagac caaagagaat tatgaaaca 300attactggtg cgactggtg tggcggccttg gcaaccaaga catactegt tcgtgatgt 360attactggtg cgatggtg tggcggccttg gcaaccaaga catactegt tcgtgatgt 360attactggtg ttgaagag tacgactt tagaaccagg attacacteg ctcg 360attactggtg cgatggtg tggcggccttg gcaaccaaga catactegt tcgtgatgt 360attactggtg ttgaagt tacgacgt ttacaa tggggtgcag 360attactagtgt ttgaagtag tacgactt tagaaccagg attataca agagteg 360400 SEQUENCE: 73103113123133143153153163173183183193193193103103110312312 <td></td> <td></td>		
50 55 60 Sly Ala Pro Ala Cys Gly Asp Val Met Arg Leu Gln Ile Lys Val Asn 80 80 Asp Ser Thr Gly Val Ile Glu Asp Val Lys Phe Lys Thr Phe Gly Cys 95 90 Sly Ser Ala Ile Ala Ser Ser Ser Tyr Met Thr Glu Leu Val Gln Gly 100 100 Met Thr Leu Asp Asp Ala Ala Lys Ile Lys Asn Thr Glu Ile Ala Lys 115 120 Slu Leu Ser Leu Pro Pro Val Lys Leu His Cys Ser Met Leu Ala Glu 130 140 Aap Ala Ile Lys Ala Ala Ile Lys Asp Tyr Lys Ser Lys Arg Asn Thr 150 160 Pro Thr Met Leu Ser 165 155 160 C210> SEQ ID NO 7 155 160 Pro Thr Met Leu Ser 165 155 160 C210> SEQUENCE: 7 7 30 attactggtg cgactggtgt tgcactgga atcaactaca acttcaca totttocta acataactg 120 120 caaaagaag taaccaatgg aaccataca atggggtgcag caacaatgaa atatgaaca 300 300 gattggaac cgcatggtg tgcggccttg gcaaccaaga catactgt tcgtgtgt 1360 300 gattggaac cgcatgagt gacgacgt gcatcggtgt ttacaaa tggggtgcag caacaatgaa atatgaaca 300 300 gattggaac cgcatgagt gcgcgcttg gcaaccaaga catactctgt tcgtgatgtt 360 300 atactggtg ttaaaagaga tcgtaagtta ctactggtg attaatttt ttoctccg 480 480 gattgggaac cgcatgagt gcgccttg catcagagg attaattac aagagctgcc 480 480	· · · ·	5
70 75 80 Asp Ser Thr Gly Val Ile Glu Asp Val Lys Phe Lys Thr Phe Gly Cys 95 90 95 Sily Ser Ala Ile Ala Ser Ser Ser Tyr Met Thr Glu Leu Val Gln Gly 100 100 100 Ater Thr Leu Asp Asp Ala Ala Lys Ile Lys Asn Thr Glu Ile Ala Lys 1120 125 Silu Leu Ser Leu Pro Pro Val Lys Leu His Cys Ser Met Leu Ala Glu 130 140 Asp Ala Ala Ile Lys Asp Tyr Lys Ser Lys Arg Asn Thr 150 160 Pro Thr Met Leu Ser 165 160 2210 > SEQ ID NO 7 122 2212 > TYPE DNA 165 2210 > SEQ UD NO 7 122 212 > TYPE DNA 212 > TYPE DNA 2210 > SEQ UD NO 7 122 212 > TYPE DNA 212 > TYPE DNA 212 > TYPE DNA 300 212 > TYPE DNA 300 <t< td=""><td></td><td></td></t<>		
359095Sly Ser Ala Ile Ala Ser Ser Ser Tyr Met Thr Glu Leu Val Gln Gly 100105Met Thr Leu Asp Asp Ala Ala Lys Ile Lys Asn Thr Glu Ile Ala Lys 115120Slu Leu Ser Leu Pro Pro Val Lys Leu His Cys Ser Met Leu Ala Glu 130140Asp Ala Ile Lys Ala Ala Ile Lys Asp Tyr Lys Ser Lys Arg Asn Thr 150160Pro Thr Met Leu Ser 165155160Pro Thr Met Leu Ser 165165c210> SEQ ID NO 7 c211> LENGTH: 729 c212> TYPE: DNA c213> ORGANISM: Saccharomyces cerevisiaec400> SEQUENCE: 7adgetectat tteccaagaag aactaatata geetttte aaaacaacagg cattttget aattactggtg egactggtgt tgeactgga atcagactte tacaagtget aaaagagttg 240adgetagaaa cecatteg gtgeggeettg geaaccaaga cataactagt atgtgetega attactggtg cgactggtg tgeggeettg geaaccaaga cataactegt tegtagtt attactggta atcagate tagatte tagaategg tttacaagag attaatata aggegtagaa cecatecat ttegtagat tagaategg tttacaagag attaatata aggegtagaa cecattage attactggtg ditteaaa tggggtgeag cacaataga atatgaaaca doo gattgggaac cgeatgaeg tggeggeettg geaaccaaga catactett tegtagatt attactaggt ttegteegg attacaagag tttactagaga attagaacca dagagateca tagetgetat tagaateggt tttacagagg attaattac aagagetge dagagaateae tagetgetat tagaateggt tttacagagg attaattat tttee dagagaateae tagetgetat tagaateggt etcateggta cteattggta cteetggaa aggaataaa doo gagetttega ttaacaagagaa tegtaagtta ctactggta cteetggaa aggaataaa doo gagetetta acteetggt accacette ctegtagaga aggaataaa720		
100105110Met Thr Leu Asp Asp Ala Ala Lys Ile Lys Asn Thr Glu Ile Ala Lys 115120125Slu Leu Ser Leu Pro Pro Val Lys Leu His Cys Ser Met Leu Ala Glu 130140Aap Ala Ile Lys Ala Ala Ile Lys Asp Tyr Lys Ser Lys Arg Asn Thr 150160Pro Thr Met Leu Ser 1651652210> SEQ ID NO 7 2211> LENGTH: 7292212> SEQ ID NO 7 2212> TYPE: DNA 2213> ORGANISM: Saccharomyces cerevisiae4400> SEQUENCE: 7attactggtg cgactggtg tigcactagag aactaatata gccttttca aaacaacagg cattttgct60aattttcctt tgctaggtag aaccattaca acttcaccat ctttccttac acataaactg120ccaaaggaag taaccaggge atcaactteg cctccaagac caaagagaat tgttgtgcga180attactggtg cgactggtg tigcactggga atcagactte tacaagtget aaaagagttg240agcgtagaaa cccattggt ggeggecttg gcaaccaaga catactetgt tcgtgatgtt300gattgggaac cgcatgacgt ggeggecttg gcaaccaaga catactetg tcgtgatgt300gattgggaac tigctget tagaateggt tttacagagg attaatata aagagetge480gattggaaacct tigcacag agtagta tigatggt tgcctggtce420atgaaatcac tagctgeta tagaateggt tttacagagg attaatata aagagetge480gatgtttcga ttaaagagaa tcgtaagtta ctactggtta ctcgggaaac ccctttact540cccatccate ttgaaaacat gttgtcttta tgcaggcag gtgttataat ttttcctccg600agagttctag acccatga accaagage cttcatgace tattagaaca aagtgttgge660agagttctag acccatg accagage ctcatgge tttaagaaca aagtgttgg660agagttctag accattgg acccatgge gaccttte ctcgttgga aggaataaaa720		
1151201253lu Leu Ser Leu Pro Pro Val Lys Leu His Cys Ser Met Leu Ala Glu 130135130135Asp Ala Ile Lys Ala Ala Ile Lys Asp Tyr Lys Ser Lys Arg Asn Thr 150145150Pro Thr Met Leu Ser 1652210> SEQ ID NO 7 2211> LENGTH: 729 2212> TYPE: DNA 2213> ORGANISM: Saccharomyces cerevisiae2400> SEQUENCE: 7attgctcctat ttccaagaag aactaatata gccttttca aaacaacagg cattttgct60 aattttcctt tgctaggtag aaccattaca acttcaccat ctttccttac acataaactg120 ccaaaggaag taaccaggge atcaactteg cctcaagac caaagagaat tgttgtcgcaattactggtg cgactggtgt tgcactggga atcagactte tacaagtget aaaagagttg240 agegtagaaa cccattggt ggtttcaaaa tggggtgcag caacaatgaa atatgaaaca300 gattgggaac cgcatgacgt ggcggccttg gcaaccaaga catactcgt tcgtgatgtt360 cctgcatgca ttcgtccgg atcttccag catgatgta tgattgttg gccctgttcc420 agagttttcga ttaaagagaa tcgtaagtta ctactggtta ctcgggaaac ccctttatct540 ccatccate ttgaaaacat gttgtcttta tgcagggcag gtgttataat ttttcctcg600 gatgtttcga ttataagagaa tcgtaagtta ctactggtta ctcgggaaac ccctttatct540 ccatccate ttgaaaacat gttgtcttta tgcaggcag gtgttataat ttttcctccg600 gtacctgcgt tttatacaag acccaagag cttcatgacc tattagaaca aggtgtgc600 gtacctgcgt tttatacaag acccaagag ctcaagtgc tattagaaca aggtgtgc600 gtacctgcgt tttatacaag acccaagag cttcatgacc tattagaaca aggtgtgc600 gtacctgcgt tttatacaag acccaagag cttcatgacc tattagaaca aaggtgtgc600 gtacctgcgt tttatacaag acccaagag cttcatgacc tattagaaca aaggtgtgc600 gtacctgcgt tttatacaag acccaagag cttcatgacc tattagaaca aagtgttgc600 gtacctgcgt tttt		-
Slu Leu Ser Leu Pro Pro Val Lys Leu His Cys Ser Met Leu Ala Glu 130 135 150 140 140 140 140 140 140 140 150 155 160 150 160 155 160 155 160 155 160 155 160 155 160 155 160 155 160 155 160 155 160 155 160 155 160 155 165 155 160 155 165 155 160 155 165 155 160 155 165 155 160 155 165 155 165 155 160 155 165 155 15		-
Asp Ala Ile Lys Ala Ala Ile Lys Asp Tyr Lys Ser Lys Arg Asn Thr 150 150 150 150 160 7 2010> SEQ ID NO 7 2011> LENGTH: 729 2012> TYPE: DNA 2013> ORGANISM: Saccharomyces cerevisiae 400> SEQUENCE: 7 atgotcotat ttocaagaag aactaatata gootttttoa aaacaacagg cattttgot 60 aattttoctt tgotaggtag aaccattaca acttcaccat ottocottac acataaactg 120 tocaaaggaag taaccaggge atcaacttog octocaagae caaaggaat tgttgtogea 180 attactggtg ogactggtgt tgoactggga atcagactto tacaagtgot aaaagagttg 240 agogtagaaa occattggt gattcaaaa tggggtgcag caacaatgaa atatgaaaca 300 gattgggaac ogoatgacgt ggoggoottg gcaaccaaga catactotg togtgatgtt 360 totgaaatcac tagotgotat tagaatcggt tttacagagg attaattac aagagctgoc 420 atgaaatcac tagotgotat tagaatcggt tttacagag attaattac aagagctgoc 420 atgaaatcac tagotgotat tagaatcggt tttacagagg attaattac aagagctgoc 420 atgaaatcac tagotgotat tagaaacag ft foo 420 atgaaatcac tagotgotat tagaaaca foo 420 atgaaatcac tagotgotat tagaaaca foo 420 atgaaatcac tagotgotat tagaaaca foo 420 atgaaatcac tagotgotat tagaaaca foo 420 atgaaatcac aagagaa con 420 atgaaacaca foo 420 atgaaacacaca foo 420 atgaaacacacaca foo 420 atgaaacacacaca foo 420		r Met Leu Ala Glu
Pro Thr Met Leu Ser 165 210> SEQ ID NO 7 211> LENGTH: 729 212> TYPE: DNA 213> ORGANISM: Saccharomyces cerevisiae: 400> SEQUENCE: 7 atgotectat ttecaagaag aactaatata geettttea aaacaacagg cattttget 60 aattteett tgetaggtag aaccattaea acteeacat etteettae acataaaetg 120 teaaaggaag taaccaggge ateaaetteg eeteeaagae caaagagaat tgttgtegea 180 attaetggg egaetggtgt tgeaetggga ateagaette taeaagtget aaaagagttg 240 ageetagaaa eecaatteg geeggeettg geaaccaaga eataetteg tegtgatgt 360 gattgggaae egeatgaegt ggeggeettg geaaccaaga eataetegt tegtgatgt 360 eetegeatgea ttegteegg atetteeaa tggggtgeag eateaattee tegtgatgt 360 gattgteea ttegteegg atetteeaa tgeggtgea geateaattee aagagetgee 420 ageatgteea ttegteegg atetteeag eatgatgt tgatgtegt geeetgee 420 agatgtteega tteaagagaa tegtaagta etaetggea geggeaet 540 gatgtteea tagaagaa tegtaagta etaetggeag geggeae faacaetga attaattae aagagetgee 480 gatgtteega ttaaagagaa tegtaagta etaetggeag gegttataat ttteeetee 540 gateetgeet ttaaaagaga acceaagage etteatgaee tattagaaca aagtgttgee 660 gataetgeet ttatacaag acceaagage etteatgaee tattagaaca aagtgttgee 660 agaateetge attegteetg eateecaeget gaeaettte etegttgga aggaataaa 720	Asp Ala Ile Lys Ala Ala Ile Lys Asp Tyr Lys Ser	r Lys Arg Asn Thr
165 210> SEQ ID NO 7 211> LENGTH: 729 212> TYPE: DNA 213> ORGANISM: Saccharomyces cerevisiae 2400> SEQUENCE: 7 atgotoctat ttocaagaag aactaatata gootttttoa aaacaacagg cattttgot 60 aatttoctt tgotaggtag aaccattaca acttcaccat ottocottac acataaactg 120 tcaaaggaag taaccaggge atcaactteg octocaagae caaagagaat tgttgtegcaa 180 attactggtg ogactggtg tgoactggga atcagactte tacaagtget aaaagagttg 240 agogtagaaa cocattggt gattcaaaa tggggtgcag caacaatgaa atatgaaaca 300 gattgggaac ogoatgacg ggoggoottg gcaaccaaga catactotgt togtgatgtt 360 totgoaagae tacgtgtat tagaatcggt ttacaagag attaatac aagagctgoc 420 agagattee tagetgetat tagaatcggt ttacaagag attaatac aagagctgoc 420 agagattee tagaagaa togtaagta cataggga tgattaata taggagctgoc 420 agagattee tagaagaa togtaagta tagaagga tagatgaa aagagtge 540 agagattee tagaagaa togtaagta tagaagga tagatgaga tagatgta tgatggtg gooctgttoc 420 agagatgttee ttaaagagaa tegtaagta tgacgge gtgttataat ttttoctocg 600 gaactgee tttatacaag acccaagage ottcatgace tattagaaca aagtgttgee 660 agaatcetge tttatacaag acccaagage cttcatgace tattagaaca aagtgttgee 600 agaatcetag actgetteg catcacete gacactte ctegttgga aggaataaaa 720		100
<pre><211> LENGTH: 729 <212> TYPE: DNA <213> ORGANISM: Saccharomyces cerevisiae <400> SEQUENCE: 7 atgctcctat ttccaagaag aactaatata gccttttca aaacaacagg cattttgct 60 aattttcctt tgctaggtag aaccattaca acttcaccat ctttccttac acataaactg 120 tcaaaggaag taaccagggc atcaacttcg cctccaagac caaagagaat tgttgtcgca 180 attactggtg cgactggtgt tgcactggga atcagacttc tacaagtgct aaaagagttg 240 agcgtagaaa cccatttggt gatttcaaaa tggggtgcag caacaatgaa atatgaaaca 300 gattgggaac cgcatgacgt ggcggccttg gcaaccaaga catactctgt tcgtgatgtt 360 tctgcatgca tttcgtccgg atcttccag catgatggta tgattgttgt gccctgttcc 420 atgaaatcac tagctgctat tagaatcggt tttacagagg atttaattac aagagctgcc 480 gatgtttcga ttaaagagaa tcgtaagtta ctactggtta ctcgggaaac ccctttatct 540 tccatccatc ttgaaaacat gttgtcttta tgcagggcag gtgttataat ttttcctccg 600 gtacctgcgt tttatacaag acccaagagc cttcatgacc tattagaaca aagtgttggc 660 aggatcctag actgcttgg catccacgct gacactttc ctcgttggga aggaataaaa 720</pre>		
aatttteett tgetaggtag aaceattaea aetteaceat etteettae aeataaaetg 120 teaaaggaag taaceaggge ateaaetteg eeteeaagae eaaagagaat tgttgtegea 180 attaetggtg egaetggtgt tgeaetggga ateagaette taeaagtget aaaagagttg 240 agegtagaaa eeeattggt gattteaaaa tggggtgeag eaaeaatgaa atatgaaaea 300 gattgggaae egeatgaegt ggeggeettg geaaeeaaga eataetetgt tegtgatgtt 360 teetgeatgea tteegteegg atetteeag eatgatggta tgattgttgt geeetgtee 420 atgaaateae tagetgetat tagaateggt tttaeagagg atttaattae aagagetgee 480 gatggtteega taaagagaa tegtaagtta etaetggtta eeeggaaae eeettaetet 540 teeateeate ttgaaaaeat gttgtetta tgeagggeag gtgttataat ttteeteeg 600 gtaeeetgeg tttataeaag aeeeaagage etteatgaee tattagaaea aagtgttgge 660 aggateetgeg aeegttteg eateeaegt gaeaettte etegttgga aggaataaaa 720	<211> LENGTH: 729 <212> TYPE: DNA <213> ORGANISM: Saccharomyces cerevisiae	
tcaaaggaag taaccagggc atcaacttcg cctccaagac caaagagaat tgttgtcgca 180 attactggtg cgactggtgt tgcactggga atcagacttc tacaagtgct aaaagagttg 240 agcgtagaaa cccatttggt gattcaaaa tggggtgcag caacaatgaa atatgaaaca 300 gattgggaac cgcatgacgt ggcggccttg gcaaccaaga catactctgt tcgtgatgtt 360 tctgcatgca tttcgtccgg atctttccag catgatggta tgattgttgt gccctgttcc 420 atgaaatcac tagctgctat tagaatcggt tttacagagg atttaattac aagagctgcc 480 gatgtttcga ttaaagagaa tcgtaagtta ctactggtta ctcgggaaac ccctttatct 540 tccatccatc ttgaaaacat gttgtcttta tgcagggcag gtgttataat tttccctccg 600 gtacctgcgt tttatacaag acccaagag cttcatgacc tattagaaca aagtgttggc 660 aggatcctag actgctttgg catccacgct gacacttttc ctcgttggga aggaataaaa 720	atgctcctat ttccaagaag aactaatata gcctttttca aaa	acaacagg catttttgct 60
attactggtg cgactggtgt tgcactggga atcagacttc tacaagtgct aaaagagttg240agcgtagaaa cccatttggt gatttcaaaa tggggtgcag caacaatgaa atatgaaaca300gattgggaac cgcatgacgt ggcggccttg gcaaccaaga catactctgt tcgtgatgtt360tctgcatgca tttcgtccgg atctttccag catgatggta tgattgttgt gccctgttcc420atgaaatcac tagctgctat tagaatcggt tttacagagg atttaattac aagagctgcc480gatgtttcga ttaaagagaa tcgtaagtta ctactggtta ctcgggaaac ccctttatct540tccatccatc ttgaaaacat gttgtcttta tgcagggcag gtgttataat ttttcctccg600gtacctgcgt tttatacaag acccaagagc cttcatgacc tattagaaca aagtgttggc660aggatcctag actgctttgg catccacgct gacacttttc ctcgttggga aggaataaaa720	aattttcctt tgctaggtag aaccattaca acttcaccat ctt	tteettae acataaaetg 120
agogtagaaa cocatttggt gatttcaaaa tggggtgcag caacaatgaa atatgaaaca 300 gattgggaac cgcatgacgt ggcggccttg gcaaccaaga catactctgt tcgtgatgtt 360 totgcatgca tttcgtccgg atctttccag catgatggta tgattgttgt gccctgttcc 420 atgaaatcac tagctgctat tagaatcggt tttacagagg atttaattac aagagctgcc 480 gatgtttcga ttaaagagaa tcgtaagtta ctactggtta ctcgggaaac coctttatct 540 tcccatccatc ttgaaaacat gttgtcttta tgcagggcag gtgttataat ttttcctccg 600 gtacctgcgt tttatacaag acccaagagc cttcatgacc tattagaaca aagtgttggc 660 aggatcctag actgctttgg catccacgct gacacttttc ctcgttggga aggaataaaa 720	tcaaaggaag taaccagggc atcaacttcg cctccaagac caa	aagagaat tgttgtcgca 180
agegtagaaa eecaattiggt gattteaaaa tggggtgeag caacaatgaa atatgaaaca 300 gattgggaae egeatgaegt ggeggeettg geaaceaaga eataetetgt tegtgatgtt 360 tetgeatgea tttegteegg atettteeag eatgatggta tgattgttgt geeetgtee 420 atgaaateae tagetgetat tagaateggt tttacagagg atttaattae aagagetgee 480 gatgtttega ttaaagagaa tegtaagtta etaetggtta etegggaaae eeettateet 540 teeateeate ttgaaaaeat gttgtetta tgeagggeag gtgttataat ttteeteeg 600 gtaeetgegt tttataeaag acceaagage etteatgaee tattagaaea aagtgttgge 660 aggateetag actgetttgg cateeaeget gaeaettte etegttgga aggaataaaa 720	attactggtg cgactggtgt tgcactggga atcagacttc tac	caagtgct aaaagagttg 240
gattgggaac cgcatgacgt ggcggccttg gcaaccaaga catactctgt tcgtgatgtt 360 tctgcatgca tttcgtccgg atctttccag catgatggta tgattgttgt gccctgttcc 420 atgaaatcac tagctgctat tagaatcggt tttacagagg atttaattac aagagctgcc 480 gatgtttcga ttaaagagaa tcgtaagtta ctactggtta ctcgggaaac ccctttatct 540 tccatccatc ttgaaaacat gttgtcttta tgcagggcag gtgttataat ttttcctccg 600 gtacctgcgt tttatacaag acccaagagc cttcatgacc tattagaaca aagtgttggc 660 aggatcctag actgctttgg catccacgct gacacttttc ctcgttggga aggaataaaa 720		
atgaaatcac tagctgctat tagaatcggt tttacagagg atttaattac aagagctgcc 480 gatgtttcga ttaaagagaa tcgtaagtta ctactggtta ctcgggaaac ccctttatct 540 tccatccatc ttgaaaacat gttgtcttta tgcagggcag gtgttataat ttttcctccg 600 gtacctgcgt tttatacaag acccaagagc cttcatgacc tattagaaca aagtgttggc 660 aggatcctag actgctttgg catccacgct gacacttttc ctcgttggga aggaataaaa 720		
gatgtttcga ttaaagagaa tcgtaagtta ctactggtta ctcgggaaaac ccctttatct 540 tccatccatc ttgaaaacat gttgtcttta tgcagggcag gtgttataat ttttcctccg 600 gtacctgcgt tttatacaag acccaagagc cttcatgacc tattagaaca aagtgttggc 660 aggatcctag actgctttgg catccacgct gacacttttc ctcgttggga aggaataaaa 720	tetgeatgea tttegteegg atettteeag eatgatggta tga	attgttgt gccctgttcc 420
tccatccatc ttgaaaacat gttgtcttta tgcagggcag gtgttataat ttttcctccg 600 gtacctgcgt tttatacaag acccaagagc cttcatgacc tattagaaca aagtgttggc 660 aggatcctag actgctttgg catccacgct gacacttttc ctcgttggga aggaataaaa 720	atgaaatcac tagctgctat tagaatcggt tttacagagg att	ttaattac aagagctgcc 480
gtacctgcgt tttatacaag acccaagagc cttcatgacc tattagaaca aagtgttggc 660 aggateetag actgetttgg catecaeget gacaetttte etegttggga aggaataaaa 720	gatgtttcga ttaaagagaa tcgtaagtta ctactggtta cto	cgggaaac ccctttatct 540
aggateetag aetgetttgg catecaeget gacaetttte etegttggga aggaataaaa 720	tccatccatc ttgaaaacat gttgtcttta tgcagggcag gtg	gttataat ttttcctccg 600
	gtacctgcgt tttatacaag acccaagagc cttcatgacc tat	ttagaaca aagtgttggc 660
agcaagtaa 729	aggateetag actgetttgg cateeaeget gacaetttte ete	cgttggga aggaataaaa 720
	agcaagtaa	729

<210> SEQ ID NO 8 <211> LENGTH: 242 <212> TYPE: PRT <213> ORGANISM: Saccharomyces cerevisiae <400> SEQUENCE: 8

~ 100) / DI	100 11	че н.	0												
Met 1	Leu	Leu	Phe	Pro 5	Arg	Arg	Thr	Asn	Ile 10	Ala	Phe	Phe	Lys	Thr 15	Thr	
Gly	Ile	Phe	Ala 20	Asn	Phe	Pro	Leu	Leu 25	Gly	Arg	Thr	Ile	Thr 30	Thr	Ser	
Pro	Ser	Phe 35	Leu	Thr	His	Lys	Leu 40	Ser	Lys	Glu	Val	Thr 45	Arg	Ala	Ser	
Thr	Ser 50	Pro	Pro	Arg	Pro	Lys 55	Arg	Ile	Val	Val	Ala 60	Ile	Thr	Gly	Ala	
Thr 65	Gly	Val	Ala	Leu	Gly 70	Ile	Arg	Leu	Leu	Gln 75	Val	Leu	Lys	Glu	Leu 80	
Ser	Val	Glu	Thr	His 85	Leu	Val	Ile	Ser	Lys 90	Trp	Gly	Ala	Ala	Thr 95	Met	
LÀa	Tyr	Glu	Thr 100	Aap	Trp	Glu	Pro	His 105	Asp	Val	Ala	Ala	Leu 110	Ala	Thr	
Lya	Thr	Tyr 115	Ser	Val	Arg	Asp	Val 120	Ser	Ala	Суз	Ile	Ser 125	Ser	Gly	Ser	
Phe	Gln 130	His	Aap	Gly	Met	Ile 135	Val	Val	Pro	Cys	Ser 140	Met	LÀa	Ser	Leu	
Ala 145	Ala	Ile	Arg	Ile	Gly 150	Phe	Thr	Glu	Asp	Leu 155	Ile	Thr	Arg	Ala	Ala 160	
Asp	Val	Ser	Ile	Lys 165	Glu	Asn	Arg	Lys	Leu 170	Leu	Leu	Val	Thr	Arg 175	Glu	
Thr	Pro	Leu	Ser 180	Ser	Ile	His	Leu	Glu 185	Asn	Met	Leu	Ser	Leu 190	Cys	Arg	
Ala	Gly	Val 195	Ile	Ile	Phe	Pro	Pro 200	Val	Pro	Ala	Phe	Tyr 205	Thr	Arg	Pro	
Lys	Ser 210	Leu	His	Asp	Leu	Leu 215	Glu	Gln	Ser	Val	Gly 220	Arg	Ile	Leu	Asp	
Cys 225	Phe	Gly	Ile	His	Ala 230	Asp	Thr	Phe	Pro	Arg 235	Trp	Glu	Gly	Ile	Lys 240	
Ser	Lys															
)> SE l> LE															
	2> TY 3> OF			Saco	charo	omyce	es ce	erev	Lsiae	9						
<400)> SE	EQUEI	ICE :	9												
atga	aggaa	agc t	caaat	tcca	gc ti	taga	aatti	aga	agact	tta	tcca	aggto	ett a	aaaag	gatgaa	60
gate	gactt	caa t	cgaa	aatta	ac co	gaaga	agatt	: gat	ccaa	aatc	tcga	aagta	agg i	tgcaa	attatg	120
agga	aaggo	cct a	atga	atcco	ca ci	taco	cageo	c ccé	gttat	tta	aaaa	atcto	caa a	aggto	gcttcg	180
aago	gatct	tt t	cago	catti	tt aq	ggtt	geeea	a gco	cggtt	tga	gaaq	gtaaq	gga g	gaaaq	ggagat	240
cate	ggtag	yaa t	tgc	ccat	ca to	ctgg	ggcto	c gao	cccaa	aaaa	caad	ctato	caa 🤉	ggaaa	atcata	300
gatt	attt	cgc t	gga	gtgta	aa go	gagaa	aggaa	a cct	cctco	cccc	caat	cact	gt 1	teete	gtgtca	360
tct	gcaco	ett ç	gtaaa	aaca	ca ta	ataci	tttct	: gaa	agaaa	aaaa	taca	atcta	aca a	aagco	etgeca	420
acad	ccata	atc t	acat	tgtti	cc aq	gacgo	gtggo	c aaq	gtact	tac	aaa	cgtad	cgg a	aatgt	ggatt	480
ctto	caaad	ctc 🤇	cagat	taaa	aa at	cgga	ctaat	t tg	gtcaa	attg	ctaç	gaggt	tat 🤉	ggttg	gtagat	540
gaca	aagca	ata t	caci	tggt	ct g	gtaat	taaa	a cca	acaad	cata	ttaç	gacaa	aat 1	tgetg	gactct	600
tggg	gcago	caa t	tgga	aaaa	gc aa	aatga	aaatt	c cct	ttc	gcgt	tato	gttt	gg (cgtto	cccca	660

55

gcagctattt	tagttagttc	catgccaatt c	ctgaaggtg	tttctgaatc	ggattatgtt	720	
ggcgcaatct	tgggtgagtc	ggttccagta g	Itaaaatgtg	agaccaacga	tttaatggtt	780	
cctgcaacga	gtgagatggt	atttgagggt a	ctttgtcct	taacagatac	acatctggaa	840	
ggcccatttg	gtgagatgca	tggatatgtt t	tcaaaagcc	aaggtcatcc	ttgtccattg	900	
tacactgtca	aggctatgag	ttacagagac a	atgctattc	tacctgtttc	gaaccccggt	960	
ctttgtacgg	atgagacaca	taccttgatt g	gttcactag	tggctactga	ggccaaggag	1020	
ctggctattg	aatctggctt	gccaattctg g	atgccttta	tgccttatga	ggeteagget	1080	
ctttggctta	tcttaaaggt	ggatttgaaa g	Iggctgcaag	cattgaagac	aacgcctgaa	1140	
gaattttgta	agaaggtagg	tgatatttac t	ttaggacaa	aagttggttt	tatagtccat	1200	
gaaataattt	tggtggcaga	tgatatcgac a	tatttaact	tcaaagaagt	catctgggcc	1260	
tacgttacaa	gacatacacc	tgttgcagat c	agatggctt	ttgatgatgt	cacttctttt	1320	
cctttggctc	cctttgtttc	gcagtcatcc a	gaagtaaga	ctatgaaagg	tggaaagtgc	1380	
gttactaatt	gcatatttag	acagcaatat g	agcgcagtt	ttgactacat	aacttgtaat	1440	
tttgaaaagg	gatatccaaa	aggattagtt g	acaaagtaa	atgaaaattg	gaaaaggtac	1500	
ggatataaat	aa					1512	
<210> SEQ I <211> LENGT <212> TYPE: <213> ORGAN <400> SEQUE	H: 503 PRT ISM: Saccha	aromyces cere	visiae				
Met Arg Lys 1	Leu Asn Pr 5	co Ala Leu Gl	u Phe Arg 10	Asp Phe Ile	e Gln Val 15		
Leu Lys Asp	Glu Asp As 20	sp Leu Ile Gl 25		Glu Glu Ile 30	e Asp Pro		
Asn Leu Glu 35	Val Gly Al	a Ile Met Ar. 40	g Lys Ala	Tyr Glu Se: 45	r His Leu		
Pro Ala Pro 50	Leu Phe Ly	vs Asn Leu Ly 55	rs Gly Ala	Ser Lys Asj 60	p Leu Phe		
Ser Ile Leu 65	Gly Cys Pr 70	co Ala Gly Le	u Arg Ser 75	Lys Glu Ly:	s Gly Asp 80		
His Gly Arg	Ile Ala Hi 85	s His Leu Gl.	y Leu Asp 90	Pro Lys Th:	r Thr Ile 95		
Lys Glu Ile	Ile Asp Ty 100	vr Leu Leu Gl 10		Glu Lys Glu 110			
Pro Pro Ile 115		o Val Ser Se 120	er Ala Pro	Cys Lys Th: 125	r His Ile		
Leu Ser Glu 130	Glu Lys Il	e His Leu Gl. 135	n Ser Leu	Pro Thr Pro 140	o Tyr Leu		
His Val Ser 145	Asp Gly Gl 15	y Lys Tyr Le	u Gln Thr 155	Tyr Gly Met	t Trp Ile 160		
Leu Gln Thr	Pro Asp Ly 165	vs Lys Trp Th	ir Asn Trp 170	Ser Ile Ala	a Arg Gly 175		
Met Val Val		vs His Ile Th 18	-	Val Ile Ly: 190			
	Gln Ile Al	.a Asp Ser Tr		Ile Gly Ly:			
		200 eu Cys Phe Gl	y Val Pro		a Ile Leu		
210		215		220			

-continued

Val 225	Ser	Ser	Met	Pro	Ile 230	Pro	Glu	Gly	Val	Ser 235	Glu	Ser	Asp	Tyr	Val 240
Gly	Ala	Ile	Leu	Gly 245	Glu	Ser	Val	Pro	Val 250	Val	Lys	Суз	Glu	Thr 255	Asn
Asp	Leu	Met	Val 260	Pro	Ala	Thr	Ser	Glu 265	Met	Val	Phe	Glu	Gly 270	Thr	Leu
Ser	Leu	Thr 275	Asp	Thr	His	Leu	Glu 280	Gly	Pro	Phe	Gly	Glu 285	Met	His	Gly
Tyr	Val 290	Phe	Lys	Ser	Gln	Gly 295	His	Pro	Суз	Pro	Leu 300	Tyr	Thr	Val	Lys
Ala 305	Met	Ser	Tyr	Arg	Asp 310	Asn	Ala	Ile	Leu	Pro 315	Val	Ser	Asn	Pro	Gly 320
Leu	Cys	Thr	Asp	Glu 325	Thr	His	Thr	Leu	Ile 330	Gly	Ser	Leu	Val	Ala 335	Thr
Glu	Ala	Lys	Glu 340	Leu	Ala	Ile	Glu	Ser 345	Gly	Leu	Pro	Ile	Leu 350	Asp	Ala
Phe	Met	Pro 355	Tyr	Glu	Ala	Gln	Ala 360	Leu	Trp	Leu	Ile	Leu 365	Lys	Val	Aap
Leu	Lys 370	Gly	Leu	Gln	Ala	Leu 375	Lys	Thr	Thr	Pro	Glu 380	Glu	Phe	Суз	Гла
Lуа 385	Val	Gly	Asp	Ile	Tyr 390	Phe	Arg	Thr	Lys	Val 395	Gly	Phe	Ile	Val	His 400
Glu	Ile	Ile	Leu	Val 405	Ala	Asp	Asp	Ile	Asp 410	Ile	Phe	Asn	Phe	Lys 415	Glu
Val	Ile	Trp	Ala 420	Tyr	Val	Thr	Arg	His 425	Thr	Pro	Val	Ala	Asp 430	Gln	Met
Ala	Phe	Asp 435	Asb	Val	Thr	Ser	Phe 440	Pro	Leu	Ala	Pro	Phe 445	Val	Ser	Gln
Ser	Ser 450	Arg	Ser	Lys	Thr	Met 455	Lys	Gly	Gly	Lys	Сув 460	Val	Thr	Asn	Суз
Ile 465	Phe	Arg	Gln	Gln	Tyr 470	Glu	Arg	Ser	Phe	Asp 475	Tyr	Ile	Thr	Суз	Asn 480
Phe	Glu	Lys	Gly	Tyr 485	Pro	Lys	Gly	Leu	Val 490	Asp	Lys	Val	Asn	Glu 495	Asn
Trp	Lys	Arg	Tyr 500	Gly	Tyr	Lys									

We claim:

1. A recombinant yeast that has been genetically engineered to: ferment xylose and exhibit a reduced amount of ⁵⁰ functional PAD1 polypeptide, wherein the recombinant yeast has increased tolerance to gamma valerolactone (GVL) toxicity relative to a wild-type yeast or another recombinant yeast having the same genetic background but not exhibiting a reduced amount of functional PAD1 polypeptide.

2. The recombinant yeast of claim **1**, further exhibiting a reduced amount of functional FDC1 polypeptide, wherein the recombinant yeast has increased tolerance to GVL ₆₀ toxicity relative to a wild-type yeast or another recombinant yeast having the same genetic background but not exhibiting reduced amounts of functional PAD1 and FDC1 polypeptides.

3. The recombinant yeast of claim **1**, wherein the recom- 65 binant yeast comprises a disabling mutation in a gene encoding PAD1 polypeptide.

4. The recombinant yeast of claim **2**, wherein the recombinant yeast further comprises a disabling mutation in a gene encoding FDC1 polypeptide.

5. The recombinant yeast of claim **3**, wherein the PAD1 polypeptide is SEQ ID NO:8.

6. The recombinant yeast of claim **4**, wherein the FDC1 polypeptide is SEQ ID NO:10.

7. The recombinant yeast of claim 1, further exhibiting reduced or undetectable amounts of functional ISU1, GRE3, and IRA2 polypeptides, wherein the recombinant yeast is capable of increased aerobic or anaerobic xylose fermentation relative to a wild-type yeast or another recombinant yeast not exhibiting reduced amounts of functional PAD1, ISU1, GRE3, and IRA2 polypeptides.

8. The recombinant yeast of claim **1**, further comprising a disabling mutation at each of loci isu1, gre3, and ira2, whereby the mutations result in reduced amounts of functional ISU1, GRE3, and IRA2 polypeptides, respectively.

9. The recombinant yeast of claim 8, wherein the disabling mutation at the gre3 locus comprises a substitution of

20

a threonine for the alanine at amino acid residue position 46 of SEQ ID NO:4; wherein the disabling mutation at the ira2 locus comprises a substitution of a stop codon for the glutamate at amino acid residue at position 2927 of SEQ ID NO:2; and wherein the disabling mutation at the isu1 locus 5 comprises a substitution of a tyrosine for the histidine at amino acid residue position 138 of SEQ ID NO:6.

10. The recombinant yeast of claim **8**, wherein the recombinant yeast produces ethanol at an increased rate relative to a wild-type yeast or another recombinant yeast not exhibit- ¹⁰ ing reduced or undetectable amounts of functional ISU1, GRE3, and IRA2 polypeptides.

11. The recombinant yeast of claim 10, wherein the increased rate of ethanol production occurs under anaerobic conditions.

12. The recombinant yeast of claim **1**, wherein the recombinant yeast is of the genus *Saccharomyces*.

13. The recombinant yeast of claim **12**, wherein the recombinant yeast is of the species *Saccharomyces cerevisiae*.

14. The recombinant yeast of claim 3, wherein a portion of an extrachromosomal vector stably maintained in the recombinant yeast comprises the disabling mutation.

15. The recombinant yeast of claim **3**, wherein a nucleic acid sequence comprising the disabling mutation is integrated into a chromosome of the recombinant yeast.

16. A yeast inoculum, comprising: (a) a recombinant yeast of claim **1**; and (b) a culture medium.

17. A method for fermenting cellulosic material into ethanol, comprising contacting a GVL-treated hydrosylate to the recombinant yeast of claim 1 or the yeast inoculum of claim 16 for a period of time sufficient to allow fermentation of at least a portion of the cellulosic material to ethanol, whereby the rate of fermentation of cellulosic material of the GVL-treated hydrosylate to ethanol is increased relative to the fermentation rate of a GVL-treated hydrosylate not contacted to the recombinant yeast or the yeast inoculum.

18. The method of claim **17**, further comprising separating the ethanol from fermented cellulosic material.

19. The method of claim **17**, wherein the GVL-treated hydrolysate comprises xylose.

20. The method of claim 17, wherein the recombinant yeast is *Saccharomyces cerevisiae*.

21. The method of claim **17**, wherein the cellulosic material comprises lignocellulosic biomass.

22. The method of claim 21, wherein the lignocellulosic biomass comprises at least one material selected from the group consisting of agricultural residues, wood, municipal solid wastes, paper and pulp industry wastes, and herbaceous crops.

* * * * *