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(57) ABSTRACT 

A system and method for reconstructing a series of images 
of a subject includes acquiring medical image data from the 
subject with a medical imaging system and reconstructing a 
series of images of the subject from the acquired medical 
image data set. The reconstructing includes enforcing gen­
eral adherence to a non-patient-specific signal model that 
describes a dependency of image intensity values on at least 
one variable that is associated with a physical or physiologi­
cal property by constraining reconstruction of individual 
images in the series of images using the non-patient-specific 
model. The reconstructing also includes preserving infor­
mation in the series of images that deviate from the non­
patient-specific model by controlling a requirement of con­
sistency with the non-patient-specific model. 
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SYSTEM AND METHOD FOR 
ACCELERATED, TIME-RESOLVED 

IMAGING 

2 
k-space fixed. The combination of the separate NMR signals 
produced by the separate receiver coils enables a reduction 
of the acquisition time required for an image (in comparison 
to conventional k-space data acquisition) by a factor that, in 

CROSS-REFERENCE TO RELATED 
APPLICATIONS 

This application is a division of U.S. patent application 
Ser. No. 14/481,790 filed Sep. 9, 2014, which is incorpo­
rated by reference herein. 

5 the most favorable case, equals the number of the receiver 
coils. Thus, the use of multiple receiver coils acts to increase 
imaging speed by accelerating the encoding, without 
increasing gradient switching rates or RF power. 

The advent of compressed sensing (CS) provided a new 

STATEMENT REGARDING FEDERALLY 
SPONSORED RESEARCH 

10 sub-Nyquist sampling requirement for images accepting a 
sparse representation in some basis. However, the limited 
spatial sparsity of magnetic resonance images affords only 
moderate acceleration factors before CS-based reconstruc-

This invention was made with govermnent support under 15 

NS065034 awarded by the National Institutes of Health. The 
govermnent has certain rights in the invention. 

BACKGROUND 

tions introduce image blurring and blocky artifacts or other 
image errors. 

Another group of reconstruction approaches employs a 
data-driven approach, in which low-resolution estimates of 
the dynamic image series are used to learn a low-rank 
temporal basis that can be used to represent all temporal 

20 behaviors in the time series either exactly or approximately. 
However, several problems exist in cases with complex 
temporal behavior of the underlying image series when high 
accelerations are needed. First, temporal behaviors present 
in the image series camiot be well represented by a small 

The present disclosure relates to systems and methods for 
medical imaging, such as magnetic resonance imaging and 
computed tomography. More particularly, the invention 
relates to systems and methods for reconstructing a medical 
image or a series of medical images. 

Increasingly, clinical medicine employs medical imaging 
to drive clinical decisions and, in some instances, to direct 
therapeutic or surgical procedures. The non-invasive nature 
of medical imaging systems, such as magnetic resonance 
imaging (MRI), computed tomography (CT) imaging, and 
others, make these systems valuable sources of information 
about the patient and pathology and even physiology. 

25 number of basis functions, while using a large number of 
basis functions at high accelerations does not improve 
conditioning of the reconstruction problem and results in 
amplified noise and/or unresolved aliasing artifacts. Second, 
there often is a large error stemming from learning the 

Regardless of the imaging system or the clinical purpose, 
the competing constraints of temporal and spatial resolution 

30 temporal basis from low-resolution images at high accelera­
tions, which propagates into the reconstructed images. 
Third, higher spatial frequency information cannot be fully 
restored at high accelerations leading to loss of spatial 
resolution in the reconstructed images. 

Therefore, it would be desirable to have a system and 
method for further addressing the challenge presented by the 
competing constraints of temporal resolution or radiation 
dose versus spatial resolution in medical imaging. 

SUMMARY 

The disclosure invention overcomes the aforementioned 
drawbacks by providing a system and method for recon­
structing a medical image in which the image reconstruction 

( and radiation dose in case of CT imaging) must be balanced 35 

with these systems. For example, MRI often has to contend 
with inherent acquisition speed limits to depict time-varying 
processes at the desired spatial resolution and coverage. 
Hence, incomplete sampling strategies followed by appli­
cation of specialized image reconstruction algorithms have 40 

long been a popular strategy to increase effectual MRI 
speed. In dynamic MRI, such dedicated image reconstruc­
tion approaches often rely on various kinds of prior infor­
mation in spatial and/or temporal dimensions to enhance 
reconstruction fidelity in these domains. 45 process is constrained to be consistent with a signal model. 

For example, the clinical need for high spatial and tem­
poral resolution in time-resolved magnetic resonance appli­
cations often necessitates image reconstruction from incom­
plete datasets because the total scan time is limited. This is 
particularly the case when studying a physiological process 50 

because high temporal resolution is often required to acquire 
the desired information about the physiological process. One 
such strategy is referred to generally as "parallel imaging." 
Parallel imaging techniques use spatial information from 
arrays of radio frequency (RF) receiver coils to compliment 55 

the encoding which would otherwise have to be obtained in 
a sequential fashion using RF pulses and field gradients 
(such as phase and frequency encoding). Each of the spa­
tially independent receiver coils of the array carries certain 
spatial information in the form of a sensitivity profile. This 60 

information is utilized in order to achieve a complete 
location encoding by combining the simultaneously 
acquired coil data from the separate receiver coils. Specifi­
cally, parallel imaging techniques can reconstruct under­
sampled k-space, whereby the number of phase-encoded 65 

lines acquired is reduced by increasing the distance between 
these lines while keeping the maximal extent covered in 

In particular, a system and method is provided that utilizes 
analytical models, not as part of a post-processing technique, 
but within the reconstruction from highly undersampled data 
to yield clinically-usable images that accommodate the 
underlying pathology of the patient, despite the use of the 
model. The reconstruction of the image is performed with 
the assumption that temporal progression of each pixel can 
be described by an analytical function determined by theo­
retical considerations in each application; however, the 
reconstruction process is designed to accommodate devia­
tions from the model that reflect underlying pathology or 
pathologies of the patient. 

In accordance with one aspect of the disclosure, a mag­
netic resonance imaging (MRI) system is disclosed that 
includes a magnet system configured to generate a polariz­
ing magnetic field about at least a portion of a subject 
arranged in the MRI system and a magnetic gradient system 
including a plurality of magnetic gradient coils configured to 
apply at least one magnetic gradient field to the polarizing 
magnetic field. The MRI system also includes a radio 
frequency (RF) system configured to apply an RF field to the 
subject and to receive magnetic resonance signals from the 
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subject using a coil array and a computer system. The 
computer system is programmed to control the RF system 
and the magnetic gradient system to acquire medical image 
data from the subject in parallel using the coil array and 
reconstruct a series of images of the subject from the 5 

acquired medical image data set. The computer is configured 
to reconstruct by enforcing general adherence to a non­
patient-specific signal model that describes a dependency of 
image intensity values to at least one variable that is asso­
ciated with a physical or physiological property by con- 10 

straining reconstruction of individual images in the series of 
images using the non-patient-specific model. The computer 
is also configured reconstruct by preserving information in 
the series of images that deviate from the non-patient-

15 
specific model by controlling a requirement of consistency 
with the non-patient-specific model. 

In accordance with another aspect of the disclosure, a 
method for reconstructing a series of images of a subject 
with a medical imaging system is disclosed. The method 20 

includes acquiring medical image data from the subject with 
a medical imaging system and reconstructing a series of 
images of the subject from the acquired medical image data 
set. The reconstruction is performed by enforcing general 
adherence to a non-patient-specific signal model that 25 

describes a dependency of image intensity values on at least 
one variable that is associated with a physical or physiologi-
cal property by constraining reconstruction of individual 
images in the series of images using the non-patient-specific 
model. The reconstruction is also performed by preserving 30 

information in the series of images that deviates from the 
non-patient-specific model by controlling a requirement of 
consistency with the non-patient-specific model. 

In accordance with another aspect of the disclosure, a 
method for reconstructing a series of images of a subject is 35 

disclosed. The method includes acquiring medical image 
data from the subject with a medical imaging system. The 
method also includes reconstructing a series of images of the 
subject from the acquired medical image data set while 
constraining individual images in the series of images to be 40 

consistent with a signal model that describes a dependency 
of image intensity values on at least one variable that is 
associated with a physical property of the subject and to be 
consistent with a motion correction operator. 

The foregoing and other aspects and advantages of the 45 

invention will appear from the following description. In the 
description, reference is made to the accompanying draw­
ings, which form a part hereof, and in which there is shown 
by way of illustration a preferred embodiment of the inven­
tion. Such embodiment does not necessarily represent the 50 

full scope of the invention, however, and reference is made 
therefore to the claims and herein for interpreting the scope 
of the invention. 

4 
disclosure and including an optional motion correction in 
accordance with the present disclosure. 

FIG. 4 is a flowchart setting forth the steps of an example 
of a method for motion correction in accordance with the 
present disclosure. 

FIG. 5 is a block diagram of an example of a magnetic 
resonance imaging system, which may be configured to 
perform in accordance with the present disclosure. 

FIG. 6 is a block diagram of an example of a computed 
tomography system, which may be configured to perform in 
accordance with the present disclosure 

DETAILED DESCRIPTION 

In dynamic imaging applications, temporal behavior of 
the signal is often well approximated by mathematical 
functions or their combinations. For example, in time­
resolved intracranial contrast enhanced MR angiography 
(CE MRA), the signal in the vessels can be described by a 
sum of gamma-variate functions. This behavior reflects the 
physics of contrast propagation through the human cardio-
vascular system. The same applies to dynamic susceptibility 
contrast perfusion-weighted imaging (DSC PWI). In many 
such applications, these modeling functions are used during 
a post-processing stage to derive quantitative metrics. For 
example, in DSC PWI, the signal is assumed to follow these 
functions and is used in the analysis of images to determine 
arterial input function, calculate cerebral blood volume and 
flow, and determine mean transit time. These parameters are 
usually derived after standard image series reconstruction 
stage by fitting the theoretical model functions to the recon-
structed image series. 

However, as will be described, the present disclosure 
provides a system and method that uses a non-patient­
specific model, such as a physical or physiological model, to 
be used during a reconstruction process to provide image 
quality with less noise and undersampling artifacts than 
could otherwise be achieved, for example, using accelera­
tion techniques, such as parallel imaging. When combined 
with parallel imaging, the system and method efficiently 
reduces noise levels, which is the main limiting factor of 
parallel imaging, thereby providing higher acceleration 
capabilities and image quality. Compared to standard view­
sharing techniques used in dynamic contrast-enhanced 
imaging to improve image quality, the systems and methods 
of the present disclosure preserve temporal fidelity of the 
reconstructed time series. In applications such as contrast­
enhanced, magnetic resonance angiography (CE MRA), this 
allows for accurate separation of arterial and venous phases 
of contrast dynamics and estimation of blood volume/blood 
flow/mean transit times in perfusion imaging. Compared to 
other techniques based on compressed sensing estimation 
theory, the systems and methods of the present disclosure 
improve image sharpness/spatial resolution/temporal reso-

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1 is a flowchart setting forth the steps of an example 
of a method for medical image reconstruction using a 
non-patient-specific model in accordance with the present 
disclosure. 

55 lution. The systems and methods of the present disclosure 
are also more robust in practice, especially when imaging a 
disease or pathology where CS assumptions often fail, or in 
the presence of motion. 

FIG. 2 is a flowchart setting forth the steps of an example 
of a method for constrained image reconstruction using the 
non-patient-specific model in accordance with the present 
disclosure. 

FIG. 3 is a flowchart setting forth the steps of an example 
of a method for constrained image reconstruction using the 
non-patient-specific model in accordance with the present 

Thus, a system and method are provided for reconstruct-
60 ing medical images by employing a model-based reconstruc­

tion (MBR) process that utilizes a non-patient-specific 
model, such as a physical or physiological model. By way of 
example, a series of medical images can be reconstructed 
from undersampled medical image data using the provided 

65 system and method, particularly where the medical imaging 
process includes acquiring medical image data that depends 
on one or more parameters that are known from an analytical 
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or physical model that is not patient specific. As a specific 
example, this MBR-based image reconstruction is readily 
applicable to quantitative MRI and various other imaging 
applications, including CT angiography, requiring time­
resolved or spectrally-resolved medical imaging. MBR- 5 

based reconstruction can provide significant benefits over 
existing image reconstruction techniques. 

Turning to FIG. 1, a flow chart 100 is provided for a 
process using a MBR process that utilizes a non-patient­
specific model, such as a physical or physiological model. At 10 

process block 102 medical imaging data is acquired. As will 
be described, the acquisition may be undersampled/acceler­
ated. At process block 104, a general, non-patient-specific 
model may be selected to provide a priori information to the 

15 
reconstruction of the image data acquired at process block 
102. As will be further described, the non-patient-specific 
model may be, as a non-limiting example, a model for 
contrast bolus propagation dynamics. That is, the non­
patient-specific model is one that is general to the physical 20 

and/or physiological phenomenon being investigated during 
the imaging study and, thus, need not be created specifically 
for the patient or subject being imaged. At process block 
106, the selected non-patient-specific model is used to as a 
priori knowledge about the patient, despite not being spe- 25 

cific to the patient, to constrain the reconstruction of the 
acquired image data. 

It seems counterintuitive to use a non-patient-specific 
model within a medical imaging reconstruction process, 
which by definition and the purpose of a clinical medical 30 

application, necessitates patient-specific information, par­
ticularly, about underlying pathologies associated with or 
being sought to be investigated by the imaging study. That 
is, it would seem that using a non-patient-specific model in 

35 
a reconstruction process could cause the images to be 
inaccurate by minimizing the pathological conditions or any 
structures that deviate from the "standard" that is reflected in 
the non-patient-specific model. Put another way, using a 
non-patient-specific model in an image reconstruction pro- 40 

cess would, to many, seem to risk introducing inaccuracies 
in the reconstructed images caused by forcing the images to 
comport with the non-patient-specific model, when the 
patient may deviate from the non-patient-specific model. 
However, as will be described, the present disclosure pro- 45 

vides a construct that facilitates deviation from the non-

Sy(r) = r e;k C Cy(r)f(r)dr; 
Jvo1 

6 

(1) 

where r and k are image space and k-space coordinate 
vectors, respectively. In its matrix form, and adding a term 
for the presence of noise errors, equation (1) can be written 
as: 

s=Ef+n (2); 

where f is the solution (image) vector corresponding to an 
arbitrary time frame in the image series, s is a vector of 
k-space samples from all RF coil receivers, n is noise error, 
and E is the encoding matrix with elements corresponding to 
both Fourier and coil sensitivity encoding terms: 

(3). 

In equation (3), rP and km are the discretized spatial and 
k-space coordinates, respectively. In single-channel MRI 
acquisitions, the noise can generally be assumed to be 
identically independently distributed (i.i.d.) Gaussian noise. 
For multi-channel MRI acquisitions, noise whitening pre­
processing using a separately measured noise covariance 
matrix may used to reduce noise errors. A signal-to-noise 
ratio (SNR) optimized estimation of the image vector, f, 
from the k-space data, s, may be generally accomplished by 
enforcing data consistency in the least squares fashion: 

(4) 

where II ... lb is the 12 -norm. In general, the IP-norm of a 
vector, x, may be written as: 

(5) 

Accelerated MRI techniques rely on incomplete k-space 
sampling (undersampling), which results in a poorly-condi­
tioned or, in the case of significant undersampling, rank 
deficient encoding matrix, E. The poor conditioning of the 
encoding matrix renders solutions to equation ( 4) sensitive 
to errors in the k-space data, and the potential rank defi-
ciency of the encoding matrix means that equation ( 4) will 
have non-unique solutions. To stabilize estimation of the 
image vector, f, the proposed model-based approach can be 

patient-specific model during the reconstruction process to 
overcome this point, while also controlling against pursuing 
spurious deviations. Furthermore, variations on the tech­
nique will be described to improve performance in the 
presence of patient motion. In this approach, the motion can 
be estimated either from low-resolution navigators or in an 
iterative update procedure to correct the image series for 
application of the model-consistency constraints. 

50 used for regularization of the underdetermined image series 
reconstruction problem. To isolate a single solution, prior 
information about the image series as a whole can be used 
to constrain the solution and, thus, the reconstruction. 

The above-described process can be implanted using any 

That is, the image vector, f, can be represented as a result 
55 of evaluation of an analytical function (model) with a given 

set of model parameters: of a variety of imaging modalities, including MRI and CT 
imaging systems. To explain the details of the general 
process described with respect to FIG. 1, the following 
discussion is provided, which utilizes a non-limiting 60 
example of an MRI system and makes reference to k-space 
data. However, other imaging modalities may likewise be 
used, such as CT systems and the like, with associated data. 

In the absence of relaxation effects, the MR signal col­
lected by the yth RF receiver coil out of the total number nc 65 

of coils, with sensitivity Cy(r), from an object, f(r) over a 
volume-of-interest ("VOI") may be modeled as: 

f=S(c,p) (6); 

where c is a set of operator-controlled, or control, param­
eters, p are free (independent) model parameters, and 
S ( ... ) is a synthesis operator that, for a given set of control 
parameters, maps the free parameters into the corresponding 
image series. Control parameters are parameters of pulse 
sequence and acquisition, which, depending on the type of 
application may include but not limited to echo time (TE), 
repetition time (TR), inversion recovery time (TI), and time 
moment of acquisition of image f. Free parameters may 
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include but not limited to longitudinal relaxation time, T 1 ; 

transverse relaxation time, T 2 ; apparent transverse relax­
ation time, T 2 *; magnetization, M0 ; diffusion coefficients; 
magnetization transfer parameters; separated water signal 
contribution and separated fat signal contribution; fat frac­
tion; and parameters describing mathematical functions gov­
erning contrast bolus propagation. 

Let us define the experiment design as a set of vectors of 
control parameters, each corresponding to an individual 
measurement: 

N (6). 

Let 

8 
The algorithm alternates between estimation of refined ver­
sion of the operator D, defined as D=S;:S;:, using an estimate 
of the image series on the previous step, and estimation of 
the next estimate of the image series using the refined 

5 version of the operator. A new version of the operator is 
found on a k th step of the iterative process as a function of 
image series estimated on the previous ((k-l)'h) step of the 
iterative process: 

10 (14); 

(7). 15 

The sequence of operations required to estimate this 
operator includes fitting the model to the image series 
estimate to yield parametric maps of the model, and then use 
the model to create the synthetic image series, which is used 
to construct the operator. 

be a stacked vector of images which correspond to the 
acquisition with the experiment design c. 

Further, a vector containing parametric (model parameter) 
maps indicative of the free parameters participating in a 
given problem formulation can be defined as: 

(8). 

The parametric maps, p, can be determined through the 
following equation: 

(9); 

where S;; ( • • •) is an analysis operator that maps the image 
series, I, to the parametric maps, p. Similarly, let S;: be the 
associated synthesis operator that maps from parametric 
maps to the image series corresponding to c: 

(10); 

The pixels accurately described by the analytical model 
can be described by: 

(11). 

As will be described, the present disclosure utilizes ana­
lytical or non-patient-specific models for the reconstruction 

In this case, at process block 202, the first (k=l) approxi­
mation of the operator (D0 )) is determined from the initial 
(k=O) estimate of the image series Ico) and the selected 
analytical or non-patient-specific model, chosen, for 

20 example, as described above, based on the clinical focus of 
the imaging study being performed. A non-limiting example, 
in the case of MRI, the non-patient-specific model may 
relate to time resolved contrast-enhanced magnetic reso­
nance angiography (CE MRA), dynamic susceptibility con-

25 trast perfusion-weighted imaging (DSC PWI), or dynamic 
contrast enhanced perfusion-weighted imaging (DCE-PWI). 
Additionally, other modalities may benefit from this 
approach. For example, in contrast-enhanced time-resolved 
CT angiography the temporal signal may also be described 

30 by analytical functions reflecting the physics of contrast 
propagation throw the human cardio-vascular system. 

35 

In tum, the kth approximate of the operator D is used to 
produce updated version of the image series. This is first 
accomplished by constructing a sparsifying transform 

'l'(k)=D(kp(k/-J (15); 

where I is the identity matrix, and Dt is the pseudoinverse 
of the operator D, and then solving for 

of image data, which may be highly undersampled, to yield 
40 

images. To do so, the reconstruction is performed under the 
assumption that temporal progression of each pixel can be 
exactly or approximately described by the analytical or 
non-patient-specific function or model, determined by theo­
retical considerations in each application. Generally, the 

45 
method can be used in any application in which dependence 

Tc,1 = argmin{IIET -sll, +,l.ll'l\,iTIIP). (16) 

T 

The optimization problem contains two terms: data-fidel-
ity term and non-patient-specific, model-based term. If the 
second term is pushed close to zero (by biasing the image 
towards the model), the first term becomes large due to 
inconsistencies between the acquired data and the solution, 

of signal intensity on time/other free parameter can be 
described by an analytical function or non-patient-specific 
model. 

Specifically, referring to FIG. 2, steps of a reconstruction 
process 200 in accordance with the present disclosure begin 
by seeking to solve the following problem that can be 
mathematically represented as: 

50 the former describing the subject being imaged and the latter 
of which is describing the model. Therefore, minimal solu­
tion should reach a balance between these two quantities. 

minllET - sll 2 subject to s,(SdlJ) = J; 
f 

(12) 55 

As described above, this balance is controlled by the IP 
norms. The use of 11 or 10 norm to measure the size of the 
non-patient-specific, model-based term can be used to con­
trol undesired weighting toward the model that could oth-

where 

(13) 

are the combined encoding matrix and data vector con­
taining encoding matrices and data vectors for all images in 
the acquired series, respectively. 

The method of the present disclosure can be used to solve 
equation (12) with the operator Din an iterative reconstruc­
tion approach, referred to hereafter as the MBR algorithm. 

erwise obscure clinically-desired information. Traditional 
formulation of the compressed-sensing optimization for 
image reconstruction uses the 10 norm, which simply counts 

60 the number of points, for which this term is non-zero, so this 
is a true measure of sparsity. In the present disclosure, the 10 

norm can be replaced with 11 norm, which also produces a 
sparse solution and does not penalize outliers data, as 
compared to the non-patient-specific model. Use of the 

65 quadratic 12 norm, which squares the size of the deviations, 
also makes 12 norm value much larger than I 1 norm value, so 
the non-patient-specific, model-based term has more impact 
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on the solution that the data-fidelity term. Thus, in some 
settings, the 11 norm may be preferred over 10 norm because 
it is more computationally efficient. However, other norms 
besides the 11 norm may also be suitable. For example, in 
some situations, some might consider IP norms, with p<=l. 5 

The use of IP (p<=l) norms allows the iterative process to 
relax the requirement of consistency with the non-patient­
specific model if it finds that the fit with the non-patient­
specific model is undesirable for a given pixel and precludes 
simultaneous minimization of the data fidelity term. In still 10 

other settings, such as when the non-patient-specific model 
is believed to fit well with the acquired data, an 12 norm may 
be used. 

10 
described, is used to reconstruct images. As one non-limiting 
example, the model may be a non-patient-specific model of 
contrast propagation. As indicated at process block 306, the 
acquired image data is used to obtain an initial image series, 
which is then used at process block 308 to fit the model 
selected at process block 304 thereto. At process block 310 
and in accordance with CS reconstruction processes, a 
sparsifying transform may be constructed as in equation 
(15). At process block 312, the CS formulation with model­
based penalty term enforces general adherence to the model 
during the iterative reconstruction, while the use of robust 11 

norm preserves temporal dynamics that deviate from the 
model, for example, such as due to contrast extravasation The size of the non-patient-specific, model-based term is 

also regulated by the regularization parameter, A, whose 
quantity affects the balance between the two terms. Choos­
ing a large lambda biases the solution to the non-patient­
specific model. Generally, A can be chosen empirically or 
from theoretical considerations, for example, such as an 
L-curve method or noise level in the data. 

15 
effects in the case of a non-patient-specific model of contrast 
dynamics. A stopping criteria is checked at decision block 
314. If the stopping criterion is not met, the updated image 
series created at process block 312 is provided at resource 
block 316 as the process cycles back to process block 308 

The algorithm alternates between solving equation (14) 
and equation (16) multiple times starting from the initial 
estimate fco)· Notably, the initial estimate can be estimated 
by a variety of reconstruction methods, including but not 
limited to parallel imaging reconstruction, a CS-based 
reconstruction, a model consistency condition (MOCCO) 
constrained image reconstruction, a highly constrained pro­
jection reconstruction (HYPR), and other reconstruction 
frameworks. 

20 
where the model is fit to the new image series and at process 
block 301 to construct a sparsifying transform, at process 
block 310. Subsequently, at process block 312, the recon­
struction is repeated to create an improved time series until 
final images that meet the stopping criteria are delivered at 

25 
process block 318. In this example, the number of iterations, 
for example, of equations (14) and (16), depends on the 
acceleration factor and potential deviations of the underlying 
image series from the non-patient-specific, analytical model. 

In addition to potential deviations of the underlying image 

On each iteration step, image series reconstructed using 
the operator D at process block 204 is compared at decision 
block 206 relative to stopping criteria, such that, when 
outside the tolerance, the operator is updated at process 
block 208 until the stopping criteria met, at which point a 
final image series is provided at process block 210. 

30 
series from the non-patient-specific, analytical model due to 
pathologies of the patient, inconsistencies may be a result of 
patient motion. That is, in some cases, the inconsistencies 
between the underlying image series and analytical model 
may be caused by motion of the subject during data acqui-

35 sition. In this case, equation (16) can be modified by the use 
of a motion correction (MC) operator T describing rigid or 
non-rigid body motion between time frames, as follows: 

Standard CS approaches exploit sparsity of the image 
series after application of general transforms, such as wave­
lets or spatial/temporal gradients. The above-described tech­
nique presents an application-specific approach to transform 
design. As a non-limiting example, the non-patient-specific 40 

model can be one to account for physical properties of 
contrast dynamics, for example, as used in a CE MRA 
imaging process. The transform design can be tailored to CE 
MRA by exploiting the fact that first-pass contrast bolus 
propagation and recirculation can be modeled. One non- 45 

limiting example of a non-patient-specific model of contrast 
bolus propagation and recirculation may include a linear 
combination of multiple gamma-variate curves, such as 
described, for example, in Davenport R, NUCL Med 1984; 
24:9454, which is incorporated herein by reference in its 50 

entirety. Historically, such curves have been used for post­
reconstruction image post-processing. However, as 
described, the present disclosure provides a construct within 
which to utilize such non-patient-specific, analytical models 
to reconstruct images at greater spatial and/or temporal 55 

resolutions than could traditionally be achieved. 
To continue with this example of a CE MRA imaging 

process 300 in accordance with the present disclosure, and 
referring now to FIG. 3, the imaging process may include a 
parallel imaging process. In this case, data acquisition may 60 

be performed at process block 302 using multiple coils. As 
such, as will be described, the image reconstruction process 
may be a SENSE reconstruction process, which is known by 
itself to produce images that may suffer from excessive 
noise, undersampling artifacts and/or resolution loss ( de- 65 

pending on the acquisition type) at high accelerations. A 
model is selected at process block 304 and, as will be 

(17) 

The application of the operator T aligns individual frames 
of the image series before invoking the model-based con­
straint. This operator can be pre-estimated, for example, by 
acquiring motion estimates from external motion tracking 
devices or acquisition of navigating k-space data prior to or 
extracted from the data acquisition at process block 302, as 
illustrated in optional step 320 of FIG. 3. The data acquired 
at process block 302 and 320 can be used to estimate patient 
motion at process block 322 and then the operator T at 
process block 324. Alternatively, the initial images created at 
process block 306 may be used or an external tracking 
device 323 may be used to provide motion tracking data. The 
operator T can be pre-estimated by an initial image series -P:0 l 

or by images reconstructed from the navigating data by 
co-registering each time frame of the image series with the 
first or another (unperturbed) one, such as at process block 
322. Then, during reconstruction, equation (18) may be 
solved with the same T each time because T is assumed to 
be known from pre-estimation. 

In an alternative implementation, instead of acquiring 
navigator data at process block 320, operator T can be 
learned adaptively during reconstruction at process block 
326. This adaptive correction uses multiple estimations of 
the motion operator after each solution of equation (17) 
followed each time by an update of the operator T with T(k) 
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determined now from the image series J(kl_ Thus, this 
construct can be readily integrated with the MBR process 
described above with respect to FIGS. 1-3, as illustrated in 
FIG. 3. That is, in this case, the reconstruction is performed 

12 
image-derived quantitative metrics, such as cerebral blood 
flow/volume maps in perfusion MRI. 

at process block 312 with motion correction in place and the 5 

stopping criteria at decision block 314 has two consider­
ations: (1) analysis of the model, as described above, and (2) 
analysis of the motion parameters created at process block 
326 versus the motion parameters estimated at the previous 
step. These considerations may be analyzed using a variety 10 

of processes. As one non-limiting example, a user may select 

The above-described model-based reconstruction (MBR) 
techniques and motion corrections, alone or in combination, 
may be used with a wide variety of imaging modalities and 
clinical applications. As described above, the techniques 
may be utilized with CS-based reconstruction, MOCCO 
constrained image reconstruction, HYPR, and other recon­
struction frameworks. With respect to MOCCO constrained 
image reconstruction the reconstruction of image series for 
parameter mapping, such as Tl/T2 mapping, and also ana-
lytical models of signal evolution, can benefit from the 
above-described MBR and motion correction, including 
both the above-described navigator-based and the adaptive 
motion corrections. 

a predetermined number of passes that is predetermined to 
satisfy the stopping criteria. As another non-limiting 
example, the stopping criteria can be based on a deviation 

15 
metric evaluated through a comparison of the results of a 
most-recent pass versus a prior pass. If the deviation found 

By way of example, the aforementioned image recon­
struction and motion correction methods may be imple­
mented in MRI, CT, and other imaging applications. Refer­
ring particularly now to FIG. 5, an example of an MRI 
system 100 is illustrated. Thereafter, with reference to FIG. 
6, a CT system such as may be used with the present 

in the comparison is smaller than a predetermined metric, 
the stopping criteria is satisfied. Notably, the two consider­
ations may both be evaluated in this manner. That is, updates 20 

of model update and updates of motion transform may both 
be evaluated at decision block 314. The criterion for the 
former may be the changes in images reconstructed on two 
consequent passes iterations, and the criterion of the latter 
may be the changes in motion parameters obtained on the 
same passes. 

However, the above-described motion correction process 
can also be utilized separately for any compressed sensing 
(CS) process. For example, when performing a CS-based 
image reconstruction, the use ofl1 norm in it can be used to 
make reconstruction less sensitive to sharp signal changes, 
in particular, caused by motion. However, the above-men­
tioned adaptive process makes such a CS-based reconstruc­
tion further robust to motion. Referring to FIG. 4, a process 
is illustrated that alternates between co-registration of image 
estimates to obtain rigid body transformations (T) and the 
reconstruction step given by: 

(18) 

where transformations T are combined with the arbitrary 
CS transform (<I>) designed for a particular application to 
align the images in I before invoking a CS constraint, 
resulting in a motion-adaptive transform. Such a motion 
correction process 400 begins with the acquisition of a time 
series of data and reconstruction at process block 402, which 

disclosure will be described. 
The MRI system 500 includes an operator workstation 

502, which will typically include a display 504, one or more 
25 input devices 506, such as a keyboard and mouse, and a 

processor 508. The processor 508 may include a commer­
cially available programmable machine running a commer­
cially available operating system. The operator workstation 
502 provides the operator interface that enables scan pre-

30 scriptions to be entered into the MRI system 500. In general, 
the operator workstation 502 may be coupled to four servers: 
a pulse sequence server 510; a data acquisition server 512; 
a data processing server 514; and a data store server 516. 
The operator workstation 502 and each server 510,512, 514, 

35 and 516 are connected to communicate with each other. For 
example, the servers 510, 512, 514, and 516 may be con­
nected via a communication system 517, which may include 
any suitable network connection, whether wired, wireless, or 
a combination of both. As an example, the communication 

40 system 517 may include both proprietary or dedicated 
networks, as well as open networks, such as the internet. 

The pulse sequence server 510 functions in response to 
instructions downloaded from the operator workstation 502 
to operate a gradient system 518 and a radiofrequency (RF) 

45 system 520. Gradient waveforms necessary to perform the 
prescribed scan are produced and applied to the gradient 
system 518, which excites gradient coils in an assembly 522 
to produce the magnetic field gradients and used for position 
encoding magnetic resonance signals. The gradient coil 

50 assembly 522 forms part of a magnet assembly 524 that 
includes a polarizing magnet 126 and a whole-body RF coil 
528. 

is used to create a baseline at process block 404. For 
example, in a spiral acquisition, as each spiral shot is 
assigned to a separate time frame, the first (data fidelity) 
term is applied to unperturbed time frames to maintain 
consistency with the acquired data. Other possible acquisi­
tion schemes may include but not limited to radial acquisi- 55 

tion, where the subset of acquired projections is assigned to 

RF waveforms are applied by the RF system 520 to the RF 
coil 128, or a separate local coil (not shown in FIG. 5), in 
order to perform the prescribed magnetic resonance pulse 
sequence. Responsive magnetic resonance signals detected 

a separate time frame. This allows a transformation T to be 
created at 406 in a manner similar to that described above 
with respect to FIG. 3, whereby, convergence is checked at 
block 408 and transformation T is updated at 410 if no 
convergence is found. Thereafter, at process block 412, 
equation (18) is solved and the image series is updated at 
process block 414, and the process iterates. After conver­
gence is found at block 408, final transformations T are 
applied at process block 414 to align images for final display 
or quantitative analysis. The above-described motion-adap­
tive CS technique can be used to significantly improve 

by the RF coil 528, or a separate local coil, are received by 
the RF system 520, where they are amplified, demodulated, 
filtered, and digitized under direction of commands pro-

60 duced by the pulse sequence server 510. The RF system 520 
includes an RF transmitter for producing a wide variety of 
RF pulses used in MRI pulse sequences. The RF transmitter 
is responsive to the scan prescription and direction from the 
pulse sequence server 510 to produce RF pulses of the 

65 desired frequency, phase, and pulse amplitude waveform. 
The generated RF pulses may be applied to the whole-body 
RF coil 528 or to one or more local coils or coil arrays. 
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The RF system 520 also includes one or more RF receiver 
channels. Each RF receiver channel includes an RF pream­
plifier that amplifies the magnetic resonance signal received 
by the coil 528 to which it is connected, and a detector that 
detects and digitizes the quadrature components of the 5 

received magnetic resonance signal. The magnitude of the 
received magnetic resonance signal may, therefore, be deter­
mined at any sampled point by the square root of the sum of 
the squares of the and components: 

the operator workstation 502. Such processing may, for 
example, include one or more of the following: reconstruct­
ing two-dimensional or three-dimensional images by per-
forming a Fourier transformation of raw k-space data; 
performing other image reconstruction algorithms, such as 
iterative or backprojection reconstruction algorithms; apply-
ing filters to raw k-space data or to reconstructed images; 
generating functional magnetic resonance images; calculat­
ing motion or flow images; and so on. 

(15); 

and the phase of the received magnetic resonance signal 
may also be determined according to the following relation­
ship: 

(16) 

The pulse sequence server 510 also optionally receives 
patient data from a physiological acquisition controller 530. 

10 Images reconstructed by the data processing server 514 
are conveyed back to the operator workstation 502 where 
they are stored. Real-time images are stored in a data base 
memory cache (not shown in FIG. 5), from which they may 
be output to operator display 512 or a display 536 that is 

15 located near the magnet assembly 524 for use by attending 
physicians. Batch mode images or selected real time images 
are stored in a host database on disc storage 538. When such 
images have been reconstructed and transferred to storage, 
the data processing server 514 notifies the data store server 

20 516 on the operator workstation 502. The operator work­
station 502 may be used by an operator to archive the 
images, produce films, or send the images via a network to 
other facilities. By way of example, the physiological acquisition controller 

530 may receive signals from a number of different sensors 
connected to the patient, such as electrocardiograph (ECG) 25 

signals from electrodes, or respiratory signals from respira­
tory bellows or other respiratory monitoring device. Such 
signals are typically used by the pulse sequence server 510 

The MRI system 500 may also include one or more 
networked workstations 542. By way of example, a net­
worked workstation 542 may include a display 544; one or 
more input devices 546, such as a keyboard and mouse; and 
a processor 548. The networked workstation 542 may be 
located within the same facility as the operator workstation to synchronize, or "gate," the performance of the scan with 

the subject's heart beat or respiration. 30 502, or in a different facility, such as a different healthcare 
institution or clinic. The pulse sequence server 510 also connects to a scan 

room interface circuit 532 that receives signals from various 
sensors associated with the condition of the patient and the 
magnet system. It is also through the scan room interface 
circuit 532 that a patient positioning system 534 receives 35 

commands to move the patient to desired positions during 
the scan. 

The networked workstation 542, whether within the same 
facility or in a different facility as the operator workstation 
502, may gain remote access to the data processing server 
514 or data store server 516 via the communication system 
517. Accordingly, multiple networked workstations 542 may 
have access to the data processing server 514 and the data 
store server 516. In this manner, magnetic resonance data, 
reconstructed images, or other data may be exchanged 

The digitized magnetic resonance signal samples pro­
duced by the RF system 520 are received by the data 
acquisition server 512. The data acquisition server 512 
operates in response to instructions downloaded from the 
operator workstation 502 to receive the real-time magnetic 
resonance data and provide buffer storage, such that no data 
is lost by data overrun. In some scans, the data acquisition 
server 512 does little more than passing the acquired mag­
netic resonance data to the data processor server 514. 
However, in scans that require information derived from 
acquired magnetic resonance data to control the further 
performance of the scan, the data acquisition server 512 is 
programmed to produce such information and convey it to 
the pulse sequence server 510. For example, during pres­
cans, magnetic resonance data is acquired and used to 
calibrate the pulse sequence performed by the pulse 
sequence server 510. As another example, navigator signals 
may be acquired and used to adjust the operating parameters 
of the RF system 520 or the gradient system 518, or to 
control the view order in which k-space is sampled. In still 
another example, the data acquisition server 512 may also be 
employed to process magnetic resonance signals used to 
detect the arrival of a contrast agent in a magnetic resonance 
angiography (MRA) scan. By way of example, the data 
acquisition server 512 acquires magnetic resonance data and 
processes it in real-time to produce information that is used 
to control the scan. 

40 between the data processing server 514 or the data store 
server 516 and the networked workstations 542, such that 
the data or images may be remotely processed by a net­
worked workstation 542. This data may be exchanged in any 
suitable format, such as in accordance with the transmission 

45 control protocol (TCP), the internet protocol (IP), or other 
known or suitable protocols. 

The above-described proposed MBR approach was tested 
in simulations and aneurysm patient studies conducted using 
an MRI system 500, such as described above. In particular, 

50 the system was a 3.0 Tesla clinical scanner with an 8-channel 
head coil using a hybrid radial (in-plane )/Cartesian 
(through-plane) acquisition during a contrast injection. The 
scan parameters were TE/TR=l.5/4 ms, FA=25o, BW=125 
kHz, 20 slices, voxel size 0.86x0.86x2 mm3. The data were 

55 reconstructed from 15 projections/slice per 1.2 s time frame 
(acceleration factor R=27) using iterative SENSE, standard 
CS, and the proposed MBR. Arterial phase frame (AF) was 
reconstructed by PILS combining projections from 8 frames 
(R=3.3), which were reconstructed separately by MBR and 

60 averaged to get AF. 

The data processing server 514 receives magnetic reso- 65 

nance data from the data acquisition server 512 and pro­
cesses it in accordance with instructions downloaded from 

Images were reconstructed that illustrate improved spatial 
resolution of MBR reconstruction of the aneurysm patient 
data for each slice, which translated into better visualization 
and delineation of small vessels in the MIP images. Spatial 
resolution gained using MBR over SENSE and standard CS 
was further confirmed by examining pair-wise image dif-
ferences, which showed that MBR restores most higher 
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spatial frequency information compared to SENSE and 
standard CS. MBR restored the arterial frame with resolu­
tion comparable to gridding-based PILS approach but with 
much improved SNR. MBR preserved temporal dynamics of 
SENSE in large (not-affected by resolution loss) structure 
(aneurysm) and improved the waveform in the smaller 
(resolution-affected) structure (aneurysm feeding artery). 

Thus, the above-described MBR process, which is a 
data-driven, model-based CS reconstruction, showed the 
ability to improve spatial resolution and SNR in highly 
accelerated CE MRA. Moreover, MBR was able to preserve 
temporal dynamics of contrast propagation in both normal 
and pathological vessels. Using the application-specific 
transform that exploits physical properties of contrast 
dynamics made the approach more efficient than standard 
CS methods relying on transforms inherited from general 
image processing field. The method also improved spatial 
and temporal fidelity in other application based on first pass 
bolus tracking such, as dynamic susceptibility perfusion 
weighted MRI. Furthermore, as mentioned above, the meth­
ods can be employed with other imaging modalities, such as 
a CT imaging system, such as described below, which could 
benefit from the advantages in clinical applications such as 
time-resolved CT angiography. 

Referring to FIG. 6, a CT system 610 generally include a 
gantry 612 fitted with a X-ray tube 614 or, in some cases, 
two X-ray tubes, and an opposing detector assembly 616, 
which, together, rotate about a subject 618 arranged on a 
patient bed 620 to acquire multiple projections for recon­
structing an image. The x-ray source 614 projects an x-ray 
beam 622, which may be a fan-beam or cone-beam of 
x-rays, towards the detector array 616 on the opposite side 
of the gantry 612. The detector array 616 includes a number 
ofx-ray detector elements 624. Together, the x-ray detector 
elements 624 sense the projected x-rays 622 that pass 
through the subject 618, such as a medical patient or an 
object undergoing examination, who is positioned in the CT 
system 610. Each x-ray detector element 624 produces an 
electrical signal that may represent the intensity of an 
impinging x-ray beam and, hence, the attenuation of the 
beam as it passes through the subject 618. In some configu­
rations, each x-ray detector 624 is capable of counting the 
number ofx-ray photons that impinge upon the detector 624. 
During a scan to acquire x-ray projection data, the gantry 
612 and the components mounted thereon rotate about a 
center of rotation 626 located within the CT system 610. 

The CT system 610 also includes an operator workstation 
628, which typically includes a display 630; one or more 
input devices 632, such as a keyboard and mouse; and a 
computer processor 634. The computer processor 634 may 
include a commercially available programmable machine 
running a commercially available operating system. The 
operator workstation 628 provides the operator interface that 
enables scanning control parameters to be entered into the 
CT system 610. In general, the operator workstation 628 is 
in communication with a data store server 636 and an image 
reconstruction system 638. By way of example, the operator 
workstation 628, data store sever 636, and image recon­
struction system 638 may be connected via a communication 
system 640, which may include any suitable network con­
nection, whether wired, wireless, or a combination of both. 
As an example, the communication system 640 may include 
both proprietary or dedicated networks, as well as open 
networks, such as the internet. 

The operator workstation 628 is also in communication 
with a control system 642 that controls operation of the CT 
system 610. The control system 642 generally includes an 

16 
x-ray controller 644, a table controller 646, a gantry con­
troller 648, and a data acquisition system 650. The x-ray 
controller 44 provides power and timing signals to the x-ray 
source 614 and the gantry controller 648 controls the rota-

5 tional speed and position of the gantry 612. The table 
controller 646 controls the table 620 to position the subject 
618 in the gantry 612 of the CT system 610. 

A data acquisition system (DAS) 650 samples data from 
the detector elements 624 and converts the data to digital 

10 signals for subsequent processing. For instance, digitized 
x-ray data is communicated from the DAS 650 to the data 
store server 636. The image reconstruction system 38 then 
retrieves the x-ray data from the data store server 636 and 
reconstructs an image therefrom. The image reconstruction 

15 system 638 may include a commercially available computer 
processor, or may be a highly-parallel computer architec­
ture, such as a system that includes multiple-core processors 
and massively parallel, high-density computing devices. 
Optionally, image reconstruction can also be performed on 

20 the processor 634 in the operator workstation 628. Recon­
structed images can then be communicated back to the data 
store server 636 for storage or to the operator workstation 
628 to be displayed to the operator or clinician. 

The above described systems and methods provide 
25 improved spatial resolution and visualization of small fea­

tures (vessels, lesions, and the like), improved robustness to 
imaging imperfections and patient motion. Furthermore, the 
systems and methods provide better image signal-to-noise 
ratio (SNR) and more flexibility than traditional methods. 

30 More particularly, the above-described systems and methods 
provide image quality with less noise than parallel imaging 
alone. When combined with parallel imaging, it efficiently 
reduces noise levels, the main limiting factor of parallel 
imaging, thereby providing higher acceleration capabilities 

35 and image quality. Compared to standard view-sharing tech­
niques used in dynamic contrast-enhanced imaging to 
improve image quality, the above-described systems and 
methods preserve temporal fidelity of the reconstructed time 
series, allowing accurate separation of arterial and venous 

40 phases of contrast dynamics (in CE MRA) and estimation of 
blood volume/blood flow/mean transit times in perfusion 
imaging. Compared to other techniques based on com­
pressed sensing estimation theory, the above-described sys­
tems and methods improve image sharpness/spatial-tempo-

45 ral resolution, which was demonstrated as described above. 
In summary, the above-described systems and method can 

be used with a variety of clinical applications. For example, 
the above-described systems and methods can be used to 
perform highly accelerated dynamic contrast-enhanced 

50 imaging including MR angiography with improved visual­
ization of small features and high SNR. The technology may 
be also useful for time resolved CT angiography and per­
fusion imaging where the proposed technology may lead to 
the significant dose reduction. Further still, the above-

55 described systems and methods may be used for parameter 
mapping. In addition, these processes or others may or may 
not be used for motion corrects, such as described above. 

The present invention has been described in terms of one 
or more preferred embodiments, and it should be appreciated 

60 that many equivalents, alternatives, variations, and modifi­
cations, aside from those expressly stated, are possible and 
within the scope of the invention. 

As used in the claims, the phrase "at least one of A, B, and 
C" means at least one of A, at least one of B, and/or at least 

65 one of C, or any one of A, B, or C or combination of A, B, 
or C. A, B, and C are elements of a list, and A, B, and C may 
be anything contained in the Specification. 
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The invention claimed is: 
1. A method for reconstructing a series of images of a 

subject, the steps of the method comprising: 

18 
4. The method of claim 3 wherein controlling the require­

ment of consistency with the non-patient-specific model is 
performed by relaxing the requirement of consistency with 
the non-patient-specific model if a fit with the non-patient-a) acquiring medical image data from the subject with a 

medical imaging system; and s specific model is undesirable for a given pixel in an image 
in the series of images. b) reconstructing a series of images of the subject from the 

acquired medical image data set while constraining 
individual images in the series of images to be consis­
tent with a non-patient-specific model that describes a 
dependency of image intensity values to at least one 10 

variable that is associated with a physical property of 
the subject and to be consistent with a motion correc­
tion operator. 

2. The method of claim 1 further comprising estimating 
the motion correction operator by: 15 

acquiring motion tracking data and estimating the motion 
correction operator from the motion tracking data; 

estimating the motion correction operator by co-register­
ing each image in the series of images another image in 
the series of images; or 20 

adaptively estimating the motion correction operator dur­
ing the reconstruction. 

3. The method of claim 1 further comprising preserving 
information in the series of images that deviate from the 
non-patient-specific model by controlling a requirement of 25 

consistency with the non-patient-specific model. 

5. The method of claim 3 wherein reconstructing the 
series of images includes performing an iterative reconstruc­
tion process and wherein controlling the requirement of 
consistency with the non-patient-specific model is per­
formed by relaxing the requirement of consistency with the 
non-patient-specific model if a fit with the non-patient­
specific model is undesirable for a given pixel in an image 
in the series of images. 

6. The method of claim 3 wherein reconstructing the 
series of images includes performing an iterative reconstruc­
tion process and wherein reconstructing the series of images 
of the subject includes iteratively minimizing an optimiza­
tion problem having a data-fidelity term and a non-patient­
specific, model-based term. 

7. The method of claim 1 wherein the non-patient-specific 
model includes contrast bolus propagation dynamics. 

8. The method of claim 1 wherein the non-patient-specific 
model functions as a priori knowledge about the patient 
during the reconstructing. 

* * * * * 


