a2 United States Patent

US009705785B2

10) Patent No.: US 9,705,785 B2

Gember-Jacobson et al. 45) Date of Patent: Jul. 11, 2017
(54) CLOUD ARCHITECTURE WITH (56) References Cited
STATE-SAVING MIDDLEBOX SCALING
U.S. PATENT DOCUMENTS
(71) Applicant: Wisconsin Alumni Research)
. s 7,975,071 B2* 7/2011 Ramjee HO4L 67/2828
Foundation, Madison, W1 (US) 170/352
9,304,801 B2* 4/2016 Koorevaar HO4L 63/20
(72) Inventors: Aaron Robert Gember-Jacobson,
Madison, WI (US); Srinivasa Aditya
Akella, Middleton, W1 (US); Chaithan OTHER PUBLICATIONS
%/I' l.)ral{“;l.Sh’ Madlllson, 1\\2]1 d'(US);WI Shriram Rajagopalan et al.: Split/Merge: System Support for Elastic
I?gjay iswanathan, Madison, Execution in Virtual Middleboxes; 10th USENIX Symposium on
(US) Networked Systems Design and Implementation (NSDI *13); pp.
(73) Assignee: Wisconsin Alumni Research 227-240; Watson Research Center, Yorktown Heights, NY; Univer-
Foundation, Madison, WI (US sity of British Columbia, Vancouver, Canada.
US) Aaron Gember; Abstractions for Network Function Control; Power
% S : : : : Point; Whole Document; pp. 1-21; US.
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35 . .
U.S.C. 154(b) by 180 days. * cited by examiner
(1) Appl. No.: 14/577,418 Primary Examiner — Chandrahas Patel
(22) Filed: Dec. 19, 2014 (74) Attorney, Agent, or Firm — Boyle Fredrickson, S.C.
(65) Prior Publication Data
(57) ABSTRACT
US 2016/0182360 Al Jun. 23, 2016
An enterprise computer system efficiently adjusts the num-
(51) Int. Cl ber of middleboxes associated with the the enterprise, for
HO4L 12/707 (2013.01) example, with changes in demand, by transferring not only
HO4L 12/861 (2013.01) flows of instructions but also middlebox states associated
GOGF 9455 (2006.01) with those flows. Loss-less transfer preventing the loss of
(52) US. ClL packets and its state, and order-preserving transfer preserv-
CPC HO4L 45722 (2013.01); GO6F 9/45533 ing packet ordering may be provided by a two-step transfer
(2013.01); GOGF 9/45558 (2013.01); HO4L process in which packets are buffered during the transfer and
49/9063 (2013.01); GOGF 2009/4557 are marked to be processed by a receiving middlebox before
(2013.01); GOGF 2009/45562 (2013.01) processing by that middlebox of ongoing packets for the
(58) Field of Classification Search given flow.
CPC ... GOGF 2009/4557; GO6F 2009/45595; GOGF
9/45558; HOAL 45/74; HOAW 80/04
See application file for complete search history. 14 Claims, 2 Drawing Sheets
14
33 ¥
a8
A d
a1 Tl 14 o
o
(-?%
J g
e 1 5’4 34
T NLA48

U.S. Patent Jul. 11, 2017 Sheet 1 of 2 US 9,705,785 B2

l.w3§w5§gﬁmm\\‘ji Wig
| FVROR 1 | WO SN W o ook
! 12
Er‘mmﬁ [T T
LS
et | OO | — s
m”}"gm‘"i PR e S .
oo . "3%?% AR
e B i)% B o
%’\i 5
T T Y AT T | ﬁ\g"ﬁm
/e =
40 e 2
FiGL 1 T T2
oL
.
6 7

U.S. Patent Jul. 11, 2017 Sheet 2 of 2 US 9,705,785 B2

32 ; i
RECEVESCALNG |—~° 10SS-LESS | ORDER-PRESERVING | MOVEWTH
INSTRUCTION : MOVE : MOVE , LOSSY NETWORK
L 138 i §
INSTANTIATE2ND L 0 ; | g2
MIDDLEBOXFOR | 80 | BUFFER GIVEN FLOW tr—'
GIVENFLOW | ;50 g ¢l ATSECOND |1
! o~ f MIDDLEBOX s
MOVE STATE CHuNK | v | BUFFER GIVEN FLOW{ {
FORGIVENRLOW 1] ATSCAUNG)¢ I 68
70 2ND MIDDLEROX | W[CONTROUER |ii/|ROUTEGNENFLOWTOFT— o
T oo #51 [SCALING CONTROLLER] | Q
wwwwwww nr ks mn o mmomm o 1 & FIRST MIDDLEROX | |)
ROUTE GIVEN FLOW L1 T FoEnD TRACER
TORNDMIDDLESOX | | aeeeeT ¥ i PACKET
SOl AR e L e
] . b~ I
mmmmmmmm A { | FORwARDiaST |, 69
“““““““““ R PACKETID £
.-~ | FLUSH BUFFER FROM 72

~VrLush susFERWITR LYY

SCALING CONTROLLERK | o "o

i

}

3
Y0 2ND MIDDLEBOX |
('\ i

1
i
i
i
i
§

667

PROCESS DO-NOT- | 75
-BUFFER PACKETS Y0}
' pewetanTae !t 82 LASTPACKET 11
OLD MIDDLEBOX ' s
g o | PROCESS BUFFER !
§ PACKETS |

e ostes o woof mum e aws s soos Bues s awe Toem

US 9,705,785 B2

1
CLOUD ARCHITECTURE WITH
STATE-SAVING MIDDLEBOX SCALING

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT

This invention was made with government support under
1302041 and 1040757 awarded by the National Science
Foundation. The government has certain rights in the inven-
tion.

CROSS REFERENCE TO RELATED
APPLICATION

BACKGROUND OF THE INVENTION

The present invention relates to cloud-based computing,
in which computer resources are provided in a scalable
fashion as virtual machines executing on an array of com-
puters, and in particular to a method of implementing
“middlebox” functionality in such cloud-based systems with
flexible scaling in a manner consistent with cloud-based
computing.

“Middleboxes” are important components of large com-
puter installations and service provider networks having
multiple computers executing applications such as Web
servers, application servers, file servers or databases or the
like (enterprises). In this environment, middleboxes provide
for network related functions such as protecting the network
and its applications from attacks (e.g., intrusion detection
systems (IDS) and firewalls) and enhancing network effi-
ciency (e.g., load balancers, WAN optimizers, and the like).
Most simply, middleboxes may be directly wired in the path
of data to the enterprise computers with which they are
associated. Middleboxes may be similarly installed by pro-
gramming network switches used to control interconnec-
tions on the network joining the middleboxes and applica-
tion computers.

Cloud computing provides a computer system architec-
ture in which computing resources are provided on demand
in the form of virtual and/or actual machines that are flexibly
allocated to multiple enterprises as demand requires. A cloud
application manages the machines so that users of the cloud
can acquire additional machines at periods of high demand
and return those machines when the demand drops. By
aggregating many users, significant economy of scale may
be realized in terms of maintenance of the hardware, pro-
vision of physical resources such as power and cooling, and
smoothing of peak demands.

It is known how to implement middlebox functions on
virtual machines implemented in a cloud computing system.
Unlike the scaling of other processes, however, it can be
difficult to scale middlebox functions in a way that satisfies
performance standards (“service level agreements”) and
minimizes operating costs without adversely affecting the
accuracy of the middlebox functions.

SUMMARY OF THE INVENTION

The present invention provides a system that allows
flexible and effective scaling of middlebox functions by
providing a mechanism to transfer among middlebox
instances, not only network traffic flows but also the middle-
box states associated with those flows. By transferring flow
related states, scaling may be accomplished on demand
without significant loss of accuracy in the middlebox func-
tions.

20

25

30

35

40

45

55

60

2

Generally, the present invention provides a computing
system having a plurality of switch-connected computers
implementing virtual machines intercommunicating data
using packet flows. The computing system includes a central
controller dynamically allocating machines to a given enter-
prise and at least a first and second middlebox receiving a
packet flow and collecting state information with respect to
the flow, the state information used for processing the
packets received by the middleboxes, the first and second
middleboxes being instances created from a common virtual
machine image. The computing system operates to (i)
receive instructions to change a number of middleboxes and
identify a given packet flow received by the first middlebox;
(ii) in response to the instructions, transfer state data of the
first middlebox related to the given flow to the second
middlebox; and (iii) in response to the instructions, control
the switches to transfer ongoing packets of the given flow to
the second middlebox.

It is thus a feature of at least one embodiment of the
invention to permit rapid scaling of middleboxes in order to
satisfy service level agreements without the need to wait for
current flows to abate or to suffer reduced accuracy while
states are rebuilt at the new middleboxes. By transferring the
flow related state, new middleboxes may be rapidly brought
online and old middleboxes deleted with reduced loss of
state.

The computing system may further begin buffering pack-
ets of the flow to the first middlebox before step (ii) and
transfer the buffered packets for the given flow to the second
middlebox after step (ii).

It is thus a feature of at least one embodiment of the
invention to avoid packet loss during the state transfer
process.

The second middlebox may begin processing the trans-
ferred packets before processing ongoing packets of the
given flow received by the second middlebox.

It is thus a feature of at least one embodiment of the
invention to preserve the order of the packets during the
transfer process by processing the buffered packets at the
second middlebox before processing ongoing packets of the
given flow at the second middlebox.

The second middlebox may provide separate storage
locations for the buffered packets and the ongoing packets of
the given flow received by the second middlebox.

It is thus a feature of at least one embodiment of the
invention to provide a simple method of preserving the
ordering of the packets irrespective of arrival time at the
second middlebox.

The buffered packets may be marked to distinguish them
from ongoing packets of the given flow received by the
second middlebox.

It is thus a feature of at least one embodiment of the
invention to provide a set ordering marking on the packets
themselves to eliminate the need for special transmission
requirements.

The second middlebox may receive an indication of a last
buffered packet to initiate processing of the ongoing packets
of the given flow.

It is thus a feature of at least one embodiment of the
invention to provide an ordering system that accommodates
possible delays in packet receipt at the first middlebox after
the packet flow is switched to the second middlebox.

The last buffered packet may be a last packet of the flow
received by the first middlebox after a completion of the
transfer of the state data of the first middlebox related to the
given flow to the second middlebox.

US 9,705,785 B2

3

It is thus a feature of at least one embodiment of the
invention to provide a simple method of determining a last
packet at the first middlebox.

Alternatively the last packet may be a tracer packet
transmitted by the computer system to the first middlebox
after controlling the switch to transfer ongoing data packets
of the given flow to the second middlebox.

It is thus a feature of at least one embodiment of the
invention to provide a method of detecting a last packet in
the presence of a lossy network where packets may be lost.

The first middlebox, upon initiation of the transfer of state
data related to the given flow to the second middlebox, may
cease collecting state information with respect to the flow.

It is thus a feature of at least one embodiment of the
invention to prevent the corruption of state data during the
transfer process.

The computing system may further instantiate the first
middlebox upon receipt of the instructions.

It is thus a feature of at least one embodiment of the
invention to provide a system for scaling up middlebox
functionality.

Alternatively, the computing system may de-instantiate
the second middlebox upon the buffering of packets.

It is thus a feature of at least one embodiment of the
invention to confer the same benefits to scaling down of
middlebox functionality.

The instructions to change the number of middleboxes for
a given flow of data packets may provide at least one flow
identification value contained in the packets.

It is thus a feature of at least one embodiment of the
invention to provide a simple method of identifying flows
that may also be used to partition state information that
should be transferred with those flows.

Alternatively or in addition, the instructions to change the
number of middleboxes for a given flow of data provide at
least one port number associated with the flows.

It is thus a feature of at least one embodiment of the
invention to provide a versatile method of identifying a flow
and partitioning flows by port number.

Each middlebox may be associated with a different virtual
electronic computer having a unique virtual processor and
memory.

It is thus a feature of at least one embodiment of the
invention to provide a system that may be used to control the
number of virtual machines dedicated to a given enterprise.

The common virtual machine object is selected from the
group consisting of: an intrusion detection system, a proxy
cache, a wide area network optimizer, and a load balancer.

It is thus a feature of at least one embodiment of the
invention to provide a system that can work with a wide
variety of different middlebox types having proprietary
internal state mechanisms.

These particular objects and advantages may apply to
only some embodiments falling within the claims and thus
do not define the scope of the invention.

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1 is a simplified representation of an array of
computers interconnected by switches, for example, in a
cloud-based processing network such as may provide a set
of virtual machines organized in enterprises, each virtual
machine providing a virtual processor and memory as man-
aged by a cloud application in real time;

FIG. 2 is a block diagram of the flows of data during a
scaling operation where a middlebox function is sealed up or
down; and

20

25

30

35

40

45

50

55

60

65

4

FIG. 3 is a flowchart showing multiple embodiments of
the steps of the present invention, the embodiments provid-
ing respectively, for state transfer, loss-less transfer, and
order-preserving transfer.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

Referring now to FIG. 1, a cloud-computing facility 10
may provide for a set of server racks 12 each holding
multiple electronic computers 14 intercommunicating on a
network 16. The network 16, for example, may be managed
by network switches 18 represented here as an intervening
matrix in dotted lines. The network switches 18 may connect
with one or more routers 19 to an external network such as
the Internet 21 or the like. Generally, the cloud computer
facility may, for example, provide “Infrastructure as a Ser-
vice” (laas) functionality.

As is understood in the art, each of the electronic com-
puters 14 may provide a processor 20 having one or more
cores, a memory system 22 including RAM and disk or other
memory, and a network card 24 for interconnecting to the
network 16. The memory system 22 may include an oper-
ating system 26, for example, allowing virtualization, and
virtual machine software 28, for example, implementing a
virtual application computer or a virtual middlebox.

The virtual middleboxes implemented by the virtual
machine software 28 may provide network functions (NF)
such as, but not limited to, an intrusion detection system
(IDS), a proxy server; a wide area network (WAN) opti-
mizer, and a load balancer. Generally each virtual middlebox
will be on a separate virtual electronic computer appealing
as if it has its own processor 20 and dedicated memory
system 22 by virtue of a virtualizing operating systems such
as a hypervisor.

As is generally understood in the art, a WAN optimizer
middlebox may implement a variety of optimization tech-
niques to increase data transmission efficiencies over the
network to the electronic computers 14, for example, by
eliminating redundant data transfer, compression of data,
caching and the like. An IDS middlebox may monitor traffic
flowing over the network to detect malware or network
intrusions or the like. A load balancer middlebox may
distribute requests by users to the various application
machines while preserving consistent communication
threads with any given user. A proxy server may fetch web
objects on behalf of web clients and cache these objects to
serve later web requests. In order to operate, an IDS may
generate a state extracted from multiple packets of the given
flow, for example, to create a signature and to compare that
signature against a whitelist or blacklist. Other middlebox
functions such as proxy servers, WAN optimizers, and load
balancers, extract states from flows of packets in order to
associate new packets with a given flow and, for example,
destination.

Referring now to FIGS. 2 and 3, the present invention
may provide a computing system 30 of multiple virtual
machines executing on one or more electronic computers 14
that may control and implement middlebox functions for
multiple other electronic computers 14. In one example, first
electronic computer 14a may provide a first virtual machine
supporting a scaling controller 31 that may work with virtual
machines on electronic computers 145 and 14c¢ to scale up
a number of middleboxes serving the other electronic com-
puters 14. Each virtual machine will be described with
respect to a different electronic computer 14; however, it will

US 9,705,785 B2

5

be understood that multiple virtual machines may in fact be
on one electronic computer 14.

Middlebox Scaling

At process block 32, a scaling controller 31 may receive
a scaling instruction 33, for example, from a user or a
program that monitors and allocates computational
resources to a particular enterprise. The scaling instruction
33 will indicate a middlebox that needs to have a new
instance or an instance removed and will identify packet
flows that will be rerouted to be associated with the new
middlebox or to be removed from the old discontinued
middlebox.

Scaling up Middlebox Functionality

In the case where the scaling instruction 33 requests an
increase in a network function currently implemented by
another virtual machine (for example, middlebox 36 imple-
mented by computer 145), upon receiving this instruction at
process block 32, the scaling controller 31 will request a
central controller 29 (normally part of the proprietary cloud
infrastructure) to instantiate in a new virtual machine (in this
example, on electronic computer 14¢) a second middlebox
34 identical to an existing middlebox 36 implemented in a
virtual machine on electronic computer 145. Basically this
instantiation reproduces the necessary virtual machine soft-
ware 28 in the new virtual machine to implement the desired
middlebox function and also copies static state (e.g., con-
figuration state) from the first middlebox 36 to the second
middlebox 34.

At this time, middlebox 36 will be receiving a flow 38 of
packets 40 through the network switch 18. At the time of the
instruction 33, packets 40 of the flow 38 will continue to be
buffered in a middlebox buffer 42 and processed according
to the function of the middlebox 36 which includes gener-
ating state information in data structure 44 in memory 22.
The data structure 44 may be organized in a variety of
different ways including, for example, hash tables, trees,
etc., and include different proprietary state information but
will be divisible into a number of state chunks 46 each
associated with a flow identifier 48, including one flow
identifier 48 describing given flow 38. A flow identifier 48,
for example, may describe a particular TCP or UDP or ICMP
connection, or data to or from particular port number, or a
particular source or destination address, or a collection of
such flows.

Scaling controller 31 may then provide commands to
middlebox 36, as indicated by process block 50, to move the
state chunks 46 associated with the flow 38 to a correspond-
ing data structure 44 of middlebox 34. This command from
the scaling controller 31 does not require intimate knowl-
edge of how the data structure 44 is organized. It is only
required that the given middlebox 36 be able to communi-
cate with another instantiated version of itself to make this
transfer. Thus the system is flexible to a wide variety of
different network functions.

In the simplest embodiment, at the time of this transfer of
state chunk 46 along network, path 52, incoming packets 40
along network path 53 from the flow 38 associated with the
transferred state chunk 46 from the switch 18 to the middle-
box 36 may be discarded so as not to corrupt the state chunk
46.

At the conclusion of the transfer of state chunk 46 as
indicated by process block 54, scaling controller 31 may
instruct the switch 18 to send further packets 40 associated

20

25

30

35

40

45

50

55

60

65

6

with the flow 38 along path 56 directly to middlebox 34 to
be received by middlebox buffer 4T of middlebox 34. By
transferring state chunk 46, middlebox 34 minimizes the
loss of functionality by providing substantially complete
state information to middlebox 36.

Loss-Free Move

Referring still to FIGS. 2 and 3, in a loss-less embodi-
ment, at process block 50, in which the state chunk 46 is
moved from middlebox 36 to middlebox 34, flow 38 along
network path 53 to middlebox 34 may be buffered as
indicated by process block 60, for example, in a controller
buffer 64 in the scaling controller 31.

This buffering may be accomplished by sending a com-
mand to middlebox 36, as indicated by process block 60, to
send packets 40 that are &queued from middlebox buffer 42
to the scaling controller 31 along network path 90. The
packets 40 are not processed by middlebox 36. The scaling
controller 31 places the packets 40 in controller buffer 64.

By using the controller buffer 64. packets 40 that will be
disregarded by middlebox 36 after the beginning of the
movement of state chunk 46 to middlebox 34 will be
preserved to be later processed by middlebox 34.

At process block 66, after conclusion of the transfer of
state chunk 46 per process block 50, and optionally after the
scaling controller 31 instructs the switch 18 to route the flow
38 to middlebox 34 per process block 50, controller buffer
64 may be flushed to middlebox 34 over network connection
91 so that data is not lost. Alternatively, controller buffer 64
may be flushed to the switch 18 over network connection 65
with an instruction for the switch 18 to send the packets 40
from controller buffer 64 along network path 56 to middle-
box 34.

Order-Preserving Move

Referring to still to FIGS. 2 and 3, in an order-preserving
move of the state chunk 46, the steps implemented in the
loss-less move described above may be augmented by
process block 92 and process block 68 occurring after the
state chunk move of process block 50.

At process block 92, the scaling controller 31 sends a
command to middlebox 34 to buffer packets 40 of flow 38
arriving at middlebox 34 along network path 56 from switch
18 in middlebox buffer 42' and not yet process these packets
according to the function of the middlebox 34.

At process block 68, the scaling controller 31 instructs the
switch 18 to transmit packets 40 of the flow 38 both along
network path 53 to middlebox 36 and transmit packet copies
40 of packets 40 of the flow 38 over network connection 65
to the scaling controller 31.

When the scaling controller 31 begins to receive the
packet copies 40' over network connection 65. the scaling
controller 31 instructs the switch 18 to route the flow 38
exclusively to middlebox 34 per process block 50. In addi-
tion, the scaling controller 31 tracks the packet copies 40'
arriving from the switch 18 along network connection 65.
This allows the scaling controller 31 to identify the last
packet copy 71 of the flow 38 received by the scaling
controller 31.

The middlebox 36 continues to send packets 40 of the
flow 38 that are dequeued from middlebox buffer 42 to the
scaling controller 31 over network connection 90 (per pro-
cess block 60), The packets 40 are not processed by middle-
box 36. The sealing controller 31 places the packets 40 in
controller buffer 64.

US 9,705,785 B2

7

At process block 66, after the last packet 71 of the flow
38 is placed in controller buffer 64 per process block 60,
controller buffer 64 may be flushed to middlebox 34 over
network connection 91 so that data is not lost. The last
packet 71 of the flow 38 may be determined by the scaling
controller 31 by comparing the packets 40 arriving at the
scaling controller 31 from the middlebox 36 over network
connection 90 with the last packet copy 71' of the flow 38
received by the scaling controller 31 from the switch 18 over
network connection 65.

In addition, an order-preserving move of state chunk 46
will include, in the flushing of the controller buffer 64 to the
middlebox 34 of process block 66, a step indicated by
process block 72 where the flushed packets from controller
buffer 64 are tagged with a “do-not-buffer tag” causing them
to be stored in a separate memory structure 74 of the
middlebox 34 distinct from the middlebox buffer 42' of the
middlebox 34.

At this point, when the state chunk 46 is fully transferred,
the middlebox 34 may begin to process packets in memory
structure 74, as indicated by process block 76, before
processing the packets in the middlebox buffer 42. This
processing of process block 76 continues until the last
packet 71 previously forwarded from the scaling controller
31 middlebox has been processed. This requirement that the
middlebox buffer 42' not be processed until receipt of the last
packet 71 may require a slight delay until the last packet 71
is received.

Once the last packet 71 has been processed by middlebox
34, the middlebox 34 begins processing the middlebox
buffer 42' as indicated by process block 78. In this way order
of processing of the packets 40 is preserved such as may be
important, for example, in an IDS that detects “weird
activity” related to out-of-order packets.

Lossy Networks

The above system contemplates that the network 16
providing communication paths between the electronic com-
puters 14 through the switches 18 is loss-less. If a certain
degree of packet loss must be accommodated, for example,
meaning packets 40 buffered by scaling controller 31 might
not be received by the middlebox 34, this problem can be
handled by using a TCP-based channel between the relevant
devices, for example, the scaling controller 31 and middle-
box 34. Transmission Control Protocol (TCP) provides
mechanisms for preventing packet loss by retransmission, as
defined in the Internet Engineering Task Force (IETF)
Request for Comment (RFC) 793.

An additional problem may occur in a lossy network if the
last packet 71 is not received by the middlebox 36 because
of a loss along network path 53. In this case the last packet
71 is never received by the scaling controller 31 over
network channel 90 which could cause it to wait indefinitely
to begin releasing the buffer 64 per process block 66.

This problem can be avoided by the scaling controller 31
sending a tracer packet 79 per process block 84 to the switch
18 along network channel 65 with an instruction to send the
packet to middlebox 36 along network path 53. This tracer
packet 79 is sent immediately after rerouting of the flow 38
to middlebox 34 per process block 54. Accordingly, when
that tracer packet 79 is received by the middlebox 36 it
definitively must be the last packet 71 to arrive at middlebox
36 for flow 38.

Middlebox 36 sends the tracer packet 79 to the scaling
controller 31 via network channel 90 when the tracer packet
79 is dequeued from the middlebox buffer 42 per process

20

25

30

35

40

45

50

55

60

65

8

block 60. if the tracer packet 79 never shows up at the
scaling controller 31 multiple tries can be provided by
scaling controller 31 using multiple tracer packet 79.

Scaling down Middlebox Functionality

It will be appreciated that essentially the same steps
described above may be performed in a scaling down
operation with the exception of the instantiation of a new
middlebox 34 at process block 35 (which is omitted in a
scaling down) and the addition of a de-instantiation step 82
where the middlebox 36 is removed. In this case, the transfer
of the state chunk 46 from middlebox 36 to middlebox 34
would encompass all flows currently being handled by
middlebox 36. Upon that successful transfer of state chunk
46, as described above, middlebox 34 may then be deacti-
vated.

It will be appreciated that the particular data paths and
buffering locations described above are somewhat arbitrary;
for example, the buffering of data from middlebox 36 of
process block 60 may be accomplished by a different virtual
machine including the virtual machines implementing the
network functions. It will also be appreciated that as a result
of virtualization, any central controller 29, scaling controller
31 or middlebox 34 or middlebox 36 may in fact be virtual
instances on a single computing platform.

Certain terminology is used herein for purposes of refer-
ence only, and thus is not intended to be limiting. For
example, terms such as “upper”, “lower”, “above”, and
“below” refer to directions in the drawings to which refer-
ence is made. Terms such as “front”, “back”, “rear”, “bot-
tom” and “side”, describe the orientation of portions of the
component within a consistent but arbitrary frame of refer-
ence which is made clear by reference to the text and the
associated drawings describing the component under dis-
cussion. Such terminology may include the words specifi-
cally mentioned above, derivatives thereof, and words of
similar import. Similarly, the terms “first”, “second” and
other such numerical terms referring to structures do not
imply a sequence or order unless clearly indicated by the
context.

When introducing elements or features of the present
disclosure and the exemplary embodiments, the articles “a”,
“an”, “the” and “said” are intended to mean that there are
one or more of such elements or features. The terms “com-
prising”, “including” and “having” are intended to be inclu-
sive and mean that there may be additional elements or
features other than those specifically noted. It is further to be
understood that the method steps, processes, and operations
described herein are not to be construed as necessarily
requiring their performance in the particular order discussed
or illustrated, unless specifically identified as an order of
performance. It is also to be understood that additional or
alternative steps may be employed.

References to “a machine” and “a virtual machine” or “a
computer” and “a processor,” can be understood to include
one or more virtual machines or underlying processors that
can communicate in a stand-alone and/or a distributed
environment(s), and can thus be configured to communicate
via wired or wireless communications with other processors,
where such one or more processor can be configured to
operate on one or more processor-controlled devices that can
be similar or different devices. Furthermore, references to
memory, unless otherwise specified, can include one or more
processor-readable and accessible memory elements and/or
components that can be internal to the processor-controlled

US 9,705,785 B2

9

device, external to the processor-controlled device, and can
be accessed via a wired or wireless network.

It is specifically intended that the present invention not be
limited to the embodiments and illustrations contained
herein and the claims should be understood to include
modified forms of those embodiments including portions of
the embodiments and combinations of elements of different
embodiments as come within the scope of the following
claims. All of the publications described herein, including
patents and non-patent publications are hereby incorporated
herein by reference in their entireties.

What we claim is:

1. A computing system comprising a plurality of comput-
ers interconnected with switches and executing program
stored in non-transitory medium to implement enterprises
using multiple machines intercommunicating with packets,
the computing system comprising:

(1) a central controller dynamical allocating machines to

a given enterprise;

(2) at least first and second middleboxes receiving a
packet flow and collecting state information extracted
from earlier packets in the flow and used for processing
later packets in the flow received by the middlebox, the
first and second middleboxes being instances of a
common machine object; and

wherein the computing system further executes the pro-
gram to:

(1) receive instructions to change a number of middle-
boxes and identify a given flow of packets to be
received by the second middlebox;

(ii) in response to the instructions, transfer state data of
the first middlebox related to the given flow to the
second middlebox; and

(iii) in response to the instructions, control the switches to
transfer ongoing packets of the given flow to the second
middlebox;

wherein the computing system further:

begins buffering packets of the given flow of packets to
the first middlebox before step (ii); and

transfers the buffered packets of the given flow to the
second middlebox after step (ii)

wherein the instructions to change the number of middle-
boxes for the given flow of data provides at least one
port number associated with the given flow.

2. A method of adjusting a number of middleboxes used
in an enterprise using a computing system comprising a
plurality of computers interconnected with switches and
implementing machines intercommunicating with packets,
the computing system having:

(1) a first central controller dynamically allocating

machines to a given enterprise;

(2) at least a first and second middleboxes receiving a flow
of packets and collecting state information extracted
from earlier packets in the flow and used for processing
later packets in the flow received by the middlebox, the
first and second middleboxes being instances of a
common machine object; and

wherein the computing system:

(1) receives instructions to change the number of middle-
boxes and identify a given flow of packets received by
the first middlebox;

(ii) in response to the instructions, transfer state data of
the first middlebox related to the given flow to the
second middlebox; and

(iii) in response to the instructions, control the switches to
transfer ongoing data packets of the given flow to the
second middlebox;

20

25

35

40

45

50

55

60

65

10

the method comprising:

(1) receiving instructions to change the number of middle-
boxes and identifying a given flow of packets received
by the first middlebox;

(i) in response to the instructions, transferring state data
of the first middlebox related to the given flow to the
second middlebox; and

(iii) in response to the instructions, controlling the
switches to transfer ongoing data packets of the given
flow to the second middlebox;

wherein the computing system further:

begins buffering packets of the given flow of packets to
the first middlebox before step (ii); and

transfers the buffered packets of the given flow to the
second middlebox after step (ii);

wherein the second middlebox begins processing of the
transferred packets before Processing of the ongoing
packets of the given flow received by the second
middlebox.

3. A computing system comprising a plurality of comput-
ers interconnected with switches and executing a program
stored in non-transitory medium to implement enterprises
using multiple machines intercommunicating with packets,
the computing system comprising:

(1) a central controller dynamically allocating machines

to a given enterprise;

(2) at least first and second middleboxes receiving a
packet flow and collecting state information with
respect to the flow, the state information used for
processing the packets received by the middlebox, the
first and second middleboxes being instances of a
common machine object; and

wherein the computing system further executes the pro-
gram to:

(1) receive instructions to change a number of middle-
boxes and identify a given flow of packets to be
received by the second middlebox;

(i1) in response to the instructions, transfer state data of
the first middlebox related to the given flow to the
second middlebox; and

(iii) in response to the instructions, control the switches to
transfer ongoing packets of the given flow to the second
middlebox;

wherein the computing system further:

begins buffering packets of the given flow of packets to
the first middlebox before step (ii); and

transfers the buffered packets of the given flow to the
second middlebox after step (ii);

wherein the second middlebox begins processing of the
transferred packets before processing of the ongoing
packets of the given flow received by the second
middlebox.

4. The computing system of claim 3 wherein the second
middlebox provides separate storage locations for the buff-
ered packets and the ongoing packets of the given flow
received by the second middlebox.

5. The computing system of claim 3 wherein the buffered
packets are marked to distinguish them from ongoing data
packets of the given flow received by the second middlebox.

6. The computing system of claim 5 wherein the second
middlebox receives an indication of a last buffered packet to
initiate processing of the ongoing data packets of the given
flow.

7. The computing system of claim 6 wherein the last
buffered packet is a last packet of the flow received by the

US 9,705,785 B2

11

first middlebox after a completion of the transfer of the state
data of the first middlebox related to the given flow to the
second middlebox.

8. The computing system of claim 7 wherein the last
packet is a tracer packet transmitted by the computing
system to the first middlebox after controlling the switches
to transfer ongoing data packets of the given flow to the
second middlebox.

9. The computing system of claim 3 wherein each middle-
box is associated with a different virtual electronic computer
having a unique virtual processor and virtual memory.

10. The computing system of claim 3 wherein the com-
mon machine object is selected from the group consisting of:
an intrusion detection system, a proxy cache, a wide area
network optimizer, and a load balancer.

11. A computing system comprising a plurality of com-
puters interconnected with switches and executing a pro-
gram stored in non-transitory medium to implement enter-
prises using multiple machines intercommunicating with
packets, the computing system comprising:

(1) a central controller dynamically allocating machines

to a given enterprise;

(2) at least first and second middleboxes receiving a
packet flow and collecting state information with
respect to the flow, the state information used for
processing the packets received by the middlebox, the
first and second middleboxes being instances of a
common machine object; and

wherein the computing system further executes the pro-
gram to:

(1) receive instructions to change a number of middle-
boxes and identify a given flow of packets to be
received by the second middlebox;

(ii) in response to the instructions, transfer state data of
the first middlebox related to the given flow to the
second middlebox; and

(iii) in response to the instructions, control the switches to
transfer ongoing packets of the, given flow to the
second middlebox;

wherein the computing system further:

begins buffering packets of the given flow of packets to
the first middlebox before step (ii); and

transfers the buffered packets of the given flow to the
second middlebox after step (ii);

20

25

30

35

40

12

further including the step of de-instantiating the first
middlebox upon the buffering of packets.

12. A computing system comprising a plurality of com-
puters interconnected with switches and executing a pro-
gram stored in non-transitory medium to implement enter-
prises using multiple machines intercommunicating with
packets, the computing system comprising:

(1) a central controller dynamically allocating machines

to a given enterprise;

(2) at least first and second middleboxes receiving a
packet flow and collecting state information extracted
from earlier packets in the flow and used for processing
later packets in the flow received by the middlebox, the
first and second middleboxes being instances of a
common machine object; and

wherein the computing system further executes the pro-
gram to:

(1) receive instructions to change a number of middle-
boxes and identify a given flow of packets to be
received by the second middlebox;

(i1) in response to the instructions, transfer state data of
the first middlebox related to the given flow to the
second middlebox; and

(iii) in response to the instructions, control the switches to
transfer ongoing packets of the given flow to the second
middlebox;

wherein the computing, system further:

begins buffering packets of the given flow of packets to
the first middlebox before Step (ii); and

transfers the buffered packets of the given flow to the
second middlebox after step (ii)

wherein the first middlebox, upon initiation of the transfer
of state data related to the given flow to the second
middlebox, ceases collecting state information with
respect to the flow.

13. The computing system of claim 12 further including
the step of instantiating the second middlebox upon receipt
of the instructions.

14. The computing system of claim 12 wherein the
instructions to change the number of middleboxes for the
given flow of data packets provides at least one flow
identification value contained in the packets.

#* #* #* #* #*

	Bibliography
	Abstract
	Drawings
	Description
	Claims

