US009619401B2

a2 United States Patent

Gandhi et al.

US 9,619,401 B2
Apr. 11, 2017

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

@
(22)

(65)

(1)

(52)

(58)

EFFICIENT MEMORY MANAGEMENT
SYSTEM FOR COMPUTERS SUPPORTING
VIRTUAL MACHINES

Applicant: Wisconsin Alumni Research
Foundation, Madison, W1 (US)

Inventors: Jayneel Gandhi, Madison, WI (US);
Mark D Hill, Madison, WI (US);

Michael M Swift, Madison, WI (US)

Wisconsin Alumni Research
Foundation, Madison, W1 (US)

Assignee:

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 47 days.

Appl. No.: 14/627,472

Filed: Feb. 20, 2015

Prior Publication Data

US 2016/0246730 Al Aug. 25, 2016

Int. CL.

GO6F 9/26 (2006.01)

GO6F 9/34 (2006.01)

GO6F 12/00 (2006.01)

GO6F 12/1009 (2016.01)

GO6F 12/02 (2006.01)

U.S. CL

CPC ... GO6F 12/1009 (2013.01); GOGF 12/0292

(2013.01); GO6F 2212/152 (2013.01); GO6F
2212/657 (2013.01)

Field of Classification Search
CPC ... GO6F 9/455; GO6F 9/50, GO6F 12/0246;
GO6F 12/0284; GO6F 12/0292; GO6F
12/10; GO6F 12/1009; GO6F 12/1018,;
GO6F 12/1027;, GO6F 12/1036; GO6F
12/1045; GO6F 12/1054; GO6F 12/1063;
GO6F 12/1072; GO6F 12/71081; GO6F

12/109; GOGF 2212/1016; GO6F
2212/1021; GOGF 2212/1024; GO6F
2212/1041; GOGF 2212/1044; GO6F

2212/15; GO6F 2212/151; GO6F

2212/152; GOG6F 2212/154; GO6F

2212/65; GO6F 2212/651; GO6F

2212/652;

(Continued)

(56) References Cited

U.S. PATENT DOCUMENTS

6,233,668 B1* 52001 Harvey ... GO6F 12/1009
711/147
................... GO6F 9/544

711/147

7,334,076 B2* 2/2008 Hendel

(Continued)

OTHER PUBLICATIONS

Agile Paging: Exceeding the Best of Nested and Shadow Paging;
Gandhi et al; 2016 ACM/IEEE 43rd Annual International Sympo-
sium on Computer Architecture (ISCA); Jun. 18-22, 2016; pp.
707-718 (12 pages).*

(Continued)

Primary Examiner — Daniel C Chappell
(74) Attorney, Agent, or Firm — Boyle Fredrickson, S.C.

(57) ABSTRACT

The translation of virtual guest addresses to host physical
addresses in a virtualized computer system provides a com-
pound page table that may simultaneously support nested-
paging and shadow-paging for different memory regions.
Memory regions with stable address mapping, for example,
holding program code, may be treated using shadow-paging
while memory regions with dynamic address mapping, for
example, variable storage, may be treated using nested-
paging thereby obtaining the benefits of both techniques.

15 Claims, 5 Drawing Sheets

22 -

COMPOURD PAGE TABLE

hPA

76)

Lsg 50

NESTED PAGE TABLE
Uso

US 9,619,401 B2

Page 2
(58) Field of Classification Search 9,213,649 B2* 12/2015 GOG6F 12/1009
CPC GOO6F 2212/653; GO6F 2212/654; GO6F g,gg?,gg g%: liggig - gggllz 3;1883
2212/655; GOGF 2212/65262;19/225 2006/6076065 Al* 3/2006 Zimmer ... GOG6F 9/5016
718/1
USPC AL .. . 711/206 2014/0108701 Al * 4/2014 Llljeberg """""" G06F 12/1441
See application file for complete search history. 711/6
2014/0380009 Al* 12/2014 Lemayc...... GOG6F 12/145
(56) References Cited 711/163
2015/0067296 Al* 3/2015 Basu GOGF 12/1009
U.S. PATENT DOCUMENTS 711/206
7,886,126 B2* 2/2011 B o GOGF 9/45533
oo e S OTHER PUBLICATIONS
8,024,546 B2* 9/2011 Foltzceceevene. GOG6F 12/1009 . . L.
711/206 On a Model of Virtual Address Translation; Jurkiewicz et al; Journal
8,078,827 B2* 12/2011 Uhligccocoorvvnnne. GO6F 12/109 of Experimental Algorithmics, vol. 19, article No. 1.9; 2014 (28
711/202 pages).*
8,386,745 B2* 2/2013 Kegel ...ccccoovvvrnnnnen GO6F 12/10 Jahneel Gandhi et al.; “Efficient Memory Virtualization.”; Proceed-
" . 711/205 ings of the 47th Annual IEEE/ACM International Symposium on
PIVEETT e e RETE e icroarchitecture; pp. -189, omputer Society Washing-
8,402,238 B2 3/2013 Saito G06F731/10/?B Mi hi 178-189. IEEE C Society Washi
8,738,860 BL* 52014 Griffin ..o GOGF 12/0897 ton DG, USA; 2014, o
711/122 Wang et al., “Selective hardware/software memory virtualization.”,
8.996.814 B2 * 3/2015 Peinado ...oooovvvn. GO6F 12/126 Proceedings of the 7th ACM SIGPLAN/SIGOPS international
T 711/133 conference on Virtual execution environments; pp. 217-226; ACM
9,063,866 B1* 6/2015 Tati wcoorerrrrrrrresireen GOGF 12/10 New York, NY, USA; 2011.
9,098,427 B2* 8/2015 Liu GOG6F 12/1009
9,152,570 B2* 10/2015 Mehta GOG6F 12/1027 * cited by examiner

U.S. Patent Apr. 11,2017 Sheet 1 of 5 US 9,619,401 B2

10—-\'Q /‘18
16U — .
T 20
12 | :
S jf w22 |
7 N T : 251
S e ' o XXX+N‘%’ —28
"""""" s T T oo NI “"W»ZS
— L Ml 2s
5 Ph==1=
372
FiG. 1
GUEST GUEST HOST

VIRTUAL PHYSICAL PHYSICAL
ADDRESS 26a ADDRESS ADDRESS

24
B ¢ 40
28y - M
P1 o
, =S 16
38y “36a | | 18
34 N A pe ‘
sz\ —— \\ -
. o N
0
gVA ka:estxf— 41:3 hBA
38y BPA a0
N " '
P1 """ Y -
. 0 . ===
< 38y “36c
34 N
P2’ s f T
- 0
0 4 FIG. 2

Iy
36d ? atbh

U.S. Patent Apr. 11,2017 Sheet 2 of 5 US 9,619,401 B2

8 | aac 42d 42 PRIOR ART

I
gVALO | gVALL | gVAL2 | gVAL3 | gvAL4

hPA

NESTED PAGE TABLE 50 50 50 50
Lso

42a

‘ gVALO
BVA | (602 gyp

5]

«

i)

62 o

L

hPA

SHADOW PAGE TABLE
63/

U.S. Patent

r

Apr. 11, 2017 Sh

gVA - hPA

AL

I

jgv;»\;«.s» gPAAT™74

ULV

VA s PA

S

gPA = hPA

eet 3 of 5

COMPOUND PAGE TABLE

US 9,619,401 B2

hPA

70’

NESTED PAGE TABLE

Lsg

U.S. Patent Apr. 11,2017 Sheet 4 of 5 US 9,619,401 B2

(" MEMORY ACCESS 100
L REQUEST

WALK NATIVE | 104 — WALK COMPOUND|
BAGE TABLE PAGE TABLE
. 1]35
112 (

| “NESTED”
ENTRY

j\le

)
DONE NO
?
YES

. DONE
NO ?

“SHADOW” ENTRY

106

YES

U.S. Patent

US 9,619,401 B2

Apr. 11,2017 Sheet 5 of 5
P
k¥RAGETABLEUPD@IEt)\,/izg
FiIG. 9
122
NEW PAGE NO
ENTRY
3j:4 126
R
MARK AS MARK AS
“SHADOW” “NESTED”
125 127
:]
ENTER) ENTER
gVA =* hPA gVA = gPA
(gPA > hPA) (gPA ~* hPA)

| DONE ’

(INTERVAL TIME-OUT pi’)(}

FOR EACH
COMPOUND PT
ENTRY

MODIFIED ™~
?

136
(

MOVE TO
SHADOW

FIG. 10

NEXT

US 9,619,401 B2

1
EFFICIENT MEMORY MANAGEMENT
SYSTEM FOR COMPUTERS SUPPORTING
VIRTUAL MACHINES

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT

This invention was made with government support under
1302260 and 1218323 awarded by the National Science
Foundation. The government has certain rights in the inven-
tion.

CROSS REFERENCE TO RELATED
APPLICATION

Not Applicable

BACKGROUND OF THE INVENTION

The present invention relates to electronic computer
architectures and in particular to memory management cir-
cuitry providing improved address translation for virtualiz-
ing computer systems.

Computer memory system stores electronic representa-
tions of data at physical addresses unique and intrinsic to the
location of the data. When a program executing on a
computer needs to access (read or write) data, it computes
and provides to the memory system the physical address of
the needed data. The memory uses this physical address to
electrically connect to the proper memory location for
reading or writing.

Current computer systems may execute multiple pro-
grams (processes) using an address translation system which
may present to each process a separate, “virtual” memory
address space. FEach different virtual address space may
appear to exist as an identical continuous block of memory
and is largely independent of the actual physical memory of
the computer. The address translation system (being a com-
bination of specialized hardware and data structures man-
aged by the operating system) positions itself between the
executing processes and the physical memory to receive
virtual addresses of the virtual address memory space from
the processes and to map those virtual addresses to actual
physical addresses of the physical memory, the latter which
then provides access to the desired data.

This use of virtual memory addresses has several advan-
tages. First, it frees the processes from needing to navigate
and manage a shared physical memory space. It also pre-
vents interference between different processes that might
overwrite each other’s data by segregating each process
within a different virtual memory space. Virtual memory
addresses also allow the individual processes to execute as
if they have more memory than is actually physically
available by multiplexing physical memory among multiple
virtual address spaces at different times.

The use of virtual memory requires a translation step for
each memory access during which a virtual address is
translated to a physical address. This translation step can
consume substantial memory resources (for holding the
translation information) and can slow the speed of execution
of a process through the time required to complete the
translation.

The amount of memory needed to hold the translation
information can be reduced by placing the translation infor-
mation in a hierarchical page table where initial levels
(nodes) of page table receive higher ordered memory
addresses and then point to lower levels of page table that

10

20

25

30

35

40

45

50

55

60

65

2

decode successively lower orders of memory address. This
hierarchy reduces the number of page table entries to less
than would otherwise be required if a single entry were
recorded for each virtual/physical address translation pair,
but at the expense of increasing the number of times that
memory needs to be accessed to fully decode a given virtual
address. For example, a four-level hierarchical page table
would require four separate memory accesses for each
virtual memory address translation.

The multiple necessary memory accesses may be greatly
reduced by caching recent translation pairs in a “translation
lookaside buffer” (TLB). If a translation pair is in the TLB,
references to the page table and thus multiple memory
accesses can be bypassed.

The concept of virtual memory becomes more compli-
cated under so-called “virtualized” systems in which the
processes are managed by multiple “guest” operating sys-
tems in turn executed under a ‘“hypervisor or a virtual
machine monitor (VMM)”. This use of “virtualization”
refers to the fact that each guest operating system appears to
operate on a different virtual machine. In virtualization, the
guest operating systems may also provide their processes
with a virtual address space having a guest of virtual
addresses (gVA). Generally, the hypervisor or VMM may be
executed natively without the need for a hosting operating
system or may be hosted by a hosting operating system. For
simplicity, in the context of virtualization, the software
implementing the virtualization in either of these cases will
be termed a “host operating system” whether it is a hyper-
visor or VMM alone or a hypervisor or VMM in combina-
tion with a hosting operating system.

Using a technique called “nested-paging”, each guest
operating system may receive gVA values from its processes
and transform them into a guest physical address (gPA)
using “guest page tables” in a manner analogous to the
translation between virtual and physical addresses per-
formed by a single operating system. The host operating
system then translates the gPA addresses into a host physical
address (hPA) space using a nested page table. Programs
executed natively by the host operating system (including
the execution of the guest operating systems) may commu-
nicate with physical memory through a single layer of
translation using what will be termed “native page tables”
translating between the host virtual addresses and the hPA.

Nested-paging used for address translation scales nonlin-
early with each layer of virtualization. For example, if four
memory accesses are required by the nested page table and
four memory accesses are required by the guest page table,
twenty-four memory accesses can be required for a two-step
translation between gVAs and hPAs. A more detailed
example will be provided below.

The number of memory accesses needed in virtualized
operating systems may be reduced by combining the guest
page table and nested page table into a single “shadow-page
table” using a scheme termed “shadow-paging”. The page
table of the shadow-page table provide entries that directly
map gVAs to hPAs. While shadow-paging reduce the num-
ber of memory accesses required for the translation process,
they require time-consuming updates to the shadow-pages
from the underlying guest page tables and nested page tables
when the latter are changed. That is, the shadow-page tables
must constantly shadow their counterparts. Normally this
updating requires significant processor resources that could
otherwise be devoted to the execution of programs and thus
can offset some of the benefits of shadow-paging over
nested-paging.

US 9,619,401 B2

3
SUMMARY OF THE INVENTION

The present invention provides a “compound page table”
system that blends features of shadow-paging and nested-
paging, selecting between these features as a function of
memory address. When the mapping between gVAs and
hPAs is stable for a particular address range, the compound
page tables provide a system that operates like shadow-
paging. Conversely, when mapping between gVAs and hPAs
is dynamic for that memory address range, the compound
page table provides a system that operates like nested-
paging. Generally, given mapping over multiple address
ranges combines both shadow-paging and nested-paging
features.

In one embodiment, the compound page table itself is
used to demarcate the regions in which “shadow-type” and
“nested-type” operation will be employed. This allows
shadow-type and nested-type operation to be deployed with
an arbitrary granularity without the need for separate, ancil-
lary data structures.

Specifically, in one embodiment, the invention provides a
virtualizing electronic computer of the type having a pro-
cessor communicating with an electronic memory system
holding data stored at physical addresses and storing pro-
grams including: at least one instance of a guest operating
system, a process executing under the guest operating sys-
tem, and a host operating system. The computer may operate
to store page tables having first page table entries translating
a guest virtual address into a host physical address, and also
having second page table entries translating a guest virtual
address into a guest physical address; and further having
third page table entries translating a guest physical address
into a host physical address.

The computer further provides a memory management
system receiving memory access requests from the proces-
sor and, when the request provides a guest virtual address,
accessing a page table to determine an entry associated with
an address of the request. When the entry is a first page table
entry, the memory management system uses the first page
table entry to translate the guest virtual address into a host
physical address used for accessing memory. On the other
hand, when the entry is a second page table entry, the
memory management system first uses the second page table
entry to translate the guest virtual address into a guest
physical address and second accesses a third page table entry
to translate the guest physical address into a host physical
address used for accessing memory.

It is thus a feature of at least one embodiment of the
invention to permit the tailoring of the translation of
memory addresses to either shadow-paging or nested-paging
type access depending on particular memory regions being
accessed.

The first page table entries and the second page table
entries may be collected in a compound page table spanning
a complete range of the guest virtual addresses, and the third
page table entries may be collected in a nested page table
spanning a complete range of the guest physical addresses.

It is thus a feature of at least one embodiment of the
invention to present a single page table for the guest virtual
address space translations.

Requests received from the guest operating system may
be processed by the compound page table whereas requests
received from the host operating system may be processed
by the host page table.

It is thus a feature of at least one embodiment of the
invention to efficiently steer memory access requests from

20

25

30

35

40

45

50

55

60

65

4

the guest operating system to the appropriate page table
structure according to request origin.

Each access to an entry of the compound page table may
require a single memory reference and each access to an
entry of the host page table may require a single memory
reference.

It is thus a feature of at least one embodiment of the
invention to recognize the cost of memory references and to
minimize memory references for virtualization using both
shadow-paging and nested-paging.

The accessed page table may hold both first and second
entries arranged by request addresses.

It is thus a feature of at least one embodiment of the
invention to use the page table holding the first and second
entries as the mechanism for selecting among first and
second entries without the need for ancillary structure.

It is thus a feature of at least one embodiment of the
invention to eliminate an extra step that would be required
by a separate process of selecting between a shadow-paging
or nested-paging mode and obtaining the necessary data to
perform the shadow-paging or nested-paging.

An operating system may allocate translation information
between the first page table entries and second page table
entries according to an anticipated rate of change to the
translation information.

It is thus a feature of at least one embodiment of the
invention to apply shadow-paging and nested-paging to the
memory regions most likely to benefit from these particular
translation techniques. That is, to use nested-paging when
constant changes to the page tables would make shadow-
paging cumbersome and otherwise to use shadow-paging to
minimize cost of memory references.

An operating system (either the host or guest operating
system or closely allied program such as a compiler com-
municating with an operating system) may allocate transla-
tion information to the first page table entries for data
describing program instructions and/or may allocate trans-
lation information to the second page table entries for data
describing program data operated on by the program instruc-
tions.

It is thus a feature of at least one embodiment of the
invention to permit pre-allocation of the translation modes to
particular memory regions based on an ex ante expectation
about the rate of change of translation information for those
regions. Generally program instructions would be expected
to remain relatively stable with respect to their physical
memory addresses compared to program data on a heap or
the like. This allocation system permits allocation to be
informed by the programmer or compiler or the like wherein
the programmer or compiler may provide instructions imple-
mented by the operating system describing the allocation of
translation modes to different memory regions.

Alternatively or in addition, an operating system may
monitor, during runtime, a change in a mapping between
guest virtual addresses and guest physical addresses, and/or
guest physical addresses and host physical addresses to
dynamically change whether the translation information for
a given guest virtual address is held in the first page table
entries or second page table entries.

It is thus a feature of at least one embodiment of the
invention to permit the runtime tailoring of shadow-paging
and nested-paging to different memory regions based on
observed program behavior as possibly influenced by other
programs concurrently executing.

An operating system may default to use of the first page
table entries for virtual guest addresses at the beginning of
execution of a process.

US 9,619,401 B2

5

It is thus a feature of at least one embodiment of the
invention to capture the translation speed benefits of
shadow-paging before necessary profiling data has been
obtained.

The page table entries may be arranged in a hierarchy of
levels where entries of higher levels decode higher signifi-
cant bits of a guest virtual address and entries of lower levels
decode lower significant bits of the guest virtual address, and
wherein first page table entries and second page table entries
simultaneously exist in a given level.

It is thus a feature of at least one embodiment of the
invention to provide a system that works with hierarchical
page tables for reduced memory usage.

The second page table entries at a level may be followed
in the hierarchy by only second page table entries at lower
levels; however, first page table entries at a level may be
followed by both first page table entries and second page
table entries at lower levels.

It is thus a feature of at least one embodiment of the
invention to provide a mapping system that comports with
an expectation that higher ordered addresses tend to have
more stable translation than lower ordered addresses.

These particular objects and advantages may apply to
only some embodiments falling within the claims and thus
do not define the scope of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a simplified block diagram of a processor
communicating with memory through a memory interface
providing memory address translations;

FIG. 2 is a diagram showing address translation in a
virtualized computer system having a host operating system
and one or more guest operating systems;

FIG. 3 is a diagram of data flow in a prior art nested-page
table translation in a virtualized computer system showing
the large number of required memory accesses;

FIG. 4 is a figure similar to FIG. 3 showing a prior art
shadow-page table translation in a virtualized computer
system providing a lower number of memory accesses;

FIG. 5 is a logical depiction of a compound page table and
host page table used by the present invention showing a
simplified division of the compound page table into entries
associated with each of these different shadow-paging and
nested-paging translation modes;

FIG. 6 is a tree depiction of a hierarchy of page table
entries in the compound page table showing movement
between nested-paging and shadow-paging translation
modes possible with the present invention;

FIG. 7 is a figure similar to that of FIGS. 5 and 6 showing
the operation of a compound page table and host page table
per the present invention;

FIG. 8 is a flowchart showing the steps of using the
compound page table and host page table according to FIG.

FIG. 9 is a flowchart of depicting the steps of a policy for
allocating address space among shadow-paging and nested-
paging when page table entries are received; and

FIG. 10 is a flowchart depicting the steps of reallocating
address space according to the policy of FIG. 9 on a regular
time interval.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

Referring now to FIG. 1, a computer system 10 for use
with the present invention may provide, one or more pro-

20

25

30

35

40

45

50

55

60

65

6

cessors 12 communicating through a memory management
unit 14 with a main memory 16. The main memory 16 may
comprise physical memory using a variety of different
technologies including dynamic random access memory,
disk drive memory, flash memory and the like but will be
characterized in presenting a set of physical addresses 18
uniquely identifying storage locations 20 in which data may
be stored.

The memory 16 may include addresses 22 related to data
and program storage, these addresses, in this example,
holding: a host operating system 24, one or more instances
of a guest operating system 26, one or more programs 28
comprised of processes executing under the guest operating
system 26 or host operating system 24, as well as general
data used by each of these programs 28.

The memory 16 may also provide for a storage area and
various page tables 30 as will be discussed below.

During memory access by the processor 12, being either
a reading or a writing of data from or to the memory 16, the
processor 12 may provide a virtual address on address line
31 to the memory management unit 14 which translates that
access address to a physical address 18 to implement the
access. As is generally understood in the art, this translation
process may use the page tables 30 in memory 16, the page
tables 30 containing a mapping from virtual addresses used
by the programs 28 executed by the processor 12 to the
physical addresses 18. In some cases, page tables 30 may be
avoided by consulting a translation lookaside buffer 32
which acts as a cache of recently accessed page table
information.

Referring to FIG. 2, computer system 10 may be used for
virtualization in which different processes 34 of programs 28
may each be presented with a guest virtual address space 36
typically providing identical continuous blocks of guest
virtual addresses (gVAs 38). For example, processes P1 and
P2 may interact with guests virtual address spaces 36a and
365 managed by guest operating system 26a, and processes
P1' and P2' may interact with guest virtual address spaces
36¢ and 364 managed by guest operating system 265.

Generally, the guest operating systems 26, possibly with
some hardware assistance, will translate the gVAs 38 into
guest physical addresses (gPAs 40) of a corresponding guest
physical address space 41. Specifically, the guest operating
system 26a will translate guest virtual address spaces 36a
and 365 to guest physical address space 41a, whereas guest
operating system 265 will translate guest virtual address
spaces 36¢ and 36d into guest physical address space 416b.

Overlap between the mappings from gVAs 38 to gPAs 40
is permissible for the purpose of memory sharing or the
gVAs 38 may be wholly disjoint.

The gPAs 40 may be mapped to the physical addresses 18
of'the physical memory 16 by the virtualizing host operating
system 24. For convenience, these physical addresses 18
will now be designated as host physical addresses (hPAs 18).
Generally, the guest operating systems 26 and host operating
system 24 retain complete freedom to manage their corre-
sponding virtual address spaces and to obtain the benefit
thereof. Referring now to FIGS. 3 and 4, the previously
mentioned two prior art techniques of managing the trans-
lations between gVAs 38, gPAs 40 and hPAs 18, that of
nested-paging and shadow-paging, will now be described in
more detail as an aid to understanding the present invention.
Nested-paging is shown generally in FIG. 3 and shadow-
paging is shown generally in FIG. 4 for a 4-level page table
as used in x86-64 type processors.

Referring to FIG. 3, in nested-paging, a gVA 38 is
received and broken into multibit address fields 42a-42¢

US 9,619,401 B2

7

starting from most significant bits and proceeding to the
least significant bits. These address fields 42a-42¢ define
different levels of a hierarchical translation process using
page table 30 comprising of a guest page table 48 providing
a translation between gVAs 38 and gPAs 40 and nested page
table 50 providing a translation between gPA 40 and hPA 18.
In this hierarchical translation process, each of these address
fields 42 will be processed in sequence using different levels
of guest page nodes 46 also arranged in a hierarchy where
the upper levels of guest page node 46 are associated with
higher ordered address fields 42 and used to identify the
lower levels of guest page table associated with lower
ordered address fields 42.

At the beginning of the translation process, a root node
guest page table 46a for processing address field 424 must
be identified within physical memory. This identification is
accomplished by a value previously stored in a register 44
typically as a gPAs 40 set by a guest operating system 26.
Because value of register 44 is a gPA 40, it must first be
translated into an hPA 18 using a nested page table 50.

As with the guest page table 48, the nested page table 50
receives the gPA 40 of the register 44 and breaks it up into
address fields 52a-52¢ to be processed by hierarchal nested
page node 54. The root node of nested page table 54a is
identified by a register value 56 holding art hPA 18 (set by
the host operating system 24) which points to that root of the
nested page node 544 directly. The most significant address
field 52a is then used to index through the nested page node
54a. The result of this indexing provides a hPA 18 pointing
to a lower-level nested page table node 545 that will be used
to index with address field 525. This process continues to
successively process fields 52¢ and 52d finally producing a
hPA that points to the root of the root of guest page table 46a.

Now, we can use the multibit field of gVA 42qa to index
into the root node of the guest page table 464 producing gPA
40 that points to low er-level neck of the guest page table
46b. Again this gPA 40 must be translated into an hPA 18 to
identify the lower-level guest page node 465 and this is done
by again referring to the nested page table 50 (the same
nested page table 50 described before but reproduced for
clarity).

The nested page table 50 takes the gPA 40 and translates
it into an hPA 18 pointing to lower-level guest page table
node 465 by successively processing multiple address fields
52a of the gPA 40 in a manner. At the conclusion of this
process, the resulting hPA 18 then provides a pointer lower-
level page node 465

This above described process is repeated for each of the
address fields 42¢ and 42d using corresponding page table
nodes 46¢ and 46d. Page node 464 then provides a gPA 40
translated by the nested page table 50 using multiple steps
associated with the hierarchical nested page nodes 54a-54d
which may be concatenated to the final address field 42e
which provides an offset value within the physical address
space defined by the previously decoded hPA 18 values to
produce the desired final hPA 18 to which the input gVA 38
maps.

It will be appreciated that each access of the guest page
node 46 or nested page node 54 requires a separate memory
access reference, where one memory access reference is
generally one random-access of physical memory 16
through any number of caches or the like. Memory accesses
are time-consuming and in this case twenty-four such
memory accesses references are required to complete the
translation process, substantially more than the four memory
accesses references required fix conversion between a vir-

20

25

30

35

40

45

50

55

60

65

8

tual address space 38 and host physical memory space of
physical memory 16 in a non-virtualized system.

Accordingly and referring to FIG. 4, shadow-paging has
been developed in which a set of shadow page nodes 60 in
a shadow-page table 63 are used to provide direct conver-
sion from gVAs to hPAs. As before, a gVA 38 defining a
desired memory access is broken into address fields 42a-
42e. In this case, a register value 62 is pre-decoded into an
hPA 18 to directly point to a top-level shadow-page node
60a. Address field 424 is used to index top-level shadow-
page nodes 60a which directly provides an hPA 18 pointing
to the next shadow-page nodes 605 in the hierarchy as will
be used to index with address field 426. This process
continues through shadow-page nodes 60e¢ and 60d for
address fields 42¢ and 424, ultimately providing an hPA 18
concatenated to an offset of address field 42¢ to reveal the
final hPA 18.

Generally the shadow-page table 63 may coexists with the
guest page table 48 and nested page table 50, the latter of
which are directly updated by the guest operating system 26
and host operating system 24. The shadow-page table 63 is
then updated from the updated guest page table 48 and the
nested page table in a separate process. For this reason, the
shadow-page table 63 represents a processing and memory
access burden whenever the underlying data of the guest
page table 48 or nested page table 50 are changed.

With this background, the present invention will now
again be described. Referring to FIG. 5, in overview, the
present invention provides a compound page table 70 in
addition to the nested page table 50. The compound page
table 70 accepts as arguments the entire range of gVAs for
each guest process. The compound page table 70 includes
individual compound page nodes 71 each holding entries
that may be divided into shadow-style entries 72 and nested-
style entries 74. Each shadow-style entry 72 and nested-style
entry 74 provides a single address translation pair, however,
the nested-style entry 74 also provide a selector bit 75
indicating they are nested-style entry 74 to the MMU 14 as
will be described below. The write access bit in the page
table entry may be used as the selector bit 75. A shadow-
style entry 72 provides a direct mapping between gVAs 38
and hPAs 18 in the manner of shadow page nodes 60. The
nested-style entries 74 provide a mapping between gVAs 38
and gPAs 40 in the manner of the guest page table 48.

The nested page table 50 includes only a nested-type
entries 76 mapping gPAs 40 to hPAs 18 per nested page table
50. The memory footprint of the compound page table 70
and nested page table 50 is thus no greater than used in
nested-paging of FIG. 3.

In this depiction, a given compound page node 71 may
provide three contiguous zones, and within each zone the
entry types are identical while among different zones dif-
ferent entry types are held. More generally however, each
entry of a given compound page node 71 may have an entry
type different from its neighbors. As with the examples of
FIGS. 3 and 4, the compound page nodes 71 can be arranged
in a hierarchy to translate a gVA 38 broken into multiple
address fields 42. Generally some compound page nodes 71
will include both shadow-style entry 72 and nested-style
entry 74 while other compound page nodes 71 may include
all shadow-style entries 72 or all nested-style entries 74.

Referring momentarily to FIG. 6, and as will be discussed
in further detail below, as one moves through the hierarchy
78 of the multiple address fields 42 and compound page
nodes 71, individual entries from the various compound
page nodes 71 used for the translation process may change
from shadow-style entries 72 to nested-style entries 74. As

US 9,619,401 B2

9

will be understood from the below description, this changing
between shadow-style entries 72 to nested-style entries 74
effectively changes the mode of address translation between
shadow-paging and nested-paging. Accordingly, by using
the entry (as either a shadow-style entry 72 or nested-style
entry 74) to define the mode of address translation, it will be
appreciated that an address translation mode of shadow or
nested may be associated on an address-by-address basis
with particular memory addresses allowing optimization of
the translation process according to memory location as will
be discussed below. It will be noted that typically progres-
sive entries will only change from shadow-style entries 72 to
nested-style entry 74 as one moves downward through the
hierarchy 78 and not vice versa; however, the invention
contemplates that both directions of changing between
shadow-paging and nested-paging may be employed as one
moves down through the hierarchy 78.

Referring now to FIG. 7 the compound page table 70 may
receive a gVA 38 describing a desired memory access, and
that address may be again divided into fields 42a-42¢. A
register 82 holding an hPA 18 points to root compound page
node 71a that will be used to index with the first field 42a.
In this example, the first field 42a indexes to a shadow-style
entry 72a in the compound page node 71a providing a
shadow-style entry 72. More generally, this entry may be
either a shadow-style entry 72 or a nested-style entry 74.
When the entry is a shadow-type entry 72, per this example,
the value of the shadow-style entry 72a provides an hPA 18
that points directly to the next compound page node 715 in
the compound page table 70.

This process proceeds generally through each of the fields
42 in a similar manner. At any compound page node 71,
however, the entry may change from a shadow-style entry 72
to a nested-style entry 74. In this example, at compound
page table node 74d, we use the field 424 to index to a
nested-style entry 74d. This nested-style entry 74d, unlike
the previous shadow-style entries 72a-72¢, provides a gPA
40 rather than an hPA 18 and thus must be decoded by the
nested page node 54. After processing by the nested page
table 50, for example, in the manner described above with
respect to FIG. 3, an hPA 18 is returned which is routed back
to the compound page table 70 to be combined with the
offset of address field 42¢ to provide the resulting hPA 18 for
accessing physical memory 16.

It will be appreciated if at compound page node 714, the
address field 42d pointed to a shadow-style entry 72, that
output hPA 18 instead may have been directly concatenated
with the offset of address field 42¢ without reference to the
nested page table 50.

Although the system described in FIG. 7 could devolve to
an entirely nested-paging process it register 82 pointed to a
gPA of the guest page table 48, it is believed that in many
cases only the last or final few nodes of the hierarchy of
compound page table 70 will hold nested-style entries 74
allowing the bulk of the translation process to be performed
efficiently with shadow-paging style translation.

Referring now to FIGS. 2 and 8, in overview, the com-
puter system 10 upon receiving a memory access request per
process block 100 may first identify the address of the
memory request at decision block 102 as being either from
a process 34 managed by the guest operating system 26
(requesting memory using a gVA 38) or being a native
process managed only by a hosting operating system of the
host operating system 24 (where the hypervisor works with
a hosting operating system) requesting memory using a
hVA. If the memory request is using a hVA, then that process
block 104 a conventional mechanism for translating the hVA

20

25

30

35

40

45

50

55

60

65

10

into an hPA 18 may be employed, including use of a translate
lookaside buffer 32 (shown in FIG. 1) and a walk of a native
page table 51 (shown in FIG. 1). Once the walk of the native
page table 51 is complete or the entries found in the TLB 32,
then at decision block 106 the process completes and the
access uses the resulting hPA 1 for memory access of
physical memory 16 at process block 108.

If at decision block 102, the address associated with the
memory request is a gVA 38, then the computer system 10
moves to process block 110 to begin walking the compound
page table 70 as described above. At decision block 112,
each entry in a compound page node 71 is checked to see
whether it is a shadow-style entry 72 or nested-style entry
74. If the entry is a shadow-style entry 72, and the translation
is not complete at decision block 114, computer system 10
loops back to process block 110 to continue the walk of the
compound page table 70 using the obtained hPA 18. When
at decision block 114 a final level of a compound page node
71 is reached, the program proceeds to process block 108 to
access memory using the resulting hPA 18 concatenated to
the offset of address field 42e.

If at decision block 112, the entry in a given compound
page node 71 is a nested-style entry 74, then the computer
system 10 moves to process block 116 to begin walking the
nested page table 50 using the output gPA 40. The determi-
nation that the given entry is a nested-style entry 74 may be
made by a selector bit 75 enrolled in the entry 74 and
detectable by the MMU 14. Upon completion of each walk
of the nested page table 50, if the translation process is not
complete per process block 118, the resulting hPA 18 horn
the nested page table 50 is again applied to the compound
page table 70 by the computer system 10 looping back to
process block 110. Otherwise, at process block 118 the
program proceeds to access the data at the resulting hPA 18
again concatenated to the address field 42e per process block
108.

Referring now to FIG. 9, the above discussion assumes
that a determination has previously been made as to whether
the entries in a compound page node 71 are shadow-style
entry 72 or nested-style entry 74. This determination may be
made according to a number of different policies that each
produce at least some compound page nodes 71 mixing
shadow-style entry 72 and nested-style entry 74.

In one policy, a compiler or programmer operating
through the agency of an operating system may designate
different memory regions (normally defined as gVAs 38 or
ranges of gVAs 38) being associated with shadow-style
entry 72 or nested-style entry 74. Generally only the lowest
hierarchy of compound page nodes 71 necessary to define
the memory region will be modified to include nested-style
entries 74 if that memory region is to employ nested-paging.
The decision about whether to use shadow-style entries 72
and nested-style entries 74 may be made based on an ex ante
determination of the purpose of data the memory region. For
example, addresses of guest virtual address space 36 holding
“program code”, being executable instructions which tend to
be relatively stable, may be associated with shadow-style
entries 72 to provide for shadow-paging type address trans-
lation, while addresses of guest virtual address space 36
holding program data operated on by executable instruc-
tions, such as held in variables or a “heap”, may be asso-
ciated with nested-style entry 74 to provide for nested-
paging.

Alternatively, the invention contemplates that a dynamic
policy may be implemented during program runtime which
monitors how often shadow-style entries 72 and nested-style
entries 74 in the compound page node 71 are changed while

US 9,619,401 B2

11

the programs 28 are executing. In this approach, when entry
in a compound page node 71 or the nested page table 50 is
updated by the guest operating system 26 or host operating
system 24, as indicated by process block 120, it may be
determined whether this update represents a new entry of
previously unallocated gVA 38 or gPA 40 at decision block
122.

If the update represents a new entry, then at process block
124, a set of shadow-style entries 72 are created and at
process block 125 the appropriate compound page node 71
of the compound page table 70 is populated to provide a
direct translation between the gVA 38 and the corresponding
hPA 18 so that the translation can be a shadow-paging type
translation. Supporting entries are also made in the nested
page table 50.

If at decision block 122, however, the update represents a
change to previously mapped data, such as suggests an area
of memory that is highly dynamic with respect to address
translations, the process proceeds to process block 126 and
an appropriate nested-style entry 74 is added to the lowest
necessary compound page node 71 in the hierarchy of the
compound page table 70 and the nested page table 50 is also
updated per process block 127.

Referring to FIG. 10, at regular intervals, as indicated by
process block 130, nested-style entries 74 in the compound
page table 70 may be reviewed per loop 132 to determine
whether they have been again remapped within a given time
window such as would suggest a region of memory with
dynamic address translations (for example, a heap or
memory swap area). If so, as determined by decision block
134 they remain nested-style entries 74, but if not they are
moved back to shadow-paging of shadow-style entry 72 per
process block 136. In this way, compound page table 70 may
be varied to conform to an arbitrary memory use pattern.
This determination may, for example, look at the access/
dirty bits associated with the page table entries.

It will be appreciated that the designation of a given entry
as either shadow-style entry 72 or nested-style entry 74 may
be made by appropriate flag bits designating whether the
address of the entry is a gPA 40 or an hPA 18.

It will be appreciated that this invention may be imple-
mented by various combinations of the guest operating
system 26, the host operating system 24, and specialized
hardware. Most simply the host operating system may trap
memory access requests by the processes 34 and handle all
memory translation operations making use of a normal or
specialized memory management unit. The invention also
contemplates specialized hardware for this purpose or modi-
fications of the guest operating, system and host operating
system to work in tandem.

The present invention may be applied to page tables of
arbitrary size for the translation of address spaces of differ-
ent dimensions. While an example hierarchical page table
system is shown, the invention is equally applicable to
hierarchical systems with different numbers of levels and in
fact even to non-hierarchical systems. In addition, it will be
understood that the invention can be applied to multiple
dimensions of virtualization, for example, having guest
operating systems that include hypervisors, by simple exten-
sion of the herein described principles.

While it is believed that the terms “guest operating
system” and “host operating system” will be generally
understood to those of ordinary skill in the art as informed
by the present specification, invention contemplates that
software features of the present invention may be imple-
mented by any program under the control of either operating
system and thus claim should not be understood to neces-

20

25

30

35

40

45

50

55

60

65

12

sarily be limited to a particular operating system and the
operating system should be broadly interpreted to include
programs closely communicating with the operating sys-
tems.

Certain terminology is used herein for purposes of refer-
ence only, and thus is not intended to be limiting. For
example, terms such as “upper”, “lower”, “above”, and
“below” refer to directions in the drawings to which refer-
ence is made. Terms such as “front”, “back”, “rear”, “bot-
tom” and “side”, describe the orientation of portions of the
component within a consistent but arbitrary frame of refer-
ence which is made clear by reference to the text and the
associated drawings describing the component under dis-
cussion. Such terminology may include the words specifi-
cally mentioned above, derivatives thereof, and words of
similar import. Similarly, the terms “first”, “second” and
other such numerical terms referring to structures do not
imply a sequence or order unless clearly indicated by the
context.

When introducing elements or features of the present
disclosure and the exemplary embodiments, the articles “a”,
“an”, “the” and “said” are intended to mean that there are
one or more of such elements or features. The terms “com-
prising”, “including” and “having” are intended to be inclu-
sive and mean that there may be additional elements or
features other than those specifically noted. It is further to be
understood that the method steps, processes, and operations
described herein are not to be construed as necessarily
requiring their performance in the particular order discussed
or illustrated, unless specifically identified as an order of
performance. It is also to be understood that additional or
alternative steps may be employed.

References to a processor can be understood to include
one or more processors that can communicate in a stand-
alone and/or a distributed environment(s), and can thus be
configured to communicate via wired or wireless commu-
nications with other processors, where such one or more
processor can be configured to operate on one or more
processor-controlled devices that can be similar or different
devices. Furthermore, references to memory, unless other-
wise specified, can include one or more processor-readable
and accessible memory elements and/or components that
can be internal to the processor-controlled device, external
to the processor-controlled device, and can be accessed via
a wired or wireless network.

It is specifically intended that the present invention not be
limited to the embodiments and illustrations contained
herein and the claims should be understood to include
modified forms of those embodiments including portions of
the embodiments and combinations of elements of different
embodiments as come within the scope of the following
claims. All of the publications described herein, including
patents and non-patent publications, are hereby incorporated
herein by reference in their entireties.

What we claim is:

1. A virtualizing electronic computer comprising:

an electronic memory holding data stored at physical
addresses and adapted to store programs including at
least one instance of a guest operating system, a process
executing under the guest operating system, and a host
operating system providing virtualization; the elec-
tronic memory adapted to store page tables having first
page table entries adapted to translate a guest virtual
address into a host physical address, second page table
entries adapted to translate a guest virtual address into

US 9,619,401 B2

13

a guest physical address, and third page entries adapted
to translate a guest physical address into a host physical
address;

at least one processor communicating with the electronic
memory for execution of the programs; and

a memory management system receiving memory access
requests from the processor to:

(1) for a request providing a guest virtual address, deter-
mine a page table entry associated with an address of
the request;

(2) when the determined entry is a first page table entry,
use the first page table entry to translate the guest
virtual address into a host physical address used for
accessing the electronic memory; and

(3) when the determined entry is a second page table
entry, use the second page table entry to translate the
guest virtual address into a guest physical address and
then use a third page table entry to translate the guest
physical address into a host physical address used for
accessing the electronic memory;

wherein the first page table entries and the second page table
entries are collected in a compound page table spanning an
entire range of the guest virtual addresses, and the third page
table entries are collected in a nested page table spanning a
range of the guest physical addresses and wherein there is a
unique determined entry in the compound page table for
each guest virtual address.

2. The virtualizing electronic computer of claim 1 wherein
the host operating system is a hypervisor and hosting
operating system, the hypervisor hosted by the hosting
operating system.

3. The virtualizing electronic computer of claim 2 wherein
the host operating system employs a hypervisor.

4. The virtualizing electronic computer of claim 2 wherein
each access to an entry of the compound page table requires
a single memory reference, and each access to an entry of the
nested page table requires a single memory reference.

5. The virtualizing electronic computer of claim 4 wherein
the compound page table holds both first and second entries
accessible by request addresses.

6. The virtualizing electronic computer of claim 5 wherein
the determination of the entry maps an address of the request
to an address of the entry.

7. The virtualizing electronic computer of claim 1 wherein
at least one of the guest operating system and the host
operating system allocates translation information needed to
map from guest virtual addresses to guest physical addresses
according to an anticipated rate of change to the translation
information.

20

25

30

35

40

45

14

8. The virtualizing electronic computer of claim 1 wherein
at least one of the guest operating system and host operating
system allocates translation information needed to map from
guest virtual addresses to host physical addresses to the first
page table when data associated with the translation infor-
mation is program instructions.

9. The virtualizing electronic computer of claim 1 wherein
at least one of the guest operating system and host operating
system allocates translation information needed to map from
guest virtual addresses to guest physical addresses to the
second page table entries when data associated with the
translation information is program data.

10. The virtualizing electronic computer of claim 1
wherein at least one of the guest operating system and host
operating system monitors a change in a mapping between
guest virtual addresses and guest physical addresses to
dynamically change whether translation information for a
given guest virtual address is held in the first page table
entries or the second page table entries.

11. The virtualizing electronic computer of claim 10
wherein at least one of the guest operating system and host
operating system monitors a change in a mapping between
guest physical addresses and host physical addresses to
dynamically change whether the translation information for
a given guest virtual address is held in the first page table
entries or the second page table entries.

12. The virtualizing electronic computer of claim 8
wherein at least one of the guest operating system and host
operating system defaults to use of the first page table entries
for guest virtual addresses at a beginning of execution of a
process.

13. The virtualizing electronic computer of claim 1
wherein the page table entries are arranged in a hierarchy of
levels where higher levels decode higher significant bits of
the guest virtual address and lower levels decode lower
significant bits of the guest virtual address, and wherein first
page table entries and second page table entries simultane-
ously exist in a given level and wherein steps (2) and (3) are
repeated for portions of the address of the request for each
level.

14. The virtualizing electronic computer of claim 13
wherein second page table entries at a level are followed in
the hierarchy by only second page table entries at lower
levels; however, first page table entries at a level are
followed by both first page table entries and second page
table entries at lower levels.

15. The virhaalizing electronic computer of claim 1
wherein there is a single unique determined page table entry
for each pest virtual address.

#* #* #* #* #*

	Bibliography
	Abstract
	Drawings
	Description
	Claims

