
c12) United States Patent
Sohi et al.

(54) CACHE ACCESSED USING VIRTUAL
ADDRESSES

(71) Applicant: Wisconsin Alumni Research
Foundation, Madison, WI (US)

(72) Inventors: Gurindar S. Sohi, Madison, WI (US);
Hongil Yoon, Madison, WI (US)

(73) Assignee: Wisconsin Alumni Research
Foundation, Madison, WI (US)

(*) Notice: Subject to any disclaimer, the term ofthis
patent is extended or adjusted under 35
U.S.C. 154(b) by 59 days.

(21) Appl. No.: 14/867,926

(22) Filed:

(65)

Sep. 28, 2015

Prior Publication Data

(60)

US 2016/0188486 Al Jun. 30, 2016

Related U.S. Application Data

Provisional application No. 62/096,962, filed on Dec.
26, 2014, provisional application No. 62/097,342,
filed on Dec. 29, 2014.

(51) Int. Cl.
G06F 12100
G06F 1211009

(52) U.S. Cl.

(2006.01)
(2016.01)

(Continued)

CPC G06F 1211009 (2013.01); G06F 3/061
(2013.01); G06F 3/0638 (2013.01);

(Continued)

I 1111111111111111 1111111111 11111 1111111111 11111 1111111111 111111111111111111
USO 10089240B2

(IO) Patent No.: US 10,089,240 B2
Oct. 2, 2018 (45) Date of Patent:

(58) Field of Classification Search
CPC .. G06F 12/1009; G06F 12/0893; G06F 3/061;

G06F 3/0638; G06F 3/0664;
(Continued)

(56) References Cited

U.S. PATENT DOCUMENTS

5,668,968 A * 9/1997 Wu G06F 12/1045
711/122

5,930,833 A * 7/1999 Yoshioka G06F 12/1063
711/141

(Continued)

FOREIGN PATENT DOCUMENTS

WO 2013058745 Al 4/2013

OTHER PUBLICATIONS

Basu et al.; "Reducing memory reference energy with opportunistic
virtual caching." In ACM SIGARCH Computer Architecture News,
vol. 40, No. 3, pp. 297-308. IEEE Computer Society, 2012. US.

(Continued)

Primary Examiner - Tuan Thai
Assistant Examiner - Tasnima Matin
(74) Attorney, Agent, or Firm - Boyle Fredrickson, S.C.

(57) ABSTRACT
A computer architecture provides a memory cache that is
accessed not by physical addresses but by virtual addresses
directly from running processes. Ambiguities that can result
from multiple virtual addresses mapping to a single physical
address are handled by dynamically tracking synonyms and
connecting a limited number of virtual synonyms mapping
to the same physical address to a single key virtual address
that is used exclusively for cache access.

\

' \
\

\

26 Claims, 4 Drawing Sheets

1----'------' '~ ' \. \

\' ' '~, \

\ ' \

' \ ' ,, r1\ '
t ' ' '

I" - - -· - , r- - - - -~'I\')- - - - - -'~

LI I I 20, 18 I

11 I
I ..._ __ _,I I

US 10,089,240 B2
Page 2

(51)

(52)

(58)

(56)

Int. Cl.
G06F 3/06
G06F 1210802
G06F 1210893
U.S. Cl.

(2006.01)
(2016.01)
(2016.01)

CPC G06F 3/0664 (2013.01); G06F 3/0673
(2013.01); G06F 1210802 (2013.01); G06F

1210893 (2013.01); G06F 2212/1016
(2013.01); G06F 2212/50 (2013.01); G06F

2212/608 (2013.01); G06F 2212/68 (2013.01)
Field of Classification Search
CPC G06F 3/0673; G06F 12/0802; G06F

2212/608; G06F 2212/68; G06F
2212/1016; G06F 2212/50

USPC .. 711/118
See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS

2003/0023814 Al 1/2003 Barro so et al.
2004/0117591 Al* 6/2004 Arimilli G06F 12/08

711/203
2006/0026385 Al* 2/2006 Dinechin G06F 12/1036

711/210
2006/0101227 Al 5/2006 Willis et al.
2008/0082721 Al* 4/2008 Yu G06F 12/0864

711/3
2013/0013856 Al 1/2013 Rogers et al.
2016/0188486 Al * 6/2016 Sohi G06F 3/061

711/118
2016/0224471 Al* 8/2016 Avudaiyappan G06F 12/1054

OTHER PUBLICATIONS

Cekleov et al.; "Virtual-address caches. Part 1: problems and
solutions in uniprocessors," Micro, IEEE 17, No. 5 (1997): 64-71.
us.
Cekleov et al.; "Virtual-address caches, part 2: Multiprocessor
issues." IEEE Micro 6 (1997): 69-74. US.

Chase et al.; "Sharing and protection in a single-address-space
operating system." ACM Transactions on Computer Systems (TOCS)
12, No. 4 (1994): 271-307. US.
Chase et al.; "Lightweight shared objects in a 64-bit operating
system." In ACM SIGPLAN Notices, vol. 27, No. 10, pp. 397-413,
ACM, 1992. US.
Goodman; "Coherency for multiprocessor virtual address caches."
In ACM SIGARCH Computer Architecture News, vol. 15, No. 5,
pp. 72-81. IEEE Computer Society Press, 1987. US.
Kaxiras et al.; "A new perspective for efficient virtual-cache coher
ence." In ACM SIGARCH Computer Architecture News, vol. 41,
No. 3, pp. 535-546, ACM, 2013. Israel.
Kim et al.; "U-cache: a cost-effective solution to synonym prob
lem." In High-Performance Computer Architecture, 1995. Proceed
ings., First IEEE Symposium on, pp. 243-252, IEEE, 1995. Korea.
Koldinger et al.; Architecture suppor for single address space
operating systems. vol. 27, No. 9, ACM, pp. 175-186; 1992. US.
Qiu et al.; "The synonym lookaside buffer: A solution to the
synonym problem in virtual caches." Computers, IEEE Transac
tions on 57, No. 12 (2008): 1585-1599. US.
Sembrant et al.; "The Direct-to-Data (D2D) cache: navigating the
cache hierarchy with a single lookup." In Proceeding of the 41st
annual international symposium on Computer architecuture, pp.
133-144. IEEE Press, 2014.
Sembrant et al.; "Tic: A tag-less cache for reducing dynamic first
level cache energy." In Proceedings of the 46th Annual IEEE/ ACM
International Symposium on Microarchitecture; pp. 49-61, ACM,
2013. us.
Wang et al.; Organization and performance of a two-level virtual
real cache hierarchy. vol. 17, No. 3. ACM, pp. 140-148; 1989. US.
Woo et al.; "Reducing energy of virtual cache synonym lookup
using bloom filters." In Proceedings of the 2006 international
conference on Compilers, architecture and synthesis for embedded
systems, pp. 179-189. ACM, 2006. Korea .
Wood et al.; "An in-cache address translation mechanism." In ACM
SIGARCH Computer Architecture News, vol. 14, No. 2, pp. 358-
365. IEEE Computer Society Press, 1986. US.
Zhang et al.; "Enigma: architectural and operating system support
for reducing the impact of address translation." In Proceedings of
the 24th ACM International Conference on Supercomputing, pp.
159-168. ACM, 2010.

* cited by examiner

U.S. Patent

I

I
I

·c=]

\
17 . 9

/
/

Oct. 2, 2018 Sheet 1 of 4

,, ,,
''\.

1... - - - - - _J 30
t

FIG. 1

\

\
\

'

' '

\
\

\

\
'\

\

US 10,089,240 B2

\
\

\
\

\
\

\
\

- - - ,
20, 18 I

L _____ .J

U.S. Patent Oct. 2, 2018 Sheet 2 of 4 US 10,089,240 B2

40

Vb MEMORY ACCESS

TLB/ PAGE TABLE

--78
YES

54 LOOKUP 41
SYNONYM

INART
85

UPDATE
SS,ART

NO 55...-
Vb Ve

UPDATE 42

CACHE ~o
ASDT

ACCESS CACHE

YES

FIG. 2
DONE

U.S. Patent Oct. 2, 2018

-~HASH
24

44

32

Sheet 3 of 4 US 10,089,240 B2

46

55 FIG. 3

58)
ART

PA

r ASD
Pa
Pc
Po

/ Va
71

Vb PERMISSION

Ve PERMISSION

Va PERMISSION

Vt PERMISSiON

Va PERMISSION

Ve PERMISSION

Vg PERMISSION

Vh PERMISSION

62

PERMISSION

FIG. 6

Va ' ~·
Va
Ve
Vt!.

~00

~72 74
~ (6 (

79

, , ;

COUNTER

COUNTER ...
COUNTER /

i---

FIG. 5

60

DATA ASDTINDEX

U.S. Patent

[

Oct. 2, 2018

1ADDRESS1
GEN.

1ADDRESS1
GEN,

•

1ADDRESS1
I GEN.

1AODRESS1

[~s I ARTJ

t ~

Sheet 4 of 4 US 10,089,240 B2

I DISAMB. l

J flG. 7A
l

I DISAMB. I

: [sslml j FIG. 7B

I I

I DISAMB. I

j flG. 7C

1 DISAMB. 1

[_ _ ~; IARTI =I FIG. 7D
....__-..... ,------------,

US 10,089,240 B2
1

CACHE ACCESSED USING VIRTUAL
ADDRESSES

CROSS REFERENCE TO RELATED
APPLICATION

This application claims the benefit of U.S. provisional
applications 62/096,962 filed Dec. 26, 2014, and 62/097,342
filed Dec. 29, 2014, and hereby incorporated in their entirety
by reference.

BACKGROUND

The present invention relates to computer architectures
and in particular to an improved computer architecture
providing for a memory cache that allows access of cache
contents by virtual addresses rather than physical addresses.

Cache memories are used to minimize the time required
for a processor to access memory data by providing rela
tively compact, quickly accessed memory structure close to
the processor. Portions of the main memory are loaded into
the cache memory with the expectation that temporally
proximate memory accesses will tend to cluster in the loaded
portion (locality of reference) thus allowing the cache
memory, once loaded, to serve multiple memory accesses by
the processor before needing to be reloaded. Often multiple
levels of cache (e.g., Ll, L2, L3) may be used to optimize
the trade-offs between rapid access and limited storage
inherent in the cache structure.

To access a data in a cache memory, a set of bits from a
first set of address bits for the data, generally called the index
bits, is used to index into the cache and select a line at an
indexed entry. A set of bits from a second set of address bits,
generally called the tag bits, is then compared against a set
of tag bits corresponding to a selected entry and a hit
declared if the set of bits from the second set of address bits
match the selected set of tag bits.

Programs running on modern processors normally access
(read or write) memory using virtual addresses that differ
from the physical address of the data in memory. The use of
virtual addresses greatly simplifies running multiple pro
grams by allowing them to view a continuous memory space
unaffected by allocation to other processes, allowing physi-
cal memory to be allocated only to active virtual addresses
and preventing the corruption of memory space from one
process by the operation of another process, as is known in
the art.

The use of virtual address space, despite its advantages,
increases the delay in accessing memory by requiring a
translation from virtual address space used by the programs
to physical address space required by the computer memory.
Normally this translation is done by means of page tables
having entries that cross-reference each virtual address
space to the physical address space. Normally a page table
entry may also contain access permissions for data in the
corresponding virtual page. The page tables may be aug
mented by a translation lookaside buffer (TLB) that serves
to cache recently accessed entries from the page table to
speed up the process of translating the addresses and check
ing the requisite access permissions. The TLB may be
optimized for low access latency and for low miss rate by
employing a fast, highly associative structure.

2
address translation using the TLB and page tables is toler
able for the main memory, it is more burdensome when used
with a cache memory which is intended to provide frequent
and rapid access that can be significantly slowed by address

5 translation. Furthermore, the translation with a highly asso
ciative TLB will be energy hungry.

Ideally, the cache could be accessed directly using a
virtual address from a program, that is, where the first and
second set of bits (e.g. index and tag) used to access the data

10 in the cache are both parts of the same virtual addresses. The
use of a virtual address to access cached data can obviate the
latency and energy overhead resulting from TLB lookups;
however it is complicated by the possibility of synonyms
that is a group of distinct virtual addresses mapped to the

15 same physical address. This aliasing (or overlapping) is
possible and desirable to efficiently manage data in (physical
or main) memory, for example, shared information across
different processes with distinct virtual address spaces. In
such cases, the use of virtual addressing for the cache could

20 permit multiple different cache entries mapping to the same
physical address (synonym virtual addresses), that is, hold
ing the same data under distinct virtual addresses. Allowing
the duplicates reduces the cache capacity. This also presents
a consistency problem among them. For example, if one

25 process updates data associated with the common physical
address using the first cache location, then a second process
camiot read the up-to-date value for the common physical
address using the second cache location.

One solution to this problem, inherent in caches using
30 virtual addresses for cache access, is to prohibit virtual

address aliasing (or overlapping) in the physical address
domain. For example, one can prevent data from a single
physical address from being cached with different virtual
addresses in a cache. This solution greatly decreases the

35 ability of the cache to exploit locality of reference to the
data. Similarly, one can prevent data from the same physical
page from being cached with different virtual addresses in a
cache, especially if the data could be written to. Alterna
tively, one can employ a single global virtual address space

40 that eliminates the occurrence of synonyms itself Each of
these solutions places large demands on software, which
greatly limits its practical utility.

Another commonly used solution is what is referred to as
a virtually-indexed physically-tagged (VIPT) cache in the

45 prior art. Here a first set of bits used to index into the cache
to select an entry is part of a virtual address and a second set
of bits used to compare against the tag bits of the selected
entry is part of a physical address corresponding to the
virtual, address. This solution exploits the observation that

50 some low-order bits of a virtual address (the page offset bits)
do not change as a result of the address translation. Thus
these low-order bits of the virtual address (which are the
same as that of the corresponding physical address) can be
used to index into the cache and start the access of the data

55 and tag bits residing in the corresponding entry. In parallel
the TLB is accessed to obtain the physical address. When
both operations have completed, the physical address bits
obtained from the TLB access are compared with the physi
cal address bits stored in the cache tags, and a hit declared

60 if they match. This approach may decrease the latency of the
cache access, since the TLB is accessed in parallel with,
rather than prior to, the cache access. However, the TLB
access energy is still expended and thus the energy benefits
of a cache accessed with virtual addresses is not obtained.

In a system with virtual memory, the cache memory is
nevertheless normally accessed by physical memory
addresses, that is, the first and second set of bits of address 65

(e.g., index and tag) used to access the data in the cache are
both part of a same physical address While the latency of the

Moreover, the limits placed on the number of bits used to
index the cache (these bits should not change as a result of
the address translation) restricts the organization of the

US 10,089,240 B2
3

cache, potentially requiring a higher degree of associativity
than may be desirable to achieve energy efficiency.

What is desirable is to have a cache that can be accessed
with a virtual address so that a first address used to index into
the cache and select an entry and a second address used to
compare against the selected tag bits and to declare a hit are
both parts of the same virtual address. Thus a data access
that hits in the cache can be completed solely using a virtual
address, without the need to access the TLB or perform a
virtual to physical address translation. Such a cache would
have significant access latency and/or energy consumption
advantages over designs that employed a physical address to
complete the cache access. Moreover, it is also desirable that
the operation of such a cache be transparent to software and
that no requirements be placed on software to ensure its
correct operation.

SUMMARY

4
It is thus a feature of at least one embodiment of the

invention to reduce the delay attendant to synonym tracking
when there are no synonyms.

The synonym tracking circuit may include a first table of
5 virtual addresses (termed the ART) that are synonyms to

determine if a given virtual addresses is a synonym with
another virtual address mapped to the same physical
memory address of data.

It is thus a feature of at least one embodiment of the

10
invention to provide a simple and compact method of
monitoring synonyms consistent with the expected low
number of active synonyms in a short timeframe.

The synonym tracking circuit may include a compressed
signature of the first table indicating whether a given virtual
address is likely in the first table and the synonym tracking

15 circuit may first check the compressed signature and may
check the first table only if a compressed signature indicates
that the given virtual address is likely in the first table.

It is thus a feature of at least one embodiment of the
invention to shortcut complete review of the first table in the

20 common situation where there are no synonyms.
The present inventors have recognized that in many

important computational tasks while synonyms are present
over the duration of the program, within a short period of
time comparable to the time a data is resident in a cache: (1)
there are very few synonyms mapped to the same physical
address, and (2) very few of the accesses to the cache are to
data with synonyms. The present invention exploits these
observations by accessing the cache directly with a given
virtual address and then detecting synonym virtual addresses
and efficiently converting the synonym virtual address to a 30

selected key virtual address prior to cache access. It is
practical to track synonyms with modest size data structures
because of the relative scarcity of synonyms during the life

The synonym tracking circuit may respond to a cache
miss of the memory cache by determining a physical address
associated with the given virtual address and applying the
determine physical address to a second table linking a

25 physical address and a designated (key) virtual address, and
when the determined physical address links to a (key) virtual
address in the second table using the virtual address of the
second table as an accessing address for the memory cache.

It is thus a feature of at least one embodiment of the
invention to also permit the identification of "hidden" syn
onyms by the common physical address when the synonyms
are not linked by virtual addresses in the first table.

The synonym tracking circuit may use a translation looka
side buffer and page table to convert the accessing address
to a physical address. of cached data.

Specifically, the invention provides an electronic proces-
35 It is thus a feature of at least one embodiment of the

invention to leverage existing translation circuitry (e.g. the
TLB) for the purpose of determining synonyms.

sor architecture for use with a memory having storage at
physical addresses. The architecture includes a processor, a
memory cache, a cache control circuit caching memory data

The first table, the second table, and a cache line may
include a memory access permission linked to a virtual

40 address. of physical addresses in the memory cache by virtual
addresses, and a translation circuit for translating between a
virtual address from the processor and a physical address. In
addition, the architecture includes a synonym tracking cir
cuit receiving a given virtual address from the processor for
access to the cache and: (1) determining if the given virtual 45

address is a synonym with an other virtual address mapping

It is thus a feature of at least one embodiment of the
invention to handle memory access permissions for a cache
accessed by virtual addresses without the need to consult
page table information as is made possible by the present
invention.

The electronic processor may be an out of order processor
using a load queue and a store queue and the load queue and
store queue may store data linked to a key virtual address.

to a same given physical memory address of data in the
cache; and (2) when the given virtual address is a synonym,
accessing the memory cache using the other virtual address
as an accessing address for the memory cache.

It is thus a feature of at least one embodiment of the
invention to accommodate possible aliasing or overlapping
of virtual addresses in a cache accessed using virtual
addresses by tracking synonyms and making all cache
requests using a single designated (key) virtual address.

It is thus a feature of at least one embodiment of the
invention to permit virtual addresses to be used in a load

50 queue and a store queue without the risk of potential errors
in program execution. Lines of the cache memory may hold
an index to a corresponding entry of the second table linked
to a corresponding virtual address, and the synonym track
ing circuit may receive this index to update an entry in the

55 second table when lines of a cache memory are evicted.
When the given virtual address is not a synonym with

another virtual address, the synonym tracking may access
the memory cache using the given virtual address as the
accessing address for the memory cache.

It is thus a feature of at least one embodiment of the 60

invention to permit faster direct access to the cache using
virtual memory addresses in the dominant situation where
there are no synonyms.

The cache controller may prepare for access of the
memory cache using the given virtual address in parallel 65

with the synonym tracking circuit determining if the given
virtual address is a synonym with another virtual address.

It is thus a feature of at least one embodiment of the
invention to eliminate the need for a translation of virtual
addresses into physical addresses in order to coordinate the
updating of entries in the second table.

These particular objects and advantages may apply to
only some embodiments falling within the claims and thus
do not define the scope of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of a computer architecture
employing a cache responding to virtual addresses per the

US 10,089,240 B2
5

present invention showing a memory management unit
employing a cache controller, a translation lookaside buffer,
and synonym tracking circuitry;

FIG. 2 is a flowchart of the operation of the memory
management unit responding to the memory access request 5

and having a virtual address;
FIG. 3 is a diagram of a synonym signature used in the

synonym tracking circuitry;

6
translation. Access to the TLB 26 or the page tables 28 is
time and energy-consuming and desirably avoided. The page
table 28 may be stored in part in the caches 18 and in part
in physical memory 20 indicted generally by the dotted box
labeled 20, 18.

The MMU 14 also includes a synonym circuit 35 that in
one embodiment may include an active synonym signature
(SS) 32, a first table providing an Address Remapping Table
(ART) 34, and a second table providing an Active Synonym FIG. 4 is a diagram of an address remapping table used in

the synonym tracking circuitry;
FIG. 5 is a diagram of an active synonym detection table

used in the synonym tracking circuitry;

10 Detection Table (ASDT) 36 as will be discussed in detail
below.

FIG. 6 is a diagram of a single cache line entry in the
cache; and

FIGS. 7a-7d show multiple embodiments in which access 15

to the synonym tracking circuitry and address remapping
table are distributed in a pipeline processor.

DETAILED DESCRIPTION

Overview of Cache Access Using Virtual Addresses

The MMU 14 receives memory access requests from the
processor 13 over address lines 24, the requests including a
virtual address (Vb) of the data to be accessed. These
requests may be sent to the SS 32 and to the ART 34 of the
synonym circuit 35 which determine if Vb is in fact an active

Referring now to FIG. 1, a computer processing system
10 may provide for one or more processor systems 12
communicating with a memory system 16 composed of
various elements to be described below and other devices 15
such as networks, terminals, or the like.

20 synonym of another active virtual address (a key virtual
address) which is being used to access the same data in the
cache 18. The term "active" refers to virtual addresses that
map to data currently in the cache 18.

If the SS 32 indicates that there is no active synonym, the
25 virtual address Vb is used to access directly a cache 18 with

the expectation that the virtual address Vb is a key virtual
address.

Each processor system 12 may include a processor 13
communicating through a memory management unit
(MMU) 14 with the memory system 16 and specifically with
one or more caches 18 such as an Ll cache 18a and an L2
cache 18b, The processor system 12 may have a lower level
cache (e.g., an L3 cache 18c) that in turn communicates with
physical memory 20 including random access memory disk
drives and the like. The processor 13 may provide for the
ability to execute standard computer instructions including
arithmetic and logical operations, memory accessing opera- 35

tions, as well as flow control operations including condi
tional branches and the like. The processor 13 may include

On the other hand, if the SS 32 indicates that Vb may be
an active synonym, the virtual address Vb is passed to an

30 Address Remapping Table (ART) 34 which confirms this
relationship and identifies a key virtual address (e.g. Va) for
which Vb is a synonym.

a load queue 17 and a store queue 19 as will be described
below providing a function generally understood in the art.

Upon identifying an active key virtual address, Va is used
instead to access the memory cache 18.

The above procedure allows direct access by the proces-
sor 13 to the cache 18 using virtual addresses without
processing by the TLB 26 or the need to do a walk through
the page tables 28 in most cases, including the case where
Vb is a synonym of another active virtual address (a key

The MMU 14 may include cache controller 22 providing
for the updating of the cache 18 from the physical memory
20 including evicting and loading lines of the cache 18
according to techniques generally understood in the art. As
will be discussed in greater detail below, the MMU 14 stores
data in the cache 18a so that it can be accessed by virtual
addresses rather than the physical addresses. Data may be
stored in other caches 18b and 18c, for example, so that it
may be accessed by virtual addresses or by physical
addresses. In this regard, the cache controller 22 may
communicate with a translation lookaside buffer (TLB) 26
capable of determining a mapping from the virtual address
space of the virtual address Vb to the physical address space

40 virtual address) or Vb is a key virtual address.
If there is a cache miss at memory cache 18, the cache

controller 22 refers to the ASDT 36 to determine ifthere may
be an unknown synonym to Vb not currently identified by
SS 32 or ART 34, but detectable by comparing a given

45 virtual address (Vb) against a known, active, key virtual
address mapped to the same physical address Px. If such a
hidden synonym is detected, and the necessary cache line 71
is available per the ASDT 36, the memory cache 18 is
accessed again using the key virtual address Va. Otherwise

50 the access is submitted to other levels of the cache or to

of the physical memory 20 to provide a physical address Pb.
This physical address Pb will ultimately be used to access
the physical memory 20 over lines 30 ifthere is a cache miss 55

at the cache 18. In the following discussion, virtual
addresses (e.g. Vb) will be used to refer to both the entire
virtual address necessary to uniquely identify stored data
and to a subset of the virtual address used for indexing the
structures such as the cache 18. The particular usage will be 60

evident from context.
As will be understood in the art, the TLB 26 provides a

cache with recent translations between virtual address space
and physical address space. If a mapping for the particular
virtual address Vb is not found in the TLB 26, the cache 65

controller 22 may consult with one or more page tables 28
and, by doing a "page walk", may obtain the necessary

physical memory 20 and when this access is complete, the
acquired data is stored in the cache 18 indexed to the virtual,
address Va. In either case, SS 32, ART 34, and ASDT 36 are
updated as needed.

Detailed Discussion of Virtual Cache Operation

Referring to FIG. 2, the MMU 14 may receive a given
virtual address Vb for memory access as indicated by
process block 40. This given virtual address Vb is, in a
preferred embodiment, checked against the SS 32 per deci
sion block 52.

Referring also to FIG. 3. upon receipt of the given virtual
address Vb, the SS 32 processes the given virtual address
Vb, for example, by hashing the given virtual address Vb
using a hash coder 44 to generate a pointer to a specific bit
46 of a bit vector 48 in the SS 32. That pointed-to bit 46 will

US 10,089,240 B2
7

be set if Vb is likely an active synonym virtual address. This
indicates that there is likely to be an entry for that given
virtual address Vb in the ART 34. The hash indexing is
extremely fast but will only provide a likelihood of success
with the ART 34 and does not indicate the synonym which 5

requires review of the ART 34 as will be discussed below.
In the SS 32, each bit 46 of the bit vector 48 may be

associated with a hit counter 50 indicating the number of
associated entries in the ART 34 (or virtual addresses
mapping to that bit 46 in the ART 34). This counter value of 10

counter 50 allows the bit vector 48 to be updated to reset bits
46 that are no longer the hash of valid synonym data in the
ART 34. The counter 50 also prevents the reset of bits 46, in
the case where the hash coder 44 maps multiple synonyms
to the same bit 46, before all synonyms are evicted from the 15

ART 34.

8
access permissions do not permit the desired access in this
case, an error is generated resulting in the request being
handled as a memory access violation exception as is
understood in the art. Otherwise, the data 65 is accessed and
the access process is complete as indicated by process block
64.

If a cache miss is detected at decision block 60, meaning
that there was no entry in the cache 18 indexed to Vb (or Va),
the cache controller 22 proceeds to process block 67. At
process block 67 the given virtual address Vb is applied to
the TLB 26 (and possibly to the page tables 28) to obtain a
corresponding physical address (e.g., Pb) associated with
that given virtual address Vb. This physical address Pb will
then be applied to the ASDT 36 to look for "hidden"
synonyms.

Referring now also to FIG. 5, the ASDT 36 may provide
for a logical table having multiple entries represented as
rows corresponding to active physical addresses 68 (Px)
known to be in the cache 18. Also in each row of the ASDT

At decision block 52, if the relevant bit 46 in the SS 32
indicates that Vb is not an active synonym virtual address,
the cache 18 is accessed directly at process block 42 as
indicated by arrow 41 using Vb.

At decision block 52, if the relevant bit 46 in the SS 32
indicates a likelihood that Vb is a synonym virtual address,
then the MMU 14 proceeds to process block 54 and the ART

20 36, and thereby linked to a physical address Px, is a single
key virtual address 58 for that physical address 68. The
ASDT 36 may also include permissions 73 similar to those
described above providing access permissions for the data

34 is used to identify a key virtual address with which the
synonym virtual address Vb is associated.

Referring now also to FIG. 4, the ART 34 may provide
multiple entries represented as rows each corresponding to

25

a synonym virtual address 56 to which the received virtual
address over address lines 24 (of FIG. 1) will be compared.
Any "known" active synonym virtual addresses 56 (e.g. Vb) 30

will be listed in the ART 34 and will map to a single key
virtual address 58 (e.g., Va) also in the ART 34. The ART 34
may also hold memory access "permissions" 59 operating to
control whether particular memory addresses (e.g., Vb) may
he read or written to and being a standard of memory 35

management known in the art.
Upon application of the virtual address Vb to the ART 34,

the permissions 59 of the ART 34 are evaluated to confirm
that the memory access is proper. If not, an error is generated
resulting in handling the request as a memory access vio- 40

lation exception as is understood in the art.
If the permissions 59 allow the desired access, then at

decision block 61 it is determined if there is a matching of
the virtual address Vb to a synonym Va according to one of
the synonym virtual addresses 56 in the ART 34. If there is 45

such a match, the corresponding key virtual address 58 (e.g.,
Va), is applied directly to the cache 18 per arrow 55.

If there is no matching synonym in the ART 34 for the
virtual address Vb at decision block 61, then the virtual
address Vb is supplied directly to the cache 18 per arrow 57. 50

Referring now to FIG. 6, each cache line 71 in the cache
18 may provide for a set of tag bits from a virtual address 63
to which data 65 of that cache line 71 is associated. That is,
the cache 18 is both virtually indexed and virtually tagged as
opposed to cache structures that are virtually indexed but 55

physically tagged and which require TLB access for correct
functioning. The cache line 71 may also provide for per
mission data 62 and an entry identification index value 69
for the ASDT 36 as will be discussed below.

associated with the key virtual address 58.
Each row of the ASDT 36 may also include a bit vector

72 indicating particular lines of the physical address in the
cache 18 associated with each physical address Px. The bit
vector 72 thus provides for line level resolution in the
identification of the data in the cache 18. For example, when
the physical address 68 is a page (e.g. four kilobytes), each
bit 74 of the bit vector 72 will be set when a corresponding
line (64 bytes) of the page is enrolled in the cache 18.

A counter 76 may provide for the sum of the number of
bits 74 set in the bit vector 72 so that the entry of the row
of ASDT 36 may be invalidated when all lines in the cache
18 have been evicted and the counter has a value of zero for
a particular physical address Px. The counter 76 thus acts
like a valid bit that may be used to evict rows of the ASDT
36 when they are no longer useful, in updating the ASDT 36
described below. The ASDT 36 may also include an active
synonym detection bit 79 as will be discussed below.

It may also be necessary to evict a valid line of the ASDT
36 when there is no available entry for a new line that must
be stored. Page information changes (e.g. changes in physi
cal address 68 or permissions 59) or a flushing of the cache
18 may also trigger invalidation of otherwise valid lines of
the ASDT 36 requiring that all corresponding lines in the
cache 18 must be evicted. The related active synonyms in the
ART 34 and SS 32 must also be evicted. This process may
be assisted through the use of active synonym detection bit
79 discussed above with respect to the ASDT 36. In an
alternative embodiment the ART /SS may be entirely flushed
at this time.

At decision block 78, if the physical address Pb from
process block 67, as applied to the ASDT 36, does not match
with one of the active physical addresses 68 associated with
data in the cache 18, then new data will need to be added to
the cache 18 and the cache 18 is updated, as well as the
ASDT 36, per process block 80, as will be described further

Upon completion of the cache accessing process of pro
cess block 42, there may be a successful cache hit (no cache
miss) as detected at decision block 60. In the case where a
synonym was found in the ART 34, the permission data 62

60 below.

in the cache line 71 are ignored in favor of the permissions
59 in the ART 34. In the case where no synonym was found 65

in the ART 34, the permission data 62 is employed to
determine whether the access should be allowed. If the

On the other hand, at decision block 78, if the physical
address Pb is found in the ASDT 36, at decision block 84,
a determination is made whether the given virtual address
Vb is identical to a key virtual address 58 in the ASDT 36
and associated with Pb.

If at decision block 84, the given virtual address Vb is in
the ASDT 36, then it must be assumed that the cache miss

US 10,089,240 B2
9

is caused by failure of the proper line of the physical address
Pb from being in the cache 18. This requires new data to be
added to the cache 18 and the cache 18 is updated as well as
the ASDT 36 per process block 80.

On the other hand, if at decision block 84, the given 5

virtual address Vb is not in the ASDT 36, the role of Vb as
a synonym to the key virtual address that is in the ASDT 36
(e.g., Ve) is memorialized by updating the ART 34 and the
SS 32 appropriately at process block 85. At this time the
active synonym detection bit 79 in the ASDT 36 may be set. 10

The ASDT 36 is then checked to see if the necessary cache
line 71 required by given virtual address Vb is in the
memory cache 18 (e.g. by checking whether the correspond
ing bit 74 of the bit vector 72 is set in the ASDT 36). If so,

15
as indicated by line 89, access to the cache 18 may be
provided by process block 42 using a key virtual address Ve
discovered in the ASDT 36.

If at decision block 88, the needed line is not in the ASDT
36, then the cache 18 and ASDT 36 are updated per process 20

block 80.

10
Referring now to FIGS. 1, 2, 5 and 6, when the cache 18

must be updated and a cache line 71 evicted, the ASDT 36
entry corresponding to the evicted line must be identified so
that the corresponding bit 74 in the bit vector 72 may be
updated and the corresponding counter 76 decremented.
Identifying the corresponding line in the ASDT 36 may be
complicated by the tact that the line to be evicted is
identified by a virtual address 58 while the ASDT is most
simply accessible via a physical address 68. Accordingly, the
cache line 71 may include anASDT index value 69 allowing
rapid identification of the necessary entry in theASDT 36 to
be updated. In one embodiment, an ASDT index value 69
may also be stored in a Mis-Status Handling Register
(MSHR) used to handle cache miss requests in standard
computer architectures so that the ASDT 36 entry corre
sponding to a cache line returned on a cache miss, to be
placed in cache 18, can be updated.

Cache Coherence with Other Processors

Referring to FIG. 1, other processor systems 12 may write
to data in their caches that invalidates a cache line 71 in the
cache of the given processor systems 12a. This will generate
an invalidation message normally describing the data to be
invalidated using a physical address. One way to identify the

At process block 80 the cache controller 22 is allowed to
update the cache 18 and if that updating is successful the
ASDT 36 is updated appropriately. When the ASDT 36 did
not have the desired data under any virtual address ("No" at
decision block 78), this updating adds to the ASDT 36 the
physical address Pb in the first colunm and the given virtual
address Vb in the second colunm associated with that
updating (which will now be a key virtual address 58) and
the appropriate bit 74 of the bit vector 72 set and counter 76
incremented. The appropriate bit 74 may be deduced from

25 necessary cache line 71 for invalidation is to apply the
physical address of the invalidation message to the ASDT 36
to obtain the key virtual address 58 and to use that key
virtual address 58 to identify the necessary cache line 71. In
embodiments where there are other types of coherence
events in addition to invalidation messages, a similar pro-

30 cedure to consult the ASDT 36 and to identify the necessary
cache line 71 could be employed. The present invention will
typically find greatest use on the Ll cache 18a and coher
ence events between the L2 and Ll caches are rare, mini-

an offset value derivable from the given virtual address Vb.
When the ASDT 36 has an entry for the page of the given
physical address (Pb) but does not contain the necessary data
line ("Yes" at decision block 84) the appropriate bit 74 of bit 35

vector 72 for the newly enrolled data in the cache 18 is set
and the counter 76 incremented. When the ASDT 36 has an
entry for the page of the given physical address (Pb) but
linked to a different virtual address (Ve) and without the
necessary data line ("No" at decision block 88) the appro- 40

priate bit 74 of the bit vector 72 of the newly enrolled data

mizing this overhead.

Load and Store Queues

Referring now to FIG. 1, the load queue 17 and store
queue 9 are used in out of order processors to manage
memory reads and writes. Using virtual addresses for the
store queue 19 can create problems if a later load does not

in the cache 18 is set, the counter 76 incremented and the
ART 34 and SS 32 adjusted appropriately to reflect this new
synonym.

A victim entry of the ASDT 36 may be determined by
looking at the ASDT 36 to select a physical address 68
associated with an invalid row of the ASDT 36 (i.e., with
counter 76 equaling zero) or a row with a non-zero counter
value. In the former case, the invalid row having a counter
of zero indicates that there are no valid lines still relied upon
in the cache 18. In the latter case, the determination of the
victim entry to be evicted can be carried out using any
number of a variety of policies known in the art. When an
entry with a non-zero counter value is chosen to be evicted
from the ASDT, the lines tracked by that entry that are still
resident in the cache (which may be indicated by a non-zero
value in the corresponding bits 74 of bit vector 72) are first
evicted from the cache 18, thereby bringing the counter
value down to zero and thus allowing the ASDT entry to be
evicted without problems. When an entry in the ASDT is to
be evicted, the associated entries in the ART and the SS also
need to be invalidated and/or updated as needed.

identify a matching store due to synonyms and vice versa. In
such cases, stale data could be returned from the cache 18.
Similarly, using virtual addresses for the load queue can

45 create problems when there is a coherence-based invalida
tion or eviction in cache 18 and a load has been carried out
(speculatively) for that evicted data. The present invention
may address this issue by identifying data in the load queue
17 and store queue 19 by the key virtual address 58 and not

50 by a synonym. Once a load or store is (speculatively)
executed, its key virtual address 58 is identified and kept in
the load or store queue. Accesses using the load queue 17
and store queue 19 with a synonym (not the key virtual
address 58) thus cause a cache miss in cache 18 ultimately

55 resulting in a replaying of the operation (load or store) with
the key virtual address 58 via the ART 34 lookup of process
block 54 (or via ASDT 36 lookup of process block 84).

A TLB miss for a store in the store queue 19 may be
resolved properly by holding younger stores in a separate

60 queue until the TLB miss is resolved. An alternative is to
restart the program from the offending store to effectively
delay the release of the store instruction from a store queue.

Generally, the cache 18 is substantially the same as a
normal cache, however, accessed by virtual addresses. Vir
tual addresses may be combined with address space identi- 65

fiers (ASID) as is generally understood in the art to address
the homonym issue.

Large Page Sizes

For large page sizes the bit vector 72 of ASDT 36 may
become unwieldy. In this case one may eliminate the bit

US 10,089,240 B2
11

vector 72 and instead "walk" through the lines of the cache
18 to search for lines from a given page related to a desired
line to be evicted from the ASDT 36. This expensive
operation can be avoided by preferably evicting from the
ASDT 36 lines associated with small rather than large pages
especially if there is a need to evict an entry with a non-zero
value of counter 76. Generally, the eviction of large pages
will also be less likely events.

Access of the SS and ART

Referring now to FIGS. 7a-7d, the access of the SS 32 and
the ART 34 in a pipeline processor can be implemented in
a variety of ways. As shown in FIG. 6a, access to SS 32 and
ART 34 can occur after address generation but before
disambiguation. This approach achieves most of the power
efficiency benefit of using a virtual cache but does not fully
exploit potential latency benefits.

As shown in FIG. 6b, in an alternative, the SS 32 and ART
34 can be accessed in parallel during the disambiguation
stage. The disambiguation may need to be done with the key
virtual addresses 58 on hits in the ART 34 although they are
rare. This may increase power consumption but decrease
latency.

As shown in FIG. 6c, access to SS 32 can occur before
address generation based on base (or segment) registers, and
access to ART 34 can occur after address generation and
before disambiguation. This approach can be applied to both
instruction and data caches and obtains most of the energy
and latency benefits possible with virtual caches.

Alternatively as shown in FIG. 6d, if address generation
is a multi-step process, SS 32 can be accessed after inter
mediate steps of address generation but before address
generation is complete.

Optimizations

Accesses to ART 34 can be reduced by exploiting the fact
that successive references are often to the same page (espe
cially for instructions). In one embodiment, a last LVA
(LLVA) register 100 (shown in FIG. 4) may be associated
with the ART 34 which maintains the last key virtual address
58 that was accessed. When a next virtual address being
accessed is the same as that contained in the LLVA 100,
access to the ART 34 need not occur and this value in the
LLVAl00 can be used directly, skipping process block 54 of
FIG. 2.

12
provide fast performance consistent with the necessary high
speed of cache data transfers.

While the above description has focused on the Ll cache,
it will be appreciated that these principles may be extended

5 to other caches as may prove advantageous in reducing
memory access latency.

The invention contemplates that each data storage struc
ture, including the ART 34, the ASDT 36 and the cache line
71, may store virtual addresses together with address space

10 identifiers (ASID) uniquely identifying each virtual address
space and thus effectively being a portion of the virtual
address.

In one embodiment, the SS 32 and the ART 34 may be
eliminated in favor of direct access to the cache 18 with a

15 synonym Vb and the expectation that if the synonym Vb is
not a key virtual address, that a cache miss will result and the
proper key synonym resolved by access to the ASDT 36
after the cache miss per process block 60.

It will be appreciated from the above description that the
20 data storage functionality of the SS 32, the ART 34, and the

ASDT 36, providing data employed by the synonym track
ing circuitry 35, and the synonym tracking circuitry 35 itself
may be distributed in a variety of ways among the circuitry
of the computer processor system 10 or interprocessor

25 circuitry, in particular, the data of the SS 32, ART 34 and
ASDT 36 may be freely stored in a variety of different
locations including in the cache 18 itself. In that latter case,
the physical cache should be understood to have a regular
cache component and a synonym tracking component each

30 which may be the subject of separate claim elements.
Certain terminology is used herein for purposes of refer

ence only, and thus is not intended to be limiting. For
example, terms such as "upper", "lower", "above", and
"below" refer to directions in the drawings to which refer-

35 ence is made. Terms such as "front", "back", "rear", "bot
tom" and "side", describe the orientation of portions of the
component within a consistent but arbitrary frame of refer
ence which is made clear by reference to the text and the
associated drawings describing the component under dis-

40 cussion. Such terminology may include the words specifi
cally mentioned above, derivatives thereof, and words of
similar import. Similarly, the terms "first", "second" and
other such numerical terms referring to structures do not
imply a sequence or order unless clearly indicated by the

45 context.

Each process may be associated with a different virtual
address memory space which consists of a user and a kernel
space. The kernel space is shared across different processes 50

and thus accesses to the kernel space can be considered as
synonyms because a different process has a different ASID
although the accessed virtual addresses in the kernel space
are same. This can create multiple entries in the ART 34
when the kernel space is accessed in a temporal proximate 55

manner by multiple processes. To avoid the associated
overhead, one embodiment may use a run time remapping of

When introducing elements or features of the present
disclosure and the exemplary embodiments, the articles "a",
"an", "the" and "said" are intended to mean that there are
one or more of such elements or features. The terms "com-
prising", "including" and "having" are intended to be inclu
sive and mean that there may be additional elements or
features other than those specifically noted. It is further to be
understood that the method steps, processes, and operations
described herein are not to be construed as necessarily
requiring their performance in the particular order discussed
or illustrated, unless specifically identified as an order of
performance. It is also to be understood that additional or
alternative steps may be employed. an ASID to a single unique value only for accesses to the

kernel space. The identification of such access is based on a
priori knowledge that the access has an address range 60

associated with a kernel access. For example, if the kernel
space (or operating system) is located in the upper half of
address space, this remapping can simply look at the highest
order address bit to trigger the remapping process.

With respect to all of the embodiments described above, 65

it should be noted that the above described structures
described above can be implemented entirely in hardware to

References to "a processor" should be understood to
include one or more microprocessors, that can communicate
in a stand-alone and/or a distributed environment(s), and can
thus be configured to communicate via wired or wireless
communications with other processors, where such one or
more processor can be configured to operate on one or more
processor-controlled devices that can be similar or different
devices. It should also be understood that a processor could
be a general-purpose processor, a processing core, a context

US 10,089,240 B2
13

of a multithreaded processor, a graphics processing unit, a
special-purpose processor, or any other form of processor
that carries out operations that access a memory, as is
understood in the art. Furthermore, references to memory,
unless otherwise specified, can include one or more proces- 5

sor-readable and accessible memory elements and/or com
ponents that can be internal to the processor-controlled
device, external to the processor-controlled device, and can
be accessed via a wired or wireless network.

in addition, it will be appreciated that the represented data 10

structures, including tables and signatures, are intended to
provide logical depictions of the data and the disclosed
invention should be considered to include other physical
arrangement of data that also provide the indicated function.

The terms "index", "indexed" and the like, as used herein, 15

should be understood to refer generally to the process of
using a value to locate and access information related to that
value, in the mamier of a book index, and is not intended to

14
2. The electronic processor of claim 1 wherein the

memory cache holds data of a physical address accessible
only by a virtual address.

3. The electronic processor of claim 1 wherein each other
virtual address is a key virtual address being a synonym of
multiple virtual addresses but a synonym of no other key
virtual address.

4. The electronic processor of claim 1 wherein when the
given virtual address is not a synonym with another virtual
address per the first table, the synonym tracking circuit
accesses the memory cache using the given virtual address
as the accessing address for the memory cache.

5. The electronic processor of claim 1 wherein the first
table linking multiple virtual addresses together provides
multiple virtual addresses linked to the other virtual address.

6. The electronic processor of claim 1 wherein the first
table further includes a set of memory access permissions
associated with linked sets of virtual addresses and wherein

be limited to the technical meaning of index in the context
of a cache memory.

It is specifically intended that the present invention not be
limited to the embodiments and illustrations contained
herein and the claims should be understood to include

when the other virtual address is used as the accessing
20 addresses, accesses to the memory cache are controlled by

the permissions of the first table.

modified forms of those embodiments including portions of
the embodiments and combinations of elements of different 25

embodiments as come within the scope of the following
claims. All of the publications described herein, including
patents and non-patent publications, are hereby incorporated
herein by reference in their entireties.

7. The electronic processor of claim 1, wherein the
synonym tracking circuit includes compressed signatures of
at least some of the virtual addresses in the first table, the
compressed signatures indicating whether a given virtual
address is likely in the first table and wherein the synonym
tracking circuit performs a first check of the compressed
signatures and checks the first table only if a compressed
signature identified by the first check indicates that the given

30 virtual address is likely in the first table.
What we claim is:
1. An electronic processor architecture for use with a

memory having storage at physical addresses comprising:
a processor;

8. The electronic processor of claim 1, wherein when the
given virtual address is not in the memory cache, and when
the given physical address links to a second virtual address
in the second table, using the second virtual address of the

a memory cache; 35 second table as an accessing address for the memory cache.
a cache control circuit caching memory data of a physical

address by a virtual address;
a translation circuit translating a virtual address into a

physical address; and

9. The electronic processor of claim 8 wherein the second
table further associates linked physical addresses and virtual
addresses with memory access permissions which control
the access of memory when using a linked physical and

a synonym tracking circuit receiving a given virtual
address from the processor for access to the memory
cache and comprising:

40 virtual address.

a first table providing at least one entry linking multiple
virtual addresses together to indicate that those virtual
addresses are synonyms referencing data of a common 45

physical address in the memory cache;
a second table providing at least one entry linking a given

physical address with a virtual address to indicate that
the linked physical address and virtual address refer
ence common data and further indicating the presence 50

of data of the given physical address in the memory
cache;

the synonym tracking circuit:
(1) determining if the given virtual address is a synonym

with an other virtual address mapping to a same given 55

physical address of data in the memory cache by review
of the first table;

(2) when the given virtual address is a synonym according
to the first table, accessing the memory cache using the
other virtual address as an accessing address for the 60

memory cache;
(3) if the given virtual address is not in the memory cache,

translating the given virtual address into a given physi
cal address and if the given physical address is linked
to a second virtual address in the second table, updating 65

the first table to link the given virtual address and the
second virtual address.

10. The electronic processor of claim 8 wherein a line of
the memory cache holds an index to a corresponding entry
of the second table linked to a corresponding virtual address
and wherein the synonym tracking circuit receives the index
to identify an entry in the second table for updating when a
line of a memory cache is evicted or invalidated.

11. The electronic processor of claim 8 wherein only a
single key virtual address in the second table links to a given
physical address.

12. The electronic processor of claim 11 wherein the
processor is an out of order processor using a load queue and
a store queue and wherein a data in the load queue and the
store queue store is linked to a key virtual address.

13. The electronic processor of claim 8 wherein the
translation circuit uses a translation lookaside buffer and a
page table to convert a given virtual address to a physical
address.

14. The electronic processor of claim 8 wherein the
second table may further identify to each physical address of
the second table, subsets of data of the physical address in
the memory cache and the cache control circuit may use the
second table to identify portions of a physical address of the
second table enrolled in the memory cache.

15. The electronic processor of claim 8 wherein the
second table provides a counter associated with a physical
address indicating a number of subsets of that physical
address enrolled in the memory cache.

US 10,089,240 B2
15

16. A method of caching data in an electronic processor
computer system of a type including at least one processor
together with a memory cache, and a cache control circuit
caching memory data of physical addresses by virtual
addresses, the processor further including a translation cir- 5

cuit translating between a virtual address from the processor
and a physical address; and a synonym tracking circuit
inclu_ding ~ first table providing at least one entry linking
multiple virtual addresses together to indicate that those
virtual addresses are synonyms referencing data of a com- 10

mon physical address in the memory cache, a second table
providing at least one entry linking a physical address with
a virtual address to indicate that the linked physical address
and virtual address reference common data and further
)ndicating the proems of data of the given physical address 15

1~ the memory cache, the synonym circuit receiving a given
virtual address from the processor to determine if the given
virtual address is a synonym with an other virtual address
mapping to a same given physical address of data in the
memory cache; and when the given virtual address is a 20

synonym, accessing the memory cache using the other
virtual address as an accessing address for the memory
cache, the method comprising:

(1) saving data in the memory cache using a virtual
address wherein the memory cache holds at least a 25

portion of the virtual address; and
(2) ~ccessing data from the memory cache using a given

virtual address by first determining if the given virtual
address has a linked synonym virtual address for
accessing the memory cache by review of the first table 30

and if so using the linked synonym virtual address for
accessing the memory cache; and

(3) if the given virtual address is not in the memory cache,
translating the given virtual address into a given physi-
cal address and if the given physical address is linked 35

to a second virtual address in the second table, updating
the first table link the given virtual address and the
second given virtual address.

17._ The method of claim 16 wherein the step of saving
data m the memory cache using a virtual address allows 40

access to the saved data only with a virtual address.
18. The method of claim 16 wherein the linked virtual

address is a synonym of multiple virtual addresses but a
synonym of no other key virtual address.

19. The method of claim 16 wherein the memory cache is 45

accessed using an accessing address providing an index
port)on to select an entry of the memory cache and a tag
port10n to compare against tag bits of the entry and wherein
the index portion and tag portion are both parts of a same
virtual address. 50

20. The method of claim 16 wherein the memory cache
holds data of a physical address accessible only by a virtual
address.

21. The electronic processor of claim 1 wherein the
accessing address used to access the memory cache includes 55

an index portion to select an entry of the memory cache and
a tag portion to compare against tag bits of the entry and
wherein the index portion and tag portion are both parts of
a same virtual address.

22. _T~e ele~tro~ic processor of claim 1 further including 60

an ev1ct10n cJrcmt controlling eviction of a given virtual
address from at least one of the first table and the second
table based on a count indicating a number of corresponding
subsets of data associated with the given virtual addresses
and held in the memory cache.

16
23. The electronic processor of claim 1 wherein the first

table is separately accessed from the memory cache.
24. The electronic processor of claim 1 wherein the

translation circuit translates a virtual address from the pro
cessor into a physical address using data linking virtual
addresses with physical addresses and being accessed sepa
rately from the second table.

25. An electronic processor architecture for use with a
memory having storage at physical addresses comprising:

a processor;
a memory cache;
a first table providing at least one entry linking multiple

virtual addresses together when those virtual addresses
are synonyms referencing data of a common physical
address;

a second table providing at least one entry linking physi
cal addresses with virtual addresses·

a cache control circuit caching memo; data of a physical
address by a virtual address;

a translation circuit translating a virtual address from the
processor into a physical address, the translation circuit
communicating with a page table and a cache of the
page table; and

a synonym tracking circuit receiving a first virtual address
from the processor and applying the first virtual address
to the memory cache and in the event of a cache miss
translating the first virtual address into a given physical
address and in the event that the given physical
addresses is in the second table, adding a link between
the first virtual address and a second key virtual address
from the second table to the first table.

26. An electronic processor architecture for use with a
memory having storage at physical addresses comprising;

a processor;
a memory cache;
a cache control circuit caching memory data of a physical

address by a virtual address;
a translation circuit translating a virtual address into a

physical address; and
a synonym tracking circuit receiving a given virtual

address from the processor for access to the memory
cache and comprising:

a fi~st table providing at least one entry linking multiple
virtual addresses together to indicate that those virtual
addresses are synonyms referencing data of a common
physical address in the memory cache;

a second table providing at least one entry linking a given
physical address with a virtual address to indicate that
the linked physical address and virtual address refer
ence common data and further indicating the presence
of data of the given physical address in the memory
cache;

the synonym tracking circuit:
(1) determining if the given virtual address is a synonym

with an other virtual address mapping to a same given
physical address of data in the memory cache by review
of the first table;

(2) when the given virtual address is a synonym according
to the first table, accessing the memory cache using the
other virtual address as an accessing address for the
memory cache;

(3) evicting an entry from the first table based on an
eviction of corresponding data from the memory cache.

* * * * *

