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SYSTEM AND METHOD FOR 
ISOGEOMETRIC ANALYSIS 

STATEMENT REGARDING FEDERALLY 
SPONSORED RESEARCH 

This invention was made with government support under 
1435072 awarded by the National Science Foundation. The 
government has certain rights in this invention. 

2 
ment. On the other hand, challenges exist with respect to 
analysis-suitable T-splines, such as how to obtain efficient 
local refinement and effective treatment of so-called extraor­
dinary points. 

Recently, triangular Bezier splines have emerged as a 
powerful alternative to shape modeling and isogeometric 
analysis due to their flexibility in representing shapes of 
complex topology and their higher order of continuity. Local 
refinement can also be implemented without any great 

REFERENCE TO RELATED APPLICATION 

NIA. 

10 difficulty. Various sets of basis functions have been defined 
on triangulations using bivariate spline functions. Some 
bivariate splines have also been effectively applied in solv­
ing PDEs, including some where quadratic Powell-Sabin 
(PS) splines with C1 smoothness are considered. A locally-

BACKGROUND OF THE INVENTION 

The present disclosure relates, generally, to computer 
aided design systems and methods. 

Finite element analysis (FEA) is a computational tool 
commonly used by engineers in designing parts and systems 
using computer aided design (CAD) software. FEA allows 
testing of mechanical properties of a computer designed part 

15 supported basis is constructed by normalizing the piecewise 
quadratic PS B-splines and it is cast in the Bernstein-Bezier 
form. Such basis has global C1 smoothness and is used to 
approximate the solution of PDEs. More generalized er 
basis and elements including PS, Clough-Tocher (CT), and 

20 polynomial macro-elements based on rational triangular 
Bezier splines (rTBS) have also been introduced and applied 
successfully in isogeometric analysis on triangulations. 

so that the part can be modified if it doesn't meet the 
required mechanical specifications. One of the limitations of 
FEA is that it requires use of an approximated version of the 25 

computer-modeled part. The approximated geometry tends 

Referring to FIG. 1, cubic C1 smooth basis functions with 
CT macro-elements are illustrated within the context of a 
rTBS based isogeometric analysis. The given physical 
domain is triangulated into a set of C1 smooth Bezier 
elements, which are mapped from the parametric mesh. 
More particularly, free control points and domain points 10 
are determined by dependent control points and domain 
points 12, respectively under the continuity constraints. 
Thus, the C1 basis functions 1.jJ are constructed as linear 
combinations of the C0 Bernstein basis cp, under the conti­
nuity constraints. The resulting analysis has shown to be 
efficient, accurate, and convergent. However, optimal con-

to be blockier than the actual design, but this is required in 
order for conventional FEA to break the part into tiny 
elements, which are each analyzed. Curved surfaces do not 
easily break up into the types of elements needed for modern 30 

FEA. As a result the results are approximations of the 
performance of the actual part, which in some cases are 
pretty close, but which in other cases can be quite far off. 
These elements are connected together in the form of a 
mesh. 35 vergence in h-refinement has only been achieved for C0 

elements and the convergence rate is sub-optimal for er 
elements. 

Isogeometric analysis is an analysis approach introduced 
by Hughes et al. in T. Hughes, J. Cottrell, Y. Bazilevs, 
Isogeometric analysis: CAD, finite elements, NURBS, exact 
geometry and mesh refinement, Computer methods in 
applied mechanics and engineering 194 (39) (2005) 4135-
4195, which is incorporated herein by reference in its 
entirety. In isogeometric analysis, the same basis functions 
used to represent geometric models, such as Non-Uniform 
Rational B-Splines (NURBS), are also used to approximate 
field variables in solving partial differential equations 45 

(PDEs). Due to the same basis used in geometric represen­
tation and in solution approximation, isogeometric analysis 
eliminates the geometric approximation error commonly 
occurred in classical FEA procedures. Once an initial mesh 

Thus, it would be desirable to have a system and method 
for creating meshes from models with a controlled amount 

40 of and, preferably, without any approximation. Furthermore, 
it would be desirable that such system and method demon­
strate effective and efficient convergence in the analysis. 

is constructed, refinements can also be implemented and an 50 

exact geometry is maintained at all levels without the 
necessity of interaction with the CAD system. Another 
advantage of isogeometric analysis is its computational 
efficiency on a per-node basis over classical C0 Lagrange 
polynomial based finite element. The higher continuity of 55 

the NURBS basis has been demonstrated to significantly 
improve the numerical efficiency and accuracy on a per node 
basis in many areas including structural analysis, fluid 
simulation, and shape optimization. 

Isogeometric analysis techniques relying on a basis other 60 

than NURBS have also been developed. To overcome the 
limitation of the tensor product structure of NURBS in local 
mesh refinement, methods based on subdivision solids and 
T-splines have been developed recently and have been 
successfully used in isogeometric analysis. The introduction 65 

of T-junction in T-splines allows T-splines to represent 
complex shapes in a single patch and permit local refine-

SUMMARY OF THE INVENTION 

In accordance with one aspect of the present disclosure, a 
system is provided for creating a mesh from a computer 
aided design model during an isogeometric analysis process. 
The system includes a memory having access to a computer 
aided design (CAD) model of an object. The system also 
includes a processor configured to carry out an isogeometric 
analysis process. The processor is configured to access the 
CAD model of the object from the memory. The processor 
is also configured to analyze the CAD model to generate a 
pre-refinement geometric map of the CAD object that has a 
smoothness projected to maintain a consistency of a mesh 
based on the pre-refinement geometric map during a refine­
ment of the mesh. The processor is further configured to 
refine the mesh based on the pre-refinement geometric map 
to converge toward a refinement criteria associated with the 
CAD model. 

In accordance with another aspect of the present inven­
tion, a method is provided for creating a mesh from a 
computer aided design model during an isogeometric analy­
sis process. The method includes accessing to a computer 
aided design (CAD) model of an object. The method also 
includes analyzing the CAD model to generate a pre-
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refinement geometric map to serve as a map between a 
parametric mesh and a physical mesh of the computer aided 
design model. To do so, the method includes generating the 
pre-refinement geometric map to have smoothness projected 

4 
FIG. 9A is a graphic illustration of a refinement of the 

elements of FIG. 8B without imposing the continuity con­
straints illustrating T ct* 0 • 

FIG. 9B is a graphic illustration of a refinement of the 
elements of FIG. 8B without imposing the continuity con­
straints illustrating Tu.ct* 0 • 

FIG. 9C is a graphic illustration of a refinement of the 
elements of FIG. 8B without imposing the continuity con­
straints illustrating T u.u.ct* 0 • 

FIG. 9D is a graphic illustration of a refinement of the 
elements of FIG. 8B with C1 continuity constraints illustrat­
ing Tc/. 

to maintain consistency of the geometric map between the 5 

parametric mesh or the physical mesh during refinement by 
determining control points that do not need to be relocated 
during refinement of the parametric mesh or the physical 
mesh because the control points satisfy a continuity con­
straint. The method further includes refining the parametric 10 

mesh or the physical mesh based on the pre-refinement 
geometric map to converge toward a refinement criteria 
associated with the CAD model. FIG. 9E is a graphic illustration of a refinement of the 

15 
elements of FIG. 8B with C1 continuity constraints illustrat­
ing Tu.c/. 

Additional features and advantages of the present inven­
tion will be apparent from the following detailed description 
taken in conjunction with the accompanying drawings. 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1 is a schematic illustration of a rational triangular 
Bezier splines (rTBS) based isogeometric analysis. 

FIG. 2A is a schematic illustration of domain points of the 
Bezier ordinates bifk in {v1 , v2 , v3 }. 

FIG. 2B is a graphic illustration of triangular Bezier patch 
b(1;). 

FIG. 3A is a graphic illustration of triangular Bezier 
patches with C1 continuity constraints, specifically, two 
domain triangles with C1 constraints on Bezier ordinates. 

20 

FIG. 9F is a graphic illustration of a refinement of the 
elements of FIG. 8B with C1 continuity constraints illustrat­
ing Tu u c/ • 

Fia°. lOA is a graphic illustration of an initial mesh, T1
•
2

. 

FIG. 10B is a graphic illustration of the initial mesh of 
FIG. lOA with one refinement, T/·2

. 

FIG. lOC is a graphic illustration of the refined mesh of 
FIG. lOA with two refinements, Tu)·2 (what do the colors 

25 of the points mean?) 
FIG. llA is a graphic illustration showing a cubic C1 

mesh obtained by DC with CT macro-elements, where the 
space s3 

1 is well defined on a cubic mesh with CT macro­
elements. 

FIG. 3B is a graphic illustration of triangular Bezier 30 

patches with C1 continuity constraints, specifically, two 
Bezier patches with C1 continuity. 

FIG. 11B is a graphic illustration showing a C1 mesh after 
uniformly refining mesh of FIG. llA, where the dimension 
of the space s3 

1 on this triangulation is unknown. 
FIG. 4A is a graphic illustration of a cubic C1 mesh using 

Clough-Tocher (CT) split. 
FIG. 4B is a graphic illustration of a quadratic C1 mesh 

using Powell-Sabin (PS) split. 
FIG. 5 is a flow chart setting forth steps of a process for 

automatic domain parameterization. 
FIG. 6A is a graphic illustration of an input domain with 

NURBS boundary. 
FIG. 6B is a graphic illustration of the input with Bezier 

extraction. 
FIG. 6C is a graphic illustration of the input with polygo­

nal parametric domain. 

FIG. llC is a graphic illustration showing a CT split is 

35 
performed on the mesh of FIG. 11B to construct a set of 
stable local basis that defines s3 

1
• 

FIG. 12A is a graphic illustration showing a problem 
domain. 

FIG. 12B is a graphic illustration showing an initial 
40 parametric mesh relative to the problem domain of FIG. 

12A. 
FIG. 12C is a graphic illustration showing an initial 

physical mesh relative to the problem domain of FIG. 12A. 

FIG. 6D is a graphic illustration of the input with para- 45 

metric mesh with domain points. 

FIG. 12D is a graphic illustration showing is a quadratic 
mesh, S/, relative to the problem domain of FIG. 12A. 

FIG. 12E is a graphic illustration showing a cubic mesh, 
S3 °, relative to the problem domain of FIG. 12A. FIG. 6E is a graphic illustration of the input with physical 

mesh after boundary replacement. 
FIG. 6F is a graphic illustration of the input with local 

subdivision on the circle. 
FIG. 6G is a graphic illustration of the input with a new 

parametric domain. 
FIG. 6H is a graphic illustration of the input with a new 

parametric mesh. 
FIG. 61 is a graphic illustration of the input with a new 

physical mesh after boundary replacement. 
FIG. 61 is a detailed view of boundary replacement for a 

portion of FIG. 6(e) 
FIG. 6K is a detailed view of boundary replacement for a 

portion of FIG. 6(i) 
FIG. 7 is a graphic illustration showing IIuf is the 

push-forward of the rTBS projector II.s{foG), where fEL2 

(Q) and f oGEL2(~)-
FIG. SA is a graphic illustration of an initial quadratic 

parametric mesh T0
• 

FIG. 8 B is a graphic illustration of an initial quadratic 
physical mesh T0

• 

50 

FIG. 12F is a graphic illustration showing a quintic mesh, 
S5 °, relative to the problem domain of FIG. 12A. 

FIG. 13A is a graphic illustration showing a physical 
mesh relative to the problem of FIG. 12A, S/(TPJ by DC, 
dim=36. 

FIG. 13B is a graphic illustration showing a physical 
mesh relative to the problem of FIG. 12A, S2 1(Tps) by GE, 

55 dim=36. 
FIG. 13C is a graphic illustration showing a physical 

mesh relative to the problem of FIG. 12A, S/(TPJ by DC, 
dim=60. 

FIG. 13D is a graphic illustration showing a physical 
60 mesh relative to the problem of FIG. 12A, S3 

1(Tc,) by GE, 
dim=60. 

65 

FIG. 13E is a graphic illustration showing a physical mesh 
relative to the problem of FIG. 12A, S5 

1
•
2 (T) by DC, 

dim=96. 
FIG. 13F is a graphic illustration showing a physical mesh 

relative to the problem of FIG. 12A, S5 1(T) by GE, 
dim=120. 
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FIG. 13G is a graphic illustration showing a physical 
mesh relative to the problem of FIG. 12A, S5 

2
•
3 (TPJ by DC, 

dim=120. 
FIG. 13H is a graphic illustration showing a physical 

mesh relative to the problem of FIG. 12A, S5 
2(Tps) by GE, 5 

dim=252. 
FIG. 14A is a graph showing convergence rates in C0 

space. 
FIG. 14B is a graph showing convergence rates in C1 

space. 
FIG. 14C is a graph showing convergence rates in C2 

10 

6 
FIG. ZOE is a graphic illustration of a parametric mesh in 

S2
1(TPJ with basis obtained by DC with PS macro-elements 

of the physical domain of FIG. 18. 
FIG. 20F is a graphic illustration of a C1 physical mesh 

obtained by DC with PS macro-elements of the physical 
domain of FIG. 18. 

FIG. 20G is a graphic illustration of a parametric mesh in 
S3

1 (Tc,) with basis obtained by DC with CT macro-elements 
of the physical domain of FIG. 18. 

FIG. 20H is a graphic illustration of a C1 physical mesh 
obtained by DC with CT macro-elements of the physical 
domain of FIG. 18. space. 

FIG. 15A is a graphic illustration of an L-shaped domain 
with three holes. 

FIG. 15B is a graphic illustration of an initial quadratic 
parametric mesh of the domain of FIG. 15A. 

FIG. 201 is a graphic illustration of a parametric mesh 
S/·2 (T) with basis obtained by DC of the physical domain 

15 of FIG. 18. 
FIG. 20J is a graphic illustration of a C2 physical mesh in 

S5 
1

•
2 (T) obtained by GE of the physical domain of FIG. 18. 

FIG. 15C is a graphic illustration of an initial quadratic 
physical mesh of the domain of FIG. 15A. 

FIG. 16A is a graphic illustration showing a parametric 
mesh in S/(TPJ with basis obtained by DC with PS 
macro-elements. 

FIG. 20K is a graphic illustration of a parametric mesh in 
S5

1 (T) with basis obtained by GE of the physical domain of 
20 FIG. 18. 

FIG. 20L is a graphic illustration of a C1 physical mesh in 
S/(T) obtained by GE of the physical domain of FIG. 18. 

FIG. 16B is a graphic illustration showing a C1 physical 
mesh obtained by DC with PS macro-elements. 

FIG. 16C is a graphic illustration showing a parametric 
mesh in S/(Tc,) with basis obtained by DC with CT 
macro-elements. 

FIG. 20M is a graphic illustration of a parametric mesh in 
S/·3 (TPJ with basis obtained by DC with PS macro-

25 elements of the physical domain of FIG. 18. 

FIG. 16D is a graphic illustration showing a C1 physical 
mesh obtained by DC with CT macro-elements. 

FIG. 16E is a graphic illustration showing a parametric 30 

mesh in S5 
1 (T) with basis obtained by GE. 

FIG. 16F is a graphic illustration showing a C1 physical 
mesh obtained by GE. 

FIG. 20N is a graphic illustration of a C3 physical mesh 
in S5 

2
•
3 (Fs) obtained by GE of the physical domain of FIG. 

18. 
FIG. 200 is a graphic illustration of a parametric mesh in 

S5 
2 (TPJ with basis obtained by GE with PS macro-elements 

of the physical domain of FIG. 18. 
FIG. 20P is a graphic illustration of a C2 physical mesh in 

S/(TPJ obtained by GE of the physical domain of FIG. 18. 
FIG. 21A is a graph showing convergence rates in C0 FIG. 16G is a graphic illustration showing a parametric 

mesh in S/·2 (T) with basis obtained by DC. 
FIG. 16H is a graphic illustration showing a C2 physical 

mesh in S/·2 (T). 

35 space. 

FIG. 17A is a graph showing error measured in the 
L 2 -norm vs. mesh parameter from refined elements in FIGS. 
16A-16H to illustrate convergence rates in C0 space. 

FIG. 17B is a graph showing error measured in the 
L 2 -norm vs. mesh parameter from refined elements in FI GS. 
16A-16H to illustrate convergence rates in C1 space with 
nested refinement sequences. 

40 

FIG. 17C is a graph showing Error measured in the 45 

L2 -norm vs. mesh parameter in C1 spaces for refinement 
sequences with inconsistent geometric map, establishing 
that the optimal convergence rates are not achieved. 

FIG. 18 is a graphic illustration of an elastic plate with a 
circular hole, where L is the length of the edge, R is the 50 

radius of the circle, and -i: is the thickness of the plate, and 
where E and v represent the Young's modulus and Poisson 
ratio respectively. 

FIG. 19A is a graphic illustration of an initial parametric 
mesh of the physical domain of FIG. 18. 

FIG. 19B is a graphic illustration of an initial physical 
mesh of the physical domain of FIG. 18. 

FIG. 19C is a graphic illustration of a smoothed paramet­
ric mesh of the physical domain of FIG. 18. 

55 

FIG. 20A is a graphic illustration of a parametric mesh in 60 

S3 °(T) of the physical domain of FIG. 18. 
FIG. 20B is a graphic illustration of a physical mesh in 

S3 °(T) of the physical domain of FIG. 18. 

FIG. 21B is a graph showing convergence rates in C1 

space. 
FIG. 21C is a graph showing convergence rates in C2 

space S/(TPJ (GE) and superspline space S/·3 (TPJ (DC). 
FIG. 22 is a graph showing error measured in the L2-norm 

of stress vs. the number of nodes from refinements of three 
quintic elements, Ss°, s/, s/·3

, in FIGS. 20C/20D, FIG. 
20K/20L and FIG. 20M/20N 

FIG. 23 is a graph showing error measured in the L 2 -norm 
of stress vs. mesh parameter for refinement sequences with 
inconsistent geometric map, and illustrating that the conver­
gence rates are remarkably lower than in FIGS. 21A-21C. 

FIG. 24A is a graphic illustrating an initial S/(Tc,) mesh. 
FIG. 24B is a graphic illustrating a local refinement 1. 
FIG. 24C is a graphic illustrating a local refinement 2. 
FIG. 24D is a graphic illustrating a local refinement 3. 
FIG. 25 is a graph showing a comparison of error per 

degree of freedom between uniform and local refinement in 
space S3 1(Tc,) for the plate hole problem. 

FIG. 26 is a block diagram of a non-limiting of an 
example of one system for implementing the systems and 
methods described herein. 

FIG. 27 is a flowchart setting forth steps of one example 
of a process in accordance with the present disclosure. 

DETAILED DESCRIPTION OF THE 
INVENTION 

FIG. 20C is a graphic illustration of a parametric mesh in 
S5 °(T) of the physical domain of FIG. 18. 

FIG. 20D is a graphic illustration of a physical mesh in 
S5 °(T) of the physical domain of FIG. 18. 

As will be described, the present disclosure provides an 
65 approach that can provide convergence for all er rTBS 

elements based isogeometric analysis in the context of 
h-refinement, even relative to a criteria for optimal conver-
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gence. Approximation power and convergence rates are used 
to evaluate the performance of numerical schemes for solv­
ing PDEs. The NURBS space has been proved to have full 
approximation power and deliver an optimal rate of conver­
gence as the classical finite element spaces. Similar approxi- 5 

mation estimates that are optimal with respect to the poly­
nomial degree of the underlying spline space have also been 
developed for T-splines that are defined on a particular 
two-patch structure. However, no convergence results have 
been reported for T-splines defined on more generalized 10 

T-meshes that include extraordinary points, which usually 
require additional continuity constraints on the surrounding 
control points to achieve G1 continuity. 

As will follow, an approach to rTBS based isogeometric 
15 

analysis is described. An initial coarse parametric mesh is 
first refined into elements that are sufficiently small for 
analysis and the global er smooth basis is then constructed 
by imposing continuity constraints on adjacent triangles in 
the refined parametric mesh. Based on the er basis, the er 20 

geometric map is obtained. Although such a refine-then­
smooth approach does lead to er stable basis that is sufficient 
for analysis, the resulting geometric map may not be con­
sistent before and after the er constraints are imposed. The 
inconsistency in geometric maps leads to deteriorated con- 25 

vergence rate. 
The present disclosure recognizes that the reason for such 

inconsistency in geometric map is as follows. The er basis 
is obtained via continuity constraints on domain points in the 
parametric mesh. With the er basis, some domain points are 30 

free and other domain points are dependent on these free 
points. For the geometric map that maps the parametric 
mesh to the physical mesh, the control points corresponding 
to the free domain points are chosen as free control points. 
If the remaining dependent control points do not satisfy the 35 

same continuity constraints, they would have to be relocated 

8 
NURBS curve corresponds to a Bezier curve that is defined 
through Bernstein basis functions. Ad-th degree Bernstein 
polynomial is defined as: 

(l); 

where 

( 
d ) d! -=-i+·=d . . ., ., , J . 

l, j l.j. 

Accordingly ad-th degree bivariate Bernstein polynomial is 
defined as: 

d! . i 
B;.d([) = Tik1Y\Yi/,, Iii= i+j+k =d, 

l.j . . 

(2); 

where i represents a triple index (i,j,k) and (y1 ,Y2,y3 ) is the 

barycentric coordinate of a point i;ElR.2 
• Every point s=(s1, 

1;2) in a fixed triangle with vertices v 1, v 2, v 3ElR2 2 can be 
written uniquely in the form: 

(3); 

with Y1+Y2+y3=l. 
It has been shown that the set 

to satisfy the constraints to ensure the map is er. Such 
relocation of dependent control points leads to a change of 
the geometric map. 

To overcome such inconsistency in the geometric map in 
h-refinement with the refine-then-smooth approach, a three­
step approach is provided. As will described, this approach 
can to achieve convergence in IGA with er rTBS elements. 

is a basis for the space of degree d bivariate polynomials 
40 'Pd· A triangular Bezier patch can be defined as: 

In one non-limiting example, this approach can achieve 
convergence with respect to objective, optimal criteria for 45 

convergence. In particular, a pre-refinement geometric map 
is constructed that possesses sufficient smoothness to main­
tain the consistency of the geometric map for subsequent 
refinements. From the pre-refinement smooth geometric 
map, the mesh is uniformly refined. The macro-element 50 

techniques is used to obtain stable er smooth basis for 
analysis. In this "smooth-refine-smooth" approach, the 
smoothness in the first step is used for geometric reason, so 
that the resulting geometric map stays consistent during the 
mesh refinement. The smoothness in the last step provides a 55 

stable basis over triangulation for analysis. The provided 
smooth-refine-smooth approach can, as a non-limiting 
example, provide optimal convergence in h-refinement for 
all types of C' rTBS elements. This approach is also appli­
cable to some supersplines S/·P, (p>r), where some vertices 60 

or edges in macro-triangles possess higher order CP smooth­
ness than the global er smoothness. In such cases, the 
smoothness of the pre-refinement geometric map should be 
CP. 

Bezier Triangles 
NURBS has been widely used as a standard to represent 

curves and surfaces in CAD systems. Each knot span of a 

65 

b([) = ~ p;B;.d([), 
lil=d 

(4); 

where p, represents a triangular array of control points. A 
rational Bezier triangle can be defined similarly as: 

b([) = ~ N/i;.d([), 
lil=d 

with <P,,d being the rational Bernstein basis: 

¢ - WjBi,d - WjBi,d 

;.d - .Z.: wB d - ----;;;-• 
lil=d I I, 

(5); 

(6); 

where w, are the weights associated with the control 
points p,. 

Bivariate Bernstein polynomials can be used to define a 
polynomial function f of degree d over a triangle -i:={ v 1 , v 2 , 

v3 } as: 
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f(/;) = ~ b;!/i;,d(/;), (7) 

lil=d 

where cp, d are the rational Bernstein basis polynomials 
associated ~ith -i:, The b, are called the Bezier ordinates of 
f and their associated set of domain points is defined as: 

{ 
iv1 + jv2 + kv 3 } 

Dd,T = %k = d , i + j + l = d , 
(8) 

10 
polynomials of degree d2:3r for continuity r-odd and d2:3r+ 1 
for r-even, and the Powell-Sabin (PS) split with polynomials 
of degree 

9r- l 
d?.-4-

for r-odd and of degree 
10 

9r+4 
d?.-4-

For example, FIGS, 2A and 2B illustrate an example of 
the associated domain points of the Bezier ordinates (2A) 15 

and triangular Bezier patch (2B), Two polynomials f and f for r-even. For example, CT split may be used to obtain S3 
1 

spline space with cubic polynomials, and PS split may be 
used to obtain S2

1
, S5 

2 and S5 
2

'
3 spline spaces with quadratic 

and quintic polynomials, respectively. The so-called poly-

of degree d join r times differentially across the common 
edge of two triangles -i:={v1 , v2 , vJ and 1:={v4 , v3 , vJ, if 
and only if: 

'\' p! b µ V K 0 
- L, - 1 -1- 1 µ,k+v,)+KYl Y2Y3 = , 

u+v+K=p µ. V .K. 

j+k+p=d,p=O, ,,, ,r, 

(9); 

where y1 ,y2 ,y3 are the barycentric coordinates of vertex v4 

with respect to triangle -i:, For example, FIGS, 3A and 3B 
illustrate two triangular Bezier patches with C1 continuity 
constraints, In FIG, 3A, two domain triangles are illustrated 
with C1 constraints on Bezier ordinates and, in FIG, 3B, two 
Bezier patches are illustrated with C1 continuity, In both, 
free nodes 30, whose values can be freely chosen, are 
shown, Also, dependent nodes 32 are determined by the free 
nodes 30 through the continuity constraints, The triangles 
where continuity constraints are imposed 34 are further 
illustrated, As can be seen in FIG, 3B, the control points in 
each shaded triangle pair 34 are coplanar, For better visu­
alization of the underlying Cd patch, the control net in FIG, 
3B is shifted up slightly, 

Splines on Triangulations 
Consider a parametric domain Q and its triangulation T. 

Then, introduce the spline spaces of piecewise polynomials 
of degree d over T: 

(10) 

where -i: is an arbitrary triangle in T and r is the continuity 
order of the spline over Q, In addition, if the spline has 
higher smoothness at some vertices or across some edges, 
the spline can be considered a superspline and the associated 
space denoted as: 

s;,P(I)~{feSf (I):feC'"( v) 'efve V&feC'"( e) 'ef eEE} (11) 

20 nomial macro-element technique may be used to obtain S5 
1 

and S5 
1

'
2 spline spaces with quintic polynomials without 

using any split technique. 
Specifically, FIGS. 4A and 4B show the CT and PS splits, 

respectively, with corresponding free points 40 and depen-
25 dent domain points 42. In the CT split illustrated in FIG. 4A, 

each vertex of a triangle in T is connected with its centroid 
point to form three micro-triangles. This resulting triangu­
lation is denoted as T ct· In the PS split, each triangle is 
connected along lines from its incenter to each of the three 

30 
vertices and connected from incenter to a common edge 
between triangles. In addition, the middle of each boundary 
edge to the incenter of the associated triangle is connected, 
to thereby create six micro-triangles. In this implementation, 

35 the centroid point, instead of the incenter of each triangle, is 
used as the interior split point and the resulting triangulation 
is denoted as Tps· 

Uniform refinement can also be performed as needed. For 
example, each triangle can be subdivided into four sub-

40 triangles by connecting the middle points of the edges. This 
kind of l-to-4 split based uniform refinement is used in our 
subsequent analysis of convergence during mesh refinement. 

Automatic Domain Parametrization with er rTBS 
As will be described, a method is provided for discretizing 

45 a physical domain Q into a collection of rational Bezier 
triangles without any geometric approximation error. Given 
an arbitrary 2D domain Q and its NURBS-represented 
boundary r, we seek a geometric map G(s), !;ED such that 
the physical domain Q is the image of the geometric map 

50 G(s) over a parametric domain Q where the physical bound­
ary is reproduced by the map. In addition, the geometric map 
G(s) is continuous and differentiable up to any desired 
degree of continuity er. 

where V and E are the set of all vertices and edges 55 

respectively in T and p:={pJvEVU{PetEE with rspv,Pesd 
for each vEV and eEE. 

This can be achieved in three general steps that form a 
process 50, as illustrated with respect to FIG. 5. First, form 
a polygonal parametric domain Q and its triangulation T 
from the given physical domain Q and the triangulation T 0 , 

as illustrated at process block 51. Establish a C0 geometric 
There are several approaches to obtain er spline spaces on 

a triangulated domain Q(T). With respect to the spaces S/ 
and S/'P with full approximation power of d-th degree 
polynomials, condition equation (9) can be applied directly 
on the triangles, which requires the degree of the polynomial 
much higher than r, such as d2:3r+2. An alternative strategy 
is to split each triangle in T into several micro-triangles 
before imposing the continuity constraints on the micro­
triangles. The original triangles are then called macro­
triangles. These include the Clough-Tocher (CT) split with 

60 map G0 between them: G0 :Qr~ QI'.. Second, at process 
0 A 

block 52, construct a set of er basis 'ljl(s) on Q. Third, at 
process block 53, construct a er continuous triangulation T 
of Q and establish a globally er geometric map G(s) from 
the parametric domain Qr to the physical domain Qr· As 

65 will be described, this process can be improved with addi­
tional control against possible self-intersection in the physi­
cal mesh. 
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Construction of a C0 Geometric Map G0 

Referring to FIGS. 5 and 6A-6I, the process for construct­
ing a parametric and physical mesh QT and Qr for a given 
input domain bounded by NURBS curves can be described. 
In FIG. 6, end points 60 and interior control points 62 of 5 

NURBS curves are shown along the boundaries, as are the 
domain points 64 and control points of the mesh. Referring 
to FIGS. 5 and 6A, at process block 54, given a domain Q 
with NURBS boundary curves of degree d, each NURBS 
curve can be subdivided into a set ofBezier curves via knot 10 

insertions, such as illustrated in FIG. 6B. At process block 
55, the end points of these Bezier curves are connected to 
form a polygonal parametric domain Q, as illustrated in FIG. 
6C, and the domain Q is triangulated using Delaunay 
triangulation to obtain QT and the associated domain points 15 

are generated according to Eq. 8, as illustrated in FIG. 6D. 
The quality of the parametric mesh may also be improved by 
using appropriate techniques such as a smoothing method, 
such as described in N. Jaxon, X. Qian, Isogeometric 
analysis on triangulations, Computer-Aided Design 46 20 

(2014) 45-57, which is incorporated herein by reference in 
its entirety. At process block 56, the boundary control points 
of QT with corresponding control points of the Bezier curves 
in the physical domain can be replaced to obtain a triangu­
lation T0 on the physical domain, such as illustrated in FIG. 25 

6E. Thereafter, the physical mesh TO may be checked to see 
ifthere is self-folding. As illustrated in FIG. 61, for example, 
this may happen because of the over recessed control points, 
the control polygon of the curved boundary intersects with 
the other two boundaries of the element, causing self-folding 30 

of the mesh. If so, the Bezier boundary curve can be 
subdivided where self-folding occurs and repeat steps (2)-
(3) until a valid physical mesh T0 is obtained, as illustrated 
in FIGS. 6F, 6G, and 6H. On the other hand, as illustrated in 
6K, the control polygon of the curved boundary may be 35 

contained between the other two boundaries of the element, 
the mesh is clear of self-folding and a valid physical mesh 
TO is obtained, as illustrated in FIG. 61 and process block 58. 

Construction of C spline basis 1.jJ(s) on T 
Let 1J d T=denote the set of domain points for triangula- 40 

tion T as d~fined in equation (8), vE!JJ d Ta domain point and 
bv its ordinate. A piecewise polynomial function f(s)ESd, l;E 

JR' 2 can be expressed in terms of the rational C0 Bernstein 

12 
approach is direction construction through macro-elements. 
That is, according to the connectivity of the triangle ele­
ments in a specific triangulation, one can directly choose a 
set of free domain points based on which all other domain 
points are determined through necessary continuity con­
straints. This will be referred hereinto as the direct construc­
tion (DC) method and the resulting spaces as macro-element 
spaces. Some examples include quintic C1 polynomial 
macro-element space S5 

1
•
2 (T), quadratic C1 PS macro-ele­

men~ space S2
1(Tps), cubic C1 CT macro-element space 

S/(Tc,), and3uintic C2 P~ macro-element space S/·3 (TPJ, 
where S/·2JT) and S/·3 (TPJ are in fact superspline spaces 
with S5 

1
•
2 (T) having C2 super-smoothness at every vertex 

and S5 
2

•
3 (TPJ having C3 super-smoothness at every vertex 

and splitting point of the macro-elements and across the 
three interior edges not connecting to the vertices of each 
macro-element. 

Alternatively, the MDS can also be constructed by ana­
lyzing a homogeneous linear system of the smoothness 
conditions using equation (9) for all pairs of triangles 
sharing an interior edge, which is: 

Ab!JJ .~o 
d.T (14); 

where A is a coefficient matrix depending on the geometry 
of the domain triangles and b!JJ dt are n Bezier ordinates for 
the domain points in 1J d T· The dimension of the space 
SJ(T) is: · 

dim SJ(J)~dim S/(J)-rank A. (15). 

Revealing the rank of A requires Gaussian elimination 
(GE). However, this is challenging in floating point arith­
metic for geometry with degeneracies, which would lead to 
increased rank deficiencies of A and can be easily obscured 
by inexact computations. To overcome such issue, a modi­
fied Gaussian elimination procedure based on residual arith­
metic has been presented. This method makes use of the fact 
that the vertices of the triangulation are pixels and the 
coordinates of the pixels are integers. 

In accordance with the present disclosure, besides the DC 
method, the standard GE method can be used with complete 
pivoting to construct the MDS. For example, the GE method 
can be used in two types of situations. The first situation is 
for triangulations constructed through macro-elements, 
where the GE method can be used to identify stable basis for basis cp and corresponding nodal ordinates b!JJ d.t as: 

f(i;) = I_ b;!/i;(i;) = b°f, ¢(!;). 
i d,T 

(12) 

45 analysis. Although it is not based on residual arithmetic, it 
works well for the examples, such as will be provided. The 
second situation is for general triangulations where the goal 
is to obtain smooth pre-refinement geometric map, rather 
than stable basis. 

Further, for a er continuous spline fESJ, the er smooth­
ness conditions in equation (9) among the Bezier ordinates 
imply that we cannot assign arbitrary values to every coef­
ficient off. Instead, only certain coefficients corresponding 

50 

to a reduced determining set of domain points M d Tc 1J d T 55 

can be assigned, and all remaining coefficients· may be 
determined by the smoothness conditions. When M d Tis the 
smallest set among all possible determining sets, ~e call 
Md T a minimal determining set (MDS) and the domain 
points in it free nodes. We define a set of basis 1.jJ(s) for the 60 

spline space SJ(T) in terms of these free nodes as: 

(13); 

where 1.jlv is the basis function at domain point v and 1\v u 

With the known MDS, after some manipulations on 
matrix A, equation (14) can be transformed to the form: 

(16) 

where C is called the continuity matrix. For the conve-
nience of applying Dirichlet boundary conditions conve­
niently, a boundary MDS is also enforced, which means the 
complete boundary will be uniquely determined by the free 
nodes on the boundaries only. This is accomplished by 
exchanging any free nodes with influence on the boundary 
with a constrained boundary node. A free node appears in C 
as a colunm with a single 1 that is otherwise all zeros. If a 

is the Kronecker delta. · 
The construction of such explicit MDS and, hence, the 

basis of the underlying spline space is not a trivial task. One 

65 constrained boundary node is dependent on a free internal 
node, then by scaling this free basis row, and adding 
multiples of it to zero the boundary node's column, we 
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replace the internal free node by one on the boundary. 
Combining equations (16) and (12), the er continuous func­
tion f now can be expressed in terms of the free nodal 
ordinates 

as 

14 
where u, corresponds to the approximate solution's Bezier 

ordinate at the i-th domain point in the parametric domain 
Dr, as illustrated in FIG. 1. The solution u(x) over the 
domain Qr in the physical space is obtained by composing 

5 u(s) with the inverse of the geometric mapping G- 1 such that 

u(x):Q~ JR' 2
, where: 

(24). 

f(i;) = b'f, . ¢(I;)= b~ . C¢(i;) = b~ . i/1(/;); (17) 10 
After inserting the approximate solution and basis func­

tions into the corresponding weak form of the PDE, we 
obtain the following mass and stiffness matrices, respec­
tively: 

d,T d,T d,T 

where: 

i/1(/;) = C¢(/;); (18) 

is a set of global er basis functions composed as the linear 
combinations of the C0 Bernstein basis cp(1;). 

Construction of er Geometric Map G(s) 
After identifying the free control points p/ corresponding 

to the free domain points in M d.h all the control points p 
for rTBS elements in the physical mesh T may be overridden 
with a set of control points satisfying the er continuity 
constraints: 

(19). 

In addition, the resulting er mesh recovers the original 
NURBS boundary exactly. 

Now the er geometric map G(1;):Q-Q can be obtained in 
terms of rational er basis functions 1.jJ,(s), or equivalently, 
the rational C0 Bernstein basis functions <P)s) as: 

m n 

G(I;) = ~ p{ i/1;(/;) = ~ PJ'PJ(/;), 
(20) 

where m and n are the dimension of the space SJ and S / 
respectively. 

Isogeometric Analysis Using rTBS Elements 
Following herein, a method of isogeometric analysis 

using rTBS elements is described, where the classical Galer­
kin formulation is applied. The problems considered in the 
following include linear elasticity and Poisson problem. 

The governing equation for the linear elasticity is: 

(25); 
15 

(26); 

for C0 elements. For er elements. The mass and stiffness 
matrices are calculated using the fact that the er basis 1.jJ are 

20 linear combinations of C0 basis cp: 

25 

(27); 

(28); 

where M0 and K0 are the mass and stiffness matrices 
respectively for the same er elements in terms of the C0 

basis cp. The difference between M0 and M0 , K0 and K0 is due 
to the potential relocation of the control points to satisfy the 
er continuity constraints for the er elements. The assembly 

30 process for such matrices is different from the one described 
in N. Jaxon, X. Qian, Isogeometric analysis on triangula­
tions, Computer-Aided Design 46 (2014) 45-57, where the 
entries in Mr and Kr are calculated directly after identifying 
the basis function 1.jJ, supporting each element from the 

35 continuity matrix C. Instead, M0 and K0 are assembled first 
using the C0 basis cp as in classical C° FEM and then 
multiplied by the continuity matrix C to obtain Mr and Kr as 
shown in equations (27) and (28). This implementation can 
be readily applied in any existing FEM routine without 

40 changing the assembly process. The numerical integration is 
performed in each element (micro-element if split is used) 
by using standard and collapsed Gaussian quadrature rules 
on the boundaries and element interiors respectively. Spe-

!

V·cr+b=O onfl (21) 45 

cifically, the integrals are first pulled back onto the para­
metric domain and then onto a parent element of right­
angled isosceles triangle, as shown in FIG. 1. er= DVsu 

CT·n=t onrt 

u = u on ru, 

where D is the elasticity matrix, b and t refer to body force 
and traction respectively, u is the displacement, r, and r u are 
the portions of the boundary, where traction and displace­
ment are specified, respectively. The Poisson problem is 
defined as: 

in fl, 

on r, 

(22) 

where f:Q-R is a given function and u denotes pre­
scribed boundary values. 

Using the basis constructed in the previous section, we 
approximate the solution in the corresponding parametric 
domain as: 

Due to the use of boundary MDS mentioned earlier, the 
Dirichlet boundary conditions can be imposed similarly as in 
NURBS based IGA. Typical strategies include the least 

50 square method (used herein), weak imposition using 
Lagrange multiplier, and an improved transformation 
method. 

Approximation Property of the rTBS Space 
It is already known that the set of Bernstein basis func-

55 tions of degree d over a triangulation form a basis for the 
polynomial space of degree d. Thus for C0 basis, the same 
error estimate holds as for classical finite element methods 
and optimal convergence rates can be guaranteed. In this 
section, we focus on how well er continuous functions can 

60 be approximated by rTBS. 

u(/;) = ~ U;i/J;(/;) = UT i/J; (23) 65 

It has been proven in M. Lai, L. Schumaker, Spline 
functions on triangulations, Vol. 110, Cambridge University 
Press, 2007, which is incorporated herein by reference in its 
entirety, that, if there exists a subspace of SJ(T) with a 
stable local minimal determining set, then SJ(T) has the 
approximation power up to d+ 1. That is, for every f EHd+l, 
there exists a spline sESJ(T) such that: 



US 10,346,554 B2 
15 

(29) 

where Hk and wk,p are the Hilbert and Sobolev spaces 
respectively with 11•11 the associated seminorm, hr is the 
length of the longest edge in T, the constant C depends only 
on d and the smallest angle in T, and the Lipschitz constant 
of the boundary of Q. 

Although the result relative to equation (29) is derived in 
the TBS space, following NURBS based IGA, a similar 
result in the rTBS space can be derived as: 

(30) 

V f E Hd+I, 0 s ks d. 

where Ils is the projector on the rTBS space SJ, the 
constant Cw differs from C by the extra dependence on the 
weight function w and 't is an element in the triangulation T. 
Finally we define the projector IIu:L2(Q)----;,uJ as: 

IIuf :~(II5 (f oG) )oG-1
, 'ef fEL 2 (Q), (31); 

where uJ is the space of rTBS on the physical domain Q 
(the push-forward of the rTBS space SJ on the parametric 
domain Q), as shown in FIG. 7. 

Now the error estimate on the physical domain Q can be 
derived as: 

d+! 

If - IIuflHk(T) s Cwhj+l-k ~ IIV Gl[~(~-1(T)J'flH;(Tl' 
i=O 

(32) 

where G is the geometric map, T=G(T), and hr is the 
longest element edge in T. Thus, equation (32) implies the 
rTBS space on the physical domain delivers the optimal rate 
of convergence, which is d+ 1-k in terms of the error norm 
in Hk space for polynomials of degree d, provided that there 
is a set of local stable basis for SJ and the geometric map 
G remains the same for different mesh size hr. 

Pre-Refinement Smooth Geometric Map 
As shown above, in order to evaluate the convergence rate 

upon h-refinement, the geometric map must remain the same 
during refinement. As will follow, the need for a smooth 
pre-refinement geometric map will be shown. Then a strat­
egy to construct a pre-refinement geometric map will be 
introduced that possesses sufficient smoothness to maintain 
the consistency of the geometric map for all subsequent 
refinements. Thus, the basis for a "smooth-refine-smooth" 
approach, in accordance with the present disclosure, will be 
provided. 

Need for a Pre-Refinement Smooth Geometric Map 
Let li.0 c li.1 c li.2 c c li.n be a nested sequence of trian­

gulations, where li.k-I c li.k means li.k is a refinement of li.k-I 

16 
elements are small enough for accurate analysis, and then 
impose er smoothness constraints through a macro-element 
based DC technique or GE. That is, for space SJ, first create 
a nested sequence of triangulations TO c T 1 c T 2 c . . . c T n 

5 in the physical domain, and then impose er continuity 
constraints on each mesh T k and relocate the dependent 
control points to ensure er smoothness. Although such a 
"refine-then-smooth" approach is able to create arbitrarily 
small rTBS elements with desired continuity for analysis, 

10 the resulting geometric map may not be consistent during 
the refinement. That is, the resulting elements are not nested 
after the refinement. As such, optimal convergence cannot 
be achieved with such an approach. To demonstrate such a 
lack of consistency in the resulting er geometric map with 

15 the "refine-then-smooth" approach, two examples will be 
discussed. 

20 

Lack of Consistency Example 1 

The notation in various refinement and splits are as 
follows. The subscripts u,ct,ps are used to indicate uniform 
refinement, CT split and PS split, respectively, which are 
used in the same sequential order as these refinements are 
performed. The superscript indicates the order of smooth-

25 ness. For example, Tc,,u,u,p/ represents a C1 smooth mesh 
obtained by performing a CT split followed by two uniform 
refinements and a PS split on the mesh T. Note that the CT 
and PS split are usually followed by imposing continuity 
constraints. Here ct* and ps* are used to indicate the 

30 respective split without imposing continuity constraints. 
An example is given below where a domain is initially 

parameterized into five C0 elements, as shown in FIGS. SA 
and 8B. Also, FIGS. 9A-9F shows a nested sequence of 
triangulations from such initial C0 elements through uniform 

35 refinement. CT splits are then performed to obtain splines in 
the S3

1 FIGS. 9A-9C are C0 meshes before continuity 
constraints are actually imposed, where the free control 
points 90 are points that can be chosen freely, but continuity­
satisfied, dependent control points 92 and non-continuity-

40 satisfied, control points 94 are points that are determined 
through the continuity constraints. That is, continuity-satis­
fied, dependent control points 92 have already satisfied the 
continuity condition, while the non-continuity-satisfied, 
dependent control points 94 are not and need to be relocated 

45 to obtain C1 smoothness. As can be seen, the non-continuity­
satisfied, dependent control points 94 are distributed only 
near the common edges shared by the initial five elements in 
FIG. 8B. After relocating the control points, as shown in 
FIGS. 9D-9F, the meshes have been locally changed and are 

50 no longer nested. The relocation of some control points p, 
(the non-continuity-satisfied, dependent control points 94) to 
satisfy the continuity constraints, thus, leads to a change of 
the geometric map according to equation (20). 

by subdividing each triangle in li.k-l into several sub-tri- 55 

angles. We denote the er spline space defined on li.k as 
SJ(li.k). If the mesh sequences in the parametric domain are 
nested, that is, TO c T 1 c T 2 c . . . c Tm and the resulting 
triangulations in the physical domain under the geometric 
mapGk:Tk~TkarealsonestedasT0 cT1 cT2 c ... cTm 60 

then the geometric map Gk for the space SJ(li.k) is said to be 
consistent during the refinement sequence. 

Lack of Consistency Example 2 

The second example concerns a kind of macro-elements 
in the superspline space SJ'P, p>r, as defined in equation 
(11 ), where super-smoothness CP happens at the vertices or 
edges of the macro-triangles. Uniform refinement of such 
elements followed by the same macro-element technique to 
achieve super-smoothness at macro-element vertices or 
edges would lead to inconsistent geometric maps. An 
example is given in FIGS. lOA-lOC. Specifically, the initial 
mesh is illustrated in FIG. lOA in superspline space S5 

1
'
2 

obtained by DC based on the quintic C1 macro-element 
technique. This initial mesh is globally C1 but with C2 

For accurate isogeometric analysis with er rTBS ele­
ments, elements need to be sufficiently small. One way is to 
first obtain C0 coarse mesh from the procedure outlined 65 

above with respect to the construction of a C0 geometric map 
G0 , perform uniform refinement on the C0 mesh until the 
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smoothness at the vertices of macro-triangles. If this initial 
T1

•
2 mesh is refined as shown in FIG. 10B where the 

smoothness at the points 100 are C2 and the smoothness at 
points 102 in the refined mesh is still C1

. In order to obtain 
stable basis in the S5 

1
•
2 with the same macro-element tech- 5 

nique, all macro vertices need to be C2 smooth. Thus, the 
control points 104 need to be relocated to achieve C2 

smoothness at all macro vertices, since many of the control 
points only possess C1 smoothness before refinement. As the 
mesh is refined, as illustrated in FIG. lOC, there are more 10 

and more vertices that need to be relocated to achieve C2 

smoothness. Such relocation of control points to achieve 
higher-order smoothness at more and more vertices and 
edges of refined macro-triangles, due to super-smoothness 
requirement at vertices of macro-triangles in the S5 

1
•
2 

15 

macro-element space, leads to the loss of consistency of the 
geometric map. 

Solution 

18 
local basis (such as described above with respect to con­
struction of er spline basis 1.jJ(s) on or the control points can 
be relocated to satisfy the smooth conditions by Gaussian 
elimination. 

It is worthy to mention the difference between the pre­
refinement er smooth geometric map described here and the 
er map described above with respect to construction of er 
spline basis 1.jJ(s) on T. The reason for a pre-refinement 
smooth geometric map is geometric. That is, a er map is 
created that maps the parametric domain to the physical 
domain and recovers the original boundary, without the need 
for a set of stable local basis for analysis. Such a smooth 
pre-refinement map is designed so that, during the refine-
ment, the control points do not need to relocate since they 
would already satisfy the continuity conditions. Thus, the 
pre-refinement map is kept consistent during the refinement. 
On the other hand, in order to approximate a field in 
analysis, a set of stable basis should be constructed by the To overcome such inconsistency of the geometric map 

during the refinement, a geometric map with sufficient 
smoothness may be constructed before the refinement. For 
the usual er splines, the pre-refinement geometric map may 
be at least er smooth. For superspline space SJ·P where 
super-smoothness occurs at the vertices or edges of macro­
triangles, a CP pre-refinement map may be constructed 
before the refinement. In this way, all subsequent refined 
elements are globally CP smooth and the super-smoothness 
required at those vertices and edges are therefore satisfied. 
The refinement sequence is nested and the geometric map 
remains unchanged. 

20 methods discussed with respect to construction of er spline 
basis 1.jJ(s) on T. For example, in cubic space S/(Tc,) with 
CT split, a C1 pre-refinement map can be created using CT 
split, as shown in FIG. llA. Even if it is C1 after uniform 
refinement, as illustrated in FIG. 11B, the CT split is 

25 performed again in order to construct a set of stable local 
basis in S3 1(Tc,) to be used in analysis, as shown in FIG. 
llC. Thus, FIGS. llA-llC illustrate smooth-refine-smooth 
procedure, where the purpose of the first CT split is to 
construct a pre-refinement smooth geometric map, while the 

Note if super-smoothness happens at the interior vertices 
or edges of macro-triangles after the splits, refinement of 
such elements does not need to relocate dependent control 
points to satisfy the continuity constraints. This is because, 

3° CT split at the last step is to construct a set of C1 stable local 
basis for analysis. 

Numerical Results 
In the following discussion, "optimal convergence" rates 

are discussed, as is achieving "optimal convergence" using 
rTBS-based isogeometric analysis for different problems 
with different elements. First, this will be illustrated with 
respect to a domain bounded by straight line segments, 
where optimal convergence rates are achieved in all pre-

at these internal vertices and edges of a macro-triangle, the 35 

continuity is already c=. For example, although the qua­
dratic C1 PS macro-element and cubic C1 CT macro-element 
spaces are also superspline spaces, their super-smoothness 
occurs inside the macro-elements where the geometric 
smoothness is infinity. Thus, they can be treated as regular 40 sented spaces. Then, with respect to domains with curved 

boundaries, if no pre-refinement smooth map is constructed 
to keep the er geometric map consistent during refinement, 
the convergence rates will be shown to be lower than 
optimal. Then, with the pre-refinement smooth map as 

er spaces in terms of smoothness requirement of the pre­
refinement geometric map. 

Construction of a Pre-Refinement Smooth Geometric 
Map 

45 discussed above with respect to pre-refinement smooth 
geometric map, optimal convergence rates will be discussed. 
The results provided hereafter are demonstrated on two 
examples. A first is a Poisson problem on a complex domain 
with three holes and one elastic problem on a plate domain. 

To control or avoid the inconsistency of the er geometric 
map during the refinement, a pre-refinement map may be 
constructed. This pre-refinement map may be designed to 
meet a sufficiency criteria with respect to smoothness. The 
pre-refinement map can have refinements performed on it, 
and the er continuity constraints can be followed to obtain 
stable basis for er rTBS elements, such as discussed with 
respect to construction of er spline basis 1.jJ(s) on T. The 
refined mesh inherits the continuity. The refined control 
points, therefore, do not need to be relocated since they 
already satisfy the continuity conditions. Thus, the resulting 55 

meshes are er smooth and nested, and the geometric map 
remains the same for all subsequent refinements. 

50 We also show the advantage of local refinement in rTBS for 
the elasticity problem. Note, in all examples below, the 
element size in the convergence study refers to the maximal 
length of the edges in the micro-elements. 

A sufficiently smooth pre-refinement mesh for a given 
domain can be obtained, such as described above. For 
example, if the domain is bounded by straight line segments 60 

and recalling that the domain points in the parametric mesh 
satisfies the smoothness condition, the control points can be 
generated in the location obtained by an affine transforma­
tion of the domain points in the parametric mesh. In this 
case, the physical mesh obtained will satisfy the needed 65 

smoothness condition as well. If the domain has curved 
boundaries, a er mesh can be constructed with a set of stable 

Domain with all Straight Boundaries: Poisson Problem 
The first example is a triangular domain with a triangular 

hole as shown in FIGS. 12A-12F. All sides consist of straight 
line segments. The governing equation is equation (22) with 
the open set domain Q being defined as: 

fl:= (33) 

{(x, y) I [(o < x s ~) &(o < y < 3&) U (~ < x < 1) & 

(o < y < 3✓3(1-xJ)]\ 



US 10,346,554 B2 
19 

-continued 

[(~sxs~)&(3'; sys3v'3(x-i))urn< 

X s ~) &( 3
'; Sy S 3y'3(~ -x))l}. 

20 
In the convergence study, we compute the analysis error 

by: 

(36) 

The body force is: 
where Unum and uexact are the numerical and exact solu-

10 tions, respectively. The longest edge hmax of the triangles in 
the physical mesh is considered as the mesh parameter. 

and the exact solution is given by: 

(34). FIGS. 14A-14C illustrate the error measured in the L 2 -norm 
versus mesh parameter. As shown in FIGS. 14A-14C, opti­
mal convergence rates are achieved in the tested C0

, C1 and 

(35). 15 
C2 spaces, including in the superspline spaces S5 

1
•
2 (T) in 

FIG. 14B and S/·3 (TPJ in FIG. 14C. Particularly, compar­
ing with the regular er spline space, the same optimal 
convergence rate is obtained in the superspline space, but 
with far fewer degree of freedoms. For example, for space 

Based on our parameterization strategy in described 
above, the parametric domain illustrated in FIG. 12A is the 
same as the physical domain, since the boundary edges are 
all straight. The initial linear mesh is obtained by the 
Delaunay triangulation of the problem domain, as shown in 
FIGS. 12B and 12C. By degree elevation, meshes corre­
sponding to quadratic, cubic and quintic C0 spline spaces are 
obtained, as shown in FIGS. llC, llD, and llE, respec­
tively. Only the physical meshes are shown since the para­
metric meshes are the same as the corresponding physical 
meshes. 

20 
S/(TPJ, the number of free DOFs obtained via the GE 
method are respectively 252, 843, 3063, and 11679, corre­
sponding to the refinement sequences in FIG. 13C. On the 
other hand, for the superspline S/·3 (TPJ, the number of 
DOFs obtained via the DC method are respectively 120, 

25 
360, 1200, 4320 and 16320, corresponding to the refinement 
sequences in FIG. 13C. Note that for spaces S2

1(TPJ and 
S3 

1 (Tc,), DC and GE yields exactly the same analysis results 
and their convergence curves overlap with each other in this 
figure. Meshes corresponding to er spaces with stable basis for 

analysis can be obtained through the macro-element tech­
niques via either the DC or GE method as described above. 
For example, FIGS. 13A-13H show the C mesh correspond­
ing to C0 meshes discussed above with respect to FIGS. 
12A-12F, including quadratic C1 PS macro-element space 
S2

1 (TPJ, cubic C1 CT macro-element space S3
1 (Tc,), quintic 35 

C1 polynomial macro-element space S5 1(T), S5
1

'
2 (T) and 

quintic C2 PS macro-element space S/(TPJ and S/·3 (Tps)-

30 
The refinement steps, the methods for obtaining er stable 

basis for analysis, and the convergence rates for each type of 
elements are summarized in Table 1. It can be seen that 
optimal convergence rates have been achieved with all types 
of er rTBS elements. 

In FIGS. 13A-13H, solid dots represent free nodes and 
hollow dots represent dependent nodes. The dimension of 
each space (number of independent basis functions) is also 40 

reported. As can be seen, for S2
1(Tps) and S3 

1(Tc,), although 
the MDS obtained by DC and GE may be different, the 
dimension of the spaces are exactly the same, and so are the 
numerical solutions resulted from the two methods. For the 
quintic C1 and C2 spaces, DC yields superspline spaces 
which have smaller dimension than the ones obtained by 
GE. For example, the space S5 

1
'
2 (T) obtained by DC has 

dimension 96 (FIG. 13E) while the space S5 
1 (T) obtained by 

GE has dimension 120 (FIG. 13F), and the space S/·3 (Tps) 
obtained by DC has dimension 120 (FIG. 13G) while the 
space S5 

2 (Tps) obtained by GE has dimension 252 (FIG. 
13H). 

45 

50 

TABLE 1 

smooth-refinement-smooth steps and convergence rates of different 
er spaces for the problem in FIG. 12A-12F. 

Ste 

Pre-refinement map Refine- Stable basis Conv. 

Space Smoothness Split Method ment Split Method rate 

S/(TPJ coo uniform PS DC or 3.0 
GE 

S/(Ta) coo uniform CT DC or 3.8 
GE 

S,1(T) coo uniform GE 6.0 
S,1·2 (T) coo uniform DC 6.0 
S,2(TPJ coo 
S,2·3(TPJ coo 

uniform PS 
uniform PS 

GE 5.8 
DC 5.9 

Domain with Curved Boundaries: Poisson Problem 
In this example we solve a Poisson problem on a L-shaped 

domain with three holes, as shown in FIG. 15A. White nodes To study the convergence, uniform refinements are per­
formed on the initial C0 meshes (FIGS. 12D-12F) before the 
same macro-element techniques are used to obtain stable er 
basis. The refinement sequences for these spaces are 
{Tp,,Tu,p5'Tu, ,uf.5' ... } in S/(TpJ, in {Tct,Tu,ct, 

55 represent the control points. The boundaries of the domain 
are represented in NURBS with weights so chosen that exact 
circular holes are represented. The governing equation is 
equation (22) with the open set domain being defined as: 

Tu, ... ,u,ct, ... } in S3 (Tc,), {T,Tu,Tu, ... ,u, ... } in S5
1

'
2 (T), 60 

{T,Tu,Tu, . . . ,u, . . . } in S5 
1(TpJ, {Tp,,Tu,ps, 

Tu, _ _ ,u,ps' . . . } in S/·3 (Tps) and {Tps,Tu,ps' 
Tu, . ,u,ps, ... } in S/(TPJ. Note, in this example, no 
pre-refinement smooth map was explicitly constructed. The 
reason for this is that, for domains bounded by straight line 65 

segments, the parametric mesh are identical to the physical 
mesh and the geometric map is in fact c= smooth. 

Q:~{((x,y)l[0,;x,;16)&(0,;y,;1.6)]1[((8<x<16)& 
(8<y< 16))U ((x-4)2 +(y-4 )2<4 )U ((x-12)2 + 
(y-4 )2<4 )U ((x-4 )2 +(y-12)2<4)]}. 

The body force is: 

f(x,y)~2 sin(x)sin(y), 

and the exact solution is given by: 

u(x,y)~sin(x)sin(y). 

(37). 

(38); 

(39). 
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To create the initial parametric mesh, we first extract 
quadratic Bezier curves from the NURBS boundary curves 

22 
evaluated at the boundary of the finite quarter plate, is 
applied as a Neumann boundary condition. 

The initial parameterization of the physical domain is 
shown in FIGS. 19A-19C. The NURBS boundary curves of 

of the physical domain. Particularly, four rational Bezier 
segments are exacted from each circular boundary. The end 
points of these Bezier curves are connected to form the 
initial parametric domain, which is then triangulated to 
obtain the initial parametric mesh, as shown in FIG. 15B. We 
then replace the boundary control points of the parametric 
mesh with corresponding points from the physical boundary 

5 the given domain are first extracted as rational quadratic 
Bezier curves. After connecting the end points of the Bezier 
curves, we obtain an initial parametric domain and triangu­
late it, as shown in FIG. 19B. Then, we replace the boundary 
control points with corresponding points on the physical 

10 boundary to obtain the initial physical mesh as shown in 
FIG. 19A. To improve the mesh quality and analysis results, 
we use the same smoothed parametric mesh, as in FIG. 19C, 
by minimizing the difference of the internal corner angles 

to obtain the initial physical mesh, as shown in FIG. 15C. 
The er stable basis for analysis can be obtained as usual by 
degree elevation followed by either the DC or GE method 
based on the macro-element techniques. For example, FIGS. 
16A-16H show parametric and physical meshes for different 

15 er spaces. In particular, the meshes correspond to quadratic 
C1 PS macro-element space S2 

1(T J, cubic C1 CT macro­
element space S31(Tc,), quintic cf polynomial macro-ele­
ment space S5 

1 (T) and S5 
1

•
2(T). 

between the parametric and physical domains. 
Through degree elevation on the parametric and physical 

meshes in FIGS. 19A-19C, we obtain cubic and quintic C0 

meshes in S3 °(T) and S5 °(T), as shown in FIG. 20A-20P. 
Meshes in er spaces for analysis are also obtained by either 
DC or GE method, as shown in FIGS. 20A-20P, where solid 

The refinement sequences used to evaluate the conver­
gence are {Tps,Tps.u.ps,Tps.u. .u.ps' ... } in s21(TPJ, 
{Tct,Tct,u,ct,Tct,u, ... ,u,ct, · · · } in S3

1
(Tct), {T,Tu, 

20 dots represent free nodes and hollow dots represent depen­
dent nodes. 

Tu .... . u, ... } in Ss 
1
(T), and {Tp,,Tps.u,Tps.u .... . u, ... } in 

S5 
1

•
2(T). The methods for constructing pre-refinement 

smooth maps, refinement, and methods of basis construction 25 

in each er space are summarized in Table 2. For example, for 
the superspline space S5 

1
•
2(T), the initial physical mesh is C2 

smooth obtained by GE with PS macro-elements. The four 
pairs of figures (i.e., FIGS. 16/16B, 16C/16D, 16E/16F, 
16G/16H) correspond to the four initial pairs of parametric 30 

and physical meshes in the four convergence studies, respec­
tively. The convergence rates obtained in C0 and C1 spaces 
are all optimal as shown in FIGS. 17A and 17B, where the 
convergence rates for quadratic, cubic and quintic elements 
are 3, 4, and 6 respectively in all c0

, C1 and C1
•
2 spaces. 35 

TABLE 2 

Smooth-refinement-smooth steps and convergence rates of different er 
spaces for the problem in FIG. 15A-C. 40 

Ste 

Pre-refinement ma:12 Refine- Stable basis Conv. 

Space Smoothness Split Method ment Split Method rate 45 

S/(TPJ Cl PS DC uniform PS DC 3.1 
S/(Ta) Cl CT DC uniform CT DC 3.9 
S,1(T) Cl GE uniform GE 6.0 
S,1·2(T) c2 PS GE uniform DC 5.7 

50 

If the refine-then-smooth strategy is used and, thus, no 
smooth pre-refinement map is constructed, the geometric 
map changes and convergence rate decreases as the mesh is 
refined. As shown in FIG. 17C, although the rate in S2

1 (Tps) 
is optimal, the rates in S3

1(Tc,) and S5 
1 (T) are 3, and the rate 55 

in S/·2(T) decreases quickly to about 4.1. Note that the 
extreme large errors in S5 

1 
•
2(T) on for the coarse meshes are 

due to the poor mesh quality. 
Domain with Curved Boundaries: Linear Elasticity 
In the third example, we apply our approach to a well- 60 

known linear elasticity problem: an infinite plate with a 
circular hole under constant in-plane tension in the x-direc­
tion. The infinite plate is modeled by a finite quarter plate as 
shown in FIG. 18 with the governing equation (21). Lis the 
length of the edge, R is the radius of the circle and -i: is the 65 

thickness of the plate. E and v represent the Young's 
modulus and Poisson ratio, respectively. The exact solution, 

The refinement sequences used to evaluate the conver-
gence are {T,Tu,Tu. ___ .u, ... } in all C0 spaces, {TP,, 
Tps,u,ps,Tps,u, ... ,u,ps' · · · } in S2

1
(TPJ, {Tct,Tct,u,ct' 

Tc,.u. ___ .u.ct, •••}in S3 1(Tc,), {T,Tu,Tu. ___ .u, ... } in S5 
1

"
2(T), 

{T,Tu,Tu. - - - .u, . .. } in Ss 1(T), {Tps,Tu.ps,Tu. - - - .u.ps' ... } 
in S5 

2•3 (T PJ and S5 
2(T ps). The steps of convergence analysis 

and methods of basis construction in each er space is 
summarized in Table 3. Pairs represented by FIGS. 20A/ 
20B, 20C/20D, 20E/20F, and 20G/20H correspond to the 
four initial pairs of parametric and physical meshes in the 
four convergence studies respectively. Note that the pre­
refinement smooth geometric map, C2 and C3 used in space 
S/(TPJ and S/·3(TPJ are both obtained by GE after 
imposing continuity constraints on the quintic C0 mesh. 

TABLE 3 

Smooth-refinement-smooth steps and convergence rates of different er 
spaces for the problem in FIG. 18. 

Ste 

Pre-refinement ma:12 Refine- Stable basis Conv. 

Space Smoothness Split Method ment Split Method rate 

S2 l(TPJ Cl PS DC uniform PS DC 2.0 
S/(Ta) Cl CT DC uniform CT DC 2.8 
S,1(T) Cl GE uniform GE 5.0 
S,1·2(T) c2 GE uniform DC 5.0 
S,2(TPJ c2 GE uniform PS GE 5.0 
S,2·3(TPJ c3 GE uniform PS DC 4.7 

The energy error is evaluated by: 

[
1 r ]1/2 

estress = 2 Jn (Enum - Eexact) -n -(Enum - Eexact )& n , 
(40) 

where Enum and Eexact are the numerical and exact strain 
vectors respectively. The mesh parameter is evaluated as the 
longest edge hmax of the triangles in the physical mesh. 
Again, optimal convergence rates are achieved in c0

, C1 and 
C2 spaces, as shown in FIGS. 21A-21C where quadratic, 
cubic, and quintic rates are obtained for the energy norm 
error using quadratic, cubic, and quintic elements, respec­
tively. In the superspline spaces S5 

1
•
2(T) and S5 

2·3(TpJ, 
optimal rates are also observed as shown in FIGS. 21B and 
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is generally connected through a bridge 1012 to memory 
1014 and, in some cases, an additional non-local cache 1016. 
Some system may include dedicated graphics processing 
units (GPUs) 1018 that have been adapted from processors 

21C. This demonstrates the efficiency of supersplines for 
analysis on a per-node basis since far fewer degree of 
freedoms are used in superspline space than the regular 
spline space of the same degree. Also, FIG. 22 provides a 
plot of the convergence curve on a node basis. It can be seen 
that at the same number of nodes in three quintic elements, 
Ss°, S/, S/·3

, higher continuity leads to smaller errors. 
However, if we use the refine-then-smooth strategy, that 

is, without constructing the smooth pre-refinement map, the 
local modification of the control points to obtain the er basis 
would change the geometric map. Consequently, the con­
vergence rates are reduced, as shown in FIG. 23. The 
convergence rates in all C1 and C2 spaces with polynomial 
degrees ranging from quadratic to quintic are about the 
same, which range from 1 .4 to 1.6 and are far below the 
optimal values. 

5 utilized to simply drive a display 1020 to a secondary, 
specialized processor that the CPU 1008 can utilize to 
offload tasks fitting the specialized capabilities of the CPU 
1008, such as transcoding operations and many others. In 
any case, the general computer architecture 1006, regardless 

10 of workstation 1002 or server 1004 provides a CPU 1008 
and memory 1014 and may be supplemented by secondary 
processing and memory components, such as a GPU 1018 
and various caches 1010, 1016 dedicated to particular situ-

15 ations. In this regard, the above-described components may 
be conceptualized as a CPU/memory sub-system 1022. 

The computer architecture 1006 also includes a bus or 
multiple buses 1024 that connect the above-described CPU/ 
memory sub-system 1022 to other, slower components of 

One advantage of using triangular meshes in analysis is 
the ease of local refinement of meshes. We use the Rivara 
method, which uses the element-wise strain energy error to 
guide the local refinement. The elements with large error are 
bisected across one of their edges. The local refinement of 
S3

1 (Tc,) mesh is shown in FIGS. 24A-24D. The comparison 

20 the computer architecture 1006. For example, the buses 
1024 may provide connections to a universal serial bus 
(USB) hub or controller 1026 and/or dedicated, bus-con­
nected I/O devices 1028. Of course, I/O connections may 
vary substantially; however, in all cases, the bus 1024 

of error measured in the L2 -norm of stress vs. number of 
degree of freedoms between uniform and adaptive refine­
ment is shown in FIG. 25. The local refinement sequence 
shows superior advantage with same error obtained using 
only one third of degree of freedoms of uniform refinement. 
Clearly, the local refinement exhibits superior advantage 
over uniform refinement by leading to the same accurate 
results with fewer number of degree of freedoms. Specifi- 30 

cally, to obtain the same order of error, the uniform refine­
ment requires about three times the number of degree of 
freedoms as much as the adaptive refinement. 

25 provides connections to one or more hard drives 1030. These 
hard drives 1030 may take many forms and, more recently, 
include hardware advances such as solid-state drives, but are 
uniformly present in workstations or personal computers 
1002 and servers 1004. This is because traditional notions of 

As described above, the smooth-refine-smooth approach 
to rTBS based isogeometric analysis can achieve conver- 35 

gence rates for all er rTBS elements. This convergence can 
be considered "optimal" relative to a given criteria. For 
example, "optimal convergence" may be defined, as 
described above, where equation (32) implies the rTBS 
space on the physical domain delivers the optimal rate of 40 

convergence, which is d+l-k in terms of the error norm in 
Hk space for polynomials of degree d, provided that there is 
a set of local stable basis for S/ and the geometric map G 
remains the same for different mesh size hr. Likewise, 
"sufficient smoothness" may be defined, for example, as the 45 

smoothness needed to maintain the consistency of the geo­
metric map for subsequent refinements. 

As described above, for a given NURBS bounded domain 
with arbitrary topology, the rTBS based parameterization 
can be fully automated, such that user intervention is not 50 

required to select or complete refinement. Various sets of 
globally er continuous basis can be constructed by imposing 
continuity constraints on adjoining triangle elements, 
through either DC or GE method. Error estimates indicate 
that the constructed er space delivers optimal convergence 55 

rates, provided the geometric map remains the same during 
refinement. 

Referring to FIG. 26, a computer network 1000 is illus­
trated, which may be configured to carry out a process in 
accordance with the present disclosure. The computer net- 60 

work 1000 may be formed by a plurality of workstations 
1002 that are connected to one or more servers 1004. 
Regardless of whether the computer system is a server 1004 

computer architecture can be conceptualized as, at a mini­
mum, including a CPU/memory sub-system 1022 and a 
mass-storage sub-system 1032. 

Thus, the above-described computer systems may be used 
to implement the above-described techniques. For example, 
referring to FIG. 27, a flowchart is provided that sets forth 
non-limiting, examples of steps that may be carried out, for 
example, using the system of FIG. 26. The process 1050 
begins at process block 1052 by analyzing a CAD model to 
generate a pre-refinement geometric map. As described, the 
pre-refinement geometric map serve as a map between a 
parametric mesh and a physical mesh of the computer aided 
design model. As such, the pre-refinement geometric map is 
designed to have a smoothness projected to maintain a 
consistency of a mesh based on the pre-refinement geomet­
ric map during a refinement of the mesh. That is, the 
pre-refinement geometric map has smoothness projected to 
maintain consistency of the geometric map between the 
parametric mesh and the physical mesh during refinement by 
making the control points satisfying the continuity con­
straints before refinement so that they do not need to be 
relocated after refinement to satisfy the continuity con-
straints. Thus, the process begins with a "smooth" step. 

At process bock 1054, the mesh is refined based on the 
pre-refinement geometric map to converge toward a refine­
ment criteria associated with the CAD model. More particu­
larly, the parametric mesh and the physical mesh are refined 
based on the pre-refinement geometric map to converge 
toward a refinement criteria associated with the CAD model. 
Thus, a "refine" step is performed. 

At process block 1056, macro-element techniques are 
used to obtain stable er smooth basis for analysis. To this 
end, a smooth-refine-smooth approach is provided. In the 
above-described smooth-refine-smooth approach, the 
smoothness in the pre-refinement geometric map keeps the or workstation 1002, an underlying hardware architecture 

1006 of the computer systems is illustrated. The hardware 
architecture 1006 may include one or more CPUs 1008, 
which may include one or more caches 1010. The CPU 1008 

65 geometric map consistent during the refinement. The 
smoothness in the last step is used to obtain stable er basis 
for analysis. 
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Therefore, in order to overcome the inconsistency of 
geometric map during the refine-then-smooth approach, the 
present disclosure provides systems and methods to con­
struct a pre-refinement map that possesses sufficient conti­
nuity for subsequent refinements. Thus, the relocation of 5 

control points is avoided and the map stays unchanged 
during refinement. By constructing such a pre-refinement 
geometric map with sufficient smoothness----convergences 
that meet a given threshold-have been achieved. In one 
example a smoothness conditions or threshold for evaluation 10 

for the pre-refinement geometric map may be one that is er 
smooth for regular er elements and CP smooth in cases of 
superspline spaces SJ·P, p>r, where super-smoothness 
occurs at the vertices or edges of macro-triangles. 

Numerical results verified that convergence rates are 15 

improved to be optimal in different spaces with the intro­
duction of such smooth pre-refinement maps. This demon­
strates that er rTBS elements possess superior efficiency on 

26 
the consistency of the mesh by determining control points 
that do not need to be relocated during refinement of the 
mesh because the control points satisfy a continuity con-
straint. 

7. The system of claim 6 wherein the processor is further 
configured to use the continuity constraint to obtain a er 
basis on domain points in the parametric mesh. 

8. The system of claim 6 wherein the processor is further 
configured to generate the pre-refinement geometric map to 
include dependent control points that satisfy the continuity 
constraint. 

9. The system of claim 1 wherein the processor is further 
configured to select the smoothness projected to maintain 
the consistency of the mesh by determining control points 
that do not need to be relocated during refinement of the 
mesh because the control points satisfy a continuity con­
straint. 

10. The system of claim 1 wherein the processor is further a per-node basis over C0 elements. Such nodal efficiency is 
especially pronounced in the case of supersplines. 

It is understood that the present invention is not limited to 
the specific applications and embodiments illustrated and 
described herein, but embraces such modified forms thereof 
as come within the scope of the following claims. 

20 configured to evaluate a smoothness condition for the pre­
refinement geometric map including one of determining that 
the pre-refinement geometric map is er smooth for regular 
er elements and CP smooth in cases of superspline spaces 
SJ·P, p>r, where supersmoothness occurs at vertices or 

What is claimed is: 25 edges of macro-triangles. 
1. A system for creating a mesh from a computer aided 

design model during an isogeometric analysis process, the 
system comprising: 

a memory having access to a computer aided design 
(CAD) model ofan object, wherein the geometry of the 30 

CAD model of the object is described using at least one 
C smooth non-uniform Rational B-splines (NURBS) 
representation, where r;;e:l; 

a processor configured to carry out an isogeometric analy­
sis process that includes: 
accessing the CAD model of the object from the 

memory; 

35 

generating, using the NURBS representation, a pre­
refinement geometric map of the CAD object that 
has a smoothness projected to maintain a consistency 40 

of a mesh based on the pre-refinement geometric 
map during a refinement of the mesh such that the 
pre-refinement geometric map is at least er smooth; 

defining a plurality of elements by refining the mesh 
based on the pre-refinement geometric map to con- 45 

verge toward a refinement criteria associated with 
the CAD model; and 

carrying out the isogeometric analysis of the object 
based on at least the plurality of elements. 

2. The system of claim 1 wherein the processor is further 50 

configured to further define the plurality of elements by 
smoothing the mesh after refining to obtain a stable er basis 
for the isogeometric analysis. 

3. The system of claim 2 wherein the processor is further 
configured to further define the plurality of elements by 55 

utilizing a macro-element technique to obtain the stable er 
basis for the isogeometric analysis. 

11. A method for creating a mesh from a computer aided 
design model during a isogeometric analysis process, the 
method comprising: 

accessing to a computer aided design (CAD) model of an 
object, wherein the geometry of the CAD model of the 
object is described using a t least one er non-uniform 
Rational B-splines (NURBS) representation, where 
r;;e:l; 

generating, using the NURBS representation, a pre-re­
finement geometric map to serve as a map between a 
parametric mesh and a physical mesh of the computer 
aided design model, wherein the pre-refinement geo­
metric map has smoothness projected to maintain con­
sistency of the parametric mesh or the physical mesh 
during refinement by determining control points that do 
not need to be relocated during refinement of the 
parametric mesh or the physical mesh because the 
control points satisfy a continuity constraint, wherein 
the pre-refinement geometric map is at least er smooth; 

defining a plurality of elements by refining the parametric 
mesh or the physical mesh based on the pre-refinement 
geometric map to converge toward a refinement criteria 
associated with the CAD model; and 

carrying out the isogeometric analysis of the object based 
on at least the plurality of elements. 

12. The method of claim 11 further comprising further 
defining the plurality of elements by smoothing the mesh 
after refining to obtain a stable er basis for the isogeometric 
analysis. 

13. The method of claim 12 further comprising further 
defining the plurality of elements by utilizing a macro­
element technique to obtain the stable er basis for the 
isogeometric analysis. 4. The system of claim 1 wherein the processor is further 

configured to generate the pre-refinement geometric map to 
serve as a map between a parametric mesh and a physical 
mesh of the computer aided design model. 

5. The system of claim 4 wherein the processor is further 
configured to generate the pre-refinement geometric map to 
include control points corresponding to free domain points 
chosen as free control points. 

14. The method of claim 12 further comprising generating 
60 the pre-refinement geometric map to include control points 

corresponding to free domain points chosen as free control 
points. 

6. The system of claim 4 wherein the processor is further 
configured to select the smoothness projected to maintain 

15. The method of claim 11 further comprising using the 
continuity constraint to obtain a er basis on domain points 

65 in the parametric mesh. 
16. The method of claim 11 further comprising evaluating 

an optimal criteria for convergence. 
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17. The method of claim 16 wherein the optimal criteria 
includes evaluating rational triangular Bezier splines (rTBS) 
space on a physical domain to deliver an objective rate of 
convergence. 

18. The method of claim 11 wherein the isogeometric 5 

analysis process is performed automatically by a computer 
system. 

19. The method of claim 10, wherein generating the 
pre-refinement geometric map comprises: 

subdividing each of a plurality ofNURBS curves along a 10 

boundary of the object from the NURBS representation 
into a set of Bezier curves via knot insertion; 

connecting end points of the Bezier curves to form a 
polygonal parametric domain; and 

triangulating the polygonal parametric domain. 15 

* * * * * 

28 


