
c12) United States Patent
Nowatzki et al.

(54) COMPUTER WITH HYBRID
VON-NEUMANN/DATAFLOW EXECUTION
ARCHITECTURE

(71) Applicant: Wisconsin Alumni Research
Foundation, Madison, WI (US)

(72) Inventors: Anthony Nowatzki, Madison, WI (US);
Vinay Gangadhar, Madison, WI (US);
Karthikeyan Sankaralingam, Madison,
WI (US)

(73) Assignee: Wisconsin Alumni Research
Foundation, Madison, WI (US)

(*) Notice: Subject to any disclaimer, the term ofthis
patent is extended or adjusted under 35
U.S.C. 154(b) by 370 days.

(21) Appl. No.: 14/813,945

(22) Filed:

(65)

Jul. 30, 2015

Prior Publication Data

(51)

(52)

US 2017/0031866 Al

Int. Cl.
G06F 15182
G06F 9/38
G06F 1/3296
G06F 1/324
G06F 1/3287
U.S. Cl.

Feb. 2, 2017

(2006.01)
(2018.01)
(2019.01)
(2019.01)
(2019.01)

CPC G06F 151825 (2013.01); G06F 9/3836
(2013.01); G06F 9/3897 (2013.01); G06F
1/324 (2013.01); G06F 1/3287 (2013.01);

G06F 1/3296 (2013.01); Y02D 10/126
(2018.01); Y02D 10/171 (2018.01)

I 1111111111111111 1111111111 1111111111 111111111111111 IIIII IIIIII IIII IIII IIII
USO 10216693B2

(IO) Patent No.: US 10,216,693 B2
Feb.26,2019 (45) Date of Patent:

(58) Field of Classification Search
CPC G06F 9/3877; G06F 9/3897
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

2006/0095721 Al* 5/2006 Biles G06F 8/44
712/34

2007 /0220235 Al * 9/2007 Yehia G06F 9/3802
712/205

2008/0263332 Al * 10/2008 Yehia G06F9/30181
712/220

2012/0303932 Al* 11/2012 Farabet G06F 15/7867
712/30

2014/0351563 Al* 11/2014 Vorbach G06F 9/3885
712/221

OTHER PUBLICATIONS

Sami Yehia, Nathan Clark, Scott Mahlke, Krisztian Flautner. "Explor­
ing the Design Space of LUT-based Transparent Accelerators"
CASES'05, Sep. 24-27, 2005.*

(Continued)

Primary Examiner - Jacob Petranek
(74) Attorney, Agent, or Firm - Boyle Fredrickson, S.C.

(57) ABSTRACT

A dataflow computer processor is teamed with a general
computer processor so that program portions of an applica­
tion program particularly suited to dataflow execution may
be transferred to the dataflow processor during portions of
the execution of the application program by the general
computer processor. During this time the general computer
processor may be placed in partial shutdown for energy
conservation.

23 Claims, 4 Drawing Sheets

US 10,216,693 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

Nathan Clark, Amir Hormati, Scott Mahlke. "VEAL: Virtualized

Execution Accelerator for Loops" Proceeding ISCA '08 Proceed­

ings of the 35th Annual International Symposium on Computer

Architecture pp. 389-400. Jun. 21-25, 2008.*

Joao Bispo, Joao M. P. Cardoso, Jose Monteiro. "Hardware pipelin­
ing of runtime-detected loops" 2012 IEEE.*
Yijun Liu, Steve Furber, Zhenkun Li. "The Design of a Dataflow
Coprocessor for Low Power Embedded Hierarchical Processing"
PATMOS 2006.*
Clement Farabet, Berin Martini, Benoit Corda, Polina Akselrod,
Eugenio Culurciello, Yann LeCun, "NeuFlow: A Runtime
Reconfigurable Dataflow Processor for Vision" CVPR 2011 Work­
shops, Jun. 20-25, 2011. (Year: 2011).*
Arvind et al.; "Executing a program on the MIT tagged-token
dataflow architecture."; Computers, IEEE Transactions on 39, No.
3 (1990): pp. 300-318; MA.

Clark et al.: "Application-specific processing on a general-purpose
core via transparent instruction set customization," In Microarchitecture,
2004. MICRO-37 2004, 37th International Symposium on, pp.
30-40. IEEE, 2004; US.
Govindaraju et al.; "Dynamically specialized datapaths for energy
efficient computing." In High Performance Computer Architecture
(HPCA), 2011 IEEE 17th International Symposium on, pp. 503-
514. IEEE. 2011. Wisonain.
Gupta et al.; "Bundled execution of recurring traces for energy­
efficient general purpose processing." In Proceedings of the 44th
Annual IEEE/ ACM International Symposium on Microarchitecture,
pp. 12-23. ACM. 2011; Brazil.
Hayenga et al.; "Revolver: Processor architecture for power efficient
loop execution." In High Performance Computer Architecture (HPCA),
2014 IEEE 20th International Symposium on, pp. 591-602. IEEE.
2014; us.
Sankaralingam et al.; "Distributed microarchitectural protocols in
the TRIPS prototype processor." In Microarchitecture, 2006. MICRO-
39. 39th Annual IEEE/ACM International Symposium on, pp.
480-491. IEEE, 2006; Texas.
Swanson et al.; "The wavescalar architecture." ACM Transactions
on Computer Systems (TOCS) 25, No. 2 (2007): 4 Washington.

* cited by examiner

U.S. Patent Feb.26,2019 Sheet 1 of 4

,-26 22 ,-10
,-----1-------,

MEMORY
INTERFACE

35
r,:::::=:j;====:;:..-=--=--=---:..738
MA~R~~ENT PROGRAM

UNIT COUNTER

0--39
65
67

14 40--D 69
GENERAL
PURPOSE

PROCESSOR

I
I

: MEMORY SYSTEM ',

CACHE

TRANSFER
CIRCUIT 54a

FIG. 1
58

7s~ ~-;a ---~-
76

78--+--r-~--,
77-1-----.:::;:::=;:::r-....

80 FUNCTIONAL
UNITS

24

'

74

US 10,216,693 B2

..-.=-----1-~1 N PUT
~----f----.~ BUS

BUS STORE
ARBITER BUFFER

OUTPUT
BUS

75

pl

FIG. 2

U.S. Patent

INSTRUCTION
MANAGEMENT

UNIT

Feb.26,2019

77

Sheet 2 of 4 US 10,216,693 B2

- 80!
, ____ ___,_,_ __ _,____,_.._...)

CORRELATOR C!RCU!T-REGiSTER

114

117

DETECT LOOP

RECAST LOOP

CREATE
CONFIGURATION

DATA

121-~ INSERT DATA
AND MARKERS

FIG. 6

FIG. 3

120 108b

-----) END
110 108c

-----i) , _____ RESTART

FIG. 7

U.S. Patent Feb.26,2019 Sheet 3 of 4

I

90 ~
~OOP

REGIO~--- - -
.,,,.

92
\, CHECK PREDICTION

94 < OK

96
\... TRANSFER LOOP

98
I"--. POWER DOWN

102

104

GPP

RECORD
PERFORMANCE

POWER UP
GPP

10t RESTORE CONTROL
TOGPP

FIG. 4

US 10,216,693 B2

U.S. Patent Feb.26,2019 Sheet 4 of 4 US 10,216,693 B2

\

\

/"'z"". ,------~~~~)\
~ gi·~
ro -~---- ······· >,I .

ro'/ {> ~J -t>-/-<F
I

f

\ I <v

.- -~ -<1=\ ,----······~ ~ I -<F
~1---- '', '! ~y Ll--
~ J &5")_ g

\ I
I I

/

I
/

/

/

·,i-,

8
i~

•••• .I I
ro

co --
0 ----
co ---

US 10,216,693 B2
1

COMPUTER WITH HYBRID
VON-NEUMANN/DATAFLOW EXECUTION

ARCHITECTURE

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT

This invention was made with government support under
1218432 awarded by the National Science Foundation. The
government has certain rights in the invention.

NIA

CROSS REFERENCE TO RELATED
APPLICATION

BACKGROUND OF THE INVENTION

The present invention relates to computer architectures
and in particular to an improved computer architecture
blending features of a Von Neumarm computer and a data­
flow execution computer.

In a common general-purpose computer, a sequence of
stored instructions is executed in an instruction sequence
controlled by a program counter. The instructions may
perform operations on data (for example, add and multiply
instructions) or may read data to control the flow of the
program among instruction (for example, branch instruc­
tions). Each instruction is generally executable in sequence
on a single integrated arithmetic logic unit. These architec­
tures will be termed herein "Von Neumarm architectures" or
control flow architectures. Such computer architectures
receive a program of instructions and initial data values for
execution.

An alternative architecture, termed herein a "dataflow
architecture", represents programs and executes by model­
ing a flow of data between different functional units much
like electrical data flowing between circuit elements that are
wired together. The functional units execute in a sequence
determined by the availability of data rather than according

2
architecture that may switch between execution modes on a
general-purpose processor or dataflow processor for differ­
ent parts of an application program. By properly selecting
the portions of the application program to be executed on the

5 dataflow computer processor, the problems normally asso­
ciated with dataflow computer processing may be avoided,
and portions of the program difficult to execute on a dataflow
computer processor may be executed by the general-purpose
computer processor. In one important embodiment, the

10 dataflow architectures may be used to execute in-line nested
loop structures typically having simplified control flow and
limited or localized dataflow well suited for dataflow execu­
tion.

15
More specifically, in one embodiment, the invention pro-

vides a computer with improved function comprising a
general computer processor communicating through transfer
circuitry with a dataflow computer processor. The general
computer processor includes: (a) a memory interface for

20 exchanging data and instructions with an electronic
memory; (b) an arithmetic logic unit receiving input data
and instructions from the memory interface to process the
same and to provide output data to the memory interface;
and (c) a program counter identifying instructions for execu-

25 tion by the arithmetic logic unit. The dataflow computer
processor includes: (a) a memory interface for exchanging
data and instructions with electronic memory; (b) multiple
functional units interconnected to receive input data from
the memory interface or other functional units and providing

30 output data to the memory interface or other functional
units; and (c) an interconnection control circuit controlling
the interconnection of the multiple functional units to
exchange data according to the dataflow description. The
transfer interface operates to transfer the execution of an

35 application program between the general purpose computer
processor and the dataflow computer processor and: (a) at
the beginning of a set of instructions of the application
program executable on the dataflow computer processor,
switching execution from the general computer processor to

40 the dataflow computer processor and providing to the data­
flow computer processor a dataflow description of the set of
instructions; and (b) at a completion of execution of the set
of instructions by the dataflow computer processor returning

to a Von Neumann type program counter and generally the
data processed by the dataflow architecture is operated on by
many independent functional units as it flows among the
functional units. The ability of many functional units to
execute data simultaneously in a dataflow architecture 45

makes dataflow architectures promising for implementing
instruction level parallelism and thereby obtaining higher
processing speeds than available with Von Neumann archi­
tectures where instructions are executed sequentially
according to a program counter value.

execution to the general computer processor.
It is thus a feature of at least one embodiment of the

invention to overcome the deficiencies of dataflow architec­
tures in handling common program structures by dynami­
cally switching to dataflow architecture during only selected
portions of an application's lifetime where dataflow archi-

50 tectures have an advantage. Remaining portions of the
program may be executed by a general computer processor.

The general computer processor may include a low-power
and a high-power operating mode and the computer may
move the general computer processor to the low-power
mode at the beginning of the set of instructions and to the
high-power mode at the completion of execution of the set
of instructions.

Despite the potential advantages of dataflow architec­
tures, dataflow architecture computers show no signs of
replacing conventional Von Neumann machines for general
computing tasks. Control flow speculation is difficult to
implement with dataflow architectures and the intercommu- 55

nication of data values between functional units can be
costly in terms of time and hardware. The problem of
compiling an arbitrary Von Neumann architecture program It is thus a feature of at least one embodiment of the

invention to exploit the improved power efficiency of a
60 dataflow processor to reduce total computer power con­

sumption and heat generation.

as a dataflow architecture program is challenging

SUMMARY OF THE INVENTION

The present inventors have recognized that many appli­
cation programs have portions that are particularly suited for
execution on a dataflow architecture even if that is not true
with the entirety of the application program. Accordingly,
the invention provides a hybrid Von Neumann/dataflow

The computer may include a prediction table tracking
execution on the dataflow computer processor of the set of
instructions of the application as linked to the set of instruc-

65 tions, and the computer may switch execution from the
general computer processor to the dataflow computer pro­
cessor for a given set of instructions only when the predic-

US 10,216,693 B2
3

tion table tracking for previous execution of a given set of
instructions indicates likelihood of a predetermined benefit
in execution of the transfer.

4
allowing pre-processing of the application program to iden­
tify instructions to transfer to the dataflow computer pro-
cessor.

It is thus a feature of at least one embodiment of the
invention to provide run time refinement of the criteria for
selecting program portions best executed by the dataflow
computer processor or to permit runtime variation in the
allocation of program portions between the general-purpose
processor and dataflow processor to permit a flexible trade-

The dataflow description may be embedded in the appli-
5 cation program executed by the general computer processor.

10 off between power consumption and speed. The prediction
table may, for example, measure execution time or number
of executed instructions to ensure that the transfer process is
justified based on the ability of the dataflow processor to
process substantial portions of the application and the

15
desired speed performance requirements.

It is thus a feature of at least one embodiment of the
invention to permit preprocessing of the conversion of an
application program to dataflow descriptions necessary for
dataflow processing.

The set of instructions may be limited to a predefined
maximum number of static instructions.

It is thus a feature of at least one embodiment of the
invention to provide for an efficient hybrid computing
platform possible by limiting the size of the program por­
tions transferred and hence the necessary size and complex­
ity of the dataflow computer processor. Limiting the number
of static instructions greatly increases the complexity of
tracking and managing dataflow.

The functional elements of the dataflow processor may
execute in multiple sequential time steps in between which
configuration of the components of the functional elements
and their interconnection may be changed.

It is thus a feature of at least one embodiment of the
invention to permit a relatively modest number of functional
elements to implement substantial portions of the applica­
tion program by time sequencing. This allows a low area,
low-power dataflow computer processor that may be inte­
grated with the general-purpose core.

The multiple functional units of the dataflow computer
20 may be interconnected by a bus structure that may intercon­

nect only a subset less than the full set of functional units at
a given time.

It is thus a feature of at least one embodiment of the
invention to permit a simplified bus structure reducing the

25 complexity of the dataflow computer processor.

The dataflow computer processor includes registers for
storage of data between time steps.

The general computer processor and dataflow computer
processor may both communicate with a common cache
through the memory interfaces.

It is thus a feature of at least one embodiment of the It is thus a feature of at least one embodiment of the
invention to allow data generated and consumed within the
application portion to remain largely within the dataflow
computer processor for reduced latency.

30 invention to eliminate the need for the transfer of significant
amounts of data between the general computer processor
and the dataflow computer processor (for example, through
data copying through memory) and to preserve cache coher-The computer may identify in-line instruction loops pro­

viding one or more loops of control flow, where the loops do
not include input-output operations or atomic operations as 35

the set of instructions for transfer to the dataflow processor.
It is thus a feature of at least one embodiment of the

invention to process loops using a dataflow computer such
as provide a tractable dataflow problem. The present inven­
tors have determined that nested loops suitable for execution 40

on the system can comprise a substantial amount (as much
is 80 percent) of a typical application program.

The general computer processor may execute a transfer
program identifying a beginning of the set of instructions
and enabling operation of the transfer interface in switching 45

execution from the general computer processor to the data­
flow computer processor. In addition, the dataflow computer
processor may employ the dataflow description to identify a
completion of execution of the set of instructions to enable
operation of the transfer interface and return execution to the 50

general computer processor.

ence.
These particular objects and advantages may apply to

only some embodiments falling within the claims and thus
do not define the scope of the invention.

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1 is a block diagram of a computer of the present
invention having a general computer processor and dataflow
computer processor showing an expanded detail of a data­
flow computer processor employing multiple dataflow ele­
ments each including an instruction management unit, a
compound functional unit, and an output distribution unit;

FIG. 2 is a detailed block diagram of an instruction
management unit of FIG. 1;

FIG. 3 is a detailed block diagram of an example com­
pound functional unit of FIG. 1 per the present invention;

FIG. 4 is a flowchart of the operation of a transfer circuit
for transferring control between the general computer pro­
cessor and dataflow processor;

It is thus a feature of at least one embodiment of the
invention to employ the general computer processor and the
dataflow computer processor to simplify the hardware
required in this present design.

The transfer circuit at the beginning of the set of instruc­
tions may further transfer initial data values for the func­
tional units.

FIG. 5 is an example dataflow between two compound
55 functional units (at different times) implementing a simple

loop portion of an application program;

It is thus a feature of at least one embodiment of the
invention to provide for the efficient transfer of current
variable values to the dataflow processor to minimize trans­
fer time.

The computer may identify the beginning of the set of
instructions from special instructions in the application
program.

It is thus a feature of at least one embodiment of the
invention to provide reduced hardware requirements by

FIG. 6 is a flowchart of a compiler that may work with the
present invention; and

FIG. 7 is a representation of a portion of an application
60 program modified by the compiler of FIG. 6 to work with the

computer of the present invention.

65

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

Referring now to FIG. 1, a computer system 10 suitable
for use with the present invention may include a computer

US 10,216,693 B2
5

12 having an interconnected general-purpose processor
(GPP) 14 and an explicit dataflow processor (EDP) 16
communicating with each other by transfer lines 18 and
transfer circuit 19.

Each of the GPP 14 and EDP 16 may also communicate 5

with a shared Ll cache and address translation unit 20 which
in turn communicates via a high-level memory system 22, of

6
dataflow elements 54. This greatly simplifies the bus struc­
ture while providing suitable interconnectivity as will be
described.

The EDP 16 also includes a store buffer 68. The store
buffer 68 communicates between the high-level memory
system 22, and each of the dataflow elements 54 to store and
load data required by the various CPUs 64 as will be
discussed in more detail below. a type known in the art and including higher-level caches,

memory, and a system bus, with external memory 24 includ­
ing random access memory and nonvolatile storage such as

A transfer circuit 19 closely integrated with the EDP 16
10 provides for communication and control transfer between

the GPP 14 and the EDP 16 over transfer lines 18. This
a hard drive, and other peripheral devices 26, for example,
including a network connection circuit 30 and a user inter­
face 32, for example, including a display, keyboard, mouse
and the like. It will be understood that this representation
shows a typical computer configuration; however, the pres- 15

ent invention is not limited to this configuration but may be
used for servers or embedded applications or the like.

The GPP 14 provides a general Von Neumann architecture
including an arithmetic logic unit (ALU) 36, for example,
implementing an out-of-order (000) processing of the type 20

generally known in the art, in association with a program
counter 38, one or more general-purpose registers 39, and
the reorder buffer 40. The ALU 36 may implement a
complete instruction set architecture including arithmetic
instructions for addition, subtraction, multiplication, and 25

division, branch instructions, bitwise operations instruc­
tions, and call instructions allowing for the saving of pro­
gram state and transfer of program execution among differ­
ent program blocks. For example, the GPP 14 may
implement an x86 or similar instruction set, for example, 30

providing a 32-bit instruction set comparable with the 80386
processor manufactured by Intel Corporation.

The GPP 14 may also include a power management
circuit 35 for reducing the power consumed by the GPP 14,
for example, during an inactive mode while no instructions 35

are being executed, in contrast to an active mode when
instruction execution is being performed, while retaining the
architectural state, e.g., values of registers and other
memory. The power management circuit 35, for example,
may lower the voltage received by the various components 40

of the GPP 14, or may lower the clock speed, or may
completely or partially shut down various components not
required for architectural state preservation, or may use a
combination of these approaches.

The GPP 14, communicating through the high-level 45

memory system 22 are, with other external memory 24, may
execute all or part of an application program 42 comprised
of multiple instructions 44 held in external memory 24. As
will be discussed below, the GPP 14 may execute a transfer
program 46 transferring execution of some of the instruc- 50

tions 44 of the application program 42 to the EDP 16. In
executing this transfer program 46, the GPP 14 may access

transfer circuit 19 includes a configuration and initialization
module 55 that may receive a dataflow description 65 for
programming the EDP 16 over transfer line 18a as well as
initial operand values 67 for transfer to the various dataflow
elements 54 during a programming phase. The configuration
and initialization module 55 communicates the received
information to each of the IMUs 62 to provide for program­
ming and initialization of each of the dataflow elements for
execution of a particular portion of the application program
42. Specifically, the configuration and initialization module
55 communicates a dataflow description which describes the
interconnections of the CPUs 64 and initial values (live in)
for execution of that program portion.

The transfer circuit 19 also includes a completion transfer
module 57 operating upon completion of the execution of
the program by the EDP 16 to return control and selected
operands 69 to the GPP 14 over transfer line 18b. The
operand data 69 may be received from a single designated
one of the ODU 66. The completion transfer module 57 may
also control one or more control lines 21, for example,
providing an interrupt to the GPP 14 to restart its operation
and/or to trigger the power management circuit 35 to change
the power operating mode of the GPP 14.

As will be discussed in greater detail below, the above­
described components operate together to execute the appli­
cation program 42 first by the GPP 14 until a portion of the
application program 42 suited for the EDP 16 is encoun­
tered. At that time the portion of the application program 42
is transferred to the dataflow computer processor for execu-
tion to completion, upon which the EDP 16 returns control
to the GPP 14 for continued execution of the application
program. This transfer process may occur multiple times
during the execution of the application program 42 for
different portions. In one embodiment, the portion of the
application program 42 transferred to the EDP 16 is limited
to in-line nested loops as will be discussed below.

Referring now to FIG. 2, each IMU 62 may include an
input control 71 that receives dataflow description 65 and
initial operand values 67 from the configuration and initial­
ization module 55 for initial programming. The input control
71 also receives data from other dataflow elements 54 over
input bus 58. Generally, input control 71 decodes the data-

a prediction table 48 as will be described below to read from
the prediction table 48 and update the statistics of the
prediction table 48.

The EDP 16, in one embodiment, may include eight
dataflow elements 54a-54h which will be used to process
data. Each of the dataflow elements 54 includes an instruc­
tion management unit (IMU) 62, a compound functional unit
(CFU) 64, and an output distribution unit (ODU) 66. Gen­
erally, the ODU 66 of each dataflow element 54 outputs data
to other dataflow elements 54 on an output bus 56 managed

55 flow description 65 into a set of dataflow function settings
(for example, activating switching or deactivating various
functional units 80 shown in FIG. 3 as will be described)
stored in a configuration storage unit 70 and interconnection
descriptions describing the data and control interconnections

60 between the various functional units 80 stored in a destina-

by a bus arbiter 60. A dataflow input bus 58 from the bus
arbiter 60 transfers data from the output bus 56 to selected
IMUs 62. In one embodiment, the bus arbiter 60 may 65

independently connect any output of an ODU 66 to one IMU
62 of a different dataflow element 54 to each of two different

tion storage unit 72. The operand values 67 received by the
input control 71 are decoded into operands stored in an
operand storage unit 74. Each of the configuration storage
unit 70, the destination storage unit 72, and the operand
storage unit 74 provide for multiple entries 75 each associ­
ated with a different internal execution cycle of the EDP 16,
these multiple cycles used to leverage a limited number of

US 10,216,693 B2
7

dataflow elements to relatively large portions of the appli­
cation program 42 transferred to the EDP 16.

Each IMU 62 also includes operation-ready logic 76
which communicates with the configuration storage unit 70,
destination storage unit 72, and operand storage unit 74 to 5

determine when data is available for each of multiple
functional units 80 associated with the given dataflow ele­
ment (by interrogating operand storage unit 74) and com­
municates with function selection logic 78 which activates
the functional units 80, providing them with any necessary 10

operands and providing destination information for inter­
connecting the functional units 80 in operation packet 77.
Priority is given to the oldest ready instructions. Operation­
ready logic 76 also tracks the internal cycles of the EDP 16
so as to move through the entries 75 of configuration storage 15

unit 70, destination storage unit 72 and operand storage unit
74 appropriately as each cycle is complete.

Referring now to FIG. 3, the CFU 64 may receive the
operation packet 77 from the function selection logic 78 at
control circuitry 79. The control circuitry 79 decodes the 20

operation packet 77 to activate and interconnect multiple
functional units 80 for dataflow processing. The functional
units 80 may include an arithmetic logic unit (ALU) 80a, a
memory unit 80b, a decision unit 80c, multiplexers 80d and
80e, and demultiplexers or switches 80/, 80g, and 80h. 25

Outputs from the switches 80/, 80g, and 80h are received by
a correlator circuit SOi which collects this data for commu­
nication on the dataflow output bus 56.

The arithmetic logic unit ALU 80a may receive two
operands 82 and an enable signal 84 from control circuitry 30

79 as provided by function selection logic 78 and, when
enabled, may execute basic arithmetic and logical functions
including addition, subtraction, multiplication, and division,
as well as comparisons, Boolean logic functions and the like.
The output of the arithmetic logic unit ALU 80a provides 35

inputs to the memory unit 80b and to switch 80/
The memory unit 80b works in conjunction with store

buffer 68 (described above with respect to FIG. 1) to read
and write values from the memory through the high-level
memory system 22. The memory unit 80b may also receive 40

directly from control circuitry 79 one operand and an enable
signal 84. Data input to the memory unit 80b may be stored
in memory 24 according to a storage address provided as
part of the dataflow description 65 provided from function
selection logic 78 and held for each cycle in the configura- 45

tion storage unit 70. Outputs from the memory unit 80b
provide data read from memory 24 according to a read
address also provided as part of the dataflow description 65
provided from function selection logic 78 and held in the
configuration storage unit 70. 50

The output from the memory unit 80b is provided to the
decision unit 80c and to multiplexer 80e.

The decision unit 80c also receives an enable signal 84
from the control circuitry 79 and may make a decision
providing a control output 87 based on a testing of the data 55

received by the decision unit 80c. For example, the test may
be to test the received data against a stored value to
determine whether it is larger than or less than the stored
value. The stored value is obtained from function selection
logic 78 and held in the configuration storage unit 70 for the 60

current internal loop.
The control output 87 of the decision unit 80c may be

provided to each or any of the switches 80/, 80g, and 80h.
The switches 80/, 80g, and 80h each receive an input and

switch among two data outputs according to the control 65

output 87 which operates to determine a flow of the received
data through either output of 80/, 80g, and 80h to different

8
downstream data units 80 as passed through dataflow output
bus 56. As noted switch 80/ receives input from the output
of the arithmetic logic unit ALU 80a, each of switches 80g
and 80h, in contrast, receiving output from multiplexer 80d
and 80e, respectively.

The multiplexers 80d and 80e are set to receive two inputs
and to communicate one output to their respective switches
determined by a setting from configuration storage unit 70
for the current loop. Multiplexer 80d receives the one input
from the arithmetic logic unit ALU 80a at one input and at
the second input receives a data element from control
circuitry 79 implicitly from an upstream unit 80. The mul­
tiplexer 80e receives one input from the memory unit 80b
and one input from control circuitry 79. Generally, by
controlling the interconnection of the functional units 80,
their settings (for example, switch positions, memory
addresses or arithmetic operations) and their operand data,
and a wide variety of conventional Von Neumann instruc­
tions, can be executed in dataflow form.

Referring now to FIG. 5, an example configuration of two
dataflow elements 54a and 54b to execute a simple in-line
nested loop may read through a linked list structure of the
form:

struct A

int vl, v2;
A* next

As will be understood from the above representation, each
element (designated "a") of the linked list provides two
integers (vl and v2) and a pointer to the next element in the
linked list. The following loop may operate on this linked
list:

while (a.next !- 0)
{

a= a.next;
int n_val = a.v2;
if(n_val<0)
{

a.v2 = -n_val;

else

a.v2 = n_val+l;

In this loop, each linked list element "a" is processed so
long as each value of "next" (a.next) for that list element a
is not zero indicating the end of the linked list. In each
iteration of the loop, the value v2 for that linked list element
a (this value designated a.v2) is checked to see whether it is
less than zero. If so, this value is inverted and if not this
value is incremented.

This loop may be implemented in dataflow form using the
EDP 16 configured as shown in FIG. 5. Only two CPUs 64
are needed in two dataflow elements 54a and 54b, with these
two dataflow elements 54a and 54b being reconfigured into
internal configurations as they process data. For clarity of
description, the dataflow elements 54a and 54b in these
different configurations will be termed dataflow element
instances 54a and 54b for the first configuration and data­
flow element instances 54a' and 54b' for the second con­
figuration.

US 10,216,693 B2
9 10

An initial value of "a", being a pointer to the first list
element (initially from the GPP 14 and subsequently from
previous cycles of the loop), is received by arithmetic logic
unit ALU 80a of dataflow element instance 54a during a first
instance. The arithmetic logic unit ALU 80a adds an offset 5

to this pointer value (8 in this example assuming that each
integer is two bytes) to obtain an address of the next list
element (a.next). This address is provided to the memory
unit 80b which fetches the value of a.next (a pointer) using
the store buffer 68 (shown in FIG. 1) and passes this data 10

value to decision unit 80c. Decision unit 80c tests this

dataflow element instance 546' where it is stored at the
address [a.v2] received from switch 80/ of dataflow element
instance 54a'. The memory unit 80b also outputs a control
signal 87 to switch 80h, controlled by a control signal from
decision unit 80c of dataflow element instance 54a (that tests
for the end of the linked list). If this is not the end of the
linked list, switch 80h provides a signal to the store buffer
68 to create a write token for the desired writing by memory
unit 80b. These tokens are used to retire reading and writing
in the correct order

Conversely at dataflow element instance 54b, the incre­
mented value of n_ value passes to the input of memory unit
80b of dataflow element instance 54b where it is stored at
address [a.v2] received from switch 80/ of dataflow element

pointer value against zero.
As noted above, these values of the offset (8), the test

value (not equal zero), as well as the activation of these
various elements 80, and/or interconnection of these various
elements 80 are all set for this particular instance by con­
figuration storage unit 70 according to an entry 75 (shown in
FIG. 1) for the current instance. This process of setting the
units 80 will be assumed going forward and therefore not
discussed.

The control output from decision unit 80c (shown by a
dotted line but also treated as flowing data) is used to control
switch 80g and switch 80h. This control value is also
provided as an input to switch 80h in the next dataflow
element instance 54a' as passed through dataflow output bus
56 and shown by a dotted line passing between dataflow
element instances 54a and 54a' as will be discussed below.

If the value of a.next is equal to zero, then switch 80g is
controlled to return the value "a" as a live-in value back to
the GPP 14 through dataflow output bus 56 and transfer line
18. This signals that the loop has been concluded and begins
the transfer of control back to the GPP 14.

Otherwise, the value of a.next is transferred via switch
80h (and through bus 56 and IMU 62 not shown for clarity)
back to the input of arithmetic logic unit ALU 80a for the
next execution of dataflow element instance 54a (two
instances from the current instance) and to the arithmetic
logic unit ALU 80a of dataflow element instance 54a' (for
the next instance). This separation of outputs into different
dataflow element instances 54a is possible because of the
multiple entries 75 of operand storage unit 74 which may
communicate data between different internal cycles of the
EDP 16.

This next dataflow element instance 54a' receives new
configuration data from configuration storage unit 70, des­
tination storage unit 72 and operand storage unit 74. With
this configuration the arithmetic logic unit ALU 80a receives
the value of a.next and increments it by four to obtain an
address for a.v2 for that current list element a. This address

15 instance 54a'. Again, the memory unit 80b outputs a control
signal to switch 80h controlled by the control signal from
decision unit 80c of dataflow element instance 54a (that tests
for the end of the linked list) so that if this is not the end of
the linked list, memory unit 80b provides a signal to the store

20 buffer 68 to create a write token for the desired writing by
memory unit 80b.

Referring now to FIGS. 1 and 4, the transfer program 46
operates during execution of the application program 42 to
detect the occurrence of a nested loop per decision block 90,

25 and preferably an in-line nested loop. A nested loop as that
term is used herein is an instruction loop (for example,
employing a while-next or if-then logical construction) that
does not include I/0 operations or atomic operations. An
in-line nested loop, as that term is used herein, is a nested

30 loop that does not include a call to other instructions outside
of the loop. At process block 92, the detected loop may be
checked against prediction table 48 by using its program
counter value as an index to determine if, in previous
executions of the loop, a sufficiently long execution time or

35 execution of a sufficient number of instructions was per­
formed by the EDP 16 to justify the transfer. This table is
updated after each execution of the given loop as discussed
below. The value of the prediction table 48 necessary to
justify transfer of the loop may be determined empirically

40 and may be controlled dynamically in order to provide a
flexible trade-off between energy consumption and perfor­
mance speed or the like.

If the number of static instructions of the loop does not
exceed the capacity of the EDP 16 and the prediction table

45 48 indicates that it is justified to transfer the loop to the EDP
16, then at decision block 94 control is transferred to the
EDP 16 per process block 96 for execution of the identified
loop. This transfer includes the necessary dataflow descrip-
tion 65 and initial operand values 67.

is provided to memory unit 80b and the value of a.v2 (loaded 50

into the variable n_ value in the program shown above) is
tested at decision unit 80c see if it is less than zero. This
value is also passed to switch 80h (via the configuration of
multiplexer 80e).

At process block 98, the GPP 14 is moved to a low power
mode, for example, by reducing voltage or clock speed or
shutting off nonessential components. Decision block 100
checks to see if the transferred loop has been completed by
the EDP 16, for example, by return value through transfer

55 line 18b or an interrupt or the like. If so, at process block
102a the prediction table 48 is updated with the most recent
performance measurements of the performance of the EDP
16 in executing the transferred loop. This performance

The control output of decision unit 80c of dataflow
element instance 54a' is used to control switches 80/, 80g,
and 80h of dataflow element instance 54a'. If the value of
n_ value is less than zero, then the control output of decision
unit 80c causes n_ value to be input to the arithmetic logic
unit ALU 80a of dataflow element instance 54b' where it is 60

multiplied by -1. Alternatively, if the value of n_ value is
greater than or equal to zero, then the control output of
decision unit 80c causes n_ value to be input to the arithmetic
logic unit ALU 80a of dataflow element instance 54b where
it is incremented.

At dataflow element instance 54b', the negated value of
n_ value passes to the input of the memory unit 80b of

65

record is used at process block 92 as described above.
At process block 104, power (or clock speed) is restored

to the GPP 14. At process block 106 control is restored to the
GPP 14 and an updated value of its program counter is
loaded to a value after the last instruction is transferred in the
loop.

Referring now to FIGS. 6 and 7, in one embodiment, the
application program 42 may be preprocessed by a compiler
being a program executing on an electronic computer. The

US 10,216,693 B2
11 12

understood that the method steps, processes, and operations
described herein are not to be construed as necessarily
requiring their performance in the particular order discussed
or illustrated, unless specifically identified as an order of
performance. It is also to be understood that additional or
alternative steps may be employed.

It is specifically intended that the present invention not be
limited to the embodiments and illustrations contained
herein and the claims should be understood to include

10 modified forms of those embodiments including portions of
the embodiments and combinations of elements of different

compiler may introduce markers 108 and configuration data
120 into the compiled object code of the application pro­
gram 42 executed by the computer 12, these markers 108
and configuration data 120 assisting in implementing the
transfer process of the present invention. Normally these 5

markers 108 will be in the form of special instructions.
Specifically, during the compilation process as indicated by
process block 110, control flow loops 119 in the application
program 42 maybe detected and at decision block 112 the
detected loops may be checked to see if the number of static
instructions (that is instructions in a single loop iteration) is
below a predetermined number of instructions that can
implemented by the EDP 16 and the static instructions are
within the hardware capabilities of the EDP 16. In one
embodiment the number of entries 7 5 (shown in FIG. 2) may 15

provide for dataflow execution of thirty-two compound
instructions (typically representing several static instruc­
tions of the application program 42). This checking of static
loop length considers both the detected loop and loops
within the detective loop (nested loops) and called functions 20

the detected or nested loop.
If the size limit is not exceeded, then at process block 114

the loop is recast as an in-line loop 116 by moving any called
instructions into the main loop body to provide a reformed
in-line loop of multiple instructions.

At process block 117, the reformed loop 116 is converted
25

to configuration data 120 for the EDP 16 including the
dataflow description 65, and initial operand values 67 are
provided that can be transferred to the dataflow processor at
the time of execution of the loop 119. This configuration data 30

120 captures the logic of loop 119 and may be marked with
a begin instruction 108a and optionally an end instruction
108b to facilitate isolation of the configuration data 120
during execution of the application program 42 by the
transfer program 46.

The original loop 119 is preserved for example as marked
35

by an end tag 108b and a restart tag 108c per process block
121. This allows the original loop 119 to be preserved and
executed directly in the event that the prediction table 48
indicates that the execution by the EDP 16 does not make 40

sense based on dynamic measurements. The address of the
restart instruction 108c may provide a value to be loaded
into the program counter 38 of the GPP 14 when control is
returned to the GPP 14 allowing resumption of execution of
the rest of the program after the targeted loop. 45

Certain terminology is used herein for purposes of refer­
ence only, and thus is not intended to be limiting. For
example, terms such as "upper", "lower", "above", and
"below" refer to directions in the drawings to which refer-

embodiments as come within the scope of the following
claims. All of the publications described herein, including
patents and non-patent publications, are hereby incorporated
herein by reference in their entireties.

We claim:
1. A computer with improved function comprising:
a general computer processor providing:

(a) a memory interface for exchanging data and instruc­
tions with an electronic memory;

(b) an arithmetic logic unit receiving input data and
instructions from the memory interface to process
the same and to provide output data to the memory
interface; and

(c) a program counter identifying instructions for
execution by the arithmetic logic unit;

a dataflow computer processor providing:
(a) a memory interface for exchanging data and instruc­

tions with electronic memory;
(b) multiple functional units interconnected to receive

input data from the memory interface or other func­
tional units and provide output data to the memory
interface or other functional units, including inter­
connections between functional units allowing con­
ditional branches to either of two functional units,
wherein the functional units execute in a sequence
determined by the availability of data, and

(c) an interconnection control circuit controlling the
interconnection of the multiple functional units to
exchange data according to the dataflow description;
and

a transfer interface operating to transfer the execution of
an application program between the general purpose
computer processor and the dataflow computer proces­
sor:
(a) at a beginning of a set of instructions of the

application program identified as executable on the
dataflow computer processor, switching execution
from the general computer processor to the dataflow
computer processor and providing to the dataflow
computer processor a dataflow description of the set
of instructions; and

(b) at a completion of execution of the set of instruc­
tions by the dataflow computer processor, returning
execution to the general computer processor.

2. The computer of claim 1 wherein the general computer
processor includes a low-power operating mode and a
high-power operating mode where the low-power operating
mode consumes less power than the high-power operating

ence is made. Terms such as "front", "back", "rear", "bot- 50

tom" and "side", describe the orientation of portions of the
component within a consistent but arbitrary frame of refer­
ence which is made clear by reference to the text and the
associated drawings describing the component under dis­
cussion. Such terminology may include the words specifi- 55

cally mentioned above, derivatives thereof, and words of
similar import. Similarly, the terms "first", "second" and
other such numerical terms referring to structures do not
imply a sequence or order unless clearly indicated by the
context. 60 mode and wherein the computer moves the general com­

puter processor to the low-power mode at the beginning of
the set of instructions and to the high-power mode at the
completion of execution of the set of instructions.

When introducing elements or features of the present
disclosure and the exemplary embodiments, the articles "a",
"an", "the" and "said" are intended to mean that there are
one or more of such elements or features. The terms "com­
prising", "including" and "having" are intended to be inclu­
sive and mean that there may be additional elements or
features other than those specifically noted. It is further to be

3. The computer of claim 1 further including a prediction
65 table tracking execution on the dataflow computer processor

of the set of instructions of the application as linked to the
set of instructions, wherein the computer switches execution

US 10,216,693 B2
13

from the general computer processor to the dataflow com­
puter processor for a given set of instructions only when the
prediction table tracking for previous execution of a given
set of instructions indicates likelihood of a predetermined
benefit in execution of the transfer.

4. The computer of claim 3 wherein the tracking tracks at
least one of execution time and number of executed instruc­
tions.

5. The computer of claim 1 wherein the functional ele­
ments of the dataflow processor execute in multiple sequen- 10

tial time steps in between which configuration of functional
units of the functional elements and interconnection of the
functional units is changed.

6. The computer of claim 5 wherein the dataflow com-
15

puter processor includes registers for storage of data
between time steps.

7. The computer of claim 1 wherein the computer iden­
tifies in-line instruction loops providing one or more loops
of control flow without input-output operations as the set of 20

instructions for transfer to the dataflow processor.

14
19. The computer of claim 1 wherein the functional units

are selected from the group consisting of dedicated: adders,
subtractors, multipliers, dividers, and Boolean logic ele­
ments.

20. A method of executing an application program on a
hybrid general-purpose dataflow computer having:

a general computer processor providing:
(a) a memory interface for exchanging data and instruc­

tions with an electronic memory;
(b) an arithmetic logic unit receiving input data and

instructions from the memory interface to process
the same and to provide output data to the memory
interface; and

(c) a program counter identifying instructions for
execution by the arithmetic logic unit;

a dataflow computer processor providing:
(a) a memory interface for exchanging data and instruc­

tions with electronic memory;
(b) multiple functional units interconnected to receive

input data from the memory, interface or other func­
tional units and provide output data to the memory
interface or other functional units, including inter­
connections between functional units allowing con­
ditional branches to either of two functional units,
wherein the functional units execute in a sequence
determined by the availability of data, and

8. The computer of claim 1 wherein the general computer
processor executes a transfer program identifying a begin­
ning of the set of instructions and enabling operation of the
transfer interface in switching execution from the general 25

computer processor to the dataflow computer processor and
wherein the dataflow computer processor executes the data­
flow description to identify a completion of execution of the

(c) an interconnection control circuit controlling the
interconnection of the multiple functional units to
exchange data according to the dataflow description;

30 a transfer interface operating to transfer the execution of an
application program between the general purpose computer
processor and the dataflow computer processor:

set of instructions to enable operation of the transfer inter­
face and returns execution to the general computer proces-
sor.

9. The computer of claim 1 wherein the general computer
processor is capable of executing the entire application
program including the set of instructions.

10. The computer of claim 1 wherein the general com­
puter processor adjusts its program counter upon completion
of the execution of the instruction set to an instruction after
the set of instructions.

35

11. The computer of claim 1 wherein the transfer circuit 40

at the beginning of the set of instructions further transfers
initial data values for the functional units.

12. The computer of claim 1 wherein the beginning of the
set of instructions is identified from special instructions
embedded in the application program.

13. The computer of claim 1 wherein the dataflow
description is embedded in the application program executed
by the general computer processor.

45

14. The computer of claim 1 wherein the set of instruc­
tions is limited to predefined maximum number of static 50

instructions.
15. The computer of claim 1 wherein the multiple func­

tional units of the dataflow computer are interconnected by
a bus structure that may interconnect only a subset less than

55
the full set of functional units at a given time.

16. The computer of claim 1 wherein the general com­
puter processor and dataflow computer processor both com­
municate with a common cache through the memory inter­
faces.

17. The computer of claim 1 wherein the multiple func­
tional units include at least one demultiplexer connecting
data along two data paths each communicating with another
functional unit.

60

18. The computer of claim 1 wherein the memory inter- 65

face includes circuitry for retiring memory write operations
to memory in correct order.

(a) at a beginning ofa set of instructions of the application
program executable on the dataflow computer proces­
sor, switching execution from the general computer
processor to the dataflow computer processor and pro-
viding to the dataflow computer processor a dataflow
description of the set of instructions; and

(b) at a completion of execution of the set of instructions
by the dataflow computer processor, returning execu­
tion to the general computer processor;

the method comprising the steps of:
(1) executing a first portion of the application program on

the general computer processor while suspending
operation of the dataflow processor; and

(2) executing a second portion of the application program
identified for execution by the dataflow processor on
the dataflow processor while suspending operation of
the general computer processor.

21. A computer executing a compiler program to provide
an application program for execution on a hybrid general­
purpose dataflow computer having:

a general computer processor comprising:
(a) a memory interface for exchanging data and instruc­

tions with an electronic memory;
(b) an arithmetic logic unit receiving input data and

instructions from the memory interface to process
the same and to provide output data to the memory
interface; and

(c) a program counter identifying instructions fir execu­
tion by the arithmetic logic unit;

a dataflow computer processor providing:
(a) a memory interface for exchanging data and instruc­

tions with electronic memory;
(b) multiple functional units interconnected to receive

input data from the memory interface or other func­
tional units and provide output data to the memory

US 10,216,693 B2
15

interface or other functional units, including inter­
connections between functional units allowing con­
ditional branches to either of two functional units
wherein the functional units execute in a sequenc~
determined by the availability of data, and 5

(c) an interconnection control circuit controlling the
interconnection of the multiple functional units to
exchange data according to the dataflow description;

(e) a store buffer retiring writing to memory and
reading from memory in correct program order; and 10

a transfer interface operating to transfer the execution of
an application program between the general purpose
computer processor and the dataflow computer proces­
sor:
(a) at a beginning of a set of instructions of the 15

application program previously identified as execut­
able on the dataflow computer processor, switching
execution from the general computer processor to the
dataflow computer processor and providing to the
dataflow computer processor a dataflow description 20

of the set of instructions; and

16
(b) at a completion of execution of the set of instruc­

tions by the dataflow computer processor, returning
execution to the general computer processor;

the computer executing the compiler program to:
(1) identify a program portion of an application program

executable on the computer program for execution on
the dataflow computer processor;

(2) convert instructions of the program portion to dataflow
descriptions for receipt by the dataflow computer pro­
cessor to execute the program portions; and

(3) place at least one marker in the application program
signaling the location of the program portions.

22. The computer of claim 21 wherein the computer
further executes the compiler to insert the dataflow descrip­
tions into the application program while retaining the pro­
gram portion in the application program.

23. The computer of claim 21 wherein the identified
program portion is a loop and the computer further executes
the compiler to convert the loop into an in-line nested loop
without calls to other program portions.

* * * * *

