

US010184141B1

(12) United States Patent

Pfleger et al.

(54) MICROORGANISMS FOR PRODUCING GLYCOGEN AND METHODS OF USING SAME

- (71) Applicant: WISCONSIN ALUMNI RESEARCH FOUNDATION, Madison, WI (US)
- (72) Inventors: Brian F. Pfleger, Madison, WI (US); Andrew L. Markley, Madison, WI (US)
- (73) Assignee: WISCONSIN ALUMNI RESEARCH FOUNDATION, Madison, WI (US)
- (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.
- (21) Appl. No.: 15/366,676
- (22) Filed: Dec. 1, 2016

Related U.S. Application Data

- (60) Provisional application No. 62/262,106, filed on Dec. 2, 2015.
- (51) Int. Cl.

C12P 19/04	(2006.01)
C12N 1/20	(2006.01)
C12N 9/12	(2006.01)

- (58) Field of Classification Search None

See application file for complete search history.

(10) Patent No.: US 10,184,141 B1 (45) Date of Patent: Jan. 22, 2019

(56) **References Cited**

U.S. PATENT DOCUMENTS

5,750,876 A *	5/1998	Barry C12N 9/1241
2002/0226176 41*	12/2002	435/101 C08D 20/00
2003/0226176 A1*	12/2003	Guan C08B 30/00 800/284
2011/0008861 A1*	1/2011	Berry C12N 1/20
		435/161
2016/0333384 A1*	11/2016	Silverman A23K 20/163

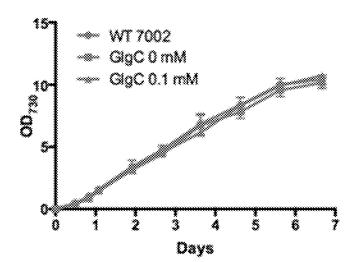
FOREIGN PATENT DOCUMENTS

JP	2005253401	Α	*	9/2005		
WO	WO-9424292	A2	*	10/1994	 C12N	9/1241

OTHER PUBLICATIONS

Aikawa et al., "Improving polyglucan production in cyanobacteria and microalgae via cultivation design and metabolic engineering", Biotechnology Journal, vol. 10, pp. 886-898, Jun. 2015.* Leung et al., "Cloning and expression of the *Escherichia coli* glgC gene from a mutant containing an ADPglucose pyrophosphorylase with altered allosteric properties", Journal of Bacteriology, vol. 167, No. 1, pp. 82-88, 1986.*

(Continued)


Primary Examiner — Richard C Ekstrom (74) Attorney, Agent, or Firm — Daniel A. Blasiole; DeWitt Ross & Stevens S.C.

(57) ABSTRACT

Recombinant microorganisms configured for increased glycogen production. The recombinant microorganisms comprise a recombinant nucleic acid configured to express or overexpress a glucose-1-phosphate adenylyltransferase. The recombinant microorganisms produce an increased amount of glycogen compared to a corresponding microorganism not comprising the recombinant nucleic acid.

20 Claims, 6 Drawing Sheets

Specification includes a Sequence Listing.

(56) **References Cited**

OTHER PUBLICATIONS

Kumar et al., "Biosynthesis of bacterial glycogen. Determination of the amino acid changes that alter the regulatory properties of a mutant *Escherichia coli* ADP-glucose synthetase", The Journal of Biological Chemistry, vol. 264, No. 18, pp. 10464-10471, 1989.*

Dedhia et al., "Overproduction of glycogen in *Escherichia coli* blocked in the acetate pathway improves cell growth", Biotechnology and Bioengineering, vol. 44, pp. 132-139, 1994.*

Diaz-Troya et al., "Redox regulation of glycogen biosynthesis in the cyanobacterium *Synechocystis* sp. PCC 6803: Analysis of the AGP and glycogen synthases", Molecular Plant, vol. 7, No. 1, pp. 87-100, 2014.*

Preiss, "Bacterial glycogen synthesis and its regulation", Annual Review of Microbiology, vol. 38, pp. 419-458, 1984.*

JP 2005-253401A, English machine translation of Abstract, Specification and Claims, Sep. 22, 2005.*

Aikawa, S. et al., "Direct conversion of Spirulina to ethanol without pretreatment or enzymatic hydrolysis processes," Energ. Environ. Sci. (2013) 6(6):1844-1849.

Aikawa, S. et al., "Glycogen production for biofuels by the euryhaline cyanobacteria *Synechococcus* sp. strain PCC 7002 from an oceanic environment," Biotechnology for Biofuels (2014) 7:88.

Altschul, S.F. et al., "Basic Local Alignment Search Tool," J. Mol. Biol. (1990) 215:403-410.

Boyer, C. et al., "Biosynthesis of bacterial glycogen. Purification and properties of the *Escherichia coli* b alpha-1,4,-glucan: alpha-1,4-glucan 6-glycosyltansferase," Biochemistry (1977) 16(16):3693-3699.

Cameron, D.E. et al., "Tunable protein degradation in bacteria," Nat Biotechnol. (2014) 32(12):1276-1281.

Choi, S.P. et al. "Enzymatic pretreatment of Chlamydomonas reinhardtii biomass for ethanol production," Bioresour. Technol. (2010) 101:5330-5336.

Dedhia, N.N. et al., "Overproduction of glycogen in *Escherichia coli* blocked in the acetate pathway improves cell growth," Bio-technology and Bioengineering (1994) 44:132-139.

Ducat, D.C. et al., "Rerouting carbon flux to enhance photosynthetic productivity," Appl. Environ. Microbiol. (2012) 78(8):2660.

Green, M.R. et al., "Molecular Cloning: A laboratory manual," 4th ed., Cold Spring Harbor Laboratory Press (2012).

Harun, R. et al., "Exploring alkaline pretreatment of microalgal biomass for bioethanol production," Appl Energy (2011) 88:3464-3467.

Henikoff, S. et al., "Amino acid substitution matrices from protein blocks," Proc. Natl. Acad. Sci. USA (1992) 89(22):10915-10919. Ho, S.H. et al., "Bioprocess development on microalgae-based CO2 fixation and bioethanol production using Scenedesmus obliquus CNW-N," Bioresour. Technol. (2013) 145:142-149.

Ihemere, U. et al., "Genetic modification of cassava for enhanced starch production," Plant Biotechnol J. (2006) 4(4):453-465. Karlin, S. et al., "Applications and statistics for multiple high-

Karlin, S. et al., "Applications and statistics for multiple highscoring segments in molecular sequences," Proc. Natl. Acad. Sci. USA (1993) 90:5873-5877.

Kawaguchi K. et al., "De novo synthesis of *Escherichia coli* glycogen is due to primer associated with glycogen synthase and activation by branching enzyme," Arch Biochem Biophys. Oct. 1978;190(2):385-97.

Kumar, A. et al., "Biosynthesis of Bacterial Glycogen: Determination of the amino acid changes that alter the regulatory properties of a mutant *Escherichia coli* ADP-glucose synthetase," J. Biological Chem (1989) 264(18)10464-10471.

Leung, P. et al., "Cloning and expression of the *Escherichia coli* glgC gene from a mutant containing an ADP-glucose pyrophosphorylase with altered allosteric properties," J Bacteriol. (1986) 167(1):82-88. Miranda, J.R. et al., "Pre-treatment optimization of Scenedesmus obliquus microalga for bioethanol production," Bioresour. Technol. (2012) 104:342-348.

Olins, P.O. et al., "A Novel Sequence Element Derived from Bacteriophage T7 mRNA Acts ELS an Enhancer of Translation of the lac2 Gene in *Escherichia coli*", Journal of Biological Chemistry (1989) 264(29):16973-16976.

Pimentel, D. et al., "Ethanol production: Energy and economic issues related to U.S. and Brazilian sugarcane," (2007) Springer, Amsterdam, Netherlands.

Radakovits, R. et al., "Genetic Engineering of Algae for Enhanced Biofuel Production," Eukaryot. Cell (2010) 9:486-501.

Sheehan, J. et al., "A look back at the U.S. Department of Energy's aquatic species program: Biodiesel from algae," Close-out report NREL/TP-580-24190 National Renewable Energy Laboratory, Golden, CO (1998).

Sims, R. et al., "From 1st to 2nd generation biofuel technologies," (2008) IEA, Paris, France.

Timilsina, G.R. et al., "The impacts of biofuel targets on land-use change and food supply," The World Bank Development Research Group, Washington, DC (2010).

Zhang, F., et al., "Metabolic engineering of microbial pathways for advanced biofuels production," Curr. Opin. Biotechnol. (2011) 22(6):775-83.

Zhu, X.G. et al., "What is the maximum efficiency with which photosynthesis can convert solar energy into biomass?" Curr. Opin. Biotechnol. (2008) 19:153-159.

Zhu, X.G. et al., "Improving photosynthetic efficiency for greater yield," Annu. Rev. Plant Biol. (2010) 61:235-261.

* cited by examiner

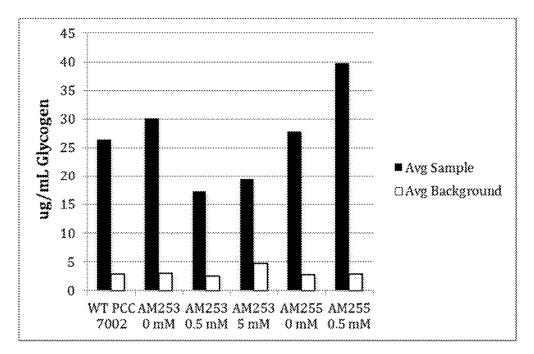


FIG. 1A

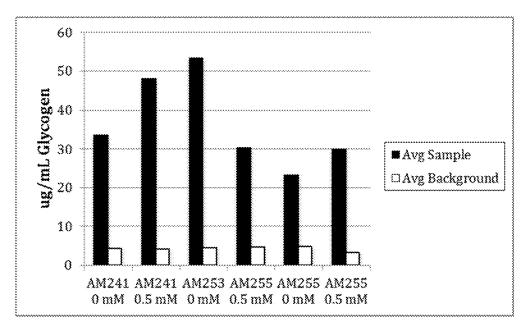
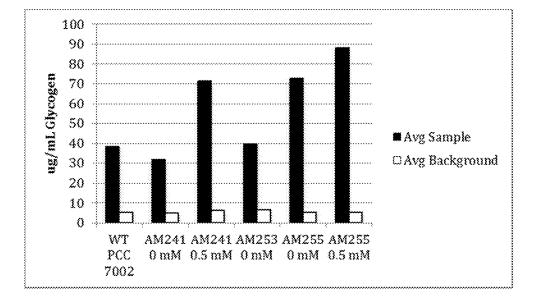
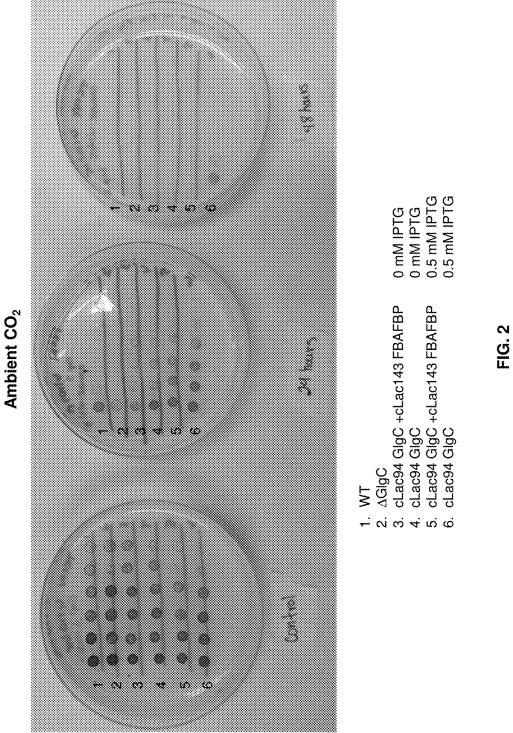
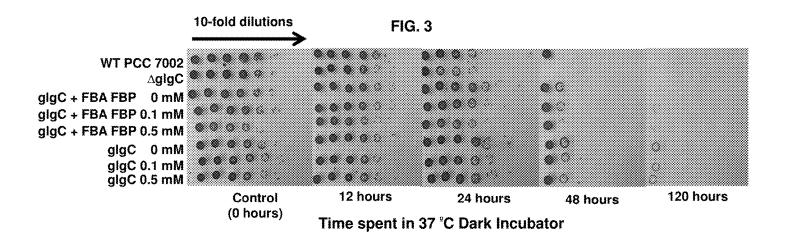
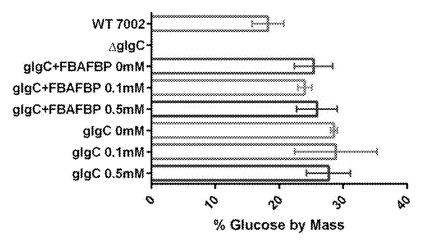
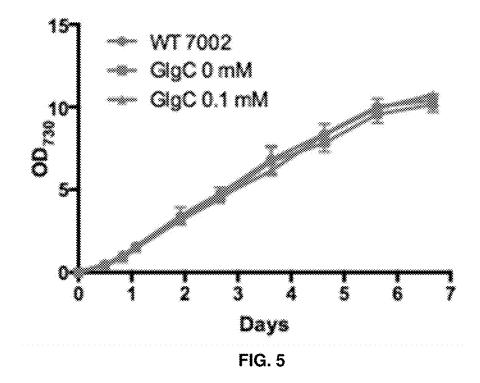
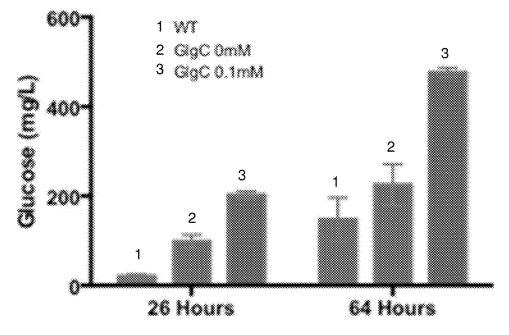


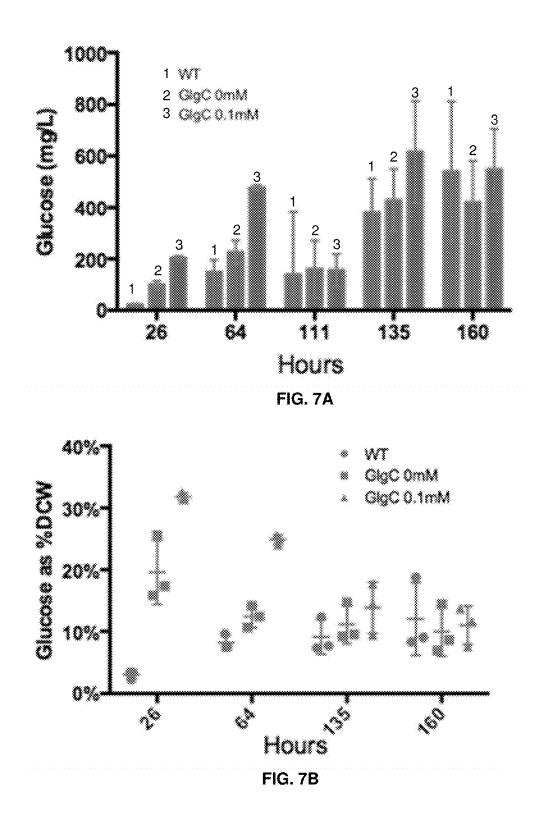
FIG. 1B


FIG. 1C







5

20

MICROORGANISMS FOR PRODUCING GLYCOGEN AND METHODS OF USING SAME

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH

This invention was made with government support under GE01215871 and EFRI1240268 awarded by the National Science Foundation. The government has certain rights in ¹⁰ the invention.

FIELD OF THE INVENTION

The invention is directed to recombinant microorganisms ¹⁵ configured for producing high levels of glycogen and methods of using the recombinant microorganisms for the production of glycogen or its byproducts.

BACKGROUND

Advances in microbe engineering for the production of biofuels, chemicals, and therapeutics have spurred investment in the production of a wide variety of commodities from biological sources (Zhang F, Rodriguez S, Keasling J 25 D. 2011. Curr. Opin. Biotechnol. 22(6):775-83). Heterotrophic microbes comprise the vast majority of microorganisms currently utilized for product generation and require a carbohydrate source for carbon and energy that can account for a significant proportion (~60%) of input costs (Pimentel 30 D, Patzek T W. 2008. Ethanol production: energy and economic issues related to U.S. and Brazilian sugarcane biofuels. Springer, Amsterdam, Netherlands.). Such carbohydrate feedstocks are typically derived from agricultural crops, primarily sugarcane, sugar beet, and corn, although 35 lignocellulosic materials are under extensive investigation as alternative feedstocks (Sims R, Taylor M. 2008. From 1st to 2nd generation biofuel technologies. IEA, Paris, France). While biologically produced fuels and chemicals hold the promise of increased sustainability and reduced CO2 foot- 40 prints, current feedstock sources place biotechnological processes in competition with agricultural croplands and food markets. The development of biological alternatives to standard petroleum-based fuels and chemicals has therefore been criticized for its capacity to increase food cost and 45 instabilities (Timilsina G R, Beghin J C, van der Mensbrugghe D, Mevel S. 2010. The impacts of biofuel targets on land-use change and food supply. The World Bank Development Research Group, Washington, D.C.). Indeed, in recent years, sugar prices have increased and fluctuated 50 greatly in global food, driven in part by increased demands for biofuel production.

Photosynthetic microorganisms (cyanobacteria and algae) have been proposed as alternative sources for the creation of biofuel-like compounds or industrial feedstocks (Radakovits 55 R, Jinkerson R E, Darzins A, Posewitz M C. 2010. *Eukaryot. Cell* 9:486-501), in part because they possess many advantages over traditional terrestrial plants with regard to targeted metabolite production. For example, the photosynthetic efficiency of cyanobacteria is up to an order of 60 magnitude higher than that of plants (Zhu X G, Long S P, Ort D R. 2010. *Annu. Rev. Plant Biol.* 61:235-261) (Zhu X G, Long S P, Ort D R. 2008. *Curr. Opin. Biotechnol.* 19:153-159), and cyanobacteria do not require support tissues that further reduce productive output (e.g., roots/stems). Cyanobacteria are genetically tractable, allowing for rapid engineering and the selection of desirable strains. Finally, cya2

nobacteria are aquatic microbes with minimal nutritional requirements and can therefore be cultivated in locations that do not compete with traditional agricultural crops. While cyanobacteria and algae share many similar features in this context, the use of algal species for biofuel feedstocks has been explored in much greater detail, partly because of their relatively high lipid content (Sheehan J, Dunahay T, Benemann J, Roessler P. 1998. Look back at the U.S. Department of Energy's aquatic species program: biodiesel from algae. Close-out report NREL/TP-580-24190. National Renewable Energy Laboratory, Golden, Colo.), although many cyanobacterial species feature relative simplicity and higher growth rates.

Glycogen that accumulates in microorganisms can serve as a valuable feedstock for the production of chemicals and biofuels. Glycogen can be converted to ethanol or other chemicals, for example, through saccharification and fermentation processes (Aikawa et al. *Energ Environ Sci* 2013, 6:1844-1849) (Choi et al. *Bioresour Technol* 2010, 101: 5330-5336) (Harun et al. *Appl Energy* 2011, 88:3464-3467) (Ho et al. *Bioresour Technol* 2013, 145:142-149) (Miranda et al. *Bioresour Technol* 2012, 104:342-348).

There is a need for microorganisms capable of producing high amounts of glycogen or other carbohydrates, particularly through photosynthetic processes.

SUMMARY OF THE INVENTION

The present invention is directed at least in part to microorganisms, such as photosynthetic microorganisms, that are capable of producing high levels of glycogen; methods of producing glycogen; and methods for selecting microorganisms that produce high levels of glycogen or other metabolic products.

The objects and advantages of the invention will appear more fully from the following detailed description of the preferred embodiment of the invention made in conjunction with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIGS. 1A-1C show glycogen production in control strains and strains of the invention in the presence of 0, 0.5 or 5 mM isopropyl β -D-1-thiogalactopyranoside (IPTG).

FIG. 2 shows results of a glycogen production screen of the invention with control strains and strains of the invention induced to produce glycogen in the presence of ambient CO_2 and 0 or 0.5 mM (IPTG).

FIG. 3 shows results of a glycogen production screen of the invention with control strains and strains of the invention induced to produce glycogen in the presence of 10% CO₂ and 0, 0.1, or 0.5 mM (IPTG).

FIG. **4** shows intracellular levels of glycogen as hydrolyzed glucose from the strains analyzed in FIG. **3**.

FIG. **5** shows growth rates of a control strain and a strain of the invention grown in the presence of 0 mM or 0.1 mM IPTG.

FIGS. **6**, **7**A, and **7**B show levels of glucose hydrolyzed from glycogen from a control strain and a strain of the invention grown in the presence of 0 mM or 0.1 mM IPTG for various lengths of time.

DETAILED DESCRIPTION OF THE INVENTION

The invention is directed at least in part to microorganisms capable of enhanced production of glycogen.

The microorganism of the present invention may include any microorganism capable of making glycogen. The microorganism may be eukaryotic, such as yeast, or prokaryotic, such as bacteria or archaea. Among bacteria, gram-positive, gram-negative, and ungrouped bacteria are suitable. Photo- 5 trophs, chemotrophs, heterotrophs, and autotrophs (e.g., chemoautotrophs, photoautotrophs, chemoheterotrophs, photoheterotrophs) are suitable. The phototroph may be an anoxygenic photosynthetic microorganism or an oxygenic photosynthetic mircoorganism. The oxygenic photosyn- 10 thetic microorganism may be a cyanobacterium or a microalga. Suitable cyanobacteria include those from the genuses Agmenellum, Anabaena, Aphanocapsa, Arthrosprira, Gloeocapsa, Haplosiphon, Mastigocladus, Nostoc, Oscillatoria, Prochlorococcus, Scytonema, Syn- 15 echococcus, and Synechocystis. Preferred cyanobacteria include those selected from the group consisting of Synechococcus spp., spp., Synechocystis spp., and Nostoc spp. Particularly suitable examples of Synechococcus spp. include Synechococcus sp. PCC 7942 and Synechococcus 20 sp. PCC 7002. A particularly suitable example of Synechocystis spp. includes Synechocystis sp. PCC 6803. A benefit of photoautotrophs such as cyanobacteria is that they require only CO₂ as a carbon source and light for energy and are not dependent on food-based commodities or other types of 25 biomass for which there is a growing high demand.

The microorganisms of the invention may be modified to increase expression of one or more enzymes. Modifying the microorganism to increase expression of an enzyme can be performed using any methods currently known in the art or 30 discovered in the future. Examples include genetically modifying the microorganism and culturing the microorganism under conditions or in the presence of factors that increase expression of the enzyme. Suitable methods for genetic modification include but are not limited to placing 35 the coding sequence under the control of a more active promoter (either inducible or constitutive), increasing gene copy number, introducing a translational enhancer (see, e.g., Olins et al. Journal of Biological Chemistry, 1989, 264(29): 16973-16976), and/or increasing expression of transactiva- 40 enzymes classified under EC 2.7.7.27. Glucose-1-phosphate tors. Increasing gene copy number can be performed by introducing additional copies of the gene to the microorganism, i.e., by incorporating one or more exogenous copies of the native gene or a heterologous homolog thereof into the microbial genome, by introducing such copies to the micro- 45 organism on a plasmid or other vector, or by other means. "Exogenous" used in reference to a genetic element means the genetic element is either not present in the native organism or is not present in the native organism in the same configuration. "Heterologous" used in reference to a genetic 50 element means that the genetic element is derived from a different species. A promoter that controls a particular coding sequence is herein described as being "operationally connected" to the coding sequence.

The microorganisms of the invention may include at least 55 one recombinant nucleic acid configured to express or overexpress a particular enzyme. "Recombinant" as used herein with reference to a nucleic acid molecule or polypeptide is one that has a sequence that is not naturally occurring, such as a sequence that made by an artificial 60 combination of two otherwise separated segments of sequence from the same or different organisms, or a sequence made by artificial combination of a naturally occurring sequence with a non-naturally occurring sequence. This artificial combination can be achieved, for 65 example, by chemical synthesis or by the artificial manipulation of isolated segments of nucleic acid molecules or

4

polypeptides, such as genetic engineering techniques. "Recombinant" is also used to describe nucleic acid molecules that have been artificially modified but contain the same regulatory sequences and coding regions that are found in the organism from which the nucleic acid was isolated. A recombinant cell or microorganism is one that contains a recombinant nucleic acid molecule or polypeptide. "Overexpress" as used herein means that a particular gene product is produced at a higher level in one cell, such as a recombinant cell, than in a corresponding microorganism. For example, a microorganism that includes a recombinant nucleic acid configured to overexpress an enzyme produces the enzyme at a greater amount than a microorganism that does not include the recombinant nucleic acid.

As used herein, "corresponding microorganism" refers to a microorganism of the same species having the same or substantially same genetic and proteomic composition as a microorganism of the invention, with the exception of genetic and proteomic differences resulting from the modifications described herein for the microorganisms of the invention. In some versions, the corresponding microorganism is the native microorganism. "Native" in this context refers to the natural, unmodified microorganism as it exists in nature.

Some microorganisms of the invention include at least one recombinant nucleic acid configured to express or overexpress a glucose-1-phosphate adenylyltransferase. The recombinant nucleic acid may comprise a recombinant glucose-1-phosphate adenylyltransferase gene. "Gene" refers to a nucleic acid sequence capable of producing a gene product and may include such genetic elements as a coding sequence together with any other genetic elements required for transcription and/or translation of the coding sequence. Such genetic elements may include a promoter, an enhancer, and/or a ribosome binding site (RBS), among others. The recombinant gene preferably comprises at least one sequence difference from the natural gene.

Glucose-1-phosphate adenylyltransferase include adenylyltransferase include enzymes that catalyze the conversion of adenosine triphosphate (ATP) and α -D-glucose 1-phosphate to diphosphate and adenosine diphosphate (ADP)-glucose. In some versions, the microorganism is modified to harbor a nucleic acid encoding a glucose-1phosphate adenylyltransferase from Escherichia coli or a homolog thereof. An exemplary coding sequence for a glucose-1-phosphate adenylyltransferase (glgC) from E. coli is represented by SEQ ID NO: 1. An exemplary amino acid sequence for a glucose-1-phosphate adenylyltransferase from E. coli (GlgC) is represented by SEQ ID NO:2. The native glucose-1-phosphate adenylyltransferase from E. coli has been shown to be activated by fructose-1,6-bisphosphate and inhibited by adenosine monophosphate (AMP) and ADP through allosteric regulation.

Homologs of the E. coli glucose-1-phosphate adenvlyltransferase include orthologs and paralogs of GlgC/glgC having glucose-1-phosphate adenylyltransferase activity. Homologs of the E. coli glucose-1-phosphate adenylyltransferase also include enzymes having an amino acid sequence at least about 80%, 85%, 90%, 95%, 97%, 98%, 99% or more identical to SEQ ID NO:2. Sequences having these percent identities can be obtained by aligning SEQ ID NO:2 to the sequences of E. coli glucose-1-phosphate adenylyltransferase orthologs and/or paralogs having glucose-1phosphate adenylyltransferase activity to determine which positions in the enzyme are amenable to mutation (i.e.,

substitution, deletion, addition, etc.) and the identities of the substituted or added residues at these positions.

In preferred versions of the invention, the glucose-1phosphate adenylyltransferase expressed by the microorganism maintains allosteric regulation by AMP and/or ADP. In 5 particularly preferred versions of the invention, the glucose-1-phosphate adenylyltransferase expressed by the microorganism maintains full allosteric regulation by AMP and/or ADP. The maintenance of allosteric regulation with the glucose-1-phosphate adenylyltransferase is determined with 10 respect to the wild-type glucose-1-phosphate adenylyltransferase in the type of organism from which the glucose-1phosphate adenylyltransferase is derived, wherein "wildtype" refers to the allele that encodes the phenotype most common in the natural population. Variants or "mutants" of 15 glucose-1-phosphate adenylyltransferase resistant to allosteric regulation by AMP and ADP are known. See, e.g., Leung P, Lee Y M, Greenberg E, Esch K, Boylan S, Preiss J. Cloning and expression of the Escherichia coli glgC gene from a mutant containing an ADPglucose pyrophosphory- 20 lase with altered allosteric properties. J Bacterial. 1986 July; 167(1):82-8. One such variant is the E. coli GlgC variant having a G336D substitution (coding sequence: SEQ ID NO:3; protein sequence: SEQ ID NO:4). The G336D variant has reduced allosteric regulation with respect to the wild- 25 type E. coli glgC represented by SEQ ID NO:2 and is a more active form of the enzyme. Expression of the G336D variant in cyanobacteria, however, adversely affects growth rate. Expression of glucose-1-phosphate adenylyltransferases that have a glycine at a position corresponding to position 30 336 of SEQ ID NO:2 (E. coli GlgC) are therefore preferred. In some versions, however, expression of glucose-1-phosphate adenylyltransferases that have an amino acid other than glycine at a position corresponding to position 336 of SEQ ID NO:2 (E. coli GlgC) are acceptable. Exemplary 35 amino acids other than glycine include acidic amino acids, such as glutamic acid and aspartic acid, among others. Identification of the corresponding position in a given sequence can be found by aligning the sequence with SEQ ID NO:2.

The glucose-1-phosphate adenylyltransferase expressed by the microorganism preferably maintains allosteric regulation by AMP and/or ADP to an extent such that 50% inhibition of the glucose-1-phosphate adenylyltransferase occurs at an AMP or ADP concentration+/-about 10-fold, 45 9-fold, 8-fold, 7-fold, 6-fold, 5-fold, 4-fold, 3-fold, 2-fold, 1.5-fold, or 1.1-fold of the AMP or ADP concentration that induces 50% inhibition of the wild-type glucose-1-phosphate adenylyltransferase.

In some versions of the invention, the glucose-1-phos- 50 phate adenylyltransferase expressed by the microorganism maintains allosteric regulation by AMP, ADP, and/or fructose-1,6-bisphosphate.

Exogenous, heterologous nucleic acids encoding enzymes to be expressed in the microorganism are preferably codon-55 optimized for the particular microorganism in which they are introduced. Codon optimization can be performed for any nucleic acid by a number of programs, including "GENEGPS"-brand expression optimization algorithm by DNA 2.0 (Menlo Park, Calif.), "GENEOPTIMIZER"-brand 60 gene optimization software by Life Technologies (Grand Island, N.Y.), and "OPTIMUMGENE"-brand gene design system by GenScript (Piscataway, N.J.). Other codon optimization programs or services are well known and commercially available.

In some versions of the invention, the microorganism exhibits a native glycogen synthase expression level.

65

"Native glycogen synthase expression level" refers to the level of glycogen synthase expression in the native, unmodified microorganism. In such versions, the microorganism is not modified to overexpress the glycogen synthase, wherein overexpression is defined with respect to expression in the native microorganism. Examples of a glycogen synthase in bacteria such as E. coli and cyanobacteria include products of glgA genes. Examples of products of glgA genes include glgA1 (SEQ ID NO:6) and glgA2 (SEQ ID NO:8) of Synechococcus sp. PCC 7002, encoded by glgA1 (SEQ ID NO:5) and glgA2 (SEQ ID NO:7), respectively. Accordingly, in at least some versions of the invention in which the microorganism exhibits a native glycogen synthase expression level the microorganism contains the native glgA gene(s) and/or does not include a recombinant glgA gene configured to overexpress glgA.

In some versions of the invention, the microorganism exhibits native glycogen synthase activity. "Native glycogen synthase activity" refers to the level of glycogen synthase activity in the native, unmodified microorganism. Glycogen synthase activity in the microorganism may be determined by the method described by Leung et al. (Leung P, Lee Y M, Greenberg E, Esch K, Boylan S, Preiss J. Cloning and expression of the Escherichia coli glgC gene from a mutant containing an ADPglucose pyrophosphorylase with altered allosteric properties. J Bacteriol. 1986 July; 167(1):82-8) and Kawajuchi et al. (Kawaguchi K, Fox J, Holmes E, Boyer C, Preiss J. De novo synthesis of Escherichia coli glycogen is due to primer associated with glycogen synthase and activation by branching enzyme. Arch Biochem Biophys. 1978 October; 190(2):385-97).

In some versions of the invention, the microorganism exhibits a native 1,4-alpha-glucan-branching enzyme expression level. "Native 1,4-alpha-glucan-branching enzyme expression level expression level" refers to the level of 1,4-alpha-glucan-branching enzyme expression in the native, unmodified microorganism. In such versions, the microorganism is not modified to overexpress the 1,4-alphaglucan-branching enzyme, wherein overexpression is 40 defined with respect to expression in the native (nonmodified) microorganism. Examples of a 1,4-alpha-glucanbranching enzyme in bacteria such as E. coli and cyanobacteria include products of glgB genes. An example of a product of a glgB gene includes glgB (SEQ ID NO:10) of Synechococcus sp. PCC 7002, which is encoded by glgB (SEQ ID NO:9). Accordingly, in at least some versions of the invention in which the microorganism exhibits a native 1,4-alpha-glucan-branching enzyme expression level the microorganism contains the native glgB gene(s) and/or does not include a recombinant glgB gene configured to overexpress glgB.

In some versions of the invention, the microorganism exhibits native 1,4-alpha-glucan-branching enzyme activity. "Native 1,4-alpha-glucan-branching enzyme activity" refers to the level of 1,4-alpha-glucan-branching enzyme activity in the native, unmodified microorganism. 1,4-Alpha-glucanbranching enzyme activity in the microorganism may be determined by the method described by Leung et al. (Leung P, Lee Y M, Greenberg E, Esch K, Boylan S, Preiss J. Cloning and expression of the Escherichia coli glgC gene from a mutant containing an ADPglucose pyrophosphorylase with altered allosteric properties. J Bacteriol. 1986 July; 167(1):82-8) and Boyer et al. (Boyer C, Preiss J. Biosynthesis of bacterial glycogen. Purification and properties of the Escherichia coli B alpha-1,4,-glucan: alpha-1,4-glucan 6-glycosyltansferase. Biochemistry. 1977 Aug. 9; 16(16): 3693-9.).

In some versions of the invention, the microorganism exhibits a native fructose-bisphosphate aldolase enzyme expression level. "Native fructose-bisphosphate aldolase enzyme expression level expression level" refers to the level of fructose-bisphosphate aldolase enzyme expression in the 5 native, unmodified microorganism. In such versions, the microorganism is not modified to overexpress the fructosebisphosphate aldolase enzyme, wherein overexpression is defined with respect to expression in the native (nonmodified) microorganism. Examples of a fructose-bisphosphate aldolase enzyme in bacteria such as E. coli and cyanobacteria include products of fba genes. An example of a product of a fba gene includes fba (SEQ ID NO:12) of Synechocystis sp. PCC 6803, which is encoded by fba (SEQ ID NO:11). Accordingly, in at least some versions of the 15 invention in which the microorganism exhibits a native fructose-bisphosphate aldolase enzyme expression level the microorganism contains the native fba gene(s) and/or does not include a recombinant fba gene configured to overexpress fba. In some versions of the invention, the microor- 20 ganism exhibits native fructose-bisphosphate aldolase enzyme activity.

In some versions of the invention, the microorganism exhibits a native fructose 1,6-bisphosphatase enzyme expression level. "Native fructose 1,6-bisphosphatase 25 enzyme expression level expression level" refers to the level of fructose 1,6-bisphosphatase enzyme expression in the native, unmodified microorganism. In such versions, the microorganism is not modified to overexpress the fructose 1,6-bisphosphatase enzyme, wherein overexpression is 30 defined with respect to expression in the native (nonmodified) microorganism. Examples of a fructose 1,6-bisphosphatase enzyme in bacteria such as E. coli and cyanobacteria include products of fbp genes. An example of a product of a fbp gene includes fbp (SEQ ID NO:14) of 35 Synechocystis sp. PCC 6803, which is encoded by fbp (SEQ ID NO:11). Accordingly, in at least some versions of the invention in which the microorganism exhibits a native fructose 1,6-bisphosphatase enzyme expression level the microorganism contains the native fbp gene(s) and/or does 40 not include a recombinant fba gene configured to overexpress fbp. In some versions of the invention, the microorganism exhibits native fructose 1,6-bisphosphatase enzyme activity.

The microorganism of the invention may comprise modi- 45 fications that reduce or ablate the activity of gene products of one or more genes. Such a modification that that reduces or ablates the activity of gene products of one or more genes is referred to herein as a "functional deletion" of the gene product. "Gene product" refers to a protein or polypeptide 50 encoded and produced by a particular gene.

One of ordinary skill in the art will appreciate that there are many well-known ways to functionally delete a gene product. For example, functional deletion can be accomplished by introducing one or more genetic modifications. 55 deleted gene product may result from a genetic modification As used herein, "genetic modifications" refer to any differences in the nucleic acid composition of a cell, whether in the cell's native chromosome or in endogenous or exogenous non-chromosomal plasmids harbored within the cell. Examples of genetic modifications that may result in a 60 functionally deleted gene product include but are not limited to mutations such as substitutions, partial or complete deletions, insertions, or other variations to a coding sequence or a sequence controlling the transcription or translation of a coding sequence; placing a coding sequence under the 65 control of a less active promoter; blocking transcription of the gene with a trans-acting DNA binding protein such as a

8

TAL effector or CRISPR guided Cas9; expressing ribozvmes or antisense sequences that target the mRNA of the gene of interest; and tagging proteins for rapid proteolytic decay (Cameron D E, Collins J J. Tunable protein degradation in bacteria. Nat Biotechnol. 2014 December; 32(12):1276-81.), etc. In some versions, a gene or coding sequence can be replaced with a selection marker or screenable marker. Various methods for introducing the genetic modifications described above are well known in the art and include homologous recombination, among other mechanisms. See, e.g., Green et al., Molecular Cloning: A laboratory manual, $4^{t\bar{h}}$ ed., Cold Spring Harbor Laboratory Press (2012) and Sambrook et al., Molecular Cloning: A Laboratory Manual, 3rd ed., Cold Spring Harbor Laboratory Press (2001). Various other genetic modifications that functionally delete a gene product are described in the examples below. Functional deletion can also be accomplished by inhibiting the activity of the gene product, for example, by chemically inhibiting a gene product with a small molecule inhibitor, by expressing a protein that interferes with the activity of the gene product, or by other means.

In certain versions of the invention, the functionally deleted gene product may have less than about 95%, less than about 90%, less than about 85%, less than about 80%, less than about 75%, less than about 70%, less than about 65%, less than about 60%, less than about 55%, less than about 50%, less than about 45%, less than about 40%, less than about 35%, less than about 30%, less than about 25%, less than about 20%, less than about 15%, less than about 10%, less than about 5%, less than about 1%, or about 0% of the activity of the non-functionally deleted gene product.

In certain versions of the invention, a cell with a functionally deleted gene product may have less than about 95%, less than about 90%, less than about 85%, less than about 80%, less than about 75%, less than about 70%, less than about 65%, less than about 60%, less than about 55%, less than about 50%, less than about 45%, less than about 40%, less than about 35%, less than about 30%, less than about 25%, less than about 20%, less than about 15%, less than about 10%, less than about 5%, less than about 1%, or about 0% of the activity of the gene product compared to a cell with the non-functionally deleted gene product.

In certain versions of the invention, the functionally deleted gene product may be expressed at an amount less than about 95%, less than about 90%, less than about 85%, less than about 80%, less than about 75%, less than about 70%, less than about 65%, less than about 60%, less than about 55%, less than about 50%, less than about 45%, less than about 40%, less than about 35%, less than about 30%, less than about 25%, less than about 20%, less than about 15%, less than about 10%, less than about 5%, less than about 1%, or about 0% of the amount of the non-functionally deleted gene product.

In certain versions of the invention, the functionally in which at least 1, at least 2, at least 3, at least 4, at least 5, at least 10, at least 20, at least 30, at least 40, at least 50, or more nonsynonymous substitutions are present in the gene or coding sequence of the gene product.

In certain versions of the invention, the functionally deleted gene product may result from a genetic modification in which at least 1, at least 2, at least 3, at least 4, at least 5, at least 10, at least 20, at least 30, at least 40, at least 50, or more bases are inserted in the gene or coding sequence of the gene product.

In certain versions of the invention, the functionally deleted gene product may result from a genetic modification 10

in which at least about 1%, at least about 5%, at least about 10%, at least about 15%, at least about 20%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 50%, at least about 55%, at least about 60%, at least about 65%, at least about 70%, at least about 5 75%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, or about 100% of the gene product's gene or coding sequence is deleted or mutated.

In certain versions of the invention, the functionally deleted gene product may result from a genetic modification in which at least about 1%, at least about 5%, at least about 10%, at least about 15%, at least about 20%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 50%, at least about 55%, at least about 60%, at least about 65%, at least about 70%, at least about 15 75%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, or about 100% of a promoter driving expression of the gene product is deleted or mutated.

In certain versions of the invention, the functionally deleted gene product may result from a genetic modification 20 in which at least about 1%, at least about 5%, at least about 10%, at least about 15%, at least about 20%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 50%, at least about 55%, at least about 60%, at least about 65%, at least about 70%, at least about 25 75%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, or about 100% of an enhancer controlling transcription of the gene product's gene is deleted or mutated.

In certain versions of the invention, the functionally 30 deleted gene product may result from a genetic modification in which at least about 1%, at least about 5%, at least about 10%, at least about 15%, at least about 20%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 50%, at least about 55%, at least about 35 60%, at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, or about 100% of a sequence controlling translation of gene product's mRNA is deleted or mutated.

In certain versions of the invention, the decreased activity or expression of the functionally deleted gene product is determined with respect to the activity or expression of the gene product in its unaltered state as found in nature. In certain versions of the invention, the decreased activity or 45 expression of the functionally deleted gene product is determined with respect to the activity or expression of the gene product in its form in a corresponding microorganism. In certain versions, the genetic modifications giving rise to a functionally deleted gene product are determined with 50 respect to the gene or coding sequence in its unaltered state as found in nature. In certain versions, the genetic modifications giving rise to a functionally deleted gene product are determined with respect to the gene or coding sequence in its form in a corresponding microorganism.

Homologs include genes or gene products (including enzymes) that are derived, naturally or artificially, from a common ancestral gene or gene product. Homology is generally inferred from sequence similarity between two or more genes or gene products. Homology between genes may 60 be inferred from sequence similarity between the products of the genes. The precise percentage of similarity between sequences that is useful in establishing homology varies with the gene or gene product at issue, but as little as 25% sequence similarity (e.g., identity) over 50, 100, 150 or more 65 residues (nucleotides or amino acids) is routinely used to establish homology (e.g., over the full length of the two

10

sequences to be compared). Higher levels of sequence similarity (e.g., identity), e.g., 30%, 35% 40%, 45% 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 99% or more, can also be used to establish homology. Accordingly, homologs of the coding sequences, genes, or gene products described herein include coding sequences, genes, or gene products, respectively, having at least about 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 99% identity to the coding sequences, genes, or gene products, respectively, described herein. In some versions, homologs of the genes described herein include genes that have gene products at least about 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 99% identical to the gene products of the genes described herein. Methods for determining sequence similarity percentages (e.g., BLASTP and BLASTN using default parameters) are described herein and are generally available. The homologous gene products should demonstrate comparable activities and, if an enzyme, participate in the same or analogous pathways. "Orthologs" are genes or coding sequences thereof in different species that evolved from a common ancestral gene by speciation. Normally, orthologs retain the same or similar function in the course of evolution. As used herein "orthologs" are included in the term "homologs." Homologs also include paralogs.

For sequence comparison and homology determination, one sequence typically acts as a reference sequence to which test sequences are compared. When using a sequence comparison algorithm, test and reference sequences are input into a computer, subsequence coordinates are designated, if necessary, and sequence algorithm program parameters are designated. The sequence comparison algorithm then calculates the percent sequence identity for the test sequence(s) relative to the reference sequence based on the designated program parameters. A typical reference sequence of the invention is a nucleic acid or amino acid sequence corresponding to coding sequences, genes, or gene products described herein.

Optimal alignment of sequences for comparison can be 40 conducted, e.g., by the local homology algorithm of Smith & Waterman, Adv. Appl. Math. 2:482 (1981), by the homology alignment algorithm of Needleman & Wunsch, J. Mol. Biol. 48:443 (1970), by the search for similarity method of Pearson & Lipman, Proc. Nat'l. Acad. Sci. USA 85:2444 (1988), by computerized implementations of these algorithms (GAP, BESTFIT, FASTA, and TFASTA in the Wisconsin Genetics Software Package, Genetics Computer Group, 575 Science Dr., Madison, Wis.), or by visual inspection (see Current Protocols in Molecular Biology, F. M. Ausubel et al., eds., Current Protocols, a joint venture between Greene Publishing Associates, Inc. and John Wiley & Sons, Inc., (supplemented through 2008)).

One example of an algorithm that is suitable for determining percent sequence identity and sequence similarity for purposes of defining homologs is the BLAST algorithm, which is described in Altschul et al., J. Mol. Biol. 215:403-410 (1990). Software for performing BLAST analyses is publicly available through the National Center for Biotechnology Information. This algorithm involves first identifying high scoring sequence pairs (HSPs) by identifying short words of length W in the query sequence, which either match or satisfy some positive-valued threshold score T when aligned with a word of the same length in a database sequence. T is referred to as the neighborhood word score threshold (Altschul et al., supra). These initial neighborhood word hits act as seeds for initiating searches to find longer HSPs containing them. The word hits are then extended in

both directions along each sequence for as far as the cumulative alignment score can be increased. Cumulative scores are calculated using, for nucleotide sequences, the parameters M (reward score for a pair of matching residues; always>0) and N (penalty score for mismatching residues; always<0). For amino acid sequences, a scoring matrix is used to calculate the cumulative score. Extension of the word hits in each direction are halted when: the cumulative alignment score falls off by the quantity X from its maximum achieved value; the cumulative score goes to zero or below, due to the accumulation of one or more negativescoring residue alignments; or the end of either sequence is reached. The BLAST algorithm parameters W, T, and X determine the sensitivity and speed of the alignment. The 15 BLASTN program (for nucleotide sequences) uses as defaults a wordlength (W) of 11, an expectation (E) of 10, a cutoff of 100, M=5, N=-4, and a comparison of both strands. For amino acid sequences, the BLASTP program uses as defaults a wordlength (W) of 3, an expectation (E) 20 of 10, and the BLOSUM62 scoring matrix (see Henikoff & Henikoff (1989) Proc. Natl. Acad. Sci. USA 89:10915).

In addition to calculating percent sequence identity, the BLAST algorithm also performs a statistical analysis of the similarity between two sequences (see, e.g., Karlin & Alts- 25 chul, Proc. Natl. Acad. Sci. USA 90:5873-5787 (1993)). One measure of similarity provided by the BLAST algorithm is the smallest sum probability (P(N)), which provides an indication of the probability by which a match between two nucleotide or amino acid sequences would occur by chance. 30 For example, a nucleic acid is considered similar to a reference sequence if the smallest sum probability in a comparison of the test nucleic acid to the reference nucleic acid is less than about 0.1, more preferably less than about 0.001. The above- 35 described techniques are useful in identifying homologous sequences for use in the methods described herein.

The terms "identical" or "percent identity", in the context of two or more nucleic acid or polypeptide sequences, refers to two or more sequences or subsequences that are the same 40 or have a specified percentage of amino acid residues or nucleotides that are the same, when compared and aligned for maximum correspondence, as measured using one of the sequence comparison algorithms described above (or other algorithms available to persons of skill) or by visual inspec- 45 tion.

The phrase "substantially identical", in the context of two nucleic acids or polypeptides refers to two or more sequences or subsequences that have at least about 60%, about 65%, about 70%, about 75%, about 80%, about 85%, 50 about 90, about 95%, about 98%, or about 99% or more nucleotide or amino acid residue identity, when compared and aligned for maximum correspondence, as measured using a sequence comparison algorithm or by visual inspection. Such "substantially identical" sequences are typically 55 considered to be "homologous" without reference to actual ancestry. Preferably, the "substantial identity" exists over a region of the sequences that is at least about 50 residues in length, more preferably over a region of at least about 100 residues, and most preferably, the sequences are substan- 60 tially identical over at least about 150 residues, at least about 250 residues, or over the full length of the two sequences to be compared.

Accordingly, homologs of the genes described herein include genes with gene products at least about 80%, 85%, 65 90%, 95%, 97%, 98%, 99%, or more identical to the gene products of the genes described herein.

In some versions, the microorganisms of the invention produce an increased amount of glycogen compared to a corresponding microorganism not comprising the modifications described herein. For example, the microorganisms of the invention may be capable of producing at least about 1.1-fold, about 1.25-fold, about 1.5-fold, about 1.75-fold, about 2-fold, about 2.25-fold, about 2.5-fold, about 2.75fold, about 3-fold or more glycogen than a corresponding microorganism, and/or up to about 2.5-fold, about 3-fold, about 4-fold, about 5-fold, about 10-fold, or more glycogen than a corresponding microorganism.

In some versions, the microorganisms of the invention produce glycogen at an increased rate compared to a corresponding microorganism not comprising the modifications described herein. For example, the microorganisms of the invention may be capable of producing glycogen at a rate at least about 2-fold, about 3-fold, about 4-fold, about 5-fold, about 6-fold, about 7-fold, about 8-fold, about 5-fold or more than a corresponding microorganism, and/or up to about 5-fold, about 10-fold, about 12-fold, about 15-fold or more than a corresponding microorganism.

In some versions, the microorganisms of the invention produce glycogen at a rate of at least about 50 mg/L/day, about 100 mg/L/day, about 125 mg/L/day, about 150 mg/L/ day, about 175 mg/L/day, about 200 mg/L/day, or more, and/or up to about 190 mg/L/day, about 200 mg/L/day, about 205 mg/L/day, about 250 mg/L/day, about 275 mg/L/day, about 300 mg/L/day or more.

In some versions, the microorganisms of the invention are capable of producing glycogen as a mass percent of dry cell weight (DCW) in an amount of at least about 10% DCW, at least about 25% DCW, at least about 26% DCW, at least about 25% DCW, at least about 26% DCW, at least about 27% DCW, at least about 28% DCW, at least about 29% DCW, at least about 30% DCW, at least about 31% DCW, at least about 32% DCW, at least about 31% DCW, at least about 34% DCW, or at about least 35% DCW and/or up to about or at least about 31% DCW, about or at least about 32% DCW, about or at least about 33% DCW, about or at least about 34% DCW, about or at least about 35% DCW, about or at least about 36% DCW, about or at least about 37% DCW, about or at least about 38% DCW, about or at least about 39% DCW, or at least about 38% DCW, about or at least about 39% DCW, or at least about 38% DCW.

In some versions, the microorganisms of the invention have a growth rate substantially the same as a corresponding microorganism when cultured under identical conditions, such that the modifications described herein do not substantially affect the growth rate. For example, the microorganisms of the invention may have a growth rate within about 40%, about 35%, about 30%, about 25%, about 20%, about 15%, about 10%, about 5%, about 3%, about 2%, or about 1% the growth rate of a corresponding microorganism when cultured under identical conditions. In some versions, the microorganisms of the invention have a growth rate of at least the growth rate of a corresponding microorganism when cultured under identical conditions.

In addition to the microorganism itself, the invention also provides methods of producing glycogen with the microorganisms of the present invention. The methods involve culturing the microorganism in conditions suitable for growth of the microorganism. Such conditions include providing suitable carbon and energy sources for the particular microorganism. Suitable carbon and energy sources for particular types of microorganisms are described elsewhere herein for exemplary microorganisms and are otherwise known in the art.

The invention also provides methods of screening for production of glycogen or other metabolic products. The screening methods generally involve culturing microorganisms under conditions that promote production of the metabolic product, then stressing the microorganisms under 5 stringent conditions that promote consumption of the metabolic product at a high metabolic rate, and then comparing the recovery rates of the microorganisms when reintroduced to more suitable growth conditions.

An exemplary screening method includes culturing 10 microorganisms in the presence of a carbon source and a first amount of an energy source under conditions suitable for producing the metabolic product, then culturing the microorganisms in the presence of a second amount of the energy source under conditions suitable for consuming the meta- 15 bolic product, then culturing the microorganisms in the presence of the carbon source and a third amount of the energy source and determining the relative growth of the microorganisms in the presence of the carbon source and the third amount of the energy source. The second amount of the 20 energy source is preferably less than the first amount of the energy source, and the third amount of the energy source is preferably greater than the second amount of the energy source.

The metabolic product preferably comprises a product 25 comprising reduced carbon that serves as a form of stored energy for the microorganism and is consumable by the microorganism for survival when a sufficient external energy source is lacking. Such products may include carbohydrates, lipids, and/or proteins. Exemplary carbohydrates 30 may include simple carbohydrates such as monosaccharides or disaccharides or complex carbohydrates such as trisaccharides, tetrasaccharides, starch, or glycogen, among others. Exemplary lipids may include fatty acids, glycerol, or glycerides, among others. 35

The energy source may comprise a fermentable or oxidizable form of reduced molecules, if the microorganism is a chemotroph, or light, if the microorganism is an autotroph. The reduced molecules may be organic or inorganic. Examples of reduced organic molecules include reduced 40 Strains carbon, such as carbohydrates, lipids, proteins, methane, and other reduced organic molecules. Reduced organic molecules can be used for chemoorganotrophs. Examples of reduced inorganic molecules include iron(II), Mn²⁺, H₂, sulfide (H₂S), inorganic sulfur (S₀), thiosulfate (S₂O₃²⁻), 45 ammonia, and nitrite, among others. Reduced inorganic molecules can be used for chemolithotrophs.

The carbon source may comprise organic carbon, if the microorganism is a hetrotroph, or carbon dioxide, if the microorganism is an autotroph. Examples of organic carbon 50 include carbohydrates, lipids, and proteins.

The microorganisms used in the selection method may comprise any microorganism described herein.

The conditions suitable for consuming the metabolic product preferably comprise a temperature sufficient to 55 support metabolic activity of the microorganisms in the presence of the second amount of the energy source. Such a temperature may be at least about 27° C., at least about 30° C., at least about 35° C., at least about 37° C., at least about 40° C. or more and/or up to about 37° C., up to about 40° 60 C., up to about 45° C. or more.

In exemplary versions of the invention, the microorganisms comprise photosynthetic microorganisms, the carbon source comprises CO₂, the energy source comprises light, and the metabolic product comprises glycogen. Culturing 65 the microorganisms in the first amount of the energy source may comprise exposing the microorganisms to a direct

source of light. Culturing the microorganisms in the second amount of the energy source may comprise substantially blocking the microorganisms from any direct source of light. Culturing the microorganisms in the third amount of the energy source may comprise exposing the microorganisms to a direct source of light. The photosynthetic microorganisms may comprise cyanobacteria and/or microalgae.

The elements and method steps described herein can be used in any combination whether explicitly described or not.

All combinations of method steps as used herein can be performed in any order, unless otherwise specified or clearly implied to the contrary by the context in which the referenced combination is made.

As used herein, the singular forms "a," "an," and "the" include plural referents unless the content clearly dictates otherwise.

Numerical ranges as used herein are intended to include every number and subset of numbers contained within that range, whether specifically disclosed or not. Further, these numerical ranges should be construed as providing support for a claim directed to any number or subset of numbers in that range. For example, a disclosure of from 1 to 10 should be construed as supporting a range of from 2 to 8, from 3 to 7, from 5 to 6, from 1 to 9, from 3.6 to 4.6, from 3.5 to 9.9, and so forth.

All patents, patent publications, and peer-reviewed publications (i.e., "references") cited herein are expressly incorporated by reference to the same extent as if each individual reference were specifically and individually indicated as being incorporated by reference. In case of conflict between the present disclosure and the incorporated references, the present disclosure controls.

It is understood that the invention is not confined to the particular construction and arrangement of parts herein illustrated and described, but embraces such modified forms thereof as come within the scope of the claims.

Examples

fba (coding sequence: SEQ ID NO:11; protein sequence: SEQ ID NO:12) and fbp (coding sequence: SEQ ID NO:13; protein sequence: SEQ ID NO:14) from Synechocystis PCC 6803 was inserted as an operon into the cLac143 IPTG inducible cassette described in Markley et al. 2015 (Markley AL, Begemann MB, Clarke RE, Gordon GC, Pfleger BF. ACS Synth Biol. 2015 May 15; 4(5):595-603) with 500 base pair flanking regions targeting the acsA locus in PCC 7002, forming construct pALM173 (SEQ ID NO:15). Wild Type glgC from K12 MG1655 E. coli genomic DNA (coding sequence: SEQ ID NO:1; protein sequence: SEQ ID NO:2) was inserted into the cLac94 IPTG inducible cassette described in Markley et al. 2015 with 500 base-pair flanking regions targeting the glpK locus in PCC 7002, forming construct pALM210 (SEQ ID NO:16). glgC with a G336D mutation (coding sequence: SEQ ID NO:3; protein sequence: SEQ ID NO:4) was amplified from a BioBrick part BBa K118016 and inserted into an identical vector backbone as pALM210 to form pALM211 (SEQ ID NO:17). These genetic elements were inserted into the PCC 7002

chromosome by adding 1-1.5 μg of purified plasmid DNA to 1 mL of an overnight culture of cells grown to an OD₇₃₀ of 1. The cultures were then placed at 37° C. under illumination for 16 hours. The cells were plated on 50 µM acrylic acid (acsA locus) or 100 µg/ml gentamycin (glpK locus) to select for recombinants. This yielded strains were AM184 (WT 7002 AcsA::cLac143 FbaFbp), AM241 (WT 7002 glpK::

5

25

cLac94 GlgC K12 GmR) and AM253 (WT 7002 glpK:: cLac94 GlgC K12 G336D GmR). Double fba-fbp/glgC strains were constructed by repeating the pALM210/ pALM211 glgC transformations in the AM184 fba-fbp strain to produce AM254 (AM184 7002 glpK::cLac94 GlgC K12 GmR) and AM255 (AM184 7002 glpK::cLac94 GlgC K12 G336D GmR).

The generated strains are shown in Table 1.

TABLE 1

Strain ID	Description	Parent Strain	Construct Name(s)
AM184	WT 7002 AcsA::cLac143 FbaFbp Fix	PCC 7002	pALM173
AM241	WT 7002 glpK::cLac94 GlgC K12 GmR	PCC 7002	pALM210
AM253	WT 7002 glpK::cLac94 GlgC K12 G336D GmR	PCC 7002	pALM211
AM254	AM184 7002 glpK::cLac94 GlgC K12 GmR	PCC 7002	pALM173 + pALM210
AM255	AM184 7002 glpK::cLac94 GlgC K12 G336D GmR	PCC 7002	pALM173 + pALM211

Initial Glycogen Production Testing

Initial experiments on the produced strains were performed in Corning Costar non-treated 6-well tissue culture plates with 6 mL of MediaA+ (0.308 M NaCl, 0.02 M MgSO₄.7H₂O, 0.08 mM Na₂EDTA.2H₂O, 8.05 mM KCl, 2.52 mM CaCl₂.2H₂O, 11.8 mM NaNO₃, 0.37 mM 30 KH_2PO_4 , 8.26 mM TRIZMA® base (Sigma-Aldrich, St. Louis, Mo.) pH 8.2, 55.5 mM H₃BO₃, 0.23 mM ZnCl₂, 0.021 mM MoO₃(85%), 0.3 μ M vitamin B12 (cyanocobalamin), 0.14 mM FeCl₃.6H₂O, 0.22 mM MnCl₂.4H₂O, 0.00012 mM CuSO₄.5H₂O, 0.0005 mM CoCl₂.6H₂O) 35 according to the UTEX Culture Collection of Algae at The University of Texas at Austin. IPTG was added at 0.5 mM and 5 mM. The cultures were grown on a shaker at 37° C. under illumination for 2 days. The induced strains with glgC G336D (AM253 and AM255) had a severe growth defect. 40 the same strains grown in 10% CO₂. For this experiment, 1.5 OD_{730} *mL were collected and pelleted. The pellets were washed 3× with PBS and analyzed for glycogen content using the Glycogen Assay Kit (Item No. 700480) from Cayman Chemical Company (Ann Arbor, Mich.).

To prepare samples for the glycogen assay with the 45 Glycogen Assay Kit, 1× Glycogen Assay Buffer was prepared according to the manufacturer's instructions. 1.5 OD ml (approximately 400 mg DCW based on my standard curve) was taken from each culture in regular Media A at low CO_2 and washed $3 \times$ in PBS to remove Tris interference. 50 Cell pellets were resuspended in 2 ml Diluted Assay Buffer+ $1 \times PMSF$. Samples were frozen at -80° C. until further use. To finish the sample preparation for the glycogen assay, the remaining reagents were prepared according to the manufacturer's instructions. The frozen samples were sonicated 55 on ice at 20% amplitude in 2-second bursts for 1 min total. The sample preparation was finished according to the manufacturer's instructions while also testing different dilution factors. The assay was then performed according to the manufacturer's instructions.

AM253 (glgC G336D) and AM255 (glgC G336D+fbafbp) yielded inconsistent glycogen yields with these experiments, likely due to their poor growth rates. Additionally, while strains containing the glgC G336D had a high glycogen:dry cell weight ratio, the low growth rate resulted in a 65 lower overall productivity when compared with WT glgC strains. See FIGS. 1A-1C.

Since these experiments showed that AM241 and AM254 had 2-3 fold more glycogen than WT PCC 7002 without a severe growth defect, these strains were chosen for further testing.

Glycogen Production Screen

In order to aid in the testing of the glycogen-producing strains, a screen was developed that couples glycogen content to cellular fitness. The overall scheme of this screen is to grow strains in liquid media using any desired growth 10 condition. The cells are then normalized to the same OD_{730} and serially diluted in sterile MediaA⁺. 7.5 µl of these dilutions are then spotted on several replicate MediaA+ agar plates. One plate is immediately placed under illumination at 37° C. while the remaining plates are placed in a dark 37° 15 C. incubator. The plates are then periodically removed from the dark incubator and placed in the light. Cells that have a high glycogen content show higher recovery rates compared to cells with low or no glycogen content.

An alternative strategy whereby liquid cultures of high 20 and low glycogen content strains were incubated in the dark at 37° C. for several days and periodically spotted on MediaA⁺ agar plates before outgrowing in the illuminated growth chamber showed no difference in cellular fitness between strains. Similarly, simply leaving the solid agar plates at room temperature instead of 37° C. also did not work as well due to the very slow loss in fitness.

Testing of Strains Using the Glycogen Production Screen The glycogen production screen described above was performed on WT PCC 7002, a native glgC knockout (through kanamycin resistance gene inactivation), AM241, and AM254. Each strain was inoculated at 0.05 OD₇₃₀ in 20 mL of MediaA⁺ and grown for 16 hours at 37° C. in the presence of ambient CO_2 and 0 or 0.5 mM IPTG. After 16 hours, the strains were normalized to the same OD_{730} , serially diluted, spotted on MediaA⁺ agar plates, placed in a dark 37° C. incubator for various amounts of time, and placed in the light to determine relative recovery. Results are shown in FIG. 2.

The glycogen production screen was also performed on WT PCC 7002, the native glgC knockout, AM241, and AM254 were inoculated at 0.05 OD730 in 20 mL of MediaA+ and grown for 16 hours at 37° C. with 10% CO₂ by volume bubbled into the tubes in the presence of 0, 0.1, or 0.5 mM IPTG. After 16 hours, the strains were normalized to the same OD₇₃₀, serially diluted, spotted on MediaA⁺ agar plates, placed in a dark 37° C. incubator for various amounts of time, and placed in the light to determine relative recovery. Results are shown in FIG. 3. Additionally, after the 16-hours of growth, 10 OD730*mL of each sample were spun down and lyophilized then resuspended with 1 mL of 4% H₂SO₄ and placed at 121° C. for one hour to hydrolyze the glycogen to glucose. After an hour, the samples were neutralized up to a pH of >2 and then run on an HPLC with a Bio-rad Aminex HPX-87H Sugar Byproducts Column using a 5 mM H₂SO₄ isocratic running buffer. The glucose peaks were compared with a standard curve to determine intracellular sugar content. Results are shown in FIG. 4. The sugar content of the cells was highly correlative to the 60 relative survival rate in the dark. Compare FIGS. 4 and 3, respectively.

The AM241 (glpK::cLac94 glgC K12 WT) strain was chosen for larger scale bioreactor studies.

Bioreactor Runs

Approximately 250 mL of WT PCC 7002 and AM241 bacteria were grown under ambient CO₂ conditions in the light, and then these cultures were used to inoculate 900 mL

MediaA⁺ bioreactors in triplicate at an OD₇₃₀ of 0.01. Six total bioreactors of AM241 were inoculated, and IPTG was added to three of them to a final concentration of 0.1 mM IPTG. The bioreactors were then grown at 37° C. with 10% CO₂, and 60 OD₇₃₀*mL were collected periodically and 5 analyzed for sugar content by HPLC as described above. There was no significant difference in growth rates between the WT and AM241 cultures (FIG. 5), but AM241 induced at 0.1 mM IPTG showed a 3.2 fold increase in glycogen content over WT 7002 and a titer of 476 mg/L glycogen after

18

64 hours (FIG. 6). Critically, this is done without having to lower the growth rate of the cyanobacteria or modify the nutrient ratios, as has been the only strategy for glycogen production in cyanobacteria.

Total glycogen content did start to decrease after 64 hours. See FIGS. 7A and 7B. This decrease was likely due to IPTG degradation. It is predicted that use of a constitutive expression system will prevent such a decrease.

Additional parameters from the bioreactor experiments are shown in Table 2.

TABL	Æ	2	
------	---	---	--

Sample parameters of bioreactor runs.												
Days of Growth (Days)	Strain	Dry Cell Weight (DCW) (mg)	Sample Volume (mL)	DCW/ Sample Volume (mg/L)	HPLC Glucose Content (mg/ml)	Glucose/ Sample (mg)	Percent Glucose of DCW	Total Glucose (mg/L)	Glucose Production Rate (mg/L/day)			
1.1	WT 7002	27.3	41.78	653.40	0.29	0.62	2.3%	14.83	14			
		24.8	34.40	720.90	0.39	0.83	3.4%	24.24	22			
	11/0/11	24.2	38.36	630.80	0.39	0.83	3.4%	21.67	20			
	AM241	23.8	42.02	566.40	1.75	3.76	15.8%	89.41	83			
	0 mM	16.8	37.41	449.10	2.00	4.30 3.92	25.6%	115.02	106			
	AM241	22.6 24.2	43.35 39.37	521.30 614.70	1.82 3.66	3.92 7.87	17.4% 32.5%	90.49 199.86	84 184			
	0.1 mM	24.2 26.1	39.37	673.40	3.82	8.22	32.5% 31.5%	212.01	196			
	0.1 111.11	23.5	37.69	623.50	3.44	7.39	31.4%	196.03	181			
2.7	WT 7002	17.2	12.76	1358.80	0.60	1.30	7.5%	102.38	38			
2.,	W1 7002	24.4	11.67	2090.30	1.08	2.33	9.6%	199.77	75			
		25.0	13.57	1841.70	0.87	1.88	7.5%	138.32	52			
	AM241	24.5	13.89	1764.00	1.21	2.61	10.6%	187.58	70			
	0 mM	24.9	12.77	1950.50	1.64	3.52	14.1%	275.91	103			
		24.1	14.08	1711.10	1.39	2.99	12.4%	212.50	80			
	AM241	25.3	13.10	1931.20	2.84	6.11	24.1%	466.33	175			
	0.1 mM	24.3	12.82	1895.40	2.83	6.09	25.1%	474.95	178			
		25.8	13.57	1900.60	3.08	6.62	25.6%	487.45	183			
3.6	WT 7002	25.7	9.12	2818.40	1.36	2.92	11.4%	320.66	88			
		32.9	7.71	4266.00	2.60	5.60	17.0%	726.09	200			
		28.8	9.71	2966.40								
	AM241	23.6	8.04	2934.30	1.37	2.94	12.4%	365.24	137			
	0 mM	26.0	8.72	2981.30	2.23	4.79	18.4%	549.06	206			
	434241	27.3	10.34	2639.00 3405.80	2.69	6 77	17.00/	596.12	220			
	AM241 0.1 mM	33.5 32.0	9.84 9.74	3285.30	2.68 2.72	5.77 5.84	17.2% 18.3%	586.13 599.88	220 225			
	0.1 11101	52.0 64.7	9.68	6685.70	2.72	5.83	9.0%	602.30	225			
4.6	WT 7002	27.2	7.71	3526.90	2.82	6.06	22.3%	785.14	170			
		25.6	6.67	3840.00	3.86	8.30	32.4%	1244.80	269			
		25.1	7.21	3480.50	2.79	6.00	23.9%	832.15	180			
	AM241	26.8	7.61	3519.70	3.09	6.65	24.8%	873.35	189			
	0 mM	26.0	7.19	3614.00	3.62	7.79	30.0%	1082.64	234			
		26.5	8.26	3206.50	3.06	6.57	24.8%	795.44	172			
	AM241	27.9	7.13	3915.30	3.25	6.98	25.0%	979.12	212			
	0.1 mM	25.4	7.03	3615.30	3.41	7.34	28.9%	1044.75	226			
		29.0	7.46	3886.00	3.00	6.44	22.2%	863.37	187			
5.6	WT 7002	25.5	6.06	4207.50	3.57	7.68	30.1%	1267.58	225			
		24.6	5.69 6.25	4316.70	3.97	8.54 7.68	34.8%	1502.08	267			
	AM241	24.1 24.8	6.23	3856.00 3988.70	3.57 3.76	7.08 8.09	31.9% 32.6%	1229.12 1301.43	219 231			
	0 mM	24.8	5.97	3852.50	4.07	8.09	38.1%	1466.38	261			
	0 11101	24.3	6.67	3645.00	3.66	7.86	32.4%	1179.50	210			
	AM241	28.6	6.19	4623.70	4.62	9.93	34.7%	1604.57	285			
	0.1 mM	25.1	5.94	4225.20	4.25	9.15	36.4%	1539.74	274			
		27.0	6.03	4477.50	3.84	8.25	30.6%	1368.33	243			
6.7	WT 7002	25.6	5.60	4573.90	3.73	8.02	31.3%	1432.83	215			
		25.9	5.70	4541.10	4.75	10.20	39.4%	1788.97	268			
		25.6	6.00	4266.70	3.45	7.41	28.9%	1234.81	185			
	AM241	24.7	5.62	4396.60	3.23	6.95	28.1%	1236.35	185			
	0 mM	25.4	6.07	4182.50	4.24	9.11	35.9%	1499.46	225			
		25.2	6.05	4166.40	3.61	7.76	30.8%	1283.22	192			
	AM241	28.5	5.58	5111.00	4.38	9.42	33.0%	1689.06	253			
	0.1 mM	26.1	5.47 5.70	4767.60	3.92	8.42 7.82	32.3% 27.1%	1538.89	231			
		28.8	5.70	5049.60	3.64	7.82	27.170	1370.34	206			

SEQUENCE LISTING

<160> NUMBER OF SEQ ID NOS: 17

<210> SEQ ID NO 1 <211> LENGTH: 1296 <212> TYPE: DNA <213> ORGANISM: Escherichia coli

<400> SEQUENCE: 1

atggttagtt	tagagaagaa	cgatcactta	atgttggcgc	gccagctgcc	attgaaatct	60
gttgccctga	tactggcggg	aggacgtggt	acccgcctga	aggatttaac	caataagcga	120
gcaaaaccgg	ccgtacactt	cggcggtaag	ttccgcatta	tcgactttgc	gctgtctaac	180
tgcatcaact	ccgggatccg	tcgtatgggc	gtgatcaccc	agtaccagtc	ccacactctg	240
gtgcagcaca	ttcagcgcgg	ctggtcattc	ttcaatgaag	aaatgaacga	gtttgtcgat	300
ctgctgccag	cacagcagag	aatgaaaggg	gaaaactggt	atcgcggcac	cgcagatgcg	360
gtcacccaaa	acctcgacat	tatccgccgt	tataaagcgg	aatacgtggt	gatcctggcg	420
ggcgaccata	tctacaagca	agactactcg	cgtatgctta	tcgatcacgt	cgaaaaaggc	480
gcacgttgca	ccgttgcttg	tatgccagta	ccgattgaag	aagcctccgc	atttggcgtt	540
atggcggttg	atgagaacga	taaaattatc	gaattcgttg	aaaaacctgc	taacccgccg	600
tcaatgccga	acgatccgag	caaatctctg	gcgagtatgg	gtatctacgt	ctttgacgcc	660
gactatctgt	atgaactgct	ggaagaagac	gatcgcgatg	agaactccag	ccacgacttt	720
ggcaaagatt	tgattcccaa	gatcaccgaa	gccggtctgg	cctatgcgca	cccgttcccg	780
ctctcttgcg	tacaatccga	cccggatgcc	gagccgtact	ggcgcgatgt	gggtacgctg	840
gaagcttact	ggaaagcgaa	cctcgatctg	gcctctgtgg	tgccggaact	ggatatgtac	900
gatcgcaatt	ggccaattcg	cacctacaat	gaatcattac	cgccagcgaa	attcgtgcag	960
gategeteeg	gtagccacgg	gatgaccctt	aactcactgg	tttccggcgg	ttgtgtgatc	1020
tccggttcgg	tggtggtgca	gtccgttctg	ttctcgcgcg	ttcgcgtgaa	ttcattctgc	1080
aacattgatt	ccgccgtatt	gttaccggaa	gtatgggtag	gtcgctcgtg	ccgtctgcgc	1140
cgctgcgtca	tcgatcgtgc	ttgtgttatt	ccggaaggca	tggtgattgg	tgaaaacgca	1200
gaggaagatg	cacgtcgttt	ctatcgttca	gaagaaggca	tcgtgctggt	aacgcgcgaa	1260
atgctacgga	agttagggca	taaacaggag	cgataa			1296

<210> SEQ ID NO 2 <211> LENGTH: 431 <212> TYPE: PRT <213> ORGANISM: Escherichia coli <400> SEQUENCE: 2 Met Val Ser Leu Glu Lys Asn Asp His Leu Met Leu Ala Arg Gln Leu 15 10 1 5 Pro Leu Lys Ser Val Ala Leu Ile Leu Ala Gly Gly Arg Gly Thr Arg 20 25 30 20 Leu Lys Asp Leu Thr Asn Lys Arg Ala Lys Pro Ala Val His Phe Gly 35 40 45 Gly Lys Phe Arg Ile Ile Asp Phe Ala Leu Ser Asn Cys Ile Asn Ser 50 55 60 Gly Ile Arg Arg Met Gly Val Ile Thr Gln Tyr Gln Ser His Thr Leu 65 70 75 80 65 Val Gln His Ile Gln Arg Gly Trp Ser Phe Phe Asn Glu Glu Met Asn 85 - 90 95

-continued

Glu Phe Val Asp Leu L 100		Gln Gln Arg 105	Met Lys Gly 110							
Trp Tyr Arg Gly Thr A 115	Ala Asp Ala V 120	Val Thr Gln	Asn Leu Asp 125	Ile Ile						
Arg Arg Tyr Lys Ala G 130	Glu Tyr Val V 135	Val Ile Leu	Ala Gly Asp 140	His Ile						
Tyr Lys Gln Asp Tyr S 145 1	Ser Arg Met 1 150	Leu Ile Asp 155	His Val Glu	Lys Gly 160						
Ala Arg Cys Thr Val A 165	Ala Cys Met 1	Pro Val Pro 170	Ile Glu Glu	Ala Ser 175						
Ala Phe Gly Val Met A 180		Glu Asn Asp 185	Lys Ile Ile 190							
Val Glu Lys Pro Ala A 195	Asn Pro Pro 3 200	Ser Met Pro	Asn Asp Pro 205	Ser Lys						
Ser Leu Ala Ser Met G 210	Gly Ile Tyr y 215	Val Phe Asp	Ala Asp Tyr 220	Leu Tyr						
Glu Leu Leu Glu Glu A 225 2	Asp Asp Arg 2 230	Asp Glu Asn 235	Ser Ser His	Asp Phe 240						
Gly Lys Asp Leu Ile P 245	ro Lys Ile '	Thr Glu Ala 250	Gly Leu Ala	Tyr Ala 255						
His Pro Phe Pro Leu S 260		Gln Ser Asp 265	Pro Asp Ala 270							
Tyr Trp Arg Asp Val G 275	Gly Thr Leu (280	Glu Ala Tyr	Trp Lys Ala 285	Asn Leu						
Asp Leu Ala Ser Val V 290	Val Pro Glu 1 295	Leu Asp Met	Tyr Asp Arg 300	Asn Trp						
Pro Ile Arg Thr Tyr A 305 3	Asn Glu Ser 1 310	Leu Pro Pro 315	Ala Lys Phe	Val Gln 320						
Asp Arg Ser Gly Ser H 325	His Gly Met '	Thr Leu Asn 330	Ser Leu Val	Ser Gly 335						
Gly Cys Val Ile Ser G 340		Val Val Gln 345	Ser Val Leu 350							
Arg Val Arg Val Asn S 355	Ser Phe Cys 2 360	Asn Ile Asp	Ser Ala Val 365	Leu Leu						
Pro Glu Val Trp Val G 370	Gly Arg Ser (375	Cys Arg Leu	Arg Arg Cys 380	Val Ile						
Asp Arg Ala Cys Val I 385 3	Ile Pro Glu (390	Gly Met Val 395	Ile Gly Glu	Asn Ala 400						
Glu Glu Asp Ala Arg A 405	Arg Phe Tyr A	Arg Ser Glu 410	Glu Gly Ile	Val Leu 415						
Val Thr Arg Glu Met L 420		Leu Gly His 425	Lys Gln Glu 430	-						
<210> SEQ ID NO 3 <211> LENGTH: 1296 <212> TYPE: DNA <213> ORGANISM: Escherichia coli										
<400> SEQUENCE: 3										
atggttagtt tagagaagaa	a cgatcactta	atgttggcgc	gccagctgcc	attgaaatct						
gttgccctga tactggcggg	g aggacgtggt	acccgcctga	aggatttaac	caataagcga						
gcaaaaccgg ccgtacactt	cggcggtaag	ttccgcatta	tcgactttgc	gctgtctaac						
tgcatcaact ccgggatccg	g tegtatggge	gtgatcaccc	agtaccagtc	ccacactctg						

gtgcagcaca ttcagcgcgg ctggtcattc ttcaatgaag aaatgaacga gtttgtcgat

-continued

ctgctgccag cacagcagag aatgaaaggg gaaaactggt atcgcggcac cgcagatgcg	360
gtcacccaaa acctcgacat tatccgccgt tataaagcgg aatacgtggt gatcctggcg	420
ggcgaccata tctacaagca agactactcg cgtatgctta tcgatcacgt cgaaaaaggc	480
gcacgttgca ccgttgcttg tatgccagta ccgattgaag aagceteege atttggegtt	540
atggcggttg atgagaacga taaaattatc gaatttgttg aaaaacctgc taacccgccg	600
tcaatgeega aegateegag caaatetetg gegagtatgg gtatetaegt etttgaegee	660
gactatetgt atgaactget ggaagaagae gategegatg agaacteeag ceaegaettt	720
ggcaaagatt tgatteecaa gateacegaa geeggtetgg eetatgegea eeegtteeeg	780
ctctcttgcg tacaatccga cccggatgcc gagccgtact ggcgcgatgt gggtacgctg	840
gaagettaet ggaaagegaa eetegatetg geetetgtgg tgeeggaaet ggatatgtae	900
gategeaatt ggeeaatteg cacetaeaat gaateattae egeeagegaa attegtgeag	960
gategeteeg gtagecaegg gatgaecett aacteaetgg ttteegaegg ttgtgtgate	1020
teeggttegg tggtggtgea gteegttetg ttetegegeg ttegegtgaa eteattetge	1080
aacattgatt ccgccgtatt gttaccggaa gtatgggtag gtcgctcgtg ccgtctgcgc	1140
cgctgcgtca tcgatcgtgc ttgtgttatt ccggaaggca tggtgattgg tgaaaacgca	1200
gaggaagatg cacgtcgttt ctatcgttca gaagaaggca tcgtgctggt aacgcgcgaa	1260
atgctacgga agttagggca taaacaggag cgataa	1296
<210> SEQ ID NO 4 <211> LENGTH: 431 <212> TYPE: PRT <213> ORGANISM: Escherichia coli	
<400> SEQUENCE: 4	
<400> SEQUENCE: 4 Met Val Ser Leu Glu Lys Asn Asp His Leu Met Leu Ala Arg Gln Leu	
<400> SEQUENCE: 4 Met Val Ser Leu Glu Lys Asn Asp His Leu Met Leu Ala Arg Gln Leu 1 5 10 15	
~ Met Val Ser Leu Glu Lys Asn Asp His Leu Met Leu Ala Arg Gln Leu	
Met Val Ser Leu Glu Lys Asn Asp His Leu Met Leu Ala Arg Gln Leu 1 5 10 15 Pro Leu Lys Ser Val Ala Leu Ile Leu Ala Gly Gly Arg Gly Thr Arg	
Met Val Ser Leu Glu Lys Asn Asp His Leu Met Leu Ala Arg Gln Leu 1 5 10 15 Pro Leu Lys Ser Val Ala Leu Ile Leu Ala Gly Gly Arg Gly Thr Arg 20 25 30 Leu Lys Asp Leu Thr Asn Lys Arg Ala Lys Pro Ala Val His Phe Gly	
Met Val Ser Leu Glu Lys Asn Asn Asn His Leu Met Leu Ala Arg Gln Leu 1 5 10 10 10 10 15 15 Pro Leu Lys Ser Val Ala Leu Ile Leu Ala Gly Gly Thr Arg Leu Lys Asp Leu Thr Asn Lys Arg Ala Lys Pro Ala Val His Phe Gly Leu Lys Asp Leu Thr Asn Lys Arg Ala Lys Pro Ala Val His Phe Gly Gly Lys Phe Arg Ile Asp Phe Ala Leu Ser Asn Cys Ile Asp Ser	
Met Val Ser Leu Glu Lys Asn Asp His Leu Met Leu Ala Arg Gln Leu 1 5 Na Asp His Leu Met Leu Ala Arg Gln Leu 10 10 15 Pro Leu Lys Ser Val Ala Leu Ile Leu Ala Gly Gly Arg Gly Thr Arg 30 Leu Lys Asp Leu Thr Asn Lys Arg Ala Lys Pro Ala Val His Phe Gly 40 Gly Lys Phe Arg Ile Ile Asp Phe Ala Leu Ser Asn Cys Ile Asn Ser 60 Gly Ile Arg Arg Met Gly Val Ile Thr Gln Tyr Gln Ser His Thr Leu 10	
MetValSerLeuGluLysAsnAspHisLeuMetLeuAlaArgGlnLeu115ValAlaLeuIleLeuAlaGlyGlyArgGlyThrArgProLeuLysSerValAlaLeuIleLeuAlaGlyGlyArgGlyThrArgLeuLysAspLeuThrAsnLysArgAlaLysProAlaValHisPheGlyGlyLysPheArgIleIleAspPheAlaLeuSerAsnSerGlGlyLysPheArgMetGlyValIleThrGlnTyrGlnSerHisThrLeuGlyIleArgMetGlyValIleThrGlnTyrGlnSerHisThrLeu65ValGlnHisIleGlnArgGlyTrpSerPhePheAsnGluMetAsn90PheValGlnHisIleLeuProAlaGlnArgMetLysGlyAsnGlyIleArgGlyValIleThrGlnTyrGlnSerHisThrLeu61GlyValIleThrSerSerPhePheAsn <td></td>	
MetValSerLeuGluLysAsnAspHisLeuMetLeuAlaArgGlnLeu1'' </td <td></td>	
MetValSerLeuGluLysAsnAsnAsnHisLeuMetLeuAlaArgGlnLeuProLeuLysSerValAlaLeuIleLeuAlaGlyGlyArgGlyThrArgLeuLysAspLeuThrAsnLysArgAlaLysProAlaValHisPheGlyGlyLysAspLeuThrAsnLysArgAlaLysProAlaValHisPheGlyGlyLysPheArgIleIleAspPheAlaLeuSerAsnAspSerGlyLysPheArgMetGlyValIleThrGlnTyrGlnSerHisThrLeuGlyLusArgMetGlyValIleThrGlnTyrGlnSerHisThrLeuGlyIleArgMetGlyValIleThrGlnTyrGlnSerHisThrLeuGlyIleArgMetGlyValIleThrSerPheAsnSerSerSerGlyIleGlnArgGlyValThrSerPheAsnSerSerSerSerSerSerSerSerSerSerSerSerSerSer </td <td></td>	
MetValSerLeuGluLysAsnAspHisLeuMetLeuAlaArgGlnLeu1'' </td <td></td>	
Met Val Ser Leu Glu Lys Asn Asp His Leu Met Leu Ala Arg Gln Leu 15 Pro Leu Lys Ser Val Ala Leu Ile Leu Ala Gly Gly Arg Gly Thr Arg 25 Leu Lys Asp Leu Thr Asn Lys Arg Ala Lys Pro Ala Val His Phe Gly 45 Gly Lys Phe Arg Ile Ile Asp Phe Ala Leu Ser Asn Cys Ile Asn Ser 60 Gly Ile Arg Arg Met Gly Val Ile Thr Gln Tyr Gln Ser His Thr Leu 80 Val Gln His Ile Gln Arg Gly Trp Ser Phe Phe Asn Glu Glu Met Asn 95 Glu Phe Val Asp Leu Leu Pro Ala Gln Gln Arg Met Lys Gly Glu Asn 110 Trp Tyr Arg Gly Thr Ala Asp Ala Val Thr Gln Asn Leu Asp Ile Ile 125 Arg Arg Tyr Lys Ala Glu Tyr Val Val Ile Leu Ala Gly Asp His Ile	
Met Val Ser Leu Glu Lys Asn Asp His Leu Met Leu Ala Arg Gln Leu 15 Pro Leu Lys Ser Val Ala Leu IIe Leu Ala Gly Gly Arg Gly Thr Arg 20 Leu Lys Asp Leu Thr Asn Lys Arg Ala Lys Pro Ala Val His Phe Gly 40 Gly Lys Phe Arg IIe IIe Asp Phe Ala Leu Ser Asn Cys IIe Asn Ser 60 Gly IIe Arg Arg Met Gly Val IIe Thr Gln Tyr Gln Ser His Thr Leu 80 Val Gln His IIe Gln Arg Gly Trp Ser Phe Phe Asn Glu Glu Met Asn 95 Glu Phe Val Asp Leu Leu Pro Ala Gln Gln Arg Met Lys Gly Glu Asn 110 Trp Tyr Arg Gly Thr Ala Asp Ala Val Thr Gln Asn Leu Asp His IIe 110 Arg Arg Tyr Lys Ala Glu Tyr Ser Arg Met Leu IIe Asp His Val Glu Lys Gly	

25

-continued

	180	185	190	
Val Glu Lys 195		Pro Pro Ser Met P 200	ro Asn Asp Pro Se 205	er Lys
Ser Leu Ala 210	-	Ile Tyr Val Phe A 215	sp Ala Asp Tyr Le 220	eu Tyr
Glu Leu Leu 225	Glu Glu Asp 230	Asp Arg Asp Glu A 2	sn Ser Ser His As 35	p Phe 240
Gly Lys Asp	Leu Ile Pro 245	Lys Ile Thr Glu A 250	la Gly Leu Ala Ty 25	
His Pro Phe	Pro Leu Ser 260	Cys Val Gln Ser A 265	sp Pro Asp Ala G 270	Lu Pro
Tyr Trp Arg 275		Thr Leu Glu Ala T 280	'yr Trp Lys Ala As 285	an Leu
	Ser Val Val	Pro Glu Leu Asp M 295		an Trp
		Glu Ser Leu Pro P		al Gln 320
	Gly Ser His	Gly Met Thr Leu A	sn Ser Leu Val Se	er Asp
Gly Cys Val	-	330 Ser Val Val Val G		
Arg Val Arg	340 Val Asn Ser	345 Phe Cys Asn Ile A	350 sp Ser Ala Val Le	eu Leu
355		360	365	
Pro Glu Val 370		Arg Ser Cys Arg L 375	eu Arg Arg Cys Va 380	al Ile
Asp Arg Ala 385	Cys Val Ile 390	Pro Glu Gly Met V 3	al Ile Gly Glu As 95	an Ala 400
Glu Glu Asp	Ala Arg Arg 405	Phe Tyr Arg Ser G 410	u Glu Gly Ile Va 41	
Val Thr Arg	Glu Met Leu 420	Arg Lys Leu Gly H 425	lis Lys Gln Glu A 430	.a
<400> SEQUE	H: 1437 DNA ISM: Synechoc NCE: 5	occus PCC7002		
		ccgagget geteecat aagtttta cggeagtt		
		acgacaaa ctcgacat		
		ttgccgtt tatgaaac		
cccctttatc	tgtttggcca to	ccgccttt gatggacg	gc atatttatgg tgg	ggcaggat 300
gaattttggc	gctttacctt tt	ttgccaat ggggccgc	tg aatttatgtg gaa	accactgg 360
aaaccccaga	tegeceactg to	acgactgg cacacggg	ca tgattccggt ato	ggatgcac 420
caatcgccgg	atatcagtac gg	tgtttacg atccacaa	ct tageetacea ago	ggcettgg 480
cggggtttcc	tggagcgcaa ta	cttggtgt ccctggta	ta tggatggtga taa	acgtgatg 540
		atcaggtg aacaccgt		
		aaaaatta gagggttt		
	taatapptaa to	ttagaata agaattta	to otgettetoo gar	tannaa 700

agtcgcggca tcgtgaatgg tattgacgta gaactttata atccttctaa cgatcaagcc

27

continued

								-	con	tin	ued					
ctggtgaag	gc aatti	ttctac	gacta	aatct	t gaq	ggato	caaa	ccgo	ccaa	caa a	agtga	attatc	780			
caagaagaa	a cgggg	gctaga	a ggtca	aactc	c aaq	ggctt	ttt	tgat	ggc	gat 🤉	ggtca	acccgc	840			
ttagtggaa	ic aaaaq	gggcat	tgat	ctgct	g cta	aaata	atcc	tgga	agca	gtt 1	tatgo	gcatac	900			
actgacgcc	c ageto	cattat	cctc	ggcac	t ggo	cgato	cgcc	acta	acgaa	aac (ccaa	ctctgg	960			
cagactgcc	t accgo	ctttaa	a gggg	ggat	g tco	cgtgo	caac	tgct	cta	taa 1	tgato	gecete	1020			
tcccgccgg	ja tttad	cgctgg	g atcc	gatgt	c tti	ttga	atgc	cgto	cacgo	ett 1	tgago	cctgt	1080			
ggcattagt	c aaato	gatggo	gatgo	cgcta	c ggt	tcto	gtac	cgat	tgt	gcg (gegea	accggg	1140			
ggtttggtg	g ataco	ggtctc	tttc	catga	t ccę	gatto	cacc	aaa	ccgg	gac a	agget	ttagt	1200			
tttgaccgc	-	-		-		-						-	1260			
cgctacaaa													1320			
tacaaatct				-	-	-		-		-	-		1380			
ttaacgacc	g atgaa	agccga	a aaaaa	atcac	c tai	ttaq	gtga	aaaa	aaca	cgc (catt	aa	1437			
<210> SEQ <211> LEN <212> TYP <213> ORG	IGTH: 4' PE: PRT GANISM:	78 Synec	chococo	cus P	CC700	02										
<400> SEQ	-							_			_					
Met Arg I 1	le Leu	pne v 5	/al Se:	r Ala	GIU	AIA 10	AIa	Pro	IIe	Ala	Lуз 15	Ala				
Gly Gly M	let Gly 20	Asp V	/al Va	l Gly	Ser 25	Leu	Pro	Lys	Val	Leu 30	Arg	Gln				
Leu Gly H 3	lis Asp 5	Ala A	Arg Ile	e Phe 40	Leu	Pro	Tyr	Tyr	Gly 45	Phe	Leu	Asn				
Asp Lys L 50	eu Asp	Ile P	ro Ala 55	a Glu	Pro	Val	Trp	Trp 60	Gly	Ser	Ala	Met				
Phe Asn T 65	hr Phe		/al Ty: 70	r Glu	Thr	Val	Leu 75	Pro	Asn	Thr	Asp	Val 80				
Pro Leu T	Yr Leu	Phe G 85	3ly Hi∶	s Pro	Ala	Phe 90	Asp	Gly	Arg	His	Ile 95	Tyr				
Gly Gly G	ln Asp 100	Glu F	Phe Trj	p Arg	Phe 105	Thr	Phe	Phe	Ala	Asn 110	Gly	Ala				
Ala Glu P 1	he Met 15	Trp A	Asn Hi:	5 Trp 120	Lys	Pro	Gln	Ile	Ala 125	His	Суз	His				
Asp Trp H 130	lis Thr	Gly M	let Ile 13		Val	Trp	Met	His 140	Gln	Ser	Pro	Asp				
Ile Ser T 145	hr Val		Chr Ile 150	e His	Asn	Leu	Ala 155	Tyr	Gln	Gly	Pro	Trp 160				
Arg Gly P	he Leu	Glu A 165	Arg Ası	n Thr	Trp	Cys 170	Pro	Trp	Tyr	Met	Asp 175	Gly				
Asp Asn V	Val Met 180	Ala S	Ser Ala	a Leu	Met 185	Phe	Ala	Asp	Gln	Val 190	Asn	Thr				
Val Ser P 1	ro Thr .95	Tyr A	Ala Gli	n Gln 200	Ile	Gln	Thr	Lys	Val 205	Tyr	Gly	Glu				
Lys Leu G 210	Slu Gly	Leu L	leu Se: 21!	_	Ile	Ser	Gly	Lys 220	Ser	Arg	Gly	Ile				
Val Asn G 225	ly Ile		/al Gl≀ 230	ı Leu	Tyr	Asn	Pro 235	Ser	Asn	Asp	Gln	Ala 240				
Leu Val L	ys Gln	Phe S 245	Ser Th	r Thr	Asn	Leu 250	Glu	Asp	Arg	Ala	Ala 255	Asn				

-continued

Lys Val Ile Ile Gln Glu Glu Thr Gly Leu Glu Val Asr 260 265	n Ser Lys Ala 270
Phe Leu Met Ala Met Val Thr Arg Leu Val Glu Gln Lys 275 280 289	
Leu Leu Asn Ile Leu Glu Gln Phe Met Ala Tyr Thr 290 295 300	r Asp Ala Gln
Leu Ile Ile Leu Gly Thr Gly Asp Arg His Tyr Glu Thr 305 310 315	r Gln Leu Trp 320
Gln Thr Ala Tyr Arg Phe Lys Gly Arg Met Ser Val Glr 325 330	n Leu Leu Tyr 335
Asn Asp Ala Leu Ser Arg Arg Ile Tyr Ala Gly Ser Asp 340 345	o Val Phe Leu 350
Met Pro Ser Arg Phe Glu Pro Cys Gly Ile Ser Gln Met 355 360 369	
Arg Tyr Gly Ser Val Pro Ile Val Arg Arg Thr Gly Gly 370 375 380	y Leu Val Asp
Thr Val Ser Phe His Asp Pro Ile His Gln Thr Gly Thr 385 390 395	r Gly Phe Ser 400
Phe Asp Arg Tyr Glu Pro Leu Asp Met Tyr Thr Cys Met 405 410	: Val Arg Ala 415
Trp Glu Ser Phe Arg Tyr Lys Lys Asp Trp Ala Glu Leu 420 425	ı Gln Arg Arg 430
Gly Met Ser His Asp Phe Ser Trp Tyr Lys Ser Ala Gly 435 440 445	
Lys Met Tyr Arg Gln Ser Ile Lys Glu Ala Pro Glu Leu 450 455 460	ı Thr Thr Asp
Glu Ala Glu Lys Ile Thr Tyr Leu Val Lys Lys His Ala 465 470 475	a Ile
<210> SEQ ID NO 7 <211> LENGTH: 1473 <212> TYPE: DNA	
<213> ORGANISM: Synechococcus PCC7002 <400> SEQUENCE: 7	
atgtacatcg tccagattgc ttcggaatgc gcccccgtcg cgaaggt	agg tggacttgga 60
gatgtggttt acggactcag tcgcgagctt agtctgcgcg gtcattg	gtgt cgaaatcatt 120
ttgcccaaat atgattgtct ccgttatgac cacatttggg ggatgca	acga agcctatcgg 180
gatetttggg taccetggtt tggeggtgeg atceaetgea eegtttt	ccta tggctgggtc 240
catggccaac aatgtttett tategaaeee caeteeggtg ataaett	ttt cagtcggggc 300
tttttttatg gagcettaga egaceacatg egetttgeet tetttag	gcaa ggcggccctc 360
gaatttttac aaaaatccaa caaacgcccc gatattatcc actgcca	atga ctggcaaacc 420
ggtctcgttc cggtgatgct ctttgaaatg tacaagtggc atggcct	tgtg gaatcagcgg 480
gtgtgctaca ccatccacaa ctttaaacat cagggtatcg cgggcgo	ctga cgtactgtgg 540
gcgacgggtc tcaataacga gggctactat ttccactacg atcgcct	cccg ggataacttt 600
aatccctttg ccttaaattg catgaaaggg ggcattgtct atgccaa	atgc ggtgacgacc 660
gtttctcccc accacgcctg ggaagcccac tacaccgata ttggttg	gtgg cctaagccat 720
accctccatc tccaccaaga caagttcaag ggaattctca acggcat	ccga ctacagcact 780
tggaacccag aagtagacca caatatcgag ctgcaataca gttggga	atag cctcgaaaat 840

31

aaggegaaaa acaaaaaage ectaegegat egeetattae ttgaagacaa tgaeegaeeg

-continued

	-						-	-			-	-			-	
at	catcgo	cct a	acati	tggc	cg to	ctcga	atga	c caa	aaaa	ggcg	ttca	atct	cgt t	tcac	catgcc	960
at	gtacta	acg (cctt	gaat	cd da	ggago	cccaa	a tti	gtc	ctcc	ttg	gttc	cgc (cacc	gaaggc	1020
tc	gatcaa	act (cttg	gttci	tg go	catga	aaaaa	a tto	ccac	ctca	acga	acaa	ccc (caact	tgtcac	1080
at	cgaget	tgg 🤅	gctt	caac	ge cé	gaact	gtco	c ca	catg	atct	atg	ccgg	ggc t	tgata	atgctt	1140
gt	gtcco	cca 🤅	gtaa	ctac	ga a	ccct	geggo	c cto	gacc	caac	tca	tege	cct o	gaagi	tatggt	1200
gt	ggtgco	cca t	ttgt	ccgt	gg tạ	gtcg	gtggo	c cto	cgtga	agta	ccgi	tgtti	tga (ccgg	gatcat	1260
ga	tgataa	aac a	atcc	cccc	ga aq	gaaco	gaaat	ggt	tat	gtct	ttta	accaa	aac ç	ggata	aaccac	1320
gc	cctcga	aat (ccgc	catg	ga a	cgggo	ccatt	ggt	tta	taca	ccgi	tgta	ccc a	agago	gagttc	1380
cg	gaagct	tgc a	aaat	ccag	aa a	atgaa	aatat	: ga	ctaci	tctt	ggca	ataa	ccc (cggca	aatgaa	1440
ta	tattga	atc 1	tcta	tgagi	tt ta	atccç	gegeo	c taa	a							1473
<2 <2 <2	10> SH 11> LH 12> TY 13> OH	ENGTI YPE : RGANI	H: 4 PRT ISM:	90 Syne	echo	cocci	ıs P(CC700	02							
< 4	00> SH	EQUEI	NCE :	8												
Me [.] 1	t Tyr	Ile	Val	Gln 5	Ile	Ala	Ser	Glu	Cys 10	Ala	Pro	Val	Ala	Lys 15	Val	
Gl	y Gly	Leu	Gly 20	Asp	Val	Val	Tyr	Gly 25	Leu	Ser	Arg	Glu	Leu 30	Ser	Leu	
Ar	g Gly	His 35	Сув	Val	Glu	Ile	Ile 40	Leu	Pro	Lys	Tyr	Asp 45	Суз	Leu	Arg	
Ту	r Asp 50	His	Ile	Trp	Gly	Met 55	His	Glu	Ala	Tyr	Arg 60	Asp	Leu	Trp	Val	
Pro 65	o Trp	Phe	Gly	Gly	Ala 70	Ile	His	Суз	Thr	Val 75	Phe	Tyr	Gly	Trp	Val 80	
Hi	s Gly	Gln	Gln	Суз 85	Phe	Phe	Ile	Glu	Pro 90	His	Ser	Gly	Asp	Asn 95	Phe	
Ph	e Ser	Arg	Gly 100	Phe	Phe	Tyr	Gly	Ala 105	Leu	Asp	Asp	His	Met 110	Arg	Phe	
Al	a Phe	Phe 115	Ser	ГЛа	Ala	Ala	Leu 120	Glu	Phe	Leu	Gln	Lys 125	Ser	Asn	Lys	
Ar	g Pro 130	Asp	Ile	Ile	His	Cys 135	His	Asp	Trp	Gln	Thr 140	Gly	Leu	Val	Pro	
Va 14	l Met 5	Leu	Phe	Glu	Met 150	Tyr	Lys	Trp	His	Gly 155	Leu	Trp	Asn	Gln	Arg 160	
Va	l Cys	Tyr	Thr	Ile 165	His	Asn	Phe	Lys	His 170	Gln	Gly	Ile	Ala	Gly 175	Ala	
Asj	p Val	Leu	Trp 180	Ala	Thr	Gly	Leu	Asn 185	Asn	Glu	Gly	Tyr	Tyr 190	Phe	His	
Ту	r Asp	Arg 195	Leu	Arg	Asp	Asn	Phe 200	Asn	Pro	Phe	Ala	Leu 205	Asn	Сүз	Met	
Lу	s Gly 210	Gly	Ile	Val	Tyr	Ala 215	Asn	Ala	Val	Thr	Thr 220	Val	Ser	Pro	His	
Hi: 22	s Ala 5	Trp	Glu	Ala	His 230	Tyr	Thr	Asp	Ile	Gly 235	Суз	Gly	Leu	Ser	His 240	
Th	r Leu	His	Leu	His 245	Gln	Aap	Lys	Phe	Lys 250	Gly	Ile	Leu	Asn	Gly 255	Ile	
Ag	o Tvr	Ser	Thr	Trp	Asn	Pro	Glu	Va]	Asp	His	Asn	Ile	Glu	Leu	Gln	

Asp Tyr Ser Thr Trp Asn Pro Glu Val Asp His Asn Ile Glu Leu Gln

33

-continued

	260			265					270				
Tyr Ser Trp 275	-	r Leu G	lu Asn 280	Lys	Ala	Lys	Asn	Lys 285	Lys	Ala	Leu		
Arg Asp Arg 290	Leu Le		lu Asp 95	Asn	Asp	Arg	Pro 300	Ile	Ile	Ala	Tyr		
Ile Gly Arg 305	Leu As	p Asp G 310	ln Lys	Gly	Val	His 315	Leu	Val	His	His	Ala 320		
Met Tyr Tyr	Ala Le 32		rg Gly	Ala	Gln 330	Phe	Val	Leu	Leu	Gly 335	Ser		
Ala Thr Glu	Gly Se 340	r Ile A:	sn Ser	Trp 345	Phe	Trp	His	Glu	Lys 350	Phe	His		
Leu Asn Asp 355	Asn Pr	o Asn C	ys His 360		Glu	Leu	Gly	Phe 365		Ala	Glu		
Leu Ser His			la Gly	Ala	Asp	Met			Val	Pro	Ser		
370 Asn Tyr Glu	Pro Cy	s Gly Le	75 eu Thr	Gln	Leu		380 Ala	Leu	Lys	Tyr	-		
385 Val Val Pro	Ile Va	390 1 Arg Gi	ly Val	Gly	Gly	395 Leu	Val	Ser	Thr	Val	400 Phe		
Asp Arg Asp	40 His As		ys His	Pro	410 Pro	Glu	Glu	Arq	Asn	415 Gly	Tyr		
Val Phe Tyr	420			425				-	430	-	-		
435		-	440					445			-		
Ala Ile Gly 450	_	4	55				460	-	-				
Ile Gln Gly 465	Met Ly	s Tyr A: 470	sp Tyr	Ser	Trp	His 475	Asn	Pro	Gly	Asn	Glu 480		
Tyr Ile Asp	Leu Ty 48		ne Ile	Arg	Ala 490								
<210> SEQ I <211> LENGT <212> TYPE: <213> ORGAN <400> SEQUE	H: 2334 DNA ISM: Sy	nechoco	ccus P	CC700	02								
atgeetaete	tcctcac	tcc aga	ccagat	c aa	ccaaa	attg	ttt	ctaad	cca d	ccato	gacaac	60	
ccccatgctg attcgcgctt		-				-		-	-			120 180	
gaacacccga												240	
acaacaccga	-					-		-		-		300	
ccctatgcct	ttgccga	agc ccc	ccacat	t ago	cgato	ctcg	atc	tccad	cct (ettte	gccgaa	360	
gggaatcacc	accgcat	cta caa	caaact	a aa	ggcad	cacc	tcg	tcgaa	agt d	gato	ggcatc	420	
aaaggcgttt	actttgc	cgt ttg	ggegee	c aat	zgeed	cgca	acg	tctco	cat d	cctgg	ggcgac	480	
tttaacaact	gggatgg	tcg caa	acacca	a ato	gegeo	gtt	taaa	acgti	agg t	tatct	gggga	540	
attttcattc	ctgacct	cgg ccc	caacac	c aaa	ataca	aaat	acga	aaato	caa a	aaaco	caacac	600	
ggccacatct	acgaaaa	atc aga	ccccta	c ggo	ettto	ctcc	ggg:	aagto	geg (cacaé	gacact	660	
gcctccatcg	ttgctga	cct cga	ccagta	c caa	atggo	cagg	atca	acgat	tg g	gctaç	gaacaa	720	
cgtgccaaac												780	
tggctccatg	gttccgc	cac cga	aaaaat	g caa	actco	ttt	ccg	gtgaa	agt d	gato	eccatt	840	

-continued

cccgtgggcg atcaaaaacc cggtgcccgc ttcctgagct attacgaact ggttgataag	900
ctcatcccct acgttaagga catgggctac acccacatcg agctactgcc tgtcgctgaa	960
catecetttg acggtteetg gggetaceaa gtgaeegget actatteece caetteeege	1020
tttggcaatc ccgaagacct gatgtatttc atcgatcaat gccacgccaa tggtatcggg	1080
gtgatcgttg actgggttcc tggccatttc cctaaggatg cccatggtct cgcttacttc	1140
gatggcaccc atctctatga acacgccgat ccccgcaaag gtgagcacaa aggctggggc	1200
accetgatet ttaactacaa tegeaatgag gttegeaaet teeteattge caatgeeeta	1260
ttctggtttg ataaatatca catcgatggc attcgggtcg atgcagtggc atcaatgctc	1320
tacctcgact acgaccggga agatggcgag tggcttccca atgactacgg cggcaacgaa	1380
cacetegaag eegtagaatt teteegeeaa aceaacaate teatetteaa gtaetateea	1440
gggattatct ccgttgccga agagtccacg gcttggccca tggtttctcg tcccacttac	1500
ctcggtggcc tcggcttcaa cctcaagtgg aatatgggct ggatgcacga caatctcaaa	1560
tacttcagca tggatccctg gttccggcag caccaccaaa acagcattac cttcagtatg	1620
tggtatcatc acagcgagaa ctacatgttg gccctttccc acgatgaagt cgtccatggt	1680
aagagctcga ttattggcaa aatgccgggg gatgaatggc agaaatttgc caatgtgcgg	1740
gctttattcg cctatatgtt tacccatcct ggtaaaaaga ccatgtttat gagcatggaa	1800
tttggccaat ggaatgagtg gaatgtttgg agtgacttga gttgggattt actgcaacat	1860
gaaccccacg ccaaactcaa aggtttcttc ggggcattaa atagtctcta taaacaggaa	1920
ccggcccttt acgaacggga ttttgaagag gaaggattcc aatggattga ctgttctgac	1980
aatcaaaata gtgttctttc ctttattcga cgggcaaaag atcccaatga ttttttagtt	2040
gtggtctgca attttacgcc gcaaccccat agccattatc gaattggcat tccagaagag	2100
ggctactatc aagaaatttt gaatagtgat gccgaaacct ttgggggggag taatctactc	2160
aactteggeg gegtttggae tgaagattgg egetteeata atetteeeta tteeattgat	2220
ctgtgtttgc cgcccctcgg cgtggttgtc ctaaaaattg atcgagaaaa aacagccgca	2280
atgettgete aaaaacagge egataaagee aaggetetat eeggegaaat ataa	2334
<210> SEQ ID NO 10 <211> LENGTH: 777 <212> TYPE: PRT <213> ORGANISM: Synechococcus PCC7002	
<400> SEQUENCE: 10	
Met Pro Thr Leu Leu Thr Pro Asp Gln Ile Asn Gln Ile Val Ser Asn 1 5 10 15	
His His Asp Asn Pro His Ala Val Leu Gly Cys His Pro Thr Asn Asp 20 25 30	
Asp Pro Asn Pro Lys Thr Trp Ser Ile Arg Ala Tyr Leu Pro Ser Ala 35 40 45	
Ser Gln Ala Trp Val Ile Asp Thr Pro Ser Gln Thr Glu His Pro Met 50 55 60	
Thr Thr Val His His Pro His Phe Phe Glu Cys Thr Leu Gln Ser Glu65707580	
Thr Thr Pro Lys Tyr Gln Leu Lys Leu Gln Glu Gly Asp Arg Gln His 85 90 95	
Ile Ile Asn Asp Pro Tyr Ala Phe Ala Glu Ala Pro His Ile Ser Asp 100 105 110	

-continued

_															
Leu	Asp	Leu 115	His	Leu	Phe	Ala	Glu 120	Gly	Asn	His	His	Arg 125	Ile	Tyr	Asn
Lys	Leu 130	Gly	Ala	His	Leu	Val 135	Glu	Val	Asp	Gly	Ile 140	ГЛа	Gly	Val	Tyr
Phe 145	Ala	Val	Trp	Ala	Pro 150	Asn	Ala	Arg	Asn	Val 155	Ser	Ile	Leu	Gly	Asp 160
Phe	Asn	Asn	Trp	Asp 165	Gly	Arg	Lys	His	Gln 170	Met	Arg	Arg	Leu	Asn 175	Val
Gly	Ile	Trp	Gly 180	Ile	Phe	Ile	Pro	Asp 185	Leu	Gly	Pro	Asn	Thr 190	Lys	Tyr
Lys	Tyr	Glu 195	Ile	Гла	Asn	Gln	His 200	Gly	His	Ile	Tyr	Glu 205	Lys	Ser	Asp
Pro	Tyr 210	Gly	Phe	Leu	Arg	Glu 215	Val	Arg	Pro	Asp	Thr 220	Ala	Ser	Ile	Val
Ala 225	Asp	Leu	Asp	Gln	Tyr 230	Gln	Trp	Gln	Asp	His 235	Asp	Trp	Leu	Glu	Gln 240
Arg	Ala	Гла	Gln	Asp 245	Pro	Leu	Lys	Asn	Pro 250	Val	Ser	Ile	Tyr	Glu 255	Leu
His	Leu	Gly	Ser 260	Trp	Leu	His	Gly	Ser 265	Ala	Thr	Glu	ГЛа	Met 270	Gln	Leu
Leu	Ser	Gly 275	Glu	Val	Asp	Pro	Ile 280	Pro	Val	Gly	Asp	Gln 285	Lys	Pro	Gly
Ala	Arg 290	Phe	Leu	Ser	Tyr	Tyr 295	Glu	Leu	Val	Asp	ГЛа 300	Leu	Ile	Pro	Tyr
Val 305	Lys	Asp	Met	Gly	Tyr 310	Thr	His	Ile	Glu	Leu 315	Leu	Pro	Val	Ala	Glu 320
His	Pro	Phe	Asp	Gly 325	Ser	Trp	Gly	Tyr	Gln 330	Val	Thr	Gly	Tyr	Tyr 335	Ser
Pro	Thr	Ser	Arg 340	Phe	Gly	Asn	Pro	Glu 345	Asp	Leu	Met	Tyr	Phe 350	Ile	Asp
	-	355			-		360				_	365		Pro	-
	370		-	-		375	-			-	380	-	-	Thr	
385	-				390		-	-	-	395		-	-	Trp	400
				405					410					Leu 415	
			420					425					430	Ile	
		435					440					445		Glu	
Gly	Glu 450	Trp	Leu	Pro	Asn	Asp 455	Tyr	Gly	Gly	Asn	Glu 460	His	Leu	Glu	Ala
Val 465	Glu	Phe	Leu	Arg	Gln 470	Thr	Asn	Asn	Leu	Ile 475	Phe	ГЛа	Tyr	Tyr	Pro 480
Gly	Ile	Ile	Ser	Val 485	Ala	Glu	Glu	Ser	Thr 490	Ala	Trp	Pro	Met	Val 495	Ser
Arg	Pro	Thr	Tyr 500	Leu	Gly	Gly	Leu	Gly 505	Phe	Asn	Leu	ГЛа	Trp 510	Asn	Met
Gly	Trp	Met 515	His	Asp	Asn	Leu	Lys 520	Tyr	Phe	Ser	Met	Asp 525	Pro	Trp	Phe

39

-continued

Arg Gln His His Gln Asn Ser Ile Thr Phe Ser Met Trp Tyr His His 530 535 540	
Ser Glu Asn Tyr Met Leu Ala Leu Ser His Asp Glu Val Val His Gly 545 550 555 560	
Lys Ser Ser Ile Ile Gly Lys Met Pro Gly Asp Glu Trp Gln Lys Phe 565 570 575	
Ala Asn Val Arg Ala Leu Phe Ala Tyr Met Phe Thr His Pro Gly Lys 580 585 590	
Lys Thr Met Phe Met Ser Met Glu Phe Gly Gln Trp Asn Glu Trp Asn 595 600 605	
Val Trp Ser Asp Leu Ser Trp Asp Leu Leu Gln His Glu Pro His Ala 610 615 620	
Lys Leu Lys Gly Phe Phe Gly Ala Leu Asn Ser Leu Tyr Lys Gln Glu 625 630 635 640	
Pro Ala Leu Tyr Glu Arg Asp Phe Glu Glu Glu Gly Phe Gln Trp Ile 645 650 655	
Asp Cys Ser Asp Asn Gln Asn Ser Val Leu Ser Phe Ile Arg Arg Ala 660 665 670	
Lys Asp Pro Asn Asp Phe Leu Val Val Val Cys Asn Phe Thr Pro Gln 675 680 685	
Pro His Ser His Tyr Arg Ile Gly Ile Pro Glu Glu Gly Tyr Tyr Gln 690 695 700	
Glu Ile Leu Asn Ser Asp Ala Glu Thr Phe Gly Gly Ser Asn Leu Leu 705 710 715 720	
Asn Phe Gly Gly Val Trp Thr Glu Asp Trp Arg Phe His Asn Leu Pro 725 730 735	
Tyr Ser Ile Asp Leu Cys Leu Pro Pro Leu Gly Val Val Val Leu Lys 740 745 750	
Ile Asp Arg Glu Lys Thr Ala Ala Met Leu Ala Gln Lys Gln Ala Asp 755 760 765	
Lys Ala Lys Ala Leu Ser Gly Glu Ile 770 775	
<210> SEQ ID NO 11 <211> LENGTH: 1080 <212> TYPE: DNA <213> ORGANISM: Synechocystis PCC6803 <400> SEQUENCE: 11	
atggetettg taccaatgag actgetgtta gaccatgegg eggaaaatgg ttatggeatt	60
cccgctttca acgtcaacaa catggagcag atcatttcga tcatgcaggc cgctgatgaa 🛛 1	20
accgacagcc ctgtaatttt gcaagcttcc cgtggtgccc ggagctacgc tggggaaaat 1	80
tteetgegee atttagtttt gggggeggte gaaacetate etcacattee cattgeeatg 2	40
caccaagacc acggcaatag coccgccact tgctattccg ccatccgcaa cggtttcacc 3	00
agtgtgatga tggacggttc cttggaagct gacgccaaga cccccgctag ctttgagtac 3	60
aacgttaatg taaccgctga agtagttaaa gtagcccact ccgttggggc cagtgtagaa 4	20
ggggaattgg gttgcttagg ttccttggaa actggtcaag gggaagctga agacggccac 4	80
ggttttgaag ggaagttaga ccactcccaa ctgttgaccg atcccgaaga agcagtggaa 5	40
ttegteaaca aaaceeaggt ggatgeeete getgtggega teggtaeeag eeatggtgee 6	00

tacaaattta cccgcaaacc caccggtgaa gttttggcca tcagccgcat tgaagaaatt

cacegeetge tgeecaacae ceaettggta atgeaeggtt etteeteegt teeceaggaa

660

720

41

-continued

tgga	atcga	aca 1	tgat	caac	ga at	ttcg	gtggi	t get	catco	cccg	aaa	ccta	tgg '	tgtg	cccgtg	780
gaa	gaaat	tc a	aaaa	agge	at ca	aagaq	gtggi	t gta	acgta	aaag	taa	acat	cga -	cacc	gataat	840
cgc	tag	cca t	tcac	cgcc	gc ti	ttccç	gggaa	a gco	gct	gcta	aaga	atcc	caa 🤉	gaact	tttgat	900
ccc	cgtca	act 1	tcct	caag	cc ti	tcta	tcaaa	a tai	tatga	aagc	aggi	tttg	tgc	cgato	cgctat	960
caa	cagti	cct o	ggaci	tgct	gg ca	aatgo	cctci	t aaa	aatca	aagc	aati	tgac	ctt 🤉	ggato	gactac	1020
gcc	gctaa	aat a	atge	caaa	gg tạ	gaati	taaco	c gco	cacct	cccc	gca	cctc	cgt ·	tgct	gtgtag	1080
<21 <21	L> L1 2> T1	EQ II ENGTI YPE : RGANI	H: 3 PRT	59	echo	cyst:	is P(CC680	03							
<40)> SI	EQUEI	NCE :	12												
Met 1	Ala	Leu	Val	Pro 5	Met	Arg	Leu	Leu	Leu 10	Asp	His	Ala	Ala	Glu 15	Asn	
Gly	Tyr	Gly	Ile 20	Pro	Ala	Phe	Asn	Val 25	Asn	Asn	Met	Glu	Gln 30	Ile	Ile	
Ser	Ile	Met 35	Gln	Ala	Ala	Aab	Glu 40	Thr	Asp	Ser	Pro	Val 45	Ile	Leu	Gln	
Ala	Ser 50	Arg	Gly	Ala	Arg	Ser 55	Tyr	Ala	Gly	Glu	Asn 60	Phe	Leu	Arg	His	
Leu 65	Val	Leu	Gly	Ala	Val 70	Glu	Thr	Tyr	Pro	His 75	Ile	Pro	Ile	Ala	Met 80	
His	Gln	Asp	His	Gly 85	Asn	Ser	Pro	Ala	Thr 90	Суз	Tyr	Ser	Ala	Ile 95	Arg	
Asn	Gly	Phe	Thr 100	Ser	Val	Met	Met	Asp 105	Gly	Ser	Leu	Glu	Ala 110	Asp	Ala	
Lys	Thr	Pro 115	Ala	Ser	Phe	Glu	Tyr 120	Asn	Val	Asn	Val	Thr 125	Ala	Glu	Val	
Val	Lys 130	Val	Ala	His	Ser	Val 135	Gly	Ala	Ser	Val	Glu 140	Gly	Glu	Leu	Gly	
Cys 145	Leu	Gly	Ser	Leu	Glu 150	Thr	Gly	Gln	Gly	Glu 155	Ala	Glu	Asp	Gly	His 160	
Gly	Phe	Glu	Gly	Lys 165	Leu	Aab	His	Ser	Gln 170	Leu	Leu	Thr	Asp	Pro 175	Glu	
Glu	Ala	Val	Glu 180	Phe	Val	Asn	Lys	Thr 185	Gln	Val	Asp	Ala	Leu 190	Ala	Val	
Ala	Ile	Gly 195	Thr	Ser	His	Gly	Ala 200	Tyr	Гла	Phe	Thr	Arg 205	ГЛа	Pro	Thr	
Gly	Glu 210	Val	Leu	Ala	Ile	Ser 215	Arg	Ile	Glu	Glu	Ile 220	His	Arg	Leu	Leu	
Pro 225	Asn	Thr	His	Leu	Val 230	Met	His	Gly	Ser	Ser 235	Ser	Val	Pro	Gln	Glu 240	
Trp	Ile	Asp	Met	Ile 245	Asn	Glu	Phe	Gly	Gly 250	Ala	Ile	Pro	Glu	Thr 255	Tyr	
Gly	Val	Pro	Val 260	Glu	Glu	Ile	Gln	Lys 265	Gly	Ile	ГЛЗ	Ser	Gly 270	Val	Arg	
Lys	Val	Asn 275	Ile	Asp	Thr	Asp	Asn 280	Arg	Leu	Ala	Ile	Thr 285	Ala	Ala	Phe	
Arg	Glu 290	Ala	Ala	Ala	ГЛа	Asp 295	Pro	Lys	Asn	Phe	Asp 300	Pro	Arg	His	Phe	
Leu	Lys	Pro	Ser	Ile	Lys	Tyr	Met	Lys	Gln	Val	Сүз	Ala	Asp	Arg	Tyr	

43

continued

205 310 315 320 Cln Gln Phe Trp Thr Ala Gly Asn Ala Ser Lys Ile Lys Gln Leu Thr 325 330 335 Leu Asp Asp Tyr Ala Ala Lys Tyr Ala Lys Gly Glu Leu Thr Ala Thr 340 345 355 Ser Arg Thr Ser Val Ala Val 355 350 350 350 <210> SEQ ID NO 13 355 350 350 <211> LENGTH: 1044 355 350 350 <212> SEQUENCE: 13 345 350 300 atcacgacacg tactoccaca actgaatagc tttggggccg atgcccaggt ttggggtcg 120 atcatgaacc gcattgccct agegggaaac ctgattgcc gtcgcctgag tcgagctgg 180 ttaatggccg atgtgttggg cttcactggg gaacacagg tccaggggga atggtcgaa 360 aggtgcgtta ctttgccaa tgatgtttt attctgtct ttaagcaagt tggccgg 480 360 aggtgggtt ccatttgcc atggagaaa atggtgga gagtctag cggcagtgg 480 ccaccatc tggttatt ccotcggccc ggagtgctat gcttatcct cggcccattc 460 aaggtgggt catttgcc catggaaaat atccgcgt tgggggagaaagacaggaa atggtggg ggagattac catcgccagt 420 ccaccatc tggttattc cotcggccc ggagtgcta gcttatcct cggaccagt 420 aaatggagt atttgc cattgcgcat gtggatgg ggagaccagga atgggaaag gtggaacagga atgggaacagga atgggaacagaa atggtggg ggagatctac catacgccagt 420 ggtcactagc caggaggag gtggaattgg gctgggg ggggatggggaatggg				-contin	ued	
325 330 335 Leu Aep Aep Tyr Ala Ala Lye Tyr Ala Lye Gly Glu Leu Thr Ala Thr 346 345 350 Ser Arg Thr Ser Val Ala Val 355 350 350 <210> SEQ TD NO 13 <211> LENGTH: 1044 4213 <211> TPE: DNA <211> TPE: DNA 211> ORGANISM: Synechocystis PCC6803 60 <400> SEQUENCE: 13 attacctaca totttactag accgggattg caccaccott 60 tcacagccacg tactocaaca actgaatagc tttggggocg atgccaggat ttggatggc 120 attaatgaccg tactocaaca actgaatagc tttggggocg atgccagga atcggtgaa 240 aaaatggacg tattgccaa tgatgtttt attctgtt taagcaaag tggcttggt 300 300 tgdgtcgtgg cttcactggg gaaaccaagt cccaggaga attagccgt 400 aaatggacg tattgccaa tgatgtttt attctgtt taagcaaag tggcttggt 400 300 tcagattat tggctaacgg agacagcaa atgcgg gaaaccacag cccaggaga cataacct 420 400 aacgtgaggt ccatttgc cattggcaa caggaaggg acgatctaga cggcagtcgg 480 400 tcacacatc tggtttatc ctcggacag agatggaca atgcgcaga atgcccagg 200 600 tcggaggaat tattgc caggaaaa atgctgcg tctaggggg agacaccagg 200 600 tcggaggaat tattgc caggagaag 240 700 gtccatcgc acgaaggta cactgccg 200 210 tcacacatc tggtttatc cttggcaa gggggaaa acccacag 200 200 tcagattat tggctaacgg gacacagaa attgctgcg 200 300 tggcacaatg aggtaactac 200 200 aacatgagggg agggaaaca 210	305	310	315	5	320	
See Arg Thr Ser Val Ala Val 355 Ser Arg Thr Ser Val Ala Val 355 $2(10) \leq SEQ$ ID NO 13 $2(10) \leq SEQ$ ID NO 13 $2(10) \leq SEQ$ ID NO choose the task of the ta	Gln Gln Phe T		-	3 Ile Lys Gln		
235 2210 > SEQ ID NO 13 2211 > DENOTH: 1041 2212 > TPE: DNA 2213 > ORGANISM: Synechocystis PCC6803 2400 > SEQUENCE: 13 ataccgaccag tattccaaca actgaatage tittggggceg atgoccagga tittgagtgce 120 atcatgacce goattgecet agegggaaa etgattgee gteggetggg tegagetggg 180 ttaatggeeg tattgeea tgaggggaaa etgattgee gteggetggg ateogggga ateggtggg 180 ttaatggeeg atggtggg etteaetggg gaaaceaacg tecaggggga ateggtggg 180 ttaatggeeg atggtggg etteaetggg gaaaceaacg tecagggga ateggtegg 180 ttaatggeeg atggtggg etteaetggg gaaaceaacg tecagggga ateggtegg 180 ttaatggeeg atggtggg etteaetggg gaaaceaacg tecagggga ateggetgg 180 ttaatggeeg atggtggg etteaetggg gaaaceaacg tecagggga ateggetgg 180 tggegetgt actttgeea tggggaaaa cocatata tteetgaaa ttgeeetg 180 tgggggt etaatttgee aetgggaa atggagaaa cocateta tteetgaaa ttgeeetg 180 teggaggt ceatttge cattegge aggagggg aegatetaga eggeaggeg 480 teagatttat tggetaacgg agacaagea atgeetget gtatateet etaeggeee 540 teaceaetee tggttrate eeteggeee gagaggeg atgettag eetegagg 60 aggeceaetge aggaggta ttagt eeteggeet gagaggee tgagggata caecegte 720 gteeaecgee aegaaggta eetegeegg tatageegg tetgggg gatattaga eggeaggg 190 aggetatga tggecaaaa atgeegeeg tatageegg tetgggg gatattace 780 eggatttg tgeeagggg agtgtttet tateetgge eggaaaaa teeegaegg 840 aaatgegt tgeeagggg agtgtttet tateetgge eggaaaaa teeegaegg 840 aaatgegt tgeeagggg agtgttet tateetgga eggaaaaa teeegaegg 840 aaatgegt tgeeagggeg agtgttag egeeagaag tgaaateg tgaaatag tgagaaca geetgagga 900 agggetagt aeggeeaaaa aegttaetg gaettaat eettegaegg 99 200 > SEQUENCE: 14 Met Tr Val Ser Glu Ile His Ile Pro Am Ser Leu Leu App Arg App 10 SEQUENCE: 14 Met Tr Val Ser Glu App Leu Ser Arg Ala Clu App Ala Clu Met Ala App 20 $\frac{10}{20}$ $\frac{10}{20}$ $\frac{10}{20}$ 20 Ala App Ala Glu App Leu Ser Arg Ala Clu App Ala Clu Met Ala App 50 $\frac{10}{20}$ $\frac{10}{20}$ $\frac{10}{20}$ $\frac{10}{20}$ $\frac{10}{20}$ 20 20 20 20 20 20 20 20 20 20					Ala Thr	
<pre>LINETH: 1044 <212> TYPE: NAA <213> ORGANISM: Synechocystis PCC6003 <400> SEQUENCE: 13 atgaccgtta gtgagattca tattcctaac tctttactag accgggattg caccaccctt 60 tcacqccacg tactccaaca actgaatage tttggggccg atgccagga tttgagtgcc 120 atcatgaace gcattgcct agcgggaaaa ctgattgcc gtcgcctgag tcgagctggg 160 ttaatggccg atgtgtggg cttcactggg gaaaccaacg tccaggggga atcggtgaaa 240 aaaatggacg tattgccaa tgatgtttt atttctgtet ttaagcaaag tggctggt 300 tgcgctgg cttcggaggg gatggaaaa cccatta ttcctgaaaa tggccagg 480 tgcggtgg cttaggagg gatggaaaaa cccatata ttcctgaaaa tggccagtg 480 tcaagattat tggctaacgg agacaagcaa atgcgtg gttatateet ctacggccc 540 tccaccatee tggtttate categgete ggaggacat ggttatateet caggeccag 600 ttgggggaat ttatttage caggaaagg atggaagce tgagggta accccata 720 gtccatcgce acgaaggta cactggccg tatagcgg gatgaagce tgaggggg ggtatateae 780 cggatttag aggtaactt tggcaatgg gatgaagce tgaggggg ggatatteae 780 cggatttga tgccaaggggg agtgtttett tatcetggta cggaaaaaa tcccaacgg 840 aaattgcgtt gctctatga aactgcccg ttatagcggt ctctaatag aggtgggg 900 agggctagtg acggcaaaa acgtttactg gacttaate ctctcaaat accaccgg 900 agggctagtg acggcaaaa acgtttactg gacttaate ctctaaat accaccgg 900 agggctagtg acggcaaaa acgtttactg gacttate ctctaaat acatcagcg 900 accccagcca ttatggcag cggaagag tgaaattg tggaatett catcaggga 900 accccagca ttatggcag cggaagag tgaaattg tggaatett catcaggga 900 accccagca tattggcag cgcagaagat gfgaaattg tggaatett catcaggga 900 accccagca ttatggcag cgcagaagat gfgaaattg tggaatett catcagcga 1020 ccacaaacaa ggcaggtaa ttag 90 cacaaacaa ggcaggtaa ttag 90 to 90 acccagca tattggcag cgcagaagat gfgaaattg tggaatett catcagcga 1020 ccacaaacaa ggcaggtaa ttag 90 to 90 agg 20 aggatgtagt a chtgcca aa acgttactg actaata ctct acac acg 90 acccagcca tattggcag cgcagaagat gfgaaattg 104 to 90 acccacaac ggcaggtaa ttag 90 acccacaaca ggcaggtaa tag 90 acccacaaca ggcaggtaa tag 90 acccacaaca ac ggcaggtaa tag 90 acccacaaca ac ggcaggtaa tag 90 acccacaacac ggcaggtaa tag 90 acccacaacac ggcaggtaa tag 90 acccacaacac ggcaggtaa tag 90 acccacaacaca ggcaggtagaa tag 90 acccacaacaca ggcaggtag</pre>		Ser Val Ala Val				
atgaccgtta gtgagattca tattcctaac tctttactag accggagattg caccaccctt 60 tcacqccacg tactcccaca actgaatage tttggggeeg atgeecagga tttgagtgee 120 ateatgace geattgeet agegggaaa etgattgee gtegeetgga ateggtgaaa 240 aaaatggeg tattgeea tgatgtttt attetgtet ttaageaaag tggetggta 240 aaaatggaeg tattgeea tgatgtttt attetgtet ttaageaaag tggetggt 300 tgtegetgg etteggagga gatggaaaa ecetata tteetgaaa ttgeeceatt 360 ggtegetata etttgetga egaceceat gatggtteet ecaaegtgga cattaacete 420 aacgtgggt ecatttte ecteggeae atggetgg gtatateet etageegg 240 teagatttat tggetaaegg agacaageaa atgetgetg gttatateet etageegg 480 teagatttat tggetaaegg agacaageaa atgetgetg gttatateet etageeeg 540 teagatttat tggetaaegg agacaageaa atgetgetg gttatateet egateeeg 540 tegggggaat ttattetge eaggaaaat ateegeate ecaaecaegg ecceattae 660 ageceeatg aaggtaaett ttggeaatgg gatgaageee tgagggata cacceggte 720 gteeategee aegaaggta cactgeeeg tatagegtg etetggtggg ggaatteae 780 eggatttga tgeeatgggg agtgtteett tateetggta eggaaaaaaa teeegaegge 840 aaaattgegt tgeetatga aactgeege etggeett tggtggaaea ggetggggga 900 agegeetatg aggeeaaaa aegttaetg gaettaate etteaaat acaecageg 960 aceccegeea ttatggeag egeagaaga gtgaaattg tggaatett eateageg 1020 cacaaacaae ggeeggtaa ttag 1044 <210 > SEQ ID NO 14 <210 > SEQ ID NO 14 <212 > TEP FPT $<213 > TEP FPT<213 > TEP FPT<214 > TEP FPT<215 TEP FPT<215 TEP FPT<216 TEP FPT<217 TE FPT<21$	<211> LENGTH: <212> TYPE: I	: 1044 DNA	is PCC6803			
tcacgacacg tactccaaca actgaatagc tttgggggcg atgccagga tttgagtgcc 120 atcatgaacc gcattgccct agcgggaaaa ctgattgcc gtcgcctgag tcgagtggg 180 ttaatggccg atgtgttggg cttcactggg gaaaccaacg tccaggggga atcggtgaaa 240 aaaatggacg tattgcca tgatgtttt attctgtc ttaagcaaag tggctggt 300 tgtcgtctgg cttcggagga gatggaaaaa cctatat ttcctgaaa ttgcccatt 360 ggtcgctata ctttgctgta cgacccatt gatggttcct ccaacgtgga cattaacctc 420 aacgtgggt ccattttgc cattcggcaa caggaaggg acgatctaga cggcagtgcg 480 tcagatttat tggctaacgg agacaagcaa atgctggt gttatacct ctacggcccc 540 tccaccatce tggttatte cctcggctce ggagtgcat gcttatcct cgatcccagt 600 ttgggggaat ttatttage ccaggaaaat atccgcate ccaaccacgg ccccattac 660 agcaccaatg aaggtaactt ttggcaatgg gatgaagcce tgagggatt cacccggt 720 gtccatcgcc acgaaggta cactgcccg tatagcggt cctggtggg ggatatcac 780 cggatttga tgccaaggg agtgttctt tacctggte cggagaaaa tccgcagcg 840 aaattgcgtt tgctctatga aactgcgcg ctggccttt tggtggaaca ggctggggg 900 agggctagtg acggccaaaa acgtttactg gacttaatc cttctaaatt acatcagcg 960 acccccqcca ttattggcaa gcgagaagt gtgaaattg tggaaacttt catcagcg 1020 cacaaaacaac ggcaggtaa ttag 1024 <210> SEQ ID NO 14 <211> tENCTH: 347 <212> tYPE PET <213> ORGANISM: Synechocystis PCC6803 <400> SEQUENCE: 14 Met Thr Val Ser Glu Ile His Ile Pro Asn Ser Leu Leu Asp Arg Asp 15 Cys Thr Thr Leu Ser Arg His Val Leu Gln Gln Leu Asn Ser Phe Gly 20 Ala Asp Ala Gln Asp Leu Ser Ala Ile Met Asn Arg Ile Ala Leu Ala 45 Gly Lys Leu Ile Ala Arg Arg Leu Ser Arg Ala Gly Leu Met Ala Asp 50 50 Val Leu Gly Phe Thr Gly Glu Thr Asn Val Gln Gly Glu Ser Val Lys 50 Fo 70 75 80	<400> SEQUENC	CE: 13				
atcatgaacc gcattgcct accgggaaaa ctgattgcc gtcgctgag tcgagtggg 180 ttaatggccg atgtgtggg cttcactggg gaaccaacg tccaggggga atcggtgaa 240 aaaatggacg tattgccaa tgatgtttt attctgtct ttaagcaaa tggctggt 300 tgtcgtctgg ctcggagga gatggaaaaa ccctactat ttcctgaaa ttgccccatt 360 ggtcgctat ctttgctgt cgacccatt gatggttcct ccaacgtgga cattaacctc 420 aacgtgggt ccattttgc cattcggcaa caggaagggg acgatctaga cggcagtgcg 480 tcagatttat tggctaacgg agaccagcaa attgctgctg gttatatcct ctacggccc 540 tccaccatcc tggttattc ccccggctcc ggagtgcata gctttatcct cgatcccagt 600 ttgggggaat ttatttagc ccaggaaaat atccgcattc ccaaccacgg cccattac 660 agcaccaatg aaggtaactt tggcaatgg gatgagaccc tgagggata caccggtac 720 gtccatcgc acgaaggta cactgcccg tatagcggt ctctggtgg ggatatcac 780 cggatttg tgccaaggg agtgttctt tatcctggta cggaaaaaa tcccgacgc 840 aaattgcgtt tgctctaga acggcgcg ctggccttt tggtggaaca ggctgggg a 900 agggctagtg acggccaaaa acgttactg gacttaattc cttcaagcg 1020 cacaaacaac ggcaggtaa ttag 1044 <210 > SEQ ID NO 14 <212 > TYPE: PRT <213 > ORGANISM: Synechocystis PCC6803 <400 > SEQUENCE: 14 Met Thr Val Ser Glu Ile His Ile Pro Asn Ser Leu Leu Asp Arg Asp 1 1 5 $Cys Thr Thr Leu Ser Arg His Val Leu Gln Gln Leu Asn Ser Phe Gly 20Ala Asp Ala Gln Asp Leu Ser Ala Ile Met Asn Arg Ile Ala Leu Ala \frac{40}{45}Gly Lys Leu Ile Ala Arg Arg Leu Ser Arg Ala Gly Leu Met Ala Asp \frac{50}{50}70$ 75 75 80	atgaccgtta gt	gagattca tatto	ctaac totttactag	g accgggattg	caccaccctt	60
ttaatggccg atgtgtggg cttcactggg gaaaccaacg tccaggggga atcggtgaaa 240 aaaatggacg tattgccaa tgatgtttt attctgtct ttaagcaaag tggctggt 300 tgtcgtctgg cttcggagga gatggaaaaa ccctactat ttcctgaaa ttgcccatt 360 ggtcgctata ctttgctgt cgacccatt gatggttcct ccaacgtgga cattaacctc 420 aacgtgggtt ccattttgc cattcggcaa caggaagggg acgatctaga cggcagtgcg 480 tcagatttat tggctaacgg agacaagcaa attgctgctg gttatatcct ctacggccc 540 tccaccatce tggtttate cctcggcae ggagtgcata gctttatcet cgatcccagt 600 ttgggggaat ttatttage ccaggaaagt aggaggec tgagggata caccggtae 720 gtccatcgce acgaaggta cactgccgt tatageggtg cttgggg ggatatcae 720 gtccatcgce acgaaggta cactgccgt tatageggtg cttggtgg ggatatcae 780 cggatttg tgccataga aactgccge tggccttt tggtggaaca ggctgggg 900 agggctagtg acggccaaaa acgttactg gactaate cttcaaaat acccgaege 840 aaattgcgtt tgctctatga aactgccge ctggccttt tggtggaaca ggctgggg 900 agggctagtg acggccaaaa acgttactg gactaatte cttcaaaat acatcageg 960 acccccgcca ttattggcag cgcagaagat gtgaaattg tggaatctt catcagega 1020 cacaaaacaac ggcaggtaa ttag 1044 <210> SEQ ID NO 14 <211> EBNOTH: 347 <212> TYPE: PRT <213> ORGANISM: Synechocystis PCC6803 <400> SEQUENCE: 14 Met Thr Val Ser Glu Ile His Ile Pro Asn Ser Leu Leu Asp Arg Asp 15 Cys Thr Thr Leu Ser Arg His Val Leu Gln Gln Leu Asn Ser Phe Gly 20 Ala Asp Ala Gln Asp Leu Ser Ala Ile Met Asn Arg Ile Ala Leu Ala 45 Gly Lys Leu Ile Ala Arg Arg Leu Ser Arg Ala Gly Leu Met Ala Asp 50 50 55 70 75 80	tcacgccacg ta	actccaaca actga	atage tttgggggeeg	g atgcccagga	tttgagtgcc	120
aaaatggacg tattgccaa tgatgtttt attcctgtct ttaagcaaag tggcttggtt 300 tgtcgtctgg ctccggaggg gatggaaaa ccctactat ttcctgaaaa ttgcccatt 360 ggtcgctata ctttgctgta cgacccatt gatggttcct ccaacgtgga cattaacctc 420 aacgtgggtt ccattttgc Cattcggcaa caggaagggg acgatctaga cggcagtgcg 480 tcagatttat tggctaacgg agacaagcaa atgctgctg gttatacct ctacggcccc 540 tccaccatcc tggttattc cctcggctcc ggagtgcata gctttatcct cgatcccagt 600 ttgggggaat ttatttagc ccaggaaaat atccgcattc ccaaccacgg ccccattac 660 agcaccaatg aaggtaact ttggcaatgg gatgaagccc tgagggatta cacccgtac 720 gtccatcgcc acgaaggtta cactgcccgt tatagcggtg ctctggtgg ggatattcac 780 cggatttga tgcaagggg agtgtttctt tatcctggt cggaaaaaa tcccgacgg 840 aaattgcgtt tgctctatga aactgcgccg ctggccttt tggtggaaca ggctggggg 900 agggctagtg acggccaaaa acgttactg gactaattc cttctaaatt acatcagcgt 960 acccccgcca ttattggcag cgcagaagat gtgaaattgg tggaatttc atccagcgac 1020 cacaaacaac ggcagggtaa ttag 1044 <211> EENGTH: 347 <212> TYPE: PRT <213> ORGNISM: Synechocystis PCC6803 <400> SEQUENCE: 14 Met Thr Val Ser Glu Ile His Ile Pro Asn Ser Leu Leu Asp Arg Asp 10 10 20 Ala Asp Ala Gln Asp Leu Ser Ala Ile Met Asn Arg Ile Ala Leu Ala 35 40 Ala Asp Ala Gln Asp Leu Ser Ala Ile Met Asn Arg Ile Ala Leu Ala 45 Gly Lys Leu Ile Ala Arg Arg Leu Ser Arg Ala Gly Leu Met Ala Asp 50 50 70 75 75 75 75 75 75 75 75 75 75 75 75 75	atcatgaacc go	cattgccct agcgg	gaaaa ctgattgcco	c gtcgcctgag	tcgagctggg	180
tgtogtotgg ottoggagga gatggaaaaa occtactat ttootgaaaa ttgococatt 360 ggtogotata otttgotgta ogacocatt gatggttoot ocaaogtgga cattaacoto 420 aacgtgggtt ocattttgo cattoggaa aatgotgotg gtatatoot otaoggocoo 540 toagatttat tggotaacgg agacaagcaa attgotgotg gtatatoot otaoggocoo 540 tcoaccatoo tggttatto octoggotoo ggagtgoata gotttatoot otaoggocoo 540 ttgggggaat ttattttago ocaggaaaat atcogoatto coaaccaogg occoattac 660 ageaccaatg aaggtaactt ttggoaatgg gatgaagcoo tgagggatta caccogtac 720 gtocatogoo acgaaggtta cactgocogt tatagoggt ototggtggg ggatattoac 780 oggatttga tgoaagggg agtgttoott tatootgga cggaaaaaaa tocogacgo 840 aaattgogtt tgototatga aactgogoog otggoottt tggtggaaca ggotggggg 900 agggotagtg acggocaaaa acgttactg gaottaatoo cutotaaatt acatcagog 960 accocogoca ttattggoag oggaagaat gtgaaattgg tggaatott catcagogac 1020 cacaaacaac ggoagggtaa ttag 1044 <210> SEQ ID NO 14 <210> SEQ ID NO 14 <211> LENGTH: 347 <212> TYPE: PET <213> ORGANISM: Synechocystis PCC6803 <400> SEQUENCE: 14 Met Thr Val Ser Glu Ile His Ile Pro Asn Ser Leu Leu Asp Arg Asp 1 5 1 10 15 Cys Thr Thr Leu Ser Arg His Val Leu Gln Gln Leu Asn Ser Phe Gly 20 Ala Asp Ala Gln Asp Leu Ser Ala Ile Met Asn Arg Ile Ala Leu Ala 35 40 Ala Asp Ala Gln Asp Leu Ser Ala Ile Met Asn Arg Ile Ala Leu Ala 35 70 75 80	ttaatggccg at	gtgttggg cttca	ctggg gaaaccaac	g tccaggggga	atcggtgaaa	240
ggtcgctata cttgctgta cgacccatt gatggttcct ccaacgtgga cattaacctc 420 aacgtgggtt ccattttgc catcggcaa caggaagggg acgatctaga cggcagtgcg 480 tcagatttat tggctaacgg agacaagcaa attgctgctg gttatacct ctacggcccc 540 tccaccatcc tggttattc cctcggctcc ggagtgcata gctttacct cgatcccagt 600 ttgggggaat ttatttagc ccaggaaaat atccgcattc ccaaccacgg cccatttac 660 agcaccaatg aaggtaactt ttggcaatgg gatgaagccc tgagggatta cacccgttac 720 gtccatcgcc acgaaggtta cactgcccgt tatagcggtg ctctggtggg ggatattcac 780 cggatttga tgcaaggggg agtgttctt tatcctggta cggaaaaaa tcccgacggc 840 aaattgcgtt tgctcatga aactgcgccg ctggccttt tggtggaaca ggctggggg 900 agggctagtg acggccaaaa acgttactg gactaattc cttctaaatt acatcagcgt 960 acccccgcca ttattggcag cgcagaagat gtgaaattgg tggaatctt catcagcgac 1020 cacaaaacaac ggcagggtaa ttag 1044 <210 > SEQ ID NO 14 <210 > SEQ ID NO 14 <212 > TYPE: PRT $<213 > ORGANISM: Synechocystis PCC6803<400 > SEQUENCE: 14Met Thr Val Ser Glu Ile His Ile Pro Asn Ser Leu Leu Asp Arg Asp 1S = 10 \frac{15}{15}Cys Thr Thr Leu Ser Arg His Val Leu Gln Gln Leu Asn Ser Phe Gly 30Ala Asp Ala Gln Asp Leu Ser Ala Ile Met Asn Arg Ile Ala Leu Ala \frac{35}{40} \frac{40}{45}Gly Lys Leu Ile Ala Arg Arg Leu Ser Arg Ala Cly Leu Met Ala Asp \frac{50}{50} \frac{70}{5} \frac{70}{5} \frac{70}{5} \frac{80}{50}$	aaaatggacg ta	atttgccaa tgatg	ttttt atttctgtct	ttaagcaaag	tggcttggtt	300
aacgtgggtt ccatttttge catteggeaa caggaagggg acgatetaga eggeagtgeg 480 teagatttat tggetaacgg agacaageaa attgetgetg gttatateet etaeggeece 540 tecaceatee tggttatte eeteggete ggagtgeata gettateet egaeceagt 600 ttgggggaat ttattttage eeaggaaaat ateegeatte eeaeeaegg eeeeattae 720 gtecategee acgaaggta eaetggeegt attageggtg etetggtggg ggatateae 780 eggattttga tgeeaggggg agtgtteett tateetggta eggaaaaaa teeeggeg 840 aaattgegtt tgeteatga aactgeege tatageggtg etetggtggg ggatateae 780 eggattttga tgeeaggggg agtgtteett tateetggta eggaaaaaa teeeggeg 840 aaattgegtt tgeteatga aactgeege etggeettt tggtggaaea ggetggggga 900 agggetagtg acggeeaaaa acgttaetg gaettaate ettetaaatt acateagegt 960 acceeegeea ttatggeag egeagaagt gtgaaattgg tggaatett eateagegge 1020 cacaaaeaeae ggeaggtaa ttag 1044 <211> LENGTH: 347 <212> TYPE: PRT <213> ORGANISM: Synecheeystis PCC6803 <400> SEQUENCE: 14 Met Thr Val Ser Glu Ile His Ile Pro Asn Ser Leu Leu Asp Arg Asp 15 Cys Thr Thr Leu Ser Arg His Val Leu Gln Gln Leu Asn Ser Phe Gly 20 25 30 30 $20Ala Asp Ala Gln Asp Leu Ser Ala Ile Met Asn Arg Ile Ala Leu Ala 35 40 45Gly Lys Leu Ile Ala Arg Arg Leu Ser Arg Ala Gly Leu Met Ala Asp 50 55 70 75 80$	tgtcgtctgg ct	tcggagga gatgg	aaaaa ccctactata	a ttcctgaaaa	ttgccccatt	360
tcagatttat tggctaacgg agacaagcaa attgctgctg gttatatcct ctacggcccc 540 tccaccatce tggttattc cctcggctce ggagtgcata gcttatcet cgateccagt 660 ttgggggaat ttatttage ccaggaaaat atccgcatte ccaaccacgg ccccattae 720 gtccategee acgaaggtta cactgeeegt tatageggtg ctctggtggg ggatatteae 780 cggatttga tgeaaggggg agtgttett tateetggta eggaaaaaa teceegaegge 840 aaattgegtt tgetetatga aactgegeeg etggeettt tggtggaaca ggetggggga 900 agggetagtg acggeeaaaa acgttaetg gaetaatte ettetaaat acateagegt 960 acceeegeea ttattggeag egeagaagat gtgaaattg tggaatett cateagega 1020 cacaaacaac ggeaggtaa ttag 1044 <210> SEQ ID NO 14 <211> LENGTH: 347 <212> TYPE: PRT <213> ORGANISM: Synechocystis PCC6803 <400> SEQUENCE: 14 Met Thr Val Ser Glu Ile His Ile Pro Asn Ser Leu Leu Asp Arg Asp 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 10 12 $_{20}$ $_{25}$ $_{30}$ $_{30}$ 25 $_{30}$ $_{30}$ 25 $_{30}$ 25 $_{30}$ 25 $_{30}$ 25 $_{30}$ 25 20 20 25 20 20 25 20 20 25 20 20 20 25 20 20 20 20 20 20 20 20	ggtcgctata ct	ttgctgta cgacc	ccatt gatggttcct	ccaacgtgga	cattaacctc	420
tccaccatcc tggtttattc cctcggctcc ggagtgcata gctttatcct cgatcccagt 600 ttgggggaat ttattttagc ccaggaaaat atccgcattc ccaaccacgg ccccattac 660 agcaccaatg aaggtaactt ttggcaatgg gatgaagccc tgagggata caccogttac 720 gtccatcgcc acgaaggtta cactgcccgt tatagcggtg ctctggtggg ggatattcac 780 cggatttga tgcaaggggg agtgttctt tatcctggta cggaaaaaa tcccgacgge 840 aaattgcgtt tgctctatga aactgcgccg ctggccttt tggtggaaca ggctggggg 900 agggctagtg acggccaaaa acgttactg gacttaattc cttctaaatt acatcagcgt 960 acccccgcca ttattggcag cgcagaagat gtgaaattgg tggaatctt catcagcgac 1020 cacaaacaaca ggcagggtaa ttag 1044 <210 > SEQ ID NO 14 <210 > SEQ ID NO 14 <211 > LENGTH: 347 <212 > TYPE: PRT <213 > ORGANISM: Synechocystis PCC6803 <400 > SEQUENCE: 14 Met Thr Val Ser Glu Ile His Ile Pro Asn Ser Leu Leu Asp Arg Asp 1 5 10 15 Cys Thr Thr Leu Ser Arg His Val Leu Gln Gln Leu Asn Ser Phe Gly 20 25 30 Ala Asp Ala Gln Asp Leu Ser Ala Ile Met Asn Arg Ile Ala Leu Ala 35 40 fol 55 70 75 80	aacgtgggtt co	cattttgc catto	ggcaa caggaaggg	g acgatctaga	cggcagtgcg	480
ttgggggaat ttatttage eeaggaaaat ateegeatte eeaaceaegg eeceattae ageaceaatg aaggtaaett ttggeaatgg gatgaageee tgagggatta eaceegttae gteeategee acgaaggtta eaetgeeegt tatageggtg etetggtggg ggatatteee reggatttga tgeaaggggg agtgtteett tateetggta eggaaaaaaa teeegaegge aaattgegtt tgetetatga aaetgegeeg etggeettt tggtggaaea ggetggggga agggetagtg acggeeaaaa acgttaetg gaetaatte ettetaaatt acateagegt acceeegeea ttattggeag egeagaagat gtgaaattgg tggaatette cateagegae acceeegeea ttattggeag egeagaagat gtgaaattgg tggaatette cateagegae (1020 cacaaacaac ggeagggtaa ttag (210) SEQ ID NO 14 (211) EENGTH: 347 (212) TYPE: PRT (213) ORGANISM: Synechocystis PCC6803 (400) SEQUENCE: 14 Met Thr Val Ser Glu Ile His Ile Pro Asn Ser Leu Leu Asp Arg Asp 15 Cys Thr Thr Leu Ser Arg His Val Leu Gln Gln Leu Asn Ser Phe Gly 20 Ala Asp Ala Gln Asp Leu Ser Ala Ile Met Asn Arg Ile Ala Leu Ala 35 Gly Lys Leu Ile Ala Arg Arg Leu Ser Arg Ala Gly Leu Met Ala Asp 50 Val Leu Gly Phe Thr Gly Glu Thr Asn Val Gln Gly Glu Ser Val Lys 65 70 75 80	tcagatttat to	ygctaacgg agaca	agcaa attgctgctg	g gttatatcct	ctacggcccc	540
agcaccaatg aaggtaactt ttggcaatgg gatgaagccc tgagggatta cacccgttac gtccatcgcc acgaaggtta cactgcccgt tatagcggtg ctctggtggg ggatattcac cggattttga tgcaaggggg agtgtttctt tatcctggta cggaaaaaaa tcccgacggc aaattgcgtt tgctctatga aactgcgccg ctggccttt tggtggaaca ggctggggga agggctagtg acggccaaaa acgttactg gactaattc cttctaaatt acatcagcgt acccccgcca ttattggcag cgcagaagat gtgaaattgg tggaatcttt catcagcgac 1020 cacaaacaaca ggcagggtaa ttag <210> SEQ ID NO 14 <211> LENCTH: 347 <212> TYPE: PRT <213> ORGANISM: Synechocystis PCC6803 <400> SEQUENCE: 14 Met Thr Val Ser Glu Ile His Ile Pro Asn Ser Leu Leu Asp Arg Asp 1 Super Arg His Val Leu Gln Gln Leu Asn Ser Phe Gly 20 Ala Asp Ala Gln Asp Leu Ser Ala Ile Met Asn Arg Ile Ala Leu Ala 40 Sign Lys Leu Ile Ala Arg Arg Leu Ser Arg Ala Gly Leu Met Ala Asp 5 Nal Leu Gly Phe Thr Gly Glu Thr Asn Val Gln Gly Glu Ser Val Lys 6 Nal Leu Gly Phe Thr Gly Glu Thr Asn Val Gln Gly Glu Ser Val Lys 6 Nal Leu Gly Phe Thr Gly Glu Thr Asn Val Gln Gly Glu Ser Val Lys 6 Nal Leu Gly Phe Thr Gly Glu Thr Asn Val Gln Gly Glu Ser Val Lys 6 Nal Leu Gly Phe Thr Gly Glu Thr Asn Val Gln Gly Glu Ser Val Lys 5 Nal Leu Gly Phe Thr Gly Glu Thr Asn Val Gln Gly Glu Ser Val Lys 5 Nal Leu Gly Phe Thr Gly Glu Thr Asn Val Gln Gly Glu Ser Val Lys 5 Nal Leu Gly Phe Thr Gly Glu Thr Asn Val Gln Gly Glu Ser Val Lys 5 Nal Leu Gly Phe Thr Gly Glu Thr Asn Val Gln Gly Glu Ser Val Lys 5 Nal Leu Gly Phe Thr Gly Glu Thr Asn Val Gln Gly Glu Ser Val Lys 5 1 1 1 1 1 1 1 1 1 1 1 1 1	tccaccatcc to	gtttattc cctcg	gctcc ggagtgcata	a gctttatcct	cgatcccagt	600
gtccatcgcc acgaaggtta cactgcccgt tatagcggtg ctctggtggg ggatattcac gggattttga tgcaaggggg agtgtttctt tatcctggta cggaaaaaaa tcccgacggc 840 aaattgcgtt tgctctatga aactgcgccg ctggcctttt tggtggaaca ggctggggga 900 aggggctagtg acggccaaaa acgtttactg gacttaattc cttctaaatt acatcagcgt 960 acccccgcca ttattggcag cgcagaagat gtgaaattgg tggaatcttt catcagcgac 1020 cacaaacaaca ggcagggtaa ttag 1044 <210> SEQ ID NO 14 <211> LENGTH: 347 <212> TYPE: PRT <213> ORGANISM: Synechocystis PCC6803 <400> SEQUENCE: 14 Met Thr Val Ser Glu Ile His Ile Pro Asn Ser Leu Leu Asp Arg Asp 15 Cys Thr Thr Leu Ser Arg His Val Leu Gln Gln Leu Asn Ser Phe Gly 20 Ala Asp Ala Gln Asp Leu Ser Ala Ile Met Asn Arg Ile Ala Leu Ala 45 Gly Lys Leu Ile Ala Arg Arg Leu Ser Arg Ala Gly Leu Met Ala Asp 50 Val Leu Gly Phe Thr Gly Glu Thr Asn Val Gln Gly Glu Ser Val Lys 65 70 75 80	ttggggggaat tt	attttagc ccagg	aaaat atccgcatto	c ccaaccacgg	ccccatttac	660
cggattttga tgcaaggggg agtgtttctt tatcctggta cggaaaaaaa tcccgacggc 840 aaattgcgtt tgctctatga aactgcgccg ctggcctttt tggtggaaca ggctggggga 900 aggggctagtg acggccaaaa acgtttactg gactaattc cttctaaatt acatcagcgt 960 acccccgcca ttattggcag cgcagaagat gtgaaattgg tggaatcttt catcagcgac 1020 cacaaacaac ggcagggtaa ttag 1044 <210> SEQ ID NO 14 <211> LENGTH: 347 <212> TYPE: PRT <213> ORGANISM: Synechocystis PCC6803 <400> SEQUENCE: 14 Met Thr Val Ser Glu Ile His Ile Pro Asn Ser Leu Leu Asp Arg Asp 15 Cys Thr Thr Leu Ser Arg His Val Leu Gln Gln Leu Asn Ser Phe Gly 25 30 Ala Asp Ala Gln Asp Leu Ser Ala Ile Met Asn Arg Ile Ala Leu Ala 45 Gly Lys Leu Ile Ala Arg Arg Leu Ser Arg Ala Gly Leu Met Ala Asp 50 Val Leu Gly Phe Thr Gly Glu Thr Asn Val Gln Gly Glu Ser Val Lys 65 70 75 80	agcaccaatg aa	aggtaactt ttggc	aatgg gatgaagcco	c tgagggatta	cacccgttac	720
aaattgogtt tgototatga aactgogoog otggootttt tggtggaaca ggotggggga 900 agggotagtg acggocaaaa acgttactg gaottaatto ottotaaatt acatcagogt 960 accoccogoca ttattggoag ogoagaagat gtgaaattgg tggaatottt catcagogao 1020 cacaaaacaac ggoagggtaa ttag 1044 <210> SEQ ID NO 14 <210> SEQ ID NO 14 <212> TYPE: PRT <213> ORGANISM: Synechocystis PCC6803 <400> SEQUENCE: 14 Met Thr Val Ser Glu Ile His Ile Pro Asn Ser Leu Leu Asp Arg Asp 10 10 15 Cys Thr Thr Leu Ser Arg His Val Leu Gln Gln Leu Asn Ser Phe Gly 20 25 Ala Asp Ala Gln Asp Leu Ser Ala Ile Met Asn Arg Ile Ala Leu Ala 35 Gly Lys Leu Ile Ala Arg Arg Leu Ser Arg Ala Gly Leu Met Ala Asp 50 Val Leu Gly Phe Thr Gly Glu Thr Asn Val Gln Gly Glu Ser Val Lys 65 70 75 80	gtccatcgcc ac	gaaggtta cactg	cccgt tatagcggt	g ctctggtggg	ggatattcac	780
agggctagtg acggccaaa acgtttactg gacttaatte ettetaaatt acateagege acceeegeea ttattggcag egeagaagat gtgaaattgg tggaatettt cateagegae (1020 cacaaaacaac ggcagggtaa ttag) (1044 (211> LENGTH: 347 (212> TYPE: PRT (213> ORGANISM: Synechocystis PCC6803 (400> SEQUENCE: 14 Met Thr Val Ser Glu Ile His Ile Pro Asn Ser Leu Leu Asp Arg Asp 1 5 Cys Thr Thr Leu Ser Arg His Val Leu Gln Gln Leu Asn Ser Phe Gly 20 Ala Asp Ala Gln Asp Leu Ser Ala Ile Met Asn Arg Ile Ala Leu Ala 35 Gly Lys Leu Ile Ala Arg Arg Leu Ser Arg Ala Gly Leu Met Ala Asp 50 Val Leu Gly Phe Thr Gly Glu Thr Asn Val Gln Gly Glu Ser Val Lys 80	cggattttga to	ycaagggggg agtgt	ttett tateetggta	a cggaaaaaaa	tecegaegge	840
acccccgcca ttattggcag cgcagaagat gtgaaattgg tggaatcttt catcagcgac 1020 cacaaacaac ggcagggtaa ttag 1044 <210> SEQ ID NO 14 <211> LENGTH: 347 <212> TYPE: PRT <213> ORGANISM: Synechocystis PCC6803 <400> SEQUENCE: 14 Met Thr Val Ser Glu Ile His Ile Pro Asn Ser Leu Leu Asp Arg Asp 15 1 5 10 15 Cys Thr Thr Leu Ser Arg His Val Leu Gln Gln Leu Asn Ser Phe Gly 20 Ala Asp Ala Gln Asp Leu Ser Ala Ile Met Asn Arg Ile Ala Leu Ala 35 40 Cys Leu Ile Ala Arg Arg Leu Ser Arg Ala Gly Leu Met Ala Asp 50 5 70 75 80	aaattgcgtt to	gctctatga aactg	cgccg ctggccttt	tggtggaaca	ggctggggga	900
cacaaacaac ggcagggtaa ttag 1044 <210> SEQ ID NO 14 <211> LENGTH: 347 <212> TYPE: PRT <213> ORGANISM: Synechocystis PCC6803 <400> SEQUENCE: 14 Met Thr Val Ser Glu Ile His Ile Pro Asn Ser Leu Leu Asp Arg Asp 1 1^{-1} Thr Leu Ser Arg His Val Leu Gln Gln Leu Asn Ser Phe Gly 20 2^{-1} Ser Ala Ile Met Asn Arg Ile Ala Leu Ala Ala Asp Ala Gln Asp Leu Ser Ala Ile Met Asn Arg Ile Ala Leu Ala 35 3^{-1} Ser Ceu Ser Arg Arg Arg Arg Arg 60 2^{-1} Ser Ceu Ceu Asp Arg 40 2^{-1} Ser Ceu Ceu Asp Arg 40 2^{-1} Ser Ceu Ceu Asp 40 2^{-1} Ser Ceu Ceu Asp 50 2^{-1} Ser Ceu Ceu Ceu Asp Arg 50 2^{-1} Ser Ceu Ceu Ceu Ceu Asp 50 2^{-1} Ser Ceu Ceu Ceu Ceu Ceu Asp 50 2^{-1} Ser Ceu Ceu Ceu Ceu Ceu Ceu Ceu Ceu Ceu Asp 50 2^{-1} Ser Ceu	agggctagtg ac	cggccaaaa acgtt	tactg gacttaatto	c cttctaaatt	acatcagcgt	960
<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	acccccgcca tt	attggcag cgcag	aagat gtgaaattgo	g tggaatcttt	catcagcgac	1020
<pre><210> SEQ ID NO 14 <211> LENGTH: 347 <212> TYPE: PRT <213> ORGANISM: Synechocystis PCC6803 <400> SEQUENCE: 14 Met Thr Val Ser Glu Ile His Ile Pro Asn Ser Leu Leu Asp Arg Asp 10</pre>	cacaaacaac go	gcagggtaa ttag				1044
<pre><211> LENGTH: 347 <212> TYPE: PRT <213> ORGANISM: Synechocystis PCC6803 <400> SEQUENCE: 14 Met Thr Val Ser Glu Ile His Ile Pro Asn Ser Leu Leu Asp Arg Asp 1 Cys Thr Thr Leu Ser Arg His Val Leu Gln Gln Leu Asn Ser Phe Gly 20 Ala Asp Ala Gln Asp Leu Ser Ala Ile Met Asn Arg Ile Ala Leu Ala 45 Gly Lys Leu Ile Ala Arg Arg Leu Ser Arg Ala Gly Leu Met Ala Asp 50 Val Leu Gly Phe Thr Gly Glu Thr Asn Val Gln Gly Glu Ser Val Lys 65</pre>		5				
Met Thr Val Ser Glu His His Pro Asn Ser Leu Asn Arg Asp Cys Thr Thr Leu Ser Arg His Val Leu Glu Leu Asn Ser Leu Asn Asp Asp Asp Asp Ala Asp A	<211> LENGTH: <212> TYPE: P	: 347 PRT	is PCC6803			
1 5 10 15 Cys Thr Leu Ser Arg His Val Leu Gln Gln Leu Asn Ser Phe Gly Ala Asp Ala Gln Asp Ala Asp Leu Ser Arg Ala Ile Met Asn Arg Ile Ala Asp Ala Leu Ala Met Asn Arg Ile Ala Asp Ala Leu Ala Met Asn Arg Ile Ala Asp Ala Leu Ala Asp Asp Ala Asp Asp <td><400> SEQUENC</td> <td>CE: 14</td> <td></td> <td></td> <td></td> <td></td>	<400> SEQUENC	CE: 14				
20 25 30 Ala Asp Ala Gln Asp Leu Ser Ala Ile Met Asn Arg Ile Ala Leu Ala 35 35 Gly Lys Leu Ile Ala Arg Arg Arg Leu Ser Arg Ala Gly Leu Met Ala Asp 50 Val Leu Gly Phe Thr Gly Glu Thr Asn Val Gln Gly Glu Ser Val Lys 65				r Leu Leu Asp	5 1	
35 40 45 Gly Lys Leu Ile Ala Arg Arg Leu Ser Arg Ala Gly Leu Met Ala Asp 50 55 60 Val Leu Gly Phe Thr Gly Glu Thr Asn Val Gln Gly Glu Ser Val Lys 65 70 75 80	-	0			Phe Gly	
505560Val Leu Gly Phe Thr Gly Glu Thr Asn Val Gln Gly Glu Ser Val Lys65707580	-	Gln Asp Leu Ser		-	Leu Ala	
65 70 75 80			Leu Ser Arg Ala	-	Ala Asp	
	-	-		n Gly Glu Ser	-	
				e Ser Val Phe		

-continued

												0011	CIII	ucu		
				85					90					95		
Ser	Gly	Leu	Val 100	_	Arg	Leu	Ala	Ser 105		Glu	Met	Glu	Lys 110	Pro	Tyr	
Tyr	Ile	Pro 115	Glu	Asn	Суз	Pro	Ile 120	Gly	Arg	Tyr	Thr	Leu 125	Leu	Tyr	Asp	
Pro	Ile 130		Gly	Ser	Ser	Asn 135	Val	Asp	Ile	Asn	Leu 140	Asn	Val	Gly	Ser	
Ile 145	Phe	Ala	Ile	Arg	Gln 150	Gln	Glu	Gly	Asp	Asp 155	Leu	Asp	Gly	Ser	Ala 160	
Ser	Asp	Leu	Leu	Ala 165	Asn	Gly	Asp	Lys	Gln 170	Ile	Ala	Ala	Gly	Tyr 175	Ile	
Leu	Tyr	Gly	Pro 180		Thr	Ile	Leu	Val 185		Ser	Leu	Gly	Ser 190	Gly	Val	
His	Ser	Phe 195	Ile	Leu	Asp	Pro	Ser 200	Leu	Gly	Glu	Phe	Ile 205	Leu	Ala	Gln	
Glu	Asn 210	Ile	Arg	Ile	Pro	Asn 215	His	Gly	Pro	Ile	Tyr 220	Ser	Thr	Asn	Glu	
Gly 225	Asn	Phe	Trp	Gln	Trp 230	Asp	Glu	Ala	Leu	Arg 235		Tyr	Thr	Arg	Tyr 240	
Val	His	Arg	His	Glu 245	Gly	Tyr	Thr	Ala	Arg 250	-	Ser	Gly	Ala	Leu 255	Val	
Gly	Asp	Ile	His 260		Ile	Leu	Met	Gln 265		Gly	Val	Phe	Leu 270	Tyr	Pro	
Gly	Thr	Glu 275	Lys	Asn	Pro	Aap	Gly 280	Lys	Leu	Arg	Leu	Leu 285	Tyr	Glu	Thr	
Ala	Pro 290	Leu	Ala	Phe	Leu	Val 295	Glu	Gln	Ala	Gly	Gly 300	Arg	Ala	Ser	Asp	
Gly 305	Gln	ГÀа	Arg	Leu	Leu 310	Asp	Leu	Ile	Pro	Ser 315	-	Leu	His	Gln	Arg 320	
Thr	Pro	Ala	Ile	Ile 325	Gly	Ser	Ala	Glu	Asp 330	Val	Lys	Leu	Val	Glu 335	Ser	
Phe	Ile	Ser	Asp 340		ГÀЗ	Gln	Arg	Gln 345	Gly	Asn						
<21 <21 <21 <22 <22	0> SI 1> Li 2> T 3> OI 0> F! 3> O'	ENGTI YPE : RGAN EATUI THER	H: 4 DNA ISM: RE: INF(871 Art ORMA			-		pla	smid	pALI	M173				
	0> SI				d a -		atot	a ~+-	natt.	at++	000	aat+	add	2000	ratoco	60
															gatgcg gggaac	120
			_		_					_	-		_		ttggtg	180
gcc	caag	cct a	acagi	tgcc	ga g	ttag	ataa	t ga	gatta	aacc	gcg	cgtti	tcg g	ggaco	gcctat	240
ttt	caac	aaa a	acca	aaaa	ga g	ccgc	ccca	a tti	tagt	gccc	agg	cttti	tac ç	ggcga	atccaa	300
gtt	tttg	ttg a	aagco	cctc	ag c	agcci	tcgai	t ga	aaaa	acgc	cct	taga	aac t	tcttç	gctcta	360
ccg	gacti	tgc g	gacga	acaa	ct g	cggg	acgaa	a ati	tttt	gcag	gta	ccta	cgt (cacgo	cctttg	420
ggt	gaaa	ttt (cctt	caca	ga g	gaag	gggaa	a ati	tgtc	caga	agg	aatti	ttt 1	tgtg	gcccaa	480
															taaagt	540
саа	acct	agg (cctg	tgtt	са а	aagg	gggaa	a tca	agtti	ttgt	ctt	tggaa	att t	tacto	gactcc	600

47

-continued

:	gctcacaatt	cggaattctt	aacaaaaaag	660
	ataagtccca	tcaccgttgt	ataaatgtgt	720
ι	ccaactcata	aagtcaagta	ggagattaat	780
ļ	ttagaccatg	cggcggaaaa	tggttatggc	840
ļ	cagatcattt	cgatcatgca	ggccgctgat	900
	tcccgtggtg	cccggagcta	cgctggggaa	960
ļ	gtcgaaacct	atcctcacat	tcccattgcc	1020
;	acttgctatt	ccgccatccg	caacggtttc	1080
ι	gctgacgcca	agacccccgc	tagctttgag	1140
	aaagtagccc	actccgttgg	ggccagtgta	1200
I	gaaactggtc	aaggggaagc	tgaagacggc	1260
:	caactgttga	ccgatcccga	agaagcagtg	1320
:	ctcgctgtgg	cgatcggtac	cagccatggt	1380
	gaagttttgg	ccatcagccg	cattgaagaa	1440
ļ	gtaatgcacg	gttetteete	cgttccccag	1500
	ggtgctatcc	ccgaaaccta	tggtgtgccc	1560

cctctggaca	tctccaaacg	aattgtgagc	gctcacaatt	cggaattctt	aacaaaaaag	660
caggaataaa	attaacaaga	tgtaattgac	ataagtccca	tcaccgttgt	ataaatgtgt	720
ggaattgtga	gcggataaca	atttcacaca	ccaactcata	aagtcaagta	ggagattaat	780
tccatggctc	ttgtaccaat	gagactgctg	ttagaccatg	cggcggaaaa	tggttatggc	840
attcccgctt	tcaacgtcaa	caacatggag	cagatcattt	cgatcatgca	ggccgctgat	900
gaaaccgaca	gccctgtaat	tttgcaagct	tcccgtggtg	cccggagcta	cgctggggaa	960
aatttcctgc	gccatttagt	tttggggggcg	gtcgaaacct	atcctcacat	teccattgee	1020
atgcaccaag	accacggcaa	tagccccgcc	acttgctatt	ccgccatccg	caacggtttc	1080
accagtgtga	tgatggacgg	ttccttggaa	gctgacgcca	agacccccgc	tagctttgag	1140
tacaacgtta	atgtaaccgc	tgaagtagtt	aaagtagccc	actccgttgg	ggccagtgta	1200
gaagggggaat	tgggttgctt	aggttccttg	gaaactggtc	aaggggaagc	tgaagacggc	1260
cacggttttg	aagggaagtt	agaccactcc	caactgttga	ccgatcccga	agaagcagtg	1320
gaattcgtca	acaaaaccca	ggtggatgcc	ctcgctgtgg	cgatcggtac	cagccatggt	1380
gcctacaaat	ttacccgcaa	acccaccggt	gaagttttgg	ccatcagccg	cattgaagaa	1440
attcaccgcc	tgctgcccaa	cacccacttg	gtaatgcacg	gttetteete	cgttccccag	1500
gaatggatcg	acatgatcaa	cgaattcggt	ggtgctatcc	ccgaaaccta	tggtgtgccc	1560
gtggaagaaa	ttcaaaaagg	catcaagagt	ggtgtacgta	aagtaaacat	cgacaccgat	1620
aatcgcttag	ccatcaccgc	cgctttccgg	gaagccgctg	ctaaagatcc	caagaacttt	1680
gateccegte	acttcctcaa	gccttctatc	aaatatatga	agcaggtttg	tgccgatcgc	1740
tatcaacagt	tctggactgc	tggcaatgcc	tctaaaatca	agcaattgac	cttggatgac	1800
tacgccgcta	aatatgccaa	aggtgaatta	accgccacct	cccgcacctc	cgttgctgtg	1860
tagtgaggat	ccagggattt	aattccatga	ccgttagtga	gattcatatt	cctaactctt	1920
tactagaccg	ggattgcacc	accettteac	gccacgtact	ccaacaactg	aatagctttg	1980
gggccgatgc	ccaggatttg	agtgccatca	tgaaccgcat	tgccctagcg	ggaaaactga	2040
ttgcccgtcg	cctgagtcga	gctgggttaa	tggccgatgt	gttgggcttc	actggggaaa	2100
ccaacgtcca	gggggaatcg	gtgaaaaaaa	tggacgtatt	tgccaatgat	gtttttattt	2160
ctgtctttaa	gcaaagtggc	ttggtttgtc	gtctggcttc	ggaggagatg	gaaaaaccct	2220
actatattcc	tgaaaattgc	cccattggtc	gctatacttt	gctgtacgac	cccattgatg	2280
gttcctccaa	cgtggacatt	aacctcaacg	tgggttccat	ttttgccatt	cggcaacagg	2340
aagggggacga	tctagacggc	agtgcgtcag	atttattggc	taacggagac	aagcaaattg	2400
ctgctggtta	tatcctctac	ggcccctcca	ccatcctggt	ttattccctc	ggctccggag	2460
tgcatagctt	tatcctcgat	cccagtttgg	gggaatttat	tttagcccag	gaaaatatcc	2520
gcattcccaa	ccacggcccc	atttacagca	ccaatgaagg	taacttttgg	caatgggatg	2580
aagccctgag	ggattacacc	cgttacgtcc	atcgccacga	aggttacact	gcccgttata	2640
gcggtgctct	ggtgggggat	attcaccgga	ttttgatgca	aggggggagtg	tttctttatc	2700
ctggtacgga	aaaaaatccc	gacggcaaat	tgcgtttgct	ctatgaaact	gcgccgctgg	2760
cctttttggt	ggaacaggct	gggggaaggg	ctagtgacgg	ccaaaaacgt	ttactggact	2820
taattccttc	taaattacat	cagcgtaccc	ccgccattat	tggcagcgca	gaagatgtga	2880
aattggtgga	atctttcatc	agcgaccaca	aacaacggca	gggtaattaq	ggctgctaac	2940
				5		

49

aaagcccgaa aggaagctga gttggctgct gccaccgctg agcaataact agcataaccc

cttgggggcct ctaaacgggt cttgacgggt tttttgtcta gatcaacggc ctcaacctac tactgggctg cttcctaatg caggagtcgc ataagggaga gcgtcgagat cccggacacc

-continued

555 5			000 0			
atcgaatggc g	jcatttacag	ctagctcagt	cctaggtaca	atgctagccg	gaggagggtc	3180
aattcatggt g	ygtgaatgtg	aaaccagtaa	cgttatacga	tgtcgcagag	tatgccggtg	3240
tctcttatca g	Jaccgtttcc	cgcgtggtga	accaggccag	ccacgtttct	gcgaaaacgc	3300
gggaaaaagt g	ıgaagcggcg	atggcggagc	tgaattacat	tcccaaccgc	gtggcacaac	3360
aactggcggg c	aaacagtcg	ttgctgattg	gcgttgccac	ctccagtctg	gccctgcacg	3420
cgccgtcgca a	attgtcgcg	gcgattaaat	ctcgcgccga	tcaactgggt	gccagcgtgg	3480
tggtgtcgat g	ıgtagaacga	agcggcgtcg	aagcctgtaa	agcggcggtg	cacaatcttc	3540
tcgcgcaacg c	gtcagtggg	ctgatcatta	actatccgct	ggatgaccag	gatgccattg	3600
ctgtggaagc t	gcctgcact	aatgttccgg	cgttatttct	tgatgtctct	gaccagacac	3660
ccatcaacag t	attattttc	tcccatgaag	acggtacgcg	actgggcgtg	gagcatctgg	3720
tcgcattggg t	caccagcaa	atcgcgctgt	tagcgggccc	attaagttct	gtctcggcgc	3780
gtetgegtet g	lactaactaa	cataaatatc	tcactcgcaa	tcaaattcag	ccgatagcgg	3840
aacgggaagg c	gactttagt	gccatgtccg	gttttcaaca	aaccatgcaa	atgctgaatg	3900
agggcatcgt t	cccactgcg	atgctggttg	ccaacgatca	gatggcgctg	ggcgcaatgc	3960
gcgccattac c	gagtccggg	ctgcgcgttg	gtgcggatat	ctcggtagtg	ggatacgacg	4020
ataccgaaga c	agctcatgt	tatatcccgc	cgttaaccac	catcaaacag	gattttcgcc	4080
tgctggggca a	accagcgtg	gaccgcttgc	tgcaactctc	tcagggccag	gcggtgaagg	4140
gcaatcagct g	Jttgcccgtc	tcactggtga	aaagaaaaac	caccctggcg	cccaatacgc	4200
aaaccgcctc t	cecegegeg	ttggccgatt	cattaatgca	gctggcacga	caggtttccc	4260
gactggaaag c	gggcagtga	gcgcaacgca	attaatgtaa	gttagctcac	tcattaggca	4320
ccgggatctc g	Jaccgatgcc	cttgagagcc	ttcaacccag	tcagctcctt	ccggttcgcg	4380
ctcaagttga t	cgaatgtat	gccccggata	tgacctaggg	agattcttct	aaagcgagca	4440
gggtttgcca a	agtggcgatc	gcctcaggga	accataacca	actttgttcg	aggcggcggg	4500
ggttgagctg g	Igaacgatcg	agatctaggg	cgatcgcccg	tagggaaagc	cgaaaaactc	4560
caagaatttc c	tggtcaacg	tcggtgggtt	gcctttgggc	caaatcgtac	atactaatcg	4620
ccaggcccgc a	taaatctcc	gcctggaggg	ctggggggaa	atcctgggtc	gttgccgccg	4680
ctaaggette a	taccaacga	tcattggcgg	cttcgtaatc	tgcattgagg	taatggacaa	4740
aacccagggc c	atcaaaatt	tcggggtcgt	tgggctgttg	ggctagggcc	atgtcccaat	4800
tgtcttgcac c	gtggcgatc	gccgttgctt	gggttggcga	tggtgggacg	gcagccaaag	4860
ttgtttgcca g	1					4871
<210> SEQ ID <211> LENGTH <212> TYPE: <213> ORGANI <220> FEATUR <223> OTHER <400> SEQUEN	I: 5323 DNA SM: Artifi E: INFORMATIC			pALM210		
agcgattggc t		caaagetgee	gatttttctc	caaaccgaat	tagaaccaca	60
	-			_	-	
atttgatttt t	лааауссда	llaccattgd	caacetgaag	yaaacagcga	Legeelttat	120

50

3000 3060

51

-continued

ggaggatggc	cacgaggctt	gtcgggtctc	ccattattgt	ggatcggtac	cggatgagcg	180
ggcgagcttt	aatttacgct	tgcggcaata	tcgccaggcc	cagccttggc	tgcgaaatca	240
tctcgatcct	gcaagggggcg	atcgcctgca	ccattggtcg	gatcaccaac	gcaccatttt	300
ctacggcagg	cgcaccaatc	ccgacaccca	gcagcggctt	gtgttagtgg	cgcacatggc	360
cgggggctccg	aagaccgttg	agattggcaa	atggetegee	ctggatttgg	atcgttggca	420
gttggcgatc	gccacaccga	ctttgaagat	caacaccatc	tatgacttag	cccaaattca	480
cttgcacaat	ggcgaaggtt	ttctgttatc	tgaaattcct	ccctaaatga	tgtcttttga	540
gcctaaaaac	acacttttt	gacctaattt	aacccattta	aaaaacttta	tttaataatg	600
accatggccc	atcaaaaata	cattcttgcg	ttagacctcg	gtaccacaaa	cgaattgtga	660
gcgctcacaa	ttcggaattc	ttaacaaaaa	agcaggaata	aaattaacaa	gatgtaacag	720
acataagtcc	catcaccgtt	gtataaatgt	gtggaattgt	gagcggataa	caatttcaca	780
caccaactca	taaagtcaag	taggagatta	attccatggt	tagtttagag	aagaacgatc	840
acttaatgtt	ggcgcgccag	ctgccattga	aatctgttgc	cctgatactg	gcgggaggac	900
gtggtacccg	cctgaaggat	ttaaccaata	agcgagcaaa	accggccgta	cacttcggcg	960
gtaagttccg	cattatcgac	tttgcgctgt	ctaactgcat	caactccggg	atccgtcgta	1020
tgggcgtgat	cacccagtac	cagtcccaca	ctctggtgca	gcacattcag	cgcggctggt	1080
cattcttcaa	tgaagaaatg	aacgagtttg	tcgatctgct	gccagcacag	cagagaatga	1140
aaggggaaaa	ctggtatcgc	ggcaccgcag	atgcggtcac	ccaaaacctc	gacattatcc	1200
gccgttataa	agcggaatac	gtggtgatcc	tggcgggcga	ccatatctac	aagcaagact	1260
actcgcgtat	gcttatcgat	cacgtcgaaa	aaggcgcacg	ttgcaccgtt	gcttgtatgc	1320
cagtaccgat	tgaagaagcc	tccgcatttg	gcgttatggc	ggttgatgag	aacgataaaa	1380
ttatcgaatt	cgttgaaaaa	cctgctaacc	cgccgtcaat	gccgaacgat	ccgagcaaat	1440
ctctggcgag	tatgggtatc	tacgtctttg	acgccgacta	tctgtatgaa	ctgctggaag	1500
aagacgatcg	cgatgagaac	tccagccacg	actttggcaa	agatttgatt	cccaagatca	1560
ccgaagccgg	tctggcctat	gegeaccegt	teccgetete	ttgcgtacaa	teegaeeegg	1620
atgeegagee	gtactggcgc	gatgtgggta	cgctggaagc	ttactggaaa	gcgaacctcg	1680
atctggcctc	tgtggtgccg	gaactggata	tgtacgatcg	caattggcca	attcgcacct	1740
acaatgaatc	attaccgcca	gcgaaattcg	tgcaggatcg	ctccggtagc	cacgggatga	1800
cccttaactc	actggtttcc	ggcggttgtg	tgatctccgg	ttcggtggtg	gtgcagtccg	1860
ttctgttctc	gcgcgttcgc	gtgaattcat	tctgcaacat	tgattccgcc	gtattgttac	1920
cggaagtatg	ggtaggtcgc	tcgtgccgtc	tgcgccgctg	cgtcatcgat	cgtgcttgtg	1980
ttattccgga	aggcatggtg	attggtgaaa	acgcagagga	agatgcacgt	cgtttctatc	2040
gttcagaaga	aggcatcgtg	ctggtaacgc	gcgaaatgct	acggaagtta	gggcataaac	2100
aggagcgata	ataacaaagc	ccgaaaggaa	gctgagttgg	ctgctgccac	cgctgagcaa	2160
taactagcat	aaccccttgg	ggcctctaaa	cgggtcttga	cgggtttttt	gtctagatca	2220
acggcctcaa	cctactactg	ggctgcttcc	taatgcagga	gtcgcataag	ggagagcgtc	2280
gagatcccgg	acaccatcga	atggcgcatt	tacagctagc	tcagtcctag	gtacaatgct	2340
agccggagga	gggtcaattc	atggtggtga	atgtgaaacc	agtaacgtta	tacgatgtcg	2400
cagagtatgc	cggtgtctct	tatcagaccg	tttcccgcgt	ggtgaaccag	gccagccacg	2460

53

				-contir	nued	
tttctgcgaa	aacgcgggaa	aaagtggaag	cggcgatggc	ggagctgaat	tacattccca	2520
accgcgtggc	acaacaactg	gcgggcaaac	agtcgttgct	gattggcgtt	gccacctcca	2580
gtctggccct	gcacgcgccg	tcgcaaattg	tcgcggcgat	taaatctcgc	gccgatcaac	2640
tgggtgccag	cgtggtggtg	tcgatggtag	aacgaagcgg	cgtcgaagcc	tgtaaagcgg	2700
cggtgcacaa	tcttctcgcg	caacgcgtca	gtgggctgat	cattaactat	ccgctggatg	2760
accaggatgc	cattgctgtg	gaagctgcct	gcactaatgt	tccggcgtta	tttcttgatg	2820
tctctgacca	gacacccatc	aacagtatta	ttttctccca	tgaagacggt	acgcgactgg	2880
gcgtggagca	tctggtcgca	ttgggtcacc	agcaaatcgc	gctgttagcg	ggcccattaa	2940
gttetgtete	ggcgcgtctg	cgtctggctg	gctggcataa	atatctcact	cgcaatcaaa	3000
ttcagccgat	agcggaacgg	gaaggcgact	ttagtgccat	gtccggtttt	caacaaacca	3060
tgcaaatgct	gaatgagggc	atcgttccca	ctgcgatgct	ggttgccaac	gatcagatgg	3120
cgctgggcgc	aatgcgcgcc	attaccgagt	ccgggctgcg	cgttggtgcg	gatatctcgg	3180
tagtgggata	cgacgatacc	gaagacagct	catgttatat	cccgccgtta	accaccatca	3240
aacaggattt	tcgcctgctg	gggcaaacca	gcgtggaccg	cttgctgcaa	ctctctcagg	3300
gccaggcggt	gaagggcaat	cagctgttgc	ccgtctcact	ggtgaaaaga	aaaaccaccc	3360
tggcgcccaa	tacgcaaacc	gcctctcccc	gcgcgttggc	cgattcatta	atgcagctgg	3420
cacgacaggt	ttcccgactg	gaaagcgggc	agtgagcgca	acgcaattaa	tgtaagttag	3480
ctcactcatt	aggcaccggg	atctcgaccg	atgcccttga	gagccttcaa	cccagtcagc	3540
tccttccggt	tctcgagcgc	atgcataaaa	actgttgtaa	ttcattaagc	attctgccga	3600
catggaagcc	atcacaaacg	gcatgatgaa	cctgaatcgc	cagcggcatc	agcaccttgt	3660
cgccttgcgt	ataatatttg	cccatggacg	cacaccgtgg	aaacggatga	aggcacgaac	3720
ccagttgaca	taagcetgtt	cggttcgtaa	actgtaatgc	aagtagcgta	tgcgctcacg	3780
caactggtcc	agaaccttga	ccgaacgcag	cggtggtaac	ggcgcagtgg	cggttttcat	3840
ggcttgttat	gactgttttt	ttgtacagtc	tatgcctcgg	gcatccaagc	agcaagcgcg	3900
ttacgccgtg	ggtcgatgtt	tgatgttatg	gagcagcaac	gatgttacgc	agcagcaacg	3960
atgttacgca	gcagggcagt	cgccctaaaa	caaagttagg	tggctcaagt	atgggcatca	4020
ttcgcacatg	taggetegge	cctgaccaag	tcaaatccat	gcgggctgct	cttgatcttt	4080
tcggtcgtga	gttcggagac	gtagccacct	actcccaaca	tcagccggac	tccgattacc	4140
tcgggaactt	gctccgtagt	aagacattca	tcgcgcttgc	tgccttcgac	caagaagcgg	4200
ttgttggcgc	tctcgcggct	tacgttctgc	ccaggtttga	gcagccgcgt	agtgagatct	4260
atatctatga	tctcgcagtc	tccggcgagc	accggaggca	gggcattgcc	accgcgctca	4320
tcaatctcct	caagcatgag	gccaacgcgc	ttggtgctta	tgtgatctac	gtgcaagcag	4380
attacggtga	cgatcccgca	gtggctctct	atacaaagtt	gggcatacgg	gaagaagtga	4440
tgcactttga	tatcgaccca	agtaccgcca	cctaacaatt	cgttcaagcc	gagatcggct	4500
teccggccgc	ggagttgttc	ggtaaattgt	cacaacgccg	ccaggtggca	cttttcgggg	4560
aaatgtgcgc	geeegegtte	ctgctggcgc	tgggcctgtt	tctggcgctg	gactteeege	4620
tgttccgtca	gcagcttttc	gcccacggcc	ttgatgatcg	cggcggcctt	ggcctgcata	4680
tcccgattca	acggccccag	ggcgtccaga	acgggcttca	ggcgctcccg	aaggtggatc	4740
ccccctctt	gcctacagca	tctcccccag	gggagaattc	ttcctgtttc	aactccctct	4800

4860

aacgtaaacc cattgaattt aaaaaagact ttatgactgc tttactgctc catgaccaac

-continued

attattccct	tgatcatgaa	gcctttctct	caaccctcag	caacacagaa	aatttactca	4920
ttattcaaga	tctagatggc	gtttgcatgg	ggttagtcaa	agacccctta	acccgcaaaa	4980
ttgatcctga	ctatatccgc	gccacacgca	agtttagaga	ccacttcttt	gtcctcacca	5040
acggtgaaca	tgaaggcaga	aggggagtaa	atcgcatcgt	tgaacgggca	tttcgcaatg	5100
ttgaagccaa	agaggaaaca	agctatttac	ctggtttagc	agcagggggt	gtgcaatggc	5160
agacagataa	tggccaaatt	tcccatcccg	gtgttagcca	agcagaactc	gatttccttg	5220
ccacagtgcc	agatttaatt	ggtcaaagtt	taggacaatt	ttttactaaa	tatgttgata	5280
tttttcccgc	tgagcttcaa	cctgagctga	tccatgcttc	tgt		5323

<210> SEQ ID NO 17 <211> LENGTH: 5323 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Artificial plasmid pALM211

<400> SEQUENCE: 17

agcgattggc tatgatctac caaagctggc gatttttctg caaaccgaat tagaaccaca 60 atttgatttt ttaaageega ttaeeattge caacetgaag gaaatagega tegeetttat 120 ggaggatggc cacgaggctt gtcgggtctc ccattattgt ggatcggtac cggatgagcg 180 ggcgagcttt aatttacgct tgcggcaata tcgccaggcc cagccttggc tgcgaaatca 240 tetegateet geaaggggeg ategeetgea ceattggteg gateaceaae geaceattt 300 ctacggcagg cgcaccaatc ccgacaccca gcagcggctt gtgttagtgg cgcacatggc 360 cgggggttccg aagaccgttg agattggcaa atggctcgcc ctggatttgg atcgttggca 420 gttggcgatc gccacaccga ctttgaagat caacaccatc tatgacttag cccaaattca 480 cttgcacaat ggcgaaggtt ttctgttatc tgaaattcct ccctaaatga tgtcttttga 540 gcctaaaaac acactttttt gacctaattt aacccattta aaaaacttta tttaataatg 600 accatggccc atcaaaaata cattettgeg ttagaeeteg gtaccacaaa egaattgtga 660 gcgctcacaa ttcggaattc ttaacaaaaa agcaggaata aaattaacaa gatgtaacag 720 acataagtcc catcaccgtt gtataaatgt gtggaattgt gagcggataa caatttcaca 780 caccaactca taaagtcaag taggagatta attccatggt tagtttagag aagaacgatc 840 acttaatgtt ggcgcgccag ctgccattga aatctgttgc cctgatactg gcgggaggac 900 gtggtacccg cctgaaggat ttaaccaata agcgagcaaa accggccgta cacttcggcg 960 gtaagtteeg cattategae tttgegetgt etaactgeat caacteeggg ateegtegta 1020 tgggcgtgat cacccagtac cagtcccaca ctctggtgca gcacattcag cgcggctggt 1080 cattetteaa tgaagaaatg aacgagtttg tegatetget geeageacag cagagaatga 1140 aaggggaaaa ctggtatcgc ggcaccgcag atgcggtcac ccaaaacctc gacattatcc 1200 gccgttataa agcggaatac gtggtgatcc tggcgggcga ccatatctac aagcaagact 1260 actogogtat gottatogat caogtogaaa aaggogoacg ttgcacogtt gottgtatgo 1320 cagtaccgat tgaagaagcc tccgcatttg gcgttatggc ggttgatgag aacgataaaa 1380 ttatcgaatt tgttgaaaaa cctgctaacc cgccgtcaat gccgaacgat ccgagcaaat 1440 ctctggcgag tatgggtatc tacgtctttg acgccgacta tctgtatgaa ctgctggaag 1500 aagacgatcg cgatgagaac tccagccacg actttggcaa agatttgatt cccaagatca 1560

57

-continued ccgaageegg tetggeetat gegeaceegt tecegetete ttgegtaeaa teegaeeegg 1620 atgccgagcc gtactggcgc gatgtgggta cgctggaagc ttactggaaa gcgaacctcg 1680 atctggcctc tgtggtgccg gaactggata tgtacgatcg caattggcca attcgcacct 1740 acaatgaatc attaccgcca gcgaaattcg tgcaggatcg ctccggtagc cacgggatga 1800 cccttaactc actggtttcc gacggttgtg tgatctccgg ttcggtggtg gtgcagtccg 1860 ttctgttctc gcgcgttcgc gtgaactcat tctgcaacat tgattccgcc gtattgttac 1920 1980 cggaagtatg ggtaggtcgc tcgtgccgtc tgcgccgctg cgtcatcgat cgtgcttgtg ttattccgga aggcatggtg attggtgaaa acgcagagga agatgcacgt cgtttctatc 2040 gttcagaaga aggcatcgtg ctggtaacgc gcgaaatgct acggaagtta gggcataaac 2100 aggagegata ataacaaage eegaaaggaa getgagttgg etgetgeeae egetgageaa 2160 taactagcat aacceettgg ggeetetaaa egggtettga egggtttttt gtetagatea 2220 acqqcctcaa cctactactq qgctqcttcc taatqcaqqa qtcqcataaq qqaqaqcqtc 2280 qaqatcccqq acaccatcqa atqqcqcatt tacaqctaqc tcaqtcctaq qtacaatqct 2340 agccggagga gggtcaattc atggtggtga atgtgaaacc agtaacgtta tacgatgtcg 2400 2460 caqaqtatgc cqqtqtctct tatcaqaccq tttcccqcqt qqtqaaccaq qccaqccacq tttctgcgaa aacgcgggaa aaagtggaag cggcgatggc ggagctgaat tacattccca 2520 accgcgtggc acaacaactg gcgggcaaac agtcgttgct gattggcgtt gccacctcca 2580 2640 gtctggccct gcacgcgccg tcgcaaattg tcgcqgcgat taaatctcgc gccqatcaac 2700 tqqqtqccaq cqtqqtqqtq tcqatqqtaq aacqaaqcqq cqtcqaaqcc tqtaaaqcqq cggtgcacaa tcttctcgcg caacgcgtca gtgggctgat cattaactat ccgctggatg 2760 accaggatgc cattgctgtg gaagctgcct gcactaatgt tccggcgtta tttcttgatg 2820 tetetgaeca gaeacceate aacagtatta tttteteeca tgaagaeggt aegegaetgg 2880 gcgtggagca tctggtcgca ttgggtcacc agcaaatcgc gctgttagcg ggcccattaa 2940 gttctgtctc ggcgcgtctg cgtctggctg gctggcataa atatctcact cgcaatcaaa 3000 ttcagccgat agcggaacgg gaaggcgact ttagtgccat gtccggtttt caacaaacca 3060 tgcaaatgct gaatgagggc atcgttccca ctgcgatgct ggttgccaac gatcagatgg 3120 cgctgggcgc aatgcgcgcc attaccgagt ccgggctgcg cgttggtgcg gatatctcgg 3180 tagtgggata cgacgatacc gaagacagct catgttatat cccgccgtta accaccatca 3240 aacaggattt tcgcctgctg gggcaaacca gcgtggaccg cttgctgcaa ctctctcagg 3300 gccaggcggt gaagggcaat cagctgttgc ccgtctcact ggtgaaaaga aaaaccaccc 3360 tggcgcccaa tacgcaaacc gcctctcccc gcgcgttggc cgattcatta atgcagctgg 3420 cacqacaggt ttcccgactg gaaagcgggc agtgagcgca acgcaattaa tgtaagttag 3480 ctcactcatt aggcaccggg atctcgaccg atgcccttga gagccttcaa cccagtcagc 3540 teetteeggt tetegagege atgeataaaa aetgttgtaa tteattaage attetgeega 3600 catggaagcc atcacaaacg gcatgatgaa cctgaatcgc cagcggcatc agcaccttgt 3660 cgccttgcgt ataatatttg cccatggacg cacaccgtgg aaacggatga aggcacgaac 3720 ccagttgaca taagcctgtt cggttcgtaa actgtaatgc aagtagcgta tgcgctcacg 3780

3840

3900

3960

caactqqtcc aqaaccttqa ccqaacqcaq cqqtqqtaac qqcqcaqtqq cqqttttcat

ggettgttat gactgttttt ttgtacagte tatgeetegg geatecaage ageaagegeg

ttacgccgtg ggtcgatgtt tgatgttatg gagcagcaac gatgttacgc agcagcaacg

59

-continued

atgttacgca	gcagggcagt	cgccctaaaa	caaagttagg	tggctcaagt	atgggcatca	4020
ttcgcacatg	taggctcggc	cctgaccaag	tcaaatccat	gcgggctgct	cttgatcttt	4080
tcggtcgtga	gttcggagac	gtagccacct	actcccaaca	tcagccggac	tccgattacc	4140
tcgggaactt	gctccgtagt	aagacattca	tcgcgcttgc	tgccttcgac	caagaagcgg	4200
ttgttggcgc	tctcgcggct	tacgttctgc	ccaggtttga	gcagccgcgt	agtgagatct	4260
atatctatga	tctcgcagtc	tccggcgagc	accggaggca	gggcattgcc	accgcgctca	4320
tcaatctcct	caagcatgag	gccaacgcgc	ttggtgctta	tgtgatctac	gtgcaagcag	4380
attacggtga	cgatcccgca	gtggetetet	atacaaagtt	gggcatacgg	gaagaagtga	4440
tgcactttga	tatcgaccca	agtaccgcca	cctaacaatt	cgttcaagcc	gagatcggct	4500
teceggeege	ggagttgttc	ggtaaattgt	cacaacgccg	ccaggtggca	cttttcgggg	4560
				tctggcgctg		4620
				cggcggcctt		4680
-				ggcgctcccg		4740
		_		tteetgttte		4800
				tttactgctc		4860
		-	_	caacacagaa		4920
				agacccctta		4980 5040
	-			ccacttcttt tgaacgggca	-	5100
				agcaggggggt		5160
		-		agcagaactc		5220
				ttttactaaa		5280
	tgagetteaa					5323
			5	-		

60

What is claimed is:

1. A recombinant microorganism modified with respect to a native microorganism, the recombinant microorganism comprising a recombinant nucleic acid configured to express 45 a glucose-1-phosphate adenylyltransferase, wherein the recombinant microorganism:

is a cyanobacterium;

exhibits enhanced glucose-1-phosphate adenylyltransferase activity compared to the native microorganism; 50 exhibits a native glycogen synthase expression level;

- exhibits native glycogen synthase activity; and produces an increased amount of glycogen compared to the native microorganism while having a growth rate of at heat a growth rate of the native microorganism up on
- at least a growth rate of the native microorganism when grown photoautotrophically in the presence of light and 10% CO₂.

2. The recombinant microorganism of claim 1, wherein the glucose-1-phosphate adenylyltransferase is allosterically regulated by a compound selected from the group consisting of adenosine diphosphate and adenosine monophosphate.

3. The recombinant microorganism of claim **1**, wherein the glucose-1-phosphate adenylyltransferase comprises a sequence at least 90% identical to SEQ ID NO:2.

4. The recombinant microorganism of claim **1**, wherein the glucose-1-phosphate adenylyltransferase comprises a 65 glycine at a position corresponding to position 336 of SEQ ID NO:2.

5. The recombinant microorganism of claim 1, wherein the nucleic acid comprises a glucose-1-phosphate adenylyl-transferase coding sequence operably connected to a promoter not operably connected to the coding sequence in nature.

6. The recombinant microorganism of claim 5, wherein the promoter is an inducible promoter.

7. The recombinant microorganism of claim 5, wherein the promoter is a constitutive promoter.

8. The recombinant microorganism of claim **1**, wherein the recombinant microorganism exhibits a native 1,4-alpha-glucan-branching enzyme expression level.

9. The recombinant microorganism of claim **1**, wherein the recombinant microorganism exhibits native 1,4-alpha-glucan-branching enzyme activity.

10. The recombinant microorganism of claim **1**, wherein the recombinant microorganism is capable of producing glycogen as a mass percent of dry cell weight (DCW) in an amount of at least about 25% DCW.

11. A method of producing glycogen comprising culturing the recombinant microorganism of claim **1**.

12. The recombinant microorganism of claim **1**, wherein the recombinant microorganism exhibits a native 1,4-alpha-glucan-branching enzyme expression level and native 1,4-alpha-glucan-branching enzyme activity.

13. The recombinant microorganism of claim **12**, wherein the recombinant microorganism is capable of producing glycogen as a mass percent of dry cell weight (DCW) in an amount of at least about 25% DCW.

14. The recombinant microorganism of claim **13**, wherein 5 the glucose-1-phosphate adenylyltransferase is allosterically regulated by a compound selected from the group consisting of adenosine diphosphate and adenosine monophosphate.

15. The recombinant microorganism of claim **13**, wherein the glucose-1-phosphate adenylyltransferase comprises a 10 sequence at least 90% identical to SEQ ID NO:2.

16. The recombinant microorganism of claim **13**, wherein the glucose-1-phosphate adenylyltransferase comprises a glycine at a position corresponding to position 336 of SEQ ID NO:2.

17. The recombinant microorganism of claim 13, wherein the nucleic acid comprises a glucose-1-phosphate adenylyltransferase coding sequence operably connected to a promoter not operably connected to the coding sequence in nature. 20

18. The recombinant microorganism of claim **17**, wherein the promoter is an inducible promoter.

19. The recombinant microorganism of claim **17**, wherein the promoter is a constitutive promoter.

20. A method of producing glycogen comprising culturing 25 the recombinant microorganism of claim **13**.

* * * * *