${ }_{(12)}$ United States Patent
 Pfleger et al.

(10) Patent No.: US 10,370,690 B2
(45) Date of Patent: *Aug. 6, 2019
(54) MICROORGANISMS FOR PRODUCING GLYCOGEN AND METHODS OF USING SAME
(71) Applicant: WISCONSIN ALUMNI RESEARCH FOUNDATION, Madison, WI (US)
(72) Inventors: Brian F. Pfleger, Madison, WI (US); Andrew L. Markley, Madison, WI (US)

Assignee: WISCONSIN ALUMNI RESEARCH FOUNDATION, Madison, WI (US)
(*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.

This patent is subject to a terminal disclaimer.
(21) Appl. No.: $\mathbf{1 6} / \mathbf{2 1 3}, \mathbf{3 1 9}$

Prior Publication Data
US 2019/0093138 A1 Mar. 28, 2019

Related U.S. Application Data
(63) Continuation of application No. $15 / 366,676$, filed on Dec. 1, 2016
(60) Provisional application No. 62/262,106, filed on Dec. 2, 2015.
(51) Int. Cl.

C12P 19/04	(2006.01)
C12N 1/20	(2006.01)
C12N 9/12	(2006.01)

(52) U.S. Cl.

CPC \qquad C12P 19/04 (2013.01); C12N 1/20 (2013.01); C12N 9/1241 (2013.01); C12Y 207/07027 (2013.01)
(58) Field of Classification Search

None
See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS

2016/0333384 A1* 11/2016 Silverman A23K 20/163
OTHER PUBLICATIONS
Diaz-Troya et al., "Redox regulation of glycogen biosynthesis in the cyanobacterium Synechocystis sp. PCC 6803: Analysis of the AGP and glycogen synthases", Molecular Plant, vol. 7, No. 1, pp. 87-100, 2014 (Year: 2014).*
Aikawa et al., "Improving polyglucan production in cyanobacteria and microalgae via cultivation design and metabolic engineering", Biotechnology Journal, vol. 10, pp. 886-898, 2015 (Year: 2015).*

* cited by examiner

Primary Examiner - Richard C Ekstrom
(74) Attorney, Agent, or Firm - Daniel A. Blasiole; DeWitt LLP

(57)

ABSTRACT
Recombinant microorganisms configured for increased glycogen production. The recombinant microorganisms comprise a recombinant nucleic acid configured to express or overexpress a glucose-1-phosphate adenylyltransferase. The recombinant microorganisms produce an increased amount of glycogen compared to a corresponding microorganism not comprising the recombinant nucleic acid.

20 Claims, 6 Drawing Sheets
Specification includes a Sequence Listing.

FIG. 1A

FIG. 1B

FIG. 1 C

1. WT
2. $\triangle \mathrm{GigC}$
3. $\operatorname{Lac94} \mathrm{GIgC}+\mathrm{CLac} 143 \mathrm{FBAFBP} \quad 0 \mathrm{mMIPTG}$
4. cLac94 GlgC 0 mMIPTG
5. cLac94 GlgC + CLac143 FBAFBP 0.5 mMIPTG
6. cLac94 GlgC
0.5 mMIPTG

FIG. 2

FIG. 4

FIG. 5

FIG. 6

FIG. 7A

FIG. 7 B

MICROORGANISMS FOR PRODUCING GLYCOGEN AND METHODS OF USING SAME

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH

This invention was made with government support under GE01215871 and EFRI1240268 awarded by the National Science Foundation. The government has certain rights in the invention.

FIELD OF THE INVENTION

The invention is directed to recombinant microorganisms configured for producing high levels of glycogen and methods of using the recombinant microorganisms for the production of glycogen or its byproducts.

BACKGROUND

Advances in microbe engineering for the production of biofuels, chemicals, and therapeutics have spurred investment in the production of a wide variety of commodities from biological sources (Zhang F, Rodriguez S, Keasling J D. 2011. Curr. Opin. Biotechnol. 22(6):775-83). Heterotrophic microbes comprise the vast majority of microorganisms currently utilized for product generation and require a carbohydrate source for carbon and energy that can account for a significant proportion ($\sim 60 \%$) of input costs (Pimentel D, Patzek T W. 2008. Ethanol production: energy and economic issues related to U.S. and Brazilian sugarcane biofuels. Springer, Amsterdam, Netherlands.). Such carbohydrate feedstocks are typically derived from agricultural crops, primarily sugarcane, sugar beet, and corn, although lignocellulosic materials are under extensive investigation as alternative feedstocks (Sims R, Taylor M. 2008. From 1st to 2nd generation biofuel technologies. IEA, Paris, France). While biologically produced fuels and chemicals hold the promise of increased sustainability and reduced CO_{2} footprints, current feedstock sources place biotechnological processes in competition with agricultural croplands and food markets. The development of biological alternatives to standard petroleum-based fuels and chemicals has therefore been criticized for its capacity to increase food cost and instabilities (Timilsina G R, Beghin J C, van der Mensbrugghe D, Mevel S. 2010. The impacts of biofuel targets on land-use change and food supply. The World Bank Development Research Group, Washington, D.C.). Indeed, in recent years, sugar prices have increased and fluctuated greatly in global food, driven in part by increased demands for biofuel production.

Photosynthetic microorganisms (cyanobacteria and algae) have been proposed as alternative sources for the creation of biofuel-like compounds or industrial feedstocks (Radakovits R, Jinkerson R E, Darzins A, Posewitz M C. 2010. Eukaryot. Cell $9: 486-501$), in part because they possess many advantages over traditional terrestrial plants with regard to targeted metabolite production. For example, the photosynthetic efficiency of cyanobacteria is up to an order of magnitude higher than that of plants (Zhu X G, Long S P, Ort D R. 2010. Annu. Rev. Plant Biol. 61:235-261) (Zhu X G, Long S P, Ort D R. 2008. Curr. Opin. Biotechnol. 19:153159.), and cyanobacteria do not require support tissues that further reduce productive output (e.g., roots/stems). Cyanobacteria are genetically tractable, allowing for rapid engineering and the selection of desirable strains. Finally, cya-
nobacteria are aquatic microbes with minimal nutritional requirements and can therefore be cultivated in locations that do not compete with traditional agricultural crops. While cyanobacteria and algae share many similar features in this context, the use of algal species for biofuel feedstocks has been explored in much greater detail, partly because of their relatively high lipid content (Sheehan J, Dunahay T, Benemann J, Roessler P. 1998. Look back at the U.S. Department of Energy's aquatic species program: biodiesel from algae. Close-out report NREL/TP-580-24190. National Renewable Energy Laboratory, Golden, Colo.), although many cyanobacterial species feature relative simplicity and higher growth rates.

Glycogen that accumulates in microorganisms can serve as a valuable feedstock for the production of chemicals and biofuels. Glycogen can be converted to ethanol or other chemicals, for example, through saccharification and fermentation processes (Aikawa et al. Energ Environ Sci 2013, 6:1844-1849) (Choi et al. Bioresour Technol 2010, 101: 5330-5336) (Harun et al. Appl Energy 2011, 88:3464-3467) (Ho et al. Bioresour Technol 2013, 145:142-149) (Miranda et al. Bioresour Technol 2012, 104:342-348).

There is a need for microorganisms capable of producing high amounts of glycogen or other carbohydrates, particularly through photosynthetic processes.

SUMMARY OF THE INVENTION

The present invention is directed at least in part to microorganisms, such as photosynthetic microorganisms, that are capable of producing high levels of glycogen; methods of producing glycogen; and methods for selecting microorganisms that produce high levels of glycogen or other metabolic products.

The objects and advantages of the invention will appear more fully from the following detailed description of the preferred embodiment of the invention made in conjunction with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIGS. 1A-1C show glycogen production in control strains and strains of the invention in the presence of $0,0.5$ or 5 mM isopropyl β-D-1-thiogalactopyranoside (IPTG).

FIG. 2 shows results of a glycogen production screen of the invention with control strains and strains of the invention induced to produce glycogen in the presence of ambient CO_{2} and 0 or 0.5 mM (IPTG).

FIG. 3 shows results of a glycogen production screen of the invention with control strains and strains of the invention induced to produce glycogen in the presence of $10 \% \mathrm{CO}_{2}$ and $0,0.1$, or 0.5 mM (IPTG).

FIG. 4 shows intracellular levels of glycogen as hydrolyzed glucose from the strains analyzed in FIG. 3.

FIG. 5 shows growth rates of a control strain and a strain of the invention grown in the presence of 0 mM or 0.1 mM IPTG.
FIGS. 6, 7A, and 7B show levels of glucose hydrolyzed from glycogen from a control strain and a strain of the invention grown in the presence of 0 mM or 0.1 mM IPTG for various lengths of time.

DETAILED DESCRIPTION OF THE INVENTION

The invention is directed at least in part to microorganisms capable of enhanced production of glycogen.

The microorganism of the present invention may include any microorganism capable of making glycogen. The microorganism may be eukaryotic, such as yeast, or prokaryotic, such as bacteria or archaea. Among bacteria, gram-positive, gram-negative, and ungrouped bacteria are suitable. Phototrophs, chemotrophs, heterotrophs, and autotrophs (e.g., chemoautotrophs, photoautotrophs, chemoheterotrophs, photoheterotrophs) are suitable. The phototroph may be an anoxygenic photosynthetic microorganism or an oxygenic photosynthetic mircoorganism. The oxygenic photosynthetic microorganism may be a cyanobacterium or a microalga. Suitable cyanobacteria include those from the genuses Agmenellum, Anabaena, Aphanocapsa, Arthrosprira, Gloeocapsa, Haplosiphon, Mastigocladus, Nostoc, Oscillatoria, Prochlorococcus, Scytonema, Synechococcus, and Synechocystis. Preferred cyanobacteria include those selected from the group consisting of Synechococcus spp., spp., Synechocystis spp., and Nostoc spp. Particularly suitable examples of Synechococcus spp. include Synechococcus sp. PCC 7942 and Synechococcus sp. PCC 7002. A particularly suitable example of Synechocystis spp. includes Synechocystis sp. PCC 6803. A benefit of photoautotrophs such as cyanobacteria is that they require only CO_{2} as a carbon source and light for energy and are not dependent on food-based commodities or other types of biomass for which there is a growing high demand.

The microorganisms of the invention may be modified to increase expression of one or more enzymes. Modifying the microorganism to increase expression of an enzyme can be performed using any methods currently known in the art or discovered in the future. Examples include genetically modifying the microorganism and culturing the microorganism under conditions or in the presence of factors that increase expression of the enzyme. Suitable methods for genetic modification include but are not limited to placing the coding sequence under the control of a more active promoter (either inducible or constitutive), increasing gene copy number, introducing a translational enhancer (see, e.g., Olins et al. Journal of Biological Chemistry, 1989, 264(29): 16973-16976), and/or increasing expression of transactivators. Increasing gene copy number can be performed by introducing additional copies of the gene to the microorganism, i.e., by incorporating one or more exogenous copies of the native gene or a heterologous homolog thereof into the microbial genome, by introducing such copies to the microorganism on a plasmid or other vector, or by other means. "Exogenous" used in reference to a genetic element means the genetic element is either not present in the native organism or is not present in the native organism in the same configuration. "Heterologous" used in reference to a genetic element means that the genetic element is derived from a different species. A promoter that controls a particular coding sequence is herein described as being "operationally connected" to the coding sequence.

The microorganisms of the invention may include at least one recombinant nucleic acid configured to express or overexpress a particular enzyme. "Recombinant" as used herein with reference to a nucleic acid molecule or polypeptide is one that has a sequence that is not naturally occurring, such as a sequence that made by an artificial combination of two otherwise separated segments of sequence from the same or different organisms, or a sequence made by artificial combination of a naturally occurring sequence with a non-naturally occurring sequence. This artificial combination can be achieved, for example, by chemical synthesis or by the artificial manipulation of isolated segments of nucleic acid molecules or
polypeptides, such as genetic engineering techniques. "Recombinant" is also used to describe nucleic acid molecules that have been artificially modified but contain the same regulatory sequences and coding regions that are found in the organism from which the nucleic acid was isolated. A recombinant cell or microorganism is one that contains a recombinant nucleic acid molecule or polypeptide. "Overexpress" as used herein means that a particular gene product is produced at a higher level in one cell, such as a recombinant cell, than in a corresponding microorganism. For example, a microorganism that includes a recombinant nucleic acid configured to overexpress an enzyme produces the enzyme at a greater amount than a microorganism that does not include the recombinant nucleic acid.

As used herein, "corresponding microorganism" refers to a microorganism of the same species having the same or substantially same genetic and proteomic composition as a microorganism of the invention, with the exception of genetic and proteomic differences resulting from the modifications described herein for the microorganisms of the invention. In some versions, the corresponding microorganism is the native microorganism. "Native" in this context refers to the natural, unmodified microorganism as it exists in nature.

Some microorganisms of the invention include at least one recombinant nucleic acid configured to express or overexpress a glucose-1-phosphate adenylyltransferase. The recombinant nucleic acid may comprise a recombinant glu-cose-1-phosphate adenylyltransferase gene. "Gene" refers to a nucleic acid sequence capable of producing a gene product and may include such genetic elements as a coding sequence together with any other genetic elements required for transcription and/or translation of the coding sequence. Such genetic elements may include a promoter, an enhancer, and/or a ribosome binding site (RBS), among others. The recombinant gene preferably comprises at least one sequence difference from the natural gene.

Glucose-1-phosphate adenylyltransferase include enzymes classified under EC 2.7.7.27. Glucose-1-phosphate adenylyltransferase include enzymes that catalyze the conversion of adenosine triphosphate (ATP) and α-D-glucose 1 -phosphate to diphosphate and adenosine diphosphate (ADP)-glucose. In some versions, the microorganism is modified to harbor a nucleic acid encoding a glucose-1phosphate adenylyltransferase from Escherichia coli or a homolog thereof. An exemplary coding sequence for a glucose-1-phosphate adenylyltransferase (glgC) from E. coli is represented by SEQ ID NO: 1. An exemplary amino acid sequence for a glucose-1-phosphate adenylyltransferase from E. coli (GlgC) is represented by SEQ ID NO:2. The native glucose-1-phosphate adenylyltransferase from E. coli has been shown to be activated by fructose-1,6-bisphosphate and inhibited by adenosine monophosphate (AMP) and ADP through allosteric regulation. Homologs of the E. coli glu-cose-1-phosphate adenylyltransferase include orthologs and paralogs of $\mathrm{Glg} \mathrm{C} / \mathrm{glg} \mathrm{C}$ having glucose-1-phosphate adenylyltransferase activity. Homologs of the E. coli glucose-1phosphate adenylyltransferase also include enzymes having an amino acid sequence at least about $80 \%, 85 \%, 90 \%, 95 \%$, $97 \%, 98 \%, 99 \%$ or more identical to SEQ ID NO:2. Sequences having these percent identities can be obtained by aligning SEQ ID NO:2 to the sequences of E. coli glucose-1-phosphate adenylyltransferase orthologs and/or paralogs having glucose-1-phosphate adenylyltransferase activity to determine which positions in the enzyme are amenable to
mutation (i.e., substitution, deletion, addition, etc.) and the identities of the substituted or added residues at these positions.

In preferred versions of the invention, the glucose-1phosphate adenylyltransferase expressed by the microorganism maintains allosteric regulation by AMP and/or ADP. In particularly preferred versions of the invention, the glucose-1-phosphate adenylyltransferase expressed by the microorganism maintains full allosteric regulation by AMP and/or ADP. The maintenance of allosteric regulation with the glucose-1-phosphate adenylyltransferase is determined with respect to the wild-type glucose-1-phosphate adenylyltransferase in the type of organism from which the glucose-1phosphate adenylyltransferase is derived, wherein "wildtype" refers to the allele that encodes the phenotype most common in the natural population. Variants or "mutants" of glucose-1-phosphate adenylyltransferase resistant to allosteric regulation by AMP and ADP are known. See, e.g., Leung P, Lee Y M, Greenberg E, Esch K, Boylan S, Preiss J. Cloning and expression of the Escherichia coli glgC gene from a mutant containing an ADPglucose pyrophosphorylase with altered allosteric properties. J Bacterial. 1986 July; 167(1):82-8. One such variant is the E. coli GlgC variant having a G336D substitution (coding sequence: SEQ ID $\mathrm{NO}: 3$; protein sequence: SEQ ID NO:4). The G336D variant has reduced allosteric regulation with respect to the wildtype E. coli glg C represented by SEQ ID NO:2 and is a more active form of the enzyme. Expression of the G336D variant in cyanobacteria, however, adversely affects growth rate. Expression of glucose-1-phosphate adenylyltransferases that have a glycine at a position corresponding to position 336 of SEQ ID NO:2 (E. coli GlgC) are therefore preferred. In some versions, however, expression of glucose-1-phosphate adenylyltransferases that have an amino acid other than glycine at a position corresponding to position 336 of SEQ ID NO:2 (E. coli GlgC) are acceptable. Exemplary amino acids other than glycine include acidic amino acids, such as glutamic acid and aspartic acid, among others. Identification of the corresponding position in a given sequence can be found by aligning the sequence with SEQ ID NO:2.

The glucose-1-phosphate adenylyltransferase expressed by the microorganism preferably maintains allosteric regulation by AMP and/or ADP to an extent such that 50% inhibition of the glucose-1-phosphate adenylyltransferase occurs at an AMP or ADP concentration +/- about 10 -fold, 9 -fold, 8 -fold, 7 -fold, 6 -fold, 5 -fold, 4 -fold, 3 -fold, 2 -fold, 1.5 -fold, or 1.1 -fold of the AMP or ADP concentration that induces 50% inhibition of the wild-type glucose-1-phosphate adenylyltransferase.

In some versions of the invention, the glucose-1-phosphate adenylyltransferase expressed by the microorganism maintains allosteric regulation by AMP, ADP, and/or fruc-tose-1,6-bisphosphate.

Exogenous, heterologous nucleic acids encoding enzymes to be expressed in the microorganism are preferably codonoptimized for the particular microorganism in which they are introduced. Codon optimization can be performed for any nucleic acid by a number of programs, including "GENEGPS"-brand expression optimization algorithm by DNA 2.0 (Menlo Park, Calif.), "GENEOPTIMIZER"-brand gene optimization software by Life Technologies (Grand Island, N.Y.), and "OPTIMUMGENE"-brand gene design system by GenScript (Piscataway, N.J.). Other codon optimization programs or services are well known and commercially available.

In some versions of the invention, the microorganism exhibits a native glycogen synthase expression level. "Native glycogen synthase expression level" refers to the level of glycogen synthase expression in the native, unmodified microorganism. In such versions, the microorganism is not modified to overexpress the glycogen synthase, wherein overexpression is defined with respect to expression in the native microorganism. Examples of a glycogen synthase in bacteria such as E. coli and cyanobacteria include products of glgA genes. Examples of products of glgA genes include glgA1 (SEQ ID NO:6) and glgA2 (SEQ ID NO:8) of Synechococcus sp. PCC 7002, encoded by glgA1 (SEQ ID NO:5) and glgA2 (SEQ ID NO:7), respectively. Accordingly, in at least some versions of the invention in which the microorganism exhibits a native glycogen synthase expression level the microorganism contains the native glgA gene(s) and/or does not include a recombinant glgA gene configured to overexpress glgA.
In some versions of the invention, the microorganism exhibits native glycogen synthase activity. "Native glycogen synthase activity" refers to the level of glycogen synthase activity in the native, unmodified microorganism. Glycogen synthase activity in the microorganism may be determined by the method described by Leung et al. (Leung P, Lee Y M, Greenberg E, Esch K, Boylan S, Preiss J. Cloning and expression of the Escherichia coli glgC gene from a mutant containing an ADPglucose pyrophosphorylase with altered allosteric properties. J Bacteriol. 1986 July; 167(1):82-8) and Kawajuchi et al. (Kawaguchi K, Fox J, Holmes E, Boyer C, Preiss J. De novo synthesis of Escherichia coli glycogen is due to primer associated with glycogen synthase and activation by branching enzyme. Arch Biochem Biophys. 1978 October; 190(2):385-97).
In some versions of the invention, the microorganism exhibits a native 1,4-alpha-glucan-branching enzyme expression level. "Native 1,4-alpha-glucan-branching enzyme expression level expression level" refers to the level of 1,4 -alpha-glucan-branching enzyme expression in the native, unmodified microorganism. In such versions, the microorganism is not modified to overexpress the 1,4 -alpha-glucan-branching enzyme, wherein overexpression is defined with respect to expression in the native (nonmodified) microorganism. Examples of a 1,4 -alpha-glucanbranching enzyme in bacteria such as E. coli and cyanobacteria include products of glgB genes. An example of a product of a glgB gene includes glgB (SEQ ID NO:10) of Synechococcus sp. PCC 7002, which is encoded by glgB (SEQ ID NO:9). Accordingly, in at least some versions of the invention in which the microorganism exhibits a native 1,4-alpha-glucan-branching enzyme expression level the microorganism contains the native glgB gene(s) and/or does not include a recombinant glgB gene configured to overexpress glgB.
In some versions of the invention, the microorganism exhibits native 1,4 -alpha-glucan-branching enzyme activity. "Native 1,4-alpha-glucan-branching enzyme activity" refers to the level of 1,4 -alpha-glucan-branching enzyme activity in the native, unmodified microorganism. 1,4-Alpha-glucanbranching enzyme activity in the microorganism may be determined by the method described by Leung et al. (Leung P, Lee Y M, Greenberg E, Esch K, Boylan S, Preiss J. Cloning and expression of the Escherichia coli glgC gene from a mutant containing an ADPglucose pyrophosphorylase with altered allosteric properties. J Bacteriol. 1986 July; 167(1):82-8) and Boyer et al. (Boyer C, Preiss J. Biosynthesis of bacterial glycogen. Purification and properties of
the Escherichia coli B alpha-1,4,-glucan: alpha-1,4-glucan 6-glycosyltansferase. Biochemistry. 1977 Aug. 9; 16(16): 3693-9.).

In some versions of the invention, the microorganism exhibits a native fructose-bisphosphate aldolase enzyme expression level. "Native fructose-bisphosphate aldolase enzyme expression level expression level" refers to the level of fructose-bisphosphate aldolase enzyme expression in the native, unmodified microorganism. In such versions, the microorganism is not modified to overexpress the fructosebisphosphate aldolase enzyme, wherein overexpression is defined with respect to expression in the native (nonmodified) microorganism. Examples of a fructose-bisphosphate aldolase enzyme in bacteria such as E. coli and cyanobacteria include products of fba genes. An example of a product of a fba gene includes fba (SEQ ID NO:12) of Synechocystis sp. PCC 6803, which is encoded by fba (SEQ ID NO:11). Accordingly, in at least some versions of the invention in which the microorganism exhibits a native fructose-bisphosphate aldolase enzyme expression level the microorganism contains the native fba gene(s) and/or does not include a recombinant fba gene configured to overexpress fba. In some versions of the invention, the microorganism exhibits native fructose-bisphosphate aldolase enzyme activity.

In some versions of the invention, the microorganism exhibits a native fructose 1,6-bisphosphatase enzyme expression level. "Native fructose 1,6-bisphosphatase enzyme expression level expression level" refers to the level of fructose 1,6 -bisphosphatase enzyme expression in the native, unmodified microorganism. In such versions, the microorganism is not modified to overexpress the fructose 1,6-bisphosphatase enzyme, wherein overexpression is defined with respect to expression in the native (nonmodified) microorganism. Examples of a fructose 1,6-bisphosphatase enzyme in bacteria such as E. coli and cyanobacteria include products of fbp genes. An example of a product of a fbp gene includes fbp (SEQ ID NO:14) of Synechocystis sp. PCC 6803, which is encoded by fbp (SEQ ID NO:11). Accordingly, in at least some versions of the invention in which the microorganism exhibits a native fructose 1,6 -bisphosphatase enzyme expression level the microorganism contains the native fbp gene(s) and/or does not include a recombinant fba gene configured to overexpress fbp. In some versions of the invention, the microorganism exhibits native fructose 1,6 -bisphosphatase enzyme activity.

The microorganism of the invention may comprise modifications that reduce or ablate the activity of gene products of one or more genes. Such a modification that that reduces or ablates the activity of gene products of one or more genes is referred to herein as a "functional deletion" of the gene product. "Gene product" refers to a protein or polypeptide encoded and produced by a particular gene.

One of ordinary skill in the art will appreciate that there are many well-known ways to functionally delete a gene product. For example, functional deletion can be accomplished by introducing one or more genetic modifications. As used herein, "genetic modifications" refer to any differences in the nucleic acid composition of a cell, whether in the cell's native chromosome or in endogenous or exogenous non-chromosomal plasmids harbored within the cell. Examples of genetic modifications that may result in a functionally deleted gene product include but are not limited to mutations such as substitutions, partial or complete deletions, insertions, or other variations to a coding sequence or a sequence controlling the transcription or translation of a
coding sequence; placing a coding sequence under the control of a less active promoter; blocking transcription of the gene with a trans-acting DNA binding protein such as a TAL effector or CRISPR guided Cas9; expressing ribozymes or antisense sequences that target the mRNA of the gene of interest; and tagging proteins for rapid proteolytic decay (Cameron D E, Collins J J. Tunable protein degradation in bacteria. Nat Biotechnol. 2014 December; 32(12):1276-81.), etc. In some versions, a gene or coding sequence can be replaced with a selection marker or screenable marker. Various methods for introducing the genetic modifications described above are well known in the art and include homologous recombination, among other mechanisms. See, e.g., Green et al., Molecular Cloning: A laboratory manual, $4^{\text {th }}$ ed., Cold Spring Harbor Laboratory Press (2012) and Sambrook et al., Molecular Cloning: A Laboratory Manual, $3^{r d}$ ed., Cold Spring Harbor Laboratory Press (2001). Various other genetic modifications that functionally delete a gene product are described in the examples below. Functional deletion can also be accomplished by inhibiting the activity of the gene product, for example, by chemically inhibiting a gene product with a small molecule inhibitor, by expressing a protein that interferes with the activity of the gene product, or by other means.

In certain versions of the invention, the functionally deleted gene product may have less than about 95%, less than about 90%, less than about 85%, less than about 80%, less than about 75%, less than about 70%, less than about 65%, less than about 60%, less than about 55%, less than about 50%, less than about 45%, less than about 40%, less than about 35%, less than about 30%, less than about 25%, less than about 20%, less than about 15%, less than about 10%, less than about 5%, less than about 1%, or about 0% of the activity of the non-functionally deleted gene product.

In certain versions of the invention, a cell with a functionally deleted gene product may have less than about 95%, less than about 90%, less than about 85%, less than about 80%, less than about 75%, less than about 70%, less than about 65%, less than about 60%, less than about 55%, less than about 50%, less than about 45%, less than about 40%, less than about 35%, less than about 30%, less than about 25%, less than about 20%, less than about 15%, less than about 10%, less than about 5%, less than about 1%, or about 0% of the activity of the gene product compared to a cell with the non-functionally deleted gene product.

In certain versions of the invention, the functionally deleted gene product may be expressed at an amount less than about 95%, less than about 90%, less than about 85%, less than about 80%, less than about 75%, less than about 70%, less than about 65%, less than about 60%, less than about 55%, less than about 50%, less than about 45%, less than about 40%, less than about 35%, less than about 30%, less than about 25%, less than about 20%, less than about 15%, less than about 10%, less than about 5%, less than about 1%, or about 0% of the amount of the non-functionally deleted gene product.

In certain versions of the invention, the functionally deleted gene product may result from a genetic modification in which at least 1 , at least 2 , at least 3 , at least 4 , at least 5 , at least 10 , at least 20 , at least 30 , at least 40 , at least 50 , or more nonsynonymous substitutions are present in the gene or coding sequence of the gene product.

In certain versions of the invention, the functionally deleted gene product may result from a genetic modification in which at least 1 , at least 2 , at least 3 , at least 4 , at least 5 ,
at least 10 , at least 20 , at least 30 , at least 40 , at least 50 , or more bases are inserted in the gene or coding sequence of the gene product.

In certain versions of the invention, the functionally deleted gene product may result from a genetic modification in which at least about 1%, at least about 5%, at least about 10%, at least about 15%, at least about 20%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 50%, at least about 55%, at least about 60%, at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, or about 100% of the gene product's gene or coding sequence is deleted or mutated.

In certain versions of the invention, the functionally deleted gene product may result from a genetic modification in which at least about 1%, at least about 5%, at least about 10%, at least about 15%, at least about 20%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 50%, at least about 55%, at least about 60%, at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, or about 100% of a promoter driving expression of the gene product is deleted or mutated.

In certain versions of the invention, the functionally deleted gene product may result from a genetic modification in which at least about 1%, at least about 5%, at least about 10%, at least about 15%, at least about 20%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 50%, at least about 55%, at least about 60%, at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, or about 100% of an enhancer controlling transcription of the gene product's gene is deleted or mutated.

In certain versions of the invention, the functionally deleted gene product may result from a genetic modification in which at least about 1%, at least about 5%, at least about 10%, at least about 15%, at least about 20%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 50%, at least about 55%, at least about 60%, at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, or about 100% of a sequence controlling translation of gene product's mRNA is deleted or mutated.

In certain versions of the invention, the decreased activity or expression of the functionally deleted gene product is determined with respect to the activity or expression of the gene product in its unaltered state as found in nature. In certain versions of the invention, the decreased activity or expression of the functionally deleted gene product is determined with respect to the activity or expression of the gene product in its form in a corresponding microorganism. In certain versions, the genetic modifications giving rise to a functionally deleted gene product are determined with respect to the gene or coding sequence in its unaltered state as found in nature. In certain versions, the genetic modifications giving rise to a functionally deleted gene product are determined with respect to the gene or coding sequence in its form in a corresponding microorganism.

Homologs include genes or gene products (including enzymes) that are derived, naturally or artificially, from a common ancestral gene or gene product. Homology is generally inferred from sequence similarity between two or more genes or gene products. Homology between genes may be inferred from sequence similarity between the products of the genes. The precise percentage of similarity between
sequences that is useful in establishing homology varies with the gene or gene product at issue, but as little as 25% sequence similarity (e.g., identity) over $50,100,150$ or more residues (nucleotides or amino acids) is routinely used to establish homology (e.g., over the full length of the two sequences to be compared). Higher levels of sequence similarity (e.g., identity), e.g., $30 \%, 35 \% 40 \%, 45 \% 50 \%$, $55 \%, 60 \%, 65 \%, 70 \%, 75 \%, 80 \%, 85 \%, 90 \%, 95 \%$, or 99% or more, can also be used to establish homology. Accordingly, homologs of the coding sequences, genes, or gene products described herein include coding sequences, genes, or gene products, respectively, having at least about 30%, $35 \%, 40 \%, 45 \%, 50 \%, 55 \%, 60 \%, 65 \%, 70 \%, 75 \%, 80 \%$, $85 \%, 90 \%, 95 \%$, or 99% identity to the coding sequences, genes, or gene products, respectively, described herein. In some versions, homologs of the genes described herein include genes that have gene products at least about 30%, $35 \%, 40 \%, 45 \%, 50 \%, 55 \%, 60 \%, 65 \%, 70 \%, 75 \%, 80 \%$, $85 \%, 90 \%, 95 \%$, or 99% identical to the gene products of the genes described herein. Methods for determining sequence similarity percentages (e.g., BLASTP and BLASTN using default parameters) are described herein and are generally available. The homologous gene products should demonstrate comparable activities and, if an enzyme, participate in the same or analogous pathways. "Orthologs" are genes or coding sequences thereof in different species that evolved from a common ancestral gene by speciation. Normally, orthologs retain the same or similar function in the course of evolution. As used herein "orthologs" are included in the term "homologs." Homologs also include paralogs.

For sequence comparison and homology determination, one sequence typically acts as a reference sequence to which test sequences are compared. When using a sequence comparison algorithm, test and reference sequences are input into a computer, subsequence coordinates are designated, if necessary, and sequence algorithm program parameters are designated. The sequence comparison algorithm then calculates the percent sequence identity for the test sequence(s) relative to the reference sequence based on the designated program parameters. A typical reference sequence of the invention is a nucleic acid or amino acid sequence corresponding to coding sequences, genes, or gene products described herein.

Optimal alignment of sequences for comparison can be conducted, e.g., by the local homology algorithm of Smith \& Waterman, Adv. Appl. Math. 2:482 (1981), by the homology alignment algorithm of Needleman \& Wunsch, J. Mol. Biol. 48:443 (1970), by the search for similarity method of Pearson \& Lipman, Proc. Nat'l. Acad. Sci. USA 85:2444 (1988), by computerized implementations of these algorithms (GAP, BESTFIT, FASTA, and TFASTA in the Wisconsin Genetics Software Package, Genetics Computer Group, 575 Science Dr., Madison, Wis.), or by visual inspection (see Current Protocols in Molecular Biology, F. M. Ausubel et al., eds., Current Protocols, a joint venture between Greene Publishing Associates, Inc. and John Wiley \& Sons, Inc., (supplemented through 2008)).

One example of an algorithm that is suitable for determining percent sequence identity and sequence similarity for purposes of defining homologs is the BLAST algorithm, which is described in Altschul et al., J. Mol. Biol. 215:403410 (1990). Software for performing BLAST analyses is publicly available through the National Center for Biotechnology Information. This algorithm involves first identifying high scoring sequence pairs (HSPs) by identifying short words of length W in the query sequence, which either match or satisfy some positive-valued threshold score T
when aligned with a word of the same length in a database sequence. T is referred to as the neighborhood word score threshold (Altschul et al., supra). These initial neighborhood word hits act as seeds for initiating searches to find longer HSPs containing them. The word hits are then extended in both directions along each sequence for as far as the cumulative alignment score can be increased. Cumulative scores are calculated using, for nucleotide sequences, the parameters M (reward score for a pair of matching residues; always >0) and N (penalty score for mismatching residues; always <0). For amino acid sequences, a scoring matrix is used to calculate the cumulative score. Extension of the word hits in each direction are halted when: the cumulative alignment score falls off by the quantity X from its maximum achieved value; the cumulative score goes to zero or below, due to the accumulation of one or more negativescoring residue alignments; or the end of either sequence is reached. The BLAST algorithm parameters W , T, and X determine the sensitivity and speed of the alignment. The BLASTN program (for nucleotide sequences) uses as defaults a wordlength (W) of 11, an expectation (E) of 10 , a cutoff of $100, \mathrm{M}=5, \mathrm{~N}=-4$, and a comparison of both strands. For amino acid sequences, the BLASTP program uses as defaults a wordlength (W) of 3, an expectation (E) of 10 , and the BLOSUM62 scoring matrix (see Henikoff \& Henikoff (1989) Proc. Natl. Acad. Sci. USA 89:10915).

In addition to calculating percent sequence identity, the BLAST algorithm also performs a statistical analysis of the similarity between two sequences (see, e.g., Karlin \& Altschul, Proc. Natl. Acad. Sci. USA 90:5873-5787 (1993)). One measure of similarity provided by the BLAST algorithm is the smallest sum probability $(\mathrm{P}(\mathrm{N})$), which provides an indication of the probability by which a match between two nucleotide or amino acid sequences would occur by chance. For example, a nucleic acid is considered similar to a reference sequence if the smallest sum probability in a comparison of the test nucleic acid to the reference nucleic acid is less than about 0.1 , more preferably less than about 0.01 , and most preferably less than about 0.001 . The abovedescribed techniques are useful in identifying homologous sequences for use in the methods described herein.

The terms "identical" or "percent identity", in the context of two or more nucleic acid or polypeptide sequences, refers to two or more sequences or subsequences that are the same or have a specified percentage of amino acid residues or nucleotides that are the same, when compared and aligned for maximum correspondence, as measured using one of the sequence comparison algorithms described above (or other algorithms available to persons of skill) or by visual inspection.

The phrase "substantially identical", in the context of two nucleic acids or polypeptides refers to two or more sequences or subsequences that have at least about 60%, about 65%, about 70%, about 75%, about 80%, about 85%, about 90 , about 95%, about 98%, or about 99% or more nucleotide or amino acid residue identity, when compared and aligned for maximum correspondence, as measured using a sequence comparison algorithm or by visual inspection. Such "substantially identical" sequences are typically considered to be "homologous" without reference to actual ancestry. Preferably, the "substantial identity" exists over a region of the sequences that is at least about 50 residues in length, more preferably over a region of at least about 100 residues, and most preferably, the sequences are substantially identical over at least about 150 residues, at least about 250 residues, or over the full length of the two sequences to be compared.

Accordingly, homologs of the genes described herein include genes with gene products at least about $80 \%, 85 \%$, $90 \%, 95 \%, 97 \%, 98 \%, 99 \%$, or more identical to the gene products of the genes described herein.

In some versions, the microorganisms of the invention produce an increased amount of glycogen compared to a corresponding microorganism not comprising the modifications described herein. For example, the microorganisms of the invention may be capable of producing at least about 1.1 -fold, about 1.25 -fold, about 1.5 -fold, about 1.75 -fold, about 2 -fold, about 2.25 -fold, about 2.5 -fold, about 2.75 fold, about 3 -fold or more glycogen than a corresponding microorganism, and/or up to about 2.5 -fold, about 3 -fold, about 4-fold, about 5 -fold, about 10 -fold, or more glycogen than a corresponding microorganism.

In some versions, the microorganisms of the invention produce glycogen at an increased rate compared to a corresponding microorganism not comprising the modifications described herein. For example, the microorganisms of the invention may be capable of producing glycogen at a rate at least about 2 -fold, about 3 -fold, about 4 -fold, about 5 -fold, about 6 -fold, about 7 -fold, about 8 -fold, about 9 -fold or more than a corresponding microorganism, and/or up to about 5 -fold, about 10 -fold, about 12 -fold, about 15 -fold or more than a corresponding microorganism.

In some versions, the microorganisms of the invention produce glycogen at a rate of at least about $50 \mathrm{mg} / \mathrm{L} /$ day , about $100 \mathrm{mg} / \mathrm{L} /$ day, about $125 \mathrm{mg} / \mathrm{L} /$ day, about $150 \mathrm{mg} / \mathrm{L} /$ day, about $175 \mathrm{mg} / \mathrm{L} /$ day, about $200 \mathrm{mg} / \mathrm{L} /$ day, or more, and/or up to about $190 \mathrm{mg} / \mathrm{L} /$ day, about $200 \mathrm{mg} / \mathrm{L} /$ day, about $225 \mathrm{mg} / \mathrm{L} /$ day, about $250 \mathrm{mg} / \mathrm{L} /$ day, about $275 \mathrm{mg} / \mathrm{L} /$ day, about $300 \mathrm{mg} / \mathrm{L} /$ day or more.

In some versions, the microorganisms of the invention are capable of producing glycogen as a mass percent of dry cell weight (DCW) in an amount of at least about 10% DCW, at least about $15 \% \mathrm{DCW}$, at least about $20 \% \mathrm{DCW}$, at least about 25% DCW, at least about 26% DCW, at least about 27% DCW, at least about 28% DCW, at least about 29% DCW, at least about 30% DCW, at least about $31 \% \mathrm{DCW}$, at least about 32% DCW, at least about 33% DCW, at least about $34 \% \mathrm{DCW}$, or at about least $35 \% \mathrm{DCW}$ and/or up to about or at least about $31 \% \mathrm{DCW}$, about or at least about 32% DCW, about or at least about 33% DCW, about or at least about 34% DCW, about or at least about 35% DCW, about or at least about 36% DCW, about or at least about 37% DCW, about or at least about 38% DCW, about or at least about 39% DCW, or about or at least about 40% DCW.

In some versions, the microorganisms of the invention have a growth rate substantially the same as a corresponding microorganism when cultured under identical conditions, such that the modifications described herein do not substantially affect the growth rate. For example, the microorganisms of the invention may have a growth rate within about 40%, about 35%, about 30%, about 25%, about 20%, about 15%, about 10%, about 5%, about 3%, about 2%, or about 1% the growth rate of a corresponding microorganism when cultured under identical conditions. In some versions, the microorganisms of the invention have a growth rate of at least the growth rate of a corresponding microorganism when cultured under identical conditions.

In addition to the microorganism itself, the invention also provides methods of producing glycogen with the microorganisms of the present invention. The methods involve culturing the microorganism in conditions suitable for growth of the microorganism. Such conditions include providing suitable carbon and energy sources for the particular microorganism. Suitable carbon and energy sources for
particular types of microorganisms are described elsewhere herein for exemplary microorganisms and are otherwise known in the art.

The invention also provides methods of screening for production of glycogen or other metabolic products. The screening methods generally involve culturing microorganisms under conditions that promote production of the metabolic product, then stressing the microorganisms under stringent conditions that promote consumption of the metabolic product at a high metabolic rate, and then comparing the recovery rates of the microorganisms when reintroduced to more suitable growth conditions.

An exemplary screening method includes culturing microorganisms in the presence of a carbon source and a first amount of an energy source under conditions suitable for producing the metabolic product, then culturing the microorganisms in the presence of a second amount of the energy source under conditions suitable for consuming the metabolic product, then culturing the microorganisms in the presence of the carbon source and a third amount of the energy source and determining the relative growth of the microorganisms in the presence of the carbon source and the third amount of the energy source. The second amount of the energy source is preferably less than the first amount of the energy source, and the third amount of the energy source is preferably greater than the second amount of the energy source.

The metabolic product preferably comprises a product comprising reduced carbon that serves as a form of stored energy for the microorganism and is consumable by the microorganism for survival when a sufficient external energy source is lacking. Such products may include carbohydrates, lipids, and/or proteins. Exemplary carbohydrates may include simple carbohydrates such as monosaccharides or disaccharides or complex carbohydrates such as trisaccharides, tetrasaccharides, starch, or glycogen, among others. Exemplary lipids may include fatty acids, glycerol, or glycerides, among others.

The energy source may comprise a fermentable or oxidizable form of reduced molecules, if the microorganism is a chemotroph, or light, if the microorganism is an autotroph. The reduced molecules may be organic or inorganic. Examples of reduced organic molecules include reduced carbon, such as carbohydrates, lipids, proteins, methane, and other reduced organic molecules. Reduced organic molecules can be used for chemoorganotrophs. Examples of reduced inorganic molecules include iron(II), $\mathrm{Mn}^{2+}, \mathrm{H}_{2}$, sulfide $\left(\mathrm{H}_{2} \mathrm{~S}\right)$, inorganic sulfur (S_{0}), thiosulfate ($\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$), ammonia, and nitrite, among others. Reduced inorganic molecules can be used for chemolithotrophs.

The carbon source may comprise organic carbon, if the microorganism is a hetrotroph, or carbon dioxide, if the microorganism is an autotroph. Examples of organic carbon include carbohydrates, lipids, and proteins.

The microorganisms used in the selection method may comprise any microorganism described herein.

The conditions suitable for consuming the metabolic product preferably comprise a temperature sufficient to support metabolic activity of the microorganisms in the presence of the second amount of the energy source. Such a temperature may be at least about $27^{\circ} \mathrm{C}$., at least about 30° C., at least about $35^{\circ} \mathrm{C}$., at least about $37^{\circ} \mathrm{C}$., at least about $40^{\circ} \mathrm{C}$. or more and/or up to about $37^{\circ} \mathrm{C}$., up to about 40° C., up to about $45^{\circ} \mathrm{C}$. or more.

In exemplary versions of the invention, the microorganisms comprise photosynthetic microorganisms, the carbon source comprises CO_{2}, the energy source comprises light,
and the metabolic product comprises glycogen. Culturing the microorganisms in the first amount of the energy source may comprise exposing the microorganisms to a direct source of light. Culturing the microorganisms in the second amount of the energy source may comprise substantially blocking the microorganisms from any direct source of light. Culturing the microorganisms in the third amount of the energy source may comprise exposing the microorganisms to a direct source of light. The photosynthetic microorganisms may comprise cyanobacteria and/or microalgae.

The elements and method steps described herein can be used in any combination whether explicitly described or not.
All combinations of method steps as used herein can be performed in any order, unless otherwise specified or clearly implied to the contrary by the context in which the referenced combination is made.
As used herein, the singular forms "a," "an," and "the" include plural referents unless the content clearly dictates otherwise.
Numerical ranges as used herein are intended to include every number and subset of numbers contained within that range, whether specifically disclosed or not. Further, these numerical ranges should be construed as providing support for a claim directed to any number or subset of numbers in that range. For example, a disclosure of from 1 to 10 should be construed as supporting a range of from 2 to 8 , from 3 to 7 , from 5 to 6 , from 1 to 9 , from 3.6 to 4.6 , from 3.5 to 9.9 , and so forth

All patents, patent publications, and peer-reviewed publications (i.e., "references") cited herein are expressly incorporated by reference to the same extent as if each individual reference were specifically and individually indicated as being incorporated by reference. In case of conflict between the present disclosure and the incorporated references, the present disclosure controls.

It is understood that the invention is not confined to the particular construction and arrangement of parts herein illustrated and described, but embraces such modified forms thereof as come within the scope of the claims.

EXAMPLES

Strains
fba (coding sequence: SEQ ID NO:11; protein sequence: SEQ ID NO:12) and fbp (coding sequence: SEQ ID NO:13; protein sequence: SEQ ID NO:14) from Synechocystis PCC 6803 was inserted as an operon into the cLac143 IPTG inducible cassette described in Markley et al. 2015 (Markley A L, Begemann M B, Clarke R E, Gordon G C, Pfleger B F. ACS Synth Biol. 2015 May 15; 4(5):595-603) with 500 base pair flanking regions targeting the acsA locus in PCC 7002, forming construct pALM173 (SEQ ID NO:15). Wild Type glgC from K12 MG1655 E. coli genomic DNA (coding sequence: SEQ ID NO:1; protein sequence: SEQ ID NO:2) was inserted into the cLac94 IPTG inducible cassette described in Markley et al. 2015 with 500 base-pair flanking regions targeting the glpK locus in PCC 7002, forming construct pALM210 (SEQ ID NO:16). glgC with a G336D mutation (coding sequence: SEQ ID NO:3; protein sequence: SEQ ID NO:4) was amplified from a BioBrick part BBa K 118016 and inserted into an identical vector backbone as pALM210 to form pALM211 (SEQ ID NO:17).

These genetic elements were inserted into the PCC 7002 chromosome by adding $1-1.5 \mu \mathrm{~g}$ of purified plasmid DNA to 1 mL of an overnight culture of cells grown to an OD_{730} of 1. The cultures were then placed at $37^{\circ} \mathrm{C}$. under illumination for 16 hours. The cells were plated on $50 \mu \mathrm{M}$ acrylic acid
(acsA locus) or $100 \mu \mathrm{~g} / \mathrm{ml}$ gentamycin (glpK locus) to select for recombinants. This yielded strains were AM184 (WT 7002 AcsA::cLac143 FbaFbp), AM241 (WT 7002 glpK:: cLac94 GlgC K12 GmR) and AM253 (WT $7002 \mathrm{glpK}:$: cLac94 GlgC K12 G336D GmR). Double fba-fbp/glgC strains were constructed by repeating the pALM210/ pALM211 glgC transformations in the AM184 fba-fbp strain to produce AM254 (AM184 7002 glpK::cLac94 GlgC K12 GmR) and AM255 (AM184 7002 glpK::cLac94 GlgC K12 G336D GmR).

The generated strains are shown in Table 1.
TABLE 1

Strains used in the present examples.			
		Parent	Construct
Strain		Strain	Name(s)
ID	Description		
AM184	WT 7002 AcsA::cLac143 FbaFbp Fix	PCC 7002	pALM173
AM241	WT 7002 glpK::cLac94 GlgC K12	PCC 7002	pALM210
	GmR		
AM253	WT 7002 glpK::cLac94 GlgC K12	PCC 7002	pALM211
	G336D GmR		
AM254	AM184 7002 glpK::cLac94 GlgC	PCC 7002	pALM173 +
	K12 GmR		pALM210
AM255	AM184 7002 glpK::cLac94 GlgC	PCC 7002	pALM173 +
	K12 G336D GmR		

Initial Glycogen Production Testing
Initial experiments on the produced strains were performed in Corning Costar non-treated 6-well tissue culture plates with 6 mL of MediaA ${ }^{+}(0.308 \mathrm{M} \mathrm{NaCl}, 0.02 \mathrm{M}$ $\mathrm{MgSO}_{4} .7 \mathrm{H}_{2} \mathrm{O}, 0.08 \mathrm{mM} \mathrm{Na}$ EDTA. $2 \mathrm{H}_{2} \mathrm{O}, 8.05 \mathrm{mM} \mathrm{KCl}$, $2.52 \mathrm{mM} \mathrm{CaCl} 2.2 \mathrm{H}_{2} \mathrm{O}, 11.8 \mathrm{mM} \mathrm{NaNO}_{3}, 0.37 \mathrm{mM}$ $\mathrm{KH}_{2} \mathrm{PO}_{4}, 8.26 \mathrm{mM}$ TRIZMA® ${ }^{\circledR}$ base (Sigma-Aldrich, St. Louis, Mo.) $\mathrm{pH} 8.2,55.5 \mathrm{mM} \mathrm{H} \mathrm{H}_{3}, 0.23 \mathrm{mM} \mathrm{ZnCl} 2$, $0.021 \mathrm{mM} \mathrm{MoO}_{3}(85 \%), 0.3 \mu \mathrm{M}$ vitamin B12 (cyanocobalamin), $0.14 \mathrm{mM} \mathrm{FeCl} 3.6 \mathrm{H}_{2} \mathrm{O}, 0.22 \mathrm{mM} \mathrm{MnCl} 2.4 \mathrm{H}_{2} \mathrm{O}$, $0.00012 \mathrm{mM} \mathrm{CuSO} 4.5 \mathrm{H}_{2} \mathrm{O}, 0.0005 \mathrm{mM} \mathrm{CoCl} 2.6 \mathrm{H}_{2} \mathrm{O}$) according to the UTEX Culture Collection of Algae at The University of Texas at Austin. IPTG was added at 0.5 mM and 5 mM . The cultures were grown on a shaker at $37^{\circ} \mathrm{C}$. under illumination for 2 days. The induced strains with glgC G336D (AM253 and AM255) had a severe growth defect. $1.5 \mathrm{OD}_{730} * \mathrm{~mL}$ were collected and pelleted. The pellets were washed $3 \times$ with PBS and analyzed for glycogen content using the Glycogen Assay Kit (Item No. 700480) from Cayman Chemical Company (Ann Arbor, Mich.).

To prepare samples for the glycogen assay with the Glycogen Assay Kit, $1 \times$ Glycogen Assay Buffer was prepared according to the manufacturer's instructions. 1.5 OD ml (approximately 400 mg DCW based on my standard curve) was taken from each culture in regular Media A at low CO_{2} and washed $3 \times$ in PBS to remove Tris interference. Cell pellets were resuspended in 2 ml Diluted Assay Buffer+ $1 \times$ PMSF. Samples were frozen at $-80^{\circ} \mathrm{C}$. until further use. To finish the sample preparation for the glycogen assay, the remaining reagents were prepared according to the manufacturer's instructions. The frozen samples were sonicated on ice at 20% amplitude in 2 -second bursts for 1 min total. The sample preparation was finished according to the manufacturer's instructions while also testing different dilution factors. The assay was then performed according to the manufacturer's instructions.

AM253 (glgC G336D) and AM255 (glgC G336D+fbafbp) yielded inconsistent glycogen yields with these experiments, likely due to their poor growth rates. Additionally, while strains containing the glgC G336D had a high glyco-
gen:dry cell weight ratio, the low growth rate resulted in a lower overall productivity when compared with WT glgC strains. See FIGS. 1A-1C.

Since these experiments showed that AM241 and AM254 had 2-3 fold more glycogen than WT PCC 7002 without a severe growth defect, these strains were chosen for further testing.
Glycogen Production Screen
In order to aid in the testing of the glycogen-producing strains, a screen was developed that couples glycogen content to cellular fitness. The overall scheme of this screen is to grow strains in liquid media using any desired growth condition. The cells are then normalized to the same OD_{730} and serially diluted in sterile MediaA ${ }^{+} .7 .5 \mu 1$ of these dilutions are then spotted on several replicate MediaA ${ }^{+}$agar plates. One plate is immediately placed under illumination at $37^{\circ} \mathrm{C}$. while the remaining plates are placed in a dark 37° C. incubator. The plates are then periodically removed from the dark incubator and placed in the light. Cells that have a high glycogen content show higher recovery rates compared to cells with low or no glycogen content.

An alternative strategy whereby liquid cultures of high and low glycogen content strains were incubated in the dark at $37^{\circ} \mathrm{C}$. for several days and periodically spotted on MediaA $^{+}$agar plates before outgrowing in the illuminated growth chamber showed no difference in cellular fitness between strains. Similarly, simply leaving the solid agar plates at room temperature instead of $37^{\circ} \mathrm{C}$. also did not work as well due to the very slow loss in fitness.
Testing of Strains Using the Glycogen Production Screen
The glycogen production screen described above was performed on WT PCC 7002, a native glgC knockout (through kanamycin resistance gene inactivation), AM241, and AM254. Each strain was inoculated at $0.05 \mathrm{OD}_{730}$ in 20 mL of MediaA ${ }^{+}$and grown for 16 hours at $37^{\circ} \mathrm{C}$. in the presence of ambient CO_{2} and 0 or 0.5 mM IPTG. After 16 hours, the strains were normalized to the same OD_{730}, serially diluted, spotted on MediaA ${ }^{+}$agar plates, placed in a dark $37^{\circ} \mathrm{C}$. incubator for various amounts of time, and placed in the light to determine relative recovery. Results are shown in FIG. 2.

The glycogen production screen was also performed on the same strains grown in $10 \% \mathrm{CO}_{2}$. For this experiment, WT PCC 7002, the native glgC knockout, AM241, and AM254 were inoculated at $0.05 \mathrm{OD}_{730}$ in 20 mL of MediaA ${ }^{+}$ and grown for 16 hours at $37^{\circ} \mathrm{C}$. with $10 \% \mathrm{CO}_{2}$ by volume bubbled into the tubes in the presence of $0,0.1$, or 0.5 mM IPTG. After 16 hours, the strains were normalized to the same OD_{730}, serially diluted, spotted on MediaA ${ }^{+}$agar plates, placed in a dark $37^{\circ} \mathrm{C}$. incubator for various amounts of time, and placed in the light to determine relative recovery. Results are shown in FIG. 3. Additionally, after the 16-hours of growth, $10 \mathrm{OD}_{730} * \mathrm{~mL}$ of each sample were spun down and lyophilized then resuspended with 1 mL of $4 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ and placed at $121^{\circ} \mathrm{C}$. for one hour to hydrolyze the glycogen to glucose. After an hour, the samples were neutralized up to a pH of >2 and then run on an HPLC with a Bio-rad Aminex HPX-87H Sugar Byproducts Column using a $5 \mathrm{mM} \mathrm{H}_{2} \mathrm{SO}_{4}$ isocratic running buffer. The glucose peaks were compared with a standard curve to determine intracellular sugar content. Results are shown in FIG. 4. The sugar content of the cells was highly correlative to the relative survival rate in the dark. Compare FIGS. 4 and 3, respectively.

The AM241 (glpK::cLac94 glgC K12 WT) strain was chosen for larger scale bioreactor studies.

Bioreactor Runs
Approximately 250 mL of WT PCC 7002 and AM241 bacteria were grown under ambient CO_{2} conditions in the light, and then these cultures were used to inoculate 900 mL MediaA ${ }^{+}$bioreactors in triplicate at an OD_{730} of 0.01 . Six total bioreactors of AM241 were inoculated, and IPTG was added to three of them to a final concentration of 0.1 mM IPTG. The bioreactors were then grown at $37^{\circ} \mathrm{C}$. with 10% CO_{2}, and $60 \mathrm{OD}_{730}{ }^{*} \mathrm{~mL}$ were collected periodically and analyzed for sugar content by HPLC as described above. There was no significant difference in growth rates between the WT and AM241 cultures (FIG. 5), but AM241 induced
at 0.1 mM IPTG showed a 3.2 fold increase in glycogen content over WT 7002 and a titer of $476 \mathrm{mg} / \mathrm{L}$ glycogen after 64 hours (FIG. 6). Critically, this is done without having to lower the growth rate of the cyanobacteria or modify the nutrient ratios, as has been the only strategy for glycogen production in cyanobacteria.

Total glycogen content did start to decrease after 64 hours See FIGS. 7A and 7B. This decrease was likely due to IPTG degradation. It is predicted that use of a constitutive expression system will prevent such a decrease.

Additional parameters from the bioreactor experiments are shown in Table 2.

TABLE 2

Sample parameters of bioreactor runs.									
Days of Growth (Days)	Strain	Dry Cell Weight (DCW) (mg)	Sample Volume (mL)	DCW/ Sample Volume (mg/L)	HPLC Glucose Content ($\mathrm{mg} / \mathrm{ml}$)	Glucose/ Sample (mg)	Percent Glucose of DCW	Total Glucose (mg/L)	Glucose Production Rate (mg/L/day)
1.1	WT 7002	27.3	41.78	653.40	0.29	0.62	2.3\%	14.83	14
		24.8	34.40	720.90	0.39	0.83	3.4\%	24.24	22
		24.2	38.36	630.80	0.39	0.83	3.4\%	21.67	20
	$\begin{array}{r} \text { AM241 } \\ 0 \mathrm{mM} \end{array}$	23.8	42.02	566.40	1.75	3.76	15.8\%	89.41	83
		16.8	37.41	449.10	2.00	4.30	25.6\%	115.02	106
		22.6	43.35	521.30	1.82	3.92	17.4\%	90.49	84
	$\begin{aligned} & \mathrm{AM} 241 \\ & 0.1 \mathrm{mM} \end{aligned}$	24.2	39.37	614.70	3.66	7.87	32.5\%	199.86	184
		26.1	38.76	673.40	3.82	8.22	31.5\%	212.01	196
		23.5	37.69	623.50	3.44	7.39	31.4\%	196.03	181
2.7	WT 7002	17.2	12.76	1358.80	0.60	1.30	7.5\%	102.38	38
		24.4	11.67	2090.30	1.08	2.33	9.6\%	199.77	75
		25.0	13.57	1841.70	0.87	1.88	7.5\%	138.32	52
	$\begin{array}{r} \text { AM241 } \\ 0 \mathrm{mM} \end{array}$	24.5	13.89	1764.00	1.21	2.61	10.6\%	187.58	70
		24.9	12.77	1950.50	1.64	3.52	14.1\%	275.91	103
		24.1	14.08	1711.10	1.39	2.99	12.4\%	212.50	80
	$\begin{aligned} & \text { AM241 } \\ & 0.1 \mathrm{mM} \end{aligned}$	25.3	13.10	1931.20	2.84	6.11	24.1\%	466.33	175
		24.3	12.82	1895.40	2.83	6.09	25.1\%	474.95	178
		25.8	13.57	1900.60	3.08	6.62	25.6\%	487.45	183
3.6	WT 7002	25.7	9.12	2818.40	1.36	2.92	11.4\%	320.66	88
		32.9	7.71	4266.00	2.60	5.60	17.0\%	726.09	200
		28.8	9.71	2966.40					
	$\begin{array}{r} \mathrm{AM} 241 \\ 0 \mathrm{mM} \end{array}$	23.6	8.04	2934.30	1.37	2.94	12.4\%	365.24	137
		26.0	8.72	2981.30	2.23	4.79	18.4\%	549.06	206
		27.3	10.34	2639.00					
	$\begin{aligned} & \mathrm{AM} 241 \\ & 0.1 \mathrm{mM} \end{aligned}$	33.5	9.84	3405.80	2.68	5.77	17.2\%	586.13	220
		32.0	9.74	3285.30	2.72	5.84	18.3\%	599.88	225
		64.7	9.68	6685.70	2.71	5.83	9.0\%	602.30	226
4.6	WT 7002	27.2	7.71	3526.90	2.82	6.06	22.3\%	785.14	170
		25.6	6.67	3840.00	3.86	8.30	32.4\%	1244.80	269
		25.1	7.21	3480.50	2.79	6.00	23.9\%	832.15	180
	$\begin{array}{r} \mathrm{AM} 241 \\ 0 \mathrm{mM} \end{array}$	26.8	7.61	3519.70	3.09	6.65	24.8\%	873.35	189
		26.0	7.19	3614.00	3.62	7.79	30.0\%	1082.64	234
		26.5	8.26	3206.50	3.06	6.57	24.8\%	795.44	172
	$\begin{aligned} & \mathrm{AM} 241 \\ & 0.1 \mathrm{mM} \end{aligned}$	27.9	7.13	3915.30	3.25	6.98	25.0\%	979.12	212
		25.4	7.03	3615.30	3.41	7.34	28.9\%	1044.75	226
		29.0	7.46	3886.00	3.00	6.44	22.2\%	863.37	187
5.6	WT 7002	25.5	6.06	4207.50	3.57	7.68	30.1\%	1267.58	225
		24.6	5.69	4316.70	3.97	8.54	34.8\%	1502.08	267
		24.1	6.25	3856.00	3.57	7.68	31.9\%	1229.12	219
	$\begin{array}{r} \text { AM241 } \\ 0 \mathrm{mM} \end{array}$	24.8	6.22	3988.70	3.76	8.09	32.6\%	1301.43	231
		23.0	5.97	3852.50	4.07	8.75	38.1\%	1466.38	261
		24.3	6.67	3645.00	3.66	7.86	32.4\%	1179.50	210
	$\begin{aligned} & \mathrm{AM} 241 \\ & 0.1 \mathrm{mM} \end{aligned}$	28.6	6.19	4623.70	4.62	9.93	34.7\%	1604.57	285
		25.1	5.94	4225.20	4.25	9.15	36.4\%	1539.74	274
		27.0	6.03	4477.50	3.84	8.25	30.6\%	1368.33	243
6.7	WT 7002	25.6	5.60	4573.90	3.73	8.02	31.3\%	1432.83	215
		25.9	5.70	4541.10	4.75	10.20	39.4\%	1788.97	268
		25.6	6.00	4266.70	3.45	7.41	28.9\%	1234.81	185
	$\begin{array}{r} \mathrm{AM} 241 \\ 0 \mathrm{mM} \end{array}$	24.7	5.62	4396.60	3.23	6.95	28.1\%	1236.35	185
		25.4	6.07	4182.50	4.24	9.11	35.9\%	1499.46	225
		25.2	6.05	4166.40	3.61	7.76	30.8\%	1283.22	192
	$\begin{aligned} & \mathrm{AM} 241 \\ & 0.1 \mathrm{mM} \end{aligned}$	28.5	5.58	5111.00	4.38	9.42	33.0\%	1689.06	253
		26.1	5.47	4767.60	3.92	8.42	32.3\%	1538.89	231
		28.8	5.70	5049.60	3.64	7.82	27.1\%	1370.34	206

$<210>$ SEQ ID NO 2
$<211>$ LENGTH: 431
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Escherichia coli
$<400>$ SEQUENCE: 2

$<210>$ SEQ ID NO 3
$<211>$ LENGTH: 1296
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Escherichia coli
$<400>$ SEQUENCE: 3
atggttagtt tagagaagaa cgatcactta atgttggcge gccagctgcc attgaaatct 60
gttgccctga tactggcggg aggacgtggt acccgcctga aggatttaac caataagcga 120

gtgcagcaca	ttcagcgcgg	ctggtcattc ttcaatgaag	aaatgaacga gtttgtcgat	300
ctgctgceag	cacagcagag	aatgaaaggg gaaaactggt	atcgcggcac cgcagatgcg	360
gtcacccaaa	acctcgacat	tatcogccgt tataaagcgg	aatacgtggt gatcctggcg	420
ggegaccata	tctacaagca	agactactcg egtatgctta	tegatcacgt cgaaaaaggc	480
gcacgttgca	ccgttgcttg	tatgccagta cogattgaag	aagcetccgc atttggcgtt	540
atggcggttg	atgagaacga	taaaattatc gaatttgttg	aaaaacctgc taacccgccg	600
tcaatgcega	acgatcogag	caaatctctg gegagtatgg	gtatctacgt ctttgacgec	660
gactatctgt	atgaactgct	ggaagaagac gatcgcgatg	agaactccag ccacgacttt	720
ggcaaagatt	tgattcccaa	gatcaccgaa gccggtctgg	cotatgcgca cocgttcccg	780
ctctettgcg	tacaatccga	cccggatgce gagcegtact	ggcgegatgt gggtacgetg	840
gaagcttact	ggaaagcgaa	cctcgatctg gcctctgtgg	tgccggaact ggatatgtac	900
gatcgeaatt	ggccaattcg	cacctacaat gaatcattac	cgccagcgaa attcgtgcag	960
gatcgetccg	gtagccacgg	gatgaccett aactcactgg	tttccgacgg ttgtgtgatc	1020
tcoggttcgg	tggtggtgca	gtecgttctg ttctegcgeg	ttcgegtgaa ctcattctgc	1080
aacattgatt	cogcogtatt	gttaccggaa gtatgggtag	gtcgctcgtg cegtctgcgc	1140
cgetgcgtca	tegategtgc	ttgtgttatt coggaaggca	tggtgattgg tgaaaacgca	1200
gaggaagatg	cacgtegttt	ctatcgttca gaagaaggca	tcgtgctggt aacgcgcgaa	1260
atgctacgga	agttagggca	taaacaggag cgataa		1296

$<210>$ SEQ ID NO 4
$<211>$ LENGTH: 431
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Escherichia coli
$<400>$ SEQUENCE: 4

$<210>$ SEQ ID NO 6
$<211>$ LENGTH: 478
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Synechococcus PCC7002
$<400>$ SEQUENCE: 6

$<210>$ SEQ ID NO 7
$<211>$ LENGTH: 1473
$<212>$ TYPE : DNA
$<213>$ ORGANISM: Synechococcus PCC7002
$<400>$ SEQUENCE: 7

$<210>$ SEQ ID NO 8
$<211>$ LENGTH: 490
$<212>$ TYPE : PRT
$<213>$ ORGANISM: Synechococcus PCC7002

$<400>$ SEQUENCE: 8

$<210>$ SEQ ID NO 9
$<211>$ LENGTH: 2334
$<212>$ TYPE : DNA
$<213>$ ORGANISM: Synechococcus PCC7002
$<400>$ SEQUENCE: 9

cocgtgggeg atcaaaaacc	cggtgcccge ttcctgagct	attacgaact	ggttgataag	900
ctcatcccct acgttaagga	catgggctac acccacatcg	agctactgcc	tgtcgetgaa	960
catccetttg acggttcctg	gggctaccaa gtgaccggct	actattcccc	cacttccoge	1020
tttggcaatc cogaagacet	gatgtatttc atcgatcaat	gccacgceaa	tggtatcggg	1080
gtgatcgttg actgggttcc	tggceatttc cetaaggatg	cccatggtct	cgettacttc	1140
gatggcaccc atctctatga	acacgecgat ceccgcaaag	gtgagcacaa	aggctggggc	1200
accctgatct ttaactacaa	tegcaatgag gttcgcaact	tcctcattgc	caatgcocta	1260
ttctggtttg ataaatatca	catcgatggc attcgggtcg	atgcagtggc	tcaatgctc	1320
tacctcgact acgaccggga	agatggcgag tggcttccca	atgactacgg	cggcaacgaa	1380
cacctcgaag ccgtagaatt	tctccgccaa accaacaatc	tcatcttcaa	gtactatcca	1440
gggattatct ccgttgccga	agagtccacg gcttggccca	tggtttctcg	tcccacttac	1500
ctcggtggce teggcttcaa	cctcaagtgg aatatgggct	ggatgcacga	caatctcaaa	1560
tacttcagca tggatccctg	gttccggcag caccaccaaa	acagcattac	cttcagtatg	1620
tggtatcatc acagcgagaa	tacatgttg gccetttccc	acgatgaagt	cgtccatggt	1680
aagagctcga ttattggcaa	atgccgggg gatgaatggc	agaaatttgc	caatgtgcgg	1740
gctttattcg cetatatgtt	tacceatcot ggtaaaaaga	ccatgtttat	gagcatggaa	1800
tttggceaat ggaatgagtg	gaatgtttgg agtgacttga	gttgggattt	actgcaacat	1860
gaaccccacg ccaaactcaa	aggtttcttc ggggcattaa	atagtctcta	taaacaggaa	1920
ccggecettt acgaacggga	ttttgaagag gaaggattcc	aatggattga	ctgttctgac	1980
aatcaaaata gtgttctttc	ctttattcga cgggcaaaag	atcccaatga	ttttttagtt	2040
gtggtctgca attttacgcc	gcaaccccat agccattatc	gaattggcat	tccagaagag	2100
ggetactatc aagaaatttt	gaatagtgat gccgaaacct	ttggggggag	taatctactc	2160
aacttcggcg gegtttggac	tgaagattgg egcttccata	atcttcccta	ttccattgat	2220
ctgtgtttgc cgccectcgg	cgtggttgtc ctaaaaattg	atcgagaaaa	aacagccgca	2280
atgcttgctc aaaaacaggc	cgataaagcc aaggetctat	ccggcgaaat	ataa	2334

$<210>$ SEQ ID NO 10
$<211>$ LENGTH: 777
$<212>$ TYPE : PRT
$<213>$ ORGANISM: Synechococcus PCC7002
$<400>$ SEQUENCE: 10

$<210>$ SEQ ID NO 11
$<211>$ LENGTH: 1080
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Synechocystis PCC6803
$<400>$ SEQUENCE : 11

$<210>$ SEQ ID NO 12
$<211>$ LENGTH: 359
$<212>$ TYPE : PRT
$<213>$ ORGANISM: Synechocystis PCC6803
$<400>$ SEQUENCE: 12

Met 1	Ala	Leu	Val	$\begin{aligned} & \text { Pro } \\ & 5 \end{aligned}$	Met	rg	Leu	u	$\begin{aligned} & \text { Leu } \\ & 10 \end{aligned}$	Asp	is	a	$\begin{aligned} & \text { Glu } \\ & 15 \end{aligned}$	
Gly	Tyr	Gly	$\begin{aligned} & \text { Ile } \\ & 20 \end{aligned}$	ro	Ala	ge	Asn	$\begin{aligned} & \text { Val } \\ & 25 \end{aligned}$	Asn	Asn	Met	$\begin{gathered} \text { Glu } \\ 30 \end{gathered}$		Ile
Ser	Ile	Met 35	Gln	Ala	Ala	Asp	$\begin{aligned} & \mathrm{Glu} \\ & 40 \end{aligned}$	Thr	Asp	Ser	Pro	$\begin{aligned} & \text { Val Ile } \\ & 45 \end{aligned}$	Leu	Gln
Ala	$\begin{aligned} & \text { Ser } \\ & 50 \end{aligned}$	Arg	Gly	la	Arg	$\begin{aligned} & \text { Ser } \\ & 55 \end{aligned}$	Tyr	la	$1 y$	Glu	$\begin{aligned} & \text { Asn } \\ & 60 \end{aligned}$	he Leu	Arg	His
Leu 65	al	Leu	$1 y$	a	$\begin{aligned} & \text { Val } \\ & 70 \end{aligned}$	$1 u$	hr	Tyr	ro	$\begin{aligned} & \text { His } \\ & 75 \end{aligned}$	Ile	ro Ile	Ala	$\begin{aligned} & \text { Met } \\ & 80 \end{aligned}$
His	Gln	Asp	His	$\begin{aligned} & \text { Gly } \\ & 85 \end{aligned}$	Asn	Ser	Pro	Ala	$\begin{aligned} & \text { Thr } \\ & 90 \end{aligned}$	Cys	TYr	er Ala	$\begin{aligned} & \text { Ile } \\ & 95 \end{aligned}$	Arg
Asn	Gly	he	$\begin{aligned} & \text { Thr } \\ & 100 \end{aligned}$	er	al	et	Met	Asp 105	Gly	er	Leu	$\begin{array}{r} \text { lu Ala } \\ 110 \end{array}$	Asp	Ala
LYs	Thr	$\begin{aligned} & \text { Pro } \\ & 115 \end{aligned}$	Ala	Ser	Phe	Glu	$\begin{aligned} & \text { Tyr } \\ & 120 \end{aligned}$	Asn	Val	Asn	Val	$\begin{aligned} & \text { Thr Ala } \\ & 125 \end{aligned}$	Glu	Val
Val	$\begin{aligned} & \text { Lys } \\ & 130 \end{aligned}$	Val	Ala	is	er	$\begin{aligned} & \text { Val } \\ & 135 \end{aligned}$	Gly	la	Ser	Val	$\begin{aligned} & \text { Glu } \\ & 140 \end{aligned}$	Gly Glu	Leu	Gly
$\begin{aligned} & \text { Cys } \\ & 145 \end{aligned}$	Leu	$1 y$	er	eu	$\begin{aligned} & \text { Glu } \\ & 150 \end{aligned}$	Thr	Gly	\ln	Gly	$\begin{aligned} & \text { Glu } \\ & 155 \end{aligned}$	Ala	Glu Asp	Gly	$\begin{aligned} & \text { His } \\ & 160 \end{aligned}$
Gly	Phe	Glu	ly	$\begin{aligned} & \text { Lys } \\ & 165 \end{aligned}$	Leu	Asp	His	Ser	$\begin{aligned} & \text { Gln } \\ & 170 \end{aligned}$	Leu	Leu	Thr Asp	$\begin{aligned} & \text { Pro } \\ & 175 \end{aligned}$	Glu
Glu	$1 a$	l	$\begin{aligned} & \text { Glu } \\ & 180 \end{aligned}$	e	al	sn	Lys	$\begin{aligned} & \text { Thr } \\ & 185 \end{aligned}$	Gln	al	sp	la Leu 190	Ala	Val
Ala	Ile	$\begin{aligned} & \text { Gly } \\ & 195 \end{aligned}$	Thr	Ser	His	Gly	$\begin{aligned} & \text { Ala } \\ & 200 \end{aligned}$	Tyr	Lys	Phe	$\text { Thr } \begin{array}{r} A \\ 2 \end{array}$	$\begin{aligned} & \text { Arg Lys } \\ & 205 \end{aligned}$	Pro	Thr
Gly	$\begin{aligned} & \text { Glu } \\ & 210 \end{aligned}$	Val	Leu	la	le	$\begin{aligned} & \text { Ser } \\ & 215 \end{aligned}$	Arg	le	1 u	$1 \mathrm{u}$	Ile H 220	His Arg	Leu	Leu
$\begin{aligned} & \text { Pro } \\ & 225 \end{aligned}$	Asn	r	His	eu	$\begin{aligned} & \text { Val } \\ & 230 \end{aligned}$	Met	His	Gly	Ser	$\begin{aligned} & \text { Ser } \\ & 235 \end{aligned}$	Ser	Val Pro	Gln	$\begin{aligned} & \text { Glu } \\ & 240 \end{aligned}$
Trp	Ile	Asp	Met	$\begin{aligned} & \text { Ile } \\ & 245 \end{aligned}$	Asn	Glu	Phe	Gly	$\begin{aligned} & \text { Gly } \\ & 250 \end{aligned}$	Ala	Ile	ro Glu	$\begin{aligned} & \text { Thr } \\ & 255 \end{aligned}$	TYr
Gly	1		$\begin{aligned} & \text { Val } \\ & 260 \end{aligned}$	Glu	lu	le		$\begin{aligned} & \text { Lys } \\ & 265 \end{aligned}$	Gly	Ile	Lys	$\begin{array}{r} \text { Ser Gly } \\ 270 \end{array}$	Val	Arg
Lys	Val	$\begin{aligned} & \text { Asn } \\ & 275 \end{aligned}$	Ile	Asp	Thr	Asp	$\begin{aligned} & \text { Asn } \\ & 280 \end{aligned}$	Arg	Leu	Ala	Ile	$\begin{aligned} & \text { Thr Ala } \\ & 285 \end{aligned}$	Ala	Phe
Arg	$\begin{aligned} & \text { Glu } \\ & 290 \end{aligned}$	Ala	Ala	Ala	Lys	$\begin{aligned} & \text { Asp } \\ & 295 \end{aligned}$	Pro	Lys	Asn	Phe	$\begin{aligned} & \text { Asp } \mathrm{F} \\ & 300 \end{aligned}$	Pro Arg	His	Phe
Leu	Lys	Pro	Ser	Ile L	LYs	Tyr	Met	Lys	Gln	Val	Cys A	Ala Asp	Arg	Tyr

$<210>$ SEQ ID NO 13
$<211>$ LENGTH: 1044
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Synechocystis PCC6803
$<400>$ SEQUENCE: 13
atgaccgtta gtgagattca tattcctaac tetttactag accgggattg caccaccctt 60
tcacgccacg tactccaaca actgaatagc tttggggccg atgcccagga tttgagtgcc 120
atcatgaacc gcattgccet agcgggaaaa ctgattgcce gtcgcctgag tcgagctggg 180
ttaatggccg atgtgttggg cttcactggg gaaaccaacg tccaggggga atcggtgaaa 240
aaatggacg tattgccaa tgatgttttt atttctgtct ttaagcaaag tggettggtt 300
tgtcgtctgg cttcggagga gatggaaaaa ccctactata ttcotgaaaa ttgccocatt 360
ggtcgctata ctttgctgta cgaccccatt gatggttcct ccaacgtgga cattaacctc 420
aacgtgggtt ccatttttgc cattcggcaa caggaagggg acgatctaga cggcagtgcg 480
tcagatttat tggctaacgg agacaagcaa attgctgctg gttatatcct ctacggcecc 540
tccaccatcc tggtttattc cetcggctcc ggagtgcata getttatcct cgatcccagt 600
ttgggggaat ttatttagc ecaggaaaat atcegcattc ccaaccacgg ceccatttac $\quad 660$
agcaccaatg aaggtaactt ttggcaatgg gatgaagcce tgagggatta cacccgttac 720
gtccatcgcc acgaaggtta cactgcccgt tatagcggtg ctctggtggg ggatattcac 780
cggattttga tgcaaggggg agtgtttctt tatcctggta cggaaaaaaa tcccgacggc 840
aaattgcgtt tgctctatga aactgcgccg ctggcctttt tggtggaaca ggctggggga 900
agggctagtg acggccaaa acgtttactg gacttaattc cttctaaatt acatcagcgt 960

accccogcea thattggcag cgcagaagat gtgaaattgg tggaatcttt catcagcgac	1020
cacaacaac ggcagggtaa ttag	1044

$<210>$ SEQ ID NO 14
$<211>$ LENGTH: 347
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Synechocyst is PCC6803
$<400>$ SEQUENCE: 14
Met Thr Val Ser Glu Ile His Ile Pro Asn Ser Leu Leu Asp Arg Asp
10

				85					90					95	
Ser	Gly	Leu	$\begin{aligned} & \text { Val C } \\ & 100 \end{aligned}$	Cys	Arg	Leu	Ala	$\begin{aligned} & \text { Ser } \\ & 105 \end{aligned}$		Glu	Met	Gl	$\begin{aligned} & \text { Lys } \\ & 110 \end{aligned}$	Pro	Tyr
Tyr	Ile	$\begin{aligned} & \text { Pro } \\ & 115 \end{aligned}$	Glu A	Asn	Cys	Pro	$\begin{aligned} & \text { Ile } \\ & 120 \end{aligned}$	Gly	Arg	Tyr	Chr I	$\begin{aligned} & \text { Leu } \\ & 125 \end{aligned}$	Leu		Asp
Pro	$\begin{aligned} & \text { Ile } \\ & 130 \end{aligned}$	Asp	Gly S	Ser	Ser	$\begin{aligned} & \text { Asn } \\ & 135 \end{aligned}$	Val	Asp		Asn	$\begin{aligned} & \text { Leu } \\ & 140 \end{aligned}$	Ass	Val	Gly	Ser
Ile 145	Phe	Ala	Ile A	Arg	$\begin{aligned} & \text { Gln } \\ & 150 \end{aligned}$	Gln	Glu	Gly	Asp	Asp 155	Leu	Asp	Gly		$\begin{aligned} & \text { Ala } \\ & 160 \end{aligned}$
Ser	Asp	Leu L	Leu A 1	$\begin{aligned} & \text { Ala } \\ & 165 \end{aligned}$	Asn	Gly	Asp	Lys	$\begin{aligned} & \mathrm{Gln} \\ & 170 \end{aligned}$	Ile	Ala	Al.	Gly	$\begin{aligned} & \text { Tyr } \\ & 175 \end{aligned}$	Ile
Leu	Tyr	Gly	$\begin{aligned} & \text { Pro S } \\ & 180 \end{aligned}$	Ser	Thr	Ile	Leu	$\begin{aligned} & \text { Val } \\ & 185 \end{aligned}$	Tyr	Ser	Leu	$\mathrm{Gl} Y$	$\begin{aligned} & \text { Ser } \\ & 190 \end{aligned}$	Gly	Val
His	Ser	Phe 195	Ile L	Leu.	Asp	Pro	$\begin{aligned} & \text { Ser } \\ & 200 \end{aligned}$	Leu	Gly	Glu		$\begin{aligned} & \text { Ile } \\ & 205 \end{aligned}$	Leu	Ala	Gln
Glu	$\begin{aligned} & \text { Asn } \\ & 210 \end{aligned}$	Ile	Arg I	Ile	Pro	$\begin{aligned} & \text { Asn } \\ & 215 \end{aligned}$	His	Gly	Pro	Ile	$\begin{aligned} & \text { Tyr } \\ & 220 \end{aligned}$	Ser	Thr	Asn	Glu
$\begin{aligned} & \text { Gly } \\ & 225 \end{aligned}$	Asn	Phe	$\operatorname{Trp} G$	Gln	$\begin{aligned} & \text { Trp } \\ & 230 \end{aligned}$	Asp		Ala	Leu	$\begin{aligned} & \text { Arg } \\ & 235 \end{aligned}$	Asp		Thr	Arg	$\begin{aligned} & \text { Tyr } \\ & 240 \end{aligned}$
Val	His	Arg	$\text { His } \mathrm{G}$	$\begin{aligned} & \text { Glu } \\ & 245 \end{aligned}$	Gly	Tyr	Thr	Ala	$\begin{aligned} & \text { Arg } \\ & 250 \end{aligned}$	Tyr	Ser		Ala	$\begin{aligned} & \text { Leu } \\ & 255 \end{aligned}$	Val
Gly	Asp	Ile	$\begin{aligned} & \text { His A } \\ & 260 \end{aligned}$	Arg	Ile	Leu	Met	$\begin{aligned} & \mathrm{Gln} \\ & 265 \end{aligned}$	Gly	Gly	Val P	Ph	$\begin{aligned} & \text { Leu } \\ & 270 \end{aligned}$	Tyr	Pro
Gly	Thr	$\begin{aligned} & \mathrm{Glu} \\ & 275 \end{aligned}$	Lys A	Asn	ro	Asp	$\begin{aligned} & \text { Gly } \\ & 280 \end{aligned}$	Lys	Leu	Arg	Leu	$\begin{aligned} & \text { Leu } \\ & 285 \end{aligned}$	TYr		Thr
Ala	$\begin{aligned} & \text { Pro } \\ & 290 \end{aligned}$	Leu	Ala P	Phe	Leu	$\begin{aligned} & \text { Val } \\ & 295 \end{aligned}$	Glu	Gln	Ala	Gly	$\begin{aligned} & \text { Gly } \\ & 300 \end{aligned}$	Arg	Ala		Asp
$\begin{aligned} & \text { Gly } \\ & 305 \end{aligned}$	Gln	Lys	Arg L	Leu	$\begin{aligned} & \text { Leu } \\ & 310 \end{aligned}$	Asp		Ile	Pro	$\begin{aligned} & \text { Ser } \\ & 315 \end{aligned}$	Lys		His		$\begin{aligned} & \text { Arg } \\ & 320 \end{aligned}$
Thr	Pro		Ile $\frac{1}{3}$	$\begin{aligned} & \text { Ile } \\ & 325 \end{aligned}$	Gly	Ser	Ala	Glu	$\begin{aligned} & \text { Asp } \\ & 330 \end{aligned}$	Val	Lys L	Leu	Val	$\begin{aligned} & \text { Glu } \\ & 335 \end{aligned}$	Ser
Phe	Ile	Ser	$\begin{aligned} & \text { Asp } H \\ & 340 \end{aligned}$	His	Lys	Gln	Arg	$\begin{aligned} & \mathrm{Gln} \\ & 345 \end{aligned}$	Gly	Asn					

$<210>$ SEQ ID NO 15
$<211>$ LENGTH: 4871
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Artificial plasmid pALM173
$<400>$ SEQUENCE: 15

actgccgcac tcaatgttca accagatcta gtgattattt cggggttagc agccgatgcg	60
ggcaacctgg tgaagcaact gcgagaatta ggttacaacg gcattattgt tggggggaac	120
ggcttaaata cttctaatat tttccccgtc tgccaagcaa aatgtgatgg ggtgttggtg	180
gcccaagcct acagtgccga gttagataat gagattaacc gcgcgtttcg ggacgcctat	240
tttcaacaaa accaaaaaga gccgccccaa tttagtgccc aggcttttac ggcgatccaa	300
gtttttgttg aagccctcag cagcctcgat gaaaaacgc cottagaaac tcttgctcta	360
ccggacttgc gacgacaact gcgggacgaa atttttgcag gtacctacgt cacgcctttg	420
ggtgaaattt ccttcacaga ggaaggggaa attgtccaga aggaattttt tgtggcccaa	480
attgaaatgg atgaatcggg tcaacagggg cgtttcgcct tcattgaaac gaactaaagt	540
caaacctagg cctgtgttta aaagggggaa tcagttttgt ctttggaatt tactgactcc	600

- continued

$<210>$ SEQ ID NO 16
$<211>$ LENGTH: 5323
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Artificial plasmid pALM210
$<400>$ SEQUENCE: 16

agcgattgge tatgatctac caagctggc gatttttctg caaccgaat tagaaccaca	60
attgatttt thaagccga ttaccattgc caacctgaag gaaatagcga tcgcctttat	120

-continued

| attattccet tgatcatgaa gcctttctct caaccctcag caacacagaa aatttactca | 4920 |
| :--- | :--- | :--- |
| ttattcaaga tctagatggc gtttgcatgg ggttagtcaa agacccctta acccgcaaaa | 4980 |
| ttgatcctga ctatatccgc gccacacgca agtttagaga ccacttcttt gtcctcacca | 5040 |
| acggtgaaca tgaaggcaga aggggagtaa atcgcatcgt tgaacgggca tttcgcaatg | 5100 |
| ttgaagccaa agaggaaaca agctatttac ctggtttagc agcagggggt gtgcaatggc | 5160 |
| agacagataa tggccaaatt tcccatcccg gtgttagcca agcagaactc gatttccttg | 5220 |
| ccacagtgcc agatttaatt ggtcaaagtt taggacaatt ttttactaaa tatgttgata | 5280 |
| tttttcccgc tgagcttcaa cctgagctga tccatgcttc tgt | |

$<210>$ SEQ ID NO 17
$<211>$ LENGTH: 5323
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Artificial plasmid pALM2 11
$<400>$ SEQUENCE: 17
agcgattggc tatgatctac caaagctggc gatttttctg caaaccgaat tagaaccaca 60
atttgatttt ttaaagccga ttaccattgc caacctgaag gaaatagcga tcgcctttat 120
ggaggatggc cacgaggctt gtcgggtctc ceattattgt ggatcggtac cggatgagcg 180
ggcgagcttt aatttacgct tgcggcaata tcgccaggcc cagccttggc tgcgaaatca 240
tctcgatcct gcaaggggcg atcgcctgca ccattggtcg gatcaccaac gcaccatttt 300
ctacggcagg cgcaccaatc cogacaccca gcagcggctt gtgttagtgg cgcacatggc 360
cggggctccg aagaccgttg agattggcaa atggctcgcc etggatttgg atcgttggca 420
gttggcgatc gecacaccga etttgaagat caacaccatc tatgacttag cccaaattca 480
cttgcacaat ggcgaaggtt ttctgttatc tgaaattcct ccctaaatga tgtcttttga 540
gcctaaaaac acactttttt gacctaattt aacccattta aaaaacttta tttaataatg 600
accatggccc atcaaaaata cattcttgcg ttagacctcg gtaccacaaa cgaattgtga 660
gcgctcacaa ttcggaattc ttaacaaaaa agcaggaata aaattaacaa gatgtaacag 720
acataagtcc catcaccgtt gtataaatgt gtggaattgt gagcggataa caatttcaca 780
caccaactca taaagtcaag taggagatta attccatggt tagtttagag aagaacgatc 840
acttaatgtt ggegcgccag ctgccattga aatctgttgc cetgatactg gcgggaggac 900
gtggtacceg cetgaaggat ttaaccaata agcgagcaaa accggcegta cacttcggcg 960
gtaagttccg cattatcgac tttgcgetgt ctaactgcat caactcoggg atccgtcgta 1020
tgggcgtgat cacccagtac cagtcccaca ctctggtgca gcacattcag cgcggetggt 1080
cattctcaa tgaagaaatg aacgagtttg tcgatctgct gccagcacag cagagaatga 1140
aaggggaaaa ctggtatcgc ggcaccgcag atgcggtcac ccaaaacctc gacattatcc 1200
gecgttataa agcggaatac gtggtgatce tggcgggcga ccatatctac aagcaagact 1260
actcgegtat gettatcgat cacgtcgaaa aaggcgcacg ttgcaccgtt gcttgtatgc 1320
cagtaccgat tgaagaagcc tccgcatttg gegttatggc ggttgatgag aacgataaaa 1380
ttatcgaatt tgttgaaaaa cctgctaacc cgccgtcaat gecgaacgat ccgagcaaat 1440
ctctggcgag tatgggtatc tacgtctttg acgccgacta tctgtatgaa ctgctggaag 1500
aagacgatcg cgatgagaac tccagccacg actttggcaa agatttgatt cccaagatca 1560
-continued

-continued

atgttacgca	gcagggcagt	cgcectaaaa	caaagttagg	tggctcaagt	atgggcatca	4020
ttcgcacatg	taggetcggc	cetgaccaag	tcaaatccat	gcgggetget	cttgatcttt	4080
tcggtcgtga	gttcggagac	gtagccacct	actcccaaca	tcagceggac	tcogattacc	4140
tcgggaactt	gctecgtagt	aagacattca	tegcgettgc	tgecttcgac	caagaagcgg	4200
ttgttggcgc	tetegcgget	tacgttctgc	ccaggtttga	gcagcegcgt	agtgagatct	4260
atatctatga	tetcgcagtc	tecggcgage	accggaggca	gggcattgcc	accgcgetca	4320
tcaatctcct	caagcatgag	gccaacgegc	ttggtgctta	tgtgatctac	gtgcaagcag	4380
attacggtga	cgatccogca	gtggctctct	atacaaagtt	gggcatacgg	gaagaagtga	4440
tgcactttga	tatcgaccca	agtaccgcca	cctaacaatt	cgttcaagcc	gagatcggct	4500
tcceggecge	ggagttgttc	ggtaaattgt	cacaacgccg	ccaggtggca	ctttccggg	4560
aaatgtgcgc	gccogcgttc	ctgctggcgc	tgggcetgtt	tctggcgetg	gacttcccgc	4620
tgttccgtca	gcagcttttc	gcceacggce	ttgatgatcg	cggcggcett	ggcetgcata	4680
tccegattca	acggceccag	ggcgtccaga	acgggettca	ggcgetcccg	aaggtggatc	4740
coccectctt	gcetacagca	tctcceccag	gggagaattc	tcotgtttc	aactccetct	4800
aacgtaaacc	cattgaattt	aaaaaagact	ttatgactgc	ttactgctc	catgaccaac	4860
attattccct	tgatcatgaa	gcctttctct	caaccetcag	caacacagaa	aatttactca	4920
ttattcaaga	tctagatggc	gtttgcatgg	ggttagtcaa	agaccectta	accegcaaaa	4980
ttgatcctga	ctatatccgc	gccacacgca	agtttagaga	cacttcttt	gtcetcacca	5040
acggtgaaca	tgaaggcaga	aggggagtaa	atcgcatcgt	tgaacgggca	tttcgcaatg	5100
ttgaagccaa	agaggaaaca	agctatttac	ctggtttagc	agcagggggt	gtgcaatggc	5160
agacagataa	tggccaaatt	teccatcceg	gtgttagcca	agcagaactc	gatttcettg	5220
ccacagtgcc	agatttaatt	ggtcaaagtt	taggacaatt	ttttactaaa	tatgttgata	5280
tttttcccgc	tgagettcaa	cetgagctga	tccatgcttc	tgt		5323

What is claimed is:

1. A recombinant microorganism modified with respect to a native microorganism, the recombinant microorganism comprising a recombinant nucleic acid configured to express a glucose-1-phosphate adenylyltransferase, wherein the recombinant microorganism:
is a cyanobacterium;
exhibits enhanced glucose-1-phosphate adenylyltransferase activity compared to the native microorganism; and
produces an increased amount of glycogen compared to the native microorganism while having a growth rate of at least a growth rate of the native microorganism when grown photoautotrophically in the presence of light and $10 \% \mathrm{CO}_{2}$.
2. The recombinant microorganism of claim 1, wherein the glucose-1-phosphate adenylyltransferase is allosterically regulated by a compound selected from the group consisting of adenosine diphosphate and adenosine monophosphate.
3. The recombinant microorganism of claim 1, wherein the glucose-1-phosphate adenylyltransferase comprises a sequence at least 90% identical to SEQ ID NO:2.
4. The recombinant microorganism of claim $\mathbf{1}$, wherein the glucose-1-phosphate adenylyltransferase comprises a glycine at a position corresponding to position 336 of SEQ ID NO:2.
5. The recombinant microorganism of claim 1, wherein the nucleic acid comprises a glucose-1-phosphate adenylyltransferase coding sequence operably connected to a promoter not operably connected to the coding sequence in nature.
6. The recombinant microorganism of claim 5, wherein the promoter is an inducible promoter.
7. The recombinant microorganism of claim 5, wherein the promoter is a constitutive promoter.
8. The recombinant microorganism of claim 1, wherein the recombinant microorganism exhibits a native glycogen synthase expression level.
9. The recombinant microorganism of claim 1, wherein the recombinant microorganism exhibits native glycogen synthase activity.
10. The recombinant microorganism of claim 1, wherein the recombinant microorganism exhibits a native 1,4 -alpha-glucan-branching enzyme expression level.
11. The recombinant microorganism of claim 1, wherein the recombinant microorganism exhibits native 1,4 -alpha-glucan-branching enzyme activity.
12. The recombinant microorganism of claim 1 , wherein the recombinant microorganism is capable of producing glycogen as a mass percent of dry cell weight (DCW) in an amount of at least about 25% DCW.
13. A method of producing glycogen comprising culturing the recombinant microorganism of claim 1.
14. The recombinant microorganism of claim 1, wherein the recombinant microorganism exhibits a native 1,4 -alpha-glucan-branching enzyme expression level and native 1,4-alpha-glucan-branching enzyme activity, and wherein the recombinant microorganism is capable of producing glycogen as a mass percent of dry cell weight (DCW) in an amount of at least about 25% DCW.
15. The recombinant microorganism of claim 14, wherein 10 the glucose-1-phosphate adenylyltransferase comprises a glycine at a position corresponding to position 336 of SEQ ID NO:2 and is allosterically regulated by a compound selected from the group consisting of adenosine diphosphate and adenosine monophosphate.
16. The recombinant microorganism of claim 14, wherein the glucose-1-phosphate adenylyltransferase comprises a sequence at least 90% identical to SEQ ID NO:2.
17. The recombinant microorganism of claim 14 , wherein the nucleic acid comprises a glucose-1-phosphate adenylyl- 20 transferase coding sequence operably connected to a promoter not operably connected to the coding sequence in nature.
18. The recombinant microorganism of claim 14 , wherein the recombinant microorganism exhibits a native glycogen 25 synthase expression level.
19. The recombinant microorganism of claim 14, wherein the recombinant microorganism exhibits native glycogen synthase activity.
20. A method of producing glycogen comprising culturing 30 the recombinant microorganism of claim 14.
