

US010370690B2

(12) United States Patent Pfleger et al.

(54) MICROORGANISMS FOR PRODUCING GLYCOGEN AND METHODS OF USING SAME

(71) Applicant: WISCONSIN ALUMNI RESEARCH

FOUNDATION, Madison, WI (US)

(72) Inventors: Brian F. Pfleger, Madison, WI (US);

Andrew L. Markley, Madison, WI

(US)

(73) Assignee: WISCONSIN ALUMNI RESEARCH FOUNDATION, Madison, WI (US)

(*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35

U.S.C. 154(b) by 0 days.

This patent is subject to a terminal dis-

claimer.

(21) Appl. No.: 16/213,319

(22) Filed: Dec. 7, 2018

(65) Prior Publication Data

US 2019/0093138 A1 Mar. 28, 2019

Related U.S. Application Data

- (63) Continuation of application No. 15/366,676, filed on Dec. 1, 2016.
- (60) Provisional application No. 62/262,106, filed on Dec. 2, 2015.
- (51) Int. Cl. C12P 19/04 (2006.01) C12N 1/20 (2006.01) C12N 9/12 (2006.01)

(10) Patent No.: US 10.370.690 B2

(45) **Date of Patent:**

*Aug. 6, 2019

207/07027 (2013.01)

(58) Field of Classification Search

None

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

2016/0333384 A1* 11/2016 Silverman A23K 20/163

OTHER PUBLICATIONS

Diaz-Troya et al., "Redox regulation of glycogen biosynthesis in the cyanobacterium Synechocystis sp. PCC 6803: Analysis of the AGP and glycogen synthases", Molecular Plant, vol. 7, No. 1, pp. 87-100, 2014 (Year: 2014).*

Aikawa et al., "Improving polyglucan production in cyanobacteria and microalgae via cultivation design and metabolic engineering", Biotechnology Journal, vol. 10, pp. 886-898, 2015 (Year: 2015).*

* cited by examiner

Primary Examiner — Richard C Ekstrom (74) Attorney, Agent, or Firm — Daniel A. Blasiole; DeWitt LLP

(57) ABSTRACT

Recombinant microorganisms configured for increased glycogen production. The recombinant microorganisms comprise a recombinant nucleic acid configured to express or overexpress a glucose-1-phosphate adenylyltransferase. The recombinant microorganisms produce an increased amount of glycogen compared to a corresponding microorganism not comprising the recombinant nucleic acid.

20 Claims, 6 Drawing Sheets

Specification includes a Sequence Listing.

FIG. 1A

FIG. 1B

FIG. 1C

Ambient CO₂

- 1. WT
- 2. $\Delta GlgC$
- 3. cLac94 GlgC +cLac143 FBAFBP
- 4. cLac94 GlgC
- 5. cLac94 GlgC +cLac143 FBAFBP6. cLac94 GlgC

- 0 mM IPTG
- 0 mM IPTG
- 0.5 mM IPTG
- 0.5 mM IPTG

FIG. 2

MICROORGANISMS FOR PRODUCING GLYCOGEN AND METHODS OF USING SAME

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH

This invention was made with government support under GE01215871 and EFRI1240268 awarded by the National Science Foundation. The government has certain rights in ¹⁰ the invention.

FIELD OF THE INVENTION

The invention is directed to recombinant microorganisms 15 configured for producing high levels of glycogen and methods of using the recombinant microorganisms for the production of glycogen or its byproducts.

BACKGROUND

Advances in microbe engineering for the production of biofuels, chemicals, and therapeutics have spurred investment in the production of a wide variety of commodities from biological sources (Zhang F, Rodriguez S, Keasling J 25 D. 2011. Curr. Opin. Biotechnol. 22(6):775-83). Heterotrophic microbes comprise the vast majority of microorganisms currently utilized for product generation and require a carbohydrate source for carbon and energy that can account for a significant proportion (~60%) of input costs (Pimentel 30 D, Patzek T W. 2008. Ethanol production: energy and economic issues related to U.S. and Brazilian sugarcane biofuels. Springer, Amsterdam, Netherlands.). Such carbohydrate feedstocks are typically derived from agricultural crops, primarily sugarcane, sugar beet, and corn, although 35 lignocellulosic materials are under extensive investigation as alternative feedstocks (Sims R, Taylor M. 2008. From 1st to 2nd generation biofuel technologies. IEA, Paris, France). While biologically produced fuels and chemicals hold the promise of increased sustainability and reduced CO₂ foot- 40 prints, current feedstock sources place biotechnological processes in competition with agricultural croplands and food markets. The development of biological alternatives to standard petroleum-based fuels and chemicals has therefore been criticized for its capacity to increase food cost and 45 instabilities (Timilsina G R, Beghin J C, van der Mensbrugghe D, Mevel S. 2010. The impacts of biofuel targets on land-use change and food supply. The World Bank Development Research Group, Washington, D.C.). Indeed, in recent years, sugar prices have increased and fluctuated 50 greatly in global food, driven in part by increased demands for biofuel production.

Photosynthetic microorganisms (cyanobacteria and algae) have been proposed as alternative sources for the creation of biofuel-like compounds or industrial feedstocks (Radakovits R, Jinkerson R E, Darzins A, Posewitz M C. 2010. *Eukaryot. Cell* 9:486-501), in part because they possess many advantages over traditional terrestrial plants with regard to targeted metabolite production. For example, the photosynthetic efficiency of cyanobacteria is up to an order of 60 magnitude higher than that of plants (Zhu X G, Long S P, Ort D R. 2010. *Annu. Rev. Plant Biol.* 61:235-261) (Zhu X G, Long S P, Ort D R. 2008. *Curr. Opin. Biotechnol.* 19:153-159.), and cyanobacteria do not require support tissues that further reduce productive output (e.g., roots/stems). Cyanobacteria are genetically tractable, allowing for rapid engineering and the selection of desirable strains. Finally, cya-

2

nobacteria are aquatic microbes with minimal nutritional requirements and can therefore be cultivated in locations that do not compete with traditional agricultural crops. While cyanobacteria and algae share many similar features in this context, the use of algal species for biofuel feedstocks has been explored in much greater detail, partly because of their relatively high lipid content (Sheehan J, Dunahay T, Benemann J, Roessler P. 1998. Look back at the U.S. Department of Energy's aquatic species program: biodiesel from algae. Close-out report NREL/TP-580-24190. National Renewable Energy Laboratory, Golden, Colo.), although many cyanobacterial species feature relative simplicity and higher growth rates.

Glycogen that accumulates in microorganisms can serve as a valuable feedstock for the production of chemicals and biofuels. Glycogen can be converted to ethanol or other chemicals, for example, through saccharification and fermentation processes (Aikawa et al. *Energ Environ Sci* 2013, 6:1844-1849) (Choi et al. *Bioresour Technol* 2010, 101: 5330-5336) (Harun et al. *Appl Energy* 2011, 88:3464-3467) (Ho et al. *Bioresour Technol* 2013, 145:142-149) (Miranda et al. *Bioresour Technol* 2012, 104:342-348).

There is a need for microorganisms capable of producing high amounts of glycogen or other carbohydrates, particularly through photosynthetic processes.

SUMMARY OF THE INVENTION

The present invention is directed at least in part to microorganisms, such as photosynthetic microorganisms, that are capable of producing high levels of glycogen; methods of producing glycogen; and methods for selecting microorganisms that produce high levels of glycogen or other metabolic products.

The objects and advantages of the invention will appear more fully from the following detailed description of the preferred embodiment of the invention made in conjunction with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIGS. 1A-1C show glycogen production in control strains and strains of the invention in the presence of 0, 0.5 or 5 mM isopropyl β -D-1-thiogalactopyranoside (IPTG).

FIG. 2 shows results of a glycogen production screen of the invention with control strains and strains of the invention induced to produce glycogen in the presence of ambient CO₂ and 0 or 0.5 mM (IPTG).

FIG. 3 shows results of a glycogen production screen of the invention with control strains and strains of the invention induced to produce glycogen in the presence of $10\%~\mathrm{CO_2}$ and $0,\,0.1,\,\mathrm{or}~0.5~\mathrm{mM}$ (IPTG).

FIG. 4 shows intracellular levels of glycogen as hydrolyzed glucose from the strains analyzed in FIG. 3.

FIG. 5 shows growth rates of a control strain and a strain of the invention grown in the presence of 0 mM or 0.1 mM IPTG.

FIGS. 6, 7A, and 7B show levels of glucose hydrolyzed from glycogen from a control strain and a strain of the invention grown in the presence of 0 mM or 0.1 mM IPTG for various lengths of time.

DETAILED DESCRIPTION OF THE INVENTION

The invention is directed at least in part to microorganisms capable of enhanced production of glycogen.

The microorganism of the present invention may include any microorganism capable of making glycogen. The microorganism may be eukaryotic, such as yeast, or prokaryotic, such as bacteria or archaea. Among bacteria, gram-positive, gram-negative, and ungrouped bacteria are suitable. Photo- 5 trophs, chemotrophs, heterotrophs, and autotrophs (e.g., chemoautotrophs, photoautotrophs, chemoheterotrophs, photoheterotrophs) are suitable. The phototroph may be an anoxygenic photosynthetic microorganism or an oxygenic photosynthetic mircoorganism. The oxygenic photosyn- 10 thetic microorganism may be a cyanobacterium or a microalga. Suitable cyanobacteria include those from the genuses Agmenellum, Anabaena, Aphanocapsa, Arthrosprira, Gloeocapsa, Haplosiphon, Mastigocladus, Nostoc, Oscillatoria, Prochlorococcus, Scytonema, Syn- 15 echococcus, and Synechocystis. Preferred cyanobacteria include those selected from the group consisting of Synechococcus spp., spp., Synechocystis spp., and Nostoc spp. Particularly suitable examples of Synechococcus spp. include Synechococcus sp. PCC 7942 and Synechococcus 20 sp. PCC 7002. A particularly suitable example of Synechocystis spp. includes Synechocystis sp. PCC 6803. A benefit of photoautotrophs such as cyanobacteria is that they require only CO₂ as a carbon source and light for energy and are not dependent on food-based commodities or other types of 25 biomass for which there is a growing high demand.

The microorganisms of the invention may be modified to increase expression of one or more enzymes. Modifying the microorganism to increase expression of an enzyme can be performed using any methods currently known in the art or 30 discovered in the future. Examples include genetically modifying the microorganism and culturing the microorganism under conditions or in the presence of factors that increase expression of the enzyme. Suitable methods for genetic modification include but are not limited to placing 35 the coding sequence under the control of a more active promoter (either inducible or constitutive), increasing gene copy number, introducing a translational enhancer (see, e.g., Olins et al. Journal of Biological Chemistry, 1989, 264(29): 16973-16976), and/or increasing expression of transactiva- 40 tors. Increasing gene copy number can be performed by introducing additional copies of the gene to the microorganism, i.e., by incorporating one or more exogenous copies of the native gene or a heterologous homolog thereof into the microbial genome, by introducing such copies to the micro- 45 organism on a plasmid or other vector, or by other means. "Exogenous" used in reference to a genetic element means the genetic element is either not present in the native organism or is not present in the native organism in the same configuration. "Heterologous" used in reference to a genetic 50 element means that the genetic element is derived from a different species. A promoter that controls a particular coding sequence is herein described as being "operationally connected" to the coding sequence.

The microorganisms of the invention may include at least 55 one recombinant nucleic acid configured to express or overexpress a particular enzyme. "Recombinant" as used herein with reference to a nucleic acid molecule or polypeptide is one that has a sequence that is not naturally occurring, such as a sequence that made by an artificial 60 combination of two otherwise separated segments of sequence from the same or different organisms, or a sequence made by artificial combination of a naturally occurring sequence with a non-naturally occurring sequence. This artificial combination can be achieved, for 65 example, by chemical synthesis or by the artificial manipulation of isolated segments of nucleic acid molecules or

4

polypeptides, such as genetic engineering techniques. "Recombinant" is also used to describe nucleic acid molecules that have been artificially modified but contain the same regulatory sequences and coding regions that are found in the organism from which the nucleic acid was isolated. A recombinant cell or microorganism is one that contains a recombinant nucleic acid molecule or polypeptide. "Overexpress" as used herein means that a particular gene product is produced at a higher level in one cell, such as a recombinant cell, than in a corresponding microorganism. For example, a microorganism that includes a recombinant nucleic acid configured to overexpress an enzyme produces the enzyme at a greater amount than a microorganism that does not include the recombinant nucleic acid.

As used herein, "corresponding microorganism" refers to a microorganism of the same species having the same or substantially same genetic and proteomic composition as a microorganism of the invention, with the exception of genetic and proteomic differences resulting from the modifications described herein for the microorganisms of the invention. In some versions, the corresponding microorganism is the native microorganism. "Native" in this context refers to the natural, unmodified microorganism as it exists in nature.

Some microorganisms of the invention include at least one recombinant nucleic acid configured to express or overexpress a glucose-1-phosphate adenylyltransferase. The recombinant nucleic acid may comprise a recombinant glucose-1-phosphate adenylyltransferase gene. "Gene" refers to a nucleic acid sequence capable of producing a gene product and may include such genetic elements as a coding sequence together with any other genetic elements required for transcription and/or translation of the coding sequence. Such genetic elements may include a promoter, an enhancer, and/or a ribosome binding site (RBS), among others. The recombinant gene preferably comprises at least one sequence difference from the natural gene.

Glucose-1-phosphate adenvlyltransferase include enzymes classified under EC 2.7.7.27. Glucose-1-phosphate adenylyltransferase include enzymes that catalyze the conversion of adenosine triphosphate (ATP) and α -D-glucose 1-phosphate to diphosphate and adenosine diphosphate (ADP)-glucose. In some versions, the microorganism is modified to harbor a nucleic acid encoding a glucose-1phosphate adenylyltransferase from Escherichia coli or a homolog thereof. An exemplary coding sequence for a glucose-1-phosphate adenylyltransferase (glgC) from E. coli is represented by SEQ ID NO: 1. An exemplary amino acid sequence for a glucose-1-phosphate adenylyltransferase from E. coli (GlgC) is represented by SEQ ID NO:2. The native glucose-1-phosphate adenylyltransferase from E. coli has been shown to be activated by fructose-1,6-bisphosphate and inhibited by adenosine monophosphate (AMP) and ADP through allosteric regulation. Homologs of the E. coli glucose-1-phosphate adenylyltransferase include orthologs and paralogs of GlgC/glgC having glucose-1-phosphate adenylyltransferase activity. Homologs of the E. coli glucose-1phosphate adenylyltransferase also include enzymes having an amino acid sequence at least about 80%, 85%, 90%, 95%, 97%, 98%, 99% or more identical to SEQ ID NO:2. Sequences having these percent identities can be obtained by aligning SEQ ID NO:2 to the sequences of E. coli glucose-1-phosphate adenylyltransferase orthologs and/or paralogs having glucose-1-phosphate adenylyltransferase activity to determine which positions in the enzyme are amenable to

mutation (i.e., substitution, deletion, addition, etc.) and the identities of the substituted or added residues at these positions.

In preferred versions of the invention, the glucose-1phosphate adenylyltransferase expressed by the microorganism maintains allosteric regulation by AMP and/or ADP. In particularly preferred versions of the invention, the glucose-1-phosphate adenylyltransferase expressed by the microorganism maintains full allosteric regulation by AMP and/or ADP. The maintenance of allosteric regulation with the glucose-1-phosphate adenylyltransferase is determined with respect to the wild-type glucose-1-phosphate adenylyltransferase in the type of organism from which the glucose-1phosphate adenylyltransferase is derived, wherein "wildtype" refers to the allele that encodes the phenotype most common in the natural population. Variants or "mutants" of glucose-1-phosphate adenylyltransferase resistant to allosteric regulation by AMP and ADP are known. See, e.g., Leung P, Lee Y M, Greenberg E, Esch K, Boylan S, Preiss 20 J. Cloning and expression of the *Escherichia coli* glgC gene from a mutant containing an ADPglucose pyrophosphorylase with altered allosteric properties. J Bacterial. 1986 July; 167(1):82-8. One such variant is the E. coli GlgC variant having a G336D substitution (coding sequence: SEQ ID 25 NO:3; protein sequence: SEQ ID NO:4). The G336D variant has reduced allosteric regulation with respect to the wildtype E. coli glgC represented by SEQ ID NO:2 and is a more active form of the enzyme. Expression of the G336D variant in cyanobacteria, however, adversely affects growth rate. 30 Expression of glucose-1-phosphate adenylyltransferases that have a glycine at a position corresponding to position 336 of SEQ ID NO:2 (E. coli GlgC) are therefore preferred. In some versions, however, expression of glucose-1-phosphate adenylyltransferases that have an amino acid other 35 than glycine at a position corresponding to position 336 of SEQ ID NO:2 (E. coli GlgC) are acceptable. Exemplary amino acids other than glycine include acidic amino acids, such as glutamic acid and aspartic acid, among others. Identification of the corresponding position in a given 40 sequence can be found by aligning the sequence with SEQ ID NO:2.

The glucose-1-phosphate adenylyltransferase expressed by the microorganism preferably maintains allosteric regulation by AMP and/or ADP to an extent such that 50% 45 inhibition of the glucose-1-phosphate adenylyltransferase occurs at an AMP or ADP concentration +/– about 10-fold, 9-fold, 8-fold, 7-fold, 6-fold, 5-fold, 4-fold, 3-fold, 2-fold, 1.5-fold, or 1.1-fold of the AMP or ADP concentration that induces 50% inhibition of the wild-type glucose-1-phosphate adenylyltransferase.

In some versions of the invention, the glucose-1-phosphate adenylyltransferase expressed by the microorganism maintains allosteric regulation by AMP, ADP, and/or fructose-1,6-bisphosphate.

Exogenous, heterologous nucleic acids encoding enzymes to be expressed in the microorganism are preferably codon-optimized for the particular microorganism in which they are introduced. Codon optimization can be performed for any nucleic acid by a number of programs, including 60 "GENEGPS"-brand expression optimization algorithm by DNA 2.0 (Menlo Park, Calif.), "GENEOPTIMIZER"-brand gene optimization software by Life Technologies (Grand Island, N.Y.), and "OPTIMUMGENE"-brand gene design system by GenScript (Piscataway, N.J.). Other codon optimization programs or services are well known and commercially available.

6

In some versions of the invention, the microorganism exhibits a native glycogen synthase expression level. "Native glycogen synthase expression level" refers to the level of glycogen synthase expression in the native, unmodified microorganism. In such versions, the microorganism is not modified to overexpress the glycogen synthase, wherein overexpression is defined with respect to expression in the native microorganism. Examples of a glycogen synthase in bacteria such as E. coli and cyanobacteria include products of glgA genes. Examples of products of glgA genes include glgA1 (SEQ ID NO:6) and glgA2 (SEQ ID NO:8) of Synechococcus sp. PCC 7002, encoded by glgA1 (SEQ ID NO:5) and glgA2 (SEQ ID NO:7), respectively. Accordingly, in at least some versions of the invention in which the microorganism exhibits a native glycogen synthase expression level the microorganism contains the native glgA gene(s) and/or does not include a recombinant glgA gene configured to overexpress glgA.

In some versions of the invention, the microorganism exhibits native glycogen synthase activity. "Native glycogen synthase activity" refers to the level of glycogen synthase activity in the native, unmodified microorganism. Glycogen synthase activity in the microorganism may be determined by the method described by Leung et al. (Leung P, Lee Y M, Greenberg E, Esch K, Boylan S, Preiss J. Cloning and expression of the *Escherichia coli* glgC gene from a mutant containing an ADPglucose pyrophosphorylase with altered allosteric properties. *J Bacteriol*. 1986 July; 167(1):82-8) and Kawajuchi et al. (Kawaguchi K, Fox J, Holmes E, Boyer C, Preiss J. De novo synthesis of *Escherichia coli* glycogen is due to primer associated with glycogen synthase and activation by branching enzyme. *Arch Biochem Biophys*. 1978 October; 190(2):385-97).

In some versions of the invention, the microorganism exhibits a native 1,4-alpha-glucan-branching enzyme expression level. "Native 1,4-alpha-glucan-branching enzyme expression level expression level" refers to the level of 1,4-alpha-glucan-branching enzyme expression in the native, unmodified microorganism. In such versions, the microorganism is not modified to overexpress the 1,4-alphaglucan-branching enzyme, wherein overexpression is defined with respect to expression in the native (nonmodified) microorganism. Examples of a 1,4-alpha-glucanbranching enzyme in bacteria such as E. coli and cyanobacteria include products of glgB genes. An example of a product of a glgB gene includes glgB (SEQ ID NO:10) of Synechococcus sp. PCC 7002, which is encoded by glgB (SEQ ID NO:9). Accordingly, in at least some versions of the invention in which the microorganism exhibits a native 1,4-alpha-glucan-branching enzyme expression level the microorganism contains the native glgB gene(s) and/or does not include a recombinant glgB gene configured to overexpress glgB.

In some versions of the invention, the microorganism exhibits native 1,4-alpha-glucan-branching enzyme activity. "Native 1,4-alpha-glucan-branching enzyme activity" refers to the level of 1,4-alpha-glucan-branching enzyme activity in the native, unmodified microorganism. 1,4-Alpha-glucan-branching enzyme activity in the microorganism may be determined by the method described by Leung et al. (Leung P, Lee Y M, Greenberg E, Esch K, Boylan S, Preiss J. Cloning and expression of the *Escherichia coli* glgC gene from a mutant containing an ADPglucose pyrophosphorylase with altered allosteric properties. *J Bacteriol*. 1986 July; 167(1):82-8) and Boyer et al. (Boyer C, Preiss J. Biosynthesis of bacterial glycogen. Purification and properties of

the *Escherichia coli* B alpha-1,4,-glucan: alpha-1,4-glucan 6-glycosyltansferase. *Biochemistry*. 1977 Aug. 9; 16(16): 3693-9.).

In some versions of the invention, the microorganism exhibits a native fructose-bisphosphate aldolase enzyme 5 expression level. "Native fructose-bisphosphate aldolase enzyme expression level expression level" refers to the level of fructose-bisphosphate aldolase enzyme expression in the native, unmodified microorganism. In such versions, the microorganism is not modified to overexpress the fructosebisphosphate aldolase enzyme, wherein overexpression is defined with respect to expression in the native (nonmodified) microorganism. Examples of a fructose-bisphosphate aldolase enzyme in bacteria such as E. coli and cyanobacteria include products of fba genes. An example of 15 a product of a fba gene includes fba (SEQ ID NO:12) of Synechocystis sp. PCC 6803, which is encoded by fba (SEQ ID NO:11). Accordingly, in at least some versions of the invention in which the microorganism exhibits a native fructose-bisphosphate aldolase enzyme expression level the 20 microorganism contains the native fba gene(s) and/or does not include a recombinant fba gene configured to overexpress fba. In some versions of the invention, the microorganism exhibits native fructose-bisphosphate aldolase enzyme activity.

In some versions of the invention, the microorganism exhibits a native fructose 1,6-bisphosphatase enzyme expression level. "Native fructose 1,6-bisphosphatase enzyme expression level expression level" refers to the level of fructose 1,6-bisphosphatase enzyme expression in the 30 native, unmodified microorganism. In such versions, the microorganism is not modified to overexpress the fructose 1,6-bisphosphatase enzyme, wherein overexpression is defined with respect to expression in the native (nonmodified) microorganism. Examples of a fructose 1,6-bis- 35 phosphatase enzyme in bacteria such as E. coli and cyanobacteria include products of fbp genes. An example of a product of a fbp gene includes fbp (SEQ ID NO:14) of Synechocystis sp. PCC 6803, which is encoded by fbp (SEQ ID NO:11). Accordingly, in at least some versions of the 40 invention in which the microorganism exhibits a native fructose 1,6-bisphosphatase enzyme expression level the microorganism contains the native fbp gene(s) and/or does not include a recombinant fba gene configured to overexpress fbp. In some versions of the invention, the microor- 45 ganism exhibits native fructose 1,6-bisphosphatase enzyme activity.

The microorganism of the invention may comprise modifications that reduce or ablate the activity of gene products of one or more genes. Such a modification that that reduces 50 or ablates the activity of gene products of one or more genes is referred to herein as a "functional deletion" of the gene product. "Gene product" refers to a protein or polypeptide encoded and produced by a particular gene.

One of ordinary skill in the art will appreciate that there 55 are many well-known ways to functionally delete a gene product. For example, functional deletion can be accomplished by introducing one or more genetic modifications. As used herein, "genetic modifications" refer to any differences in the nucleic acid composition of a cell, whether in 60 the cell's native chromosome or in endogenous or exogenous non-chromosomal plasmids harbored within the cell. Examples of genetic modifications that may result in a functionally deleted gene product include but are not limited to mutations such as substitutions, partial or complete deletions, insertions, or other variations to a coding sequence or a sequence controlling the transcription or translation of a

8

coding sequence; placing a coding sequence under the control of a less active promoter; blocking transcription of the gene with a trans-acting DNA binding protein such as a TAL effector or CRISPR guided Cas9; expressing ribozymes or antisense sequences that target the mRNA of the gene of interest; and tagging proteins for rapid proteolytic decay (Cameron D E, Collins J J. Tunable protein degradation in bacteria. Nat Biotechnol. 2014 December; 32(12):1276-81.), etc. In some versions, a gene or coding sequence can be replaced with a selection marker or screenable marker. Various methods for introducing the genetic modifications described above are well known in the art and include homologous recombination, among other mechanisms. See, e.g., Green et al., Molecular Cloning: A laboratory manual, 4th ed., Cold Spring Harbor Laboratory Press (2012) and Sambrook et al., Molecular Cloning: A Laboratory Manual, 3rd ed., Cold Spring Harbor Laboratory Press (2001). Various other genetic modifications that functionally delete a gene product are described in the examples below. Functional deletion can also be accomplished by inhibiting the activity of the gene product, for example, by chemically inhibiting a gene product with a small molecule inhibitor, by expressing a protein that interferes with the activity of the gene product, or by other means.

In certain versions of the invention, the functionally deleted gene product may have less than about 95%, less than about 90%, less than about 85%, less than about 80%, less than about 75%, less than about 70%, less than about 65%, less than about 55%, less than about 55%, less than about 50%, less than about 40%, less than about 35%, less than about 30%, less than about 25%, less than about 25%, less than about 25%, less than about 15%, less than about 10%, less than about 10%, less than about 10%, or about 0% of the activity of the non-functionally deleted gene product.

In certain versions of the invention, a cell with a functionally deleted gene product may have less than about 95%, less than about 90%, less than about 85%, less than about 80%, less than about 70%, less than about 65%, less than about 55%, less than about 55%, less than about 55%, less than about 55%, less than about 30%, less than about 40%, less than about 35%, less than about 30%, less than about 25%, less than about 15%, less than about 10%, less than about 15%, less than about 10% of the activity of the gene product compared to a cell with the non-functionally deleted gene product.

In certain versions of the invention, the functionally deleted gene product may be expressed at an amount less than about 95%, less than about 90%, less than about 85%, less than about 80%, less than about 75%, less than about 70%, less than about 65%, less than about 60%, less than about 55%, less than about 45%, less than about 45%, less than about 45%, less than about 25%, less than about 20%, less than about 15%, less than about 20%, less than about 15%, less than about 10%, less than about 15%, less than about 10% of the amount of the non-functionally deleted gene product.

In certain versions of the invention, the functionally deleted gene product may result from a genetic modification in which at least 1, at least 2, at least 3, at least 4, at least 5, at least 10, at least 20, at least 30, at least 40, at least 50, or more nonsynonymous substitutions are present in the gene or coding sequence of the gene product.

In certain versions of the invention, the functionally deleted gene product may result from a genetic modification in which at least 1, at least 2, at least 3, at least 4, at least 5,

at least 10, at least 20, at least 30, at least 40, at least 50, or more bases are inserted in the gene or coding sequence of the gene product

In certain versions of the invention, the functionally deleted gene product may result from a genetic modification 5 in which at least about 1%, at least about 5%, at least about 10%, at least about 20%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 50%, at least about 55%, at least about 60%, at least about 65%, at least about 70%, at least about 95%, at least about 80%, at least about 80%, at least about 95%, at least about 95%, or about 100% of the gene product's gene or coding sequence is deleted or mutated.

In certain versions of the invention, the functionally deleted gene product may result from a genetic modification 15 in which at least about 1%, at least about 5%, at least about 10%, at least about 20%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 50%, at least about 55%, at least about 60%, at least about 65%, at least about 70%, at least about 90%, at least about 95%, or about 100% of a promoter driving expression of the gene product is deleted or mutated.

In certain versions of the invention, the functionally deleted gene product may result from a genetic modification 25 in which at least about 1%, at least about 5%, at least about 10%, at least about 20%, at least about 25%, at least about 35%, at least about 40%, at least about 50%, at least about 55%, at least about 60%, at least about 65%, at least about 70%, at least about 65%, at least about 85%, at least about 95%, at least about 95%, at least about 95%, at least about 95%, or about 100% of an enhancer controlling transcription of the gene product's gene is deleted or mutated.

In certain versions of the invention, the functionally 35 deleted gene product may result from a genetic modification in which at least about 1%, at least about 5%, at least about 10%, at least about 20%, at least about 25%, at least about 35%, at least about 40%, at least about 50%, at least about 55%, at least about 40%, at least about 65%, at least about 70%, at least about 75%, at least about 85%, at least about 90%, at least about 95%, or about 100% of a sequence controlling translation of gene product's mRNA is deleted or mutated.

In certain versions of the invention, the decreased activity or expression of the functionally deleted gene product is determined with respect to the activity or expression of the gene product in its unaltered state as found in nature. In certain versions of the invention, the decreased activity or 50 expression of the functionally deleted gene product is determined with respect to the activity or expression of the gene product in its form in a corresponding microorganism. In certain versions, the genetic modifications giving rise to a functionally deleted gene product are determined with 55 respect to the gene or coding sequence in its unaltered state as found in nature. In certain versions, the genetic modifications giving rise to a functionally deleted gene product are determined with respect to the gene or coding sequence in its form in a corresponding microorganism.

Homologs include genes or gene products (including enzymes) that are derived, naturally or artificially, from a common ancestral gene or gene product. Homology is generally inferred from sequence similarity between two or more genes or gene products. Homology between genes may 65 be inferred from sequence similarity between the products of the genes. The precise percentage of similarity between

10

sequences that is useful in establishing homology varies with the gene or gene product at issue, but as little as 25% sequence similarity (e.g., identity) over 50, 100, 150 or more residues (nucleotides or amino acids) is routinely used to establish homology (e.g., over the full length of the two sequences to be compared). Higher levels of sequence similarity (e.g., identity), e.g., 30%, 35% 40%, 45% 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 99% or more, can also be used to establish homology. Accordingly, homologs of the coding sequences, genes, or gene products described herein include coding sequences, genes, or gene products, respectively, having at least about 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 99% identity to the coding sequences, genes, or gene products, respectively, described herein. In some versions, homologs of the genes described herein include genes that have gene products at least about 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 99% identical to the gene products of the genes described herein. Methods for determining sequence similarity percentages (e.g., BLASTP and BLASTN using default parameters) are described herein and are generally available. The homologous gene products should demonstrate comparable activities and, if an enzyme, participate in the same or analogous pathways. "Orthologs" are genes or coding sequences thereof in different species that evolved from a common ancestral gene by speciation. Normally, orthologs retain the same or similar function in the course of evolution. As used herein "orthologs" are included in the term "homologs." Homologs also include paralogs.

For sequence comparison and homology determination, one sequence typically acts as a reference sequence to which test sequences are compared. When using a sequence comparison algorithm, test and reference sequences are input into a computer, subsequence coordinates are designated, if necessary, and sequence algorithm program parameters are designated. The sequence comparison algorithm then calculates the percent sequence identity for the test sequence(s) relative to the reference sequence based on the designated program parameters. A typical reference sequence of the invention is a nucleic acid or amino acid sequence corresponding to coding sequences, genes, or gene products described herein.

Optimal alignment of sequences for comparison can be conducted, e.g., by the local homology algorithm of Smith & Waterman, Adv. Appl. Math. 2:482 (1981), by the homology alignment algorithm of Needleman & Wunsch, J. Mol. Biol. 48:443 (1970), by the search for similarity method of Pearson & Lipman, Proc. Nat'l. Acad. Sci. USA 85:2444 (1988), by computerized implementations of these algorithms (GAP, BESTFIT, FASTA, and TFASTA in the Wisconsin Genetics Software Package, Genetics Computer Group, 575 Science Dr., Madison, Wis.), or by visual inspection (see Current Protocols in Molecular Biology, F. M. Ausubel et al., eds., Current Protocols, a joint venture between Greene Publishing Associates, Inc. and John Wiley & Sons, Inc., (supplemented through 2008)).

One example of an algorithm that is suitable for determining percent sequence identity and sequence similarity for purposes of defining homologs is the BLAST algorithm, which is described in Altschul et al., *J. Mol. Biol.* 215:403-410 (1990). Software for performing BLAST analyses is publicly available through the National Center for Biotechnology Information. This algorithm involves first identifying high scoring sequence pairs (HSPs) by identifying short words of length W in the query sequence, which either match or satisfy some positive-valued threshold score T

when aligned with a word of the same length in a database sequence. T is referred to as the neighborhood word score threshold (Altschul et al., supra). These initial neighborhood word hits act as seeds for initiating searches to find longer HSPs containing them. The word hits are then extended in 5 both directions along each sequence for as far as the cumulative alignment score can be increased. Cumulative scores are calculated using, for nucleotide sequences, the parameters M (reward score for a pair of matching residues; always >0) and N (penalty score for mismatching residues; always <0). For amino acid sequences, a scoring matrix is used to calculate the cumulative score. Extension of the word hits in each direction are halted when: the cumulative alignment score falls off by the quantity X from its maximum achieved value; the cumulative score goes to zero or 15 below, due to the accumulation of one or more negativescoring residue alignments; or the end of either sequence is reached. The BLAST algorithm parameters W, T, and X determine the sensitivity and speed of the alignment. The BLASTN program (for nucleotide sequences) uses as 20 defaults a wordlength (W) of 11, an expectation (E) of 10, a cutoff of 100, M=5, N=-4, and a comparison of both strands. For amino acid sequences, the BLASTP program uses as defaults a wordlength (W) of 3, an expectation (E) of 10, and the BLOSUM62 scoring matrix (see Henikoff & 25 Henikoff (1989) Proc. Natl. Acad. Sci. USA 89:10915).

In addition to calculating percent sequence identity, the BLAST algorithm also performs a statistical analysis of the similarity between two sequences (see, e.g., Karlin & Altschul, Proc. Natl. Acad. Sci. USA 90:5873-5787 (1993)). One 30 measure of similarity provided by the BLAST algorithm is the smallest sum probability (P(N)), which provides an indication of the probability by which a match between two nucleotide or amino acid sequences would occur by chance. For example, a nucleic acid is considered similar to a 35 reference sequence if the smallest sum probability in a comparison of the test nucleic acid to the reference nucleic acid is less than about 0.1, more preferably less than about 0.01, and most preferably less than about 0.001. The above-described techniques are useful in identifying homologous 40 sequences for use in the methods described herein.

The terms "identical" or "percent identity", in the context of two or more nucleic acid or polypeptide sequences, refers to two or more sequences or subsequences that are the same or have a specified percentage of amino acid residues or 45 nucleotides that are the same, when compared and aligned for maximum correspondence, as measured using one of the sequence comparison algorithms described above (or other algorithms available to persons of skill) or by visual inspection.

The phrase "substantially identical", in the context of two nucleic acids or polypeptides refers to two or more sequences or subsequences that have at least about 60%, about 65%, about 70%, about 75%, about 80%, about 85%, about 90, about 95%, about 98%, or about 99% or more 55 nucleotide or amino acid residue identity, when compared and aligned for maximum correspondence, as measured using a sequence comparison algorithm or by visual inspection. Such "substantially identical" sequences are typically considered to be "homologous" without reference to actual 60 ancestry. Preferably, the "substantial identity" exists over a region of the sequences that is at least about 50 residues in length, more preferably over a region of at least about 100 residues, and most preferably, the sequences are substantially identical over at least about 150 residues, at least about 250 residues, or over the full length of the two sequences to be compared.

12

Accordingly, homologs of the genes described herein include genes with gene products at least about 80%, 85%, 90%, 95%, 97%, 98%, 99%, or more identical to the gene products of the genes described herein.

In some versions, the microorganisms of the invention produce an increased amount of glycogen compared to a corresponding microorganism not comprising the modifications described herein. For example, the microorganisms of the invention may be capable of producing at least about 1.1-fold, about 1.25-fold, about 1.5-fold, about 2.75-fold, about 2.5-fold, about 2.5-fold, about 2.75-fold, about 3-fold or more glycogen than a corresponding microorganism, and/or up to about 2.5-fold, about 3-fold, about 4-fold, about 5-fold, about 10-fold, or more glycogen than a corresponding microorganism.

In some versions, the microorganisms of the invention produce glycogen at an increased rate compared to a corresponding microorganism not comprising the modifications described herein. For example, the microorganisms of the invention may be capable of producing glycogen at a rate at least about 2-fold, about 3-fold, about 4-fold, about 5-fold, about 6-fold, about 7-fold, about 8-fold, about 9-fold or more than a corresponding microorganism, and/or up to about 5-fold, about 10-fold, about 12-fold, about 15-fold or more than a corresponding microorganism.

In some versions, the microorganisms of the invention produce glycogen at a rate of at least about 50 mg/L/day, about 100 mg/L/day, about 125 mg/L/day, about 150 mg/L/day, about 175 mg/L/day, about 200 mg/L/day, or more, and/or up to about 190 mg/L/day, about 200 mg/L/day, about 250 mg/L/day, about 275 mg/L/day, about 300 mg/L/day or more.

In some versions, the microorganisms of the invention are capable of producing glycogen as a mass percent of dry cell weight (DCW) in an amount of at least about 10% DCW, at least about 25% DCW, at least about 26% DCW, at least about 25% DCW, at least about 26% DCW, at least about 27% DCW, at least about 28% DCW, at least about 29% DCW, at least about 30% DCW, at least about 31% DCW, at least about 32% DCW, at least about 33% DCW, at least about 34% DCW, or at about least 35% DCW and/or up to about or at least about 31% DCW, about or at least about 32% DCW, about or at least about 34% DCW, about or at least about 35% DCW, about or at least about 36% DCW, about or at least about 37% DCW, about or at least about 38% DCW, about or at least about 39% DCW, or about or at least about 40% DCW.

In some versions, the microorganisms of the invention have a growth rate substantially the same as a corresponding microorganism when cultured under identical conditions, such that the modifications described herein do not substantially affect the growth rate. For example, the microorganisms of the invention may have a growth rate within about 40%, about 35%, about 30%, about 25%, about 20%, about 15%, about 10%, about 5%, about 3%, about 2%, or about 1% the growth rate of a corresponding microorganism when cultured under identical conditions. In some versions, the microorganisms of the invention have a growth rate of at least the growth rate of a corresponding microorganism when cultured under identical conditions.

In addition to the microorganism itself, the invention also provides methods of producing glycogen with the microorganisms of the present invention. The methods involve culturing the microorganism in conditions suitable for growth of the microorganism. Such conditions include providing suitable carbon and energy sources for the particular microorganism. Suitable carbon and energy sources for

particular types of microorganisms are described elsewhere herein for exemplary microorganisms and are otherwise known in the art.

The invention also provides methods of screening for production of glycogen or other metabolic products. The 5 screening methods generally involve culturing microorganisms under conditions that promote production of the metabolic product, then stressing the microorganisms under stringent conditions that promote consumption of the metabolic product at a high metabolic rate, and then comparing 10 the recovery rates of the microorganisms when reintroduced to more suitable growth conditions.

An exemplary screening method includes culturing microorganisms in the presence of a carbon source and a first amount of an energy source under conditions suitable for producing the metabolic product, then culturing the microorganisms in the presence of a second amount of the energy source under conditions suitable for consuming the metabolic product, then culturing the microorganisms in the presence of the carbon source and a third amount of the energy source and determining the relative growth of the microorganisms in the presence of the carbon source and the third amount of the energy source is preferably less than the first amount of the energy source, and the third amount of the energy source is 25 preferably greater than the second amount of the energy source.

The metabolic product preferably comprises a product comprising reduced carbon that serves as a form of stored energy for the microorganism and is consumable by the 30 microorganism for survival when a sufficient external energy source is lacking. Such products may include carbohydrates, lipids, and/or proteins. Exemplary carbohydrates may include simple carbohydrates such as monosaccharides or disaccharides or complex carbohydrates such as trisaccharides, tetrasaccharides, starch, or glycogen, among others. Exemplary lipids may include fatty acids, glycerol, or glycerides, among others.

The energy source may comprise a fermentable or oxidizable form of reduced molecules, if the microorganism is 40 a chemotroph, or light, if the microorganism is an autotroph. The reduced molecules may be organic or inorganic. Examples of reduced organic molecules include reduced carbon, such as carbohydrates, lipids, proteins, methane, and other reduced organic molecules. Reduced organic molecules can be used for chemoorganotrophs. Examples of reduced inorganic molecules include iron(II), Mn^{2+} , H_2 , sulfide (H_2S), inorganic sulfur (S_0), thiosulfate ($S_2O_3^{\ 2-}$), ammonia, and nitrite, among others. Reduced inorganic molecules can be used for chemolithotrophs.

The carbon source may comprise organic carbon, if the microorganism is a hetrotroph, or carbon dioxide, if the microorganism is an autotroph. Examples of organic carbon include carbohydrates, lipids, and proteins.

The microorganisms used in the selection method may 55 comprise any microorganism described herein.

The conditions suitable for consuming the metabolic product preferably comprise a temperature sufficient to support metabolic activity of the microorganisms in the presence of the second amount of the energy source. Such a 60 temperature may be at least about 27° C., at least about 30° C., at least about 35° C., at least about 37° C., at least about 40° C. or more and/or up to about 37° C., up to about 40° C., up to about 45° C. or more.

In exemplary versions of the invention, the microorgan-65 isms comprise photosynthetic microorganisms, the carbon source comprises CO₂, the energy source comprises light,

14

and the metabolic product comprises glycogen. Culturing the microorganisms in the first amount of the energy source may comprise exposing the microorganisms to a direct source of light. Culturing the microorganisms in the second amount of the energy source may comprise substantially blocking the microorganisms from any direct source of light. Culturing the microorganisms in the third amount of the energy source may comprise exposing the microorganisms to a direct source of light. The photosynthetic microorganisms may comprise cyanobacteria and/or microalgae.

The elements and method steps described herein can be used in any combination whether explicitly described or not.

All combinations of method steps as used herein can be performed in any order, unless otherwise specified or clearly implied to the contrary by the context in which the referenced combination is made.

As used herein, the singular forms "a," "an," and "the" include plural referents unless the content clearly dictates otherwise.

Numerical ranges as used herein are intended to include every number and subset of numbers contained within that range, whether specifically disclosed or not. Further, these numerical ranges should be construed as providing support for a claim directed to any number or subset of numbers in that range. For example, a disclosure of from 1 to 10 should be construed as supporting a range of from 2 to 8, from 3 to 7, from 5 to 6, from 1 to 9, from 3.6 to 4.6, from 3.5 to 9.9, and so forth.

All patents, patent publications, and peer-reviewed publications (i.e., "references") cited herein are expressly incorporated by reference to the same extent as if each individual reference were specifically and individually indicated as being incorporated by reference. In case of conflict between the present disclosure and the incorporated references, the present disclosure controls.

It is understood that the invention is not confined to the particular construction and arrangement of parts herein illustrated and described, but embraces such modified forms thereof as come within the scope of the claims.

EXAMPLES

Strains

fba (coding sequence: SEQ ID NO:11; protein sequence: SEQ ID NO:12) and fbp (coding sequence: SEQ ID NO:13; protein sequence: SEQ ID NO:14) from Synechocystis PCC 6803 was inserted as an operon into the cLac143 IPTG inducible cassette described in Markley et al. 2015 (Markley A L, Begemann M B, Clarke R E, Gordon G C, Pfleger B F. ACS Synth Biol. 2015 May 15; 4(5):595-603) with 500 base pair flanking regions targeting the acsA locus in PCC 7002, forming construct pALM173 (SEQ ID NO:15). Wild Type glgC from K12 MG1655 E. coli genomic DNA (coding sequence: SEQ ID NO:1; protein sequence: SEQ ID NO:2) was inserted into the cLac94 IPTG inducible cassette described in Markley et al. 2015 with 500 base-pair flanking regions targeting the glpK locus in PCC 7002, forming construct pALM210 (SEQ ID NO:16). glgC with a G336D mutation (coding sequence: SEQ ID NO:3; protein sequence: SEQ ID NO:4) was amplified from a BioBrick part BBa K118016 and inserted into an identical vector backbone as pALM210 to form pALM211 (SEQ ID NO:17).

These genetic elements were inserted into the PCC 7002 chromosome by adding 1-1.5 μg of purified plasmid DNA to 1 mL of an overnight culture of cells grown to an OD₇₃₀ of 1. The cultures were then placed at 37° C. under illumination for 16 hours. The cells were plated on 50 μM acrylic acid

(acsA locus) or 100 μ g/ml gentamycin (glpK locus) to select for recombinants. This yielded strains were AM184 (WT 7002 AcsA::cLac143 FbaFbp), AM241 (WT 7002 glpK::cLac94 GlgC K12 GmR) and AM253 (WT 7002 glpK::cLac94 GlgC K12 G336D GmR). Double fba-fbp/glgC strains were constructed by repeating the pALM210/pALM211 glgC transformations in the AM184 fba-fbp strain to produce AM254 (AM184 7002 glpK::cLac94 GlgC K12 GmR) and AM255 (AM184 7002 glpK::cLac94 GlgC K12 G336D GmR).

The generated strains are shown in Table 1.

TABLE 1

Strains used in the present examples.								
Strain ID	Description	Parent Strain	Construct Name(s)					
AM184 AM241	WT 7002 AcsA::cLac143 FbaFbp Fix WT 7002 glpK::cLac94 GlgC K12 GmR		pALM173 pALM210					
AM253	WT 7002 glpK::cLac94 GlgC K12 G336D GmR	PCC 7002	pALM211					
AM254	AM184 7002 glpK::cLac94 GlgC K12 GmR	PCC 7002	pALM173 + pALM210					
AM255	AM184 7002 glpK::cLac94 GlgC K12 G336D GmR	PCC 7002	pALM173 + pALM211					

Initial Glycogen Production Testing

Initial experiments on the produced strains were performed in Corning Costar non-treated 6-well tissue culture 30 plates with 6 mL of MediaA⁺ (0.308 M NaCl, 0.02 M MgSO₄.7H₂O, 0.08 mM Na₂EDTA.2H₂O, 8.05 mM KCl, 2.52 mM CaCl₂.2H₂O, 11.8 mM NaNO₃, 0.37 mM KH₂PO₄, 8.26 mM TRIZMA® base (Sigma-Aldrich, St. Louis, Mo.) pH 8.2, 55.5 mM H₃BO₃, 0.23 mM ZnCl₂, 35 0.021 mM MoO₃ (85%), 0.3 μM vitamin B12 (cyanocobalamin), 0.14 mM FeCl₃.6H₂O, 0.22 mM MnCl₂.4H₂O, 0.00012 mM CuSO₄.5H₂O₇, 0.0005 mM CoCl₂.6H₂O₇ according to the UTEX Culture Collection of Algae at The University of Texas at Austin. IPTG was added at 0.5 mM 40 and 5 mM. The cultures were grown on a shaker at 37° C. under illumination for 2 days. The induced strains with glgC G336D (AM253 and AM255) had a severe growth defect. 1.5 OD₇₃₀*mL were collected and pelleted. The pellets were washed 3× with PBS and analyzed for glycogen content 45 using the Glycogen Assay Kit (Item No. 700480) from Cayman Chemical Company (Ann Arbor, Mich.).

To prepare samples for the glycogen assay with the Glycogen Assay Kit, 1x Glycogen Assay Buffer was prepared according to the manufacturer's instructions. 1.5 OD 50 ml (approximately 400 mg DCW based on my standard curve) was taken from each culture in regular Media A at low CO₂ and washed 3× in PBS to remove Tris interference. Cell pellets were resuspended in 2 ml Diluted Assay Buffer+ 1×PMSF. Samples were frozen at -80° C. until further use. 55 To finish the sample preparation for the glycogen assay, the remaining reagents were prepared according to the manufacturer's instructions. The frozen samples were sonicated on ice at 20% amplitude in 2-second bursts for 1 min total. The sample preparation was finished according to the manufacturer's instructions while also testing different dilution factors. The assay was then performed according to the manufacturer's instructions.

AM253 (glgC G336D) and AM255 (glgC G336D+fbafbp) yielded inconsistent glycogen yields with these experiments, likely due to their poor growth rates. Additionally, while strains containing the glgC G336D had a high glyco16

gen:dry cell weight ratio, the low growth rate resulted in a lower overall productivity when compared with WT glgC strains. See FIGS. 1A-1C.

Since these experiments showed that AM241 and AM254 had 2-3 fold more glycogen than WT PCC 7002 without a severe growth defect, these strains were chosen for further testing.

Glycogen Production Screen

In order to aid in the testing of the glycogen-producing strains, a screen was developed that couples glycogen content to cellular fitness. The overall scheme of this screen is to grow strains in liquid media using any desired growth condition. The cells are then normalized to the same OD₇₃₀ and serially diluted in sterile MediaA⁺. 7.5 µl of these dilutions are then spotted on several replicate MediaA⁺ agar plates. One plate is immediately placed under illumination at 37° C. while the remaining plates are placed in a dark 37° C. incubator. The plates are then periodically removed from the dark incubator and placed in the light. Cells that have a high glycogen content show higher recovery rates compared to cells with low or no glycogen content.

An alternative strategy whereby liquid cultures of high and low glycogen content strains were incubated in the dark 25 at 37° C. for several days and periodically spotted on MediaA+ agar plates before outgrowing in the illuminated growth chamber showed no difference in cellular fitness between strains. Similarly, simply leaving the solid agar plates at room temperature instead of 37° C. also did not 30 work as well due to the very slow loss in fitness.

Testing of Strains Using the Glycogen Production Screen

The glycogen production screen described above was performed on WT PCC 7002, a native glgC knockout (through kanamycin resistance gene inactivation), AM241, and AM254. Each strain was inoculated at 0.05 $\rm OD_{730}$ in 20 mL of MediaA+ and grown for 16 hours at 37° C. in the presence of ambient $\rm CO_2$ and 0 or 0.5 mM IPTG. After 16 hours, the strains were normalized to the same $\rm OD_{730}$, serially diluted, spotted on MediaA+ agar plates, placed in a dark 37° C. incubator for various amounts of time, and placed in the light to determine relative recovery. Results are shown in FIG. 2.

The glycogen production screen was also performed on the same strains grown in 10% CO₂. For this experiment, WT PCC 7002, the native glgC knockout, AM241, and AM254 were inoculated at 0.05 OD_{730} in 20 mL of Media A^{+} and grown for 16 hours at 37° C. with 10% CO₂ by volume bubbled into the tubes in the presence of 0, 0.1, or 0.5 mM IPTG. After 16 hours, the strains were normalized to the same OD₇₃₀, serially diluted, spotted on MediaA⁺ agar plates, placed in a dark 37° C. incubator for various amounts of time, and placed in the light to determine relative recovery. Results are shown in FIG. 3. Additionally, after the 16-hours of growth, 10 OD₇₃₀*mL of each sample were spun down and lyophilized then resuspended with 1 mL of 4% H₂SO₄ and placed at 121° C. for one hour to hydrolyze the glycogen to glucose. After an hour, the samples were neutralized up to a pH of >2 and then run on an HPLC with a Bio-rad Aminex HPX-87H Sugar Byproducts Column using a 5 mM H₂SO₄ isocratic running buffer. The glucose peaks were compared with a standard curve to determine intracellular sugar content. Results are shown in FIG. 4. The sugar content of the cells was highly correlative to the relative survival rate in the dark. Compare FIGS. 4 and 3, respectively.

The AM241 (glpK::cLac94 glgC K12 WT) strain was chosen for larger scale bioreactor studies.

Bioreactor Runs

Approximately 250 mL of WT PCC 7002 and AM241 bacteria were grown under ambient CO_2 conditions in the light, and then these cultures were used to inoculate 900 mL MediaA+ bioreactors in triplicate at an OD_{730} of 0.01. Six 5 total bioreactors of AM241 were inoculated, and IPTG was added to three of them to a final concentration of 0.1 mM IPTG. The bioreactors were then grown at 37° C. with 10% CO_2 , and 60 OD_{730} *mL were collected periodically and analyzed for sugar content by HPLC as described above. 10 There was no significant difference in growth rates between the WT and AM241 cultures (FIG. 5), but AM241 induced

18

at 0.1 mM IPTG showed a 3.2 fold increase in glycogen content over WT 7002 and a titer of 476 mg/L glycogen after 64 hours (FIG. 6). Critically, this is done without having to lower the growth rate of the cyanobacteria or modify the nutrient ratios, as has been the only strategy for glycogen production in cyanobacteria.

Total glycogen content did start to decrease after 64 hours. See FIGS. 7A and 7B. This decrease was likely due to IPTG degradation. It is predicted that use of a constitutive expression system will prevent such a decrease.

Additional parameters from the bioreactor experiments are shown in Table 2.

TABLE 2

Days of		Dry Cell Weight	Sample	DCW/ Sample	HPLC Glucose	Glucose/	Percent	Total	Glucose Production
Growth (Days)	Strain	(DCW) (mg)	Volume (mL)	Volume (mg/L)	Content (mg/ml)	Sample (mg)	Glucose of DCW	Glucose (mg/L)	Rate (mg/L/day
1.1	WT 7002	27.3	41.78	653.40	0.29	0.62	2.3%	14.83	14
		24.8	34.40	720.90	0.39	0.83	3.4%	24.24	22
	AM241	24.2 23.8	38.36 42.02	630.80 566.40	0.39 1.75	0.83 3.76	3.4% 15.8%	21.67 89.41	20 83
	0 mM	16.8	37.41	449.10	2.00	4.30	25.6%	115.02	106
	O IIIIVI	22.6	43.35	521.30	1.82	3.92	17.4%	90.49	84
	AM241	24.2	39.37	614.70	3.66	7.87	32.5%	199.86	184
	0.1 mM	26.1	38.76	673.40	3.82	8.22	31.5%	212.01	196
		23.5	37.69	623.50	3.44	7.39	31.4%	196.03	181
2.7	WT 7002	17.2	12.76	1358.80	0.60	1.30	7.5%	102.38	38
		24.4	11.67	2090.30	1.08	2.33	9.6%	199.77	75
		25.0	13.57	1841.70	0.87	1.88	7.5%	138.32	52
	AM241	24.5	13.89	1764.00	1.21	2.61	10.6%	187.58	70
	0 mM	24.9	12.77	1950.50	1.64	3.52	14.1%	275.91	103
	13.62.41	24.1	14.08	1711.10	1.39	2.99	12.4%	212.50	80
	AM241	25.3	13.10	1931.20	2.84	6.11	24.1%	466.33	175
	0.1 mM	24.3	12.82	1895.40	2.83	6.09	25.1%	474.95	178
3.6	WT 7002	25.8 25.7	13.57	1900.60	3.08	6.62 2.92	25.6%	487.45	183
3.0	WT 7002	32.9	9.12 7.71	2818.40 4266.00	1.36 2.60	5.60	11.4% 17.0%	320.66 726.09	88 200
		28.8	9.71	2966.40	2.00	3.00	17.070	720.09	200
	AM241	23.6	8.04	2934.30	1.37	2.94	12.4%	365.24	137
	0 mM	26.0	8.72	2981.30	2.23	4.79	18.4%	549.06	206
	O IIIIVI	27.3	10.34	2639.00	2.23	7.79	10.770	349.00	200
	AM241	33.5	9.84	3405.80	2.68	5.77	17.2%	586.13	220
	0.1 mM	32.0	9.74	3285.30	2.72	5.84	18.3%	599.88	225
	0.1 111111	64.7	9.68	6685.70	2.71	5.83	9.0%	602.30	226
4.6	WT 7002	27.2	7.71	3526.90	2.82	6.06	22.3%	785.14	170
		25.6	6.67	3840.00	3.86	8.30	32.4%	1244.80	269
		25.1	7.21	3480.50	2.79	6.00	23.9%	832.15	180
	AM241	26.8	7.61	3519.70	3.09	6.65	24.8%	873.35	189
	0 mM	26.0	7.19	3614.00	3.62	7.79	30.0%	1082.64	234
		26.5	8.26	3206.50	3.06	6.57	24.8%	795.44	172
	AM241	27.9	7.13	3915.30	3.25	6.98	25.0%	979.12	212
	0.1 mM	25.4	7.03	3615.30	3.41	7.34	28.9%	1044.75	226
		29.0	7.46	3886.00	3.00	6.44	22.2%	863.37	187
5.6	WT 7002	25.5	6.06	4207.50	3.57	7.68	30.1%	1267.58	225
		24.6	5.69	4316.70	3.97	8.54	34.8%	1502.08	267
		24.1	6.25	3856.00	3.57	7.68	31.9%	1229.12	219
	AM241	24.8	6.22	3988.70	3.76	8.09	32.6%	1301.43	231
	0 mM	23.0	5.97	3852.50	4.07	8.75	38.1%	1466.38	261
		24.3	6.67	3645.00	3.66	7.86	32.4%	1179.50	210
	AM241	28.6	6.19	4623.70	4.62	9.93	34.7%	1604.57	285
	0.1 mM	25.1	5.94	4225.20	4.25	9.15	36.4%	1539.74	274
		27.0	6.03	4477.50	3.84	8.25	30.6%	1368.33	243
6.7	WT 7002	25.6	5.60	4573.90	3.73	8.02	31.3%	1432.83	215
		25.9	5.70	4541.10	4.75	10.20	39.4%	1788.97	268
		25.6	6.00	4266.70	3.45	7.41	28.9%	1234.81	185
	AM241	24.7	5.62	4396.60	3.23	6.95	28.1%	1236.35	185
	0 mM	25.4	6.07	4182.50	4.24	9.11	35.9%	1499.46	225
		25.2	6.05	4166.40	3.61	7.76	30.8%	1283.22	192
	AM241	28.5	5.58	5111.00	4.38	9.42	33.0%	1689.06	253
	0.1 mM	26.1	5.47	4767.60	3.92	8.42	32.3%	1538.89	231

SEQUENCE LISTING

```
<160> NUMBER OF SEQ ID NOS: 17
<210> SEQ ID NO 1
<211> LENGTH: 1296
<212> TYPE: DNA
<213> ORGANISM: Escherichia coli
<400> SEQUENCE: 1
atggttagtt tagagaagaa cgatcactta atgttggcgc gccagctgcc attgaaatct
                                                                      60
gttgccctga tactggcggg aggacgtggt acccgcctga aggatttaac caataagcga
                                                                     120
gcaaaaccgg ccgtacactt cggcggtaag ttccgcatta tcgactttgc gctgtctaac
                                                                     180
tgcatcaact ccgggatccg tcgtatgggc gtgatcaccc agtaccagtc ccacactctg
                                                                     240
gtgcagcaca ttcagcgcgg ctggtcattc ttcaatgaag aaatgaacga gtttgtcgat
                                                                     300
ctgctgccag cacagcagag aatgaaaggg gaaaactggt atcgcggcac cgcagatgcg
                                                                     360
gtcacccaaa acctcgacat tatccgccgt tataaagcgg aatacgtggt gatcctggcg
                                                                     420
qqcqaccata tctacaaqca aqactactcq cqtatqctta tcqatcacqt cqaaaaaqqc
                                                                     480
gcacgttgca ccgttgcttg tatgccagta ccgattgaag aagcctccgc atttggcgtt
                                                                     540
atggcggttg atgagaacga taaaattatc gaattcgttg aaaaacctgc taacccgccg
                                                                      600
tcaatgccga acgatccgag caaatctctg gcgagtatgg gtatctacgt ctttgacgcc
                                                                      660
gactatctgt atgaactgct ggaagaagac gatcgcgatg agaactccag ccacgacttt
                                                                     720
ggcaaagatt tgattcccaa gatcaccgaa gccggtctgg cctatgcgca cccgttcccg
                                                                     780
ctctcttgcg tacaatccga cccggatgcc gagccgtact ggcgcgatgt gggtacgctg
                                                                     840
gaagettaet ggaaagegaa eetegatetg geetetgtgg tgeeggaaet ggatatgtae
                                                                     900
gatogoaatt ggocaattog cacctacaat gaatcattac cgccagogaa attogtgoag
                                                                     960
gategeteeg gtagecaegg gatgaeeett aacteaetgg titeeggegg tigtgtgate
                                                                     1020
teeggttegg tggtggtgea gteegttetg ttetegegeg ttegegtgaa tteattetge
                                                                     1080
aacattgatt cogcogtatt gttacoggaa gtatgggtag gtogctogtg cogtotgogc
                                                                    1140
cgctgcgtca tcgatcgtgc ttgtgttatt ccggaaggca tggtgattgg tgaaaacgca
                                                                    1200
qaqqaaqatq cacqtcqttt ctatcqttca qaaqaaqqca tcqtqctqqt aacqcqcqaa
                                                                    1260
                                                                    1296
atqctacqqa aqttaqqqca taaacaqqaq cqataa
<210> SEQ ID NO 2
<211> LENGTH: 431
<212> TYPE: PRT
<213 > ORGANISM: Escherichia coli
<400> SEQUENCE: 2
Met Val Ser Leu Glu Lys Asn Asp His Leu Met Leu Ala Arg Gln Leu
                                    10
Pro Leu Lys Ser Val Ala Leu Ile Leu Ala Gly Gly Arg Gly Thr Arg
Leu Lys Asp Leu Thr Asn Lys Arg Ala Lys Pro Ala Val His Phe Gly
Gly Lys Phe Arg Ile Ile Asp Phe Ala Leu Ser Asn Cys Ile Asn Ser
Gly Ile Arg Arg Met Gly Val Ile Thr Gln Tyr Gln Ser His Thr Leu
Val Gln His Ile Gln Arg Gly Trp Ser Phe Phe Asn Glu Glu Met Asn
                                    90
```

1

-continued

Glu Phe Val Asp Leu Leu Pro Ala Gln Gln Arg Met Lys Gly Glu Asn 100 105 110	
Trp Tyr Arg Gly Thr Ala Asp Ala Val Thr Gln Asn Leu Asp Ile Ile 115 120 125	
Arg Arg Tyr Lys Ala Glu Tyr Val Val Ile Leu Ala Gly Asp His Ile 130 135 140	
Tyr Lys Gln Asp Tyr Ser Arg Met Leu Ile Asp His Val Glu Lys Gly 145 150 155 160	
Ala Arg Cys Thr Val Ala Cys Met Pro Val Pro Ile Glu Glu Ala Ser 165 170 175	
Ala Phe Gly Val Met Ala Val Asp Glu Asn Asp Lys Ile Ile Glu Phe 180 185 190	
Val Glu Lys Pro Ala Asn Pro Pro Ser Met Pro Asn Asp Pro Ser Lys 195 200 205	
Ser Leu Ala Ser Met Gly Ile Tyr Val Phe Asp Ala Asp Tyr Leu Tyr 210 215 220	
Glu Leu Leu Glu Glu Asp Asp Arg Asp Glu Asn Ser Ser His Asp Phe 225 230 235 240	
Gly Lys Asp Leu Ile Pro Lys Ile Thr Glu Ala Gly Leu Ala Tyr Ala 245 250 255	
His Pro Phe Pro Leu Ser Cys Val Gln Ser Asp Pro Asp Ala Glu Pro 260 265 270	
Tyr Trp Arg Asp Val Gly Thr Leu Glu Ala Tyr Trp Lys Ala Asn Leu 275 280 285	
Asp Leu Ala Ser Val Val Pro Glu Leu Asp Met Tyr Asp Arg Asn Trp 290 295 300	
Pro Ile Arg Thr Tyr Asn Glu Ser Leu Pro Pro Ala Lys Phe Val Gln 305 310 315 320	
Asp Arg Ser Gly Ser His Gly Met Thr Leu Asn Ser Leu Val Ser Gly 325 330 335	
Gly Cys Val Ile Ser Gly Ser Val Val Val Gln Ser Val Leu Phe Ser 340 345 350	
Arg Val Arg Val Asn Ser Phe Cys Asn Ile Asp Ser Ala Val Leu Leu 355 360 365	
Pro Glu Val Trp Val Gly Arg Ser Cys Arg Leu Arg Arg Cys Val Ile 370 375 380	
Asp Arg Ala Cys Val Ile Pro Glu Gly Met Val Ile Gly Glu Asn Ala 385 390 395 400	
Glu Glu Asp Ala Arg Arg Phe Tyr Arg Ser Glu Glu Gly Ile Val Leu 405 410 415	
Val Thr Arg Glu Met Leu Arg Lys Leu Gly His Lys Gln Glu Arg 420 425 430	
<210> SEQ ID NO 3 <211> LENGTH: 1296 <212> TYPE: DNA <213> ORGANISM: Escherichia coli <400> SEQUENCE: 3	
atggttagtt tagagaagaa cgatcactta atgttggcgc gccagctgcc attgaaatct	60
gttgccctga tactggcggg aggacgtggt acccgcctga aggatttaac caataagcga	120
gcaaaaccgg ccgtacactt cggcggtaag ttccgcatta tcgactttgc gctgtctaac	180
tgcatcaact ccgggatccg tcgtatgggc gtgatcaccc agtaccagtc ccacactctg	240

-continued

ctgctgccag cacagcagag aatgaaaggg gaaaactggt atcggggac cgcagatggg 360 gtcacccaaa acctcgacat tatccgccgt tataaagcgg aatacgtggt gatcctggcg 420 ggcgaccata tctacaagca agactactcg cgtatgctta tcgatcacgt cgaaaaaggc 480 gcacgttgac ccgttgcttg tatgccagta ccgattgaag aagactccgc atttggcgtt 540 atggcggttg atgaaacgag taaaattatc gaattgttg aaaaacctgc taacccgccg 660 tcaatgccga acgatccgag caaatctctg ggaggaagga gatcgagt ggatcacgc cacagacttt 720 ggaaagatt tgattcccaa gatcaccga gccggatg agaactccag ccacgacttt 720 ggcaaagatt tgattcccaa gatcaccgaa gccggtctgg cctatgcgca cccgttcccg 780 ctctcttgcg tacaatccga cccgatgccg agccgtact ggcggatgt gggtacgctg 840 gaagcttact ggaaagaga cctcgatctg gccttcttgg tgcggaat gggtacgctg 900 gatcgcaatt ggccaattcg cacctacaat gaatcattac cgccagcgaa attcgtgcag 960 gatcgctact ggcgaattg ggtacgcag 960 gatcgctccg gtagccacgg gatgaccct aactcactgg tttccgacgg ttgtgtgatc 1020 tccggttcgg tggtggtgca gtcgttcgt ttctcgcgcg ttcgcgtgaa ctcattctgc 1080 aacattgatt ccgccgtatt gttaccgga gtatgggtga gtcgttggt gtggtggac gtcgttggt ttccgacggt ttggtgat 1200 gaggaagaatg cacgtcgttt ttgtgttatt ccggaaggaa gtggtgattgg tgaaaacgca 1200 gaggaagaatg cacgtcgttt ctatcgttca gaagaaggca tcgtgctggt aacgcgcgaa 1260 atgctacgga agttagggca taaacaggag cgataa 1296 4213 > DRAMISM: Escherichia coli 400 > SEQUENCE: 4 Met Val Ser Leu Glu Lys Asn Asp His Leu Met Leu Ala Arg Gln Leu 1 15 Pro Leu Lys Ser Val Ala Leu Ile Leu Ala Gly Gly Arg Gly Thr Arg 20 30 40 40 40 51 50 60 60 60 60 60 60 60 60 60 60 60 60 60
ggggaccata totacaagca agactactog cgtatgctta togatcacgt cgaaaaaggc 480 gcacgttgca cogttgcttg tatgccagta cogattgaag aagcotcogc atttggggtt 540 atggcggttg atgagaacga taaaattato gaattgttg aaaaacctge taaccogccg 600 toaatgccga acgatccgag caaatctctg gcgagtatgg gtatotacgt otttgacgcc 660 gactatctgt atgaactgct ggaagaagac gatcgcgatg agaactccag coccgacttt 720 ggcaaagatt tgattcccaa gatcaccgaa gccggtctgg cotatgcga coccgatctcg 780 ctotottgcg tacaatccga cocggatgc gagccgtact ggcggaatg gggtacgctg 840 gaagottact ggaaagacga cotcgatctg gcctctgtgg tgccggaact gggtacgctg 900 gatcgcaatt ggcaattcg cacctacaat gaatcattac cgccagcgaa attcgtgcag 960 gatcgctccg gtagccacgg gatgaccott aactcactgg tttccgacgg ttgtgtgatc 1020 tocggttcgg tggtggtgca gtccgttctg ttctcgcgcg ttcgcgtgaa ctcattctgc 1080 aacattgatt cocgcgatt gttaccggaa gtatgggtag gtcgctcggt cggtctggc 1140 cgctgcgtca tcgatcgtgc ttgtgttatt ccggaaggac tgggtatgg tgaaaaccga 1200 gaggaagaatg cacgtcgttt ctatcgtca gaagaaggca tggtgattgg tgaaaaccga 1200 gaggaagaatg cacgtcgttt ctatcgtca gaagaaggca tcggtcgtg cgctcggaa 1260 atgctaccgga agttagggca taaacaggag cgataa 1296 atgctaccgga agttagggca taaacaggag cgataa 1299 <100 <100 <100 C100 C210 SEQ ID NO 4 <101 C211 LENGTH: 491 <102 <103 C210 SEQ ID NO 4 <104 C211 LENGTH: 491 <105 C210 SEQ ID NO 4 <105 C210 SEQ ID NO 4 <107 C210 SEQ ID NO 4 <108 C210 SEQUENCE: 4 Met Val Ser Leu Glu Lys Asn Asp His Leu Met Leu Ala Arg Gln Leu 15 Pro Leu Lys Asp Leu Thr Asn Lys Arg Ala Lys Pro Ala Val His Phe Gly 35 C10 Lys Phe Arg Ile Ile Asp Phe Ala Leu Ser Asn Cys Ile Asn Ser 50 C10 Lys Phe Arg Ile Ile Asp Phe Ala Leu Ser Asn Cys Ile Asn Ser 50 C11 Lle Arg Arg Met G1y Val Ile Thr Gln Tyr Gln Ser His Thr Leu 80 C11 Lys Phe Arg Arg Met G1y Val Ile Thr Gln Tyr Gln Ser His Thr Leu 80 C12 Lle Cys Phe Arg Arg Met G1y Val Ile Thr Gln Tyr Gln Ser His Thr Leu 80 C12 Lle Cys Cys Phe Arg Arg Met G1y Val Ile Thr Gln Tyr Gln Ser His Thr Leu 80 C12 Lle Cys Cys Phe Arg Arg Met G1y Val Ile Thr Gln Tyr Gln Ser His Thr Leu 80 C12 Lle Cys Cys Cys Cys Cys Cys Cys Cy
gcacgttgca ccgttgcttg tatgccagta ccgattgaag aagctccgc atttggggtt atgagaacga taaaattatc gaatttgttg aaaaacctgc taacccgccg 600 tcaatgccga acgatccgag caaatctctg gcgagtatgg gtatctacgt ctttgacgcc 660 gactatctgt atgaactgct gggaagaagac gatcgcgatg agaactccag ccacgacttt 720 ggcaagaatt tgattcccaa gatcaccgaa gccggtctgg cctatgcgca cccgttcccg 780 ctctcttgcg tacaatccga cccggatgc gagccgtact ggcggatgt gggtacgctg 840 gaagcttact ggaaagagaa cctcgatctg gcctctgtgg tgccggaact gggtacgctg 840 gatcgcaatt ggcaattcg cacctacaat gaatcattac cgccagcgaa attcgtgcag 960 gatcgctccg gtagccacgg gatgaccctt aactcactgg tttccgacgg ttgtgtgatc 1020 tccggttcgg tggtggtgca gtccgttctg ttctcgcgcg ttcgcgtgaa ctcattctgc 1080 aacattgatt ccgccgtatt gttaccggaa gtatgggtag gtcgctcggt tcgcgtcagt tggtggac 1140 cgctgcgtca tcgatcgtgc ttgtgttatt ccggaaggca tggtgatgg tgaaaacgca 1200 gaggaagatg cacgtcgtt tctatcgtca gaagaaggca tggtgatgg tgaaaacgca 1200 gaggaagatg cacgtcgtt ctatcgtca gaagaaggca tcgttggtg taaacgcgcgaa 1260 atgctacgga agttagggca taaacaggag cgataa 1296 c210 > SEQ ID NO 4 c211 > LENGTH: 431 c212 > TTPE: PRT c213 > ORGANISM: Escherichia coli c400 > SEQUENCE: 4 Met Val Ser Leu Glu Lys Asn Asp His Leu Met Leu Ala Arg Gln Leu 1
atggcggttg atgagaacga taaaattatc gaatttgttg aaaaacctgc taacccgccg 660 gactatctgt atgaactgct ggaagaagac gategcgatg gaactccag ccacgacttt 720 ggcaaagatt tgattcccaa gatcaccgaa gccggtctgg cctatgcgca cccgttcccg 780 ctctcttgcg tacaatccga cccggatgc gagccgtact ggcggatgt gggtacgctg 840 gaagcttact ggaaagcgaa cctcgatctg gcctctgtgg tgccggaact gggtacgctg 900 gatcgcaatt ggcaatccg cccggatgc gagccgtact ggcggaact gggtacgctg 960 gatcgctccg gtagccacgg gatgaccctt acctcattgg ttccgacga attcgtgcag 960 gatcgctccg gtagccacgg gatgaccctt acctcactgg tttccgacgg ttgtgtgatc 1020 tccggttcgg tggtggtgca gtccgttctg ttctcgcgcg ttcgcgtgaa ctcattctgc 1080 aacattgatt ccgccgtatt gttaccggaa gtatggtag gtcgctcgtg ccgtctgcgc 1140 cgctgcgtca tcgatcgtgc ttgtgttatt ccggaaggca tggtgatgg tgaaaacgca 1200 gaggaagaatg cacgtcgttt ctatcgtca gaagaaggca tcgtgtggt aacgcgcgaa 1260 atgctaccgga agttagggca taaacaggag cgataa 1296 <210 > SEQ ID NO 4 <211 > LENNGTH: 431 <212 > TYPE: PRT <213 > ORGANISM: Escherichia coli <4400 > SEQUENCE: 4 Met Val Ser Leu Glu Lys Asn Asp His Leu Met Leu Ala Arg Gln Leu 1 1
teaatgecga acgatecgag caaatetetg gegagtatgg gtatetacgt etttgaegee gactatetgt atgaactget ggaagaagae gategegatg agaactecag ceaegaettt 720 ggeaaagatt tgatteccaa gateacegaa geeggtetgg cetatgegea ecegtteceg 780 ettetettgeg tacaateega eeeggatge gageegtaet ggegegatgt gggtaegetg 840 gaagettaet ggaaagegaa eetegatetg geetetgtgg tgeeggaaet ggatatgtae 900 gategeaatt ggecaatteg eacetacaat gaateattae egecagegaa attegtgeag 960 gategeteeg gtageeaegg gatgaeeett aaeteaetgg ttteegaegg ttgtgtgate 1020 teeggttegg tggtggtgea gteegttetg tteteggegg ttegegtgaa eteattetge 1080 aacattgatt eegecgtatt gttaceggaa gtatgggtag gtegeteggt eegetegee 1140 egetgegtea tegategtge ttgttatt eeggaaggea tggtgattg tgaaaacega 1200 gaggaagatg eacgtegtt etategttea gaagaaggea tegtgetggt aaegeeggaa 1260 atgetaegga agttagggea teaaeagagga egataa 1296 atgetaegga agttagggea taaacaggag egataa 1296 etateegtea 1080 etateegtea gagaagagae tegtgetggt aaegeeggaa 1296 atgetaegga agttagggea taaacaggag egataa 1296 etateegtee 1080 etateeg
gactactgt atgaactgct ggaagaagac gatcgcgatg agaactccag ccacgacttt 720 ggcaaagatt tgattcccaa gatcaccgaa gccggtctgg cctatgcgca cccgttcccg 780 ctctcttgcg tacaatccga cccggatgcc gagccgtact ggcgcgatgt gggtacgctg 840 gaagcttact ggaaagcgaa cctcgatctg gcctctgtgg tgccggaact ggatatgtac 900 gatcgcaatt ggccaattcg cacctacaat gaatcattac cgccagcgaa attcgtgcag 960 gatcgctccg gtagccacgg gatgaccctt aactcactgg tttccgacgg ttgtgtgatc 1020 tccggttcgg tggtggtgca gtccgttctg ttctcgcgcg ttcgcgtgaa ctcattctgc 1080 aacattgatt ccgccgtatt gttaccggaa gtatgggtag gtcgctcgtg ccgtctgcgc 1140 cgctgcgtca tcgatcgtgc ttgtgttatt ccggaaggca tggtgattgg tgaaaacgca 1200 gaggaagatg cacgtcgtt ctatcgttca gaagaaggca tcgtggtg taacacgcgaa 1260 atgctaccgga agttagggca taaacaggag cgataa 1296 atgctaccgga agttagggca taaacaggag cgataa 1296 <210> SEQ ID NO 4 <211> LENGTH: 431 <121> Type: PRT <213> ORGANISM: Escherichia coli <400> SEQUENCE: 4 Met Val Ser Leu Glu Lys Asn Asp His Leu Met Leu Ala Arg Gln Leu 1 5 10 15 Pro Leu Lys Ser Val Ala Leu Ile Leu Ala Gly Gly Arg Gly Thr Arg 20 25 Ala Cly Lys Phe Arg Ile Ile Asp Phe Ala Leu Ser Asn Cys Ile Asn Ser 50 55 Gly Ile Arg Arg Met Gly Val Ile Thr Gln Tyr Gln Ser His Thr Leu 65 70 75 80 Val Gln His Ile Gln Arg Gly Trp Ser Phe Phe Asn Glu Glu Met Asn 90 Glu Phe Val Asp Leu Leu Pro Ala Gln Gln Arg Met Lys Gly Glu Asn
ggcaaagatt tgattcccaa gatcaccgaa gccggtctgg cctatgcgca cccgttcccg 780 ctctcttgcg tacaatccga cccggatgcc gagccgtact ggcgcgatgt gggtacgctg 840 gaagcttact ggaaagcgaa ctcgatctg gcctctgtgg tgccggaact ggatatgtac 900 gatcgcaatt ggccaattcg cacctacaat gaatcattac cgccagcgaa attcgtgcag 960 gatcgctccg gtagccacgg gatgaccctt aactcactgg tttccgacgg ttgtgtgatc 1020 tccggttcgg tggtggtgca gtccgttctg ttctcgcgcg ttcgcgtgaa ctcattctgc 1080 aacattgatt ccgccgtatt gttaccggaa gtatgggtag gtcgctcgtg ccgtctgcgc 1140 cgctgcgtca tcgatcgtgc ttgtgttatt ccggaaggca tggtgattgg tgaaaacgca 1200 gaggaagatg cacgtcgtt ctatcgttca gaagaaggca tcgtgctggt aacgcgcgaa 1260 atgctacgga agttagggca taaacaggag cgataa 1296 c210 SEQ ID NO 4 c211 LENGTH: 431 c212 Type: PRT c213 ORGANISM: Escherichia coli c400 SEQUENCE: 4 Met Val Ser Leu Glu Lys Asn Asp His Leu Met Leu Ala Arg Gln Leu 1 5 10 15 Pro Leu Lys Ser Val Ala Leu Ile Leu Ala Gly Gly Arg Gly Thr Arg 20 25 30 25 40 45 Gly Lys Phe Arg Ile Ile Asp Phe Ala Leu Ser Asn Cys Ile Asn Ser 50 55 Gly Ile Arg Arg Met Gly Val Ile Thr Gln Tyr Gln Ser His Thr Leu 65 70 75 80 Val Gln His Ile Gln Arg Gly Trp Ser Phe Phe Asn Glu Glu Met Asn 90 95 Glu Phe Val Asp Leu Leu Pro Ala Gln Gln Arg Met Lys Gly Glu Asn
ctctcttgcg tacaatccga cccggatgcc gagccgtact ggcgcgatgt gggtacgctg 900 gatcgcaatt ggcaattcg cacctacaat gactctgtgg tgccggaact ggatatgtac 900 gatcgcaatt ggccactg gatgaccctt aactcactgg ttccgacgg ttgtgtgatc 1020 tccggttcgg tggtggtgca gtccgttctg ttctcgcgcg ttccgcggaa attcgtgcc 1080 aacattgatt ccgccgtatt gttaccggaa gtatgggtag gtcgctctgt ccgtctgcgc 1140 cgctgcgtca tcgatcgtgc ttgtgttatt ccggaaggca tggtgattgg tgaaaacgca 1200 gaggaagatg cacgtcgttt ctatcgttca gaagaaggca tcgtgctggt aacgccgaa 1260 atgctaccgga agttagggca taaacaggag cgataa 1296 atgctaccgga agttagggca taaacaggag cgataa 1296 <210 > SEQ ID NO 4 <211 > LENGTH: 431 <212 > TYPE: PRT <213 > ORGANISM: Escherichia coli <4400 > SEQUENCE: 4 Met Val Ser Leu Glu Lys Asn Asp His Leu Met Leu Ala Arg Gln Leu 1 5 10 15 Pro Leu Lys Ser Val Ala Leu Ile Leu Ala Gly Gly Arg Gly Thr Arg 30 Leu Lys Asp Leu Thr Asn Lys Arg Ala Lys Pro Ala Val His Phe Gly 45 Gly Lys Phe Arg Ile Ile Asp Phe Ala Leu Ser Asn Cys Ile Asn Ser 60 Gly Ile Arg Arg Met Gly Val Ile Thr Gln Tyr Gln Ser His Thr Leu 70 80 Val Gln His Ile Gln Arg Gly Trp Ser Phe Phe Asn Glu Glu Met Asn 85 Glu Phe Val Asp Leu Leu Pro Ala Gln Gln Arg Met Lys Gly Glu Asn
gaagcttact ggaaagcgaa cetegatetg geetetgtgg tgeeggaact ggatatgtac gategcaatt ggccaatteg cacetacaat gaatcattac egecagegaa attegtgeag gategcteeg gtagccaegg gatgaceett aacteactgg ttteegaegg ttgtgtgate teeggttegg tggtggtgea gteegttetg ttetegegeg ttegegtgaa eteattetge 1080 aacattgatt eegecgtatt gttaceggaa gtatgggtag gtegetegtg eegtetgege 1140 egetgegtea tegategtge ttgtgttatt eeggaaggea tegtggtggt gaaaacgea 1200 gaggaagatg eacgtegttt etategttea gaagaaggea tegtgetggt aacgeeggaa 1260 atgetaegga agttagggea taaacaggag egataa 1296 <210 > SEQ ID NO 4 <211 > LENGTH: 431 <212 > TYPE: PRT <213 > ORGANISM: Escherichia coli <400 > SEQUENCE: 4 Met Val Ser Leu Glu Lys Asn Asp His Leu Met Leu Ala Arg Gln Leu 1 5 10 Pro Leu Lys Ser Val Ala Leu Ile Leu Ala Gly Gly Arg Gly Thr Arg 20 25 Leu Lys Asp Leu Thr Asn Lys Arg Ala Lys Pro Ala Val His Phe Gly 45 Gly Lys Phe Arg Ile Ile Asp Phe Ala Leu Ser Asn Cys Ile Asn Ser 50 Gly Ile Arg Arg Met Gly Val Ile Thr Gln Tyr Gln Ser His Thr Leu 65 70 75 80 Val Gln His Ile Gln Arg Gly Trp Ser Phe Phe Asn Glu Glu Met Asn 85 Glu Phe Val Asp Leu Leu Pro Ala Gln Gln Arg Met Lys Gly Glu Asn
gategeaatt ggccaatteg cacetacaat gaatcattac egecagegaa attegtgeag gategeteeg gtagecaegg gatgaceett aacteaetg ttteegaegg ttggtggate 1020 teeggttegg tggtggtgea gteegttetg ttetegegeg ttegegtgaa eteattetge 1080 aacattgatt eegeegtatt gttaceggaa gtatgggtag gtegetegtg eegtetgege 1140 egetgegtea tegategtge ttgtgttatt eeggaaggea tegtgattgg tgaaaacgea 1200 gaggaagatg eaegtegttt etategttea gaagaaggea tegtgetggt aaegeeggaa 1260 atgetaegga agttagggea taaacaggag egataa 1296 <210 > SEQ ID NO 4 <211 > LENGTH: 431 <212 > TYPE: PRT <213 > ORGANISM: Escherichia coli <4400 > SEQUENCE: 4 Met Val Ser Leu Glu Lys Asn Asn His Leu Met Leu Ala Arg Gln Leu 1
gatcgctccg gtagccacgg gatgaccctt aactcactgg tttccgacgg ttgtgtgatc 1020 tccggttcgg tggtggtgca gtccgttctg ttctcgcgcg ttcgcgtgaa ctcattctgc 1080 aacattgatt ccgccgtatt gttaccggaa gtatgggtag gtcgctcgtg ccgtctgcgc 1140 cgctgcgtca tcgatcgtgc ttgtgttatt ccggaaggca tggtgattgg tgaaaacgca 1200 gaggaagatg cacgtcgtt ctatcgttca gaagaaggca tcgtgctggt aacgcgcgaa 1260 atgctacgga agttagggca taaacaggag cgataa 1296
tccggttcgg tggtggtgca gtccgttctg ttctcgcgcg ttcgcgtgaa ctcattctgc 1080 aacattgatt ccgccgtatt gttaccggaa gtatgggtag gtcgctcgtg ccgtctgcgc 1140 cgctgcgtca tcgatcgtgc ttgtgttatt ccggaaggca tggtgattgg tgaaaacgca 1200 gaggaagatg cacgtcgttt ctatcgttca gaagaaggca tcgtgctggt aacgcgcgaa 1260 atgctacgga agttagggca taaacaggag cgataa 1296 <210> SEQ ID NO 4 <211> ENNGTH: 431 <212> TYPE: PRT <213> ORGANISM: Escherichia coli <400> SEQUENCE: 4 Met Val Ser Leu Glu Lys Asn Asp His Leu Met Leu Ala Arg Gln Leu 1
aacattgatt ccgccgtatt gttaccggaa gtatgggtag gtcgctcgtg ccgtctgcgc 1140 cgctgcgtca tcgatcgtgc ttgtgttatt ccggaaggca tggtgattgg tgaaaacgca 1200 gaggaagatg cacgtcgttt ctatcgttca gaagaaggca tcgtgctggt aacgcgcgaa 1260 atgctacgga agttagggca taaacaggag cgataa 1296 <210 > SEQ ID NO 4 <211 > LENGTH: 431 <212 > TYPE: PRT <213 > ORGANISM: Escherichia coli <400 > SEQUENCE: 4 Met Val Ser Leu Glu Lys Asn Asp His Leu Met Leu Ala Arg Gln Leu 1 5 Pro Leu Lys Ser Val Ala Leu Ile Leu Ala Gly Gly Arg Gly Thr Arg 25 Leu Lys Asp Leu Thr Asn Lys Arg Ala Lys Pro Ala Val His Phe Gly 45 Gly Lys Phe Arg Ile Ile Asp Phe Ala Leu Ser Asn Cys Ile Asn Ser 50 Gly Ile Arg Arg Met Gly Val Ile Thr Gln Tyr Gln Ser His Thr Leu 80 Val Gln His Ile Gln Arg Gly Trp Ser Phe Phe Asn Glu Glu Met Asn 95 Glu Phe Val Asp Leu Leu Pro Ala Gln Gln Arg Met Lys Gly Glu Asn
cgctgcgtca tcgatcgtgc ttgtgttatt ccggaaggca tggtgattgg tgaaaacgca 1200 gaggaagatg cacgtcgttt ctatcgttca gaagaaggca tcgtgctggt aacgcgcgaa 1260 atgctacgga agttagggca taaacaggag cgataa 1296 <210 > SEQ ID NO 4
gaggaagatg cacgtcgttt ctatcgttca gaagaaggca tcgtgctggt aacgcgcgaa 1260 atgctacgga agttagggca taaacaggag cgataa 1296 <210> SEQ ID NO 4 <211> LENGTH: 431 <212> TYPE: PRT <213> ORGANISM: Escherichia coli <400> SEQUENCE: 4 Met Val Ser Leu Glu Lys Asn Asp His Leu Met Leu Ala Arg Gln Leu 15 Pro Leu Lys Ser Val Ala Leu Ile Leu Ala Gly Gly Arg Gly Thr Arg 20 Leu Lys Asp Leu Thr Asn Lys Arg Ala Lys Pro Ala Val His Phe Gly 45 Gly Lys Phe Arg Ile Ile Asp Phe Ala Leu Ser Asn Cys Ile Asn Ser 60 Gly Ile Arg Arg Met Gly Val Ile Thr Gln Tyr Gln Ser His Thr Leu 80 Val Gln His Ile Gln Arg Gly Trp Ser Phe Phe Asn Glu Glu Met Asn 95 Glu Phe Val Asp Leu Leu Pro Ala Gln Gln Arg Met Lys Gly Glu Asn
atgctacgga agttagggca taaacaggag cgataa 1296 <210> SEQ ID NO 4 <211> LENGTH: 431 <212> TYPE: PRT <213> ORGANISM: Escherichia coli <400> SEQUENCE: 4 Met Val Ser Leu Glu Lys Asn Asp His Leu Met Leu Ala Arg Gln Leu 1 5 10 15 Pro Leu Lys Ser Val Ala Leu Ile Leu Ala Gly Gly Arg Gly Thr Arg 20 25 30 Leu Lys Asp Leu Thr Asn Lys Arg Ala Lys Pro Ala Val His Phe Gly 35 40 40 Gly Lys Phe Arg Ile Ile Asp Phe Ala Leu Ser Asn Cys Ile Asn Ser 50 Gly Ile Arg Arg Met Gly Val Ile Thr Gln Tyr Gln Ser His Thr Leu 65 70 Val Gln His Ile Gln Arg Gly Trp Ser Phe Phe Asn Glu Glu Met Asn 95 Glu Phe Val Asp Leu Leu Pro Ala Gln Gln Arg Met Lys Gly Glu Asn
<pre> <210> SEQ ID NO 4 <211> LENGTH: 431 <212> TYPE: PRT <213> ORGANISM: Escherichia coli <400> SEQUENCE: 4 Met Val Ser Leu Glu Lys Asn Asp His Leu Met Leu Ala Arg Gln Leu 1</pre>
<pre><211> LENGTH: 431 <212> TYPE: PRT <213> ORGANISM: Escherichia coli <400> SEQUENCE: 4 Met Val Ser Leu Glu Lys Asn Asp His Leu Met Leu Ala Arg Gln Leu 15 Pro Leu Lys Ser Val Ala Leu Ile Leu Ala Gly Gly Arg Gly Thr Arg 20 Leu Lys Asp Leu Thr Asn Lys Arg Ala Lys Pro Ala Val His Phe Gly 45 Gly Lys Phe Arg Ile Ile Asp Phe Ala Leu Ser Asn Cys Ile Asn Ser 55 Gly Ile Arg Arg Met Gly Val Ile Thr Gln Tyr Gln Ser His Thr Leu 80 Val Gln His Ile Gln Arg Gly Trp Ser Phe Phe Asn Glu Glu Met Asn 90 Glu Phe Val Asp Leu Leu Pro Ala Gln Gln Arg Met Lys Gly Glu Asn</pre>
10 15 Pro Leu Lys Ser Val Ala Leu Ile Leu Ala Gly Gly Arg Gly Thr Arg 20 20 Leu Lys Asp Leu Thr Asn Lys Arg Ala Lys Pro Ala Val His Phe Gly 45 40 Gly Lys Phe Arg Ile Ile Asp Phe Ala Leu Ser Asn Cys Ile Asn Ser 60 Gly Ile Arg Arg Met Gly Val Ile Thr Gln Tyr Gln Ser His Thr Leu 80 Val Gln His Ile Gln Arg Gly Trp Ser Phe Phe Asn Glu Glu Met Asn 95 Glu Phe Val Asp Leu Leu Pro Ala Gln Gln Arg Met Lys Gly Glu Asn
Leu Lys Asp Leu Thr Asn Lys Arg Ala Lys Pro Ala Val His Phe Gly 45 Gly Lys Phe Arg Ile Ile Asp Phe Ala Leu Ser Asn Cys Ile Asn Ser 55 Gly Ile Arg Arg Met Gly Val Ile Thr Gln Tyr Gln Ser His Thr Leu 80 Val Gln His Ile Gln Arg Gly Trp Ser Phe Phe Asn Glu Glu Met Asn 95 Glu Phe Val Asp Leu Leu Pro Ala Gln Gln Arg Met Lys Gly Glu Asn
Gly Lys Phe Arg Ile Ile Asp Phe Ala Leu Ser Asn Cys Ile Asn Ser 50 Cly Ile Arg Arg Met Gly Val Ile Thr Gln Tyr Gln Ser His Thr Leu 80 Cly Gln His Ile Gln Arg Gly Trp Ser Phe Phe Asn Glu Glu Met Asn 90 Clu Phe Val Asp Leu Leu Pro Ala Gln Gln Arg Met Lys Gly Glu Asn
Gly Ile Arg Arg Met Gly Val Ile Thr Gln Tyr Gln Ser His Thr Leu 80 Val Gln His Ile Gln Arg Gly Trp Ser Phe Phe Asn Glu Glu Met Asn 85 Glu Phe Val Asp Leu Leu Pro Ala Gln Gln Arg Met Lys Gly Glu Asn
75 80 Val Gln His Ile Gln Arg Gly Trp Ser Phe Phe Asn Glu Glu Met Asn 85 90 95 Glu Phe Val Asp Leu Leu Pro Ala Gln Gln Arg Met Lys Gly Glu Asn
85 90 95 Glu Phe Val Asp Leu Leu Pro Ala Gln Gln Arg Met Lys Gly Glu Asn
100 103 110
Trp Tyr Arg Gly Thr Ala Asp Ala Val Thr Gln Asn Leu Asp Ile Ile 115 120 125
Arg Arg Tyr Lys Ala Glu Tyr Val Val Ile Leu Ala Gly Asp His Ile 130 135 140
Tyr Lys Gln Asp Tyr Ser Arg Met Leu Ile Asp His Val Glu Lys Gly 145 150 155 160

Ala Phe Gly Val Met Ala Val Asp Glu Asn Asp Lys Ile Ile Glu Phe

Ala Arg Cys Thr Val Ala Cys Met Pro Val Pro Ile Glu Glu Ala Ser 165 170 175

-continu	.ed
----------	-----

	-continued
180 185	190
Val Glu Lys Pro Ala Asn Pro Pro Ser Met Pro 195 200	Asn Asp Pro Ser Lys 205
Ser Leu Ala Ser Met Gly Ile Tyr Val Phe Asp 210 215	Ala Asp Tyr Leu Tyr 220
Glu Leu Leu Glu Glu Asp Asp Arg Asp Glu Asn 225 230 230 235	Ser Ser His Asp Phe 240
Gly Lys Asp Leu Ile Pro Lys Ile Thr Glu Ala 245 250	Gly Leu Ala Tyr Ala 255
His Pro Phe Pro Leu Ser Cys Val Gln Ser Asp 260 265	Pro Asp Ala Glu Pro 270
Tyr Trp Arg Asp Val Gly Thr Leu Glu Ala Tyr 275 280	Trp Lys Ala Asn Leu 285
Asp Leu Ala Ser Val Val Pro Glu Leu Asp Met 290 295	Tyr Asp Arg Asn Trp 300
Pro Ile Arg Thr Tyr Asn Glu Ser Leu Pro Pro 305 310 315	Ala Lys Phe Val Gln 320
Asp Arg Ser Gly Ser His Gly Met Thr Leu Asn 325 330	Ser Leu Val Ser Asp 335
Gly Cys Val Ile Ser Gly Ser Val Val Gln 340 345	Ser Val Leu Phe Ser 350
Arg Val Arg Val Asn Ser Phe Cys Asn Ile Asp 355 360	Ser Ala Val Leu Leu 365
Pro Glu Val Trp Val Gly Arg Ser Cys Arg Leu 370 375	Arg Arg Cys Val Ile 380
Asp Arg Ala Cys Val Ile Pro Glu Gly Met Val 385 390 395	Ile Gly Glu Asn Ala 400
Glu Glu Asp Ala Arg Arg Phe Tyr Arg Ser Glu 405 410	Glu Gly Ile Val Leu 415
Val Thr Arg Glu Met Leu Arg Lys Leu Gly His 420 425	Lys Gln Glu Arg 430
<210> SEQ ID NO 5 <211> LENGTH: 1437 <212> TYPE: DNA <213> ORGANISM: Synechococcus PCC7002	
<400> SEQUENCE: 5	
atgcgtattt tgtttgtttc tgccgaggct gctcccatcg	ctaaagctgg aggcatggga 60
gatgtggtgg gatcactgcc taaagtttta cggcagttag	gacatgacgc gagaattttc 120
ttaccctatt acggctttct caacgacaaa ctcgacatcc	ctgcagaacc cgtttggtgg 180
ggcagtgcga tgttcaatac ttttgccgtt tatgaaactg	tgttgcccaa caccgatgtc 240
cccctttatc tgtttggcca tcccgccttt gatggacggc	atatttatgg tgggcaggat 300
gaattttggc gctttacctt ttttgccaat ggggccgctg	aatttatgtg gaaccactgg 360
aaaccccaga tcgcccactg tcacgactgg cacacgggca	tgattccggt atggatgcac 420
caatcgccgg atatcagtac ggtgtttacg atccacaact	tagcctacca agggccttgg 480
eggggtttee tggagegeaa taettggtgt eeetggtata	tggatggtga taacgtgatg 540
gcttcggcgc tgatgtttgc cgatcaggtg aacaccgtat	ctcccaccta tgcccaacaa 600
atccaaacca aagtctatgg tgaaaaatta gagggtttgt	tgtcttggat cagtggcaaa 660

agtcgcggca tcgtgaatgg tattgacgta gaactttata atccttctaa cgatcaagcc

720

-continued
-concinuea

ctggtgaagc aat	ttctac ga	ctaatctt	gaggato	ggg ccg	gccaacaa	agtgattatc	780
caagaagaaa cgg	ggctaga gg	jtcaactcc	aaggett	ttt tga	atggcgat	ggtcacccgc	840
ttagtggaac aaa	agggcat to	gatetgetg	g ctaaata	itcc tgg	gagcagtt	tatggcatac	900
actgacgccc agc	cattat co	teggeact	ggcgato	gcc act	acgaaac	ccaactctgg	960
cagactgcct acc	getttaa ge	ggcggatg	tccgtgo	aac tgo	ctctataa	tgatgccctc	1020
tecegeegga ttt	acgctgg at	ccgatgtc	tttttga	ıtgc cgt	cacgett	tgagccctgt	1080
ggcattagtc aaa	gatggc ga	tgcgctac	ggttctg	jtac cga	attgtgcg	gcgcaccggg	1140
ggtttggtgg ata	eggtete tt	tccatgat	ccgatto	acc aaa	accgggac	aggctttagt	1200
tttgaccgct acg	aaccgct gg	gatatgtac	acctgca	itgg tgd	egggettg	ggaaagtttc	1260
cgctacaaaa aag	actgggc to	gaactacaa	agacgag	ıgca tga	agccatga	ctttagttgg	1320
tacaaatctg ccg	gggaata to	ctcaagatg	taccgco	aaa gca	attaaaga	agctccggaa	1380
ttaacgaccg atg	aagccga aa	aaatcacc	: tatttag	ıtga aaa	aaacacgc	catttaa	1437
<210> SEQ ID NO <211> LENGTH: <212> TYPE: PR <213> ORGANISM	178 Г	coccus PC					
<400> SEQUENCE	: 6						
Met Arg Ile Le	ı Phe Val 5	Ser Ala	Glu Ala 10	Ala Pro) Ile Ala	Lys Ala 15	
Gly Gly Met Gly	y Asp Val	Val Gly	Ser Leu 25	Pro Lys	Val Leu 30	Arg Gln	
Leu Gly His Asp 35	o Ala Arg	Ile Phe 40	Leu Pro	Tyr Tyı	Gly Phe 45	Leu Asn	
Asp Lys Leu Asj 50	o Ile Pro	Ala Glu 55	Pro Val	Trp Trp	Gly Ser	Ala Met	
Phe Asn Thr Pho	e Ala Val 70	Tyr Glu	Thr Val	Leu Pro	Asn Thr	Asp Val	
Pro Leu Tyr Le	Phe Gly 85	His Pro	Ala Phe 90	Asp Gly	/ Arg His	lle Tyr 95	
Gly Gly Gln Asj		Trp Arg	Phe Thr 105	Phe Phe	e Ala Asn 110	-	
Ala Glu Phe Met	Trp Asn	His Trp	Lys Pro	Gln Ile	e Ala His 125	Cys His	
Asp Trp His Th	r Gly Met	Ile Pro 135	Val Trp	Met His		Pro Asp	
Ile Ser Thr Va	l Phe Thr 150	Ile His	Asn Leu	Ala Tyı 155	Gln Gly	Pro Trp 160	
Arg Gly Phe Le	ı Glu Arg 165	Asn Thr	Trp Cys	Pro Trp	Tyr Met	Asp Gly	
Asp Asn Val Met		Ala Leu	Met Phe 185	Ala Asp	Gln Val		
Val Ser Pro Th: 195	r Tyr Ala	Gln Gln 200	Ile Gln	Thr Lys	Val Tyr 205	Gly Glu	
Lys Leu Glu Gly 210	y Leu Leu	Ser Trp 215	Ile Ser	Gly Lys	_	Gly Ile	
Val Asn Gly Ilo 225	e Asp Val 230		Tyr Asn			Gln Ala 240	
Leu Val Lys Gli		Thr Thr	Asn Leu 250		Arg Ala		
	243		250			233	

-continued

Lys Val Ile Ile Gln Glu Glu Thr Gly Leu Glu Val Asn Ser Lys Ala 260 265 270									
Phe Leu Met Ala Met Val Thr Arg Leu Val Glu Gln Lys Gly Ile Asp 275 280 285									
Leu Leu Leu Asn Ile Leu Glu Gln Phe Met Ala Tyr Thr Asp Ala Gln 290 295 300									
Leu Ile Ile Leu Gly Thr Gly Asp Arg His Tyr Glu Thr Gln Leu Trp 305 310 315 320									
Gln Thr Ala Tyr Arg Phe Lys Gly Arg Met Ser Val Gln Leu Leu Tyr 325 330 335									
Asn Asp Ala Leu Ser Arg Arg Ile Tyr Ala Gly Ser Asp Val Phe Leu 340 345 350									
Met Pro Ser Arg Phe Glu Pro Cys Gly Ile Ser Gln Met Met Ala Met 355 360 365									
Arg Tyr Gly Ser Val Pro Ile Val Arg Arg Thr Gly Gly Leu Val Asp 370 380									
Thr Val Ser Phe His Asp Pro Ile His Gln Thr Gly Thr Gly Phe Ser 385 390 395 400									
Phe Asp Arg Tyr Glu Pro Leu Asp Met Tyr Thr Cys Met Val Arg Ala 405 410 415									
Trp Glu Ser Phe Arg Tyr Lys Lys Asp Trp Ala Glu Leu Gln Arg Arg 420 425 430									
Gly Met Ser His Asp Phe Ser Trp Tyr Lys Ser Ala Gly Glu Tyr Leu 435 440 445									
Lys Met Tyr Arg Gln Ser Ile Lys Glu Ala Pro Glu Leu Thr Thr Asp 450 455 460									
Glu Ala Glu Lys Ile Thr Tyr Leu Val Lys Lys His Ala Ile 465 470 475									
<210> SEQ ID NO 7 <211> LENGTH: 1473 <212> TYPE: DNA									
<212> TYPE: DNA <213> ORGANISM: Synechococcus PCC7002									
<pre><400> SEQUENCE: 7 atgtacatcg tocagattgc ttcggaatgc gccccgtcg cgaaggtagg tggacttgga</pre>	60								
gatgtggttt acggactcag tegegagett agtetgegeg gteattgtgt egaaateatt	120								
ttgcccaaat atgattgtct ccgttatgac cacatttggg ggatgcacga agcctatcgg	180								
gatetttggg taccetggtt tggeggtgeg atecaetgea cegtttteta tggetgggte	240								
catggccaac aatgtttett tategaaeee eacteeggtg ataaettttt eagtegggge	300								
tttttttatg gagcettaga egaceaeatg egetttgeet tetttageaa ggeggeeete	360								
gaatttttac aaaaatccaa caaacgcccc gatattatcc actgccatga ctggcaaacc	420								
ggtctcgttc cggtgatgct ctttgaaatg tacaagtggc atggcctgtg gaatcagcgg	480								
gtgtgctaca ccatccacaa ctttaaacat cagggtatcg cgggcgctga cgtactgtgg	540								
gegaegggte teaataaega gggetaetat tteeactaeg ategeeteeg ggataaettt	600								
aatccctttg ccttaaattg catgaaaggg ggcattgtct atgccaatgc ggtgacgacc	660								
gtttctcccc accacgcctg ggaagcccac tacaccgata ttggttgtgg cctaagccat	720								
accetecate tecaceaaga caagtteaag ggaattetea aeggeatega etacageaet	780								
tggaacccag aagtagacca caatatcgag ctgcaataca gttgggatag cctcgaaaat	840								

-continued

aag	gcgaa	aaa a	acaaa	aaaaq	ge e	ctaco	gcgat	: cg	cctat	tac	ttga	aaga	caa 1	tgaco	cgaccg	900
atca	atcgo	ect a	acatt	ggc	g to	ctcga	atgad	caa	aaaa	ggcg	ttca	atct	gt 1	tcaco	catgcc	960
atgt	tacta	acg (cctto	gaato	g gg	ggago	cccaa	a ttt	gtco	ctcc	ttg	gttc	ege (cacco	gaaggc	1020
tcga	atcaa	act (cttg	gttct	g go	catga	aaaaa	a tto	ccaco	ctca	acga	acaa	ccc (caact	gtcac	1080
atco	gagct	gg (gctto	caaco	ge eg	gaact	gtco	cac	catga	atct	atgo	cgg	ggc 1	tgata	atgctt	1140
gtc	gtccc	cca 🤅	gtaad	ctacç	ga ao	ccct	gegge	ctg	gacco	caac	tcat	cgc	ect (gaagt	atggt	1200
gtg	gtgco	cca t	ttgto	ccgts	gg tg	gtcgg	gtggd	cto	gtga	agta	ccgt	gtti	ga (ccggg	gatcat	1260
gato	gataa	aac a	atcco	cccc	ga aç	gaac	gaaat	ggt	tato	gtct	ttta	accaa	aac q	ggata	aaccac	1320
gcc	ctcga	aat o	ccgc	catgo	ga ad	eggg	ccatt	ggt	ttat	aca	ccgt	gta	ccc a	agago	gagttc	1380
cgga	aagct	gc a	aaato	ccago	gg ga	atgaa	aatat	gad	ctact	ctt	ggca	ataa	ccc (eggea	aatgaa	1440
tata	attga	atc 1	tctat	gagt	t ta	atcco	geged	c taa	a							1473
<213 <213 <213	L> LE 2> T\ 3> OF	ENGTI PE: RGAN:	ISM:	90 Syne	echo	cocci	ıs PO	CC700	02							
			NCE:				_									
Met 1	Tyr	Ile	Val	Gln 5	Ile	Ala	Ser	Glu	Cys 10	Ala	Pro	Val	Ala	Lys 15	Val	
Gly	Gly	Leu	Gly 20	Asp	Val	Val	Tyr	Gly 25	Leu	Ser	Arg	Glu	Leu 30	Ser	Leu	
Arg	Gly	His 35	Cha	Val	Glu	Ile	Ile 40	Leu	Pro	Lys	Tyr	Asp 45	Сув	Leu	Arg	
Tyr	Asp 50	His	Ile	Trp	Gly	Met 55	His	Glu	Ala	Tyr	Arg 60	Asp	Leu	Trp	Val	
Pro 65	Trp	Phe	Gly	Gly	Ala 70	Ile	His	Сув	Thr	Val 75	Phe	Tyr	Gly	Trp	Val 80	
His	Gly	Gln	Gln	Сув 85	Phe	Phe	Ile	Glu	Pro 90	His	Ser	Gly	Asp	Asn 95	Phe	
Phe	Ser	Arg	Gly 100	Phe	Phe	Tyr	Gly	Ala 105	Leu	Asp	Asp	His	Met 110	Arg	Phe	
Ala	Phe	Phe 115	Ser	ГЛа	Ala	Ala	Leu 120	Glu	Phe	Leu	Gln	Lys 125	Ser	Asn	Lys	
Arg	Pro 130	Asp	Ile	Ile	His	Cys 135	His	Asp	Trp	Gln	Thr 140	Gly	Leu	Val	Pro	
Val 145	Met	Leu	Phe	Glu	Met 150	Tyr	Lys	Trp	His	Gly 155	Leu	Trp	Asn	Gln	Arg 160	
Val	Cys	Tyr	Thr	Ile 165	His	Asn	Phe	Lys	His 170	Gln	Gly	Ile	Ala	Gly 175	Ala	
Asp	Val	Leu	Trp 180	Ala	Thr	Gly	Leu	Asn 185	Asn	Glu	Gly	Tyr	Tyr 190	Phe	His	
Tyr	Asp	Arg 195	Leu	Arg	Asp	Asn	Phe 200	Asn	Pro	Phe	Ala	Leu 205	Asn	CÀa	Met	
Lys	Gly 210	Gly	Ile	Val	Tyr	Ala 215	Asn	Ala	Val	Thr	Thr 220	Val	Ser	Pro	His	
His 225	Ala	Trp	Glu	Ala	His 230	Tyr	Thr	Asp	Ile	Gly 235	СЛа	Gly	Leu	Ser	His 240	
Thr	Leu	His	Leu	His 245	Gln	Asp	Lys	Phe	Lys 250	Gly	Ile	Leu	Asn	Gly 255	Ile	

Asp Tyr Ser Thr Trp Asn Pro Glu Val Asp His Asn Ile Glu Leu Gln

-continued

	-continued							
260 265	270							
Tyr Ser Trp Asp Ser Leu Glu Asn Lys Ala Lys 275 280	Asn Lys Lys Ala Leu 285							
Arg Asp Arg Leu Leu Leu Glu Asp Asn Asp Arg 290 295	Pro Ile Ile Ala Tyr 300							
Ile Gly Arg Leu Asp Asp Gln Lys Gly Val His 305 310 315	Leu Val His His Ala 320							
Met Tyr Tyr Ala Leu Asn Arg Gly Ala Gln Phe 325 330	Val Leu Leu Gly Ser 335							
Ala Thr Glu Gly Ser Ile Asn Ser Trp Phe Trp 340 345	His Glu Lys Phe His 350							
Leu Asn Asp Asn Pro Asn Cys His Ile Glu Leu 355 360	Gly Phe Asn Ala Glu 365							
Leu Ser His Met Ile Tyr Ala Gly Ala Asp Met 370 375	Leu Val Val Pro Ser 380							
Asn Tyr Glu Pro Cys Gly Leu Thr Gln Leu Ile 385	Ala Leu Lys Tyr Gly 400							
Val Val Pro Ile Val Arg Gly Val Gly Gly Leu 405 410	Val Ser Thr Val Phe 415							
Asp Arg Asp His Asp Asp Lys His Pro Pro Glu 420 425	Glu Arg Asn Gly Tyr 430							
Val Phe Tyr Gln Thr Asp Asn His Ala Leu Glu 435 440	Ser Ala Met Glu Arg 445							
Ala Ile Gly Leu Tyr Thr Val Tyr Pro Glu Glu 450 455	Phe Arg Lys Leu Gln 460							
Ile Gln Gly Met Lys Tyr Asp Tyr Ser Trp His 465 470 475	Asn Pro Gly Asn Glu 480							
Tyr Ile Asp Leu Tyr Glu Phe Ile Arg Ala 485 490								
<210> SEQ ID NO 9 <211> LENGTH: 2334 <212> TYPE: DNA <213> ORGANISM: Synechococcus PCC7002								
<400> SEQUENCE: 9								
atgectacte tecteactee agaccagate aaccaaattg	tttctaacca ccatgacaac 60							
ccccatgctg tcttgggttg tcatcccacc aacgacgatc	ccaatccgaa aacctggtca 120							
attogogott atttacotto tgotagocaa gottgggtga	ttgatacccc ttcccaaacg 180							
gaacacccga tgacaacggt gcatcatccc cacttttttg	aatgcaccct ccagagtgaa 240							
acaacaccga aatatcaact gaagctccaa gaaggcgatc	gccaacacat catcaacgat 300							
ccctatgcct ttgccgaagc ccccacatt agcgatctcg	atctccacct ctttgccgaa 360							
gggaatcacc accgcatcta caacaaactg ggggcacacc	tcgtcgaagt cgatggcatc 420							
aaaggegttt actttgeegt ttgggegeee aatgeeegea	acgtctccat cctgggcgac 480							
tttaacaact gggatggtcg caaacaccaa atgcgccgtt	taaacgttgg tatctgggga 540							
attttcattc ctgacctcgg ccccaacacc aaatacaaat	acgaaatcaa aaaccaacac 600							
ggccacatct acgaaaaatc agacccctac ggctttctcc	gggaagtgcg ccccgacact 660							
gcctccatcg ttgctgacct cgaccagtac caatggcagg	atcacgattg gctagaacaa 720							
cgtgccaaac aagaccccct caaaaatcct gtttccatct	acgaactaca cctcggctcc 780							

tggctccatg gttccgccac cgaaaaaatg caactccttt ccggtgaagt cgatcccatt

-continued

cccgtgggcg atcaaaaacc cggtgcccgc ttcctgagct attacgaact ggttgataag	900
ctcatcccct acgttaagga catgggctac acccacatcg agctactgcc tgtcgctgaa	960
catecetttg aeggtteetg gggetaceaa gtgaeegget aetatteece eaetteeege	1020
tttggcaatc ccgaagacct gatgtatttc atcgatcaat gccacgccaa tggtatcggg	1080
gtgatcgttg actgggttcc tggccatttc cctaaggatg cccatggtct cgcttacttc	1140
gatggcaccc atctctatga acacgccgat ccccgcaaag gtgagcacaa aggctggggc	1200
accetgatet ttaactacaa tegeaatgag gttegeaact teeteattge caatgeeeta	1260
ttctggtttg ataaatatca catcgatggc attcgggtcg atgcagtggc atcaatgctc	1320
tacctcgact acgaccggga agatggcgag tggcttccca atgactacgg cggcaacgaa	1380
cacctegaag cegtagaatt teteegeeaa accaacaate teatetteaa gtactateea	1440
gggattatet eegttgeega agagteeaeg gettggeeca tggttteteg teecaettae	1500
ctcggtggcc tcggcttcaa cctcaagtgg aatatgggct ggatgcacga caatctcaaa	1560
tacttcagca tggatccctg gttccggcag caccaccaaa acagcattac cttcagtatg	1620
tggtatcatc acagcgagaa ctacatgttg gccctttccc acgatgaagt cgtccatggt	1680
aagagetega ttattggeaa aatgeegggg gatgaatgge agaaatttge caatgtgegg	1740
gctttattcg cctatatgtt tacccatcct ggtaaaaaga ccatgtttat gagcatggaa	1800
tttggccaat ggaatgagtg gaatgtttgg agtgacttga gttgggattt actgcaacat	1860
gaaccccacg ccaaactcaa aggtttette ggggcattaa atagteteta taaacaggaa	1920
ccggcccttt acgaacggga ttttgaagag gaaggattcc aatggattga ctgttctgac	1980
aatcaaaata gtgttctttc ctttattcga cgggcaaaag atcccaatga ttttttagtt	2040
gtggtctgca attttacgcc gcaaccccat agccattatc gaattggcat tccagaagag	2100
ggctactatc aagaaatttt gaatagtgat gccgaaacct ttggggggag taatctactc	2160
aactteggeg gegtttggae tgaagattgg egetteeata atetteeeta tteeattgat	2220
ctgtgtttgc cgcccctcgg cgtggttgtc ctaaaaattg atcgagaaaa aacagccgca	2280
atgettgete aaaaacagge egataaagee aaggetetat eeggegaaat ataa	2334
<210> SEQ ID NO 10 <211> LENGTH: 777 <212> TYPE: PRT <213> ORGANISM: Synechococcus PCC7002	
<400> SEQUENCE: 10	
Met Pro Thr Leu Leu Thr Pro Asp Gln Ile Asn Gln Ile Val Ser Asn 1 10 15	
His His Asp Asn Pro His Ala Val Leu Gly Cys His Pro Thr Asn Asp 20 25 30	
Asp Pro Asn Pro Lys Thr Trp Ser Ile Arg Ala Tyr Leu Pro Ser Ala 35 40 45	

Ser Gln Ala Trp Val Ile Asp Thr Pro Ser Gln Thr Glu His Pro Met 50 55 60

Thr Thr Val His His Pro His Phe Phe Glu Cys Thr Leu Gln Ser Glu 65 70 75 80

Thr Thr Pro Lys Tyr Gln Leu Lys Leu Gln Glu Gly Asp Arg Gln His 85 90 95

Ile Ile Asn Asp Pro Tyr Ala Phe Ala Glu Ala Pro His Ile Ser Asp $100 \ \ 105 \ \ 110$

Leu	Asp	Leu 115	His	Leu	Phe	Ala	Glu 120	Gly	Asn	His	His	Arg 125	Ile	Tyr	Asn
Lys	Leu 130	Gly	Ala	His	Leu	Val 135	Glu	Val	Asp	Gly	Ile 140	Lys	Gly	Val	Tyr
Phe 145	Ala	Val	Trp	Ala	Pro 150	Asn	Ala	Arg	Asn	Val 155	Ser	Ile	Leu	Gly	Asp 160
Phe	Asn	Asn	Trp	Asp 165	Gly	Arg	Lys	His	Gln 170	Met	Arg	Arg	Leu	Asn 175	Val
Gly	Ile	Trp	Gly 180	Ile	Phe	Ile	Pro	Asp 185	Leu	Gly	Pro	Asn	Thr 190	Lys	Tyr
Lys	Tyr	Glu 195	Ile	Lys	Asn	Gln	His 200	Gly	His	Ile	Tyr	Glu 205	Lys	Ser	Asp
Pro	Tyr 210	Gly	Phe	Leu	Arg	Glu 215	Val	Arg	Pro	Asp	Thr 220	Ala	Ser	Ile	Val
Ala 225	Asp	Leu	Asp	Gln	Tyr 230	Gln	Trp	Gln	Asp	His 235	Asp	Trp	Leu	Glu	Gln 240
Arg	Ala	Lys	Gln	Asp 245	Pro	Leu	Lys	Asn	Pro 250	Val	Ser	Ile	Tyr	Glu 255	Leu
His	Leu	Gly	Ser 260	Trp	Leu	His	Gly	Ser 265	Ala	Thr	Glu	ГÀв	Met 270	Gln	Leu
Leu	Ser	Gly 275	Glu	Val	Asp	Pro	Ile 280	Pro	Val	Gly	Asp	Gln 285	Lys	Pro	Gly
Ala	Arg 290	Phe	Leu	Ser	Tyr	Tyr 295	Glu	Leu	Val	Asp	300 Lys	Leu	Ile	Pro	Tyr
Val 305	Lys	Asp	Met	Gly	Tyr 310	Thr	His	Ile	Glu	Leu 315	Leu	Pro	Val	Ala	Glu 320
His	Pro	Phe	Asp	Gly 325	Ser	Trp	Gly	Tyr	Gln 330	Val	Thr	Gly	Tyr	Tyr 335	Ser
Pro	Thr	Ser	Arg 340	Phe	Gly	Asn	Pro	Glu 345	Asp	Leu	Met	Tyr	Phe 350	Ile	Asp
Gln	Сув	His 355	Ala	Asn	Gly	Ile	Gly 360	Val	Ile	Val	Asp	Trp 365	Val	Pro	Gly
His	Phe 370	Pro	Lys	Asp	Ala	His 375	Gly	Leu	Ala	Tyr	Phe 380	Asp	Gly	Thr	His
Leu 385	Tyr	Glu	His	Ala	390	Pro	Arg	Lys	Gly	Glu 395	His	Lys	Gly	Trp	Gly 400
Thr	Leu	Ile		Asn 405		Asn	Arg		Glu 410		Arg	Asn	Phe	Leu 415	Ile
Ala	Asn	Ala	Leu 420	Phe	Trp	Phe	Asp	Lys 425	Tyr	His	Ile	Asp	Gly 430	Ile	Arg
Val	Asp	Ala 435	Val	Ala	Ser	Met	Leu 440	Tyr	Leu	Asp	Tyr	Asp 445	Arg	Glu	Asp
Gly	Glu 450	Trp	Leu	Pro	Asn	Asp 455	Tyr	Gly	Gly	Asn	Glu 460	His	Leu	Glu	Ala
Val 465	Glu	Phe	Leu	Arg	Gln 470	Thr	Asn	Asn	Leu	Ile 475	Phe	Lys	Tyr	Tyr	Pro 480
Gly	Ile	Ile	Ser	Val 485	Ala	Glu	Glu	Ser	Thr 490	Ala	Trp	Pro	Met	Val 495	Ser
Arg	Pro	Thr	Tyr 500	Leu	Gly	Gly	Leu	Gly 505	Phe	Asn	Leu	ГЛа	Trp 510	Asn	Met
Gly	Trp	Met 515	His	Asp	Asn	Leu	Lys 520	Tyr	Phe	Ser	Met	Asp 525	Pro	Trp	Phe

-continued

Arg	Gln 530	His	His	Gln	Asn	Ser 535	Ile	Thr	Phe	Ser	Met 540	Trp	Tyr	His	His	
Ser 545	Glu	Asn	Tyr	Met	Leu 550	Ala	Leu	Ser	His	Asp 555	Glu	Val	Val	His	Gly 560	
Lys	Ser	Ser	Ile	Ile 565	Gly	Lys	Met	Pro	Gly 570	Asp	Glu	Trp	Gln	Lys 575	Phe	
Ala	Asn	Val	Arg 580	Ala	Leu	Phe	Ala	Tyr 585	Met	Phe	Thr	His	Pro 590	Gly	Lys	
Lys	Thr	Met 595	Phe	Met	Ser	Met	Glu 600	Phe	Gly	Gln	Trp	Asn 605	Glu	Trp	Asn	
Val	Trp 610	Ser	Asp	Leu	Ser	Trp 615	Asp	Leu	Leu	Gln	His 620	Glu	Pro	His	Ala	
Lys 625	Leu	Lys	Gly	Phe	Phe 630	Gly	Ala	Leu	Asn	Ser 635	Leu	Tyr	Lys	Gln	Glu 640	
Pro	Ala	Leu	Tyr	Glu 645	Arg	Asp	Phe	Glu	Glu 650	Glu	Gly	Phe	Gln	Trp 655	Ile	
Asp	Cha	Ser	Asp 660	Asn	Gln	Asn	Ser	Val 665	Leu	Ser	Phe	Ile	Arg 670	Arg	Ala	
Lys	Asp	Pro 675	Asn	Asp	Phe	Leu	Val 680	Val	Val	Cys	Asn	Phe 685	Thr	Pro	Gln	
Pro	His 690	Ser	His	Tyr	Arg	Ile 695	Gly	Ile	Pro	Glu	Glu 700	Gly	Tyr	Tyr	Gln	
Glu 705	Ile	Leu	Asn	Ser	Asp 710	Ala	Glu	Thr	Phe	Gly 715	Gly	Ser	Asn	Leu	Leu 720	
Asn	Phe	Gly	Gly	Val 725	Trp	Thr	Glu	Asp	Trp 730	Arg	Phe	His	Asn	Leu 735	Pro	
Tyr	Ser	Ile	Asp 740	Leu	Cys	Leu	Pro	Pro 745	Leu	Gly	Val	Val	Val 750	Leu	Lys	
Ile	Asp	Arg 755	Glu	Lys	Thr	Ala	Ala 760	Met	Leu	Ala	Gln	Lys 765	Gln	Ala	Asp	
Lys	Ala 770	Lys	Ala	Leu	Ser	Gly 775	Glu	Ile								
<212 <212	O > SE L > LE 2 > T\ 3 > OF	ENGTI PE :	H: 10 DNA	080	echoo	cyst:	is PO	CC680)3							
< 400)> SE	EQUEI	ICE :	11												
															ggcatt	60
															gatgaa	120
															gaaaat	180
															gccatg	240
															tcacc	300
															gagtac	360
								_	_						gtagaa	420
															ggccac	480
															gtggaa	540
															ggtgcc	600
															gaaatt	660
caco	egeet	gc t	gcc	caaca	ac co	cactt	ggta	ato	gcaco	ggtt	ctto	cctco	gt t	ccc	caggaa	720

-continued

tggatcgaca tga	tcaacga attcg	gtggt gctatccccg	aaacctatgg tgtgcccgtg	780						
gaagaaattc aaa	aaggcat caaga	ıgtggt gtacgtaaag	taaacatcga caccgataat	840						
cgcttagcca tca	cegeege tttee	gggaa geegetgeta	aagatcccaa gaactttgat	900						
ccccgtcact tcc	tcaagcc ttcta	ıtcaaa tatatgaagc	aggtttgtgc cgatcgctat	960						
caacagttct gga	stgetgg caatg	geetet aaaateaage	aattgacctt ggatgactac	1020						
gccgctaaat atg	ccaaagg tgaat	taacc gccacctccc	gcacctccgt tgctgtgtag	1080						
<210> SEQ ID NO 12 <211> LENGTH: 359 <212> TYPE: PRT <213> ORGANISM: Synechocystis PCC6803 <400> SEQUENCE: 12										
Met Ala Leu Va 1	l Pro Met Arg 5	g Leu Leu Leu Asp 10	His Ala Ala Glu Asn 15							
Gly Tyr Gly Il 20	e Pro Ala Phe	e Asn Val Asn Asn 25	Met Glu Gln Ile Ile 30							
Ser Ile Met Gl	n Ala Ala Asp	Glu Thr Asp Ser 40	Pro Val Ile Leu Gln 45							
Ala Ser Arg Gl	y Ala Arg Ser 55	Tyr Ala Gly Glu	Asn Phe Leu Arg His							
Leu Val Leu Gl	y Ala Val Glu 70	Thr Tyr Pro His 75	Ile Pro Ile Ala Met 80							
His Gln Asp Hi	s Gly Asn Ser 85	Pro Ala Thr Cys 90	Tyr Ser Ala Ile Arg 95							
Asn Gly Phe Th		: Met Asp Gly Ser 105	Leu Glu Ala Asp Ala 110							
Lys Thr Pro Al 115	a Ser Phe Glu	ı Tyr Asn Val Asn 120	Val Thr Ala Glu Val 125							
Val Lys Val Al 130	a His Ser Val 135		Glu Gly Glu Leu Gly 140							
Cys Leu Gly Se 145	r Leu Glu Thr 150	Gly Gln Gly Glu 155	Ala Glu Asp Gly His 160							
Gly Phe Glu Gl	y Lys Leu Asp 165	His Ser Gln Leu 170	Leu Thr Asp Pro Glu 175							
Glu Ala Val Gl 18		Lys Thr Gln Val 185	Asp Ala Leu Ala Val 190							
Ala Ile Gly Th 195	r Ser His Gly	Ala Tyr Lys Phe 200	Thr Arg Lys Pro Thr 205							
Gly Glu Val Le 210	u Ala Ile Ser 215	-	Ile His Arg Leu Leu 220							
Pro Asn Thr Hi 225	s Leu Val Met 230	His Gly Ser Ser 235	Ser Val Pro Gln Glu 240							
Trp Ile Asp Me	t Ile Asn Glu 245	ı Phe Gly Gly Ala 250	Ile Pro Glu Thr Tyr 255							
Gly Val Pro Va 26		e Gln Lys Gly Ile 265	Lys Ser Gly Val Arg 270							
Lys Val Asn Il 275	e Asp Thr Asp	Asn Arg Leu Ala 280	Ile Thr Ala Ala Phe 285							
Arg Glu Ala Al 290	a Ala Lys Asp 295	_	Asp Pro Arg His Phe							

Leu Lys Pro Ser Ile Lys Tyr Met Lys Gln Val Cys Ala Asp Arg Tyr

-continued

305 310 315 Gln Gln Phe Trp Thr Ala Gly Asn Ala Ser Lys Ile Lys Gln Leu Thr 325 330 Leu Asp Asp Tyr Ala Ala Lys Tyr Ala Lys Gly Glu Leu Thr Ala Thr 340 345 Ser Arg Thr Ser Val Ala Val 355 <210> SEQ ID NO 13 <211> LENGTH: 1044 <212> TYPE: DNA <213 > ORGANISM: Synechocystis PCC6803 <400> SEQUENCE: 13 atgaccgtta gtgagattca tattcctaac tctttactag accgggattg caccaccctt 60 120 tcacgccacg tactccaaca actgaatagc tttggggccg atgcccagga tttgagtgcc atcatgaacc gcattgccct agcgggaaaa ctgattgccc gtcgcctgag tcgagctggg 180 ttaatggccg atgtgttggg cttcactggg gaaaccaacg tccaggggga atcggtgaaa 240 aaaatqqacq tatttqccaa tqatqttttt atttctqtct ttaaqcaaaq tqqcttqqtt 300 tqtcqtctqq cttcqqaqqa qatqqaaaaa ccctactata ttcctqaaaa ttqccccatt 360 ggtcgctata ctttgctgta cgaccccatt gatggttcct ccaacgtgga cattaacctc 420 480 aacqtqqqtt ccatttttqc cattcqqcaa caqqaaqqqq acqatctaqa cqqcaqtqcq tcagatttat tggctaacgg agacaagcaa attgctgctg gttatatcct ctacggcccc 540 tecaceatee tggtttatte ceteggetee ggagtgeata getttateet egateeeagt 600 ttgggggaat ttattttagc ccaggaaaat atccgcattc ccaaccacgg ccccatttac 660 agcaccaatg aaggtaactt ttggcaatgg gatgaagccc tgagggatta cacccgttac 720 gtccatcgcc acgaaggtta cactgcccgt tatagcggtg ctctggtggg ggatattcac 780 cggattttga tgcaaggggg agtgtttctt tatcctggta cggaaaaaaa tcccgacggc 840 aaattgcgtt tgctctatga aactgcgccg ctggcctttt tggtggaaca ggctggggga 900 agggctagtg acggccaaaa acgtttactg gacttaattc cttctaaatt acatcagcgt 960 acccccgcca ttattggcag cgcagaagat gtgaaattgg tggaatcttt catcagcgac 1020 1044 cacaaacaac ggcagggtaa ttag <210> SEQ ID NO 14 <211> LENGTH: 347 <212> TYPE: PRT <213 > ORGANISM: Synechocystis PCC6803 <400> SEQUENCE: 14 Met Thr Val Ser Glu Ile His Ile Pro Asn Ser Leu Leu Asp Arg Asp Cys Thr Thr Leu Ser Arg His Val Leu Gln Gln Leu Asn Ser Phe Gly Ala Asp Ala Gln Asp Leu Ser Ala Ile Met Asn Arg Ile Ala Leu Ala 40 Gly Lys Leu Ile Ala Arg Arg Leu Ser Arg Ala Gly Leu Met Ala Asp Val Leu Gly Phe Thr Gly Glu Thr Asn Val Gln Gly Glu Ser Val Lys 70 75

Lys Met Asp Val Phe Ala Asn Asp Val Phe Ile Ser Val Phe Lys Gln

-continued

												COII	C III.	aca		
				85					90					95		
Ser	Gly	Leu	Val 100	_	Arg	Leu	Ala	Ser 105	Glu	Glu	Met	Glu	Lys 110	Pro	Tyr	
Tyr	Ile	Pro 115	Glu	Asn	СЛа	Pro	Ile 120	Gly	Arg	Tyr	Thr	Leu 125	Leu	Tyr	Asp	
Pro	Ile 130		Gly	Ser	Ser	Asn 135	Val	Asp	Ile	Asn	Leu 140	Asn	Val	Gly	Ser	
Ile 145	Phe	Ala	Ile	Arg	Gln 150	Gln	Glu	Gly	Asp	Asp 155	Leu	Asp	Gly	Ser	Ala 160	
Ser	Asp	Leu	Leu	Ala 165	Asn	Gly	Asp	Lys	Gln 170	Ile	Ala	Ala	Gly	Tyr 175	Ile	
Leu	Tyr	Gly	Pro 180	Ser	Thr	Ile	Leu	Val 185		Ser	Leu	Gly	Ser 190	Gly	Val	
His	Ser	Phe 195	Ile	Leu	Asp	Pro	Ser 200	Leu	Gly	Glu	Phe	Ile 205	Leu	Ala	Gln	
Glu	Asn 210	Ile	Arg	Ile	Pro	Asn 215	His	Gly	Pro	Ile	Tyr 220	Ser	Thr	Asn	Glu	
Gly 225	Asn	Phe	Trp	Gln	Trp 230		Glu	Ala	Leu	Arg 235	Asp	Tyr	Thr	Arg	Tyr 240	
Val	His	Arg	His	Glu 245	Gly	Tyr	Thr	Ala	Arg 250	Tyr	Ser	Gly	Ala	Leu 255	Val	
Gly	Asp	Ile	His 260	Arg	Ile	Leu	Met	Gln 265	Gly	Gly	Val	Phe	Leu 270	Tyr	Pro	
Gly	Thr	Glu 275		Asn	Pro	Asp	Gly 280	Lys	Leu	Arg	Leu	Leu 285	Tyr	Glu	Thr	
Ala	Pro 290	Leu	Ala	Phe	Leu	Val 295	Glu	Gln	Ala	Gly	Gly 300	Arg	Ala	Ser	Asp	
Gly 305	Gln	Lys	Arg	Leu	Leu 310	Asp	Leu	Ile	Pro	Ser 315	Lys	Leu	His	Gln	Arg 320	
Thr	Pro	Ala	Ile	Ile 325	Gly	Ser	Ala	Glu	Asp 330	Val	Lys	Leu	Val	Glu 335	Ser	
Phe	Ile	Ser	Asp 340	His	Lys	Gln	Arg	Gln 345	Gly	Asn						
<21: <21: <21: <22: <22:	<210> SEQ ID NO 15 <211> LENGTH: 4871 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Artificial plasmid pALM173 <4400> SEQUENCE: 15															
act	gccg	cac t	caat	gtt	ca a	ccaga	atcta	a gtg	gatta	attt	cgg	ggtta	agc a	agcco	gatgcg	60
ggc	aacct	gg t	gaaq	gcaa	ct g	cgaga	aatta	a ggt	taca	aacg	gcat	ttati	tgt t	gggg	gggaac	120
ggc:	ttaaa	ata d	cttct	caata	at ti	ttcc	ccgt	tg(ccaaç	gcaa	aat	gtgai	tgg g	ggtgt	tggtg	180
															gcctat	240
ttt	caaca	aaa a	accaa	aaaa	ga go	ccgc	cccaa	a ttt	agto	gece	agg	cttti	tac (ggcga	atccaa	300
gtt	tttgt	tg a	aagc	cctca	ag ca	agcci	cgat	gaa	aaaa	acgc	ccti	tagaa	aac t	ctto	gctcta	360
ccg	gactt	gc (gacga	acaa	ct g	cggg	acgaa	a att	tttç	gcag	gta	ccta	cgt o	cacgo	cctttg	420
ggt	gaaat	tt (cctt	caca	ga g	gaag	gggaa	a att	gtc	caga	agga	aatti	ttt t	gtg	gcccaa	480
att	gaaat	gg a	atgaa	atcg	gg to	caaca	agggg	g cgt	ttc	gcct	tca	ttgaa	aac q	gaact	taaagt	540

caaacctagg cctgtgttta aaagggggaa tcagttttgt ctttggaatt tactgactcc

cctctggaca	tctccaaacg	aattgtgagc	gctcacaatt	cggaattctt	aacaaaaaag	660
caggaataaa	attaacaaga	tgtaattgac	ataagtccca	tcaccgttgt	ataaatgtgt	720
ggaattgtga	gcggataaca	atttcacaca	ccaactcata	aagtcaagta	ggagattaat	780
tccatggctc	ttgtaccaat	gagactgctg	ttagaccatg	cggcggaaaa	tggttatggc	840
attcccgctt	tcaacgtcaa	caacatggag	cagatcattt	cgatcatgca	ggccgctgat	900
gaaaccgaca	gccctgtaat	tttgcaagct	tecegtggtg	cccggagcta	cgctggggaa	960
aatttcctgc	gccatttagt	tttgggggcg	gtcgaaacct	atcctcacat	tcccattgcc	1020
atgcaccaag	accacggcaa	tagccccgcc	acttgctatt	ccgccatccg	caacggtttc	1080
accagtgtga	tgatggacgg	ttccttggaa	gctgacgcca	agacccccgc	tagctttgag	1140
tacaacgtta	atgtaaccgc	tgaagtagtt	aaagtagccc	actccgttgg	ggccagtgta	1200
gaaggggaat	tgggttgctt	aggttccttg	gaaactggtc	aaggggaagc	tgaagacggc	1260
cacggttttg	aagggaagtt	agaccactcc	caactgttga	ccgatcccga	agaagcagtg	1320
gaattcgtca	acaaaaccca	ggtggatgcc	ctcgctgtgg	cgatcggtac	cagccatggt	1380
gcctacaaat	ttacccgcaa	acccaccggt	gaagttttgg	ccatcagccg	cattgaagaa	1440
attcaccgcc	tgctgcccaa	cacccacttg	gtaatgcacg	gttcttcctc	cgttccccag	1500
gaatggatcg	acatgatcaa	cgaattcggt	ggtgctatcc	ccgaaaccta	tggtgtgccc	1560
gtggaagaaa	ttcaaaaagg	catcaagagt	ggtgtacgta	aagtaaacat	cgacaccgat	1620
aatcgcttag	ccatcaccgc	cgctttccgg	gaagccgctg	ctaaagatcc	caagaacttt	1680
gatccccgtc	acttcctcaa	gccttctatc	aaatatatga	agcaggtttg	tgccgatcgc	1740
tatcaacagt	tctggactgc	tggcaatgcc	tctaaaatca	agcaattgac	cttggatgac	1800
tacgccgcta	aatatgccaa	aggtgaatta	accgccacct	cccgcacctc	cgttgctgtg	1860
tagtgaggat	ccagggattt	aattccatga	ccgttagtga	gattcatatt	cctaactctt	1920
tactagaccg	ggattgcacc	accctttcac	gccacgtact	ccaacaactg	aatagctttg	1980
gggccgatgc	ccaggatttg	agtgccatca	tgaaccgcat	tgccctagcg	ggaaaactga	2040
ttgcccgtcg	cctgagtcga	gctgggttaa	tggccgatgt	gttgggcttc	actggggaaa	2100
ccaacgtcca	gggggaatcg	gtgaaaaaaa	tggacgtatt	tgccaatgat	gtttttattt	2160
ctgtctttaa	gcaaagtggc	ttggtttgtc	gtctggcttc	ggaggagatg	gaaaaaccct	2220
actatattcc	tgaaaattgc	cccattggtc	gctatacttt	gctgtacgac	cccattgatg	2280
gttcctccaa	cgtggacatt	aacctcaacg	tgggttccat	ttttgccatt	cggcaacagg	2340
aaggggacga	tctagacggc	agtgcgtcag	atttattggc	taacggagac	aagcaaattg	2400
ctgctggtta	tatcctctac	ggcccctcca	ccatcctggt	ttattccctc	ggctccggag	2460
tgcatagctt	tatcctcgat	cccagtttgg	gggaatttat	tttagcccag	gaaaatatcc	2520
gcattcccaa	ccacggcccc	atttacagca	ccaatgaagg	taacttttgg	caatgggatg	2580
aagccctgag	ggattacacc	cgttacgtcc	atcgccacga	aggttacact	gcccgttata	2640
gcggtgctct	ggtggggat	attcaccgga	ttttgatgca	agggggagtg	tttctttatc	2700
ctggtacgga	aaaaaatccc	gacggcaaat	tgcgtttgct	ctatgaaact	gegeegetgg	2760
cctttttggt	ggaacaggct	gggggaaggg	ctagtgacgg	ccaaaaacgt	ttactggact	2820
taattccttc	taaattacat	cagcgtaccc	ccgccattat	tggcagcgca	gaagatgtga	2880
	atctttcatc					2940
				_		

aaagcccgaa	aggaagctga	gttggctgct	gccaccgctg	agcaataact	agcataaccc	3000
cttggggcct	ctaaacgggt	cttgacgggt	tttttgtcta	gatcaacggc	ctcaacctac	3060
tactgggctg	cttcctaatg	caggagtcgc	ataagggaga	gcgtcgagat	cccggacacc	3120
atcgaatggc	gcatttacag	ctagctcagt	cctaggtaca	atgctagccg	gaggagggtc	3180
aattcatggt	ggtgaatgtg	aaaccagtaa	cgttatacga	tgtcgcagag	tatgccggtg	3240
tctcttatca	gaccgtttcc	cgcgtggtga	accaggccag	ccacgtttct	gcgaaaacgc	3300
gggaaaaagt	ggaagcggcg	atggcggagc	tgaattacat	tcccaaccgc	gtggcacaac	3360
aactggcggg	caaacagtcg	ttgctgattg	gcgttgccac	ctccagtctg	gccctgcacg	3420
cgccgtcgca	aattgtcgcg	gcgattaaat	ctcgcgccga	tcaactgggt	gccagcgtgg	3480
tggtgtcgat	ggtagaacga	agcggcgtcg	aagcctgtaa	agcggcggtg	cacaatcttc	3540
tcgcgcaacg	cgtcagtggg	ctgatcatta	actatccgct	ggatgaccag	gatgccattg	3600
ctgtggaagc	tgcctgcact	aatgttccgg	cgttatttct	tgatgtctct	gaccagacac	3660
ccatcaacag	tattatttc	tcccatgaag	acggtacgcg	actgggcgtg	gagcatctgg	3720
tegeattggg	tcaccagcaa	atcgcgctgt	tagegggeee	attaagttct	gtctcggcgc	3780
gtctgcgtct	ggctggctgg	cataaatatc	tcactcgcaa	tcaaattcag	ccgatagcgg	3840
aacgggaagg	cgactttagt	gccatgtccg	gttttcaaca	aaccatgcaa	atgctgaatg	3900
agggcatcgt	tcccactgcg	atgctggttg	ccaacgatca	gatggcgctg	ggcgcaatgc	3960
gcgccattac	cgagtccggg	ctgcgcgttg	gtgcggatat	ctcggtagtg	ggatacgacg	4020
ataccgaaga	cagctcatgt	tatatcccgc	cgttaaccac	catcaaacag	gattttcgcc	4080
tgctggggca	aaccagcgtg	gaccgcttgc	tgcaactctc	tcagggccag	gcggtgaagg	4140
gcaatcagct	gttgcccgtc	tcactggtga	aaagaaaaac	caccctggcg	cccaatacgc	4200
aaaccgcctc	teceegegeg	ttggccgatt	cattaatgca	gctggcacga	caggtttccc	4260
gactggaaag	cgggcagtga	gcgcaacgca	attaatgtaa	gttagctcac	tcattaggca	4320
ccgggatctc	gaccgatgcc	cttgagagcc	ttcaacccag	tcagctcctt	ccggttcgcg	4380
ctcaagttga	tcgaatgtat	gccccggata	tgacctaggg	agattcttct	aaagcgagca	4440
gggtttgcca	agtggcgatc	gcctcaggga	accataacca	actttgttcg	aggcggcggg	4500
ggttgagctg	ggaacgatcg	agatctaggg	cgatcgcccg	tagggaaagc	cgaaaaactc	4560
caagaatttc	ctggtcaacg	tcggtgggtt	gcctttgggc	caaatcgtac	atactaatcg	4620
ccaggcccgc	ataaatctcc	gcctggaggg	ctggggggaa	atcctgggtc	gttgccgccg	4680
ctaaggcttc	ataccaacga	tcattggcgg	cttcgtaatc	tgcattgagg	taatggacaa	4740
aacccagggc	catcaaaatt	tcggggtcgt	tgggctgttg	ggctagggcc	atgtcccaat	4800
tgtcttgcac	cgtggcgatc	gccgttgctt	gggttggcga	tggtgggacg	gcagccaaag	4860
ttgtttgcca	g					4871
<220> FEATU	TH: 5323 : DNA NISM: Artif: JRE: R INFORMATIO	_		pALM210		
		caaagctqqc	gatttttctq	caaaccgaat	tagaaccaca	60
5 5 55-	-	5 55-		2	_	

agcgattggc tatgatctac caaagctggc gatttttctg caaaccgaat tagaaccaca atttgatttt ttaaageega ttaceattge caaeetgaag gaaatagega tegeetttat 120

-continued

ggaggatggc	cacgaggctt	gtcgggtctc	ccattattgt	ggatcggtac	cggatgagcg	180
ggcgagcttt	aatttacgct	tgcggcaata	tegecaggee	cagccttggc	tgcgaaatca	240
tetegateet	gcaaggggcg	ategeetgea	ccattggtcg	gatcaccaac	gcaccatttt	300
ctacggcagg	cgcaccaatc	ccgacaccca	gcagcggctt	gtgttagtgg	cgcacatggc	360
eggggeteeg	aagaccgttg	agattggcaa	atggctcgcc	ctggatttgg	atcgttggca	420
gttggcgatc	gccacaccga	ctttgaagat	caacaccatc	tatgacttag	cccaaattca	480
cttgcacaat	ggcgaaggtt	ttctgttatc	tgaaattcct	ccctaaatga	tgtcttttga	540
gcctaaaaac	acacttttt	gacctaattt	aacccattta	aaaaacttta	tttaataatg	600
accatggccc	atcaaaaata	cattcttgcg	ttagacctcg	gtaccacaaa	cgaattgtga	660
gcgctcacaa	ttcggaattc	ttaacaaaaa	agcaggaata	aaattaacaa	gatgtaacag	720
acataagtcc	catcaccgtt	gtataaatgt	gtggaattgt	gagcggataa	caatttcaca	780
caccaactca	taaagtcaag	taggagatta	attccatggt	tagtttagag	aagaacgatc	840
acttaatgtt	ggcgcgccag	ctgccattga	aatctgttgc	cctgatactg	gcgggaggac	900
gtggtacccg	cctgaaggat	ttaaccaata	agcgagcaaa	accggccgta	cacttcggcg	960
gtaagtteeg	cattatcgac	tttgcgctgt	ctaactgcat	caactccggg	atccgtcgta	1020
tgggcgtgat	cacccagtac	cagtcccaca	ctctggtgca	gcacattcag	cgcggctggt	1080
cattcttcaa	tgaagaaatg	aacgagtttg	tcgatctgct	gccagcacag	cagagaatga	1140
aaggggaaaa	ctggtatcgc	ggcaccgcag	atgcggtcac	ccaaaacctc	gacattatcc	1200
gccgttataa	agcggaatac	gtggtgatcc	tggcgggcga	ccatatctac	aagcaagact	1260
actcgcgtat	gcttatcgat	cacgtcgaaa	aaggcgcacg	ttgcaccgtt	gcttgtatgc	1320
cagtaccgat	tgaagaagcc	tccgcatttg	gcgttatggc	ggttgatgag	aacgataaaa	1380
ttatcgaatt	cgttgaaaaa	cctgctaacc	cgccgtcaat	gccgaacgat	ccgagcaaat	1440
ctctggcgag	tatgggtatc	tacgtctttg	acgccgacta	tctgtatgaa	ctgctggaag	1500
aagacgatcg	cgatgagaac	tccagccacg	actttggcaa	agatttgatt	cccaagatca	1560
ccgaagccgg	tctggcctat	gcgcacccgt	tcccgctctc	ttgcgtacaa	tccgacccgg	1620
atgeegagee	gtactggcgc	gatgtgggta	cgctggaagc	ttactggaaa	gcgaacctcg	1680
atctggcctc	tgtggtgccg	gaactggata	tgtacgatcg	caattggcca	attcgcacct	1740
acaatgaatc	attaccgcca	gcgaaattcg	tgcaggatcg	ctccggtagc	cacgggatga	1800
cccttaactc	actggtttcc	ggcggttgtg	tgatctccgg	ttcggtggtg	gtgcagtccg	1860
ttctgttctc	gcgcgttcgc	gtgaattcat	tctgcaacat	tgattccgcc	gtattgttac	1920
cggaagtatg	ggtaggtcgc	tegtgeegte	tgegeegetg	cgtcatcgat	cgtgcttgtg	1980
ttattccgga	aggcatggtg	attggtgaaa	acgcagagga	agatgcacgt	cgtttctatc	2040
gttcagaaga	aggcatcgtg	ctggtaacgc	gcgaaatgct	acggaagtta	gggcataaac	2100
aggagcgata	ataacaaagc	ccgaaaggaa	gctgagttgg	ctgctgccac	cgctgagcaa	2160
taactagcat	aaccccttgg	ggcctctaaa	cgggtcttga	cgggttttt	gtctagatca	2220
acggcctcaa	cctactactg	ggctgcttcc	taatgcagga	gtcgcataag	ggagagcgtc	2280
		atggcgcatt				2340
		atggtggtga				2400
		tatcagaccg				2460
-agagcacyc	-99-9	Jacongacog	gugt	agradaccag	5 coagecacy	2400

-continued

54

tttctgcgaa	aacgcgggaa	aaagtggaag	cggcgatggc	ggagctgaat	tacattccca	2520
accgcgtggc	acaacaactg	gcgggcaaac	agtcgttgct	gattggcgtt	gccacctcca	2580
gtetggeeet	gcacgcgccg	tcgcaaattg	tegeggegat	taaatctcgc	gccgatcaac	2640
tgggtgccag	cgtggtggtg	tcgatggtag	aacgaagcgg	cgtcgaagcc	tgtaaagcgg	2700
cggtgcacaa	tcttctcgcg	caacgcgtca	gtgggctgat	cattaactat	ccgctggatg	2760
accaggatgc	cattgctgtg	gaagctgcct	gcactaatgt	tccggcgtta	tttcttgatg	2820
tctctgacca	gacacccatc	aacagtatta	ttttctccca	tgaagacggt	acgcgactgg	2880
gcgtggagca	tctggtcgca	ttgggtcacc	agcaaatcgc	gctgttagcg	ggcccattaa	2940
gttctgtctc	ggcgcgtctg	cgtctggctg	gctggcataa	atatctcact	cgcaatcaaa	3000
ttcagccgat	agcggaacgg	gaaggcgact	ttagtgccat	gtccggtttt	caacaaacca	3060
tgcaaatgct	gaatgagggc	atcgttccca	ctgcgatgct	ggttgccaac	gatcagatgg	3120
cgctgggcgc	aatgcgcgcc	attaccgagt	ccgggctgcg	cgttggtgcg	gatatctcgg	3180
tagtgggata	cgacgatacc	gaagacagct	catgttatat	cccgccgtta	accaccatca	3240
aacaggattt	tegeetgetg	gggcaaacca	gcgtggaccg	cttgctgcaa	ctctctcagg	3300
gccaggcggt	gaagggcaat	cagctgttgc	ccgtctcact	ggtgaaaaga	aaaaccaccc	3360
tggcgcccaa	tacgcaaacc	gcctctcccc	gcgcgttggc	cgattcatta	atgcagctgg	3420
cacgacaggt	ttcccgactg	gaaagcgggc	agtgagcgca	acgcaattaa	tgtaagttag	3480
ctcactcatt	aggcaccggg	atctcgaccg	atgcccttga	gagccttcaa	cccagtcagc	3540
teetteeggt	tctcgagcgc	atgcataaaa	actgttgtaa	ttcattaagc	attctgccga	3600
catggaagcc	atcacaaacg	gcatgatgaa	cctgaatcgc	cageggeate	agcaccttgt	3660
cgccttgcgt	ataatatttg	cccatggacg	cacaccgtgg	aaacggatga	aggcacgaac	3720
ccagttgaca	taagcctgtt	cggttcgtaa	actgtaatgc	aagtagcgta	tgcgctcacg	3780
caactggtcc	agaaccttga	ccgaacgcag	cggtggtaac	ggcgcagtgg	cggttttcat	3840
ggcttgttat	gactgttttt	ttgtacagtc	tatgcctcgg	gcatccaagc	agcaagcgcg	3900
ttacgccgtg	ggtcgatgtt	tgatgttatg	gagcagcaac	gatgttacgc	agcagcaacg	3960
atgttacgca	gcagggcagt	cgccctaaaa	caaagttagg	tggctcaagt	atgggcatca	4020
ttcgcacatg	taggctcggc	cctgaccaag	tcaaatccat	gcgggctgct	cttgatcttt	4080
teggtegtga	gttcggagac	gtagccacct	actcccaaca	tcagccggac	tccgattacc	4140
tcgggaactt	gctccgtagt	aagacattca	tcgcgcttgc	tgccttcgac	caagaagcgg	4200
ttgttggcgc	tetegegget	tacgttctgc	ccaggtttga	gcagccgcgt	agtgagatct	4260
atatctatga	tctcgcagtc	tccggcgagc	accggaggca	gggcattgcc	accgcgctca	4320
tcaatctcct	caagcatgag	gccaacgcgc	ttggtgctta	tgtgatctac	gtgcaagcag	4380
attacggtga	cgatcccgca	gtggctctct	atacaaagtt	gggcatacgg	gaagaagtga	4440
tgcactttga	tatcgaccca	agtaccgcca	cctaacaatt	cgttcaagcc	gagatcggct	4500
teceggeege	ggagttgttc	ggtaaattgt	cacaacgccg	ccaggtggca	cttttcgggg	4560
aaatgtgcgc	gcccgcgttc	ctgctggcgc	tgggcctgtt	tctggcgctg	gacttcccgc	4620
tgttccgtca	gcagcttttc	gcccacggcc	ttgatgatcg	cggcggcctt	ggcctgcata	4680
	acggccccag					4740
	gcctacagca					4800
	cattgaattt					4860
aacycaaacc	caccyaacct	addudayact	ccacgactge	ccaccyccc	caegaccaac	4300

-continued

attattccct	tgatcatgaa	gcctttctct	caaccctcag	caacacagaa	aatttactca	4920					
ttattcaaga	tctagatggc	gtttgcatgg	ggttagtcaa	agacccctta	acccgcaaaa	4980					
ttgatcctga	ctatatccgc	gccacacgca	agtttagaga	ccacttcttt	gtcctcacca	5040					
acggtgaaca	tgaaggcaga	aggggagtaa	atcgcatcgt	tgaacgggca	tttcgcaatg	5100					
ttgaagccaa	agaggaaaca	agctatttac	ctggtttagc	agcagggggt	gtgcaatggc	5160					
agacagataa	tggccaaatt	tcccatcccg	gtgttagcca	agcagaactc	gatttccttg	5220					
ccacagtgcc	agatttaatt	ggtcaaagtt	taggacaatt	ttttactaaa	tatgttgata	5280					
tttttcccgc	tgagcttcaa	cctgagctga	tccatgcttc	tgt		5323					
<210> SEQ ID NO 17 <211> LENGTH: 5323 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Artificial plasmid pALM211											
<400> SEQUI	ENCE: 17										
agcgattggc	tatgatctac	caaagctggc	gatttttctg	caaaccgaat	tagaaccaca	60					
atttgatttt	ttaaagccga	ttaccattgc	caacctgaag	gaaatagcga	tcgcctttat	120					
ggaggatggc	cacgaggctt	gtcgggtctc	ccattattgt	ggatcggtac	cggatgagcg	180					
ggcgagcttt	aatttacgct	tgcggcaata	tegecaggee	cagccttggc	tgcgaaatca	240					
tctcgatcct	gcaaggggcg	atcgcctgca	ccattggtcg	gatcaccaac	gcaccatttt	300					
ctacggcagg	cgcaccaatc	ccgacaccca	gcagcggctt	gtgttagtgg	cgcacatggc	360					
cggggctccg	aagaccgttg	agattggcaa	atggctcgcc	ctggatttgg	atcgttggca	420					
gttggcgatc	gccacaccga	ctttgaagat	caacaccatc	tatgacttag	cccaaattca	480					
cttgcacaat	ggcgaaggtt	ttctgttatc	tgaaattcct	ccctaaatga	tgtcttttga	540					
gcctaaaaac	acacttttt	gacctaattt	aacccattta	aaaaacttta	tttaataatg	600					
accatggccc	atcaaaaata	cattettgeg	ttagacctcg	gtaccacaaa	cgaattgtga	660					
gcgctcacaa	ttcggaattc	ttaacaaaaa	agcaggaata	aaattaacaa	gatgtaacag	720					
acataagtcc	catcaccgtt	gtataaatgt	gtggaattgt	gagcggataa	caatttcaca	780					
caccaactca	taaagtcaag	taggagatta	attccatggt	tagtttagag	aagaacgatc	840					
acttaatgtt	ggcgcgccag	ctgccattga	aatctgttgc	cctgatactg	gcgggaggac	900					
gtggtacccg	cctgaaggat	ttaaccaata	agcgagcaaa	accggccgta	cacttcggcg	960					
gtaagtteeg	cattatcgac	tttgcgctgt	ctaactgcat	caactccggg	atccgtcgta	1020					
tgggcgtgat	cacccagtac	cagtcccaca	ctctggtgca	gcacattcag	cgcggctggt	1080					
cattcttcaa	tgaagaaatg	aacgagtttg	tegatetget	gccagcacag	cagagaatga	1140					
aaggggaaaa	ctggtatcgc	ggcaccgcag	atgcggtcac	ccaaaacctc	gacattatcc	1200					
gccgttataa	agcggaatac	gtggtgatcc	tggcgggcga	ccatatctac	aagcaagact	1260					
actcgcgtat	gcttatcgat	cacgtcgaaa	aaggcgcacg	ttgcaccgtt	gcttgtatgc	1320					
cagtaccgat	tgaagaagcc	tccgcatttg	gcgttatggc	ggttgatgag	aacgataaaa	1380					
ttatcgaatt	tgttgaaaaa	cctgctaacc	cgccgtcaat	gccgaacgat	ccgagcaaat	1440					
ctctggcgag	tatgggtatc	tacgtctttg	acgccgacta	tctgtatgaa	ctgctggaag	1500					

aagacgatcg cgatgagaac tccagccacg actttggcaa agatttgatt cccaagatca 1560

-continued

ccgaagccgg	tctggcctat	gcgcacccgt	tecegetete	ttgcgtacaa	tccgacccgg	1620
atgccgagcc	gtactggcgc	gatgtgggta	cgctggaagc	ttactggaaa	gcgaacctcg	1680
atctggcctc	tgtggtgccg	gaactggata	tgtacgatcg	caattggcca	attcgcacct	1740
acaatgaatc	attaccgcca	gcgaaattcg	tgcaggatcg	ctccggtagc	cacgggatga	1800
cccttaactc	actggtttcc	gacggttgtg	tgatctccgg	ttcggtggtg	gtgcagtccg	1860
ttctgttctc	gcgcgttcgc	gtgaactcat	tctgcaacat	tgattccgcc	gtattgttac	1920
cggaagtatg	ggtaggtcgc	tegtgeegte	tgcgccgctg	cgtcatcgat	cgtgcttgtg	1980
ttattccgga	aggcatggtg	attggtgaaa	acgcagagga	agatgcacgt	cgtttctatc	2040
gttcagaaga	aggcatcgtg	ctggtaacgc	gcgaaatgct	acggaagtta	gggcataaac	2100
aggagcgata	ataacaaagc	ccgaaaggaa	gctgagttgg	ctgctgccac	cgctgagcaa	2160
taactagcat	aaccccttgg	ggcctctaaa	cgggtcttga	cgggttttt	gtctagatca	2220
acggcctcaa	cctactactg	ggetgettee	taatgcagga	gtcgcataag	ggagagcgtc	2280
gagatcccgg	acaccatcga	atggcgcatt	tacagctagc	tcagtcctag	gtacaatgct	2340
agccggagga	gggtcaattc	atggtggtga	atgtgaaacc	agtaacgtta	tacgatgtcg	2400
cagagtatgc	cggtgtctct	tatcagaccg	tttcccgcgt	ggtgaaccag	gccagccacg	2460
tttctgcgaa	aacgcgggaa	aaagtggaag	cggcgatggc	ggagctgaat	tacattccca	2520
accgcgtggc	acaacaactg	gcgggcaaac	agtcgttgct	gattggcgtt	gccacctcca	2580
gtctggccct	gcacgcgccg	tcgcaaattg	tcgcggcgat	taaatctcgc	gccgatcaac	2640
tgggtgccag	cgtggtggtg	tcgatggtag	aacgaagcgg	cgtcgaagcc	tgtaaagcgg	2700
cggtgcacaa	tettetegeg	caacgcgtca	gtgggctgat	cattaactat	ccgctggatg	2760
accaggatgc	cattgctgtg	gaagetgeet	gcactaatgt	teeggegtta	tttcttgatg	2820
tctctgacca	gacacccatc	aacagtatta	ttttctccca	tgaagacggt	acgcgactgg	2880
gcgtggagca	tetggtegea	ttgggtcacc	agcaaatcgc	gctgttagcg	ggcccattaa	2940
gttctgtctc	ggegegtetg	egtetggetg	gctggcataa	atatctcact	cgcaatcaaa	3000
ttcagccgat	agcggaacgg	gaaggcgact	ttagtgccat	gtccggtttt	caacaaacca	3060
tgcaaatgct	gaatgagggc	atcgttccca	ctgcgatgct	ggttgccaac	gatcagatgg	3120
cgctgggcgc	aatgcgcgcc	attaccgagt	ccgggctgcg	cgttggtgcg	gatatctcgg	3180
tagtgggata	cgacgatacc	gaagacagct	catgttatat	cccgccgtta	accaccatca	3240
aacaggattt	tegeetgetg	gggcaaacca	gcgtggaccg	cttgctgcaa	ctctctcagg	3300
gccaggcggt	gaagggcaat	cagctgttgc	ccgtctcact	ggtgaaaaga	aaaaccaccc	3360
tggcgcccaa	tacgcaaacc	gcctctcccc	gcgcgttggc	cgattcatta	atgcagctgg	3420
cacgacaggt	ttcccgactg	gaaageggge	agtgagcgca	acgcaattaa	tgtaagttag	3480
ctcactcatt	aggcaccggg	atctcgaccg	atgcccttga	gagccttcaa	cccagtcagc	3540
tccttccggt	tctcgagcgc	atgcataaaa	actgttgtaa	ttcattaagc	attctgccga	3600
catggaagcc	atcacaaacg	gcatgatgaa	cctgaatcgc	cageggeate	agcaccttgt	3660
cgccttgcgt	ataatatttg	cccatggacg	cacaccgtgg	aaacggatga	aggcacgaac	3720
ccagttgaca	taagcctgtt	cggttcgtaa	actgtaatgc	aagtagcgta	tgcgctcacg	3780
caactggtcc	agaaccttga	ccgaacgcag	cggtggtaac	ggcgcagtgg	cggttttcat	3840
ggcttgttat	gactgttttt	ttgtacagtc	tatgcctcgg	gcatccaagc	agcaagcgcg	3900
ttacgccgtg	ggtcgatgtt	tgatgttatg	gagcagcaac	gatgttacgc	agcagcaacg	3960

-continued

60

atgttacgca	gcagggcagt	cgccctaaaa	caaagttagg	tggctcaagt	atgggcatca	4020
ttcgcacatg	taggctcggc	cctgaccaag	tcaaatccat	gegggetget	cttgatcttt	4080
teggtegtga	gttcggagac	gtagccacct	actcccaaca	tcagccggac	tccgattacc	4140
tcgggaactt	gctccgtagt	aagacattca	tcgcgcttgc	tgccttcgac	caagaagcgg	4200
ttgttggcgc	tctcgcggct	tacgttctgc	ccaggtttga	gcagccgcgt	agtgagatct	4260
atatctatga	tctcgcagtc	teeggegage	accggaggca	gggcattgcc	accgcgctca	4320
tcaatctcct	caagcatgag	gccaacgcgc	ttggtgctta	tgtgatctac	gtgcaagcag	4380
attacggtga	cgatcccgca	gtggctctct	atacaaagtt	gggcatacgg	gaagaagtga	4440
tgcactttga	tatcgaccca	agtaccgcca	cctaacaatt	cgttcaagcc	gagategget	4500
teceggeege	ggagttgttc	ggtaaattgt	cacaacgccg	ccaggtggca	cttttcgggg	4560
aaatgtgcgc	gcccgcgttc	ctgctggcgc	tgggcctgtt	tetggegetg	gacttcccgc	4620
tgttccgtca	gcagcttttc	gcccacggcc	ttgatgatcg	cggcggcctt	ggcctgcata	4680
tcccgattca	acggccccag	ggcgtccaga	acgggcttca	ggcgctcccg	aaggtggatc	4740
ccccctctt	gcctacagca	tctcccccag	gggagaattc	ttcctgtttc	aactccctct	4800
aacgtaaacc	cattgaattt	aaaaaagact	ttatgactgc	tttactgctc	catgaccaac	4860
attattccct	tgatcatgaa	gcctttctct	caaccctcag	caacacagaa	aatttactca	4920
ttattcaaga	tctagatggc	gtttgcatgg	ggttagtcaa	agacccctta	acccgcaaaa	4980
ttgatcctga	ctatatccgc	gccacacgca	agtttagaga	ccacttcttt	gtcctcacca	5040
acggtgaaca	tgaaggcaga	aggggagtaa	ategeategt	tgaacgggca	tttcgcaatg	5100
ttgaagccaa	agaggaaaca	agctatttac	ctggtttagc	agcagggggt	gtgcaatggc	5160
agacagataa	tggccaaatt	tcccatcccg	gtgttagcca	agcagaactc	gatttccttg	5220
ccacagtgcc	agatttaatt	ggtcaaagtt	taggacaatt	ttttactaaa	tatgttgata	5280
tttttcccgc	tgagcttcaa	cctgagctga	tccatgcttc	tgt		5323

What is claimed is:

- 1. A recombinant microorganism modified with respect to a native microorganism, the recombinant microorganism comprising a recombinant nucleic acid configured to express 45 a glucose-1-phosphate adenylyltransferase, wherein the recombinant microorganism:
 - is a cyanobacterium;
 - exhibits enhanced glucose-1-phosphate adenylyltransferase activity compared to the native microorganism; 50 and
 - produces an increased amount of glycogen compared to the native microorganism while having a growth rate of at least a growth rate of the native microorganism when grown photoautotrophically in the presence of light and 55 10% CO₂.
- 2. The recombinant microorganism of claim 1, wherein the glucose-1-phosphate adenylyltransferase is allosterically regulated by a compound selected from the group consisting of adenosine diphosphate and adenosine monophosphate.
- 3. The recombinant microorganism of claim 1, wherein the glucose-1-phosphate adenylyltransferase comprises a sequence at least 90% identical to SEQ ID NO:2.
- **4**. The recombinant microorganism of claim **1**, wherein the glucose-1-phosphate adenylyltransferase comprises a 65 glycine at a position corresponding to position 336 of SEQ ID NO:2.

- 5. The recombinant microorganism of claim 1, wherein the nucleic acid comprises a glucose-1-phosphate adenylyl-transferase coding sequence operably connected to a promoter not operably connected to the coding sequence in nature.
- **6.** The recombinant microorganism of claim **5**, wherein the promoter is an inducible promoter.
- 7. The recombinant microorganism of claim 5, wherein the promoter is a constitutive promoter.
- **8**. The recombinant microorganism of claim **1**, wherein the recombinant microorganism exhibits a native glycogen synthase expression level.
- **9**. The recombinant microorganism of claim **1**, wherein the recombinant microorganism exhibits native glycogen synthase activity.
- 10. The recombinant microorganism of claim 1, wherein the recombinant microorganism exhibits a native 1,4-alphaglucan-branching enzyme expression level.
- 11. The recombinant microorganism of claim 1, wherein the recombinant microorganism exhibits native 1,4-alphaglucan-branching enzyme activity.
- 12. The recombinant microorganism of claim 1, wherein the recombinant microorganism is capable of producing glycogen as a mass percent of dry cell weight (DCW) in an amount of at least about 25% DCW.

- 13. A method of producing glycogen comprising culturing the recombinant microorganism of claim 1.
- 14. The recombinant microorganism of claim 1, wherein the recombinant microorganism exhibits a native 1,4-alphaglucan-branching enzyme expression level and native 1,4-5 alpha-glucan-branching enzyme activity, and wherein the recombinant microorganism is capable of producing glycogen as a mass percent of dry cell weight (DCW) in an amount of at least about 25% DCW.
- 15. The recombinant microorganism of claim 14, wherein 10 the glucose-1-phosphate adenylyltransferase comprises a glycine at a position corresponding to position 336 of SEQ ID NO:2 and is allosterically regulated by a compound selected from the group consisting of adenosine diphosphate and adenosine monophosphate.
- **16.** The recombinant microorganism of claim **14**, wherein the glucose-1-phosphate adenylyltransferase comprises a sequence at least 90% identical to SEQ ID NO:2.
- 17. The recombinant microorganism of claim 14, wherein the nucleic acid comprises a glucose-1-phosphate adenylyl- 20 transferase coding sequence operably connected to a promoter not operably connected to the coding sequence in nature.
- **18**. The recombinant microorganism of claim **14**, wherein the recombinant microorganism exhibits a native glycogen 25 synthase expression level.
- 19. The recombinant microorganism of claim 14, wherein the recombinant microorganism exhibits native glycogen synthase activity.
- **20**. A method of producing glycogen comprising culturing 30 the recombinant microorganism of claim **14**.

* * * * *