
c12) United States Patent
Sankaralingam et al.

(54) METHOD OF ESTIMATING PROGRAM
SPEED-UP IN HIGHLY PARALLEL
ARCHITECTURES USING STATIC
ANALYSIS

(71) Applicant: Wisconsin Alumni Research
Foundation, Madison, WI (US)

(72) Inventors: Karthikeyan Sankaralingam, Madison,
WI (US); Newsha Ardalani, Madison,
WI (US); Urmish Thakker, Madison,
WI (US)

(73) Assignee: Wisconsin Alumni Research
Foundation, Madison, WI (US)

(*) Notice: Subject to any disclaimer, the term ofthis
patent is extended or adjusted under 35
U.S.C. 154(b) by 806 days.

(21) Appl. No.: 15/070,466

(22) Filed:

(65)

Mar. 15, 2016

Prior Publication Data

(51)

(52)

(58)

US 2017/0270424 Al

Int. Cl.
G06F 11130
G06F 8/41
G06F 8175
G06N 5/02
U.S. Cl.

Sep. 21, 2017

(2006.01)
(2018.01)
(2018.01)
(2006.01)

CPC G06F 11130 (2013.01); G06F 8/42
(2013.01); G06F 8/443 (2013.01); G06F 8175

(2013.01); G06N 5/025 (2013.01)
Field of Classification Search
CPC G06F 8/42; G06F 8/443; G06F 8/75
See application file for complete search history.

r - - - - - -
,--56

r-L---------"l:

I 1111111111111111 1111111111 1111111111 111111111111111 IIIII IIIIII IIII IIII IIII

-

US010754744B2

(IO) Patent No.:
(45) Date of Patent:

US 10,754,744 B2
Aug. 25, 2020

(56) References Cited

U.S. PATENT DOCUMENTS

5,303,357 A * 4/1994 Inoue G06F 8/452
717/160

8,533,669 B2 * 9/2013 King G06F 8/41
717/111

8,700,925 B2 4/2014 Wyatt
2005/0210225 Al* 9/2005 Morrow G06F 9/3844

712/239
2011/0310107 Al 12/2011 Shiraki
2012/0221574 Al 8/2012 Murakami et al.
2014/0109105 Al 4/2014 Lee et al.
2014/0259024 Al 9/2014 Sridharan et al.
2015/0007187 Al 1/2015 Shows
2015/0052536 Al* 2/2015 Sah G06F 9/5083

(Continued)

OTHER PUBLICATIONS

718/105

Grewe, Dominik et. al, Univ of Edinburgh, UK; A Static Task
Partitioning Approach for Heterogeneous Systems Using Open CL
J. Knoop (Ed.): LNCS 6601, pp. 286-305, Springer-Verlag Berlin
Heidelberg 2011 (Year: 2011). *

(Continued)

Primary Examiner - Li Wu Chang
(74) Attorney, Agent, or Firm - Boyle Fredrickson, S.C.

(57) ABSTRACT

The amount of speed-up that can be obtained by optimizing
the program to run on a different architecture is determined
by static measurements of the program. Multiple such static
measurements are processed by a machine learning system
after being discretized to alter their accuracy vs precision.
Static analysis requires less analysis overhead and permits
analysis of program portions to optimize allocation of port­
ing resources on a large program.

19 Claims, 3 Drawing Sheets

- - - 7

I 63 ~

MEMORY COALESCING

BRANCH DIVERGENCE

KERNEL SIZE 64

ARITHMETIC INTENSITY

AVAILABLE PARALLELISM

CONTROL iNTENSITY

MATHEMATICAL
INSTRUCTION

INTENSITY
1., ___________ ,.1 I,. - - - ,.I;

L - - - - - - - - - - - - - _j

(56) References Cited

U.S. PATENT DOCUMENTS

US 10,754,744 B2
Page 2

2016/0300060 Al * 10/2016 Pike G06F 11/3604
2017 /0083338 Al * 3/2017 Burger G06F 9/268

OTHER PUBLICATIONS

Linderman et al. "Towards Program Optimization through Auto­
mated Analysis of Numerical Precision", Proc CGO, 2010, pp.
230-237.*
Liu et al.; Performance Prediction for Reconfigurable Processor, In
High Performance Computing and Communication 2012 IEEE 9th
International Conference on Embedded Software and Systems (HPCC­
ICESS), 2012 IEEE, 14th International Conference; pp. 1352-1359,
2012.
Hoste et al.: Performance Prediction based on Inherent Program
Similarity; In in PACT, pp. 114-122. ACM Press, 2006., US.

* cited by examiner

U.S. Patent Aug. 25, 2020 Sheet 1 of 3 US 10,754,744 B2

24~
29

,-10

16 12 18 14

20
28

22

I ' / ' /
36\, ,-22 / 34 38 / '

43

42a
40

42b

FIG. 1
,-36

RUN TRAINING SET 44

ON CPU AND GPU

MEASURE SPEED-UP

STATIC ANALYSIS

DISCRET!ZE DA1A

BUILD MODEL

FIG.2

U.S. Patent Aug. 25, 2020 Sheet 2 of 3

34

34

~

r------------,--56
r--L---------.,
I....--------- I 63 r ., 60 54

KERNEL SIZE

MODEL

CONTROL lNTENSITY

MATHEMATICAL
INSTRUCTION

I l -=-'-NT-E_N=S-IT_Y_=~- I

L::, - ..::, -_- -_- --- - ..::_., -

34a

34b

34c

34d

34e

34f

66

STATIC
ANALYSIS

JI

II

ii

fl

54

MODEL

ti

L""""""'-~ DYNAMIC e,...

7

....

1

_-e,.i CALL
ANALYSIS HIERARCHY

67

US 10,754,744 B2

62 64

_r SPEED- UP

FIG. 3

...!

94

70

FIG.4

U.S. Patent Aug. 25, 2020 Sheet 3 of 3 US 10,754,744 B2

8 0
FOR EACH LOOP _
COUNT VALUE IN

RANGE

~
8 4

FOR EACH BRANCH \.__
PREDICTION VALUE

IN RANGE

I
8 8

EVALUATE EACH _
STATIC PROGRAM

PROPERTY

I
9 0

~ MODEL SPEED-UP

I

8 6
_ NEXT

I
8 2
_ NEXT

9 2
I

_ OUTPUT MAJORITY
SPEED-UP VALUE

FIG. 5

US 10,754,744 B2
1

METHOD OF ESTIMATING PROGRAM
SPEED-UP IN HIGHLY PARALLEL
ARCHITECTURES USING STATIC

ANALYSIS

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT

This invention was made with government support under
1162215 and 1439091 awarded by the National Science
Foundation. The government has certain rights in the inven­
tion.

CROSS REFERENCE TO RELATED
APPLICATION

BACKGROUND OF THE INVENTION

The present invention relates to highly parallel computer
architectures such as graphic processing units (GPUs), and
in a particular to a method of estimating the degree by which
a program will speed-up when ported to a highly parallel
architecture, for example, from a different less parallel
architecture, using statically measured program characteris­
tics.

2
which can output an estimate of program speed-up when the
program is ported to the second architecture (e.g., GPU).

Dynamic measurement, that is, measurements of the
program as it is actually executing, can reveal, for example,

5 which way branch conditions are resolved during program
execution. When a branch condition has data dependence,
meaning that the branch depends on the value of data from
main memory, the direction of the branch cannot be deter­
mined from static analysis of the program but may require

10 knowledge of values that are not resolved until the program
runs.

Knowing how branch conditions are resolved provides
information about which instructions are executed and how
many times they are executed (for example, in a branch

15 control loop). This latter information in tum reveals the
predominant type of instructions that are executed and the
amount of main memory access, information that strongly
affects how the program will perform on a given architecture

20
type.

While dynamic measurement reasonably appear to be
necessary for accurate estimation of the dynamic property of
program execution speed when run on a given architecture,
such dynamic measurements are not always practical. The
software "instrumentation" used to make dynamic measure-

25 ments can interfere (slow) execution of the programs being
measured, interfering with measurement. Implementing the
instrumentation to acquire dynamic measurements can
require substantial amount of execution time and program­
mer effort. Current high-performance computers may employ pro­

cessor systems having a range of different architectures. One 30

processor system may be in the form of one or more CPUs SUMMARY OF THE INVENTION
(computer processing units) each having a general instruc­
tion set intended for serial execution of tasks, and another
processor system may be a GPU (graphics processing unit)
having many hundreds of processing elements and a spe- 35

cialized instruction set intended for parallel execution of
tasks, typically associated with graphics processing. Often
these two processing systems are combined in the same
computer.

The ability of the GPU to handle not only graphic tasks 40

but also generalized computational tasks that can be paral­
lelized, for example, by stream processing, has led to a
so-called "heterogeneous processing" in which the GPU
handles non-graphics program tasks normally performed by
the CPU. In this regard, some programs can experience 45

multiple factors of "speed-up" when moved ("ported") from
the CPU to a GPU.

The present invention provides a method of estimating the
amount of speed-up that will be obtained in porting a target
program between two different computer architectures using
static rather than dynamic measurements of the target pro-
gram. The ability to use static measurements eliminates the
overhead of making dynamic measurements, greatly simpli­
fying the assessment process. In addition, the present inven­
tion, combined with minimal dynamic analysis, permits
separate portions of the program to be individually ranked
with respect on their estimated speed-up. In this way, limited
resources available for porting a program can be efficiently
allocated to portions of the program that will yield the most
benefit.

Underlying this invention is the present inventor's rec­
ognition that static measurements can provide sufficient
insights into dynamic properties for reliable speed-up pre­
dictions despite the absence of some foundational dynamic

Porting a program from a CPU to a GPU requires sub­
stantial restructuring of the software and data organization to
match the GPU's many-threaded programming model. Code
optimization of such ported programs can be very time­
consuming and require specialized tools and expertise. The
costs of porting programs to a GPU make it desirable to
know if program speed-up will justify the effort before
substantial effort is expended. Unfortunately, the perfor­
mance advantage of such porting is not known until the GPU
code has been written and optimized.

50 information such as branch probability information and loop
trip count for loops. The present invention provides a way of
managing the inevitable inaccuracy in using static measure­
ments to obtain dynamic information when those inaccurate
static measures are applied to accuracy-sensitive machine

U.S. patent application Ser. No. 14/212,711 filed Mar. 14,
2014, hereby incorporated by reference and assigned to the
assignee of the present application, describes a system that
can estimate the amount of speed-up that can be obtained in
a program by moving it between architectures, such as from
a CPU to a GPU. This system makes detailed "dynamic"
measurements of a target program to be ported, that is
measurements taken when the target program is operating on
the first architecture (e.g., CPU). The system then applies
these dynamic measurements to a machine learning model

55 learning models.
Specifically then, in one embodiment, the invention pro­

vides an electronic computer executing a program stored in
non-transitory medium to: (a) perform a static analysis of a
target computer program prepared to execute on a first

60 computer architecture to determine static properties of the
target computer program selected from a set of static pro­
gram properties relating to how the target computer program
would dynamically execute on a second computer architec­
ture having a different architecture than the first computer

65 architecture. The static properties are then applied to a
machine learning model, the machine learning model trained
using a training set of programs each having a first optimi-

US 10,754,744 B2
3 4

The multiple static indications may further provide a
static assessment of an intensity of arithmetic instructions in
the instructions of the target program.

It is thus a feature of at least one embodiment of the
invention to capture in the estimation process types of
instructions (arithmetic) that can hide memory latency by
being executed during memory latency.

The static assessment of the intensity of arithmetic
instructions maybe a ratio of arithmetic to memory access

zation for the first computer architecture and a second
optimization for the second computer architecture, the train­
ing set providing an empirically measured change in execu­
tion speed between the first optimization and the second
optimization when running on the respective computer 5

architectures and training static properties of the set of static
program properties for the first optimization. A speed-up
value is output from the machine learning model to a user
indicating an expected increase in execution speed of the
target computer program when executed on the second
computer architecture.

10 instructions.

It is thus a feature of at least one embodiment of the
invention to permit an estimation of how much a program
will speed-up when being adapted for use on a different
architecture before making that adaption and without the
need for dynamic instrumentation of the program.

The static properties and training static properties maybe
discretized corresponding sets of ranges less than five.

It is thus a feature of at least one embodiment of the
invention to provide a simple static assessment of mitigating
factors to memory latency.

The static assessment of an intensity of arithmetic instruc-
15 tions may be discretized to a binary value.

It is thus a feature of at least one embodiment of the
invention to moderate accuracy problems with the static
approximation of a dynamic property.

It is thus a feature of at least one embodiment of the 20

invention to adapt imperfect approximations of dynamic
program qualities captured in static measurements to accu­
racy sensitive, machine learning systems by using a discreti­
zation process to trade off precision for accuracy.

The set of static program properties may provide a static
indication of branch divergence in the target program related
to variation in execution paths between successive execu­
tions of a branch instruction.

It is thus a feature of at least one embodiment of the
invention to provide a measure of memory accesses which
may affect parallel operation on a GPU or the like. The ranges maybe selected to provide bins holding sub- 25

stantially equal numbers of the measured static properties of
the training set of programs.

The static indication of branch divergence may assess
branch instructions in the loop according to whether the
branch conditions are loop invariant terms or based on loop
induction variables. Alternatively or in addition, the static
indication of branch divergence may assess whether the
branch instructions include branch conditions based on

It is thus a feature of at least one embodiment of the
invention to provide a simple method of automatic discreti-
zation.

The empirically measured changes in execution speed
maybe discretized to a set of ranges less than five.

It is thus a feature of at least one embodiment of the
invention to provide a balancing between accuracy and
precision in the speed-up measurements applied to machine
learning.

The empirically measured changes in execution speed
maybe discretized to a user-selected set of ranges selectable
by the user and further wherein the speed-up value output to
the user is discretized to the user-selected ranges.

It is thus a feature of at least one embodiment of the
invention to match the accuracy in handing discretization
processes to desired ranges of interest from the user.

The set of static program properties may provide a static
indication of memory coalescing in the target program
related to an amount of excess external memory.

It is thus a feature of at least one embodiment of the
invention to approximate in the estimating process the
dynamic effects of memory bandwidth limitations such as
reflect the time penalties of acquiring data from an external
memory.

30

access to processor external memory.
It is thus a feature of at least one embodiment of the

invention to identify a static proxy for the dynamic behavior
35 of branch divergence.

The set of static programs may further include at least one
of assessment of kernel size of the average number of
instructions in one thread, available parallelism indicating
how many threads can potentially run on the second archi-

40 tecture in parallel, control intensity providing a measure of
whether control instructions rely on data from external
memory and complex arithmetic ratios indicating the num­
ber of complex arithmetic instructions selected from the
group of multiplication, division, sine, cosine, floating-point

45 log, floating-point exponent and square root.
It is thus a feature of at least one embodiment of the

invention to identify multiple additional static program
properties related to the dynamic performance of a program.

The machine learning model may be a random forest
50 classifier.

It is thus a feature of at least one embodiment of the
invention to make use of a machine learning system that
resists "overfit" allowing it to be used with a limited
teaching set.

The random forest classifier may select and combine
random forests of binary decision trees.

The static indication of memory coalescing may assess
memory access instructions in a loop according to whether
the address of the instruction includes loop invariant terms 55

or loop induction variable-based terms that are not the loop
induction variable times a value. It is thus a feature of at least one embodiment of the

invention to provide a modeling technique that is robust to
the inclusion of possibly irrelevant features in the static

60 program properties.

It is thus a feature of at least one embodiment of the
invention to find a statically derivable proxy for the dynamic
behavior of memory coalescing. By looking at static aspects
of memory address calculation, a rough approximation of
memory access behavior may be determined.

The static indication of memory coalescing maybe dis­
cretized to a binary value.

It is thus a feature of at least one embodiment of the 65

invention to address accuracy problems through the use of
coarse discretization.

The electronic computer may further include each of the
first and second architectures.

It is thus a feature of at least one embodiment of the
invention to provide a system that can assist in optimizing
programs for its own architecture.

The target computer program may be a portion of a main
computer program, and the electronic computer may include

US 10,754,744 B2
5

the first architecture and further execute the stored program
to execute the main program on the first architecture to
measure a call hierarchy of different portions of the main
program including the target program when the main pro­
gram is executing on the first architecture. In addition the
electronic computer may perform a static analysis of the
different portions of the main program to determine static
properties of each of the different portions selected from the
set of static program properties and apply the static proper­
ties of each of the different portions to the machine learning
model and provide a comparison of speed-up value from the
machine learning model for each of the different portions to
a user indicating a relative increase in execution speed of
each of the different portions when executed on the second
computer architecture.

It is thus a feature of at least one embodiment of the
invention to allow a ranking of different portions of the
program to determine where resources should best be
applied in order to speed the program up on a second
architecture.

These particular objects and advantages may apply to
only some embodiments falling within the claims and thus
do not define the scope of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of a heterogeneous processor
that may execute a program for practice of the present
invention;

FIG. 2 is a flowchart of the principal steps of developing
a machine learning model that will be used in the present
invention;

FIG. 3 is a process diagram showing the static analysis
and discretization performed by the present invention in
applying static measurements to a model developed per FIG.
2;

FIG. 4 is a process diagram showing the application of the
static analysis of FIG. 3 to the task of ranking portions of a
program to determine which portions should be ported first
for greatest speed-up; and

FIG. 5 is a flowchart showing a method of avoiding the
need for dynamic measurements of branch prediction or
loop trip count.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

Referring now to FIG. 1, processor system 10 suitable for
use with the present invention may include a heterogeneous
processor 12 providing generally for a CPU system 14 and
a GPU system 16. As is understood in the art, the CPU
system 14 may have one or more cores 18 (for example,
eight) each of which may execute a general instruction set
intended for the execution of serially executed programs.
These cores 18 may include current architectural features
such as speculative execution, out of order execution and the
like.

In contrast to the CPU system 14, the GPU system 16 will
provide an architecture presenting a much larger number of
computational elements 20 (for example, 100) each execut­
ing a specialized instruction set, for example, suitable for
graphic processing. The computational elements 20 are
configured for vector processing as opposed to the scalar
processing intended for the CPU system 14.

The heterogeneous processor 12 may further include a
memory system 22 providing data and programs for execu­
tion on the CPU system 14 and GPU system 16 as will be

6
discussed below. The memory system 22 may broadly
include cache memories, high-speed random access memory
and lower speed disk drives and the like but does not include
processor registers. In addition, the heterogeneous processor

5 12 may communicate with external devices 24, for example,
a standard user interface of a graphic display screen 28,
keyboard 30, cursor control device 33, and a network
interface 29.

The memory system 22 may hold a training set 32 of
10 programs that can be executed on both the CPU system 14

and GPU system 16 as will be discussed further below
together with an unpaired target program 34 to be tested for
speed-up potential. The process of testing the unpaired target

15
program 34 is undertaken by a static evaluation program 36
and in some cases a dynamic profiling program 38 whose
operation also will be described below. Each of these
programs will generally execute under the environment of
an operating system 40 as will be understood to those of

20 ordinary skill in the art.
In the example described below, the processor system 10

will be used to evaluate the unpaired target program 34, for
example, as optimized for execution on a "native system"
(e.g., the CPU system 14) for possible speed-up when

25 executed on a "target system" (e.g., the GPU system 16).
More generally, in some embodiments the processor system
10 may be used to evaluate the unpaired target program 34
optimized for any native system (not necessarily part of the
processor system 10) to be ported to any target system (also

30 not necessarily part of the processor system 10) where the
native system and target system have different architectures.

Referring still to FIG. 1, the training set 32 consists of
multiple pairs 43 of program portions 42a and 42b. Each
program portion 42a and 42b has been optimized to run on

35 different of the CPU system 14 and GPU system 16 and on
each system to accomplish generally the same function. The
optimization of the programs for the different CPU system
14 and GPU system 16 will typically be done manually and
these programs culled from published examples.

40 In one embodiment, both program portions 42a and 42b
may be written in C or a variant (e.g., C++) and the
algorithm used in each of the program portions 42a and 42b
may be similar or identical. The program portions 42a and
42b may be portions of larger programs where sections of

45 the program portion 42a are ported for execution on the
GPU system 16. Ideally, however, program portion 42a will
have well-defined regions that map to well-defined regions
of program portion 42b and these regions will comprise the
training sets. In one embodiment a training set 32 of

50 approximately twenty pairs 43 is collected, each pair 43
implementing a different function.

In one embodiment, the training sets may be collected
from benchmark suites including Lonestar, per M. Kulkarni,
M. Burtscher, C. Casyaval, and K. Pingali, "Lonestar: A

55 suite of parallel irregular programs," in Performance Analy­
sis of Systems and Software, 2009, ISPASS 2009, IEEE
International Symposium on, pp. 65-76, IEEE, 2009;
Rodinia per S. Che, M. Boyer, J. Meng, D. Tarjan, J. W.
Sheaffer, S.-H. Lee, and K. Skadron, "Rodinia: A benchmark

60 suite for heterogeneous computing," in IISWC '09; and nas
subset per D. H. Bailey, E. Barszcz, J. T. Barton, D. S.
Browning, R. L. Carter, L. Dagum, R. A. Fatoohi, P. 0.
Frederickson, T. A. Lasinski, R. S. Schreiber, et al., "The nas
parallel benchmarks," International Journal of High Perfor-

65 mance Computing Applications, vol. 5, no. 3, pp. 63-73,
1991 all hereby incorporated by reference. This material was
supplemented with constructed examples using transcenden-

US 10,754,744 B2
7

ta! operations and examples providing programs that are not
well suited for reporting to the target system.

8
done by sorting each feature vector of the training set into a
separate bin based on the feature vector. Any feature vector/
speed-up pair that is unique within its bin and which doesn't
match the majority prediction is discarded.

Referring still to FIG. 2, the result of this measurement of
speed-up and discretization is a training set consisting of a
training example identified to a program pair 43 and con­
sisting of the discretized values of the static program prop­
erties (together forming a feature vector) and the empirically

Referring now to FIG. 2, the training sets may be pro­
cessed, for example, as shown by process block 44, by
running program portions 42a on the native system and 5

program portions 42b on the target system for each pair 43.
During that execution, the speed of execution of the program
portions 42a and 42b on the respective systems is carefully
monitored in order to deduce the speed-up in execution on
the target system when compared to the speed of execution
on the native system. This is indicated by process block 46
for each program pair 43.

10 measured speed-up occurring in that program pair 43
between execution on the native and target architectures.

At process block 52, this training set is used to train a
machine learning model that will be used to relate the feature
vector (of static program properties) to an estimated speed-

The program portion 42a is then subject to static analysis
as will be discussed below and as shown by process block
48 to determine a set of static program properties describing
static qualities of the program portion 42a. These static
program properties are properties that do not require moni­
toring execution of the program portion 42a on a particular
architecture but that can be determined by static analysis or
inspection of the program portion 42a. This static analysis
does not resolve values accessed from memory or determine
the execution control flow such as requires resolution of the
direction of various branch instructions that are memory
dependent (e.g., access external memory).

These static properties are then discretized as indicated by
process block 50, for example, to a binary or ternary value.
This discretization of process block 50 will match a dis­
cretization used in the analysis of an unpaired target program
to be described below.

In one embodiment, the discretization may be performed

15 up for the unpaired target program 34 not part of a program
pair 43. In one embodiment, the machine learning model
may be a rainforest classifier assembling multiple binary
decision trees. A rainforest classifier is described, for
example, in A. Liaw and M. Wiener, "Classification and

20 regression by random forest," JML R News, vol. 2, no. 3, pp.
18-22, 2002, hereby incorporated by reference. A rainforest
classifier provides an ensemble of many decision trees that
reduces problems of "over fit" which can cause a model to
have trouble with previously unseen data. The binary deci-

25 sion trees used by the rainforest classifiers are a classifica­
tion technique that provides a treelike structure of binary
tests on input features of the feature vector (e.g., whether the
feature value is high or low). Here the term "binary decision
tree" may be interpreted broadly to include ternary values.

30 The path through this binary tree from a root to its leaves
provides a classification. The binary decision trees may be
constructed using an ID3 recursive algorithm.

by analyzing the static program properties extracted from
each program portion 42a for each program pair 43 and
using an "equal frequency binning" approach, for example,
described by S. Kotsiantis and D. Kanellopoulos, in "Dis­
cretization techniques: A recent survey," GESTS Interna­
tional Transactions on Computer Science and Engineering,
Vol. 32 (1), 2006, pp. 47-58, hereby incorporated by refer­
ence. This approach develops k cutpoints (for example, one
threshold value in the case of a binary discretization) that
separates the range of the static program properties into 40

intervals containing approximately the same number of
values. The resulting set of discretized static properties for
each program portion 42a describes a single "feature vec-

The result is a machine learning model 54 (shown in FIG.
3) which may receive a feature vector of a target program

35 and provide an output indicating estimated speed-up when
the target program is moved from the native architecture to
the target architecture. Once the model of process block 52
is complete it may be applied to a given unpaired target
program 34 as will now be described.

Referring now to FIG. 3, in overview, in the present
invention, the unpaired target program 34 will first be
analyzed by a static analyzer 56 forming the same analysis
as provided in process block 48 of FIG. 2. The result of this
static analysis produces a set of static program properties 58 tor".

Also at process block 50, the calculated speed-up for each
feature vector is discretized according to the desires of the
user, for example, according to a limited set of ranges. For
example, the user may be satisfied with knowing only
whether the speed-up is in the three ranges of0-3, 3-10, and
10-oo. Accordingly the speed-up values of the training pairs
43 may be likewise discretized, for example, into a ternary
value representing these three ranges and using thresholds
provided by the user.

This process of discretization changes high-precision but
inaccurate data (static program properties) into low-preci­
sion, high accuracy data. This in tum allows an inaccurate
proxy for dynamic properties (provided by measured static
program properties) to be compatible with machine learning
algorithms which are sensitive to inaccuracy. As is generally
understood in the art, accuracy in this case refers to the how
well the static program properties relate to (and thus predict)
speed-up in program performance whereas precision refers
to the resolution or granularity of the measurements as
opposed to repeatability.

45 each separately discretized by discretizer 60 using thresh­
olds established at process block 50 of FIG. 2. The outputs
of the discretizer 60, in turn, are provided to the model 54
and the output of model 54 is discretized by discretizer 62
using the thresholds developed at process block 50. The

50 result of this discretization is a discrete output of estimated
speed-up values 64.

Looking in more detail at the static analyzer 56, the static
analyzer 56 may extract a number of static program prop­
erties 58 as will now be described with respect to the

55 following code example using the provided line numbers. In
these examples it will be assumed that loop trip count and
branch prediction (values that are normally obtained only
through dynamic analysis) are known. After this discussion,
it will be explained how static analysis can be accomplished

60 without dynamic measurement of these values.

EXAMPLE PROGRAM

START!
In this step, the training set of feature vectors linked to 65

speedups is processed to remove outliers, that is, identical
feature vectors that map to different speedups. This may be

2
3

for (i-0; i < num_elements; i++) { // N: 65536
START2

US 10,754,744 B2
9

-continued

EXAMPLE PROGRAM

10
Branch Divergence

As indicated by process block 67, the unpaired target
program 34 may also be analyzed with respect to branch 4

5
6
7
8
9

10
11
12
13
14
15
16
17
18

key - i; j - 0;
if (key -- tree[0]) { // P: 0.0000000001

found++;
continue;

}
for (j - O; j < depth---!; i++) { // N: 15

j - U*2) + 1 + (key> tree[i]); // P: 0.499
if (key -- tree[i]) { // P: 0.072

5 divergence, this being a measure of how consistently a given
branch instruction is taken and thus how effectively parallel
resources on a GPU can be utilized. Branch divergence is
generally not desired for GPU execution. Branch divergence
for unpaired target program 34 may be calculated by con-

IO sidering successive windows of thirty-two branch decisions.
found++;
break;

}

If all the branch decisions within a window are taken or
non-taken, the window is nondiverging, otherwise it is
diverging. Branch divergence may then be defined as the

}
STOP!

STOP2

15 ratio of the number of windows having at least one diverging
instruction to the total number of windows. If the ratio is

In the above example which can be interpreted according
to the conventions of the C progranmiing language, N
indicates the number of times the loop is executed (trip- 20

count) and P indicates the probability of the branch being
taken (branch probability). This information cannot be deter­
mined statically but is used for the purpose of the following
explanation. As will be discussed below, the present inven­
tors have determined that the values of N and P can be

25

undetermined while still allowing the static analysis of the
present invention to operate practically.

below 0.001, for example, as implemented by the discretizer
60), branch divergence is considered low, otherwise it is
considered high (a binary value).

Whether a given branch is considered to be diverging is
determined by classifying the branches into three types:

(1) branches that are loop-invariant (for example, based
on a constant value), where branch divergence for these
branches would be 0% or low;

(2) branches that are indexed by loop induction variable
(e.g., i, j) where the branch pattern is statically analyz­
able as to whether it is divergent or not; and

(3) branches that are data-dependent (require access to
external memory system 22) and where the branch
pattern can not be statically determined.

In this latter case (3), the branch probability could be
provided by the user as a proxy of branch divergence. To
estimate branch divergence from branch probability, a mini-

In order to be used as an unpaired target program 34, the
code must be marked, for example, by the progranmier, with 30
preassigned delimiters. In this case delimiters include first
region markers START 1 and STOP 1 and second region
markers START 2 and STOP 2. The first region markers
enclose the code that will be mapped to the new architecture.
The second region markers enclose a region of the supported
code that is intended to be a thread. The use of two levels of
region markers allows the programmer to adjust the paral­
lelism in the ported program.

35 mum value of the probability p or 1-p is determined and
multiplied by the window size of thirty-two. The result is
capped to 1 if it goes above 1. In the example, the branch
probability is lxl0e-10 for the first branch (line 5) making
a branch divergence of 3.2e-9 so its divergence is low (less

Memory Coalescing 40 than 0.001); the second branch (line 10) has a probability of
0.499 so the branch divergence is one (15.9>0.001) so its
divergence is high. In the third branch (line 11) the prob­
ability of the third branch being taken is 0.072. Here again
the branch divergence is one (2.3>0.001) so its divergence

As indicated by process block 63, the unpaired target
program 34 may be analyzed to evaluate static program
property 58 of memory coalescing exhibited by the unpaired
target program 34. Memory coalescing generally indicates
how efficiently data can be transferred from an external
memory system 22 to the processor registers and thus
represents a measurement of memory bandwidth utilization.
This value may be discretized into high or low memory
coalescing (a binary value) with low memory coalescing 50

being indicated if any memory operation in the unpaired
target program 34 exhibits low coalescing.

45 is high. The present invention can also work without a
provided estimate for branch divergence as will be discussed
below.

Kernel Size

As indicated by process block 68, kernel size is defined as
the average number of instructions within one thread (de­
fined between the START 2-STOP 2 markers discussed
above). This value is obtained statically by weighting each
instruction by its expected relative occurrence which is the
product of loop trip counts of all loops that enclose the

Low memory coalescing may be construed as any pattern
of memory access other than:

(1) those using an address based on the loop induction 55

variable (i and j in the above example) without multi­
plication or being combined with anything other than a
loop invariant term; and instruction and the branch probability of the control state­

ments of those loops. In one embodiment a threshold of 70 (2) those using an address that contains only loop-invari­
ant terms.

In the above example the memory access "tree[0]" has
high memory coalescing because it uses a loop-invariant
address. However, "tree[j]" is low memory coalescing
because j is the loop index variable multiplied by three. This
static program property 58 only has two values per the
discretizer 60 and thus does not require special determina­
tion of a range threshold.

60
may be used by the discretizer 60 to make this static
measurement a binary value.

In the example provided above, the first branch instruc­
tion (line 5) rarely occurs and therefore its instructions can
be ignored as having low expected relative occurrence. The

65 second branch instruction includes eight instructions: one
shift, three additions, three comparisons, and one load
operation with a relative expected occurrence of 15 provid-

US 10,754,744 B2
11

ing 90 effective instructions even ignoring the third loop.
Accordingly the kernel size would be high.

Arithmetic Intensity

As indicated by process block 71, arithmetic intensity is
a measure of the prevalence of arithmetic operations that can
hide memory latency issues and is defined in one embodi­
ment as the ratio of the number of arithmetic operations to
the number of memory operations in the unpaired target
program 34. To estimate this value statically, each memory
operation and each arithmetic operation is weighted by its
expected relative occurrence. If the resulting ratio of these
weights is below one, this value is considered low if. If the
resulting ratio is above five it is considered high (by the
discretizer 60), otherwise it is considered medium (a ternary
value).

In the example code above, this ratio is slightly above five
so that arithmetic intensity is high. The second loop includes
eight operations including seven arithmetic instructions and
one memory access instruction with an expected relative
occurrence of 15 (15*7). Then there is one more addition
instruction with an expected occurrence of approximately
one (15x0.072); therefore, the arithmetic to memory instruc­
tion ratio is (15*7+15*0.072)/15*1 which is about seven so
the arithmetic intensity is high in this example.

Available Parallelism

12
evaluated separately to produce a different static program
parameter. For example, the number of instructions of each
type maybe compared in a ratio to the total number of
instructions.

5 To statically estimate the number of single precision,
floating-point multiplication/division instructions, for
example, these instructions may be classified into two
groups: (1) instructions where all operands are loop-invari­
ant and (2) instructions where one of the operands is not loop

10 invariant. The first type of instructions (1) is not counted and
the second type of instructions (2) is counted reflecting the
fact that the first type of instructions is not advantageously
executed by special function circuits. Each counted instruc­
tion is weighted by its expected relative occurrence and then

15 divided by the kernel size (described above) to find a ratio.
The discretizer 60 sees if this number is less than 0.001, in
which case this static parameter is considered low. Other­
wise the static parameter is considered high. The example
code shown above has no single precision floating-point

20 multiplication or division or sine, cosine, log (floating
point), exponent (floating point) and square root instruction
so this number is low.

At the conclusion of the extraction of the static parameters
discussed above, as applied to the discretizer 60, outputs of

25 the discretizer 60 are provided to the model 54 which
produces a multivalued speed-up estimate which is dis­
cretized by discretizer 62 to provide the speed-up value 64.

Per process block 72, available parallelism may be mea- 30

sured as an indication of how many threads can potentially
run in parallel on a GPU. This value may be estimated
statically by multiplying the loop trip count of all the loops
that are within the first code region (START I-STOP 1). If
this number is above 1048576 parallelism is considered to 35

be high, otherwise it is low per the discretization of dis­
cretizer 60. In the above example, there is one loop within
this region having a loop trip count of 65536. This loop trip
count number is below 1048576 and accordingly available
parallelism is considered to be low. These two states are 40

implemented by the discretizer 60. As will be discussed, the
loop trip count value (normally determined dynamically)
need not be directly measured on the dynamically executing

Branch Probability Information and Loop Trip
Count Uncertainty

Referring now to FIG. 5, the above discussion of static
analysis makes measurements that can require a value for
branch probabilities and/or loop trip counts. As noted these
values are generally known only when a dynamic study of
the unpaired target program 34 is performed. Nevertheless,
the present inventors have determined, empirically, that
speed-up value can still be determined even when branch
probability information and loop trip count is not known
from direct dynamic measurement.

In one embodiment, the invention effectively selects
branch probability information and loop trip count by
sweeping through a range of values of branch probability
and loop trip counts for each static program parameter program.

Control Intensity

Per process block 74, control intensity may be measured
as an indication of how control intensive the code is. If there
are no data-dependent control statements, the code is con­
sidered to have low control intensity otherwise it is consid­
ered to have high control intensity. Data-dependent means
that the control instruction requires data from memory
system 22. In the example code above, there are multiple
data dependent control statements, for example, on lines 5,
10 and 11, so control intensity is high. This measure differs
from branch divergence in that it considers data dependency
rather than branch probability.

Mathematical Instruction Intensity

As indicated by process block 76, a static measurement
may be made of how effectively special arithmetic function
boxes on a GPU are utilized including those processing
multiplication/division, single precision floating-point sine
and cosine calculations, log/exponent and square root opera­
tions. Each of these types of arithmetic operations may be

45 calculated above to obtain a corresponding set of static
parameters that are then modeled as discussed above to
obtain a corresponding set of speed-up values. A majority
prediction approach is then used to select one speed-up
value from the many calculated speed-up values based on

50 those speed-up values having the greatest occurrence during
the sweeping process.

Specifically, referring to FIG. 5, a first loop comprised of
process blocks 80 and 82 sweeps through a range ofloop trip
counts for the target program, for example, in 2000 loga-

55 rithmically spaced steps from 1 to 2000. The next, inner loop
formed from process blocks 84 and 86, sweeps through a
range of branch prediction values, for example, from O to
100 percent in steps of 25. These branch predictions and
loop trip count values within these loops are then applied, as

60 indicated by process block 88, to determine the static
program properties of the feature vector, for example, pro­
vided by process block 66. This feature vector for each loop
iteration is provided to the model per process block 90
forming the modeling of model 54 to produce a speed-up

65 value. Upon completion of the loops, all of the calculated
speed-up values are evaluated at process block 92 and the
speed-up value that has the most representations in all of the

US 10,754,744 B2
13

loop iterations is selected as the indicated speed-up value.
The inventors have determined through analysis of the
training set used for the machine learning of model 54
having actual dynamic measurements of branch prediction
and loop trip count value, that this approach successfully 5

predicts speed-up value with high reliability.
While the inventors do not wish to be bound by particular

theory it is believed that the ability to use this technique for
loop trip count values often results from the feature vector
not changing even when the loop trip count changes because 10

the loop covers a large percent of the kernel and thus the
feature estimations which are mostly ratios are not affected.

14
other such numerical terms referring to structures do not
imply a sequence or order unless clearly indicated by the
context.

When introducing elements or features of the present
disclosure and the exemplary embodiments, the articles "a",
"an", "the" and "said" are intended to mean that there are
one or more of such elements or features. The terms "com­
prising", "including" and "having" are intended to be inclu­
sive and mean that there may be additional elements or
features other than those specifically noted. It is further to be
understood that the method steps, processes, and operations
described herein are not to be construed as necessarily
requiring their performance in the particular order discussed
or illustrated, unless specifically identified as an order of In some cases even feature vector changes that occur pro­

duce the same speed-up results.
This approach can be used when the user has no infor­

mation about branch probability; however, it also contem­
plates that the user may provide input as to branch prob­
ability or branch probability range that can improve this
calculation as noted above.

15 performance. It is also to be understood that additional or
alternative steps may be employed.

Referring now to FIG. 4, the ability to provide static
analysis of code with respect estimating its speed-up when

References to memory, unless otherwise specified, can
include one or more processor-readable and accessible
memory elements and/or components that can be internal to

20 the processor-controlled device, external to the processor­
controlled device, and can be accessed via a wired or
wireless network.

It is specifically intended that the present invention not be
limited to the embodiments and illustrations contained

it is ported to a new architecture allows analysis to be
performed on portions of the unpaired target program 34, for
example, portions 34a-34f, when it would be difficult to
dynamically execute these portions independently to obtain
accurate dynamic measurements (both because of difficulty

25 herein and the claims should be understood to include

of executing the portions alone and the inevitable interaction
of the portions with each other which would not be captured
by independent dynamic execution). Even when analysis is 30

intended to be performed on all portions 34a-34f, the ability
to perform static analysis greatly reduces instrumentation
costs.

In this case, each of the portions 34 may separately be
35

statically analyzed by static analyzer block 66 and then
discretized by independent discretizers 60. The output of the
discretizers 60 for each static analyzer block 66 is then
separately modeled using models 54 to produce outputs that
are then again discretized using corresponding independent 40

discretizers 62. These outputs may then be compared by a
prioritizer 70 to determine a ranking 94, for example, of
which portion of the unpaired target program 34 would
likely provide the greatest feet-up benefit in being ported,
thereby allowing either selective porting or a ranking of 45

porting efforts.
In this case the models 54 may be informed by a call

hierarchy 75 indicating interaction of the code portions 34a:f
with respect to calls between the portions or the like. This
call hierarchy 75 may require some dynamic analysis 77 and 50

thus instrumentation of the unpaired target program 34,
something that the static analysis otherwise is intended to
avoid. However, this instrumentation is relatively simple
and presents low overhead and in fact may be implemented
by standard compilers. 55

Certain terminology is used herein for purposes of refer­
ence only, and thus is not intended to be limiting. For
example, terms such as "upper", "lower", "above", and
"below" refer to directions in the drawings to which refer­
ence is made. Terms such as "front", "back", "rear", "bot- 60

tom" and "side", describe the orientation of portions of the
component within a consistent but arbitrary frame of refer­
ence which is made clear by reference to the text and the
associated drawings describing the component under dis­
cussion. Such terminology may include the words specifi- 65

cally mentioned above, derivatives thereof, and words of
similar import. Similarly, the terms "first", "second" and

modified forms of those embodiments including portions of
the embodiments and combinations of elements of different
embodiments as come within the scope of the following
claims. All of the publications described herein, including
patents and non-patent publications, are hereby incorporated
herein by reference in their entireties.

What we claim is:
1. An electronic computer executing a program stored in

a non-transitory medium to:
(a) perform a static analysis of a target computer program

prepared to execute on a first computer architecture to
determine static properties of the target computer pro­
gram selected from a set of static program properties
relating to how the target computer program dynami­
cally executes on a second computer architecture hav­
ing a different architecture than the first computer
architecture, wherein the static analysis inspects the
target computer program without monitoring execution
of the target computer program and does not resolve
values accessed from memory or determine execution
control flow that requires resolution of the direction of
branch instructions that are memory dependent;

(b) apply the static properties, exclusive of dynamic
properties that can only be measured during execution
of the target computer program on a computer, to a
machine learning model, the machine learning model
trained using a training set of programs each having a
first optimization for the first computer architecture and
a second optimization for the second computer archi­
tecture, wherein the first and second optimizations
restructure the programs and data organization, the
training set providing (1) an empirically measured
change in execution speed between the first optimiza­
tion and the second optimization when running on the
respective computer architectures and (2) static prop­
erties of the set of static program properties of the first
optimization; and

(c) output a speed-up value from the machine learning
model to a user, the speed-up value indicating an
expected increase in execution speed of the target
computer program when executed on the second com­
puter architecture; and

US 10,754,744 B2
15

wherein the empirically measured changes in execution
speed are discretized to a set of ranges selectable by the
user and further wherein the speed-up value output to
the user is discretized to the user-selected ranges.

2. The electronic computer of claim 1 wherein each of the 5

static properties and training static properties are discretized
to a corresponding sets of ranges less than five.

3. The electronic computer of claim 2 wherein the ranges
are selected to provide bins holding equal numbers of the
measured static properties of the training set of programs. 10

4. The electronic computer of claim 1 wherein the empiri­
cally measured changes in execution speed are discretized to
a set of ranges less than five.

5. The electronic computer of claim 1 wherein the set of
static program properties provides a static indication of 15

memory coalescing in the target program related to an
amount of access to external memory.

6. The electronic computer of claim 5 wherein the static
indication of memory coalescing assesses memory access
instructions in a loop according to whether an address of the 20

instruction includes loop invariant terms or loop induction
variable based terms that are not the loop induction variable
times a value.

7. The electronic computer of claim 1 wherein the mul­
tiple static program properties further provide a static assess- 25

ment, of an intensity of arithmetic instructions in the instruc­
tions of the target program.

8. The electronic computer of claim 7 wherein the static
assessment of an intensity of arithmetic instructions is a ratio
of arithmetic to memory access instructions. 30

9. The electronic computer of claim 7 wherein the static
assessment of the intensity of arithmetic instructions is
discretized to a binary value.

10. The electronic computer of claim 7 wherein the set of
static program properties provides a static indication of 35

branch divergence in the target program related to variation
in execution paths between successive executions of a
branch instruction.

11. The electronic computer of claim 1 wherein the set of
static program properties further includes at least one of 40

assessment of kernel size of an average number of instruc­
tions in one thread, available parallelism indicating how
many threads can potentially run on the second architecture
in parallel, control intensity providing a measure of whether
control instructions rely on data from external memory and 45

complex arithmetic ratios indicating the number of complex
arithmetic instructions selected from the group of multipli­
cation, division, sine, cosign, floating-point log, floating­
point exponent and square root.

12. The electronic computer of claim 1 wherein the 50

machine learning model is a random forest classifier.
13. The electronic computer of claim 12 wherein the

random forest classifier selects and combines random forests
of binary decision trees.

14. The electronic computer of claim 1 wherein the 55

electric computer further includes each of the first and
second architectures.

15. An electronic computer executing a program stored in
a non-transitory medium to:

(a) perform a static analysis of a target computer program 60

prepared to execute on a first computer architecture to
determine static properties of the target computer pro­
gram selected from a set of static program properties
relating to how the target computer program dynami­
cally executes on a second computer architecture hav- 65

ing a different architecture than the first computer
architecture, wherein the static analysis inspects the

16
target computer program without monitoring execution
of the target computer program and does not resolve
values accessed from memory or determine execution
control flow that requires resolution of the direction of
branch instructions that are memory dependent;

(b) apply the static properties to a machine learning
model, the machine learning model trained using a
training set of programs each having a first optimiza­
tion for the first computer architecture and a second
optimization for the second computer architecture,
wherein the first and second optimizations restructure
the programs and data organization, the training set
providing (1) an empirically measured change in
execution speed between the first optimization and the
second optimization when running on the respective
computer architectures and (2) static properties of the
set of static program properties of the first optimization;

(c) output a speed-up value from the machine learning
model to a user, the speed-up value indicating an
expected increase in execution speed of the target
computer program when executed on the second com­
puter architecture; and

wherein the set of static program properties provides a
static indication of memory coalescing in the target
program related to an amount of access to external
memory; and wherein the static indication of memory
coalescing assesses memory access instructions in a
loop according to whether an address of the instruction
includes loop invariant terms or loop induction variable
based terms that are not the loop induction variable
times a value; and

wherein the static indication of memory coalescing is
discretized to a binary value.

16. An electronic computer executing a program stored in
a non-transitory medium to:

(a) perform a static analysis of a target computer program
prepared to execute on a first computer architecture to
determine static properties of the target computer pro­
gram selected from a set of static program properties
relating to how the target computer program dynami­
cally executes on a second computer architecture hav­
ing a different architecture than the first computer
architecture, wherein the static analysis inspects the
target computer program without monitoring execution
of the target computer program and does not resolve
values accessed from memory or determine execution
control flow that requires resolution of the direction of
branch instructions that are memory dependent;

(b) apply the static properties to a machine learning
model, the machine learning model trained using a
training set of programs each having a first optimiza­
tion for the first computer architecture and a second
optimization for the second computer architecture,
wherein the first and second optimizations restructure
the programs and data organization, the training set
providing (1) an empirically measured change in
execution speed between the first optimization and the
second optimization when running on the respective
computer architectures and (2) static properties of the
set of static program properties of the first optimization;

(c) output a speed-up value from the machine learning
model to a user, the speed-up value indicating an
expected increase in execution speed of the target
computer program when executed on the second com­
puter architecture; and

US 10,754,744 B2
17

wherein the multiple static program properties further
provide a static assessment of an intensity of arithmetic
instructions in the instructions of the target program;
and

wherein the set of static program properties provides a 5

static indication of branch divergence in the target
program related to variation in execution paths between
successive executions of a branch instruction; and

wherein the static indication of branch divergence
assesses branch instructions in a loop according to 10

whether the branch conditions are loop invariant terms
or based on loop induction variables.

17. An electronic computer executing a program stored in
a non-transitory medium to:

15
(a) perform a static analysis of a target computer program

prepared to execute on a first computer architecture to
determine static properties of the target computer pro­
gram selected from a set of static program properties
relating to how the target computer program dynami- 20

cally executes on a second computer architecture hav­
ing a different architecture than the first computer
architecture, wherein the static analysis inspects the
target computer program without monitoring execution
of the target computer program and does not resolve 25

values accessed from memory or determine execution
control flow that requires resolution of the direction of
branch instructions that are memory dependent;

(b) apply the static properties to a machine learning
model, the machine learning model trained using a 30

training set of programs each having a first optimiza­
tion for the first computer architecture and a second
optimization for the second computer architecture,
wherein the first and second optimizations restructure
the programs and data organization, the training set 35

providing (1) an empirically measured change in
execution speed between the first optimization and the
second optimization when running on the respective
computer architectures and (2) static properties of the
set of static program properties of the first optimization; 40

(c) output a speed-up value from the machine learning
model to a user, the speed-up value indicating an
expected increase in execution speed of the target
computer program when executed on the second com­
puter architecture; and

wherein the multiple static program properties further
provide a static assessment of an intensity of arithmetic
instructions in the instructions of the target program;
and

45

wherein the set of static program properties provides a 50

static indication of branch divergence in the target
program related to variation in execution paths between
successive executions of a branch instruction; and

wherein the static indication of branch divergence
assesses whether the branch instructions include branch 55

conditions based on access to processor external
memory.

18. An electronic computer executing a program stored in
a non-transitory medium to:

(a) perform a static analysis of a target computer program 60

prepared to execute on a first computer architecture to
determine static properties of the target computer pro­
gram selected from a set of static program properties
relating to how the target computer program dynami­
cally executes on a second computer architecture hav- 65

ing a different architecture than the first computer
architecture,

18
(b) apply the static properties to a machine learning

model, the machine learning model trained using a
training set of programs each having a first optimiza­
tion for the first computer architecture and a second
optimization for the second computer architecture,
wherein the first and second optimizations restructure
the programs and data organization, the training set
providing (1) an empirically measured change in
execution speed between the first optimization and the
second optimization when running on the respective
computer architectures and (2) static properties of the
set of static program properties of the first optimization;
and

(c) output a speed-up value from the machine learning
model to a user, the speed-up value indicating an
expected increase in execution speed of the target
computer program when executed on the second com­
puter architecture,

wherein the program is a portion of a main computer
program and wherein the electronic computer includes
the first architecture and further executes the program
to:

execute the main program on the first architecture to
measure a call hierarchy of different portions of the
main program including the target program when the
main program is executing on the first architecture;

perform a static analysis of the different portions of the
main program to determine static properties of the each
of the different portions selected from the set of static
program properties;

apply the static properties of each of the different portions
to the machine learning model; and

provide a comparison of speed-up value from the machine
learning model for each of the different portions to a
user indicating a relative increase in execution speed of
each of the different portions when executed on the
second computer architecture.

19. A method of assessing effects of a computer architec­
ture on program execution speed of a target program com­
prising the steps of:

(a) performing a static analysis of the target computer
program prepared to execute on a first computer archi­
tecture to determine static properties of the target
computer program selected from a set of static program
properties relating to how the target computer program
dynamically executes on a second computer architec­
ture having a different architecture than the first com­
puter architecture, wherein the static properties are
selected from the group consisting of static measure­
ments of memory coalescing, intensity of arithmetic
instructions, branch divergence of branch instructions,
kernel size, available parallelism control intensity, and
amount of complex arithmetic including multiplication,
division, sine, cosine, floating-point log, floating-point
exponent and square root;

(b) applying the static properties, exclusive of dynamic
properties that can only be measured during execution
of the target computer program on a computer, to a
machine learning model, the machine learning model
trained using a training set of programs each having a
first optimization for the first computer architecture and
a second optimization for the second computer archi­
tecture, wherein the first and second optimizations
restructure the programs and data organization, the
training set providing an empirically measured change
in execution speed between the first optimization and
the second optimization when running on the respective

US 10,754,744 B2
19

computer architectures and training static properties of
the set of static program properties for the first opti­
mization; and

(c) outputting a speed-up value from the machine learning
model to a user, the speed-up value indicating an 5

expected increase in execution speed of the target
computer program when executed on the second com­
puter architecture; and

wherein the empirically measured changes in execution
speed are discretized to a set of ranges selectable by the 10

user and further wherein the speed-up value output to
the user is discretized to the user-selected ranges.

* * * * *

20

