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METHOD OF ESTIMATING PROGRAM 
SPEED-UP IN HIGHLY PARALLEL 
ARCHITECTURES USING STATIC 

ANALYSIS 

STATEMENT REGARDING FEDERALLY 
SPONSORED RESEARCH OR DEVELOPMENT 

This invention was made with government support under 
1162215 and 1439091 awarded by the National Science 
Foundation. The government has certain rights in the inven­
tion. 

CROSS REFERENCE TO RELATED 
APPLICATION 

BACKGROUND OF THE INVENTION 

The present invention relates to highly parallel computer 
architectures such as graphic processing units (GPUs), and 
in a particular to a method of estimating the degree by which 
a program will speed-up when ported to a highly parallel 
architecture, for example, from a different less parallel 
architecture, using statically measured program characteris­
tics. 

2 
which can output an estimate of program speed-up when the 
program is ported to the second architecture ( e.g., GPU). 

Dynamic measurement, that is, measurements of the 
program as it is actually executing, can reveal, for example, 

5 which way branch conditions are resolved during program 
execution. When a branch condition has data dependence, 
meaning that the branch depends on the value of data from 
main memory, the direction of the branch cannot be deter­
mined from static analysis of the program but may require 

10 knowledge of values that are not resolved until the program 
runs. 

Knowing how branch conditions are resolved provides 
information about which instructions are executed and how 
many times they are executed (for example, in a branch 

15 control loop). This latter information in tum reveals the 
predominant type of instructions that are executed and the 
amount of main memory access, information that strongly 
affects how the program will perform on a given architecture 

20 
type. 

While dynamic measurement reasonably appear to be 
necessary for accurate estimation of the dynamic property of 
program execution speed when run on a given architecture, 
such dynamic measurements are not always practical. The 
software "instrumentation" used to make dynamic measure-

25 ments can interfere (slow) execution of the programs being 
measured, interfering with measurement. Implementing the 
instrumentation to acquire dynamic measurements can 
require substantial amount of execution time and program­
mer effort. Current high-performance computers may employ pro­

cessor systems having a range of different architectures. One 30 

processor system may be in the form of one or more CPUs SUMMARY OF THE INVENTION 
( computer processing units) each having a general instruc­
tion set intended for serial execution of tasks, and another 
processor system may be a GPU (graphics processing unit) 
having many hundreds of processing elements and a spe- 35 

cialized instruction set intended for parallel execution of 
tasks, typically associated with graphics processing. Often 
these two processing systems are combined in the same 
computer. 

The ability of the GPU to handle not only graphic tasks 40 

but also generalized computational tasks that can be paral­
lelized, for example, by stream processing, has led to a 
so-called "heterogeneous processing" in which the GPU 
handles non-graphics program tasks normally performed by 
the CPU. In this regard, some programs can experience 45 

multiple factors of "speed-up" when moved ("ported") from 
the CPU to a GPU. 

The present invention provides a method of estimating the 
amount of speed-up that will be obtained in porting a target 
program between two different computer architectures using 
static rather than dynamic measurements of the target pro-
gram. The ability to use static measurements eliminates the 
overhead of making dynamic measurements, greatly simpli­
fying the assessment process. In addition, the present inven­
tion, combined with minimal dynamic analysis, permits 
separate portions of the program to be individually ranked 
with respect on their estimated speed-up. In this way, limited 
resources available for porting a program can be efficiently 
allocated to portions of the program that will yield the most 
benefit. 

Underlying this invention is the present inventor's rec­
ognition that static measurements can provide sufficient 
insights into dynamic properties for reliable speed-up pre­
dictions despite the absence of some foundational dynamic 

Porting a program from a CPU to a GPU requires sub­
stantial restructuring of the software and data organization to 
match the GPU's many-threaded programming model. Code 
optimization of such ported programs can be very time­
consuming and require specialized tools and expertise. The 
costs of porting programs to a GPU make it desirable to 
know if program speed-up will justify the effort before 
substantial effort is expended. Unfortunately, the perfor­
mance advantage of such porting is not known until the GPU 
code has been written and optimized. 

50 information such as branch probability information and loop 
trip count for loops. The present invention provides a way of 
managing the inevitable inaccuracy in using static measure­
ments to obtain dynamic information when those inaccurate 
static measures are applied to accuracy-sensitive machine 

U.S. patent application Ser. No. 14/212,711 filed Mar. 14, 
2014, hereby incorporated by reference and assigned to the 
assignee of the present application, describes a system that 
can estimate the amount of speed-up that can be obtained in 
a program by moving it between architectures, such as from 
a CPU to a GPU. This system makes detailed "dynamic" 
measurements of a target program to be ported, that is 
measurements taken when the target program is operating on 
the first architecture ( e.g., CPU). The system then applies 
these dynamic measurements to a machine learning model 

55 learning models. 
Specifically then, in one embodiment, the invention pro­

vides an electronic computer executing a program stored in 
non-transitory medium to: (a) perform a static analysis of a 
target computer program prepared to execute on a first 

60 computer architecture to determine static properties of the 
target computer program selected from a set of static pro­
gram properties relating to how the target computer program 
would dynamically execute on a second computer architec­
ture having a different architecture than the first computer 

65 architecture. The static properties are then applied to a 
machine learning model, the machine learning model trained 
using a training set of programs each having a first optimi-
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The multiple static indications may further provide a 
static assessment of an intensity of arithmetic instructions in 
the instructions of the target program. 

It is thus a feature of at least one embodiment of the 
invention to capture in the estimation process types of 
instructions (arithmetic) that can hide memory latency by 
being executed during memory latency. 

The static assessment of the intensity of arithmetic 
instructions maybe a ratio of arithmetic to memory access 

zation for the first computer architecture and a second 
optimization for the second computer architecture, the train­
ing set providing an empirically measured change in execu­
tion speed between the first optimization and the second 
optimization when running on the respective computer 5 

architectures and training static properties of the set of static 
program properties for the first optimization. A speed-up 
value is output from the machine learning model to a user 
indicating an expected increase in execution speed of the 
target computer program when executed on the second 
computer architecture. 

10 instructions. 

It is thus a feature of at least one embodiment of the 
invention to permit an estimation of how much a program 
will speed-up when being adapted for use on a different 
architecture before making that adaption and without the 
need for dynamic instrumentation of the program. 

The static properties and training static properties maybe 
discretized corresponding sets of ranges less than five. 

It is thus a feature of at least one embodiment of the 
invention to provide a simple static assessment of mitigating 
factors to memory latency. 

The static assessment of an intensity of arithmetic instruc-
15 tions may be discretized to a binary value. 

It is thus a feature of at least one embodiment of the 
invention to moderate accuracy problems with the static 
approximation of a dynamic property. 

It is thus a feature of at least one embodiment of the 20 

invention to adapt imperfect approximations of dynamic 
program qualities captured in static measurements to accu­
racy sensitive, machine learning systems by using a discreti­
zation process to trade off precision for accuracy. 

The set of static program properties may provide a static 
indication of branch divergence in the target program related 
to variation in execution paths between successive execu­
tions of a branch instruction. 

It is thus a feature of at least one embodiment of the 
invention to provide a measure of memory accesses which 
may affect parallel operation on a GPU or the like. The ranges maybe selected to provide bins holding sub- 25 

stantially equal numbers of the measured static properties of 
the training set of programs. 

The static indication of branch divergence may assess 
branch instructions in the loop according to whether the 
branch conditions are loop invariant terms or based on loop 
induction variables. Alternatively or in addition, the static 
indication of branch divergence may assess whether the 
branch instructions include branch conditions based on 

It is thus a feature of at least one embodiment of the 
invention to provide a simple method of automatic discreti-
zation. 

The empirically measured changes in execution speed 
maybe discretized to a set of ranges less than five. 

It is thus a feature of at least one embodiment of the 
invention to provide a balancing between accuracy and 
precision in the speed-up measurements applied to machine 
learning. 

The empirically measured changes in execution speed 
maybe discretized to a user-selected set of ranges selectable 
by the user and further wherein the speed-up value output to 
the user is discretized to the user-selected ranges. 

It is thus a feature of at least one embodiment of the 
invention to match the accuracy in handing discretization 
processes to desired ranges of interest from the user. 

The set of static program properties may provide a static 
indication of memory coalescing in the target program 
related to an amount of excess external memory. 

It is thus a feature of at least one embodiment of the 
invention to approximate in the estimating process the 
dynamic effects of memory bandwidth limitations such as 
reflect the time penalties of acquiring data from an external 
memory. 

30 

access to processor external memory. 
It is thus a feature of at least one embodiment of the 

invention to identify a static proxy for the dynamic behavior 
35 of branch divergence. 

The set of static programs may further include at least one 
of assessment of kernel size of the average number of 
instructions in one thread, available parallelism indicating 
how many threads can potentially run on the second archi-

40 tecture in parallel, control intensity providing a measure of 
whether control instructions rely on data from external 
memory and complex arithmetic ratios indicating the num­
ber of complex arithmetic instructions selected from the 
group of multiplication, division, sine, cosine, floating-point 

45 log, floating-point exponent and square root. 
It is thus a feature of at least one embodiment of the 

invention to identify multiple additional static program 
properties related to the dynamic performance of a program. 

The machine learning model may be a random forest 
50 classifier. 

It is thus a feature of at least one embodiment of the 
invention to make use of a machine learning system that 
resists "overfit" allowing it to be used with a limited 
teaching set. 

The random forest classifier may select and combine 
random forests of binary decision trees. 

The static indication of memory coalescing may assess 
memory access instructions in a loop according to whether 
the address of the instruction includes loop invariant terms 55 

or loop induction variable-based terms that are not the loop 
induction variable times a value. It is thus a feature of at least one embodiment of the 

invention to provide a modeling technique that is robust to 
the inclusion of possibly irrelevant features in the static 

60 program properties. 

It is thus a feature of at least one embodiment of the 
invention to find a statically derivable proxy for the dynamic 
behavior of memory coalescing. By looking at static aspects 
of memory address calculation, a rough approximation of 
memory access behavior may be determined. 

The static indication of memory coalescing maybe dis­
cretized to a binary value. 

It is thus a feature of at least one embodiment of the 65 

invention to address accuracy problems through the use of 
coarse discretization. 

The electronic computer may further include each of the 
first and second architectures. 

It is thus a feature of at least one embodiment of the 
invention to provide a system that can assist in optimizing 
programs for its own architecture. 

The target computer program may be a portion of a main 
computer program, and the electronic computer may include 
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the first architecture and further execute the stored program 
to execute the main program on the first architecture to 
measure a call hierarchy of different portions of the main 
program including the target program when the main pro­
gram is executing on the first architecture. In addition the 
electronic computer may perform a static analysis of the 
different portions of the main program to determine static 
properties of each of the different portions selected from the 
set of static program properties and apply the static proper­
ties of each of the different portions to the machine learning 
model and provide a comparison of speed-up value from the 
machine learning model for each of the different portions to 
a user indicating a relative increase in execution speed of 
each of the different portions when executed on the second 
computer architecture. 

It is thus a feature of at least one embodiment of the 
invention to allow a ranking of different portions of the 
program to determine where resources should best be 
applied in order to speed the program up on a second 
architecture. 

These particular objects and advantages may apply to 
only some embodiments falling within the claims and thus 
do not define the scope of the invention. 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1 is a block diagram of a heterogeneous processor 
that may execute a program for practice of the present 
invention; 

FIG. 2 is a flowchart of the principal steps of developing 
a machine learning model that will be used in the present 
invention; 

FIG. 3 is a process diagram showing the static analysis 
and discretization performed by the present invention in 
applying static measurements to a model developed per FIG. 
2; 

FIG. 4 is a process diagram showing the application of the 
static analysis of FIG. 3 to the task of ranking portions of a 
program to determine which portions should be ported first 
for greatest speed-up; and 

FIG. 5 is a flowchart showing a method of avoiding the 
need for dynamic measurements of branch prediction or 
loop trip count. 

DETAILED DESCRIPTION OF THE 
PREFERRED EMBODIMENT 

Referring now to FIG. 1, processor system 10 suitable for 
use with the present invention may include a heterogeneous 
processor 12 providing generally for a CPU system 14 and 
a GPU system 16. As is understood in the art, the CPU 
system 14 may have one or more cores 18 (for example, 
eight) each of which may execute a general instruction set 
intended for the execution of serially executed programs. 
These cores 18 may include current architectural features 
such as speculative execution, out of order execution and the 
like. 

In contrast to the CPU system 14, the GPU system 16 will 
provide an architecture presenting a much larger number of 
computational elements 20 (for example, 100) each execut­
ing a specialized instruction set, for example, suitable for 
graphic processing. The computational elements 20 are 
configured for vector processing as opposed to the scalar 
processing intended for the CPU system 14. 

The heterogeneous processor 12 may further include a 
memory system 22 providing data and programs for execu­
tion on the CPU system 14 and GPU system 16 as will be 

6 
discussed below. The memory system 22 may broadly 
include cache memories, high-speed random access memory 
and lower speed disk drives and the like but does not include 
processor registers. In addition, the heterogeneous processor 

5 12 may communicate with external devices 24, for example, 
a standard user interface of a graphic display screen 28, 
keyboard 30, cursor control device 33, and a network 
interface 29. 

The memory system 22 may hold a training set 32 of 
10 programs that can be executed on both the CPU system 14 

and GPU system 16 as will be discussed further below 
together with an unpaired target program 34 to be tested for 
speed-up potential. The process of testing the unpaired target 

15 
program 34 is undertaken by a static evaluation program 36 
and in some cases a dynamic profiling program 38 whose 
operation also will be described below. Each of these 
programs will generally execute under the environment of 
an operating system 40 as will be understood to those of 

20 ordinary skill in the art. 
In the example described below, the processor system 10 

will be used to evaluate the unpaired target program 34, for 
example, as optimized for execution on a "native system" 
(e.g., the CPU system 14) for possible speed-up when 

25 executed on a "target system" (e.g., the GPU system 16). 
More generally, in some embodiments the processor system 
10 may be used to evaluate the unpaired target program 34 
optimized for any native system (not necessarily part of the 
processor system 10) to be ported to any target system (also 

30 not necessarily part of the processor system 10) where the 
native system and target system have different architectures. 

Referring still to FIG. 1, the training set 32 consists of 
multiple pairs 43 of program portions 42a and 42b. Each 
program portion 42a and 42b has been optimized to run on 

35 different of the CPU system 14 and GPU system 16 and on 
each system to accomplish generally the same function. The 
optimization of the programs for the different CPU system 
14 and GPU system 16 will typically be done manually and 
these programs culled from published examples. 

40 In one embodiment, both program portions 42a and 42b 
may be written in C or a variant ( e.g., C++) and the 
algorithm used in each of the program portions 42a and 42b 
may be similar or identical. The program portions 42a and 
42b may be portions of larger programs where sections of 

45 the program portion 42a are ported for execution on the 
GPU system 16. Ideally, however, program portion 42a will 
have well-defined regions that map to well-defined regions 
of program portion 42b and these regions will comprise the 
training sets. In one embodiment a training set 32 of 

50 approximately twenty pairs 43 is collected, each pair 43 
implementing a different function. 

In one embodiment, the training sets may be collected 
from benchmark suites including Lonestar, per M. Kulkarni, 
M. Burtscher, C. Casyaval, and K. Pingali, "Lonestar: A 

55 suite of parallel irregular programs," in Performance Analy­
sis of Systems and Software, 2009, ISPASS 2009, IEEE 
International Symposium on, pp. 65-76, IEEE, 2009; 
Rodinia per S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. 
Sheaffer, S.-H. Lee, and K. Skadron, "Rodinia: A benchmark 

60 suite for heterogeneous computing," in IISWC '09; and nas 
subset per D. H. Bailey, E. Barszcz, J. T. Barton, D. S. 
Browning, R. L. Carter, L. Dagum, R. A. Fatoohi, P. 0. 
Frederickson, T. A. Lasinski, R. S. Schreiber, et al., "The nas 
parallel benchmarks," International Journal of High Perfor-

65 mance Computing Applications, vol. 5, no. 3, pp. 63-73, 
1991 all hereby incorporated by reference. This material was 
supplemented with constructed examples using transcenden-
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ta! operations and examples providing programs that are not 
well suited for reporting to the target system. 

8 
done by sorting each feature vector of the training set into a 
separate bin based on the feature vector. Any feature vector/ 
speed-up pair that is unique within its bin and which doesn't 
match the majority prediction is discarded. 

Referring still to FIG. 2, the result of this measurement of 
speed-up and discretization is a training set consisting of a 
training example identified to a program pair 43 and con­
sisting of the discretized values of the static program prop­
erties (together forming a feature vector) and the empirically 

Referring now to FIG. 2, the training sets may be pro­
cessed, for example, as shown by process block 44, by 
running program portions 42a on the native system and 5 

program portions 42b on the target system for each pair 43. 
During that execution, the speed of execution of the program 
portions 42a and 42b on the respective systems is carefully 
monitored in order to deduce the speed-up in execution on 
the target system when compared to the speed of execution 
on the native system. This is indicated by process block 46 
for each program pair 43. 

10 measured speed-up occurring in that program pair 43 
between execution on the native and target architectures. 

At process block 52, this training set is used to train a 
machine learning model that will be used to relate the feature 
vector (of static program properties) to an estimated speed-

The program portion 42a is then subject to static analysis 
as will be discussed below and as shown by process block 
48 to determine a set of static program properties describing 
static qualities of the program portion 42a. These static 
program properties are properties that do not require moni­
toring execution of the program portion 42a on a particular 
architecture but that can be determined by static analysis or 
inspection of the program portion 42a. This static analysis 
does not resolve values accessed from memory or determine 
the execution control flow such as requires resolution of the 
direction of various branch instructions that are memory 
dependent (e.g., access external memory). 

These static properties are then discretized as indicated by 
process block 50, for example, to a binary or ternary value. 
This discretization of process block 50 will match a dis­
cretization used in the analysis of an unpaired target program 
to be described below. 

In one embodiment, the discretization may be performed 

15 up for the unpaired target program 34 not part of a program 
pair 43. In one embodiment, the machine learning model 
may be a rainforest classifier assembling multiple binary 
decision trees. A rainforest classifier is described, for 
example, in A. Liaw and M. Wiener, "Classification and 

20 regression by random forest," JML R News, vol. 2, no. 3, pp. 
18-22, 2002, hereby incorporated by reference. A rainforest 
classifier provides an ensemble of many decision trees that 
reduces problems of "over fit" which can cause a model to 
have trouble with previously unseen data. The binary deci-

25 sion trees used by the rainforest classifiers are a classifica­
tion technique that provides a treelike structure of binary 
tests on input features of the feature vector ( e.g., whether the 
feature value is high or low). Here the term "binary decision 
tree" may be interpreted broadly to include ternary values. 

30 The path through this binary tree from a root to its leaves 
provides a classification. The binary decision trees may be 
constructed using an ID3 recursive algorithm. 

by analyzing the static program properties extracted from 
each program portion 42a for each program pair 43 and 
using an "equal frequency binning" approach, for example, 
described by S. Kotsiantis and D. Kanellopoulos, in "Dis­
cretization techniques: A recent survey," GESTS Interna­
tional Transactions on Computer Science and Engineering, 
Vol. 32 (1), 2006, pp. 47-58, hereby incorporated by refer­
ence. This approach develops k cutpoints (for example, one 
threshold value in the case of a binary discretization) that 
separates the range of the static program properties into 40 

intervals containing approximately the same number of 
values. The resulting set of discretized static properties for 
each program portion 42a describes a single "feature vec-

The result is a machine learning model 54 (shown in FIG. 
3) which may receive a feature vector of a target program 

35 and provide an output indicating estimated speed-up when 
the target program is moved from the native architecture to 
the target architecture. Once the model of process block 52 
is complete it may be applied to a given unpaired target 
program 34 as will now be described. 

Referring now to FIG. 3, in overview, in the present 
invention, the unpaired target program 34 will first be 
analyzed by a static analyzer 56 forming the same analysis 
as provided in process block 48 of FIG. 2. The result of this 
static analysis produces a set of static program properties 58 tor". 

Also at process block 50, the calculated speed-up for each 
feature vector is discretized according to the desires of the 
user, for example, according to a limited set of ranges. For 
example, the user may be satisfied with knowing only 
whether the speed-up is in the three ranges of0-3, 3-10, and 
10-oo. Accordingly the speed-up values of the training pairs 
43 may be likewise discretized, for example, into a ternary 
value representing these three ranges and using thresholds 
provided by the user. 

This process of discretization changes high-precision but 
inaccurate data (static program properties) into low-preci­
sion, high accuracy data. This in tum allows an inaccurate 
proxy for dynamic properties (provided by measured static 
program properties) to be compatible with machine learning 
algorithms which are sensitive to inaccuracy. As is generally 
understood in the art, accuracy in this case refers to the how 
well the static program properties relate to ( and thus predict) 
speed-up in program performance whereas precision refers 
to the resolution or granularity of the measurements as 
opposed to repeatability. 

45 each separately discretized by discretizer 60 using thresh­
olds established at process block 50 of FIG. 2. The outputs 
of the discretizer 60, in turn, are provided to the model 54 
and the output of model 54 is discretized by discretizer 62 
using the thresholds developed at process block 50. The 

50 result of this discretization is a discrete output of estimated 
speed-up values 64. 

Looking in more detail at the static analyzer 56, the static 
analyzer 56 may extract a number of static program prop­
erties 58 as will now be described with respect to the 

55 following code example using the provided line numbers. In 
these examples it will be assumed that loop trip count and 
branch prediction (values that are normally obtained only 
through dynamic analysis) are known. After this discussion, 
it will be explained how static analysis can be accomplished 

60 without dynamic measurement of these values. 

EXAMPLE PROGRAM 

START! 
In this step, the training set of feature vectors linked to 65 

speedups is processed to remove outliers, that is, identical 
feature vectors that map to different speedups. This may be 

2 
3 

for ( i-0; i < num_elements; i++) { // N: 65536 
START2 
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-continued 

EXAMPLE PROGRAM 

10 
Branch Divergence 

As indicated by process block 67, the unpaired target 
program 34 may also be analyzed with respect to branch 4 

5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 

key - i; j - 0; 
if (key -- tree[0] ) { // P: 0.0000000001 

found++; 
continue; 

} 
for ( j - O; j < depth---!; i++) { // N: 15 

j - U*2) + 1 + (key> tree[i] ); // P: 0.499 
if ( key -- tree[i] ) { // P: 0.072 

5 divergence, this being a measure of how consistently a given 
branch instruction is taken and thus how effectively parallel 
resources on a GPU can be utilized. Branch divergence is 
generally not desired for GPU execution. Branch divergence 
for unpaired target program 34 may be calculated by con-

IO sidering successive windows of thirty-two branch decisions. 
found++; 
break; 

} 

If all the branch decisions within a window are taken or 
non-taken, the window is nondiverging, otherwise it is 
diverging. Branch divergence may then be defined as the 

} 
STOP! 

STOP2 

15 ratio of the number of windows having at least one diverging 
instruction to the total number of windows. If the ratio is 

In the above example which can be interpreted according 
to the conventions of the C progranmiing language, N 
indicates the number of times the loop is executed (trip- 20 

count) and P indicates the probability of the branch being 
taken (branch probability). This information cannot be deter­
mined statically but is used for the purpose of the following 
explanation. As will be discussed below, the present inven­
tors have determined that the values of N and P can be 

25 

undetermined while still allowing the static analysis of the 
present invention to operate practically. 

below 0.001, for example, as implemented by the discretizer 
60), branch divergence is considered low, otherwise it is 
considered high (a binary value). 

Whether a given branch is considered to be diverging is 
determined by classifying the branches into three types: 

(1) branches that are loop-invariant (for example, based 
on a constant value), where branch divergence for these 
branches would be 0% or low; 

(2) branches that are indexed by loop induction variable 
( e.g., i, j) where the branch pattern is statically analyz­
able as to whether it is divergent or not; and 

(3) branches that are data-dependent (require access to 
external memory system 22) and where the branch 
pattern can not be statically determined. 

In this latter case (3), the branch probability could be 
provided by the user as a proxy of branch divergence. To 
estimate branch divergence from branch probability, a mini-

In order to be used as an unpaired target program 34, the 
code must be marked, for example, by the progranmier, with 30 
preassigned delimiters. In this case delimiters include first 
region markers START 1 and STOP 1 and second region 
markers START 2 and STOP 2. The first region markers 
enclose the code that will be mapped to the new architecture. 
The second region markers enclose a region of the supported 
code that is intended to be a thread. The use of two levels of 
region markers allows the programmer to adjust the paral­
lelism in the ported program. 

35 mum value of the probability p or 1-p is determined and 
multiplied by the window size of thirty-two. The result is 
capped to 1 if it goes above 1. In the example, the branch 
probability is lxl0e-10 for the first branch (line 5) making 
a branch divergence of 3.2e-9 so its divergence is low (less 

Memory Coalescing 40 than 0.001); the second branch (line 10) has a probability of 
0.499 so the branch divergence is one (15.9>0.001) so its 
divergence is high. In the third branch (line 11) the prob­
ability of the third branch being taken is 0.072. Here again 
the branch divergence is one (2.3>0.001) so its divergence 

As indicated by process block 63, the unpaired target 
program 34 may be analyzed to evaluate static program 
property 58 of memory coalescing exhibited by the unpaired 
target program 34. Memory coalescing generally indicates 
how efficiently data can be transferred from an external 
memory system 22 to the processor registers and thus 
represents a measurement of memory bandwidth utilization. 
This value may be discretized into high or low memory 
coalescing (a binary value) with low memory coalescing 50 

being indicated if any memory operation in the unpaired 
target program 34 exhibits low coalescing. 

45 is high. The present invention can also work without a 
provided estimate for branch divergence as will be discussed 
below. 

Kernel Size 

As indicated by process block 68, kernel size is defined as 
the average number of instructions within one thread ( de­
fined between the START 2-STOP 2 markers discussed 
above). This value is obtained statically by weighting each 
instruction by its expected relative occurrence which is the 
product of loop trip counts of all loops that enclose the 

Low memory coalescing may be construed as any pattern 
of memory access other than: 

(1) those using an address based on the loop induction 55 

variable (i and j in the above example) without multi­
plication or being combined with anything other than a 
loop invariant term; and instruction and the branch probability of the control state­

ments of those loops. In one embodiment a threshold of 70 (2) those using an address that contains only loop-invari­
ant terms. 

In the above example the memory access "tree[0]" has 
high memory coalescing because it uses a loop-invariant 
address. However, "tree[j]" is low memory coalescing 
because j is the loop index variable multiplied by three. This 
static program property 58 only has two values per the 
discretizer 60 and thus does not require special determina­
tion of a range threshold. 

60 
may be used by the discretizer 60 to make this static 
measurement a binary value. 

In the example provided above, the first branch instruc­
tion (line 5) rarely occurs and therefore its instructions can 
be ignored as having low expected relative occurrence. The 

65 second branch instruction includes eight instructions: one 
shift, three additions, three comparisons, and one load 
operation with a relative expected occurrence of 15 provid-
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ing 90 effective instructions even ignoring the third loop. 
Accordingly the kernel size would be high. 

Arithmetic Intensity 

As indicated by process block 71, arithmetic intensity is 
a measure of the prevalence of arithmetic operations that can 
hide memory latency issues and is defined in one embodi­
ment as the ratio of the number of arithmetic operations to 
the number of memory operations in the unpaired target 
program 34. To estimate this value statically, each memory 
operation and each arithmetic operation is weighted by its 
expected relative occurrence. If the resulting ratio of these 
weights is below one, this value is considered low if. If the 
resulting ratio is above five it is considered high (by the 
discretizer 60), otherwise it is considered medium (a ternary 
value). 

In the example code above, this ratio is slightly above five 
so that arithmetic intensity is high. The second loop includes 
eight operations including seven arithmetic instructions and 
one memory access instruction with an expected relative 
occurrence of 15 (15*7). Then there is one more addition 
instruction with an expected occurrence of approximately 
one (15x0.072); therefore, the arithmetic to memory instruc­
tion ratio is (15*7+15*0.072)/15*1 which is about seven so 
the arithmetic intensity is high in this example. 

Available Parallelism 

12 
evaluated separately to produce a different static program 
parameter. For example, the number of instructions of each 
type maybe compared in a ratio to the total number of 
instructions. 

5 To statically estimate the number of single precision, 
floating-point multiplication/division instructions, for 
example, these instructions may be classified into two 
groups: (1) instructions where all operands are loop-invari­
ant and (2) instructions where one of the operands is not loop 

10 invariant. The first type of instructions (1) is not counted and 
the second type of instructions (2) is counted reflecting the 
fact that the first type of instructions is not advantageously 
executed by special function circuits. Each counted instruc­
tion is weighted by its expected relative occurrence and then 

15 divided by the kernel size (described above) to find a ratio. 
The discretizer 60 sees if this number is less than 0.001, in 
which case this static parameter is considered low. Other­
wise the static parameter is considered high. The example 
code shown above has no single precision floating-point 

20 multiplication or division or sine, cosine, log (floating 
point), exponent (floating point) and square root instruction 
so this number is low. 

At the conclusion of the extraction of the static parameters 
discussed above, as applied to the discretizer 60, outputs of 

25 the discretizer 60 are provided to the model 54 which 
produces a multivalued speed-up estimate which is dis­
cretized by discretizer 62 to provide the speed-up value 64. 

Per process block 72, available parallelism may be mea- 30 

sured as an indication of how many threads can potentially 
run in parallel on a GPU. This value may be estimated 
statically by multiplying the loop trip count of all the loops 
that are within the first code region (START I-STOP 1). If 
this number is above 1048576 parallelism is considered to 35 

be high, otherwise it is low per the discretization of dis­
cretizer 60. In the above example, there is one loop within 
this region having a loop trip count of 65536. This loop trip 
count number is below 1048576 and accordingly available 
parallelism is considered to be low. These two states are 40 

implemented by the discretizer 60. As will be discussed, the 
loop trip count value (normally determined dynamically) 
need not be directly measured on the dynamically executing 

Branch Probability Information and Loop Trip 
Count Uncertainty 

Referring now to FIG. 5, the above discussion of static 
analysis makes measurements that can require a value for 
branch probabilities and/or loop trip counts. As noted these 
values are generally known only when a dynamic study of 
the unpaired target program 34 is performed. Nevertheless, 
the present inventors have determined, empirically, that 
speed-up value can still be determined even when branch 
probability information and loop trip count is not known 
from direct dynamic measurement. 

In one embodiment, the invention effectively selects 
branch probability information and loop trip count by 
sweeping through a range of values of branch probability 
and loop trip counts for each static program parameter program. 

Control Intensity 

Per process block 74, control intensity may be measured 
as an indication of how control intensive the code is. If there 
are no data-dependent control statements, the code is con­
sidered to have low control intensity otherwise it is consid­
ered to have high control intensity. Data-dependent means 
that the control instruction requires data from memory 
system 22. In the example code above, there are multiple 
data dependent control statements, for example, on lines 5, 
10 and 11, so control intensity is high. This measure differs 
from branch divergence in that it considers data dependency 
rather than branch probability. 

Mathematical Instruction Intensity 

As indicated by process block 76, a static measurement 
may be made of how effectively special arithmetic function 
boxes on a GPU are utilized including those processing 
multiplication/division, single precision floating-point sine 
and cosine calculations, log/exponent and square root opera­
tions. Each of these types of arithmetic operations may be 

45 calculated above to obtain a corresponding set of static 
parameters that are then modeled as discussed above to 
obtain a corresponding set of speed-up values. A majority 
prediction approach is then used to select one speed-up 
value from the many calculated speed-up values based on 

50 those speed-up values having the greatest occurrence during 
the sweeping process. 

Specifically, referring to FIG. 5, a first loop comprised of 
process blocks 80 and 82 sweeps through a range ofloop trip 
counts for the target program, for example, in 2000 loga-

55 rithmically spaced steps from 1 to 2000. The next, inner loop 
formed from process blocks 84 and 86, sweeps through a 
range of branch prediction values, for example, from O to 
100 percent in steps of 25. These branch predictions and 
loop trip count values within these loops are then applied, as 

60 indicated by process block 88, to determine the static 
program properties of the feature vector, for example, pro­
vided by process block 66. This feature vector for each loop 
iteration is provided to the model per process block 90 
forming the modeling of model 54 to produce a speed-up 

65 value. Upon completion of the loops, all of the calculated 
speed-up values are evaluated at process block 92 and the 
speed-up value that has the most representations in all of the 
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loop iterations is selected as the indicated speed-up value. 
The inventors have determined through analysis of the 
training set used for the machine learning of model 54 
having actual dynamic measurements of branch prediction 
and loop trip count value, that this approach successfully 5 

predicts speed-up value with high reliability. 
While the inventors do not wish to be bound by particular 

theory it is believed that the ability to use this technique for 
loop trip count values often results from the feature vector 
not changing even when the loop trip count changes because 10 

the loop covers a large percent of the kernel and thus the 
feature estimations which are mostly ratios are not affected. 

14 
other such numerical terms referring to structures do not 
imply a sequence or order unless clearly indicated by the 
context. 

When introducing elements or features of the present 
disclosure and the exemplary embodiments, the articles "a", 
"an", "the" and "said" are intended to mean that there are 
one or more of such elements or features. The terms "com­
prising", "including" and "having" are intended to be inclu­
sive and mean that there may be additional elements or 
features other than those specifically noted. It is further to be 
understood that the method steps, processes, and operations 
described herein are not to be construed as necessarily 
requiring their performance in the particular order discussed 
or illustrated, unless specifically identified as an order of In some cases even feature vector changes that occur pro­

duce the same speed-up results. 
This approach can be used when the user has no infor­

mation about branch probability; however, it also contem­
plates that the user may provide input as to branch prob­
ability or branch probability range that can improve this 
calculation as noted above. 

15 performance. It is also to be understood that additional or 
alternative steps may be employed. 

Referring now to FIG. 4, the ability to provide static 
analysis of code with respect estimating its speed-up when 

References to memory, unless otherwise specified, can 
include one or more processor-readable and accessible 
memory elements and/or components that can be internal to 

20 the processor-controlled device, external to the processor­
controlled device, and can be accessed via a wired or 
wireless network. 

It is specifically intended that the present invention not be 
limited to the embodiments and illustrations contained 

it is ported to a new architecture allows analysis to be 
performed on portions of the unpaired target program 34, for 
example, portions 34a-34f, when it would be difficult to 
dynamically execute these portions independently to obtain 
accurate dynamic measurements (both because of difficulty 

25 herein and the claims should be understood to include 

of executing the portions alone and the inevitable interaction 
of the portions with each other which would not be captured 
by independent dynamic execution). Even when analysis is 30 

intended to be performed on all portions 34a-34f, the ability 
to perform static analysis greatly reduces instrumentation 
costs. 

In this case, each of the portions 34 may separately be 
35 

statically analyzed by static analyzer block 66 and then 
discretized by independent discretizers 60. The output of the 
discretizers 60 for each static analyzer block 66 is then 
separately modeled using models 54 to produce outputs that 
are then again discretized using corresponding independent 40 

discretizers 62. These outputs may then be compared by a 
prioritizer 70 to determine a ranking 94, for example, of 
which portion of the unpaired target program 34 would 
likely provide the greatest feet-up benefit in being ported, 
thereby allowing either selective porting or a ranking of 45 

porting efforts. 
In this case the models 54 may be informed by a call 

hierarchy 75 indicating interaction of the code portions 34a:f 
with respect to calls between the portions or the like. This 
call hierarchy 75 may require some dynamic analysis 77 and 50 

thus instrumentation of the unpaired target program 34, 
something that the static analysis otherwise is intended to 
avoid. However, this instrumentation is relatively simple 
and presents low overhead and in fact may be implemented 
by standard compilers. 55 

Certain terminology is used herein for purposes of refer­
ence only, and thus is not intended to be limiting. For 
example, terms such as "upper", "lower", "above", and 
"below" refer to directions in the drawings to which refer­
ence is made. Terms such as "front", "back", "rear", "bot- 60 

tom" and "side", describe the orientation of portions of the 
component within a consistent but arbitrary frame of refer­
ence which is made clear by reference to the text and the 
associated drawings describing the component under dis­
cussion. Such terminology may include the words specifi- 65 

cally mentioned above, derivatives thereof, and words of 
similar import. Similarly, the terms "first", "second" and 

modified forms of those embodiments including portions of 
the embodiments and combinations of elements of different 
embodiments as come within the scope of the following 
claims. All of the publications described herein, including 
patents and non-patent publications, are hereby incorporated 
herein by reference in their entireties. 

What we claim is: 
1. An electronic computer executing a program stored in 

a non-transitory medium to: 
(a) perform a static analysis of a target computer program 

prepared to execute on a first computer architecture to 
determine static properties of the target computer pro­
gram selected from a set of static program properties 
relating to how the target computer program dynami­
cally executes on a second computer architecture hav­
ing a different architecture than the first computer 
architecture, wherein the static analysis inspects the 
target computer program without monitoring execution 
of the target computer program and does not resolve 
values accessed from memory or determine execution 
control flow that requires resolution of the direction of 
branch instructions that are memory dependent; 

(b) apply the static properties, exclusive of dynamic 
properties that can only be measured during execution 
of the target computer program on a computer, to a 
machine learning model, the machine learning model 
trained using a training set of programs each having a 
first optimization for the first computer architecture and 
a second optimization for the second computer archi­
tecture, wherein the first and second optimizations 
restructure the programs and data organization, the 
training set providing (1) an empirically measured 
change in execution speed between the first optimiza­
tion and the second optimization when running on the 
respective computer architectures and (2) static prop­
erties of the set of static program properties of the first 
optimization; and 

(c) output a speed-up value from the machine learning 
model to a user, the speed-up value indicating an 
expected increase in execution speed of the target 
computer program when executed on the second com­
puter architecture; and 
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wherein the empirically measured changes in execution 
speed are discretized to a set of ranges selectable by the 
user and further wherein the speed-up value output to 
the user is discretized to the user-selected ranges. 

2. The electronic computer of claim 1 wherein each of the 5 

static properties and training static properties are discretized 
to a corresponding sets of ranges less than five. 

3. The electronic computer of claim 2 wherein the ranges 
are selected to provide bins holding equal numbers of the 
measured static properties of the training set of programs. 10 

4. The electronic computer of claim 1 wherein the empiri­
cally measured changes in execution speed are discretized to 
a set of ranges less than five. 

5. The electronic computer of claim 1 wherein the set of 
static program properties provides a static indication of 15 

memory coalescing in the target program related to an 
amount of access to external memory. 

6. The electronic computer of claim 5 wherein the static 
indication of memory coalescing assesses memory access 
instructions in a loop according to whether an address of the 20 

instruction includes loop invariant terms or loop induction 
variable based terms that are not the loop induction variable 
times a value. 

7. The electronic computer of claim 1 wherein the mul­
tiple static program properties further provide a static assess- 25 

ment, of an intensity of arithmetic instructions in the instruc­
tions of the target program. 

8. The electronic computer of claim 7 wherein the static 
assessment of an intensity of arithmetic instructions is a ratio 
of arithmetic to memory access instructions. 30 

9. The electronic computer of claim 7 wherein the static 
assessment of the intensity of arithmetic instructions is 
discretized to a binary value. 

10. The electronic computer of claim 7 wherein the set of 
static program properties provides a static indication of 35 

branch divergence in the target program related to variation 
in execution paths between successive executions of a 
branch instruction. 

11. The electronic computer of claim 1 wherein the set of 
static program properties further includes at least one of 40 

assessment of kernel size of an average number of instruc­
tions in one thread, available parallelism indicating how 
many threads can potentially run on the second architecture 
in parallel, control intensity providing a measure of whether 
control instructions rely on data from external memory and 45 

complex arithmetic ratios indicating the number of complex 
arithmetic instructions selected from the group of multipli­
cation, division, sine, cosign, floating-point log, floating­
point exponent and square root. 

12. The electronic computer of claim 1 wherein the 50 

machine learning model is a random forest classifier. 
13. The electronic computer of claim 12 wherein the 

random forest classifier selects and combines random forests 
of binary decision trees. 

14. The electronic computer of claim 1 wherein the 55 

electric computer further includes each of the first and 
second architectures. 

15. An electronic computer executing a program stored in 
a non-transitory medium to: 

(a) perform a static analysis of a target computer program 60 

prepared to execute on a first computer architecture to 
determine static properties of the target computer pro­
gram selected from a set of static program properties 
relating to how the target computer program dynami­
cally executes on a second computer architecture hav- 65 

ing a different architecture than the first computer 
architecture, wherein the static analysis inspects the 

16 
target computer program without monitoring execution 
of the target computer program and does not resolve 
values accessed from memory or determine execution 
control flow that requires resolution of the direction of 
branch instructions that are memory dependent; 

(b) apply the static properties to a machine learning 
model, the machine learning model trained using a 
training set of programs each having a first optimiza­
tion for the first computer architecture and a second 
optimization for the second computer architecture, 
wherein the first and second optimizations restructure 
the programs and data organization, the training set 
providing (1) an empirically measured change in 
execution speed between the first optimization and the 
second optimization when running on the respective 
computer architectures and (2) static properties of the 
set of static program properties of the first optimization; 

(c) output a speed-up value from the machine learning 
model to a user, the speed-up value indicating an 
expected increase in execution speed of the target 
computer program when executed on the second com­
puter architecture; and 

wherein the set of static program properties provides a 
static indication of memory coalescing in the target 
program related to an amount of access to external 
memory; and wherein the static indication of memory 
coalescing assesses memory access instructions in a 
loop according to whether an address of the instruction 
includes loop invariant terms or loop induction variable 
based terms that are not the loop induction variable 
times a value; and 

wherein the static indication of memory coalescing is 
discretized to a binary value. 

16. An electronic computer executing a program stored in 
a non-transitory medium to: 

(a) perform a static analysis of a target computer program 
prepared to execute on a first computer architecture to 
determine static properties of the target computer pro­
gram selected from a set of static program properties 
relating to how the target computer program dynami­
cally executes on a second computer architecture hav­
ing a different architecture than the first computer 
architecture, wherein the static analysis inspects the 
target computer program without monitoring execution 
of the target computer program and does not resolve 
values accessed from memory or determine execution 
control flow that requires resolution of the direction of 
branch instructions that are memory dependent; 

(b) apply the static properties to a machine learning 
model, the machine learning model trained using a 
training set of programs each having a first optimiza­
tion for the first computer architecture and a second 
optimization for the second computer architecture, 
wherein the first and second optimizations restructure 
the programs and data organization, the training set 
providing (1) an empirically measured change in 
execution speed between the first optimization and the 
second optimization when running on the respective 
computer architectures and (2) static properties of the 
set of static program properties of the first optimization; 

(c) output a speed-up value from the machine learning 
model to a user, the speed-up value indicating an 
expected increase in execution speed of the target 
computer program when executed on the second com­
puter architecture; and 
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wherein the multiple static program properties further 
provide a static assessment of an intensity of arithmetic 
instructions in the instructions of the target program; 
and 

wherein the set of static program properties provides a 5 

static indication of branch divergence in the target 
program related to variation in execution paths between 
successive executions of a branch instruction; and 

wherein the static indication of branch divergence 
assesses branch instructions in a loop according to 10 

whether the branch conditions are loop invariant terms 
or based on loop induction variables. 

17. An electronic computer executing a program stored in 
a non-transitory medium to: 

15 
(a) perform a static analysis of a target computer program 

prepared to execute on a first computer architecture to 
determine static properties of the target computer pro­
gram selected from a set of static program properties 
relating to how the target computer program dynami- 20 

cally executes on a second computer architecture hav­
ing a different architecture than the first computer 
architecture, wherein the static analysis inspects the 
target computer program without monitoring execution 
of the target computer program and does not resolve 25 

values accessed from memory or determine execution 
control flow that requires resolution of the direction of 
branch instructions that are memory dependent; 

(b) apply the static properties to a machine learning 
model, the machine learning model trained using a 30 

training set of programs each having a first optimiza­
tion for the first computer architecture and a second 
optimization for the second computer architecture, 
wherein the first and second optimizations restructure 
the programs and data organization, the training set 35 

providing (1) an empirically measured change in 
execution speed between the first optimization and the 
second optimization when running on the respective 
computer architectures and (2) static properties of the 
set of static program properties of the first optimization; 40 

(c) output a speed-up value from the machine learning 
model to a user, the speed-up value indicating an 
expected increase in execution speed of the target 
computer program when executed on the second com­
puter architecture; and 

wherein the multiple static program properties further 
provide a static assessment of an intensity of arithmetic 
instructions in the instructions of the target program; 
and 

45 

wherein the set of static program properties provides a 50 

static indication of branch divergence in the target 
program related to variation in execution paths between 
successive executions of a branch instruction; and 

wherein the static indication of branch divergence 
assesses whether the branch instructions include branch 55 

conditions based on access to processor external 
memory. 

18. An electronic computer executing a program stored in 
a non-transitory medium to: 

(a) perform a static analysis of a target computer program 60 

prepared to execute on a first computer architecture to 
determine static properties of the target computer pro­
gram selected from a set of static program properties 
relating to how the target computer program dynami­
cally executes on a second computer architecture hav- 65 

ing a different architecture than the first computer 
architecture, 

18 
(b) apply the static properties to a machine learning 

model, the machine learning model trained using a 
training set of programs each having a first optimiza­
tion for the first computer architecture and a second 
optimization for the second computer architecture, 
wherein the first and second optimizations restructure 
the programs and data organization, the training set 
providing (1) an empirically measured change in 
execution speed between the first optimization and the 
second optimization when running on the respective 
computer architectures and (2) static properties of the 
set of static program properties of the first optimization; 
and 

(c) output a speed-up value from the machine learning 
model to a user, the speed-up value indicating an 
expected increase in execution speed of the target 
computer program when executed on the second com­
puter architecture, 

wherein the program is a portion of a main computer 
program and wherein the electronic computer includes 
the first architecture and further executes the program 
to: 

execute the main program on the first architecture to 
measure a call hierarchy of different portions of the 
main program including the target program when the 
main program is executing on the first architecture; 

perform a static analysis of the different portions of the 
main program to determine static properties of the each 
of the different portions selected from the set of static 
program properties; 

apply the static properties of each of the different portions 
to the machine learning model; and 

provide a comparison of speed-up value from the machine 
learning model for each of the different portions to a 
user indicating a relative increase in execution speed of 
each of the different portions when executed on the 
second computer architecture. 

19. A method of assessing effects of a computer architec­
ture on program execution speed of a target program com­
prising the steps of: 

(a) performing a static analysis of the target computer 
program prepared to execute on a first computer archi­
tecture to determine static properties of the target 
computer program selected from a set of static program 
properties relating to how the target computer program 
dynamically executes on a second computer architec­
ture having a different architecture than the first com­
puter architecture, wherein the static properties are 
selected from the group consisting of static measure­
ments of memory coalescing, intensity of arithmetic 
instructions, branch divergence of branch instructions, 
kernel size, available parallelism control intensity, and 
amount of complex arithmetic including multiplication, 
division, sine, cosine, floating-point log, floating-point 
exponent and square root; 

(b) applying the static properties, exclusive of dynamic 
properties that can only be measured during execution 
of the target computer program on a computer, to a 
machine learning model, the machine learning model 
trained using a training set of programs each having a 
first optimization for the first computer architecture and 
a second optimization for the second computer archi­
tecture, wherein the first and second optimizations 
restructure the programs and data organization, the 
training set providing an empirically measured change 
in execution speed between the first optimization and 
the second optimization when running on the respective 
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computer architectures and training static properties of 
the set of static program properties for the first opti­
mization; and 

( c) outputting a speed-up value from the machine learning 
model to a user, the speed-up value indicating an 5 

expected increase in execution speed of the target 
computer program when executed on the second com­
puter architecture; and 

wherein the empirically measured changes in execution 
speed are discretized to a set of ranges selectable by the 10 

user and further wherein the speed-up value output to 
the user is discretized to the user-selected ranges. 

* * * * * 
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