
c12) United States Patent
Kim et al.

(54) GRAPHIC PROCESSOR UNIT PROVIDING
REDUCED STORAGE COSTS FOR SIMILAR
OPERANDS

(71) Applicant: Wisconsin Alumni Research
Foundation, Madison, WI (US)

(72) Inventors: Nam Sung Kim, Champaign, IL (US);
Zhenhong Liu, Champaign, IL (US)

(73) Assignee: Wisconsin Alumni Research
Foundation, Madison, WI (US)

(*) Notice: Subject to any disclaimer, the term ofthis
patent is extended or adjusted under 35
U.S.C. 154(b) by 327 days.

(21) Appl. No.: 15/152,810

(22)

(65)

(51)

(52)

Filed: May 12, 2016

Prior Publication Data

US 2017/0329741 Al

Int. Cl.
G06F 15178
G06F 9/30
G06F 9/38
G06F 113234
G06F 113287
G06F 113203
U.S. Cl.

Nov. 16, 2017

(2006.01)
(2018.01)
(2018.01)
(2019.01)
(2019.01)
(2019.01)

CPC G06F 1517839 (2013.01); G06F 113203
(2013.01); G06F 113243 (2013.01); G06F

113275 (2013.01); G06F 113287 (2013.01);
G06F 9/30021 (2013.01); G06F 9/30058

(2013.01); G06F 9/30141 (2013.01); G06F
9/3836 (2013.01); G06F 9/3887 (2013.01)

16

I 1111111111111111 1111111111 111111111111111 111111111111111 lll111111111111111
US010592466B2

(IO) Patent No.:
(45) Date of Patent:

US 10,592,466 B2
Mar.17,2020

(58) Field of Classification Search
None
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

6,571,328 B2 * 5/2003 Liao G06F 9/30014
712/22

2014/0244968 Al* 8/2014 Greyzck G06F 15/76
712/3

2014/0317377 Al* 10/2014 Ould-Ahmed-Vall
G06F 9/30036

712/4
2015/0100764 Al* 4/2015 Tarolli G06F 9/30072

712/216
2018/0018173 Al* 1/2018 Hayes G06F 7/24

OTHER PUBLICATIONS

Lee (Decoupled Vector-Fetch Architecture with a Scalarizing Com­
piler, Jan. 2016, pp. 1-146) (Year: 2016).*
Ping Xiang et al.; "Exploiting uniform vector instructions for
GPGPU performance, energy efficiency, and opportunistic reliabil­
ity enhancement." In Proceedings of the 27th international ACM
conference on International conference on supercomputing, pp.
433-442. ACM, 2013. US.

(Continued)

Primary Examiner - George Giroux
(74) Attorney, Agent, or Firm - Boyle Fredrickson, SC

(57) ABSTRACT

A GPU architecture employs a crossbar switch to preferen­
tially store operand vectors in a compressed form allowing
reduction in the number of memory circuits that must be
activated during an operand fetch and to allow existing
execution units to be used for scalar execution. Scalar
execution can be performed during branch divergence.

19 Claims, 4 Drawing Sheets

REGISTER FILE

~ '""'"' 28

CROSS- BAR SWITCH ;----------~ ;-------~--; l

'-A•-·~•-=-----.1 ,. ______ ..,, ___ .,1 I .__ ____________,'
22 j DECODER I
24

EXECUTION UNITS

D D D D

26

20

21

18

25
23

(56) References Cited

OTHER PUBLICATIONS

US 10,592,466 B2
Page 2

Yunsup Lee et al.; "Convergence and scalarization for data-parallel
architectures." In Proceedings of the 2013 IEEE/ ACM International
Symposium on Code Generation and Optimization (CGO), pp. 1-11.
IEEE Computer Society. 2013. US.
Yi Yang et al.; "A Case for a Flexible Scalar Unit in SIMT
Architecture." In Parallel arid Distributed Processing Symposium,
2014 IEEE 28th International, pp. 93-102. IEEE, 2014. US.
Syed Zohaib Gilani et al. "Power-efficient computing for compute­
intensive GPGPU applications." In High Performance Computer
Architecture (HPCA2013). 2013 IEEE 19th International Sympo­
sium on, pp. 330-341, IEEE, 2013. US.

* cited by examiner

U.S. Patent

28

Mar.17,2020 Sheet 1 of 4

16

REGISTER FILE

~ ~ -- -- -
17

US 10,592,466 B2

20

21

18

DECODER
0- 25

23
~---- .::,U,.,guo __ ...,. _________ ".__,,, ---~

EXECUTION UNITS

□ □ □ □

26 FIG. 1

0
IDENTIFY COMMON PORTIONS L)

OF VVRITEBACK VECTORS
_J

I
LOAD COMMON 3

L.J
PORTIONS INTO BVR

2

I
MARK COMMON 3

J
PORTIONS IN EBR

5

I
OPERATE CROSS-BAR TO 3

COLLECT VARIANT PORTIONS
J
•

8

FIG. 2

U.S. Patent

16a~

12
~

18

~

20

~.-------

16a~

12
~

18

29a

Mar.17,2020

17b

Sheet 2 of 4

.r16b
17d r

40
)

---------- "I

17d ,16b

40

)

'---l,....!,,.......i------1--1-i--+-----+-+-+-+---"-+---I--+--+- "

21

US 10,592,466 B2

FIG.3

FIG.4

U.S. Patent Mar.17,2020 Sheet 3 of 4

FIG. 5

ALL OPERAND
VECTORS EQUAL

READ BVR ONLY

SCALAR
EXECUTION

WRITEBACK
TOBVR

FIG. 6

US 10,592,466 B2

44

46

48

50

U.S. Patent Mar. 17, 2020 Sheet 4 of 4

17d

.. 1 [...... J 1A B CD J
29a__.t X X f

□ npn
26J 2~ 26c" 2;;T

FIG. 7

ALL MASKED OPERAND
VECTORS EQUAL

FIG.8

[rnrn j ~
I p8

21

FIG. 9

US 10,592,466 B2

44'

,.-10

20

US 10,592,466 B2
1

GRAPHIC PROCESSOR UNIT PROVIDING
REDUCED STORAGE COSTS FOR SIMILAR

OPERANDS

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT

This invention was made with government support under
1217102 and 0953603 awarded by the National Science
Foundation. The government has certain rights in the inven­
tion.

CROSS REFERENCE TO RELATED
APPLICATION

Background of the Invention

The present invention relates to computer architectures
and in particular to GPU-type architectures providing single

2
circuits and a set of execution units for single instruction
multiple thread SIMT execution of an instruction in parallel
using a set of operands. Scalar execution circuitry evaluates
operands of a set of operands subject to a read request by the

5 execution units, and when all operands of the set of operands
are identical: (i) transfers only a representative operand of
the set of operands to a single execution unit without
activating memory circuits for each of the operands of the
set of operands; (ii) executes an operation on representative

10 operand in the single execution unit while holding other
execution units idle; and (iii) stores a result of execution of
the representative operand as a single operand without
activating memory circuits for each of the operands of the
set of operands.

15 It is thus a feature of at least one embodiment of the
invention to provide a energy-efficient scalar execution that
synergistically combines the energy savings of executing on
a single execution unit with reduced power costs in access-
ing the necessary data from the register file.

instruction multiple thread (SIMT) execution. 20 The representative operand may be held in a register
separate from the memory circuits of the register file. A graphics processing unit (GPU) is an electronic com­

puter architecture originally intended for graphics process­
ing but also used for general purpose computing. In a GPU,
a single instruction can execute simultaneously in multiple
threads accessing different data (for example, image data). 25

Typically a GPU provides a large number of execution units
sharing fetch/decode/scheduling (FDS) logic.

It is thus a feature of at least one embodiment of the
invention to eliminate the need to activate the register file
entirely in favor of a special, possibly high speed and low
power register holding the needed operand vector.

The computer architecture may further include a crossbar
switch providing a parallel connection on a path between
each vector register and an execution unit according to a
crossbar switch command permitting connection of a given
vector register to any execution unit, and the scalar execu­
tion circuit may transfer the representative operand to a

During operation of the GPU, operand data for each of the
execution units is stored in a "register file" as an "operand
vector" that will be transferred to the execution units for 30

processing (vector processing) and then written back to the
register file. The improvement of GPU computing capabil­
ity, like many computer architectures, is increasingly limited
by power and thermal constraints. Power is principally
consumed by these two elements of the execution units and 35

the register file, the latter of which uses multiple static
random access memory (SRAM) arrays.

single execution unit using the crossbar switch and store the
result of execution in one vector register using the crossbar
switch.

It is thus a feature of at least one embodiment of the
invention to provide scalar execution using the existing
execution units selected with the crossbar switch.

SUMMARY OF THE INVENTION

The present invention provides a GPU architecture that
monitors similarities between the operand vectors of differ­
ent execution units to provide a simultaneous and synergistic
savings of power when those operand vectors are identical.
This power savings is obtained by (1) fetching only a single
operand vector, allowing most of the register file memory to
remain in a low-power mode, and (2) executing that single
operand on only a single execution unit allowing the other
execution units to remain in low-power mode. In the latter
case the result from the single execution unit is used for the
other execution units in a so-called scalar execution. The
implementation of the scalar execution may use the existing
execution units and perform routing using a standard cross­
bar switch.

The invention further evaluates the similarity of operand
vectors informed by which threads are active during branch
divergence so that the technique of (2) may be used even
when all operand vectors are not identical.

Portions of the invention may make use of the existing
crossbar switch in most GPU architectures for compression
of operand vectors to reduce memory power consumption
even when the operands are not identical. This is done by
selectively routing or sorting different portions of partially
matched operands into a single memory circuit.

The execution units may provide trigonometric functions.
It is thus a feature of at least one embodiment of the

40 invention to permit the use of standard execution units with
advanced arithmetic capabilities, as opposed to a special
scalar processor, for scalar execution.

When all operands of the set of operands subject to a read
request by the execution units are not identical (for example,

45 during non-scalar execution), the scalar execution circuitry
may: (iv) transfer different operands of the set of operands
to different execution units; (v) execute the different oper­
ands on the different execution units; and (vi) in the case of
branch divergence between the different execution units,

50 identify results of executions associated with one branch ha
active branch divergence operands. When the scalar execu­
tion circuitry evaluates operands of a set of operands subject
to a read request by the execution units, and when all
operands of the set of operands subject to the read request

55 are not identical but all branch divergence operands of the
set of operands are identical, the scalar execution circuitry
may further (vii) transfer only a divergence representative
operand of the branch divergence operands to a single
execution unit without activating all of the memory circuits

60 or each of the branch divergence operands; and (viii) execute
the divergence representative operand on the single execu­
tion unit while holding other execution units idle; and (ix)
storing a result of execution of the divergence representative
operand.

More specifically, in one embodiment, the present inven- 65

tion provides a computer architecture having a register file
holding vector registers of operands in different memory

It is thus a feature of at least one embodiment of the
invention to allow effective scalar execution on a subset of
threads during branch divergence allowing energy savings to

US 10,592,466 B2
3

be obtained during branch divergence operations, such as
have been determined by the inventors to be frequent.

The result of the execution of the divergence representa­
tive operand maybe stored in multiple vector registers in
different memory circuits.

It is thus a feature of at least one embodiment of the
invention to eliminate the compression during the storage
stage during branch divergence to greatly simplify encoding

4
FIG. 8 is a fragmentary view of the flowchart of FIG. 6

showing an expansion of a modification of that flowchart for
branch divergence;

FIG. 9 is a figure similar to that of FIG. 1 showing
5 duplication of the scalar execution circuitry of the present

invention to operate on different portions of the register file
to increase the opportunities for scalar execution.

circuitry.
Alternatively or in addition the scalar execution circuitry 10

may: (iv) evaluate operands being written to the register file
across a set of operands to identify identical and non­
identical portions of those operands of the set of operands
and route any non-identical portions preferentially into one

15
memory circuit using a crossbar switch; (v) in response to a
request for reading a set of operands by the execution units
from the register file, where those operands include routed
non-identical portions, activate a memory circuit holding the
routed non-identical portions and not all of the memory 20

circuits holding the set of operands; and (vi) provide the
previously routed non-identical portions to multiple execu­
tion units.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

Referring now to FIG. 1, a GPU system 10 of the present
invention may provide a register file 12 having multiple
logical banks 14 each using multiple memory circuits 16
such as SRAM. The memory circuit 16 may be individually
controlled during data access for reading and writing to
move between a low and high power mode state, the
low-power mode state usable when data is not being
accessed. Each bank may hold one or more multiple operand
vectors 17.

The register file 12 may communicate its operand vectors
17 through a crossbar switch 18 and through a decoder 22 of
scalar execution circuit 20 with the operand collector 24.
The operand collector 24, in tum, provides the operand It is thus a feature of at least one embodiment of the

invention to provide greater power efficiency in the register
file through a sorting process making use of the existing
crossbar circuitry of the GPU.

The scalar execution circuitry may include combiner
circuitry combining the sorted non-identical portions with
corresponding identical portions to reconstruct the set of
operands for multiple execution units.

It is thus a feature of at least one embodiment of the

25 vectors 17 to individual execution units 26. Conversely, the
execution units 26 may communicate operand vectors
through the crossbar switch 18 and through encoder 21 of
the scalar execution circuit 20 with the register file 12. The
scalar execution circuit 20 provides an encoder 21 and

30 decoder 22 as well as warp parameter register 23 and control
logic circuitry 25 as will be discussed below.

Each execution unit 26 may receive a corresponding

invention to reconstruct compressed operand data to allow
normal operation without modification of the execution

35

operand vector 17 for parallel operation with other execution
units 26 as part of a single instruction, multiple thread
architecture (SIMT). As is understood in the art, SIMT
execution generally provides that the execution units 26 units.

These particular objects and advantages may apply to
only some embodiments falling within the claims and thus
do not define the scope of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a simplified block diagram of a graphic pro­
cessing unit showing the register file holding operand vec­
tors which may be communicated to and from a set of
execution units by means of a crossbar switch and furthering
showing a scalar execution circuit of the present invention
including an encoder and decoder;

FIG. 2 is a flowchart showing encoding steps adopted by
the present invention during a writeback of data from the
execution units to the register files;

FIG. 3 is a representation of the graphics processor during
a writeback of data from the execution units showing an
encoding or routing of outputs from the execution units to
the register file;

FIG. 4 is a figure similar to FIG. 3 showing a simplified
register file after routing of the operand vectors of FIG. 3
during a reading of the register file and showing the decod­
ing of the register files;

sequentially execute on the respective operand vectors in
lockstep and in parallel in the absence of a branch diver­
gence. A branch divergence, caused by differences in the

40 results of branching instructions executed in different execu­
tion units (when the executing instruction receives different
operands for the different execution units), temporarily
interrupts this global lockstep execution in favor oflockstep
execution of only a subset of the execution units branching

45 in the same way (active threads).
The GPU system 10 may communicate through a bus

system 28 with other computer elements, for example, those
elements including a CPU, external memory, graphic dis­
plays, network ports, keyboards and the like which may be

50 used to load the register file 12 with starting data and to read
values from the register file 12.

Generally, during operation of the GPU system 10, data is
sent to each execution unit 26 simultaneously from a set of
operand vectors 17 of the register file 12 (the set of operand

55 vectors termed a warp) to given execution units 26 which
operate on the data of the operand vectors 17 to produce a
writeback vector that is then written back to the register file
12 to become results or new operand vectors 17 for later
execution.

FIG. 5 is a fragmentary view similar to FIG. 4 showing 60

the decoding process when all operand vectors are the same
such as allows scalar execution;

Referring now to also FIGS. 2 and 3 and 4, writeback
vector 29a-29d may be received from the execution units 26
at encoder 21 of the scalar execution circuit 20 as a result of
the execution of previous values of operand vectors 17 by
the execution units 26. As indicated by process block 30 the

FIG. 6 is a flowchart of the steps of scalar execution of
FIG. 5;

FIG. 7 is a fragmentary view similar to FIG. 3 showing
the encoding process when there has been branch diver-
gence;

65 encoder will evaluate these writeback vectors 29a-29b to
identify common portions among different of the writeback
vectors 29.

US 10,592,466 B2
5 6

BVR 34. The process of reading operand vector 17a need
only activate a single memory circuit 16a, thus saving power
in the register file 12.

Referring now to FIGS. 5 and 6, the encoding system of

In this example, the operand vectors 17 and writeback
vector 29 will be considered to be made up of four bytes of
data. The writeback vectors 29 from the different execution
units 26 have some identical portions, notably the first three
bytes of [A, B, CJ, and some different portions, in this case
the last byte (typically the least significant byte) which
varies among each of the write back vectors 29. This last byte
will be labeled [DJ for writeback vector 29a, [EJ for write­
back vector 29b, [FJ for writeback vector 29c and [GJ for
writeback vector 29d.

5 the present invention has particular power savings benefit
when the warp parameter register 23 and, in particular, the
EBR 36 indicate that the operand vectors 17 needed by each
execution unit 26 are identical. In this case, there is no need
to access the register file 12 at all or to activate any of the

As indicated by process block 35, the identical portions of
the writeback vector 29 [A, B, CJ are saved in a portion of
a warp parameter register 23 designated the base value
register (BVR) 34 as indicated by process block 32. The
warp parameter register 23 may provide for a different entry
for each warp with the entry indexed to that warp

10 memory circuits 16. Instead, when the EBR 36 indicates that
all of the operand vectors for the warp 40 are identical [1, 1,
1, lJ as indicated by process block 44 of FIG. 6, the
necessary data for each execution unit 26 is taken directly
from the BVR 34 (holding [A, B, C, DJ) as indicated by

15 process block 46. Here, however, the logic circuitry 25 does
not distribute the value of the BVR 34 to each of the

A second portion of the warp parameter register 23,
designated the encoding bit register (EBR) 36, then receives
a first mask [1, 1, 1, OJ indicating which portions of the 20

writeback vectors 29 are common to each other (using a
value of 1) and which portions of the write back vectors 29
differ from each other (using a value of 0).

This value of the EBR 36 is provided to the crossbar
switch 18 which routes portions of each writeback vector 29 25

according to the detected commonality of the data. In this
case, the least significant bits of the writeback vectors 29
(the only differing portions) will be written to a single
operand vector 17a stored in a single memory circuit 16a of
the register file 12 as [D, E, F, GJ. The order of the 30

non-identical portions of the writeback vector 29 in the
operand vectors 17 a will be according to the order of the
execution units 26 producing that data so as to allow the
encoded values in operand vector 17 a to be later decoded as
discussed below. The common portions of the writeback 35

vector 29 having been saved in the BVR 34 need not be
stored. Note that this writeback requires activation only of a
single memory circuit 16a, and memory circuit 16b may
remain in a low power state.

The operation of the encoder 21 in this regard simply 40

evaluates similarities among the writeback vectors 29, for
example, by doing a byte-wise assessment of each byte of
each writeback vector 29, and if they are equal placing a 1

multiplexers 42 but instead provides the data of the BVR 34
to a single multiplexer 42 and a single execution unit 26 for
scalar execution. This single execution unit 26 executes the
operand of the BVR 34 alone, with the remaining execution
units 26 deactivated for power conservation per process
block 48. In this way there is substantial savings both in the
execution units 26 and in the register file 12.

Referring again to FIG. 3, at the time ofwriteback of the
results from that single execution unit 26, the logic circuitry
25 overrides the comparison process of the encoder 21 to
write the EBR 36 with a value indicating all of the writeback
vectors are equal [1, 1, 1, 1 J resulting in the writeback vector
29 being stored exclusively to the BVR 34, again without
activation of the memory circuits 16 for substantial power
savings. This writeback is indicated by process block 50.

Referring now to FIGS. 7 and 8, during the execution of
different operand vectors 17 a-17 d by the execution units 26,
a branch divergence may occur in which the control flow of
the threads among different execution units 26 diverges, for
example, because of different branch paths being taken in
the execution of a single instruction on different execution
units 26, in light of the different operand vectors 17 received
by the different execution units. In the depicted example,
only two of the execution units, execution unit 26a and
execution unit 26d, may execute to produce writeback
vector 29a and 29d, and execution units 26b and 26d may be
stalled. The normal comparison process of the encoder 21,
in this case, is not meaningful because of the failure to have
comparison values for write back vectors 29b and 29c. In this
case, the logic circuitry 25 suppresses the encoding of the
writeback vectors 29a and 29d (that is logic circuitry 25
causes writing each of these writeback vectors 29a and 29d
to the register file 12 without modification to separate

in the corresponding portion of the EBR 36 and writing the
value of common bytes among the writeback vectors 29 to 45

the BVR 34. When the number of bytes that are different
among the writeback vector 29 exceeds that which can be
held by a single operand vector 17, additional operand
vectors 17 may be used preferably in the same memory
circuits 16. 50 operand vector 17a and 17d. These active threads (of

execution units 26a and 26d) producing writeback vectors
29a and 29d are identified in a mask 52 which may be stored
in place of the BVR 34. For example, the bits of the mask
52 may be 1 when the corresponding thread is active and 0

Referring now to FIG. 4, when the data stored in a warp
40 is requested by the execution units 26, the warp param­
eter register 23 for that warp is interrogated to see whether
the operand vectors 17 of the warp 40 include redundant
data. In particular, EBR 36 is reviewed to control the
crossbar switch 18 to route the non-common portions of the
warp 40 to a set of multiplexers 42 contained in the decoder

55 when the corresponding thread is inactive. The data nor­
mally stored in the BVR 34 is not required because there is
no encoding or compressing of the writeback vector 29.
Therefore this storage space may be used for the mask 52.
In addition the EBR 36 is marked to indicate that a branch

22 and associated with each execution unit 26. The multi­
plexer 42 for each execution unit 26 will receive a different
byte of operand vectors 17 a corresponding to the portion of
the warp 40 associated with the given execution unit 26. The
remaining bytes are obtained from the BVR 34 and are
assembled together to reconstruct the values of the write­
back vector 29 previously stored in the register file 12. In
this case, the operand vector 17a provides the least signifi- 65

cant bytes [D, E, F, GJ which are assembled by the multi­
plexers 42 to the common bytes [A, B, CJ taken from the

60 diversion occurred, for example, indicated by the letter D in
the EBR value 36. This indication will be used when the data
is again recalled by the execution units 26.

While there is no compression of the writeback vector 29
in this example of branch divergence, it will be appreciated
that when the warp 40 associated with warp parameter
register 23 for this data that was just generated is next
provided to the execution units 26, the operand vectors 17 a

US 10,592,466 B2
7 8

where such one or more processor can be configured to
operate on one or more processor-controlled devices that can
be similar or different devices. Furthermore, references to
memory, unless otherwise specified, can include one or more

and 17b for the active threads will be identical and hence
could be executed in scalar fashion by one execution unit 26.
This state is determined by using the mask 52 to filter the
EBR value 36 to check for equivalence only in the active
threads. That is, whether the threads are identical as indi­
cated in the EBR 36 is considered only for those threads
marked with a 1 in the mask 52.

Thus, as shown in FIG. 8, the previously described
process block 44 of FIG. 2 may be expanded as process
block 44' to consider only active threads rather than whether
all threads have equal operand vectors. In this way, scalar
execution can be exploited in common situations of branch
divergence, greatly increasing the efficiency that can be
gained from this technique.

5 processor-readable and accessible memory elements and/or
components that can be internal to the processor-controlled
device, external to the processor-controlled device, and can
be accessed via a wired or wireless network.

It is specifically intended that the present invention not be
10 limited to the embodiments and illustrations contained

This technique which selectively encodes or does not 15

encode data depending on whether the threads are divergent
or not can create a situation where branch diversion instruc­
tions must update a value of an encoded operand vector 17.
This can be detected by examining the active mask 52, and
when such a case occurs, the GPU system 10 may imple- 20

ment a special register-to-register move instruction to
retrieve and decode the encoded operand vector 17 and store
it back into the register file 12 without encoding it.

Referring now to FIG. 9, the opportunities for scalar
execution can be increased by dividing scalar execution 25

circuit 20 into two (or more) portions each containing
duplicate encoders 21, decoders 22, and warp parameter
register 23, that may in tum deal independently with respec­
tive portions of the register file 12, that is, each dealing with
a subset of the warp of operand vector 17. By subdividing 30

the operand vectors 17 into smaller groupings, the potential
that all operand vectors 17 are the same is increased, thus
increasing the opportunity for scalar execution.

Certain terminology is used herein for purposes of refer­
ence only, and thus is not intended to be limiting. For 35

example, terms such as "upper", "lower", "above", and
"below" refer to directions in the drawings to which refer­
ence is made. Terms such as "front", "back", "rear", "bot­
tom" and "side", describe the orientation of portions of the
component within a consistent but arbitrary frame of refer- 40

ence which is made clear by reference to the text and the
associated drawings describing the component under dis­
cussion. Such terminology may include the words specifi­
cally mentioned above, derivatives thereof, and words of
similar import. Similarly, the terms "first", "second" and 45

other such numerical terms referring to structures do not
imply a sequence or order unless clearly indicated by the
context.

When introducing elements or features of the present
disclosure and the exemplary embodiments, the articles "a", 50

"an", "the" and "said" are intended to mean that there are
one or more of such elements or features. The terms "com­
prising", "including" and "having" are intended to be inclu­
sive and mean that there may be additional elements or
features other than those specifically noted. It is further to be 55

understood that the method steps, processes, and operations
described herein are not to be construed as necessarily
requiring their performance in the particular order discussed
or illustrated, unless specifically identified as an order of
performance. It is also to be understood that additional or 60

alternative steps may be employed.
References to "a microprocessor" and "a processor" or

"the microprocessor" and "the processor," can be under­
stood to include one or more microprocessors that can
communicate in a stand-alone and/or a distributed environ- 65

ment(s), and can thus be configured to communicate via
wired or wireless communications with other processors,

herein and the claims should be understood to include
modified forms of those embodiments including portions of
the embodiments and combinations of elements of different
embodiments as come within the scope of the following
claims. All of the publications described herein, including
patents and non-patent publications, are hereby incorporated
herein by reference in their entireties.

What we claim is:
1. A computer architecture comprising:
a register file holding vector registers of operands in

different memory circuits;
a set of execution units for SIMT execution of an instruc­

tion in parallel using a set of operands; and
scalar execution circuitry evaluating operands of a set of

operands subject to a read request by the execution
units, and when all operands of the set of operands are
identical;

(i) transferring only a representative operand of the set of
operands to a single execution unit without activating
memory circuits for each of the operands of the set of
operands;

(ii) executing an operation on the representative operand
on the single execution unit while holding other execu­
tion units idle; and

(iii) storing a result of the execution of the representative
operand as a single operand without activating memory
circuits for each of the operands of the set of operands;

wherein the scalar execution circuitry further:
(iv) evaluates operands being written to the register file

across a set of operands to identify identical and
non-identical portions of those operands of the set of
operands and sorts any non-identical portions prefer­
entially into one memory circuit using a crossbar
switch and separately sorts a representative identical
portion into a storage location different from the one
memory circuit;

(v) in response to a request for reading a set of operands
by the execution units from the register file where those
operands include sorted non-identical portions, acti­
vates a memory circuit holding the sorted non-identical
portions and not all of the memory circuits holding the
set of operands and combining each sorted non-iden­
tical portion with the representative portion to provide
reconstructed operands; and

(vi) provides the reconstructed operands to multiple of the
execution units.

2. The computer architecture of claim 1 wherein the
representative operand is held in a register separate from the
memory circuits of the register file.

3. The computer architecture of claim 1 further including
a crossbar switch providing a parallel connection on a path
between the register file and the execution units according to
a crossbar switch command permitting connection of a given
vector register to any execution unit and wherein the scalar
execution circuit transfers the representative operand to a

US 10,592,466 B2
9

single execution unit using the crossbar switch and stores the
result of execution in one vector register using the crossbar
switch.

4. The computer architecture of claim 3 wherein the
execution units provide trigonometric functions.

5. The computer architecture of claim 1 wherein the scalar
execution circuitry, when all operands of the set of operands
subject to a read request by the execution units are not
identical;

10
memory circuit and sort a representative identical por­
tion into a storage location different from the one
memory circuit; and

(ii) in response to a request for reading a set of operands
by the execution units from the register file where those
operands include routed non-identical portions, acti­
vate a memory circuit holding the routed non-identical
portions and combining each routed non-identical por-
tion with the representative portion to provide recon­
structed operands to multiple of the execution units. (iv) transfers different operands of the set of operands to 10

different execution units; 10. The computer architecture of claim 9 wherein the
scalar execution circuitry further controls the crossbar
switch to reroute the any non-identical portions from one

15
bank to multiple execution units.

(v) executes the different operands on the different execu­
tion units;

(vi) in a case of branch divergence between the different
execution units, identifies results of executions associ­
ated with one branch as active branch divergence
operands;

wherein when the scalar execution circuitry evaluates
operands of a set of operands subject to a read request
by the execution units, and when all operands of the set
of operands subject to the read request are not identical
but all branch divergence operands of the set of oper­
ands are identical:

(vii) transfers only a divergence representative operand of
the branch divergence operands of the set of operands
to a single execution unit without activating memory
circuits for each of the operands of the set of operands
or each of the branch divergence operands of the set of
operands;

(viii) executes the divergence representative operand on
the single execution unit while holding other execution
units idle; and

(ix) stores a result of execution of the divergence repre­
sentative operand.

6. The computer architecture of claim 5 wherein the result
of the execution of the divergence representative operand is
stored in multiple vector registers in different memory
circuits.

7. The computer architecture of claim 1 wherein the scalar
execution circuitry includes combiner circuitry combining
the sorted non-identical portions with the representative
identical portion to produce the set of reconstructed oper­
ands for multiple execution units and wherein the storage
location provides a mask mapping bits of the sorted non­
identical portions and representative identical portion to
each reconstructed operand.

11. The computer architecture of claim 10 wherein the
scalar execution circuitry includes combiner circuitry com­
bining the rerouted non-identical portions with the repre­
sentative identical portions to reconstruct the set of operands

20 for multiple execution units and wherein the storage location
provides a mask mapping bits of the sorted non-identical
portions and representative identical portion to each recon­
structed operand.

12. The computer architecture of claim 9 wherein the
25 scalar execution circuitry further includes an encoding reg­

ister separate from the register file for holding the represen­
tative identical portion of the operands combined with the
rerouted non-identical portions.

13. The computer architecture of claim 9 wherein the
30 scalar execution circuit includes an encoding register record­

ing for each operand which portions are identical and which
portions are non-identical and wherein the encoding register
is written to when the operands are written to the register file
and the written value in the encoding register is used when

35 the operands are read from the register file for control of the
crossbar switch.

14. The computer architecture of claim 9 wherein the
scalar execution circuitry further controls the execution units
to execute only a single operand on a single execution unit

40 when an evaluation of operands across the set of operands
indicates that there are no non-identical portions.

15. The computer architecture of claim 9 wherein the
scalar execution circuit detects branch divergence in the
execution of the execution units to block controlling cross-

45 bar switch to route any non-identical portions preferentially
into one bank.

8. The computer architecture of claim 7 wherein the scalar
execution circuitry further includes an encoding register
separate from the register file holding a copy of the identical 50

portions of the operands for combining with the sorted
non-identical portions.

16. The computer architecture of claim 9 wherein the
scalar execution circuitry detects a subset of active execu­
tion units after a branch divergence to control subsequent
operation of the execution units to execute only a single
operand on a single execution unit when an evaluation of
operands across the set of operands indicates that there are
no non-identical portions in the portion associated with
execution units that were active.

9. A computer architecture comprising:
a register file holding vector registers of multiple oper­

ands in different memory circuits;
a set of execution units for SIMT execution of an instruc­

tion in parallel using a set of operands;
a crossbar switch providing a parallel connection of banks

55

of the register file to execution units according to a
crossbar switch command permitting connection of a 60

vector register to any execution unit; and
scalar execution circuitry:
(i) evaluating operands being written to the register file

across a set of operands to identify identical and
non-identical portions of those operands of the set of 65

operands and controlling the crossbar switch to route
any non-identical portions preferentially into one

17. The computer architecture of claim 9 wherein the
execution units provide trigonometric functions.

18. The computer architecture of claim 9 wherein the
scalar execution circuit detects branch divergence in the
execution of the execution units to control the crossbar
switch to not route non-identical portions while there is
divergence.

19. A method of executing programs on a computer
architecture having:

a register file holding vector registers of operands in
different memory circuits;

a set of execution units for SIMT execution of an instruc­
tion in parallel using a set of operands;

US 10,592,466 B2
11

scalar execution circuitry evaluating operands of a set of
operands subject to a read request by the execution
units, and when all operands of the set of operands are
identical:

(i) transferring only a representative operand of the set of 5

operands to a single execution unit without activating
memory circuits for each of the operands of the set of
operands;

(ii) executing the representative operand on the single
execution unit while holding other execution units idle; 10

and
(iii) storing a result of execution of the representative

operand as a single operand without activating memory
circuits for each of the operands of the set of operands;
the method comprising, when operands subject to a 15

read request by execution units are identical, the steps
of:

(a) transferring only a representative operand of the set of
operands to a single execution unit without activating
memory circuits for each of the operands of the set of 20

operands;
(b) executing the representative operand on the single

execution unit while holding other execution units idle;
and

12
(c) storing a result of execution of the representative

operand as a single operand without activating memory
circuits for each of the operands of the set of operands;
and

further including the steps of:
(d) evaluating operands being written to the register file

across a set of operands to identify, identical and
non-identical portions of those operands of the set of
operands and sorts any non-identical portions prefer­
entially into one memory circuit using a crossbar
switch and sorts a representative identical portion into
a storage location different from the one memory
circuit;

(e) in response to a request for reading a set of operands
by the execution units from the register file where those
operands include sorted non-identical portions, activat­
ing a memory circuit holding the sorted non-identical
portions and not all of the memory circuits holding the
set of operands and combining each sorted non-iden­
tical portion with the representative portion to provide
reconstructed operands; and

(f) providing the reconstructed operands to multiple of the
execution units.

* * * * *

