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GRAPHIC PROCESSOR UNIT PROVIDING 
REDUCED STORAGE COSTS FOR SIMILAR 

OPERANDS 

STATEMENT REGARDING FEDERALLY 
SPONSORED RESEARCH OR DEVELOPMENT 

This invention was made with government support under 
1217102 and 0953603 awarded by the National Science 
Foundation. The government has certain rights in the inven­
tion. 

CROSS REFERENCE TO RELATED 
APPLICATION 

Background of the Invention 

The present invention relates to computer architectures 
and in particular to GPU-type architectures providing single 

2 
circuits and a set of execution units for single instruction 
multiple thread SIMT execution of an instruction in parallel 
using a set of operands. Scalar execution circuitry evaluates 
operands of a set of operands subject to a read request by the 

5 execution units, and when all operands of the set of operands 
are identical: (i) transfers only a representative operand of 
the set of operands to a single execution unit without 
activating memory circuits for each of the operands of the 
set of operands; (ii) executes an operation on representative 

10 operand in the single execution unit while holding other 
execution units idle; and (iii) stores a result of execution of 
the representative operand as a single operand without 
activating memory circuits for each of the operands of the 
set of operands. 

15 It is thus a feature of at least one embodiment of the 
invention to provide a energy-efficient scalar execution that 
synergistically combines the energy savings of executing on 
a single execution unit with reduced power costs in access-
ing the necessary data from the register file. 

instruction multiple thread (SIMT) execution. 20 The representative operand may be held in a register 
separate from the memory circuits of the register file. A graphics processing unit (GPU) is an electronic com­

puter architecture originally intended for graphics process­
ing but also used for general purpose computing. In a GPU, 
a single instruction can execute simultaneously in multiple 
threads accessing different data (for example, image data). 25 

Typically a GPU provides a large number of execution units 
sharing fetch/decode/scheduling (FDS) logic. 

It is thus a feature of at least one embodiment of the 
invention to eliminate the need to activate the register file 
entirely in favor of a special, possibly high speed and low 
power register holding the needed operand vector. 

The computer architecture may further include a crossbar 
switch providing a parallel connection on a path between 
each vector register and an execution unit according to a 
crossbar switch command permitting connection of a given 
vector register to any execution unit, and the scalar execu­
tion circuit may transfer the representative operand to a 

During operation of the GPU, operand data for each of the 
execution units is stored in a "register file" as an "operand 
vector" that will be transferred to the execution units for 30 

processing (vector processing) and then written back to the 
register file. The improvement of GPU computing capabil­
ity, like many computer architectures, is increasingly limited 
by power and thermal constraints. Power is principally 
consumed by these two elements of the execution units and 35 

the register file, the latter of which uses multiple static 
random access memory (SRAM) arrays. 

single execution unit using the crossbar switch and store the 
result of execution in one vector register using the crossbar 
switch. 

It is thus a feature of at least one embodiment of the 
invention to provide scalar execution using the existing 
execution units selected with the crossbar switch. 

SUMMARY OF THE INVENTION 

The present invention provides a GPU architecture that 
monitors similarities between the operand vectors of differ­
ent execution units to provide a simultaneous and synergistic 
savings of power when those operand vectors are identical. 
This power savings is obtained by (1) fetching only a single 
operand vector, allowing most of the register file memory to 
remain in a low-power mode, and (2) executing that single 
operand on only a single execution unit allowing the other 
execution units to remain in low-power mode. In the latter 
case the result from the single execution unit is used for the 
other execution units in a so-called scalar execution. The 
implementation of the scalar execution may use the existing 
execution units and perform routing using a standard cross­
bar switch. 

The invention further evaluates the similarity of operand 
vectors informed by which threads are active during branch 
divergence so that the technique of (2) may be used even 
when all operand vectors are not identical. 

Portions of the invention may make use of the existing 
crossbar switch in most GPU architectures for compression 
of operand vectors to reduce memory power consumption 
even when the operands are not identical. This is done by 
selectively routing or sorting different portions of partially 
matched operands into a single memory circuit. 

The execution units may provide trigonometric functions. 
It is thus a feature of at least one embodiment of the 

40 invention to permit the use of standard execution units with 
advanced arithmetic capabilities, as opposed to a special 
scalar processor, for scalar execution. 

When all operands of the set of operands subject to a read 
request by the execution units are not identical (for example, 

45 during non-scalar execution), the scalar execution circuitry 
may: (iv) transfer different operands of the set of operands 
to different execution units; (v) execute the different oper­
ands on the different execution units; and (vi) in the case of 
branch divergence between the different execution units, 

50 identify results of executions associated with one branch ha 
active branch divergence operands. When the scalar execu­
tion circuitry evaluates operands of a set of operands subject 
to a read request by the execution units, and when all 
operands of the set of operands subject to the read request 

55 are not identical but all branch divergence operands of the 
set of operands are identical, the scalar execution circuitry 
may further (vii) transfer only a divergence representative 
operand of the branch divergence operands to a single 
execution unit without activating all of the memory circuits 

60 or each of the branch divergence operands; and (viii) execute 
the divergence representative operand on the single execu­
tion unit while holding other execution units idle; and (ix) 
storing a result of execution of the divergence representative 
operand. 

More specifically, in one embodiment, the present inven- 65 

tion provides a computer architecture having a register file 
holding vector registers of operands in different memory 

It is thus a feature of at least one embodiment of the 
invention to allow effective scalar execution on a subset of 
threads during branch divergence allowing energy savings to 
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be obtained during branch divergence operations, such as 
have been determined by the inventors to be frequent. 

The result of the execution of the divergence representa­
tive operand maybe stored in multiple vector registers in 
different memory circuits. 

It is thus a feature of at least one embodiment of the 
invention to eliminate the compression during the storage 
stage during branch divergence to greatly simplify encoding 

4 
FIG. 8 is a fragmentary view of the flowchart of FIG. 6 

showing an expansion of a modification of that flowchart for 
branch divergence; 

FIG. 9 is a figure similar to that of FIG. 1 showing 
5 duplication of the scalar execution circuitry of the present 

invention to operate on different portions of the register file 
to increase the opportunities for scalar execution. 

circuitry. 
Alternatively or in addition the scalar execution circuitry 10 

may: (iv) evaluate operands being written to the register file 
across a set of operands to identify identical and non­
identical portions of those operands of the set of operands 
and route any non-identical portions preferentially into one 

15 
memory circuit using a crossbar switch; (v) in response to a 
request for reading a set of operands by the execution units 
from the register file, where those operands include routed 
non-identical portions, activate a memory circuit holding the 
routed non-identical portions and not all of the memory 20 

circuits holding the set of operands; and (vi) provide the 
previously routed non-identical portions to multiple execu­
tion units. 

DETAILED DESCRIPTION OF THE 
PREFERRED EMBODIMENT 

Referring now to FIG. 1, a GPU system 10 of the present 
invention may provide a register file 12 having multiple 
logical banks 14 each using multiple memory circuits 16 
such as SRAM. The memory circuit 16 may be individually 
controlled during data access for reading and writing to 
move between a low and high power mode state, the 
low-power mode state usable when data is not being 
accessed. Each bank may hold one or more multiple operand 
vectors 17. 

The register file 12 may communicate its operand vectors 
17 through a crossbar switch 18 and through a decoder 22 of 
scalar execution circuit 20 with the operand collector 24. 
The operand collector 24, in tum, provides the operand It is thus a feature of at least one embodiment of the 

invention to provide greater power efficiency in the register 
file through a sorting process making use of the existing 
crossbar circuitry of the GPU. 

The scalar execution circuitry may include combiner 
circuitry combining the sorted non-identical portions with 
corresponding identical portions to reconstruct the set of 
operands for multiple execution units. 

It is thus a feature of at least one embodiment of the 

25 vectors 17 to individual execution units 26. Conversely, the 
execution units 26 may communicate operand vectors 
through the crossbar switch 18 and through encoder 21 of 
the scalar execution circuit 20 with the register file 12. The 
scalar execution circuit 20 provides an encoder 21 and 

30 decoder 22 as well as warp parameter register 23 and control 
logic circuitry 25 as will be discussed below. 

Each execution unit 26 may receive a corresponding 

invention to reconstruct compressed operand data to allow 
normal operation without modification of the execution 

35 

operand vector 17 for parallel operation with other execution 
units 26 as part of a single instruction, multiple thread 
architecture (SIMT). As is understood in the art, SIMT 
execution generally provides that the execution units 26 units. 

These particular objects and advantages may apply to 
only some embodiments falling within the claims and thus 
do not define the scope of the invention. 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1 is a simplified block diagram of a graphic pro­
cessing unit showing the register file holding operand vec­
tors which may be communicated to and from a set of 
execution units by means of a crossbar switch and furthering 
showing a scalar execution circuit of the present invention 
including an encoder and decoder; 

FIG. 2 is a flowchart showing encoding steps adopted by 
the present invention during a writeback of data from the 
execution units to the register files; 

FIG. 3 is a representation of the graphics processor during 
a writeback of data from the execution units showing an 
encoding or routing of outputs from the execution units to 
the register file; 

FIG. 4 is a figure similar to FIG. 3 showing a simplified 
register file after routing of the operand vectors of FIG. 3 
during a reading of the register file and showing the decod­
ing of the register files; 

sequentially execute on the respective operand vectors in 
lockstep and in parallel in the absence of a branch diver­
gence. A branch divergence, caused by differences in the 

40 results of branching instructions executed in different execu­
tion units (when the executing instruction receives different 
operands for the different execution units), temporarily 
interrupts this global lockstep execution in favor oflockstep 
execution of only a subset of the execution units branching 

45 in the same way (active threads). 
The GPU system 10 may communicate through a bus 

system 28 with other computer elements, for example, those 
elements including a CPU, external memory, graphic dis­
plays, network ports, keyboards and the like which may be 

50 used to load the register file 12 with starting data and to read 
values from the register file 12. 

Generally, during operation of the GPU system 10, data is 
sent to each execution unit 26 simultaneously from a set of 
operand vectors 17 of the register file 12 (the set of operand 

55 vectors termed a warp) to given execution units 26 which 
operate on the data of the operand vectors 17 to produce a 
writeback vector that is then written back to the register file 
12 to become results or new operand vectors 17 for later 
execution. 

FIG. 5 is a fragmentary view similar to FIG. 4 showing 60 

the decoding process when all operand vectors are the same 
such as allows scalar execution; 

Referring now to also FIGS. 2 and 3 and 4, writeback 
vector 29a-29d may be received from the execution units 26 
at encoder 21 of the scalar execution circuit 20 as a result of 
the execution of previous values of operand vectors 17 by 
the execution units 26. As indicated by process block 30 the 

FIG. 6 is a flowchart of the steps of scalar execution of 
FIG. 5; 

FIG. 7 is a fragmentary view similar to FIG. 3 showing 
the encoding process when there has been branch diver-
gence; 

65 encoder will evaluate these writeback vectors 29a-29b to 
identify common portions among different of the writeback 
vectors 29. 
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BVR 34. The process of reading operand vector 17a need 
only activate a single memory circuit 16a, thus saving power 
in the register file 12. 

Referring now to FIGS. 5 and 6, the encoding system of 

In this example, the operand vectors 17 and writeback 
vector 29 will be considered to be made up of four bytes of 
data. The writeback vectors 29 from the different execution 
units 26 have some identical portions, notably the first three 
bytes of [A, B, CJ, and some different portions, in this case 
the last byte (typically the least significant byte) which 
varies among each of the write back vectors 29. This last byte 
will be labeled [DJ for writeback vector 29a, [EJ for write­
back vector 29b, [FJ for writeback vector 29c and [GJ for 
writeback vector 29d. 

5 the present invention has particular power savings benefit 
when the warp parameter register 23 and, in particular, the 
EBR 36 indicate that the operand vectors 17 needed by each 
execution unit 26 are identical. In this case, there is no need 
to access the register file 12 at all or to activate any of the 

As indicated by process block 35, the identical portions of 
the writeback vector 29 [ A, B, CJ are saved in a portion of 
a warp parameter register 23 designated the base value 
register (BVR) 34 as indicated by process block 32. The 
warp parameter register 23 may provide for a different entry 
for each warp with the entry indexed to that warp 

10 memory circuits 16. Instead, when the EBR 36 indicates that 
all of the operand vectors for the warp 40 are identical [ 1, 1, 
1, lJ as indicated by process block 44 of FIG. 6, the 
necessary data for each execution unit 26 is taken directly 
from the BVR 34 (holding [A, B, C, DJ) as indicated by 

15 process block 46. Here, however, the logic circuitry 25 does 
not distribute the value of the BVR 34 to each of the 

A second portion of the warp parameter register 23, 
designated the encoding bit register (EBR) 36, then receives 
a first mask [1, 1, 1, OJ indicating which portions of the 20 

writeback vectors 29 are common to each other (using a 
value of 1) and which portions of the write back vectors 29 
differ from each other (using a value of 0). 

This value of the EBR 36 is provided to the crossbar 
switch 18 which routes portions of each writeback vector 29 25 

according to the detected commonality of the data. In this 
case, the least significant bits of the writeback vectors 29 
(the only differing portions) will be written to a single 
operand vector 17a stored in a single memory circuit 16a of 
the register file 12 as [D, E, F, GJ. The order of the 30 

non-identical portions of the writeback vector 29 in the 
operand vectors 17 a will be according to the order of the 
execution units 26 producing that data so as to allow the 
encoded values in operand vector 17 a to be later decoded as 
discussed below. The common portions of the writeback 35 

vector 29 having been saved in the BVR 34 need not be 
stored. Note that this writeback requires activation only of a 
single memory circuit 16a, and memory circuit 16b may 
remain in a low power state. 

The operation of the encoder 21 in this regard simply 40 

evaluates similarities among the writeback vectors 29, for 
example, by doing a byte-wise assessment of each byte of 
each writeback vector 29, and if they are equal placing a 1 

multiplexers 42 but instead provides the data of the BVR 34 
to a single multiplexer 42 and a single execution unit 26 for 
scalar execution. This single execution unit 26 executes the 
operand of the BVR 34 alone, with the remaining execution 
units 26 deactivated for power conservation per process 
block 48. In this way there is substantial savings both in the 
execution units 26 and in the register file 12. 

Referring again to FIG. 3, at the time ofwriteback of the 
results from that single execution unit 26, the logic circuitry 
25 overrides the comparison process of the encoder 21 to 
write the EBR 36 with a value indicating all of the writeback 
vectors are equal [1, 1, 1, 1 J resulting in the writeback vector 
29 being stored exclusively to the BVR 34, again without 
activation of the memory circuits 16 for substantial power 
savings. This writeback is indicated by process block 50. 

Referring now to FIGS. 7 and 8, during the execution of 
different operand vectors 17 a-17 d by the execution units 26, 
a branch divergence may occur in which the control flow of 
the threads among different execution units 26 diverges, for 
example, because of different branch paths being taken in 
the execution of a single instruction on different execution 
units 26, in light of the different operand vectors 17 received 
by the different execution units. In the depicted example, 
only two of the execution units, execution unit 26a and 
execution unit 26d, may execute to produce writeback 
vector 29a and 29d, and execution units 26b and 26d may be 
stalled. The normal comparison process of the encoder 21, 
in this case, is not meaningful because of the failure to have 
comparison values for write back vectors 29b and 29c. In this 
case, the logic circuitry 25 suppresses the encoding of the 
writeback vectors 29a and 29d (that is logic circuitry 25 
causes writing each of these writeback vectors 29a and 29d 
to the register file 12 without modification to separate 

in the corresponding portion of the EBR 36 and writing the 
value of common bytes among the writeback vectors 29 to 45 

the BVR 34. When the number of bytes that are different 
among the writeback vector 29 exceeds that which can be 
held by a single operand vector 17, additional operand 
vectors 17 may be used preferably in the same memory 
circuits 16. 50 operand vector 17a and 17d. These active threads (of 

execution units 26a and 26d) producing writeback vectors 
29a and 29d are identified in a mask 52 which may be stored 
in place of the BVR 34. For example, the bits of the mask 
52 may be 1 when the corresponding thread is active and 0 

Referring now to FIG. 4, when the data stored in a warp 
40 is requested by the execution units 26, the warp param­
eter register 23 for that warp is interrogated to see whether 
the operand vectors 17 of the warp 40 include redundant 
data. In particular, EBR 36 is reviewed to control the 
crossbar switch 18 to route the non-common portions of the 
warp 40 to a set of multiplexers 42 contained in the decoder 

55 when the corresponding thread is inactive. The data nor­
mally stored in the BVR 34 is not required because there is 
no encoding or compressing of the writeback vector 29. 
Therefore this storage space may be used for the mask 52. 
In addition the EBR 36 is marked to indicate that a branch 

22 and associated with each execution unit 26. The multi­
plexer 42 for each execution unit 26 will receive a different 
byte of operand vectors 17 a corresponding to the portion of 
the warp 40 associated with the given execution unit 26. The 
remaining bytes are obtained from the BVR 34 and are 
assembled together to reconstruct the values of the write­
back vector 29 previously stored in the register file 12. In 
this case, the operand vector 17a provides the least signifi- 65 

cant bytes [D, E, F, GJ which are assembled by the multi­
plexers 42 to the common bytes [A, B, CJ taken from the 

60 diversion occurred, for example, indicated by the letter D in 
the EBR value 36. This indication will be used when the data 
is again recalled by the execution units 26. 

While there is no compression of the writeback vector 29 
in this example of branch divergence, it will be appreciated 
that when the warp 40 associated with warp parameter 
register 23 for this data that was just generated is next 
provided to the execution units 26, the operand vectors 17 a 
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where such one or more processor can be configured to 
operate on one or more processor-controlled devices that can 
be similar or different devices. Furthermore, references to 
memory, unless otherwise specified, can include one or more 

and 17b for the active threads will be identical and hence 
could be executed in scalar fashion by one execution unit 26. 
This state is determined by using the mask 52 to filter the 
EBR value 36 to check for equivalence only in the active 
threads. That is, whether the threads are identical as indi­
cated in the EBR 36 is considered only for those threads 
marked with a 1 in the mask 52. 

Thus, as shown in FIG. 8, the previously described 
process block 44 of FIG. 2 may be expanded as process 
block 44' to consider only active threads rather than whether 
all threads have equal operand vectors. In this way, scalar 
execution can be exploited in common situations of branch 
divergence, greatly increasing the efficiency that can be 
gained from this technique. 

5 processor-readable and accessible memory elements and/or 
components that can be internal to the processor-controlled 
device, external to the processor-controlled device, and can 
be accessed via a wired or wireless network. 

It is specifically intended that the present invention not be 
10 limited to the embodiments and illustrations contained 

This technique which selectively encodes or does not 15 

encode data depending on whether the threads are divergent 
or not can create a situation where branch diversion instruc­
tions must update a value of an encoded operand vector 17. 
This can be detected by examining the active mask 52, and 
when such a case occurs, the GPU system 10 may imple- 20 

ment a special register-to-register move instruction to 
retrieve and decode the encoded operand vector 17 and store 
it back into the register file 12 without encoding it. 

Referring now to FIG. 9, the opportunities for scalar 
execution can be increased by dividing scalar execution 25 

circuit 20 into two ( or more) portions each containing 
duplicate encoders 21, decoders 22, and warp parameter 
register 23, that may in tum deal independently with respec­
tive portions of the register file 12, that is, each dealing with 
a subset of the warp of operand vector 17. By subdividing 30 

the operand vectors 17 into smaller groupings, the potential 
that all operand vectors 17 are the same is increased, thus 
increasing the opportunity for scalar execution. 

Certain terminology is used herein for purposes of refer­
ence only, and thus is not intended to be limiting. For 35 

example, terms such as "upper", "lower", "above", and 
"below" refer to directions in the drawings to which refer­
ence is made. Terms such as "front", "back", "rear", "bot­
tom" and "side", describe the orientation of portions of the 
component within a consistent but arbitrary frame of refer- 40 

ence which is made clear by reference to the text and the 
associated drawings describing the component under dis­
cussion. Such terminology may include the words specifi­
cally mentioned above, derivatives thereof, and words of 
similar import. Similarly, the terms "first", "second" and 45 

other such numerical terms referring to structures do not 
imply a sequence or order unless clearly indicated by the 
context. 

When introducing elements or features of the present 
disclosure and the exemplary embodiments, the articles "a", 50 

"an", "the" and "said" are intended to mean that there are 
one or more of such elements or features. The terms "com­
prising", "including" and "having" are intended to be inclu­
sive and mean that there may be additional elements or 
features other than those specifically noted. It is further to be 55 

understood that the method steps, processes, and operations 
described herein are not to be construed as necessarily 
requiring their performance in the particular order discussed 
or illustrated, unless specifically identified as an order of 
performance. It is also to be understood that additional or 60 

alternative steps may be employed. 
References to "a microprocessor" and "a processor" or 

"the microprocessor" and "the processor," can be under­
stood to include one or more microprocessors that can 
communicate in a stand-alone and/or a distributed environ- 65 

ment(s), and can thus be configured to communicate via 
wired or wireless communications with other processors, 

herein and the claims should be understood to include 
modified forms of those embodiments including portions of 
the embodiments and combinations of elements of different 
embodiments as come within the scope of the following 
claims. All of the publications described herein, including 
patents and non-patent publications, are hereby incorporated 
herein by reference in their entireties. 

What we claim is: 
1. A computer architecture comprising: 
a register file holding vector registers of operands in 

different memory circuits; 
a set of execution units for SIMT execution of an instruc­

tion in parallel using a set of operands; and 
scalar execution circuitry evaluating operands of a set of 

operands subject to a read request by the execution 
units, and when all operands of the set of operands are 
identical; 

(i) transferring only a representative operand of the set of 
operands to a single execution unit without activating 
memory circuits for each of the operands of the set of 
operands; 

(ii) executing an operation on the representative operand 
on the single execution unit while holding other execu­
tion units idle; and 

(iii) storing a result of the execution of the representative 
operand as a single operand without activating memory 
circuits for each of the operands of the set of operands; 

wherein the scalar execution circuitry further: 
(iv) evaluates operands being written to the register file 

across a set of operands to identify identical and 
non-identical portions of those operands of the set of 
operands and sorts any non-identical portions prefer­
entially into one memory circuit using a crossbar 
switch and separately sorts a representative identical 
portion into a storage location different from the one 
memory circuit; 

(v) in response to a request for reading a set of operands 
by the execution units from the register file where those 
operands include sorted non-identical portions, acti­
vates a memory circuit holding the sorted non-identical 
portions and not all of the memory circuits holding the 
set of operands and combining each sorted non-iden­
tical portion with the representative portion to provide 
reconstructed operands; and 

(vi) provides the reconstructed operands to multiple of the 
execution units. 

2. The computer architecture of claim 1 wherein the 
representative operand is held in a register separate from the 
memory circuits of the register file. 

3. The computer architecture of claim 1 further including 
a crossbar switch providing a parallel connection on a path 
between the register file and the execution units according to 
a crossbar switch command permitting connection of a given 
vector register to any execution unit and wherein the scalar 
execution circuit transfers the representative operand to a 



US 10,592,466 B2 
9 

single execution unit using the crossbar switch and stores the 
result of execution in one vector register using the crossbar 
switch. 

4. The computer architecture of claim 3 wherein the 
execution units provide trigonometric functions. 

5. The computer architecture of claim 1 wherein the scalar 
execution circuitry, when all operands of the set of operands 
subject to a read request by the execution units are not 
identical; 

10 
memory circuit and sort a representative identical por­
tion into a storage location different from the one 
memory circuit; and 

(ii) in response to a request for reading a set of operands 
by the execution units from the register file where those 
operands include routed non-identical portions, acti­
vate a memory circuit holding the routed non-identical 
portions and combining each routed non-identical por-
tion with the representative portion to provide recon­
structed operands to multiple of the execution units. (iv) transfers different operands of the set of operands to 10 

different execution units; 10. The computer architecture of claim 9 wherein the 
scalar execution circuitry further controls the crossbar 
switch to reroute the any non-identical portions from one 

15 
bank to multiple execution units. 

(v) executes the different operands on the different execu­
tion units; 

(vi) in a case of branch divergence between the different 
execution units, identifies results of executions associ­
ated with one branch as active branch divergence 
operands; 

wherein when the scalar execution circuitry evaluates 
operands of a set of operands subject to a read request 
by the execution units, and when all operands of the set 
of operands subject to the read request are not identical 
but all branch divergence operands of the set of oper­
ands are identical: 

(vii) transfers only a divergence representative operand of 
the branch divergence operands of the set of operands 
to a single execution unit without activating memory 
circuits for each of the operands of the set of operands 
or each of the branch divergence operands of the set of 
operands; 

(viii) executes the divergence representative operand on 
the single execution unit while holding other execution 
units idle; and 

(ix) stores a result of execution of the divergence repre­
sentative operand. 

6. The computer architecture of claim 5 wherein the result 
of the execution of the divergence representative operand is 
stored in multiple vector registers in different memory 
circuits. 

7. The computer architecture of claim 1 wherein the scalar 
execution circuitry includes combiner circuitry combining 
the sorted non-identical portions with the representative 
identical portion to produce the set of reconstructed oper­
ands for multiple execution units and wherein the storage 
location provides a mask mapping bits of the sorted non­
identical portions and representative identical portion to 
each reconstructed operand. 

11. The computer architecture of claim 10 wherein the 
scalar execution circuitry includes combiner circuitry com­
bining the rerouted non-identical portions with the repre­
sentative identical portions to reconstruct the set of operands 

20 for multiple execution units and wherein the storage location 
provides a mask mapping bits of the sorted non-identical 
portions and representative identical portion to each recon­
structed operand. 

12. The computer architecture of claim 9 wherein the 
25 scalar execution circuitry further includes an encoding reg­

ister separate from the register file for holding the represen­
tative identical portion of the operands combined with the 
rerouted non-identical portions. 

13. The computer architecture of claim 9 wherein the 
30 scalar execution circuit includes an encoding register record­

ing for each operand which portions are identical and which 
portions are non-identical and wherein the encoding register 
is written to when the operands are written to the register file 
and the written value in the encoding register is used when 

35 the operands are read from the register file for control of the 
crossbar switch. 

14. The computer architecture of claim 9 wherein the 
scalar execution circuitry further controls the execution units 
to execute only a single operand on a single execution unit 

40 when an evaluation of operands across the set of operands 
indicates that there are no non-identical portions. 

15. The computer architecture of claim 9 wherein the 
scalar execution circuit detects branch divergence in the 
execution of the execution units to block controlling cross-

45 bar switch to route any non-identical portions preferentially 
into one bank. 

8. The computer architecture of claim 7 wherein the scalar 
execution circuitry further includes an encoding register 
separate from the register file holding a copy of the identical 50 

portions of the operands for combining with the sorted 
non-identical portions. 

16. The computer architecture of claim 9 wherein the 
scalar execution circuitry detects a subset of active execu­
tion units after a branch divergence to control subsequent 
operation of the execution units to execute only a single 
operand on a single execution unit when an evaluation of 
operands across the set of operands indicates that there are 
no non-identical portions in the portion associated with 
execution units that were active. 

9. A computer architecture comprising: 
a register file holding vector registers of multiple oper­

ands in different memory circuits; 
a set of execution units for SIMT execution of an instruc­

tion in parallel using a set of operands; 
a crossbar switch providing a parallel connection of banks 

55 

of the register file to execution units according to a 
crossbar switch command permitting connection of a 60 

vector register to any execution unit; and 
scalar execution circuitry: 
(i) evaluating operands being written to the register file 

across a set of operands to identify identical and 
non-identical portions of those operands of the set of 65 

operands and controlling the crossbar switch to route 
any non-identical portions preferentially into one 

17. The computer architecture of claim 9 wherein the 
execution units provide trigonometric functions. 

18. The computer architecture of claim 9 wherein the 
scalar execution circuit detects branch divergence in the 
execution of the execution units to control the crossbar 
switch to not route non-identical portions while there is 
divergence. 

19. A method of executing programs on a computer 
architecture having: 

a register file holding vector registers of operands in 
different memory circuits; 

a set of execution units for SIMT execution of an instruc­
tion in parallel using a set of operands; 
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scalar execution circuitry evaluating operands of a set of 
operands subject to a read request by the execution 
units, and when all operands of the set of operands are 
identical: 

(i) transferring only a representative operand of the set of 5 

operands to a single execution unit without activating 
memory circuits for each of the operands of the set of 
operands; 

(ii) executing the representative operand on the single 
execution unit while holding other execution units idle; 10 

and 
(iii) storing a result of execution of the representative 

operand as a single operand without activating memory 
circuits for each of the operands of the set of operands; 
the method comprising, when operands subject to a 15 

read request by execution units are identical, the steps 
of: 

(a) transferring only a representative operand of the set of 
operands to a single execution unit without activating 
memory circuits for each of the operands of the set of 20 

operands; 
(b) executing the representative operand on the single 

execution unit while holding other execution units idle; 
and 

12 
( c) storing a result of execution of the representative 

operand as a single operand without activating memory 
circuits for each of the operands of the set of operands; 
and 

further including the steps of: 
( d) evaluating operands being written to the register file 

across a set of operands to identify, identical and 
non-identical portions of those operands of the set of 
operands and sorts any non-identical portions prefer­
entially into one memory circuit using a crossbar 
switch and sorts a representative identical portion into 
a storage location different from the one memory 
circuit; 

( e) in response to a request for reading a set of operands 
by the execution units from the register file where those 
operands include sorted non-identical portions, activat­
ing a memory circuit holding the sorted non-identical 
portions and not all of the memory circuits holding the 
set of operands and combining each sorted non-iden­
tical portion with the representative portion to provide 
reconstructed operands; and 

(f) providing the reconstructed operands to multiple of the 
execution units. 

* * * * * 


