${ }^{(12)}$ United States Patent
Asimakopoulos et al.
(10) Patent No.: US 10,940,199 B2
(45) Date of Patent:

Mar. 9, 2021
(54) VERSIKINE FOR INDUCING AND POTENTIATING AN IMMUNE RESPONSE
(71) Applicant: Wisconsin Alumni Research

Foundation, Madison, WI (US)
(72) Inventors: Fotios Asimakopoulos, Madison, WI
(US); Chelsea Hope, Madison, WI (US)
(73)

Assignee: WISCONSIN ALUMNI RESEARCH FOUNDATION, Madison, WI (US)
(*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 7 days.
(21) Appl. No.: 15/454,496
(22) Filed: Mar. 9, 2017

Prior Publication Data
US 2017/0258898 A1 Sep. 14, 2017

Related U.S. Application Data

(60) Provisional application No. 62/437,418, filed on Dec. 21, 2016, provisional application No. 62/343,414, filed on May 31, 2016, provisional application No. 62/305,761, filed on Mar. 9, 2016.
(51) Int. Cl.

A61K 39/39	(2006.01)
C07K 14/47	(2006.01)
A61K 39/00	(2006.01)

(52) U.S. Cl.

CPC A61K 39/39 (2013.01); C07K 14/4725
(2013.01); A61K 2039/55516 (2013.01); A61K 2039/572 (2013.01); C07K 2319/00 (2013.01)
(58) Field of Classification Search

None
See application file for complete search history.
References Cited
U.S. PATENT DOCUMENTS

2004/0213762	Al^{*}	10/2004	Wight	C07K 14/4725
				424/93.2
2006/0239965	Al*	10/2006	Szoka, Jr.	A61K 38/19
				424/85.1
2011/0008366	Al^{*}	1/2011	Wight	A61K $31 / 7105$
				424/172.1

FOREIGN PATENT DOCUMENTS

EP
2078728 Al * 7/2009
C07K 14/4725

OTHER PUBLICATIONS

Arana P, Zabaleta A, Lasa M, Maiso P, Alignani D, Jelinek T, et al. High-Throughput Characterization and New Insight into the Role of Tumor Associated Macrophages (TAMs) in Multiple Myeloma (MM). Blood 2016;128(22):482-82

Brasel K, De Smedt T, Smith JL, Maliszewski CR. Generation of murine dendritic cells from flt3-ligand-supplemented bone marrow cultures. Blood 2000;96(9):3029-39.
Broz ML, Binnewies M, Boldajipour B, Nelson AE, Pollack JL, Erle DJ, et al. Dissecting the tumor myeloid compartment reveals rare activating antigen-presenting cells critical for T cell immunity. Cancer Cell 2014;26(5):638-52.
Bupathi M, Wu C. Biomarkers for immune therapy in colorectal cancer: mismatch-repair deficiency and others. J Gastrointest Oncol 2016;7(5):713-20.
Coombes JL, Powrie F. Dendritic cells in intestinal immune regulation. Nat Rev Immunol 2008;8(6):435-46.
Cross NA, Chandrasekharan S, Jokonya N, Fowles A, Hamdy FC, Buttle DJ, et al. The expression and regulation of ADAMTS-1, -4, $-5,-9$, and -15 , and TIMP- 3 by TGFbetal in prostate cells: relevance to the accumulation of versican. Prostate 2005;63(3):269-75.
Du WW, Yang W, Yee AJ. Roles of versican in cancer biology tumorigenesis, progression and metastasis. Histol Histopathol 2013;28(6):701-13.
Foulcer SJ, Day AJ, Apte SS. Isolation and purification of versican and analysis of versican proteolysis. Methods Mol Biol 2015;1229:587604.

Galon J, Costes A, Sanchez-Cabo F, Kirilovsky A, Mlecnik B, Lagorce-Pages C, et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 2006;313(5795): 1960-4
Gao D, Joshi N, Choi H, Ryu S, Hahn M, Catena R, et al. Myeloid progenitor cells in the premetastatic lung promote metastases by inducing mesenchymal to epithelial transition. Cancer Res 2012;72(6)1384-94.
Goldszmid RS, Dzutsev A, Viaud S, Zitvogel L, Restifo NP, Trinchieri G. Microbiota modulation of myeloid cells in cancer therapy. Cancer Immunol Res 2015;3(2): 103-9.
Hope C, Foulcer S, Jagodinsky J, Chen SX, Jensen JL, Patel S, et al. Immunoregulatory roles of versican proteolysis in the myeloma microenvironment. Blood 2016;128(5):680-5.
Hope C, Ollar SJ, Heninger E, Hebron E, Jensen JL, Kim J, et al. TPL2 kinase regulates the inflammatory milieu of the myeloma niche. Blood 2014;123(21):3305-15.
Kim S, Takahashi H, Lin WW, Descargues P, Grivennikov S, Kim Y, et al. Carcinoma-produced factors activate myeloid cells through TLR2 to stimulate metastasis. Nature 2009;457(7225): 102-6.
Lind GE, Kleivi K, Meling GI, Teixeira MR, Thiis-Evensen E, Rognum TO, et al. ADAMTS1, CRABP1, and NR3C1 identified as epigenetically deregulated genes in colorectal tumorigenesis. Cell Oncol 2006;28(5-6):259-72.
Lynch D, Murphy A. The emerging role of immunotherapy in colorectal cancer. Ann Trans Med 2016;4(16):305.
(Continued)

Primary Examiner - Amy E Juedes

(74) Attorney, Agent, or Firm - Quarles \& Brady LLP

(57)

ABSTRACT

Disclosed are methods, kits, polypeptides, and pharmaceutical compositions for inducing an immune response in a subject, which may include a T-cell mediated immune response. The methods comprise administering to the subject, or to explanted cells of the subject, a pharmaceutical composition comprising an effective amount of versikine or a variant of versikine that induces the T-cell mediated immune response. The methods, kits, polypeptides, and pharmaceutical compositions may be used, in particular, to treat a subject having a cell proliferative disease or disorder.

6 Claims, 24 Drawing Sheets

Specification includes a Sequence Listing.

References Cited

OTHER PUBLICATIONS

Markowitz SD, Bertagnolli MM. Molecular origins of cancer: Molecular basis of colorectal cancer. N Engl J Med 2009;361(25):244960.

Marley AR, Nan H. Epidemiology of colorectal cancer. Int J Mol Epidemiol Genet 2016;7(3): 105-14.
McMahon M, Ye S, Izzard L, Dlugolenski D, Tripp RA, Bean AG, et al. ADAMTS5 is a Critical Regulator of Virus-Specific T Cell Immunity. PLoS Biol 2016;14(11):e1002580.
Nandadasa S, Foulcer S, Apte SS. The multiple, complex roles of versican and its proteolytic turnover by ADAMTS proteases during embryogenesis. Matrix Biol 2014;35:34-41.
Pitt JM, Vetizou M, Waldschmitt N, Kroemer G, Chamaillard M, Boneca IG, et al. Fine-Tuning Cancer Immunotherapy: Optimizing the Gut Microbiome. Cancer Res 2016;76(16):4602-7.
Rekoske BT, McNeel DG. Immunotherapy for prostate cancer: False promises or true hope? Cancer 2016; 122(23):3598-607.
Ricciardelli C, Sakko AJ, Ween MP, Russell DL, Horsfall DJ. The biological role and regulation of versican levels in cancer. Cancer Metastasis Rev 2009;28(1-2)233-45.
Salmon H, Idoyaga J, Rahman A, Leboeuf M, Remark R, Jordan S, et al. Expansion and Activation of CD103(+) Dendritic Cell Progenitors at the Tumor Site Enhances Tumor Responses to Therapeutic PD-L1 and BRAF Inhibition. Immunity 2016;44(4):924-38.
Sichien D, Scott CL, Martens L, Vanderkerken M, Van Gassen S, Plantinga M, et al. IRF8 Transcription Factor Controls Survival and Function of Terminally Differentiated Conventional and Plasmacytoid Dendritic Cells, Respectively. Immunity 2016.
Spranger S, Bao R, Gajewski TF. Melanoma-intrinsic beta-catenin signalling prevents anti-tumour immunity. Nature 2015;523(7559)2315.

Spranger S, Sivan A, Corrales L, Gajewski TF. Tumor and Host Factors Controlling Antitumor Immunity and Efficacy of Cancer Immunotherapy. Adv Immunol 2016;130:75-93.
Tang M, Diao J, Gu H, Khatri I, Zhao J, Cattral MS. Toll-like Receptor 2 Activation Promotes Tumor Dendritic Cell Dysfunction by Regulating IL-6 and IL-10 Receptor Signaling. Cell Rep 2015;13(12):2851-64.
Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 2012;366(26):2443-54. Wang K, Karin M. Tumor-Elicited Inflammation and Colorectal Cancer. Adv Cancer Res 2015;128:173-96.
Westdorp H, Fennemann FL, Weren RD, Bisseling TM, Ligtenberg MJ, Figdor CG, et al. Opportunities for immunotherapy in microsatellite instable colorectal cancer. Cancer Immunol Immunother 2016;65(10)1249-59.
Wight TN, Kang I, Merrilees MJ. Versican and the control of inflammation. Matrix Biol 2014;35:152-61.
Woo SR, Corrales L, Gajewski TF. Innate immune recognition of cancer. Annu Rev Immunol 2015;33:445-74.
Wu YJ, La Pierre DP, Wu J, Yee AJ, Yang BB. The interaction of versican with its binding partners. Cell Res 2005;15(7):483-94.
Zhang Z, Miao L, Wang L. Inflammation amplification by versican: the first mediator. Int J Mol Sci 2012;13(6):6873-82.
Hope et al., "Versican-derived matrikines regulate Batf3-dendritic cell differentiation and promote T-cell infiltration in colorectal cancer," J. Immunol. Sep. 1, 2017; 199(5): 1933-1941.
Kischel, et al., "Versican overexpression in human breast cancer lesions: known and new isoforms for stromal tumor targeting," Int'l
J. Can., 126, 640-650 (2010).

* cited by examiner

Figure 1

Figure 2
∞
0

Figure 4

Figure 5

		8			
Genes	$\begin{aligned} & \text { Log } \\ & \text { fold } \end{aligned}$	Genes (1-20)	$\begin{aligned} & \log ^{2} \\ & \text { fold } \end{aligned}$	$\begin{aligned} & \text { Genes } \\ & (20-40) \end{aligned}$	$\begin{aligned} & \log ^{2} \\ & \text { fold } \end{aligned}$
TMFAPGL2-SENM	2.771	ve4s	3074	PCDHGA9	1.150
Yean	14**	MTHES	2.723	CCl 3	1.140
MX1	1.560	stgect	1.719	colgaz	1.113
[F144.	1481	IF1441.	1.637	Lf	1.080
FFIM	1447	Plvap	1.624	Siglecti	1.077
THED	1393	ISG15	4.587	CMPl2	1.076
FITM1	1.392	ICAMS	1.583	ANGPTLG	1.069
Trime2	1.342	nSAD2	1.541	ASRGL 1	1.038
ccle	1295	irias	1.460	FCGEP	1.020
Locas4092	1.293	OASL			
¢ 8	1.281	OAsL		RRRCl8	
Mmp9	1.271	TRIM22	1.432	COLEC12	1.011
\%AFI	1.243	ABHDS	1.367	69	1.008
[FIT]	1214	$\mathrm{CO14}$	1.351	GAA	1.002
2NF618	1.138	MAP15	1.333	Ems	\$/ ${ }^{\text {m }}$
GL153	1.140	IFITI	1.323		
Mx2	4.102	PHIDA2	1.312	WBPEs.	8.617
IFIG	1092	MMRN2	1.295		-3, 327
PLAU	1.010	cc. 2	1.277	ASp\%Cl	-3.194
oass	0887	MMpg	1.249	MPDZ	-3,380
oasz	0.534	Mx1	1.205		
PARP14	0.485	ABCAI	1.174		
STATI	0.436	IFITM1	1.171		

Figure 5
 $\underset{48 \mathrm{~kg}}{\substack{\mathrm{kgr} \\ 48 \mathrm{~h}}}$

山

\square

A
ヨ8H
NVOA
ヨVVEdGD

Figure 6
Figure 6

Figure 7

Figure 7

Figure 8

Figure 8

Figure $9 \quad \mathrm{~A}$

Figure 10

$1+$

0

N $\forall O A$

Figure 11

= VCAN
= Versikine

Figure 11

Figure 11
Figure 12

Figure 12

Figure 13

VERSIKINE FOR INDUCING AND POTENTIATING AN IMMUNE RESPONSE

CROSS-REFERENCE TO RELATED PATENT APPLICATIONS

The present application claims the benefit of priority under 35 U.S.C. § 119(e) to U.S. Provisional Application No. 62/437,418, filed on Dec. 21, 2016, and to U.S. Provisional Application No. 62/343,414, filed on May 31, 2016, and to U.S. Provisional Application No. 62/305,761, filed on Mar. 9, 2016, the contents of which are incorporated herein by reference in their entireties.

BACKGROUND

The field of the invention relates to methods and compositions for inducing and/or potentiating an immune response. In particular, the field of the invention relates to methods and compositions that utilize and/or include versikine for inducing and/or potentiating a T -cell mediated immune response.

Versican, also known by the synonyms PG-M and CSPG2, was identified first in the culture of labeled fibroblasts. (See Coster et al., (1979)). Versican is a chondroitin sulfate (CS) proteoglycan that belongs to a family of hyaluronan (HA) binding proteins. The human versican gene is located on chromosome 5 q and contains 15 exons. The versican glycoprotein comprises three major functional domains including: an N-terminal globular domain that mediates HA binding via two linking sub-domains, one or two alternatively spliced glycosaminoglycan (GAG) attachment domains referred to as GAG α and GAG β, and a C-terminal G3 domain. (See Zimmermann et al., (1989)). Five different splice variants result in five different versican isoforms referred to as V0, V1, V2, V3, and V4. (See Dours-Zimmermann, et al., (1994)). Versican V0 contains both GAG α and GAG β attachment exons and is the largest isoform, containing up to 23 CS chains; versican V1 contains only exon 8 and has up to 15 CS chains; versican V2 contains only exon 7 and has up to 8 GAG attachment sites; versican V3 does not contain either large exon and thus lacks CS chains; versican V4 has a truncated GAG β domain from utilization of a cryptic splice site in exon 8 and 5 predicted CS attachment sites. (See id.; see also, Kischel et al., 2010).

Versican has been shown to bind to Toll-like receptor-2 (TLR2) receptor complexes on tumor-infiltrating myeloid cells and regulate inflammatory cytokine production (Kim et al., 2009), promote tolerogenic polarization of antigenpresenting cells (Tang et al., 2015), and promote the mes-enchymal-epithelial transition in the carcinoma metastatic niche (Gao et al., 2012). Versican is proteolytically cleaved by ADAMTS-type proteases in a highly-regulated manner that involves CS chains. A cleavage product generated by disruption of a Glu-Ala bond at position 441 of versican's V1 isoform, has been previously termed versikine (Nandadasa et al., 2014). Versikine has been shown to be bioactive in development (McCulloch et al., 2009). However, the roles of versican proteolysis and/or versikine in immunomodulation remain unknown.

SUMMARY

Disclosed are methods and compositions for inducing and/or potentiating an immune response. The present inventors have determined that versikine can be administered in order to induce and/or potentiate, in particular, a T-cell mediated immune response, which may be characterized by
a T-cell inflamed phenotype. As such, the inventors have determined that versikine can be administered to potentiate T-cell activating immunotherapies, including chimeric antigen receptor (CAR) T-cell therapies, tumor infiltrating lymphocyte (TIL) therapies, and other cellular therapies utilized for treating cell proliferative diseases or disorders. The inventors also have determined that versikine can be administered to potentiate other therapies utilized for treating cell proliferative diseases or disorders whose efficacy is linked to a T-cell inflamed phenotype, including, but not limited to, conventional chemotherapies, targeted therapies, oncolytic viral therapies, and radiotherapy.

The disclosed methods include methods for inducing an immune response in a subject in need thereof. The immune response induced and/or potentiated by the disclosed methods may include a T-cell mediated immune response, optionally characterized by a type 1 interferon signature (i.e., a type 1 interferon expression profile), expression of chemokines that attract T-cells (e.g., CCL2), expression of T-cell specific transcripts, and expression of macrophage-activation markers. The disclosed methods may include administering to the subject in need thereof a pharmaceutical composition comprising an effective amount of versikine or a variant thereof that induces the T-cell mediated immune response. The pharmaceutical composition may be administered by any suitable route including, for example, systemically or by injecting the pharmaceutical composition directly into tissue (e.g., tumor tissue).

The disclosed methods also may include administering the pharmaceutical composition comprising an effective amount of versikine or a variant thereof that induces and/or potentiates a T-cell mediated immune response to explanted cells from a subject, for example, in a method in which the explanted cells are treated with the pharmaceutical composition ex vivo. The explanted cells thus treated may then be administered back to the subject, for example, by re-infusion. The explanted cells may include immune cells (e.g., T-cells or dendritic cells), which optionally are treated, contacted, or primed with an antigen (e.g., a tumor antigen), either before, concurrently with, or after treatment with the pharmaceutical composition comprising an effective amount of versikine or a variant thereof. The explanted cells may include tumor cells.
The disclosed methods include methods for treating cell proliferative diseases and disorders such as cancers in a subject by administering to the subject a pharmaceutical composition comprising an effective amount of versikine or a variant thereof that induces and/or potentiates a T-cell mediated immune response. As such, cancers treated by the disclosed methods may include cancers that are characterized by an impaired T-cell mediated immune response, and in particular, an impaired T-cell inflamed phenotype. As an example, the disclosed methods may include methods of administering versikine or a variant thereof to a subject having a non-T-cell inflamed tumor. In the disclosed methods for treating cancer in a subject, the methods further may include administering to the subject cancer therapy before, concurrently with, or after administering the pharmaceutical composition comprising versikine or the variant thereof. Suitable cancer therapies may include, but are not limited to, administering chemotherapeutic agents.

Also disclosed are methods for determining whether a subject will benefit from a method that includes administering to the subject a pharmaceutical composition comprising an effective amount of versikine or a variant thereof that induces and/or potentiates a T-cell mediated immune response. The methods may include determining the con-
centration of versikine in a biological sample from the subject (e.g., a blood product), and if the determined level is determined to be below a selected baseline, then administering the pharmaceutical composition comprising versikine or the variant thereof that induces and/or potentiates a T-cell mediated immune response.

Also disclosed are kits comprising components that optionally may be utilized to perform the methods disclosed herein. The kits may include one or more of (a) versikine or a variant thereof, where the versikine or the variant thereof optionally is provided as a pharmaceutical composition; and (b) a reagent for detecting the concentration of versikine in a biological sample (e.g., an anti-versikine antibody which optionally is labelled with a detectable label).

Also disclosed are isolated polypeptides which may include non-naturally occurring isolated polypeptides. The isolated polypeptides typically exhibit one or more biological activities associated with versikine, which include, but are not limited to, inducing and/or potentiating a T-cell mediated immune response. The isolated polypeptides may be formulated as a pharmaceutical composition, which preferably comprises an effective amount of the polypeptides for inducing and/or potentiating a T-cell mediated immune response in a subject in need thereof. The isolated polypeptides may be fused and/or conjugated to other therapeutic polypeptides, including but not limited to, therapeutic antibodies, therapeutic bi-specific antibodies, and/or therapeutic ligands.

Also disclosed are isolated polynucleotides encoded any of the isolated polypeptides disclosed herein. The isolated polynucleotide may be present in vectors for replication of the polynucleotides or for expression of the encoded polypeptides, for example, where the polynucleotides are operably linked to a promoter. Also disclosed are isolated cells that comprise the isolated polynucleotides, particular the isolated polynucleotides as present in the disclosed vectors. Also disclosed are methods for expressing the encoded polypeptides, which methods include culturing the isolated cells as disclosed herein.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1. CD8+ aggregate infiltration in myeloma bone marrows with active versican proteolysis. Staining of bone marrow biopsies with antibodies against neoepitope DPEAAE generated by V1-versican cleavage at Glu ${ }^{41}$ Ala 442, macrophage marker CD68 and T-cell marker CD8. Four patterns of staining were observed in 19 informative punches, as shown. Arrow points at a CD8+ lymphocytic aggregate (>5 CD8+ cells in cluster). CD8-"poor" pattern refers to single CD8+ cells (occasionally doublets) sparsely distributed within tumor.

FIG. 2. Cellular origin of versican and versican-degrading proteases in the myeloma microenvironment. A. Isoformspecific primers detected expression of versican isoforms by MAM (CD14+) but not myeloma tumor cells (CD138+) or myeloma BM-MSC isolated from the cases indicated. B. Relative expression of ADAMTS1, ADAMTS4, and ADAMTS 5 mRNA in myeloma bone marrow stromal cells (BM-MSC) compared to normal BM-MSC. C. ADAMTS1 mRNA was robustly expressed in BM-MSC (note logarithmic scale). * $p<0.05$.

FIG. 3. Versikine stimulates inflammatory cytokine production by primary MAM. A. and B. Freshly explanted MAM were exposed to $1 \mu \mathrm{M}$ versikine for 12 hours. Relative expression of IL6 and IL1 β transcripts is shown. C. MM1.S myeloma cells were exposed to $1 \mu \mathrm{M}$ versikine
overnight and labeled with BrdU for 30 minutes prior to analysis. Anti-BrdU/PI FACS analysis was employed to determine the relative proportion of cells in each phase of the cell cycle. * $\mathrm{p}<0.05 ; * * \mathrm{p}<0.01 ; * * * \mathrm{p}<0.001$.
FIG. 4. Tpl2 and Tlr2 are implicated in versikine signaling. Tp12-/- bone-marrow-derived macrophages (BMDM) were treated with $1 \mu \mathrm{M}$ versikine and cytokine concentrations were measured in the culture supernatant at 12 hours post-exposure. A., IL1 β; B., IL6; C., IL10; D, IL12p40. E. Signaling mediators induced by versikine stimulation of BMDM were evaluated. BMDM were collected following stimulation with versikine at designed timepoints (each number reflects minutes) and subjected to immunoblot analysis with the antibodies shown. F. Tlr2-/- BMDM were stimulated by versikine for 12 hours and IL6 protein was measured in the supernatant. G. Versikine modulates macrophage polarization. BMDM were exposed to versikine alone (A) or versikine+OVA/anti-OVA immune complexes (IC), as previously described (Edwards et al., 2006). Versikine exposure resulted in M1-like phenotype (IL12 ${ }^{h i}$, $\mathrm{IL} 10^{20}$) in the absence of concurrent $\mathrm{Fc} \gamma$ ligation. Versikine+ IC promoted macrophage polarization towards an M2b-like, immunoregulatory phenotype (IL12 $2^{2 o}, \operatorname{IL} 10^{h i}$). *** $\mathrm{p}<0.001$.
FIG. 5. Versikine induces upregulation of IRF8 and interferon-stimulated-genes (ISG). A. RNA-seq analysis of MM1.S myeloma cells exposed to versikine-producing macrophages for 48 h . Only 23 genes were differentially expressed and all were upregulated. 13 of 23 upregulated genes were interferon-stimulated-genes (ISG, highlighted yellow). VCAN gene transcription changes are highlighted in blue. B. RNA-seq analysis of THP-1 cells expressing versikine following co-culture with MM1.S cells for 48 hours. Genes shown were differentially expressed at least 2 -fold ($\log ^{2}$ fold change $>$ or equal to 1 for overexpressed, < or equal to 1 for underexpressed) with a threshold false discovery rate (FDR) of 0.05. ISGs are highlighted in yellow; VCAN gene transcription changes are highlighted in blue; EBI3 transcription changes are highlighted in grey (FDR for EBI3 was 0.053). C and D. MM1.S and THP-1derived macrophage co-cultures were exposed to $0.5 \mu \mathrm{M}$ of purified versikine for 4,18 or 48 hours. RNA was collected from each cell type and analyzed by RT-PCR using an interferon signaling RT-PCR array (see Materials and Methods). Representative ISG transcription is shown for MM1.S (FIG. 5C) and THP-1 cells (FIG. 5D). E. Interferon regulatory factor (IRF) transcription in MM1.S cells following treatment with versikine (Vkn) versus vehicle (Veh). Expression is normalized to Veh-only levels at 4 h . F. IRF9 mRNA levels in MM1.S cells co-cultured with macrophages and treated with versikine and compared to vehicle-only control at each timepoint. G. EBI3 transcription in MM1.S cells co-cultured with macrophages and treated with versikine (grey bars) or vehicle (black bars) for designated time-lengths. H. RT-PCR analysis for EBI3 transcripts in patient-derived, freshly-explanted MAM treated with 0.5 $\mu \mathrm{M}$ versikine for 12 hours. Relative expression is normalized to vehicle-only control ($=1$). * $\mathrm{p}<0.05 ; * * \mathrm{p}<0.01$; *** $\mathrm{p}<0.001$.

FIG. 6. VCAN accumulation and processing in colorectal cancer. A tissue microarray containing matched cores from colorectal cancers and the tumor-associated normal colon was stained for total VCAN and α DPEAAE, a neoepitope generated from VCAN cleavage at Glu^{441} - Ala^{442} (V1-enumeration) (A). VCAN staining was observed variably within the stroma of CRCs, however overall an increase in the intensity of VCAN staining was observed in the tumor tissues compared to the normal colon (Chi-square test,
$\mathrm{p}<0.001$, A and B). VCAN proteolysis, as determined by α DPEAAE staining, was extensive in the stroma of normal tissue and markedly reduced in numerous CRCs (Chi-square test, $\mathrm{p}<0.001$, A and C). Scale bar in $\mathrm{A}=100 \mu \mathrm{~m}$.

FIG. 7. Robust CD8+ T-cell infiltration in "VCAN pro-teolysis-predominant" tumors. Colorectal cancers were classified as "VCAN proteolysis-predominant" if their staining for total VCAN was weak ($\leq 1+$) and staining for versican proteolysis was strong (α DPEAAE intensity $\geq 2+$). Tumors that did not meet those criteria were classified as "proteoly-sis-weak" (A). Given the immunoregulatory properties of VCAN and the immunostimulatory properties of its proteolytic product, versikine, CD8+ T-cell infiltration was assessed comparing VCAN proteolysis-predominant cancers versus proteolysis-weak cancers. Proteolysis-predominant tumors display 10 -fold higher CD8 scores on average than proteolysis-weak tumors (Wilcoxon rank sum test, $\mathrm{p}<0.001 ; \mathrm{B}) . \mathrm{CD} 8+\mathrm{T}$-cell infiltration is greatest in cancers with intensive VCAN proteolysis and low total VCAN (Wilcoxon rank sum test, $\mathrm{p}<0.001, \mathrm{C}$). Scale bar in $\mathrm{A}=100$ $\mu \mathrm{m}$.

FIG. 8. Impact of VCAN proteolysis on CD8+ T-cell infiltration in MMR proficient and deficient cancers. Identification of cases within the TMA with MMR deficiency was performed by IHC analysis for MLH1, MSH2, PMS2 and MSH6. Loss of staining for any of these proteins confirmed MMR deficiency. Non-tumor cells were utilized as an internal control. Increased CD8+ T-cell infiltration in dMMR cancers was confirmed in the TMA CRC cores with a mean of 11.7 CD8+ T-cells per HPF in dMMR tumors compared to 3.1 per HPF in pMMR (Wilcoxon rank sum test, $\mathrm{p}<0.001 ; \mathrm{A}$). The intensity of staining for both VCAN and α DPEAAE varied across both dMMR and pMMR cancers with a trend toward more intense VCAN stromal staining in pMMR cancers (B). In both pMMR and dMMR cancers, the VCAN proteolysis predominant cancers had the greatest infiltration of CD8+ T-cells (Wilcoxon rank sum test, dMMR $p=0.031, p M M R p=0.006 ; C)$. Comparing the VCAN proteolysis-predominant tumors, the dMMR cancers had increased CD8+ T-cell infiltration compared to the pMMR cancers (Wilcoxon rank sum test, $\mathrm{p}=0.04$; C). The proportion of VCAN proteolysis predominant tumors varies depending on the MMR status with this being more common in dMMR tumors (Wilcoxon rank sum test, $\mathrm{p}=0.01$; D). Truncating mutations in APC are commonly encountered in CRC and activation of WNT signaling has demonstrated immunoregulatory properties (20). To examine the impact of activation of WNT signaling, IHC staining for β-catenin was performed and the presence of nuclear localization of β-catenin was assessed. Those tumors with nuclear β-catenin had a significant reduction in CD8+ T-cell infiltration (Wilcoxon rank sum test, $\mathrm{p}=0.01$; E). In addition, those tumors with nuclear localization of β-catenin had a higher rate of intense staining for VCAN (Chi-square test, $\mathrm{p}<0.001$; F). Nuclear β-catenin was more common in the pMMR cancers (8 vs. 53%, Chi-square test, p <0.001, G).

FIG. 9. Versikine, a product of VCAN proteolysis, promotes CD103+CD11c ${ }^{h i} \mathrm{MHCII}^{h i}$ DC generation from flt3Lmobilized bone marrow progenitors. A. Bone marrow (BM) from C57BL/6J animals was isolated and cultured in the presence of $200 \mathrm{ng} / \mathrm{mL}$ flt3L for 9 days, as previously described (19). At conclusion of culture, a mixture of DC precursors and mature DC is obtained in this well-characterized system. Addition of versikine (1 mM) at $\mathrm{D} \# 0$, alongside flt3L, resulted in reproducible expansion of $\mathrm{CD} 103+\mathrm{CD} 11 \mathrm{c}^{h i} \mathrm{MHCII}^{h i}$ DC (at least 5 independent experiments). Although the total number of CD11c+ cells
was similar between vehicle- and versikine-supplemented cultures, there was a consistent skewing towards CD103+ differentiation, measurable at both earlier culture timepoints (4 days, A) and later culture timepoints (9 days, B). CD103+ $\mathrm{MHCI}^{h i}$ cells were SIRPa ${ }^{l o}$, CD11b ${ }^{2-i n t}$ and SiglecH ${ }^{l o}$ confirming their identity as CD103+ conventional DC (cDC) (B). Versikine-supplemented flt3L-mobilized BM cultures demonstrate increased expression of the CD103+DC terminal selector, Irf8, as well as transcription factor Batf3 (C). Intact VCAN acts through TLR2/6 heterodimers. Addition of the TLR2/6 ligand, FSL-1, to flt3L-supplemented cultures results in a disadvantage to CD103+MHCII ${ }^{h i}$ expansion, suggesting that versikine acts through mechanisms distinct from intact VCAN (D).
FIG. 10. VCAN and α DPEAAE staining intensity scoring. The normal colon tissue and CRCs on the TMA were stained for VCAN and α DPEAAE. The staining intensity of each core was categorized as 0 for no staining, 1 for low/weak staining, 2 for moderate staining and 3 for strong/ intense staining.

FIG. 11. VCAN and α DPEAAE staining across tumor locations and stages. There was no correlation between total VCAN staining and location of primary tumor (A). Increased α DPEAAE staining was observed in the rectum compared to the left or right colon (Chi-square test, $\mathrm{p}=0.009$; A). Despite a greater staining for α DPEAAE being identified within the rectum, there was no significant correlation between the VCAN proteolysis-predominant classification and tumor location (Chi-square test, $\mathrm{p}=0.96$; B). A trend toward an increased prevalence staining for the VCAN proteolysis-predominant classification was seen in colon cancers of earlier stage, albeit not statistically significant (Chi-square test, $\mathrm{p}=0.28$; C).

FIG. 12. Association of VCAN and α DPEAAE staining with phosphorylation of RPS6 and ERK1/2. There was not a significant correlation between stromal intensity of VCAN or α DPEAAE staining and phosphorylation of RPS6 (A and B) or phosphorylation of ERK1/2 (C and D).

FIG. 13. α DPEAAE stromal intensity and cellular proliferation. Ki67 was staining was categorized by the percent of cells with nuclear staining for Ki67. No correlation was identified between α DPEAAE staining and the percent of Ki67 positive nuclei (Chi-square test, $\mathrm{p}=0.9$).

DETAILED DESCRIPTION

The present invention is described herein using several definitions, as set forth below and throughout the application.

Definitions

Unless otherwise specified or indicated by context, the terms "a", "an", and "the" mean "one or more." For example, "a polypeptide" should be interpreted to mean "one or more polypeptides."

As used herein, "about," "approximately," "substantially," and "significantly" will be understood by persons of ordinary skill in the art and will vary to some extent on the context in which they are used. If there are uses of these terms which are not clear to persons of ordinary skill in the art given the context in which they are used, "about" and "approximately" will mean plus or minus $\leq 10 \%$ of the particular term and "substantially" and "significantly" will mean plus or minus $\geq 10 \%$ of the particular term.

As used herein, the terms "include" and "including" have the same meaning as the terms "comprise" and "compris-
ing." The terms "comprise" and "comprising" should be interpreted as being "open" transitional terms that permit the inclusion of additional components further to those components recited in the claims. The terms "consist" and "consisting of" should be interpreted as being "closed" transitional terms that do not permit the inclusion of additional components other than the components recited in the claims. The term "consisting essentially of" should be interpreted to be partially closed and allowing the inclusion only of additional components that do not fundamentally alter the nature of the claimed subject matter

As used herein, a "subject" may be interchangeable with "patient" or "individual" and means an animal, which may be a human or non-human animal, in need of treatment. Non-human animals may include dogs, cats, horses, cows, pigs, sheep, and the like.

A "subject in need thereof" may include a patient having a disease, disorder, or condition that is characterized by the lack of, or by a deficient or impaired T-cell mediated immune response, which may include, but is not limited to a T-cell response characterized as a T-cell inflamed phenotype. A T-cell inflamed phenotype may include, but is not limited to a type 1 interferon signature (i.e., a type 1 interferon expression profile), expression of chemokines that attract T-cells such as $\mathrm{T}_{\text {regs }}$ (i.e., $\mathrm{FoxP3}^{+}$cells) or $\mathrm{CD8}^{+}$ T-cells into tumor sites (e.g., CCL2, CCL3, CCL, 4, CCL, 5 , CCL22, CXCL9, ad CXCL10), expression of T-cell specific transcripts, and/or expression of macrophage-activation markers. Diseases characterized by the lack of, or by a deficient or impaired T-cell mediated immune response, may include but are not limited to cell proliferative diseases and disorders (e.g., cancer).

A "subject in need thereof" may include a subject having a cell proliferative disease or disorder such as cancer. Cancer types may include, but are not limited to adenocarcinoma, leukemia, lymphoma, melanoma, myeloma, sarcoma, and teratocarcinoma. Cancer types may include, but are not limited to cancers of the adrenal gland, bladder, blood, bone, bone marrow, brain, breast, cervix, gall bladder, ganglia, gastrointestinal tract, heart, kidney, liver, lung, muscle, ovary, pancreas, parathyroid, prostate, skin, testis, thymus, and uterus. A "subject in need thereof" may include a subject having a cancer that is characterized by a non-T-cell inflamed tumor microenvironment. (See Gajewski, "The Next Hurdle in Cancer Immunotherapy: Overcoming the Non-T-Cell-Inflamed Microenvironment," Seminars in Oncology, Vol. 42, No. 4, August 2015, pp 663-671, the content of which is incorporated herein by reference in its entirety).

Reference is made herein to polypeptides and pharmaceutical compositions comprising polypeptides such as versikine and variants of versikine. An exemplary polypeptide may comprise the amino acid sequence of any of SEQ ID NOs:1-27, or may comprises an amino acid sequence having at least about $80 \%, 90 \%, 95 \%, 96 \%, 97 \%, 98 \%$, or 99% sequence identity to any of SEQ ID NOs:1-27. Variant polypeptides may include polypeptides having one or more amino acid substitutions, deletions, additions and/or amino acid insertions relative to a reference polypeptide. Also disclosed are nucleic acid molecules that encode the disclosed polypeptide (e.g., polynucleotides that encode the polypeptide of any of SEQ ID NOs:1-27 or variants thereof).

SEQ ID NOs:1-27 provide amino acid sequences as follows: SEQ ID NO:1-full length versican V1 including signal peptide sequence (i.e., aa 1-2339); SEQ ID NO:2full length versican V 1 minus signal peptide sequence (i.e., aa 21-2339); SEQ ID NO:3-full length versican V1 minus
signal peptide sequence, plus N -terminal methionine; SEQ ID NO:4-non-versikine sequence of versican V1 (i.e., aa 442-2339); SEQ ID NO:5-full length versican including signal peptide sequence (i.e., aa 1-441); SEQ ID NO:6-full length versikine minus signal peptide sequence (i.e., aa 21-441); SEQ ID NO:7-full length versikine minus signal peptide sequence, plus N-terminal methionine; SEQ ID $\mathrm{NO}: 8$ - Ig -like domain of versikine including signal peptide sequence (i.e., aa 1-146); SEQ ID NO:9—lg-like domain of versikine minus signal peptide sequence (i.e., aa 21-146); SEQ ID NO:10-lg-like domain of versikine minus signal peptide sequence, plus N-terminal methionine; SEQ ID NO:11-Linker domain 1 of versikine (i.e., aa 150-245); SEQ ID NO:12-Linker domain 1 of versikine plus N-terminal methionine; SEQ ID NO:13-Linder domain 2 of versikine (i.e., aa 251-347); SEQ ID NO:14-Linker domain 2 of versikine plus N-terminal methionine; SEQ ID NO: 15 -Portion of GAG- β domain in versikine (i.e., aa 349-441); SEQ ID NO:16 - N-terminal portion of versikine including signal peptide sequence, Ig-like domain, and Linker domain 1 (i.e., aa 1-245); SEQ ID NO:17-Nterminal portion of versikine including Ig-like domain and Linker domain 1 (i.e., aa 21-245); SEQ ID NO:18-Nterminal portion of versikine including Ig-like domain and Linker domain 1 plus N-terminal methionine; SEQ ID NO:19-N-terminal portion of versikine including signal peptide sequence, Ig-like domain, Linker domain 1, and Linker domain 2 (i.e., aa 1-347); SEQ ID NO:20-Nterminal portion of versikine including Ig-like domain, Linker domain 1, and Linker domain 2 (i.e., aa 21-347); SEQ ID NO: 21 - N-terminal portion of versikine including Ig-like domain, Linker domain 1, and Linker domain 2, plus N-terminal methionine; SEQ ID NO:22-Internal portion of versikine including Linker domain 1 and Linker domain 2 (i.e., aa 150-347); SEQ ID NO:23-Internal portion of versikine including Linker domain 1 and Linker domain 2, plus N-terminal methionine (i.e., aa 150-347); SEQ ID NO:24-C-terminal portion of versikine including Linker domain 1, Linker domain 2, and portion of Gag- β domain (i.e., aa 150-441); SEQ ID NO:25-C-terminal portion of versikine including Linker domain 1, Linker domain 2, and portion of Gag- β domain, plus N-terminal methionine; SEQ ID NO:26 C-terminal portion of versikine including Linker domain 2 and portion of Gag- β domain (i.e., aa 251-441); SEQ ID NO:27 - C-terminal portion of versikine including Linker domain 2 and portion of Gag- β domain, plus N -terminal methionine.

The disclosed versikine polypeptides or variant polypeptide preferably exhibit one or more biological activities that include inducing and/or potentiating a T-cell mediated immune response, and in particular, inducing and/or potentiating a T-cell inflamed phenotype. A T-cell inflamed phenotype may be characterized by a number of criteria, including but not limited to a type 1 interferon signature (i.e., a type 1 interferon expression profile), expression of chemokines that attract T-cells such as Tregs (i.e., $\mathrm{FoxP3}^{+}$cells) or $\mathrm{CD8}^{+}$T-cells into tumor sites (e.g., CCL2, CCL3, CCL, 4, CCL, 5, CCL22, CXCL9, ad CXCL10), expression of T-cell specific transcripts, and/or expression of macrophage-activation markers. (See, e.g., Gajewski, "The Next Hurdle in Cancer Immunotherapy: Overcoming the Non-T-Cell-Inflamed Tumor Microenvironment, Seminars in Oncology, Vol. 42, No. 4, August 2015, pp. 663-671; Zitvogel et al., "Type 1 interferons in anticancer immunity," Nature Reviews, Vol. 15, July 2015, pp. 405-414; and Harlin et al., "Chemokine Expression in Melanoma Metastases Associated with CD8+ T-cell Recruitment," Cancer Res. 2009 Apr.

1; 69(7)). A type 1 interferon signature can be used to characterize a number of diseases and disorders, including cell proliferative diseases and disorders as well as other diseases and disorder. (See, e.g., Gajewski, "The Next Hurdle in Cancer Immunotherapy: Overcoming the Non-T-Cell-Inflamed Tumor Microenvironment, Seminars in Oncology, Vol. 42, No. 4, August 2015, pp. 663-671; Zitvogel et al., "Type 1 interferons in anticancer immunity," Nature Reviews, Vol. 15, July 2015, pp. 405-414Häupl et al., "The type 1 interferon signature: facts, fads and fallacies," Ann. Rheum Dis 2011; 70:A24; Ronnblom et al., "The interferon signature in autoimmune diseases," Curr Opin. Rheumatol. 2013 March; 25(2):248-53; Ferreira et al., "A type 1 interferon transcriptional signature precedes autoimmunity in children genetically at risk for type 1 diabetes," Diabetes, 2014 July; 63(7):2538-50; Cornabella et al., "A type 1 interferon signature in monocytes is associated with poor response to interferon-beta in multiple sclerosis," Brain 2009 December; 132(Pt 12):3353-65; the contents of which are incorporated herein by reference in their entireties).

The disclosed polynucleotides encoding the disclosed polypeptides may be present in a replication vector and/or expression vector. Suitable vectors may include bacterial, plant, fungal, insect, or animal host cell replication and/or expression vectors that express the disclosed versikine polypeptides or variants thereof. Vectors may be used to transform appropriate host cells (e.g., E. coli). The transformed host cell may be cultivated or fermented such that the polypeptide is expressed constitutively or after adding a reagent that induces expression (e.g., via an inducible promoter). Expression vectors as contemplated herein may include control sequences that modulate expression of the encoded polypeptide. Expression control sequences may include constitutive or inducible promoters (e.g., T3, T7, Lac, trp, or phoA), ribosome binding sites, or transcription terminators.

The vectors disclosed herein may be utilized to transform host cells. Suitable host cells include bacterial, plant, fungal, insect, or animal host cell. Suitable bacteria include, but are not limited to: Gram-negative bacteria such as Escherichia species (e.g., E. coli), other Gram-negative bacteria, (e.g., Pseudomonas sp., such as Pseudomonas aeruginosa, or Caulobacter sp., such as Caulobacter crescentus), or Grampositive bacteria (e.g., Bacillus sp., in particular Bacillus subtlis). Suitable fungal cells may include yeast (e.g., Saccharomyces cerevisiae).

Also disclosed are methods for expressing, preparing, isolating, separating, or purifying the disclosed versikine polypeptides or variants thereof. In some embodiments, the methods may be utilized to produce the versikine polypeptides as disclosed herein. The steps of the methods may include: (i) cultivating or fermenting a transformed host cell (e.g., a bacterial host cell as contemplated herein) which comprises an expression vector (as contemplated herein) which in turn comprises a nucleic acid molecule encoding the disclosed versikine polypeptides or variants thereof (as contemplated herein), wherein cultivation occurs under conditions which cause expression of the versikine polypeptides; and (ii) isolating, separating, or purifying the versikine polypeptide. The transformed bacteria may be cultivated or fermented using methods known in the art in order to express the versikine polypeptide. An exemplary isolation, separation, or purification method may include one or more of the following steps: a cell disruption step, a clarification step (e.g., via centrifugation or filtration), a chromatographic separation step, a dialysis step, and a precipitation step.

The terms "nucleic acid" and "nucleic acid sequence" refer to a nucleotide, oligonucleotide, polynucleotide (which terms may be used interchangeably), or any fragment thereof. These phrases also refer to DNA or RNA of genomic or synthetic origin (which may be single-stranded or doublestranded and may represent the sense or the antisense strand).

The terms "amino acid" and "amino acid sequence" refer to an oligopeptide, peptide, polypeptide, or protein sequence (which terms may be used interchangeably), or a fragment of any of these, and to naturally occurring or synthetic molecules. Where "amino acid sequence" is recited to refer to a sequence of a naturally occurring protein molecule, "amino acid sequence" and like terms are not meant to limit the amino acid sequence to the complete native amino acid sequence associated with the recited protein molecule.

The amino acid sequences contemplated herein may include conservative amino acid substitutions relative to a reference amino acid sequence. For example, a variant versikine polypeptide may include conservative amino acid substitutions relative to the natural versikine polypeptide. "Conservative amino acid substitutions" are those substitutions that are predicted to interfere least with the properties of the reference polypeptide. In other words, conservative amino acid substitutions substantially conserve the structure and the function of the reference protein. Conservative amino acid substitutions may include:

Original Residue	Conservative Substitutions
Ala	Gly, Ser
Arg	His, Lys
Asn	Asp, Gln, His
Asp	Asn, Glu
Cys	Ala, Ser
Gln	Asn, Glu, His
Glu	Asp, Gln, His
Gly	Ala
His	Asn, Arg, Gln, Glu
Ile	Leu, Val
Leu	Ile, Val
Lys	Arg, Gln, Glu
Met	Leu, Ile
Phe	His, Met, Leu, Trp, Tyr
Ser	Cys, Thr
Thr	Ser, Val
Trp	Phe, Tyr
Tyr	His, Phe, Trp
Val	Ile, Leu, Thr

Conservative amino acid substitutions generally maintain (a) the structure of the polypeptide backbone in the area of the substitution, for example, as a beta sheet or alpha helical conformation, (b) the charge or hydrophobicity of the molecule at the site of the substitution, and/or (c) the bulk of the side chain.

A "deletion" refers to a change in the amino acid or nucleotide sequence that results in the absence of one or more amino acid residues or nucleotides relative to a reference sequence. A deletion removes at least $1,2,3,4,5,10$, $20,50,100$, or 200 amino acids residues or nucleotides. A deletion may include an internal deletion or a terminal deletion (e.g., an N-terminal truncation or a C-terminal truncation of a reference polypeptide or a 5 'terminal or 3'-terminal truncation of a reference polynucleotide).
A "fragment" is a portion of an amino acid sequence or a polynucleotide which is identical in sequence to but shorter in length than a reference sequence. A fragment may comprise up to the entire length of the reference sequence, minus
at least one nucleotide/amino acid residue. For example, a fragment may comprise from 5 to 1000 contiguous nucleotides or contiguous amino acid residues of a reference polynucleotide or reference polypeptide, respectively. In some embodiments, a fragment may comprise at least (or no more than) $5,10,15,20,25,30,40,50,60,70,80,90,100$, 150,250 , or 500 contiguous nucleotides or contiguous amino acid residues of a reference polynucleotide or reference polypeptide, respectively. A fragment may comprise a range of contiguous nucleotides or contiguous amino acid residues of a reference polynucleotide or reference polypeptide, respectively, bounded by endpoints selected from any of $5,10,15,20,25,30,40,50,60,70,80,90,100,150,250$, or 500 contiguous nucleotides or contiguous amino acid residues, respectively (e.g., a peptide fragment having 100150 contiguous amino acid residues of a reference polypeptide). Fragments may be preferentially selected from certain regions of a molecule. The term "at least a fragment" encompasses the full length polynucleotide or full length polypeptide.

Fusion proteins also are contemplated herein. A "verskine fusion protein" refers to a protein formed by the fusion (e.g., genetic fusion) of at least one molecule of versikine (or a fragment or variant thereof) to at least one molecule of a heterologous protein (or fragment or variant thereof), which may include a therapeutic protein. A versikine fusion protein comprises at least a fragment or variant of the heterologous protein and at least a fragment or variant of versikine, which are associated with one another, preferably by genetic fusion (i.e., the versikine fusion protein is generated by translation of a nucleic acid in which a polynucleotide encoding all or a portion of the heterologous protein is joined in-frame with a polynucleotide encoding all or a portion of versikine or a fragment or variant thereof). The heterologous protein and versikine protein, once part of the versikine fusion protein, may each be referred to herein as a "portion", "region" or "moiety" of the versikine fusion protein (e.g., a "a heterologous protein portion" or a "versikine protein portion").

Conjugate proteins also are contemplated herein. A "versikine conjugate protein" refers to a protein formed by the conjugation (i.e., covalently bonding) of at least one molecule of versikine (or a fragment or variant thereof) to at least one molecule of a heterologous protein (or fragment or variant thereof), which may include a therapeutic protein. A versikine conjugate protein comprises at least a fragment or variant of the heterologous protein and at least a fragment or variant of versikine, which are associated with one another by covalent bonding. The heterologous protein and versikine protein, once part of the versikine conjugate protein, may each be referred to herein as a "portion," "region" or "moiety" of the versikine conjugate protein (e.g., "a heterologous protein portion" or a "versikine protein portion").

Suitable heterologous proteins for the contemplated versikine fusion protein and versikine conjugate proteins may include therapeutic antibodies or antigen-binding fragments thereof. Suitable antibodies may include, but are not limited to, antibodies that bind to the protein CD20 (e.g., rituximab or an antigen-binding fragments thereof that binds the protein CD20), antibodies that bind to the protein CD38 (e.g., daraturumab or an antigen-binding fragment thereof that binds the protein CD38), antibodies that bind to the protein CD30 (e.g., brentuximab or an antigen-binding fragment thereof that binds the protein CD30), antibodies that bind to the protein CD19 (e.g., blinatumomab or an antigen-binding fragment thereof that binds the protein CD19), antibodies that bind to the protein CD40 (e.g. ipilimumab or an antigen-binding fragment thereof that
binds CD40), antibodies that bind to the protein PD-1 (e.g., nivolumab or an antigen-binding fragment thereof that binds PD-1). Suitable heterologous proteins may also include ligands for receptor present on T-cells and immunoadhesins (e.g., immunoadhesins that target any of CD20, CD38, CD30, CD19, CD40, and/or PD-1).
A "full length" polynucleotide sequence is one containing at least a translation initiation codon (e.g., methionine) followed by an open reading frame and a translation termination codon. A "full length" polynucleotide sequence encodes a "full length" polypeptide sequence.
"Homology" refers to sequence similarity or, interchangeably, sequence identity, between two or more polynucleotide sequences or two or more polypeptide sequences. Homology, sequence similarity, and percentage sequence identity may be determined using methods in the art and described herein.

The phrases "percent identity" and "\% identity"" as applied to polypeptide sequences, refer to the percentage of residue matches between at least two polypeptide sequences aligned using a standardized algorithm. Methods of polypeptide sequence alignment are well-known. Some alignment methods take into account conservative amino acid substitutions. Such conservative substitutions, explained in more detail above, generally preserve the charge and hydrophobicity at the site of substitution, thus preserving the structure (and therefore function) of the polypeptide. Percent identity for amino acid sequences may be determined as understood in the art. (See, e.g., U.S. Pat. No. 7,396,664, which is incorporated herein by reference in its entirety). A suite of commonly used and freely available sequence comparison algorithms is provided by the National Center for Biotechnology Information (NCBI) Basic Local Alignment Search Tool (BLAST) (Altschul, S. F. et al. (1990) J. Mol. Biol. 215:403 410), which is available from several sources, including the NCBI, Bethesda, Md., at its website. The BLAST software suite includes various sequence analysis programs including "blastp," that is used to align a known amino acid sequence with other amino acids sequences from a variety of databases.
Percent identity may be measured over the length of an entire defined polypeptide sequence, for example, as defined by a particular SEQ ID number, or may be measured over a shorter length, for example, over the length of a fragment taken from a larger, defined polypeptide sequence, for instance, a fragment of at least 15 , at least 20 , at least 30 , at least 40 , at least 50 , at least 70 or at least 150 contiguous residues. Such lengths are exemplary only, and it is understood that any fragment length supported by the sequences shown herein, in the tables, figures or Sequence Listing, may be used to describe a length over which percentage identity may be measured.

A "variant" of a particular polypeptide sequence is defined as a polypeptide sequence having at least 50% sequence identity to the particular polypeptide sequence over a certain length of one of the polypeptide sequences using blastp with the "BLAST 2 Sequences" tool available at the National Center for Biotechnology Information's website. (See Tatiana A. Tatusova, Thomas L. Madden (1999), "Blast 2 sequences-a new tool for comparing protein and nucleotide sequences", FEMS Microbiol Lett. 174:247-250). Such a pair of polypeptides may show, for example, at least 60%, at least 70%, at least 80%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% or greater sequence identity over a certain defined length of one of the polypeptides. A "variant" may have
substantially the same functional activity as a reference polypeptide. For example, a variant of versikine may exhibit or more biological activities associated with versikine, including inducing of a type 1 interferon signature.

The disclosed polypeptides may be modified so as to comprise an amino acid sequence or modified amino acids, such that the disclosed polypeptides cannot be said to be naturally occurring. In some embodiments, the disclosed polypeptides are modified and the modification is selected from the group consisting of acylation, acetylation, formylation, lipolylation, myristoylation, palmitoylation, alkylation, isoprenylation, prenylation, and amidation. An amino acid in the disclosed polypeptides may be thusly modified, but in particular, the modifications may be present at the N -terminus and/or C-terminus of the polypeptides (e.g., N-terminal acylation or acetylation, and/or C-terminal amidation). The modifications may enhance the stability of the polypeptides and/or make the polypeptides resistant to proteolysis.

The terms "percent identity" and "\% identity," as applied to polynucleotide sequences, refer to the percentage of residue matches between at least two polynucleotide sequences aligned using a standardized algorithm. Such an algorithm may insert, in a standardized and reproducible way, gaps in the sequences being compared in order to optimize alignment between two sequences, and therefore achieve a more meaningful comparison of the two sequences. Percent identity for a nucleic acid sequence may be determined as understood in the art. (See, e.g., U.S. Pat. No. $7,396,664$, which is incorporated herein by reference in its entirety). A suite of commonly used and freely available sequence comparison algorithms is provided by the National Center for Biotechnology Information (NCBI) Basic Local Alignment Search Tool (BLAST) (Altschul, S. F. et al. (1990) J. Mol. Biol. 215:403 410), which is available from several sources, including the NCBI, Bethesda, Md., at its website. The BLAST software suite includes various sequence analysis programs including "blastn," that is used to align a known polynucleotide sequence with other polynucleotide sequences from a variety of databases. Also available is a tool called "BLAST 2 Sequences" that is used for direct pairwise comparison of two nucleotide sequences. "BLAST 2 Sequences" can be accessed and used interactively at the NCBI website. The "BLAST 2 Sequences" tool can be used for both blastn and blastp (discussed below).

Percent identity may be measured over the length of an entire defined polynucleotide sequence, for example, as defined by a particular SEQ ID number, or may be measured over a shorter length, for example, over the length of a fragment taken from a larger, defined sequence, for instance, a fragment of at least 20 , at least 30 , at least 40 , at least 50 , at least 70, at least 100 , or at least 200 contiguous nucleotides. Such lengths are exemplary only, and it is understood that any fragment length supported by the sequences shown herein, in the tables, figures, or Sequence Listing, may be used to describe a length over which percentage identity may be measured.

A "variant," "mutant," or "derivative" of a particular nucleic acid sequence may be defined as a nucleic acid sequence having at least 50% sequence identity to the particular nucleic acid sequence over a certain length of one of the nucleic acid sequences using blastn with the "BLAST 2 Sequences" tool available at the National Center for Biotechnology Information's website. (See Tatiana A. Tatusova, Thomas L. Madden (1999), "Blast 2 sequences-a new tool for comparing protein and nucleotide sequences", FEMS Microbiol Lett. 174:247-250). Such a pair of nucleic
acids may show, for example, at least 60%, at least 70%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% or greater sequence identity over a certain defined length.
Nucleic acid sequences that do not show a high degree of identity may nevertheless encode similar amino acid sequences due to the degeneracy of the genetic code. It is understood that changes in a nucleic acid sequence can be made using this degeneracy to produce multiple nucleic acid sequences that all encode substantially the same protein.

The words "insertion" and "addition" refer to changes in an amino acid or nucleotide sequence resulting in the addition of one or more amino acid residues or nucleotides, respectively. An insertion or addition may refer to 1, 2, 3, 4, $5,10,20,30,40,50,60,70,80,90,100,150$, or 200 amino acid residues or nucleotides.
"Operably linked" refers to the situation in which a first nucleic acid sequence is placed in a functional relationship with a second nucleic acid sequence. For instance, a promoter is operably linked to a coding sequence if the promoter affects the transcription or expression of the coding sequence. Operably linked DNA sequences may be in close proximity or contiguous and, where necessary to join two protein coding regions, in the same reading frame.
A "recombinant nucleic acid" is a sequence that is not naturally occurring or has a sequence that is made by an artificial combination of two or more otherwise separated segments of sequence. This artificial combination is often accomplished by chemical synthesis or, more commonly, by the artificial manipulation of isolated segments of nucleic acids, e.g., by genetic engineering techniques such as those described in Sambrook, J. et al. (1989) Molecular Cloning: A Laboratory Manual, $2^{\text {nd }}$ ed., vol. 1 3, Cold Spring Harbor Press, Plainview N.Y. The term recombinant includes nucleic acids that have been altered solely by addition, substitution, or deletion of a portion of the nucleic acid. Frequently, a recombinant nucleic acid may include a nucleic acid sequence operably linked to a promoter sequence. Such a recombinant nucleic acid may be part of a vector that is used, for example, to transform a cell.
"Substantially isolated or purified" nucleic acid or amino acid sequences are contemplated herein. The term "substantially isolated or purified" refers to nucleic acid or amino acid sequences that are removed from their natural environment, and are at least 60% free, preferably at least 75% free, and more preferably at least 90% free, even more preferably at least 95% free from other components with which they are naturally associated.
"Transformation" describes a process by which exogenous DNA is introduced into a recipient cell. Transformation may occur under natural or artificial conditions according to various methods well known in the art, and may rely on any known method for the insertion of foreign nucleic acid sequences into a prokaryotic or eukaryotic host cell. The method for transformation is selected based on the type of host cell being transformed and may include, but is not limited to, bacteriophage or viral infection, electroporation, heat shock, lipofection, and particle bombardment. The term "transformed cells" includes stably transformed cells in which the inserted DNA is capable of replication either as an autonomously replicating plasmid or as part of the host chromosome, as well as transiently transformed cells which express the inserted DNA or RNA for limited periods of time.

A "composition comprising a given polypeptide" and a "composition comprising a given polynucleotide" refer
broadly to any composition containing the given polynucleotide or amino acid sequence. The composition may comprise a dry formulation or an aqueous solution. The compositions may be stored in any suitable form including, but not limited to, freeze-dried form and may be associated with a stabilizing agent such as a carbohydrate. The compositions may be aqueous solution containing salts (e.g., NaCl), detergents (e.g., sodium dodecyl sulfate; SDS), and other components (e.g., Denhardt's solution, dry milk, salmon sperm DNA, and the like).

As used herein, "potentiating" or "enhancing" an immune response means increasing the magnitude and/or the breadth of the immune response. For example, the number of cells that recognize a particular epitope may be increased ("magnitude") and/or the numbers of epitopes that are recognized may be increased ("breadth"). Preferably, a 5-fold, or more preferably a 10 -fold or greater, enhancement in an immune response may be obtained by administering the polypeptides and pharmaceutical compositions disclosed herein. In some embodiments, potentiating or enhancing an immune response means overcoming a non-T-cell-inflamed tumor microenvironment in a subject having cancer (e.g., by increasing the number of T-cells that are infiltrating the tumor, by increasing the number of cells that are exhibiting a type 1 interferon signature, and/or by increasing the number of cells that are expressing macrophage-activation markers).

The disclosed pharmaceutical composition may comprise the disclosed versikine polypeptides and variants at any suitable dose. Suitable doses may include, but are not limited to, about $0.01 \mu \mathrm{~g} /$ dose, about $0.05 \mu \mathrm{~g} /$ dose, about 0.1 $\mu \mathrm{g} /$ dose, about $0.5 \mu \mathrm{~g} /$ dose, about $1 \mu \mathrm{~g} /$ dose, about 2 $\mu \mathrm{g} /$ dose, about $3 \mu \mathrm{~g} /$ dose, about $4 \mu \mathrm{~g} /$ dose, about $5 \mu \mathrm{~g} /$ dose, about $10 \mu \mathrm{~g} /$ dose, about $15 \mu \mathrm{~g} /$ dose, about $20 \mu \mathrm{~g} /$ dose, about $25 \mu \mathrm{~g} /$ dose, about $30 \mu \mathrm{~g} /$ dose, about $35 \mu \mathrm{~g} /$ dose, about 40 $\mu \mathrm{g} /$ dose, about $45 \mu \mathrm{~g} /$ dose, about $50 \mu \mathrm{~g} /$ dose, about 100 $\mu \mathrm{g} /$ dose, about $200 \mu \mathrm{~g} /$ dose, about $500 \mu \mathrm{~g} /$ dose, or about $1000 \mu \mathrm{~g} /$ dose. Suitable doses may be within dose ranges bounded by any of about $0.01 \mu \mathrm{~g} /$ dose, about $0.05 \mu \mathrm{~g} /$ dose, about $0.1 \mu \mathrm{~g} /$ dose, about $0.5 \mu \mathrm{~g} /$ dose, about $1 \mu \mathrm{~g} /$ dose, about $2 \mu \mathrm{~g} /$ dose, about $3 \mu \mathrm{~g} /$ dose, about $4 \mu \mathrm{~g} /$ dose, about 5 $\mu \mathrm{g} /$ dose, about $10 \mu \mathrm{~g} /$ dose, about $15 \mu \mathrm{~g} /$ dose, about 20 $\mu \mathrm{g} /$ dose, about $25 \mu \mathrm{~g} /$ dose, about $30 \mu \mathrm{~g} /$ dose, about 35 $\mu \mathrm{g} /$ dose, about $40 \mu \mathrm{~g} /$ dose, about $45 \mu \mathrm{~g} /$ dose, about 50 $\mu \mathrm{g} /$ dose, about $100 \mu \mathrm{~g} /$ dose, about $200 \mu \mathrm{~g} /$ dose, about 500 $\mu \mathrm{g} /$ dose, or about $1000 \mu \mathrm{~g} /$ dose (e.g., about $50 \mu \mathrm{~g} /$ dose to about $100 \mu \mathrm{~g} /$ dose)

The disclosed versikine polypeptides and variants may be administered at any suitable dose level. In some embodiments, a subject in need thereof is administered a versikine polypeptide or variant thereof at a dose level of from about $1 \mathrm{ng} / \mathrm{kg}$ up to about $2000 \mathrm{ng} / \mathrm{kg}$. In some embodiments, the versikine polypeptide or variant thereof is administered to the subject in need thereof at a dose level of at least about $1 \mathrm{ng} / \mathrm{kg}, 2 \mathrm{ng} / \mathrm{kg}, 5 \mathrm{ng} / \mathrm{kg}, 10 \mathrm{ng} / \mathrm{kg}, 20 \mathrm{ng} / \mathrm{kg}, 50 \mathrm{ng} / \mathrm{kg}, 100$ $\mathrm{ng} / \mathrm{kg}, 200 \mathrm{ng} / \mathrm{kg}, 500 \mathrm{ng} / \mathrm{kg}, 1000 \mathrm{ng} / \mathrm{kg}$ or $2000 \mathrm{ng} / \mathrm{kg}$. In other embodiments, the versikine polypeptide or variant thereof is administered to the subject in need thereof at a dose level of less than about $2000 \mathrm{ng} / \mathrm{kg}, 1000 \mathrm{ng} / \mathrm{kg}, 500$ $\mathrm{ng} / \mathrm{kg}, 200 \mathrm{ng} / \mathrm{kg}, 100 \mathrm{ng} / \mathrm{kg}, 50 \mathrm{ng} / \mathrm{kg}, 20 \mathrm{ng} / \mathrm{kg}, 10 \mathrm{ng} / \mathrm{kg}$, $5 \mathrm{ng} / \mathrm{kg}, 2 \mathrm{ng} / \mathrm{kg}$, or $1 \mathrm{ng} / \mathrm{kg}$. In further embodiments, the versikine polypeptide or variant thereof is administered to a subject in need thereof within a dose level range bounded by any $1 \mathrm{ng} / \mathrm{kg}, 2 \mathrm{ng} / \mathrm{kg}, 5 \mathrm{ng} / \mathrm{kg}, 10 \mathrm{ng} / \mathrm{kg}, 20 \mathrm{ng} / \mathrm{kg}, 50 \mathrm{ng} / \mathrm{kg}$, $100 \mathrm{ng} / \mathrm{kg}, 200 \mathrm{ng} / \mathrm{kg}, 500 \mathrm{ng} / \mathrm{kg}, 1000 \mathrm{ng} / \mathrm{kg}$ or $2000 \mathrm{ng} / \mathrm{kg}$ (e.g., a dose level range of $100 \mathrm{ng} / \mathrm{kg}$ to $200 \mathrm{ng} / \mathrm{kg}$).

The disclosed versikine polypeptides and variants may be administered under any suitable dosing regimen. Suitable dosing regimens may include, but are not limited to, daily regimens (e.g., 1 dose/day for $1,2,3,4,5,6,7$ or more days), twice daily regimens (e.g., 2 doses/day for 1, 2, 3, 4, $5,6,7$ or more days), and thrice daily regiments (e.g., 3 doses/day for $1,2,3,4,5,6,7$ or more days). Suitable regiments also may include dosing every other day, 3 times/week, once a week, for $1,2,3,4$, or more weeks.

The disclosed versikine polypeptides and variants (or pharmaceutical compositions comprising the disclosed versikine polypeptides and variant) may be administered to a subject in need thereof by any suitable route. In some embodiments, the disclosed versikine polypeptides and variant are administered to a subject in need thereof via an injectable delivery route selected from the group consisting of intradermal, intramuscular, intraperitoneal, intravenous, subcutaneous, intratumorally, or epidural routes. In another embodiment, the disclosed versikine polypeptides and variant are administered to a subject near a site of a tumor or cancer. The disclosed versikine polypeptides and variants may be administered to cells or tissue that has been explanted from a subject. For example, the explanted cells or tissue may be contacted or treated with the disclosed versikine polypeptides and variants ex vivo, and after treatment/contact, the explanted cells or tissue may be administered to the patient, for example, but re-infusion and/or transplant.

Use of Versikine and Variants Thereof in Treatment Methods

Disclosed are methods and compositions for inducing and/or potentiating an immune response. The present inventors have determined that versikine can be administered in order to induce and or potentiate a T-cell mediated immune response, which may be characterized as a T-cell inflamed phenotype. As such, the inventors have determined that versikine may be administered to potentiate T-cell activating immunotherapies.

The disclosed methods include methods for inducing and/or potentiating an immune response in a subject in need thereof, including a T-cell mediated immune response. The disclosed methods may include administering to the subject in need thereof a pharmaceutical composition comprising an effective amount of versikine or a variant thereof that induces and/or potentiates the T-cell mediated immune response. The pharmaceutical composition may be administered by any suitable route including, for example, systemically (e.g., intervenously) or by injecting the pharmaceutical composition directly into tissue (e.g., tumor tissue).
In some embodiments, the T-cell mediated immune response induced and/or potentiated in the disclosed methods may be characterized by a type 1 interferon signature (i.e., type 1 interferon expression profile). As such, in the disclosed methods versikine or a variant thereof may be administered in order to induce and/or potentiate expression of one or more genes whose expression is observed to be induced by type 1 interferon. In some embodiments, the enhanced expression is observed relative to a baseline or control of one or more genes encoding any of IF16, MX1, XAF1, IFITM1, OAS3, IFI44L, TRIM22, STAT1, IFI44, CCL2, MX2, IFIT1, OAS2, SIGLEC1, TTSAD2, OASL, SIGLEC11, IFITM1, and ISG15. Expression may be measured and assessed by methods known in the art, including methods for detecting mRNA (e.g., via RT-PCR) and methods for detecting encoded proteins (e.g., via immunoassay).

The disclosed versikine polypeptides and variants may be administered in order to induce production of other cytok-
ines. In some embodiments, the disclosed versikine polypeptides and variants may be administered in order to induce or enhance production of IL1 β, IL6, or both (e.g., by macrophages). Induction or enhanced production of cytokines may be measured and assessed by methods known in the art (e.g., via immunoassays or via assays that measure biological activity of the cytokines).

The disclosed versikine polypeptides and variants may be administered in order to induce expression of other proteins. In some embodiments, the disclosed versikine polypeptides and variants may be administered in order to induce expression of one or more of EBI3, IRF8, and IL12p40. Expression may be measured and assessed by methods known in the art, including methods for detecting mRNA (e.g., via RT-PCR) and methods for detecting encoded proteins (e.g., via immunoassay).

The disclosed versikine polypeptides and variants may be administered in order to induce phosphorylation of other proteins. In some embodiments, the disclosed versikine polypeptides and variants may be administered to induce phosphorylation of one or more of JNK, p38-MAPK, and AKT.

The disclosed methods include administering versikine polypeptides to a subject in need thereof and also administering variants of versikine to a subject in need thereof. Typically, the variants exhibit one or more biological activities associated with versikine, such as induction of a T-cell mediated immune response. In some embodiments, the versikine polypeptide or variant thereof comprises, consists essentially of, or consists of the amino acid sequence of any of SEQ ID NOs: 1-27 or an amino acid sequence having a least about $80 \%, 85 \%, 90 \%, 95 \%, 96 \%, 97 \%, 98 \%$, or 99% sequence identity to any of SEQ ID NOs:1-27.

The disclosed versikine polypeptides and variants thereof optionally comprise an N-terminal methionine which optionally may not be present in naturally occurring versikine. In some embodiments, the disclosed versikine polypeptides and variants thereof may comprise, consist essentially of, or consist of the amino acid sequence of any of SEQ ID NOs:3-27 or an amino acid sequence having a least about $80 \%, 85 \%, 90 \%, 95 \%, 96 \%, 97 \%, 98 \%$, or 99% sequence to any of SEQ ID NOs:3-27, wherein the versikine polypeptides or variants thereof comprise a non-naturally occurring N-terminal methionine. Exemplary polypeptides include polypeptides comprising, consisting essentially of, or consisting of the amino acid sequence of any of SEQ ID NOs:3, 7, 10, 12, 14, 18, 21, 23, 25 and 27.

The disclosed versikine polypeptides and variants thereof may comprise, consist essentially of, or consist of a fragment of a reference polypeptide. In some embodiments, the disclosed versikine polypeptides and variants thereof comprise, consist essentially of, or consist of a fragment of any of SEQ ID NOs:1-27. In some embodiments, the disclosed versikine polypeptides and variants thereof do not comprise the amino acid sequence of SEQ ID NOs: 4 or $8-27$. In embodiments where the versikine polypeptides and variants thereof comprise a fragment of a reference polypeptide that does not include the naturally occurring N -terminal methionine, the versikine polypeptides and variants thereof may be modified to include a non-naturally occurring N -terminal methionine.

The disclosed versikine polypeptides and variants thereof may comprise post-translational modifications or may lack post-translation modifications. In some embodiments, the disclosed versikine polypeptides and variants thereof do not have any chondroitin sulfate side chains. In other embodiments, the disclosed versikine polypeptides and variants
thereof include one or more amino acid modifications selected from the group consisting of acylation (e.g., N-terminal acylation), acetylation (e.g., N-terminal acetylation), formylation, lipolylation, myristoylation, palmitoylation, alkylation, isoprenylation, prenylation, pegylation, and amidation (e.g., C-terminal amidation).

The disclosed versikine polypeptides and variants thereof may be modified to replace a natural amino acid residue by an unnatural amino acid. Unnatural amino acids may include, but are not limited to an amino acid having a D-configuration, an N -methyl- α-amino acid, a non-proteogenic constrained amino acid, or a β-amino acid.

The disclosed versikine polypeptides and variants thereof may be modified in order to increase the stability of the versikine polypeptides and variants thereof in plasma. For example, the disclosed peptides may modified in order to make the versikine polypeptides and variants thereof resistant to peptidases. The disclosed versikine polypeptides and variants thereof may be modified to replace an amide bond between two amino acids with a non-amide bond. For example, the carbonyl moiety of the amide bond can be replaced by CH 2 (i.e., to provide a reduced amino bond: - $\mathrm{CH} 2-\mathrm{NH}-$). Other suitable non-amide replacement bonds for the amide bond may include, but are not limited to: an endothiopeptide, $-\mathrm{C}(\mathrm{S})-\mathrm{NH}$, a phosphonamide, $-\mathrm{P}(\mathrm{O}) \mathrm{OH}-\mathrm{NH}-)$, the NH -amide bond can be exchanged by O (depsipeptide, $-\mathrm{CO}-\mathrm{O}-$), S (thioester, $-\mathrm{CO}-$ $\mathrm{S}-$) or CH_{2} (ketomethylene, $-\mathrm{CO}-\mathrm{CH}_{2}-$). The peptide bond can also be modified as follows: retro-inverso bond ($-\mathrm{NH}-\mathrm{CO}-$), methylene-oxy bond ($-\mathrm{CH}_{2}-$), thiomethylene bond ($-\mathrm{CH}_{2}-\mathrm{S}-$), carbabond $\left(-\mathrm{CH}_{2}-\right.$ $\mathrm{CH}_{2}-$), hydroxyethylene bond ($-\mathrm{CHOH}-\mathrm{CH}_{2}-$) and so on, for example, to increase plasma stability of the versikine polypeptides and variants thereof (notably towards endopeptidases).

The disclosed versikine polypeptides and variants thereof may include a non-naturally occurring N -terminal and/or C-terminal modification. For example, the N-terminal of the disclosed versikine polypeptides and variants thereof may be modified to include a N -acylation or a N -pyroglutamate modification (e.g., as a blocking modification). The C-terminal end of the disclosed versikine polypeptides and variants thereof may be modified to include a C-amidation.
The disclosed versikine polypeptides and variants thereof may include an N-terminal esterification (e.g., a phosphoester modification) or a pegylation modification, for example, to enhance plasma stability (e.g. resistance to exopeptidases) and/or to reduce immunogenicity.

The disclosed versikine polypeptides and variants thereof may be fused to additional functional polypeptide domains. In some embodiments, the disclosed versikine polypeptides and variants thereof are fused to an antibody or an antigenbinding domain thereof (e.g., one or more scFv or other antigen-binding domains). Optionally, the antigen-binding domain binds to an epitope of a tumor antigen and the versikine/antigen-binding fusion polypeptide is administered to a subject having a cancer for which the tumor antigen is associated in order to target the versikine/antigenbinding fusion polypeptide to the subject's tumor.

The disclosed versikine polypeptides and variants thereof may be conjugated to a resin or a solid support. For example, the disclosed versikine polypeptides and variants thereof maybe conjugated via there N -terminus and/or C-terminus to a solid support, either directly or via a linking moiety that conjugates the peptides to the resin or the solid support. Solid supports may include microparticles or nanoparticles such as polymeric microparticles or polymeric nanoparticles
comprising a biodegradable polymer (e.g., poly(lactic-coglycolic acid) (PLGA) polylactic acid, and poly(caprolactone)).

The disclosed versikine polypeptides and variants thereof may be formulated as a pharmaceutical composition for use in the methods disclosed herein. Typically, the pharmaceutical compositions contemplated herein will comprise an effective amount of a versikine polypeptide or variant thereof for inducing a T-cell mediated immune response in a subject after the pharmaceutical composition is administered to the subject or in cells or tissues explanted from the subject after the cells or tissues are contacted with the pharmaceutical composition.

The disclosed methods also may include administering the pharmaceutical composition comprising an effective amount of versikine or a variant thereof that induces a T-cell mediated immune response to explanted cells from a subject, for example, in a method in which the explanted cells are treated with the pharmaceutical composition ex vivo. The explanted cells thus treated may then be administered back to the subject, for example, by re-infusion. The explanted cells may include immune cells (e.g., T-cells or dendritic cells), which optionally are treated, contacted, or primed with an antigen (e.g., a tumor antigen), either before, concurrently with, or after treatment with the pharmaceutical composition comprising an effective amount of versikine or a variant thereof. The explanted cells may include tumor cells.

The disclosed methods include methods for treating cell proliferative diseases and disorders such as cancers in a subject by administering to the subject a pharmaceutical composition comprising an effective amount of versikine or a variant thereof that induces a T-cell mediated immune response. As such, cancers treated by the disclosed methods may include cancers that are characterized the absence of, or by a defective or impaired T-cell mediated response (e.g., cancers that are characterized the absence of, or by a defective T-cell inflamed phenotype). Cancers treated by the presently disclosed methods may include tissue type cancers selected from, but not limited to adenocarcinoma, leukemia, lymphoma, melanoma, myeloma, sarcoma, and teratocarcinoma. Cancers treated by the presently disclosed methods may include organ type cancers selected from, but not limited to the adrenal gland, bladder, blood, bone, bone marrow, brain, breast, cervix, gall bladder, ganglia, gastrointestinal tract, heart, kidney, liver, lung, muscle, ovary, pancreas, parathyroid, prostate, skin, testis, thymus, and uterus. In particular, a subject in need thereof may include a subject having a hematological malignancy, including but not limited to myeloma.

In the disclosed methods for treating cancer in a subject, the methods further may include administering to the subject cancer therapy before, concurrently with, or after administering the pharmaceutical composition comprising versikine or the variant thereof. Suitable cancer therapies may include, but are not limited to, administering chemotherapeutic agents. Suitable chemotherapeutic agents for administration in the disclosed methods may include, but are not limited to Abitrexate, Adcetris, Ambochlorin, Aredia (Pamidronate Disodium), Arranon, Asparaginase Erwinia chrysanthemi, Becenum (Carmustine), Beleodaq, Belinostat, Bendamustine Hydrochloride, Bexxar, BiCNU (Carmustine), Blenoxane, Bleomycin, Blinatumomab, Blincyto, Bortezomib, Brentuximab Vedotin, Carfilzomib, Carmubris (Carmustine), Carmustine, Cerubidine, Chlorambucil, Clafen (Cyclophosphamide), Clofarex, Clolar, Cyclophosphamide, Cytarabine, Cytarabine Liposome, Cytosar-U, Cytoxan (Cy-
clophosphamide), Daratumumab, Darzalex (Daratumumab), Dasatinib, Daunorubicine Hydrochloride, Denileukin Diftitox, DepoCyt, Dexamethasone, Docetaxel, Doxil (Doxorubicin Hydrochloride Liposome), Doxorubicin Hydrochloride Liposome, Dox-SL (Doxorubicin Hydrochloride Liposome), Elotuzumab, Empliciti (Elotuzumab), Epirubicin, Erwinaze, Estramustine, Etoposide, Evacet (Doxorubicin Hydrochloride Liposome), Farydak (Panobinostat), Folex, Folex PFS, Folotyn, Ibrutumomab Tiuxetan, Ibrutinib, Iclusig, Idarubicin, Idelalisib, Imatinib Mesylate, Imbruvica, Intron A, Irinotecan, Istodax, Ixabepilone, Ixazomib Citrate, Kyprolis (Carfilzomib), Lenalidomide, Leukeran, Linfolizin, LipoDox (Doxorubicin Hydrochloride Liposome), Marqibo, Mechlorethamine Hydrochloride, Mercaptopurine, Methotrexate, Methotrexate LPF, Mexate, Mexate-AQ, Mitoxantrone, Mozobil (Plerixafor), Mustargen, Nelarabine, Neosar (Cyclophosphamide), Ninlaro (Ixazomib Citrate), Oncaspar, Ontak, Paclitaxel, Pamidronate Disodium, Panobinostat, Pegaspargase, Plerixafor, Pomalidomide, Pomalyst (Pomalidomide), Ponatinib Hydrochloride, Pralatrexate, Prednisone, Purinethol, Purixan, Recombinant Interferon Alfa-2b, Revlimid (Lenalidomide), Rituxanab, Romidepsin, Rubidomycin, Sprycel, Synovir (Thalidomide), Tarabiune PFS, Teniposide, Thalidomide, Thalomid (Thalidomide), Topotecan, Tositumomab, Treanda, Velban, Velcade (Bortezomib), Vinblastine Sulfate, Vincasar PGS, Vincristine Sulfate, Vincristine Sulfate Liposome, Vinorelbine, Vorinostat, Zevalin, Zoledronic Acid, Zolinza, Zometa (Zoledronic Acid), and Zydelig.

Other suitable cancer therapies that may be administered before, concurrently with, or after administering the pharmaceutical composition comprising versikine or the variant thereof may include therapies in which oncolytic viruses are administered, therapies in which immunomodulatory drugs are administered, therapies in which anthracyclines are administered, and therapies in which check-point blockers are administered. Other suitable cancer therapies that may be administered before, concurrently with, or after administering the pharmaceutical composition comprising versikine or the variant thereof may include therapies in which chimeric antigen receptor (CAR) T-cells are administered, therapies in which tumor infiltrating lymphocyte (TIL) are administered. Other suitable cancer therapies that may be administered before, concurrently with, or after administering the pharmaceutical composition comprising versikine or the variant thereof may include radiation therapy.

Also disclosed are methods for determining whether a subject will benefit from a method that includes administering to the subject a pharmaceutical composition comprising an effective amount of versikine or a variant thereof that induces a T-cell mediated immune response. The methods may include determining the concentration of versikine in a biological sample from the subject (e.g., a blood product), and if the determined level is determined to be below a selected baseline, then administering the pharmaceutical composition comprising versikine or the variant thereof. Suitable blood products as biological samples may include blood itself, plasma, and serum. Suitable tissue samples as biological samples may include biopsies, for example, from a tumor. Immunoassays as known in the art may be utilized to determine the concentration of versikine in the biological sample.
Also disclosed are kits comprising components that optionally may be utilized to perform the methods disclosed herein. The kits may include one or more of (a) versikine or a variant thereof, where the versikine or the variant thereof
optionally is provided as a pharmaceutical composition; and (b) a reagent for detecting the concentration of versikine in a biological sample (e.g., an anti-versikine antibody which optionally is labelled with a detectable label). The kit optionally may include implements for administering the versikine or variant thereof (e.g., a syringe/needle type implement). The kit optionally may include an immunoassay for detecting versikine in a biological sample, for example, where the reagent for detecting the concentration of versikine in a biological sample is an anti-versikine antibody. The anti-versikine antibody may be labelled, or optionally, the kit may include a labelled secondary antibody that binds to the anti-versikine antibody, which functions as the primary antibody. Suitable labels may include fluorescent labels, chemiluminescent labels, enzyme labels, radio labels, and the like.

Also disclosed are isolated polynucleotides encoded any of the versikine polypeptides and variants disclosed herein. The isolated polynucleotide may be present in vectors for replication of the polynucleotides or for expression of the encoded polypeptides, for example, where the polynucleotides are operably linked to a promoter, which optionally may be an inducible promoter. Also disclosed are isolated cells that comprise the isolated polynucleotides, particular the isolated polynucleotides as present in the disclosed vectors. Isolated cells that comprise vectors for expression of the encoded versikine polypeptides and variants may be cultured in methods in order to produce the encoded versikine polypeptides and variants.

ILLUSTRATIVE EMBODIMENTS

The following embodiments are illustrative and are not intended to limit the scope of the claimed subject matter.

Embodiment 1

A method for inducing and/or potentiating a T-cell mediated immune response in a subject in need thereof, the method comprising administering to the subject or to explanted cells of the subject a pharmaceutical composition comprising an effective amount of versikine or a variant thereof that induces and/or potentiates the T-cell mediated immune response.

Embodiment 2

The method of embodiment 1 , wherein the T-cell mediated immune response is characterized by a type 1 interferon signature.

Embodiment 3

The method of embodiment 2 , wherein the type 1 interferon signature is characterized by increased expression of one or more of IL1 β, IL6, EBI3, IRF8, IL12p40, IF16, MX1, XAF1, IFITM1, OAS3, IFI44L, TRIM22, STAT1, IFI44, CCL2, MX2, IFIT1, OAS2, SIGLEC1, TTSAD2, OASL, SIGLEC11, IFITM1, and ISG15.

Embodiment 4
The method of embodiment 2 or 3 , wherein the type 1 interferon signature is characterized by increased phosphorylation of one or more of JNK, p38-MAPK, and AKT.

Embodiment 5

The method of any of the foregoing embodiments, wherein the variant comprises the amino acid sequence of
any of SEQ ID NOs:1-27 or an amino acid sequence having a least about 80% sequence identity to any of SEQ ID NOs:1-27.

Embodiment 6

The method of any of the foregoing embodiments, wherein the variant comprises an N -terminal methionine.

Embodiment 7

The method of any of the foregoing embodiments, wherein the variant comprises a fragment of any of SEQ ID NOs:1-27.

Embodiment 8

The method of any of the foregoing embodiments, wherein the variant does not comprise the amino acid sequence of SEQ ID NOs:4 or 8-27.

Embodiment 9

The method of any of the foregoing embodiments, wherein the variant does not have any chondroitin sulfate side chains.

Embodiment 10

The method of any of the foregoing embodiments, wherein the variant has one or more amino acid modifications selected from the group consisting of acylation (e.g., N-terminal acylation), acetylation (e.g., N-terminal acetylation), formylation, lipolylation, myristoylation, palmitoylation, alkylation, isoprenylation, prenylation, and amidation (e.g., C-terminal amidation).

Embodiment 11

The method of any of the foregoing embodiments, wherein the variant comprises a fused antigen-binding domain.

Embodiment 12
The method of embodiment 11, wherein the antigenbinding domain binds to an epitope of a tumor antigen.

Embodiment 13

The method of any of the foregoing embodiments, wherein administering comprising intravenously administering to the subject the pharmaceutical composition comprising an effective amount of versikine or a variant thereof.

Embodiment 14

The method of any of the foregoing embodiments, wherein administering comprising injecting locally into tissue of the subject the pharmaceutical composition comprising an effective amount of versikine or a variant thereof.

Embodiment 15
The method of embodiment 14 , wherein the tissue is a tumor.

Embodiment 16
The method of any of the foregoing embodiments, wherein administering comprises treating explanted cells of
the subject with the pharmaceutical composition comprising an effective amount of versikine or a variant thereof, and administering the treated explanted cells to the subject.

Embodiment 17

The method of embodiment 16 , wherein the explanted cells comprise T-cells or dendritic cells.

Embodiment 18

The method of embodiments 16 or 17, further comprising contacting the explanted cells with an antigen prior to administering the treated cells to the subject.

Embodiment 19

The method of any of the foregoing embodiments, further comprising administering an antigen to the subject before, concurrently with, or after administering the pharmaceutical composition comprising versikine or the variant thereof to the subject.

Embodiment 20

The method of embodiment 18 or 19 , wherein the antigen is a tumor antigen.

Embodiment 21

The method of any of the foregoing embodiments, wherein the subject has a cell proliferative disease or disorder such as cancer.

Embodiment 22

The method of embodiment 21, wherein the cancer is selected from the group consisting of adenocarcinoma, leukemia, lymphoma, melanoma, myeloma, sarcoma, and teratocarcinoma.

Embodiment 23

The method of embodiment 21 , wherein the cancer is selected from cancers of the adrenal gland, bladder, blood, bone, bone marrow, brain, breast, cervix, gall bladder, ganglia, gastrointestinal tract, heart, kidney, liver, lung, muscle, ovary, pancreas, parathyroid, prostate, skin, testis, thymus, and uterus.

Embodiment 24
The method of any of the foregoing embodiments, wherein the subject has a hematological malignancy.

Embodiment 25

The method of any of the foregoing embodiments, wherein the subject has myeloma.

Embodiment 26

The method of any of embodiments $21-25$, further comprising administering to the subject cancer therapy before, concurrently with, or after administering the pharmaceutical composition comprising versikine or the variant thereof.

The method of embodiment 26 , wherein the cancer therapy comprises administering a chemotherapeutic agent.

Embodiment 28

The method of embodiment 27, wherein the chemotherapeutic agent is selected from a group consisting of Abitrexate, Adcetris, Ambochlorin, Aredia (Pamidronate Disodium), Arranon, Asparaginase Erwinia chrysanthemi, Becenum (Carmustine), Beleodaq, Belinostat, Bendamustine Hydrochloride, Bexxar, BiCNU (Carmustine), Blenoxane, Bleomycin, Blinatumomab, Blincyto, Bortezomib, Brentuximab Vedotin, Carfilzomib, Carmubris (Carmustine), Carmustine, Cerubidine, Chlorambucil, Clafen (Cyclophosphamide), Clofarex, Clolar, Cyclophosphamide, Cytarabine, Cytarabine Liposome, Cytosar-U, Cytoxan (Cyclophosphamide), Daratumumab, Darzalex (Daratumumab), Dasatinib, Daunorubicine Hydrochloride, Denileukin Diftitox, DepoCyt, Dexamethasone, Docetaxel, Doxil (Doxorubicin Hydrochloride Liposome), Doxorubicin Hydrochloride Liposome, Dox-SL (Doxorubicin Hydrochloride Liposome), Elotuzumab, Empliciti (Elotuzumab), Epirubicin, Erwinaze, Estramustine, Etoposide, Evacet (Doxorubicin Hydrochloride Liposome), Farydak (Panobinostat), Folex, Folex PFS, Folotyn, Ibrutumomab Tiuxetan, Ibrutinib, Iclusig, Idarubicin, Idelalisib, Imatinib Mesylate, Imbruvica, Intron A, Irinotecan, Istodax, Ixabepilone, Ixazomib Citrate, Kyprolis (Carfilzomib), Lenalidomide, Leukeran, Linfolizin, LipoDox (Doxorubicin Hydrochloride Liposome), Marqibo, Mechlorethamine Hydrochloride, Mercaptopurine, Methotrexate, Methotrexate LPF, Mexate, Mexate-AQ, Mitoxantrone, Mozobil (Plerixafor), Mustargen, Nelarabine, Neosar (Cyclophosphamide), Ninlaro (Ixazomib Citrate), Oncaspar, Ontak, Paclitaxel, Pamidronate Disodium, Panobinostat, Pegaspargase, Plerixafor, Pomalidomide, Pomalyst (Pomalidomide), Ponatinib Hydrochloride, Pralatrexate, Prednisone, Purinethol, Purixan, Recombinant Interferon Alfa-2b, Revlimid (Lenalidomide), Rituxanab, Romidepsin, Rubidomycin, Sprycel, Synovir (Thalidomide), Tarabiune PFS, Teniposide, Thalidomide, Thalomid (Thalidomide), Topotecan, Tositumomab, Treanda, Velban, Velcade (Bortezomib), Vinblastine Sulfate, Vincasar PGS, Vincristine Sulfate, Vincristine Sulfate Liposome, Vinorelbine, Vorinostat, Zevalin, Zoledronic Acid, Zolinza, Zometa (Zoledronic Acid), and Zydelig.

Embodiment 29

The method of embodiment 26 , wherein the cancer therapy comprises one or more of therapies in which oncolytic viruses are administered, therapies in which immunomodulatory drugs are administered, therapies in which anthracyclines are administered, and therapies in which check-point blockers are administered.

Embodiment 30

The method of embodiment 26 , wherein the cancer therapy comprises one or more of therapies in which chimeric antigen receptor (CAR) T-cells are administered, and therapies in which tumor infiltrating lymphocyte (TIL) are administered.

Embodiment 31
The method of embodiment 26 , wherein the cancer therapy comprises radiation therapy.

Embodiment 32

The method of any of the foregoing embodiments, further comprising, before administering the pharmaceutical composition comprising versikine or the variant thereof, determining the concentration of versikine in a biological sample from the subject.

Embodiment 33

The method of embodiment 32 , wherein the biological sample is blood or a blood product.

Embodiment 34

The method of embodiment 32 , wherein the biological sample is tissue.

Embodiment 35

The method of embodiment 34 , wherein the tissue is obtained from a tumor.

Embodiment 36

A kit, which optionally may be used to perform any of the foregoing methods, the kit comprising one or more of: (a) versikine or a variant thereof, wherein the versikine or the variant thereof optionally is provided as a pharmaceutical composition; and (b) a reagent for detecting the concentration of versikine in a biological sample (e.g., an antiversikine antibody which optionally is labelled with a detectable label).

Embodiment 37

An isolated polypeptide comprising, consisting essentially of, or consisting of the amino acid sequence of any of SEQ ID NOs:3-27 or an amino acid sequence having a least about 80% sequence identity to any of SEQ ID NOs:3-27, wherein the polypeptide comprises a non-naturally occurring N -terminal methionine and the polypeptide induces expression of an interferon type 1 signature.

Embodiment 38

The isolated polypeptide of embodiment 37 comprising, consisting essentially of, or consisting of the amino acid sequence of any of SEQ ID NOs:3, $7,10,12,14,18,21,23$, 25 and 27.

Embodiment 39

The isolated polypeptide of embodiment 37 or 38 comprising, consisting essentially of, or consisting of a fragment of any of SEQ ID NOs:1-27.

Embodiment 40

The isolated polypeptide of any of embodiments 37-39, wherein the polypeptide does not comprise the amino acid sequence of SEQ ID NOs:4 or 8-27.

The isolated polypeptide of any of embodiments 37-40, wherein the polypeptide does not have any chondroitin sulfate side chains.

Embodiment 42

The isolated polypeptide of any of embodiments 37-41, wherein the polypeptide has one or more amino acid modifications selected from the group consisting of acylation (e.g., N-terminal acylation), acetylation (e.g., N-terminal acetylation), formylation, lipolylation, myristoylation, palmitoylation, alkylation, isoprenylation, prenylation, and amidation (e.g., C-terminal amidation).

Embodiment 43

The isolated polypeptide of any of embodiments 37-42, wherein the polypeptide comprises a fused antigen-binding domain.

Embodiment 44

The isolated polypeptide of embodiment 43 , wherein the antigen-binding domain binds to an epitope of a tumor antigen.

Embodiment 45

A pharmaceutical composition comprising an effective amount of any of the polypeptides of embodiments 37-44 for inducing expression of an interferon type 1 signature in a subject in need thereof.

Embodiment 46

An isolated polynucleotide encoding the isolated polypeptide of any of embodiments 37-44.

Embodiment 47

An expression vector comprising the isolated polynucleotide of embodiment 46 operably linked to a promoter.

Embodiment 48
An isolated cell comprising the expression vector of embodiment 47.

Embodiment 49

An anti-tumor vaccine comprising versikine, optionally wherein the vaccine stimulates and/or activates dendritic cells.

Embodiment 50

A method for treating a subject having a cell proliferative disease or disorder such as cancer or at risk for developing a cell proliferative disease or disorder such as cancer, the method comprising administered to the subject a pharma-
ceutical composition comprising versikine, optionally, wherein the pharmaceutical composition is an anti-tumor vaccine.

Embodiment 51

A method comprising detecting versican proteolysis in a biological sample comprising cancer cells.

Embodiment 52

The method of embodiment 51 , wherein detecting versican proteolysis comprises detecting a fragment of versikine.

EXAMPLES

The following Examples are illustrative and are not intended to limit the scope of the claimed subject matter.

Example 1-Immunoregulatory Roles of Versican Proteolysis in the Myeloma Microenvironment

Reference is made to the manuscript: Hope et al., "Immunoregulatory Roles of Versican Proteolysis in the Myeloma Microenvironment," Blood. 2016 Aug. 4; 128(5):680, which is incorporated herein by reference in its entirety.

Abstract

Myeloma immunosurveillance remains incompletely understood. We have demonstrated proteolytic processing of the matrix proteoglycan, versican, in myeloma tumors. Whereas intact versican exerts tolerogenic activities through Toll-like receptor (TLR)-2 binding, the immunoregulatory consequences of versican proteolysis remain unknown. Here we show that human myeloma tumors displaying CD8+ aggregates underwent versican proteolysis at a site predicted to generate a glucosaminoglycan-bereft N -terminal fragment, versikine. Myeloma-associated macrophages (MAM), but not tumor cells, produced V1-versican, the precursor to versikine, whereas stromal cell-derived ADAMTS1 was the most robustly expressed versican-degrading protease. Purified versikine induced early expression of inflammatory cytokines IL1 β and IL6 by freshly-explanted MAM. We show that versikine signals through pathways both dependent and independent of Tp12 kinase, a key regulator of NF \square B1-mediated MAPK activation in macrophages. Unlike intact versican, versikine-induced IL6 production was partially independent of Tlr2. Versikine stimulated expression of type I-interferon (IFN)-stimulated genes in a model of macrophage-myeloma cell crosstalk without detectable type-I or -III interferon induction. Our data suggest that versikine, generated by ADAMTS proteolysis, constitutes a novel bioactive damage-associated-molecularpattern (DAMP) that may promote T-cell-inflammation and modulate the tolerogenic consequences of intact versican accumulation. Therapeutic versikine administration may potentiate anti-cancer T-cell-activating immunotherapies.

Introduction

Myeloma is a tumor of plasma cells which are terminally differentiated B lymphocytes that produce antibody (Palumbo and Anderson, 2011). Myeloma plasma cells typically live within the bone marrow microenvironment ("canonical" myeloma niche). However malignant plasma cells can often thrive in extramedullary sites and soft tissues ("non-canonical" niche).

We have hypothesized that infiltrating myeloid cells may exert crucial trophic and immunoregulatory functions in both "canonical" and "non-canonical" niches, in part
through their regulation of extracellular matrix composition and remodeling (Asimakopoulos et al., 2013). We and others have previously demonstrated that versican, a chondroitinsulfate large matrix proteoglycan, accumulates in myeloma lesions and have hypothesized that versican may contribute to the regulation of their inflammatory milieu (Gupta et al., 2015; Hope et al., 2014). Versican has crucial, non-redundant significance in embryonic development (Nandadasa et al., 2014) and emerging roles in cancer inflammation, immunoregulation and metastasis (Gao et al., 2012; Kim et al., 2009; Ricciardelli et al., 2009; Wight et al., 2014). Versican promotes tolerogenic polarization of antigen-presenting cells through TLR2 (Tang et al., 2015). Versican is proteolytically cleaved by ADAMTS-type proteases in a highlyregulated manner (Nandadasa et al., 2014). A cleavage product generated by proteolysis of the Glu ${ }^{441}-\mathrm{Ala}^{442}$ bond within the versican V1 isoform, has been termed versikine (Nandadasa et al., 2014). Versikine has been shown to be bioactive (proapoptotic) during interdigital web regression in the mouse embryo (McCulloch et al., 2009); however, the roles of versican proteolysis and/or versikine in tumor immunomodulation or progression remain unknown.

Results and Discussion
Myeloma Tumors Displaying CD8+ Aggregates Undergo Versican Proteolysis.

Because versican exerts tolerogenic activities in the tumor microenvironment, we hypothesized that versican proteolysis may promote "T-cell inflammation". We stained myeloma bone marrow biopsy specimens with antibodies against a versican neoepitope (DPEAAE ${ }^{441}$) generated by Glu^{441}-Ala ${ }^{442}$ cleavage of V1-versican (corresponding to Glu^{1428} in V0-versican). Consecutive sections were stained for CD68, an immunohistochemical marker for tissue-resident macrophages and CD8, a marker of cytotoxic T cells. We observed four patterns of staining in 19 core biopsies arrayed on a UW myeloma tissue array as well as a com-mercially-obtained myeloma tissue array (FIG. 1). Myeloma tumors displaying CD8+ aggregates ($\mathrm{n}=5$ out of 19) (Gerard et al., 2013) demonstrated intense/moderate versican proteolysis, as detected by the anti-DPEAAE antibody.

All Four Versican Isoforms are Expressed by CD14+ Monocytic Cells in the Myeloma Microenvironment.

Versican has been variably reported to be expressed by tumor cells or the microenvironment in carcinomas, however its cellular origin in the myeloma niche is unknown. We carried out RT-PCR using versican isoform-specific primers in paired CD138+ malignant plasma cells, CD14+ monocytic cells and bone-marrow stromal cells (BM-MSC) from 3 patients with newly-diagnosed myeloma. We found that CD14+ monocytic cells were the predominant versican producers. Moreover, all four isoforms were expressed by myeloma CD14+ cells (FIG. 2A). This was somewhat surprising, given the reported tissue-specific distribution of certain versican isoforms (e.g., V2 in neural tissue). Importantly, V1-versican, the precursor to versikine, was expressed robustly by myeloma-associated CD14+ monocytic cells. We next determined the relative expression of mRNAs for ADAMTS proteases that may degrade versican in the myeloma microenvironment, i.e., ADAMTS-1, $-4,-5$, -15, -19 and -20 (Nandadasa et al., 2014). We readily detected ADAMTS1, ADAMTS4 and ADAMTS5 mRNA expression in mononuclear cell lysate from myeloma bone marrow whereas ADAMTS15, ADAMTS19 and ADAMTS20 mRNAs were undetectable (data not shown). A previous report showed low expression of ADAMTS proteases in components of the myeloma microenvironment with the exception of bone marrow-derived mesenchymal
stromal cells (BM-MSC) (Bret et al., 2011). Therefore, we compared expression levels for ADAMTS1, ADAMTS4 and ADAMTS5 between myeloma and BM-MSC from normal donors and found that ADAMTS1 was expressed at higher levels by myeloma-derived BM-MSC (FIG. 2B). Within the myeloma microenvironment, BM-MSC expressed much higher levels of ADAMTS1 message than either tumor cells or macrophages (FIG. 2C).

Versikine Stimulates Inflammatory Cytokine Production by Primary MAM but does not have a Direct Impact on Tumor Cell Turnover.

To determine whether versican degradation products possessed immunoregulatory activity, we exposed freshly explanted primary myeloma CD14+ cells to recombinant purified human versikine ($1 \mu \mathrm{M}$) overnight. Addition of versikine to primary CD14+ cells resulted in induction of inflammatory cytokines IL1 β and IL6 (FIG. 3A/B). These data demonstrate that versican chondroitin-sulfate side chains are unnecessary for inflammatory cytokine production, since they are not present on versikine. To determine whether versikine has direct effects on tumor cell turnover in a cell-autonomous fashion, we treated MM1.S human myeloma cells as well as primary bone marrow-derived myeloma cells with recombinant versikine. There was no discernible effect on cell cycle profiles of MM1.S myeloma cells treated with $1 \mu \mathrm{M}$ versikine (FIG. 3C). Similarly, primary bone marrow-derived, CD138+ myeloma plasma cells did not show detectable changes in cell cycle progression following versikine treatment (not shown). We conclude that versikine does not directly impact on cell cycle progression of human myeloma cells. Our results do not exclude non-cell-autonomous effects on cell cycle progression of myeloma cells through the actions of versikineinduced growth factors, such as IL6.

Versikine Signals Through Tp12-Dependent and Independent Pathways and May Dispense of Tlr2 for IL6 Production.

Versican stimulates TLR2 complexes to promote immunomodulatory cytokine production (Kim et al., 2009). Signaling downstream of TLRs engages the MAP3K Tp12 (Cot, MAP3K8), a master regulator of macrophage activation and cytokine production in response to TLR or TNFlike stimuli (Hope et al., 2014; Vougioukalaki et al., 2011). Tp12 loss in primary bone-marrow-derived macrophages (BMDM) abrogated IL1 β production in response to purified versikine (FIG. 4A). However, Tpl2 deletion in macrophages did not significantly affect versikine-induced IL6 (FIG. 4B). Interestingly, versikine did not induce IL10 production (FIG. 4C) and $\mathrm{Tpl2}$ was a negative regulator of IL12p40 production in response to versikine (FIG. 4D), similar to TLR agonists (Jensen et al., 2015).

Our results indicate that versikine may control cytokine production in both a Tp 12 -dependent and a Tp 12 -independent manner. To define the signaling cascades induced by versikine, we exposed BMDM to $1 \mu \mathrm{M}$ purified versikine and collected cell lysate at sequential timepoints postexposure. Versikine stimulation of wild-type BMDM rapidly induced JNK, p38-MAPK and AKT phosphorylation (FIG. 4E). JNK and AKT phosphorylation were independent of Tpl2 status, whereas Tpl2 loss affected p38-MAPK phosphorylation (FIG. 4E).

Intact versican is thought to signal through TLR2 (Tang et al., 2015). To determine whether versikine-induced IL6 required TLR2, we exposed wild-type and Tlr2-/- BMDM to TLR2 agonist Pam2CSK3 as well as versikine. Whereas Tlr2-/- BMDM showed a complete IL6 production defect in response to Pam2CSK3 (data not shown), they were still
able to produce IL 6 in response to versikine, albeit at 50% levels compared to WT-BMDM (FIG. 4F). These data demonstrate that versikine signaling pathways may not overlap entirely with those activated by intact versican.

Versikine Modulates Macrophage Polarization.
Addition of versikine to BMDM induced expression of Th1-type cytokine IL12p40 (FIG. 4G). Concurrent Fcy receptor ligation through addition of ovalbumin (OVA)/antiOVA immune complexes promoted IL10 production and induced macrophage polarization towards an immunoregulatory M2b phenotype (Th $12^{i o}-\mathrm{IL} 10^{h i}$) (Edwards et al., 2006). Therefore, versikine can act as an endogenous dam-age-associated molecular pattern (DAMP) that may modulate macrophage polarization in response to extracellular cues.
Versikine Induces Type-I-Interferon-Regulated Genes in a Model of Macrophage-Myeloma Cell Crosstalk.

Our data suggested that versican proteolysis results in the generation of versikine, a bioactive fragment that may act as a DAMP in the myeloma microenvironment. We then characterized the effects of versikine expression in a model of myeloma-macrophage crosstalk. Human THP-1 monocytic cells can be induced to generate macrophages that provide a functional platform to study macrophage regulation, including polarization by defined stimuli (Genin et al., 2015). We introduced a versikine-expressing plasmid into THP-1 cells prior to macrophage differentiation. Macrophages transduced with versikine-plasmid or empty-vector control, were co-cultured with human myeloma MM1.S cells for 48 hours. RNA-seq analysis was performed on each cell type after 48 h co-culture. Remarkably, only 23 genes were differentially expressed in MM1.S cells exposed to versikine-secreting macrophages versus control and all 23 genes were overexpressed (FIG. 5A). Of the 23 genes, 13 genes were inter-feron-stimulated-genes (ISG), suggesting that versikine exposure induced a type I-interferon signature in myeloma cells. Differentially expressed genes did not include those coding for type I- or III-interferons. Interestingly, VCAN transcription was itself induced, suggesting a positive autoregulatory loop responding to cleaved versican. THP-1 macrophages expressing versikine demonstrated differential regulation of 39 genes (4 downregulated, 35 upregulated) when a cutoff of 2 -fold expression change was used with a false discovery rate (FDR) threshold of 0.05. 12 upregulated genes defined a type-I-interferon signature (FIG. 5B), again without overt transcription changes in type I or III-interferon genes.

We subsequently treated myeloma-macrophage co-cultures with recombinant versikine. RNA was extracted from each cell type at defined timepoints and subjected to analysis using a parallel RT-PCR array platform focusing on interferon signaling (Human Interferons and Receptors array; see Materials and Methods). As shown in FIG. 5C, $0.5 \mu \mathrm{M}$ versikine induced upregulation of ISGs in MM1.S myeloma cells as well as THP-1 macrophages (FIG. 5D). IRF8 expression was upregulated at 18 and 48 hours in MM1.S cells (FIG. 5E), whereas IRF9 expression remained relatively constant (FIG. 5F). Interestingly, IRF8 was upregulated in MM1.S cells only in the presence of co-cultured macrophages (data not shown). Irf8 expression in transplanted tumor cells has been shown to be inducible through an 1127 -dependent mechanism (Mattei et al., 2012). We observed upregulation of the IL27 subunit, EBI3, in tumor cells and in primary MAM treated with versikine (FIGS. 5G and 5 H).

Versican has been proposed to promote immunosuppression and tolerance in tumor microenvironments through a

TLR2-dependent mechanism (Tang et al., 2015). We previously reported versican proteolysis in myeloma bone marrow tissue (Hope et al., 2014). We hypothesized that the regulated degradation of versican by ADAMTS-type versicanases may modulate its tolerogenic potential by controlling versican bioavailability, disrupting its extracellular matrix networks and/or by generating novel bioactive fragments. Myeloma marrows with CD8 aggregates showed active versican proteolysis. Interestingly, only 5 out of 19 myeloma marrows showed evidence of CD8 infiltration/ aggregates. This low preponderance of CD8-infiltrated myeloma tumors is consistent with the reported failure of checkpoint inhibition as monotherapy in myeloma (Suen et al., 2015). Macrophages, on the other hand, were abundant in all biopsies.

We report that versikine, a product of versican proteolysis, possesses immunoregulatory activities that may promote "T-cell-inflammation" (Gajewski, 2015; Zitvogel et al., 2015). The induction of IRF8 transcription in response to versikine is particularly intriguing and could provide a mechanistic link to ISG upregulation. IRF8 is a transcription factor with central non-redundant roles in dendritic cell development and maturation as well as homeostasis of myeloid-derived suppressor cells (Merad et al., 2013; Waight et al., 2013). IRF8 and IL27 can operate in a regulatory loop (Mattei et al., 2012). IL27 subunit EBI3 was induced by versikine. Ebi3-/- animals are prone to impaired anti-tumor T cell responses and accelerated tumor growth (Liu et al., 2015). Taken together, our results suggest that versikine may antagonize the tolerogenic actions of intact versican and thus, may provide a novel anti-tumor strategy. The findings also suggest that, in addition to small leucinerich proteoglycans, previously shown to act as DAMPs (Schaefer, 2014), fragments of large aggregating proteoglycans may have the capacity to stimulate innate immunity and provide a bridge to adaptive immunity.

Materials and Methods

Patient Sample Collection and Processing.
Bone marrow aspirates were collected with informed consent under a University of Wisconsin IRB-approved protocol (HO07403). Mononuclear cells were separated using Ficoll-Hypaque 1.073 (GE Healthcare Bio-sciences, Piscataway, N.J., USA) and were immune-magnetically sorted using anti-CD138 or anti-CD14 microbeads (Miltenyi Biotec, Auburn, Calif., USA). Purity was over 90% for both CD14+ and CD138+ fractions. For mesenchymal stromal cells, the CD138-/CD14- double-negative fraction was plated in aMEM supplemented with 10% FBS (Hyclone, Logan, Utah, USA). Attached cells were harvested and passaged using TrypLE (Invitrogen, Carlsbad, Calif., USA) until reaching passage 4.

Versikine Production, Purification and Analysis.
Methods for expression and purification of recombinant versikine from mammalian cells have been previously published (Foulcer et al., 2015; Foulcer et al., 2014, the contents of which are incorporated herein by referenece in their entireties). In brief, a plasmid vector for expression of human versikine (residues 1-441 of the V1 isoform) with a C-terminal myc-His6 tag was transfected into CHO-K1 cells. Serum-free medium was collected from stably transfected cells and combined with Ni-NTA agarose. Bound versikine was sequentially washed with 4 M Guanidine- HCl and 500 mM NaCl and eluted with 250 mM imidazole. Purified versikine was extensively dialysed into phosphate buffered saline. Purified versican was characterized by Coomassie Brilliant Blue staining and LC-MS/MS at the Lerner Research Institute Proteomics Core to identify asso-
ciated bioactive proteins and by fluorophore-assisted carbohydrate electrophoresis (FACE) for co-purifying hyaluronan (at the Lerner Research Institute Program of Excellences in Glycobiology Glycomics Core). Presence of hyaluronan was ruled out by FACE and by solid phase binding assay and size exclusion chromatography.
Each versikine aliquot used in this study tested negative for endotoxin contamination using ToxinSensor Gel Clot kit (Genscript, sensitivity limit 0.25 endotoxin units (EU)/mL) (roughly equivalent to $25-50 \mathrm{pg} / \mathrm{mL}$). The ultra-sensitive Chromogenic LAL Endotoxin Assay Kit (Genscript) was used to obtain a quantitative determination of the endotoxin concentration in versikine stock: it was determined to be 0.1 $\mathrm{EU} / \mathrm{mL}$ (roughly equivalent to $10-20 \mathrm{pg}$ endotoxin $/ \mathrm{mL}$ prior to $1 / 10$ dilution in versikine-treated wells). To definitively exclude the possibility of spurious endotoxin-mediated transcriptional changes, we exposed THP-1 macrophages to graded endotoxin concentrations, $10 \mathrm{ng} / \mathrm{mL}, 1 \mathrm{ng} / \mathrm{mL}$ and each of $500 / 250 / 100 / 75 / 50 / 25 / 10 / 5 / 1 \mathrm{pg} / \mathrm{mL}$ for 12 hours. RNA was isolated and EBI3 transcripts by RT-PCR were compared to a zero-endotoxin control. EBI3 transcriptional induction was not observed at endotoxin concentrations equal or less than $100 \mathrm{pg} / \mathrm{mL}$.

Mice and Primary Cell Culture.
C57BL6/J, Tpl2-/- (Dumitru et al., 2000), Tlr2-/- (Jax stock \#004650) mice were housed, cared for, and used in accordance with the Guide for Care and Use of Laboratory Animals (NIH Publication 86-23) under an IACUC-approved protocol (M2395). Bone marrow was extracted from spine and long bones as previously described. BMDM were derived and cultured as previously described (Hope et al., 2014).

Cell and Tissue Culture.
MM1.S cells were generously provided by Dr. Constantine Mitsiades (Dana-Farber Cancer Institute, Boston, Mass.). THP-1 (ATCC® TIB-202 ${ }^{\text {TM }}$) cells were maintained in tissue culture according to ATCC protocols. Cell culture was carried out in complete RPMI 1640 media supplemented with 10% fetal bovine serum (HyClone), a standard antibiotic/antimycotic solution (Life Technologies, 35050061), and GlutaMax (Mediatech, 30-004-CI). In co-cultures shown in FIG. 5, the ratio of THP-1 macrophages: MM1.S cells were $5: 1$ for RNA-seq experiments and $1: 1$ for recombinant versikine experiments.

RNA Extraction and Real-Time RT-PCR.
RT-PCR was performed using Applied Biosystems ${ }^{\circledR}$ StepOnePlus ${ }^{\mathrm{TM}}$ with accompanying software and Power SYBR® Green (Applied Biosystems ${ }^{\circledR}$ ® No. 4309155). Primer sequences are listed in Supplementary Methods. Human Interferon and Receptor RT^{2}-Profiler PCR array was obtained from Qiagen (PAHS-064Z). Relative expression was determined by $\Delta \Delta C t$ calculation. All RT-PCR protocols were performed in accordance with MIQE standards.
Immunohistochemistry.
The University of Wisconsin myeloma tissue microarray (TMA) has been previously reported (Hope et al., 2014). A second myeloma TMA was purchased from US Biomax (catalog no. T291b). Slides were deparaffinized using standard xylene/ethanol methods followed by antigen retrieval in citrate (DPEAAE and CD68 detection) or EDTA buffer (CD8 detection). Primary antibodies are listed in the Supplementary File.

Immunoblot Analysis.
Whole cell lysates were prepared by boiling cells in Laemmli Sample buffer (Bio-Rad) supplemented with 100 mM DTT for 10 minutes at a final concentration of 10^{7} cells $/ \mathrm{ml}$. Protein was quantified using Bradford assay
reagent (BioRad). 10^{5} cells or $20 \mu \mathrm{~g}$ protein was resolved by SDS-PAGE and transferred to Immobilon-P PVDF membrane (Millipore). Primary antibodies are listed in the Supplementary File.

Cell Cycle Analysis.
Cells were harvested after exposure to BrdU for 30 minutes. Cells were washed in PBS, fixed and permeabilized in 70% ethanol and stained with anti-BrdU-FITC and propidium iodide per standard protocols. Flow cytometry was carried out on FACSCalibur analyzer (Becton Dickinson). FlowJo software was used for flow data analysis.

Cytokine Measurement.
Cytokine levels were measured in culture supernatant using the bead-based Bio-Plex system (Bio-Rad).

RNA-Seq and Data Analysis.
Total RNA submitted to the University of WisconsinMadison Biotechnology Center was verified for purity and integrity via the NanoDrop2000 Spectrophotometer and Agilent 2100 BioAnalyzer, respectively. Samples that met the Illumina sample input guidelines were prepared according the TruSeq ${ }^{\mathbb{R}}$ Stranded Total RNA Sample Preparation Guide (Rev. E) using the Illumina ${ }^{\circledR}$ TruSeq ${ }^{(\mathbb{B})}$ Stranded Total RNA Sample Preparation kits (Illumina Inc., San Diego, Calif., USA) with minor modifications. For each library preparation, lug of total RNA was ribosomally reduced as directed. Ribosomally depleted. RNA samples were purified by paramagnetic beads (AgencourtRNA Clean XP beads, Beckman Coulter, Indianapolis Ind., USA). Subsequently, each rRNA-depleted sample was fragmented using divalent cations under elevated temperature. The fragmented RNA was synthesized into double-stranded cDNA using SuperScript IIReverse Transcriptase (Invitrogen, Carlsbad, Calif., USA) and random primers for first strand cDNA synthesis followed by second strand synthesis using DNA Polymerase land RNAse H for removal of mRNA. Double-stranded cDNA was purified by paramagnetic beads (Agencourt AMPure XP beads, Beckman Coulter). The cDNA products were incubated with Klenow DNA Polymerase to add an ' A ' base (Adenine) to the 3' end of the blunt DNA fragments. DNA fragments were ligated to Illumina adapters, which have a single ' T ' base (Thymine) overhang at their 3 'end. The adapter-ligated DNA products were purified by paramagnetic beads. Adapter ligated DNA was amplified in a Linker Mediated PCR reaction (LM-PCR) for 10 cycles using Phusion ${ }^{\mathrm{TM}}$ DNA Polymerase and Illumina's PE genomic DNA primer set and then purified by paramagnetic beads. Quality and quantity of the finished libraries were assessed using an Agilent DNA1000 chip (Agilent Technologies, Inc., Santa Clara, Calif., USA) and Qubit ${ }^{\circledR}$ dsDNA HS Assay Kit (Invitrogen, Carlsbad, Calif., USA), respectively. Libraries were standardized to $2 \mu \mathrm{M}$. Cluster generation was performed using standard Cluster Kits (v3) and the Illumina Cluster Station. Single 100 bp sequencing was performed, using standard SBS chemistry (v3) on an Illumina HiSeq2000 sequencer. Images were analyzed using the standard Illumina Pipeline, version 1.8.2. The RNA-seq reads were trimmed and filtered to remove contaminant and low quality bases prior to the analysis. Filtered reads were aligned to the reference genome using open source software STAR followed by RSEM (Li et al., 2010) for reads assignment and expression estimation. We used EdgeR (Robinson et al., 2010) to compare differential expression (DE) between conditions/treatment. The DE gene list can be obtained by filtering result by FDR value and relative fold changes.

REFERENCES

Asimakopoulos, F., J. Kim, R. A. Denu, C. Hope, J. L. Jensen, S. J. Ollar, E. Hebron, C. Flanagan, N. Callander,
and P. Hematti. 2013. Macrophages in multiple myeloma: emerging concepts and therapeutic implications. Leuk Lymphoma 54:2112-2121.
Bret, C., D. Hose, T. Reme, A. Kassambara, A. Seckinger, T. Meissner, J. F. Schved, T. Kanouni, H. Goldschmidt, and B. Klein. 2011. Gene expression profile of ADAMs and ADAMTSs metalloproteinases in normal and malignant plasma cells and in the bone marrow environment. Exp Hematol 39:546-557 e548.
Coster et al., 1979. Isolation of 35 S - and 3 H -labelled proteoglycans from cultures of human embryonic skin fibroblasts. Biochem. J. 183, 669-681.
Dobin, A., C. A. Davis, F. Schlesinger, J. Drenkow, C. Zaleski, S. Jha, P. Batut, M. Chaisson, and T. R. Gingeras. 2013. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29:15-21.
Dours-Zimmermann, et al., 1994. A novel glycosaminoglycan attachment domain identified in two alternative splice variants of human versican. J. Biol. Chem. 269, 3299232998.

Dumitru, C. D., J. D. Ceci, C. Tsatsanis, D. Kontoyiannis, K. Stamatakis, J. H. Lin, C. Patriotis, N. A. Jenkins, N. G. Copeland, G. Kollias, and P. N. Tsichlis. 2000. TNF-alpha induction by LPS is regulated post-transcriptionally via a Tp12/ERK-dependent pathway. Cell 103:1071-1083.
Edwards, J. P., X. Zhang, K. A. Frauwirth, and D. M. Mosser. 2006. Biochemical and functional characterization of three activated macrophage populations. J Leukoc Biol 80:1298-1307.
Foulcer, S. J., A. J. Day, and S. S. Apte. 2015. Isolation and purification of versican and analysis of versican proteolysis. Methods Mol Biol 1229:587-604.
Foulcer, S. J., C. M. Nelson, M. V. Quintero, B. Kuberan, J. Larkin, M. T. Dours-Zimmermann, D. R. Zimmermann, and S. S. Apte. 2014. Determinants of versican-V1 proteoglycan processing by the metalloproteinase ADAMTS5. J Biol Chem 289:27859-27873.
Gajewski, T. F. 2015. The Next Hurdle in Cancer Immunotherapy: Overcoming the Non-T-Cell-Inflamed Tumor Microenvironment. Semin Oncol 42:663-671.
Gao, D., N. Joshi, H. Choi, S. Ryu, M. Hahn, R. Catena, H. Sadik, P. Argani, P. Wagner, L. T. Vandat, J. L. Port, B. Stiles, S. Sukumar, N. K. Altorki, S. Rafii, and V. Mittal. 2012. Myeloid progenitor cells in the premetastatic lung promote metastases by inducing mesenchymal to epithelial transition. Cancer Res 72:1384-1394.
Genin, M., F. Clement, A. Fattaccioli, M. Raes, and C. Michiels. 2015. M1 and M2 macrophages derived from THP-1 cells differentially modulate the response of cancer cells to etoposide. BMC Cancer 15:577.
Gerard, A., O. Khan, P. Beemiller, E. Oswald, J. Hu, M. Matloubian, and M. F. Krummel. 2013. Secondary T cell-T cell synaptic interactions drive the differentiation of protective CD8+ T cells. Nat Immunol 14:356-363.
Gupta, N., R. Khan, R. Kumar, L. Kumar, and A. Sharma. 2015. Versican and its associated molecules: potential diagnostic markers for multiple myeloma. Clin Chim Acta 442:119-124.
Hope, C., S. J. Ollar, E. Heninger, E. Hebron, J. L. Jensen, J. Kim, I. Maroulakou, S. Miyamoto, C. Leith, D. T. Yang, N. Callander, P. Hematti, M. Chesi, P. L. Bergsagel, and F. Asimakopoulos. 2014. TPL2 kinase regulates the inflammatory milieu of the myeloma niche. Blood 123: 3305-3315.
Jensen, J. L., A. Rakhmilevich, E. Heninger, A. T. Broman, C. Hope, F. Phan, S. Miyamoto, I. Maroulakou, N. Callander, P. Hematti, M. Chesi, P. L. Bergsagel, P.

Sondel, and F. Asimakopoulos. 2015. Tumoricidal Effects of Macrophage-Activating Immunotherapy in a Murine Model of Relapsed/Refractory Multiple Myeloma. Cancer Immunol Res 3:881-890.
Kischel, et al. 2010. Versican overexpression in human breast cancer lesions: known and new isoforms for stromal tumor targeting. Int. J. Cancer 126, 640-650
Kim, S., H. Takahashi, W. W. Lin, P. Descargues, S. Grivennikov, Y. Kim, J. L. Luo, and M. Karin. 2009. Carcinomaproduced factors activate myeloid cells through TLR2 to stimulate metastasis. Nature 457:102-106.
Li, B., V. Ruotti, R. M. Stewart, J. A. Thomson, and C. N. Dewey. 2010. RNA-Seq gene expression estimation with read mapping uncertainty. Bioinformatics 26:493-500.
Liu, Z., J. Q. Liu, Y. Shi, X. Zhu, Z. Liu, M. S. Li, J. Yu, L. C. Wu, Y. He, G. Zhang, and X. F. Bai. 2015. Epstein-Barr virus-induced gene 3 -deficiency leads to impaired antitumor T-cell responses and accelerated tumor growth. Oncoimmunology 4:e989137.
Mattei, F., G. Schiavoni, P. Sestili, F. Spadaro, A. Fragale, A. Sistigu, V. Lucarini, M. Spada, M. Sanchez, S. Scala, A. Battistini, F. Belardelli, and L. Gabriele. 2012. IRF-8 controls melanoma progression by regulating the cross talk between cancer and immune cells within the tumor microenvironment. Neoplasia 14:1223-1235.
McCulloch, D. R., C. M. Nelson, L. J. Dixon, D. L. Silver, J. D. Wylie, V. Lindner, T. Sasaki, M. A. Cooley, W. S. Argraves, and S. S. Apte. 2009. ADAMTS metalloproteases generate active versican fragments that regulate interdigital web regression. Dev Cell 17:687-698.
Merad, M., P. Sathe, J. Helft, J. Miller, and A. Mortha. 2013. The dendritic cell lineage: ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting. Annu Rev Immunol 31:563-604.
Mosser, D. M., and J. P. Edwards. 2008. Exploring the full spectrum of macrophage activation. Nat Rev Immunol 8:958-969.
Nandadasa, S., S. Foulcer, and S. S. Apte. 2014. The multiple, complex roles of versican and its proteolytic turnover by ADAMTS proteases during embryogenesis. Matrix Biol 35:34-41.
Palumbo, A., and K. Anderson. 2011. Multiple myeloma. N Eng1 J Med 364:1046-1060.
Ricciardelli, C., A. J. Sakko, M. P. Ween, D. L. Russell, and D. J. Horsfall. 2009. The biological role and regulation of versican levels in cancer. Cancer Metastasis Rev 28:233245.

Robinson, M. D., D. J. McCarthy, and G. K. Smyth. 2010. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139-140.
Schaefer, L. 2014. Complexity of danger: the diverse nature of damage-associated molecular patterns. J Biol Chem 289:35237-35245.
Suen, H., R. Brown, S. Yang, P. J. Ho, J. Gibson, and D. Joshua. 2015. The failure of immune checkpoint blockade in multiple myeloma with PD-1 inhibitors in a phase 1 study. Leukemia 29:1621-1622.
Sugimoto, K., M. Ohata, J. Miyoshi, H. Ishizaki, N. Tsuboi, A. Masuda, Y. Yoshikai, M. Takamoto, K. Sugane, S. Matsuo, Y. Shimada, and T. Matsuguchi. 2004. A serine/ threonine kinase, $\operatorname{Cot} / \mathrm{Tp} 12$, modulates bacterial DNAinduced IL-12 production and Th cell differentiation. J Clin Invest 114:857-866.
Tang, M., J. Diao, H. Gu, I. Khatri, J. Zhao, and M. S. Cattral. 2015. Toll-like Receptor 2 Activation Promotes

Tumor Dendritic Cell Dysfunction by Regulating IL-6 and IL-10 Receptor Signaling. Cell Rep 13:2851-2864.
Vougioukalaki, M., D. C. Kanellis, K. Gkouskou, and A. G. Eliopoulos. 2011. Tp12 kinase signal transduction in inflammation and cancer. Cancer Lett 304:80-89.
Waight, J. D., C. Netherby, M. L. Hensen, A. Miller, Q. Hu, S. Liu, P. N. Bogner, M. R. Farren, K. P. Lee, K. Liu, and S. I. Abrams. 2013. Myeloid-derived suppressor cell development is regulated by a STAT/IRF-8 axis. J Clin Invest 123:4464-4478.
Wight, T. N., I. Kang, and M. J. Merrilees. 2014. Versican and the control of inflammation. Matrix Biol 35:152-161.
Xu, H., V. K. Chaudhri, Z. Wu, K. Biliouris, K. DiengerStambaugh, Y. Rochman, and H. Singh. 2015. Regulation of bifurcating B cell trajectories by mutual antagonism between transcription factors IRF4 and IRF8. Nat Immunol 16:1274-1281.
Zhang, J., X. Qian, H. Ning, J. Yang, H. Xiong, and J. Liu. 2010. Activation of IL-27 p28 gene transcription by interferon regulatory factor 8 in cooperation with interferon regulatory factor 1. J Biol Chem 285:21269-21281.
Zitvogel, L., L. Galluzzi, O. Kepp, M. J. Smyth, and G. Kroemer. 2015. Type I interferons in anticancer immunity. Nat Rev Immunol 15:405-414.
Zimmermann et al., 1989. Multiple domains of the large fibroblast proteoglycan, versican. EMBO J. 8, 2975-2981.

> Example 2-Versican Proteolysis Predicts Robust CD8+ T-Cell Infiltration in Human Mismatch Repair-Proficient and -Deficient Colorectal Cancers: Mechanistic Implications

Abstract
Colorectal cancer (CRC) originates within immunologically complex microenvironments. To date the benefits of immunotherapy have been modest except in neoantigenladen mismatch repair (MMR)-deficient tumors. Approaches to enhance tumor-infiltrating lymphocytes in the tumor bed may substantially augment clinical immunotherapy responses. We recently reported that proteolysis of the tolerogenic matrix proteoglycan versican (VCAN), in myeloma tumors, generates a bioactive fragment, versikine, with putative immunostimulatory activities. Here we report that VCAN proteolysis strongly correlated with CD8+ T-cell infiltration in CRC. Tumors displaying active VCAN proteolysis and low total VCAN were associated with robust (10 -fold) CD8+ T-cell infiltration. The correlation between VCAN proteolysis and CD8+ T-cell infiltration was maintained in MMR-proficient and -deficient CRCs. Tumorintrinsic WNT pathway activation was associated with CD8+ T-cell exclusion and correlated with VCAN accumulation. VCAN proteolytic fragment, versikine, promoted the generation of $\mathrm{CD} 103+\mathrm{CD} 11 \mathrm{c}^{h i} \mathrm{MHCI}^{h i}$ conventional dendritic cells (cDC) from flt3L-mobilized primary bone mar-row-derived cultures, suggesting that versican proteolysis in the tumor microenvironment may favor differentiation of tumor-seeding DC precursors towards IRF8-expressing CD103+DC, endowed with enhanced tumor antigen presentation capacity. Our findings indicate that VCAN proteolysis may shape CRC immune contexture and provide a rationale for testing VCAN proteolysis as a predictive and/or prognostic immune biomarker.

Significance
This study identifies VCAN proteolysis as a potential key regulator of CD8+ T-cell infiltration in colorectal cancer. Further studies are warranted to determine the role of VCAN proteolysis as an immune biomarker. In addition, therapeutic
manipulation of the VCAN-versikine axis may augment immunotherapy efficacy against CRC.

Introduction

CRC is the second leading cause of cancer-related mortality in the United States (1). The 5 -year survival rate for patients with metastatic disease is unacceptably low (12\%), generating an impetus for rapid progress to improve outcomes. Recent advances in cancer immunotherapy have only marginally impacted outcomes in CRC $(2,3)$. The noteworthy exception includes patients with mismatch repair-deficient (dMMR) tumors where genetic instability generates an expanded neo-antigenic repertoire (4). In dMMR cancers, treatment with the anti-PD1 antibodies pembrolizumab and nivolumab result in deep and prolonged therapeutic responses for a large proportion of patients (2,4 , 5). Unfortunately, not all patients with dMMR CRCs respond to these agents indicating that other regulatory factors play a key role in the response of CRCs to checkpoint blockade. In addition, an effective means to utilize immunooncology agents for mismatch repair proficient (pMMR) CRCs, which encompass greater than 95% of all metastatic CRCs, has yet to be identified.

The presence of infiltrating lymphocytes (TILs) is linked to favorable clinical outcomes and increased response rates to immune checkpoint inhibition $(5,6)$. Thus, TIL infiltration possesses both prognostic and predictive biomarker utility. However, at a mechanistic level, the tumor-cell autonomous and non-autonomous networks controlling immune infiltration into the tumor bed are mostly unknown. Approaches to enhance TIL entry/activation could have a major impact on immunotherapy efficacy.

We recently demonstrated that versican (VCAN), a large matrix proteoglycan with immunoregulatory activity, accumulates in the extracellular matrix of multiple myeloma tumors (7). VCAN contributes to cancerous and non-cancerous inflammation by promoting leukocyte-derived elaboration of inflammatory mediators (8-13) but also immunodeficiency through dendritic cell (DC) dysfunction (14). Interestingly, we also detected in situ VCAN proteolysis in a pattern consistent with the activities of a disintegrin and metalloproteinase with thrombospondin motifs (AD-AMTS)-type proteases (15). Whereas tumor-associated macrophages produce all known VCAN isoforms, tumorassociated mesenchymal stromal cells secrete ADAMTS proteases that cleave VCAN. We hypothesized that VCAN proteolysis serves to generate bioactive fragments. Indeed, we demonstrated a fragment containing VCAN's N -terminal 441 amino acids, "versikine" (16), elicits a transcriptional program that is predicted to promote immunogenicity, and thus, antagonize the tolerogenic actions of its parent, intact VCAN (15). However, it is unclear whether VCAN-dependent immunoregulatory mechanisms are operative in nonmyeloma, or indeed non-hematopoietic, settings. We chose to investigate CRC because both myeloma and CRC are driven by chronic inflammatory networks (17) and because better understanding of CRC immunosurveillance mechanisms will likely result in improved outcomes for large patient populations. Here we demonstrate that VCAN proteolysis correlates with CD8+ T-cell infiltration in CRC, regardless of mismatch-repair status and provide mechanistic implications. These results provide strong rationale for investigation of VCAN processing in immunotherapy prognostication and therapy across several solid and liquid tumor types.

Materials and Methods
Colorectal Cancer (CRC) Tissue Microarray (TMA).
A CRC TMA was created through the University of Wisconsin Carbone Cancer Center Translational Science Biocore Biobank. This TMA contains samples from 122 subjects with colorectal cancer across all stages. For each subject, the TMA contains 2 cores from the primary tumor and 1 core of tumor-associated normal tissue. The tumors utilized in the TMA were selected for their location and stage, such that an equal distribution of right, left and rectal tumors and stage I through IV cancers are present.

Immunohistochemical (IHC) Methods and Antibodies.
Unstained 4-5 $\mu \mathrm{m}$-thick TMA sections were deparaffinized and rehydrated using standard methods. Antigen retrieval was carried out in EDTA buffer (CD8 detection) or citrate (all others). The slides were treated with chondroitinase ABC prior to staining with the total VCAN antibody (18). Primary antibodies included total VCAN (HPA004726, Sigma, St. Louis, Mo.), aDPEAAE (PA1-1748A, Thermo Fisher, Waltham, Mass.), CD8 (c4-0085-80, Ebioscience, San Diego, Calif., USA), phosphorylated ERK $1 / 2$ (Thr202/ Tyr204, 4370, Cell Signaling Technology, Danvers, Mass.), phosphorylated ribosomal protein S6 (RPS6) (Ser235/236, 4858, Cell Signaling Technology), and CTNNB1 (β-catenin, 8480, Cell Signaling Technology). The α DPEAAE neoepitope antibody has been previously validated (18).

Scoring and Analysis of Staining Patterns.
Cytoplasmic and membrane staining of the epithelium and stroma was scored for each core sample by a pathologist (K.A.M.) blinded to clinical parameters. Stained slides were examined using an Olympus BX43 microscope with attached Olympus DP73 digital camera (Olympus Corp, Waltham, Mass.). Epithelium and stroma were evaluated separately for total VCAN and aDPEAAE staining. Immunostaining for VCAN, aDPEAAE, phosphorylated ERK $1 / 2$, and phosphorylated RPS6 was assessed by scoring staining intensity (0 for no staining, 1 for low/weak staining, 2 for moderate staining and 3 for strong/intense staining) and the percentage of cells staining positive (0 for no staining, 1 for $>0-10 \%, 2$ for $11-50 \%, 3$ for $51-75 \%$ and 4 for $>75 \%$ staining; FIG. 10). For CD8+ detection, the number of tumor infiltrating lymphocytes (TILs) per high-power field (HPF) within the malignant epithelium was calculated using a single area at $400 \times$ magnification (ocular $10 \times$ with an objective of 40x). Nuclear localization of β-catenin was recorded as present or absent. Tissue cores that were missing, damaged, contained staining artifacts, or had uncertain histology were excluded from the analysis.

Mismatch Repair (MMR) Analyses.
MMR status was determined by IHC for MLH1, MSH6, MSH2, and PMS2. The following prediluted primary antibodies were utilized: MLH1 ((M1) mouse monoclonal, Ventana Medical Systems, Inc, Tucson, Ariz.), MSH6 ((44) mouse monoclonal, Ventana Medical Systems, Inc), MSH2 ((G219-1129) mouse monoclonal, Ventana Medical Systems, Inc), and PMS2 ((EPR3947) rabbit monoclonal, Ventana Medical Systems, Inc). Staining was performed on a BenchMark ULTRA automated slide staining system and detected using the Opitview DAB IHC detection kit. Absence of staining for these proteins was scored by independent pathology review (K.A.M.). Tumor infiltrating leukocytes were utilized as an internal control.

KI67 Proliferation Index.
Immunofluorescence was performed by placing the TMA slides into a humidity chamber after slides were deparaffinized and rehydrated. Slides were blocked with 5% bovine serum albumin in Tris Buffered Saline (TBS) with 0.05\%

Tween 20 for one hour at room temperature. Slides were then washed in TBS. The KI67 primary antibody (\#11882 (Alexa Fluor 488 conjugate), Cell Signaling Technology) was diluted in PBS and incubated overnight at $4^{\circ} \mathrm{C}$. overnight. After incubation, coverslips were washed in TBS and mounted using Prolong Gold DAPI mounting media (\#P36931, Invitrogen, Carlsbad, Calif.) and sealed. TMA cores were classified based on the number of KI67 positive nuclei per core.

Generation of Recombinant Versikine.
Recombinant versikine was purified from mammalian cells and endotoxin-tested as previously described (15).

Bone Marrow Harvesting, flt3L-Mobilized Cultures and Flow Cytometry.

Bone marrow (BM) cells were harvested from C57BL/6J mice under IACUC-approved protocol M005476. Total BM cells were cultured for 9 days in the presence of $200 \mathrm{ng} / \mathrm{mL}$ $\mathrm{flt3L}$, as previously described (19) with the addition of 1 mM recombinant versikine or vehicle at the beginning of culture. Harvested cells were resuspended in FACS buffer (PBS $\mathrm{pH} 7.4,2 \mathrm{mM}$ EDTA, $0.5 \% \mathrm{BSA}$). Cell viability was established by Trypan Blue exclusion and 2×10^{6} live cells were stained the following antibodies: anti-CD11c (N418-PE-Cy7, Tonbo); anti-CD103 (2E7-PE, Biolegend); antiMHCII (M5/114.152-AlexaFluor 700, Biolegend), anti-SiglecH (551-PerCP-Cy5.5, Biolegend); anti-CD11b (P84FITC, Biolegend) for 30 minutes on $4^{\circ} \mathrm{C}$. Cells were washed and analyzed on a BD LSR II instrument-viability was assessed by DAPI staining. The instrument was calibrated daily according to manufacturer's protocol using the BD FACSDiva (v.6) Cytometer Setting \& Tracking software application. Flow cytometry data was analyzed by FlowJo version 9.7.6 software (Tree Star, Ashland, Oreg.).

Immunoblot Analysis.
Whole cell lysates were prepared by boiling cells in Laemmli Sample buffer (Bio-Rad) supplemented with 100 mM DTT for 10 minutes at a final concentration of 10^{7} cells $/ \mathrm{ml} .10^{5}$ cells or $20 \mu \mathrm{~g}$ protein was resolved by SDSPAGE and transferred to Immobilon-P PVDF membrane (Millipore). Membranes were blocked in 5\% Milk in TBS-T [25 mM Tris- $\mathrm{HCl}(\mathrm{pH} 7.4$), $0.13 \mathrm{M} \mathrm{NaCl}, 2.7 \mathrm{mM} \mathrm{KCl}$] Primary antibodies [anti-IRF8 (Cell Signaling Technologies, D20D8), anti-Batf3 (LSBio, B12B125)] were diluted in 5% Milk-TBST and membranes were incubated overnight at 4° C. Secondary antibody-HRP-conjugates as well as anti-GAPDH-HRP conjugate (Genscript A00192) incubations were carried out for 1 hour at room temperature. Signal detection was achieved using Amersham ECL Plus chemiluminescent solution (GE Healthcare). Blots were developed on Classic Blue Autoradiography Flim BX (MidSci).

Statistical Analyses.
Descriptive statistics were utilized to present the data including mean+standard deviation. Wilcoxon rank sum and chi-square analyses were utilized where noted. A p-value of <0.05 is considered statistically significant.

Results
VCAN Accumulation and Proteolysis in Normal and Malignant Colorectal Tissue.

The University of Wisconsin CRC TMA consists of 122 cases with matched cores from colorectal cancer and tumorassociated normal colon tissues. We stained the TMA with antibodies raised against a neoepitope (α DPEAAE) generated through VCAN cleavage at the Glu ${ }^{441}-$ Ala 442 bond of the V1-VCAN isoform (16). DPEAAE constitutes the C-terminal end of the bioactive VCAN fragment, versikine. Serial tissue TMA sections were stained with an antibody recognizing the immunoglobulin-like domain at VCAN's N-ter-
minal end. The latter would be expected to recognize all intact VCAN isoforms (total VCAN). Although its immunogen sequences are also included within cleaved VCAN, detection of cleaved/mobilized VCAN appears far less sensitive with the latter antibody. Intense total VCAN staining was observed in tumor stroma (FIGS. 6A and 6B). By contrast, highest intensity staining for the α DPEAAE neoepitope ($2+, 3+$) was detected within normal stroma and only variably within tumor stroma (Chi-square test, $\mathrm{p}<0.001$; FIGS. 6A and 6C; FIG. 10).
There was no correlation between total VCAN staining and location of primary tumor (left/right colon, rectum) (FIG. 11). Increased aDPEAAE staining was observed in the rectum compared to the colon (Chi-square test, $\mathrm{p}=0.009$). To determine whether VCAN processing correlated with tumor location, tumors were classified according to the degree of VCAN accumulation and processing in their stroma. Tumors were classified as "VCAN proteolysispredominant" if their staining for total VCAN staining intensity was $\leq 1+$ and staining for VCAN proteolysis (α DPEAAE antibody) was ≥ 2. Conversely, tumors were classified as "proteolysis-weak" if intact VCAN staining intensity was $>1+$ or α DPEAAE intensity was $<2+$. Despite a greater staining for α DPEAAE neoepitope being identified within the rectum, there was no significant correlation between the VCAN proteolysis-predominant classification and tumor location (Chi-square test, $p=0.96$; FIG. 11B).
"VCAN Proteolysis-Predominant" Tumors Show Robust CD8+ T-Cell Infiltration.

Given the immunosuppressive properties of VCAN and immunostimulatory properties of its proteolytic product, versikine (15), we hypothesized that VCAN proteolysispredominant tumors are primed for immune infiltration. To determine whether VCAN processing correlated with CD8+ T-cell infiltration, the TMA was stained for the effector T-cell marker, CD8, and correlated with the VCAN proteolysis classification. We detected a statistically significant correlation between proteolysis-predominant status and CD8+ T-cell infiltration. CD8+ scores in "proteolysis-predominant" tumors were on average 10 -fold higher than "proteolysis-weak" tumors (mean of $22 \mathrm{CD} 8+\mathrm{T}$-cells per HPF versus 2, respectively; Wilcoxon rank sum test, p <0.001; FIG. 7A-B).

CD8+ T-cell infiltration was highest in tumors that displayed intense VCAN proteolysis together with low amounts of total VCAN (FIG. 7C). This finding suggests that low VCAN accumulation may not adequately promote T-cell infiltration unless VCAN is actively processed to generate proteolytic fragments. This observation is consistent with our hypothesis that VCAN proteolysis generates bioactive fragments with novel activities. Conversely, in tumors with high total VCAN, CD8+ T-cell infiltration may be impeded through an unfavorable stoichiometry between intact VCAN and VCAN fragments. In summary, these data suggest that VCAN proteolytic fragments are not mere markers of VCAN turnover but are endowed with important novel immunomodulatory activities. We have previously elucidated the immunoregulatory role of the VCAN fragment, versikine (15).

Since tumors with greater degrees of CD8+ T-cell infiltration are known to result in a better prognosis, the association between VCAN proteolysis and tumor stage was assessed. A trend toward an increased prevalence of staining for the VCAN proteolysis-predominant classification was seen in colon cancers of earlier stage, albeit not statistically significant (Chi-square test, $\mathrm{p}=0.28$; FIG. 11C).

CD8+ T-Cell Infiltration Correlates with VCAN Proteolysis Regardless of MMR Status.
dMMR is observed in 15% of localized CRCs and 3-4\% of metastatic cases (2, 4,5). MLH1 and MSH2 are the most commonly lost MMR proteins. These proteins can be lost secondary to somatic or germline mutations or epigenetic silencing. dMMR status has been associated with an improved prognosis and increased response to immune checkpoint blockade ($2,4,5$). Since dMMR is one of the strongest predictors of CD8+ T-cell infiltration, we next examined the potential for a correlation between VCAN proteolysis and MMR status. IHC staining for the MMR proteins MLH1, MSH2, PMS2 and MSH6 was performed to determine MMR status. Consistent with prior reports, CD8+ T-cell infiltration was increased in dMMR tumors (Wilcoxon rank sum test, $\mathrm{p}<0.001$; FIG. 8A). MMR status was then correlated with VCAN and aDPEAAE staining. We observed all potential staining combinations in both pMMR and dMMR cancers (FIG. 8B). A trend towards increased intensity of VCAN staining in pMMR cancers was observed. No significant differences were observed in the proportions of tumors staining for VCAN and α DPEAAE across dMMR cancers (FIG. 8B). The correlation between VCAN proteolysis and CD8+ T-cell infiltration was maintained in both pMMR and dMMR (FIG. 8C). In both pMMR and dMMR, those tumors staining for the VCAN proteolysis-predominant classification had the greatest degree of CD8+ T-cell infiltration (Wilcoxon rank sum tests: $\mathrm{pMMR} \mathrm{p}=0.006$; $\mathrm{dMMR} p=0.03$). Among the VCAN proteolysis-predominant tumors there was a greater degree of CD8+ T cell infiltration in the dMMR cancers compared to pMMR cancers (35 versus 14.8 TILs per HPF, Wilcoxon rank sum test, $\mathrm{p}=0.04$).

The VCAN Proteolysis Predominant Phenotype is More Common in dMMR Cancers.

Since the VCAN proteolysis predominant phenotype predicts CD8+ T-cell infiltration in both dMMR and pMMR cancers the prevalence of this phenotype was examined. Of the dMMR tumor samples, 25% possessed the VCAN proteolysis predominant phenotype, while this was observed in only 10% of pMMR samples (FIG. 3D, Wilcoxon rank sum test, $\mathrm{p}=0.01$). In addition, another 25% of dMMR cancers demonstrated $1+$ or less staining for both total VCAN and α DPEAAE, while this was observed in an additional 14% of pMMR cancers.

CD8+ T-Cell Exclusion is Associated with WNT Pathway Activation in Tumor Cells.

In a recent report by the Gajewski group (20), WNT signaling activation in melanoma tumor cells correlated with CD8 T-cell exclusion. Because activation of WNT signaling is a frequent molecular event in CRC secondary to the presence of truncating mutations in APC or activation mutations in CTNNB1 (21), we investigated whether analogous mechanisms operated in CRC. Indeed, we detected a statistically significant negative correlation between nuclear CTNNB1 (β-catenin, a marker of active WNT signaling) and CD8+ T-cell infiltration in CRC (Wilcoxon rank sum test, $\mathrm{p}=0.014$; FIG. 8E). In addition, VCAN accumulation correlated with the presence of nuclear β-catenin (Chisquare test, $\mathrm{p}<0.001$, FIG. 8 F) and was more common in the pMMR cancers (8 vs. 53%, respectively, Chi-square test, $\mathrm{p}<0.001$, FIG. 8G).

VCAN Accumulation and/or Proteolysis is not Associated with Tumor-Intrinsic Activation of the MAPK and PI3K Pathways, Nor with KI67 Index in CRC.

We investigated a potential correlation between MAPK pathway activation in tumor cells (detected through ERK $1 / 2$
phosphorylation), PI3K pathway activation (detected through RPS6 phosphorylation) or tumor cell proliferation (as measured through KI67 staining). The results are shown in FIGS. 12 and 13. There was no correlation between activation of these key oncogenic pathways and/or KI67 index with VCAN processing.

Versikine Promotes the Generation of CD103+cDC from flt3L-Mobilized Primary Bone Marrow Cultures.

Versican proteolysis may impact on tumor immune contexture through regulation of intact versican bioavailability and/or the generation of novel bioactive fragments. We have previously shown that versikine, a fragment generated through versican proteolysis at the $\mathrm{Glu}^{440}-\mathrm{Ala}^{441}$ bond, activates an IRF8-dependent transcriptional program in cultured myeloid cells (15). IRF8 is a terminal selector for CD8a/CD103+ cDC (22), a DC subset with crucial roles in T-cell-mediated immunosurveillance (20, 23, 24).

Flt3L-mobilized BM cultures have long provided a faithful ex vivo model of DC differentiation (19). Addition of recombinant versikine at the onset of culture (together with flt3L) consistently and reproducibly promoted expansion of the CD103+CD11c+MHCII ${ }^{h i}$ DC subset at both early and late culture timepoints (FIG. 9A/B). These cells were SIR$\mathrm{Pa}^{l o}, \mathrm{CD} 11 \mathrm{~b}^{\text {lo-int }}$ and SiglecH ${ }^{2 o}$ confirming their identity as CD103+ conventional DC (cDC). There was no difference in the prevalence of SiglecH ${ }^{\text {hi }}$ cells at Day 4 (data not shown). Versikine-treated cultures displayed increased expression of Irf8 and Batf3, both essential transcription factors for cDC 1 development (FIG. 9C). By contrast, addition of the TLR2/6 ligand, FSL-1 (Pam2CGDPKHPKSF) conferred a disadvantage to CD103+DC development (FIG. 9D). Because intact VCAN is thought to act through TLR2/6 heterodimers (13), these results suggest that versikine may signal through pathways other than those triggered by intact VCAN. Taken together, our data suggest that tumor-seeding, bone-marrowderived DC precursors may preferentially develop into immunogenic CD103+ DC in tumor microenvironments undergoing active VCAN proteolysis.

Discussion
Colorectal cancer remains a challenging problem of public health proportions. Recent advances in immunotherapy of solid tumors previously thought to be non-immunogenic, such as lung cancer, raised hopes that CRC patients might also benefit. However, CRC responses to novel immunotherapy modalities have been modest at best, with the exception of a small number of patients with mismatch repair-deficient CRC. Future challenges include the selection of patients most likely to respond (through the identification and validation of novel predictive biomarkers) as well as the devising and testing of innovative combinatorial immunotherapy regimens that augment efficacy with acceptable toxicity. CD8+ T-cell infiltration has been associated with an improved prognosis and response to immune checkpoint blockade, especially in the setting of dMMR . However, the mechanisms regulating immune cell infiltration are largely yet to be determined.

We report here the strong association between VCAN proteolysis and CD8+ T-cell infiltration. At a mechanistic level, proteolysis of intact VCAN can be postulated to produce three alternative consequences, not mutually exclusive: Firstly, proteolysis may regulate the amount and bioavailability of tolerogenic intact VCAN at the tumor site and the resultant degree of DC dysfunction (14). Secondly, proteolysis may disrupt VCAN's complex interactions with other immunoregulatory matrix components, such as hyaluronan or tenascin C (25). Thirdly, VCAN proteolysis generates fragments with novel activities. We recently
showed that versikine, a bioactive fragment generated through VCAN proteolysis, elicits an IRF8-dependent type-I interferon transcriptional program as well as IL12 but not IL10 production from myeloid cells (15). These actions are predicted to enhance immunogenicity and tumor "sensing" by the immune system. Indeed, in a small myeloma panel, VCAN proteolysis was necessary, albeit not sufficient, for CD8+ T-cell infiltration (15). In this manuscript we demonstrate that versikine promotes generation of CD103+ CD11c ${ }^{h i} \mathrm{MHCII}^{h i}$ conventional DC from flt3L-mobilized BM progenitors. The data support a model in which DC precursors seeding tumor sites undergoing active versican proteolysis may preferentially differentiate towards CD103+ DC implicated in T-cell mediated immunosurveillance and response to immunotherapies ($20,23,24$).

We observed intense VCAN proteolysis in normal colonic epithelium. The colon constitutes an immunologically active microenvironment that has evolved to cope with the continuous exposure to exogenous antigens provided by food processing as well as intestinal microbiota. The implications of this regulation are profound and bear significance well beyond the confines of the gastrointestinal tract. Importantly, a correlation between the composition of intestinal flora and degree of response to anti-tumor immunotherapy is established and beginning to be clinically exploited (26-28). The mechanisms accounting for the regulation and "fine-tuning" of immune responses in normal colonic epithelium are poorly understood (29). It is tempting to associate VCAN processing, and the resultant generation of bioactive immunoregulatory fragments, with homeostatic DC maturation in normal colon. Because the effects of intestinal microbiota on anti-tumor immunity are thought to be regulated at the level of DCs, we hypothesize that VCAN proteolysis may collaborate with the microbiome to influence immune priming against distally-located tumors. Alternatively or additionally, versican proteolysis may specifically shape the immunological milieu of the normal epithelium located adjacent to the "expanding rim" of colonic cancers.

Moreover, VCAN accumulation and turnover may impact on the local immunoregulation of several types of solid tumors that arise in normally "sterile" sites. For example, in prostate tissue, immunosuppressive signaling from TGF β increases expression of VCAN, reduces expression of VCAN-cleaving ADAMTS proteases and enhances expression of ADAMTS metalloproteinase inhibitor, TIMP-3 (30). Interestingly, prostate cancer constitutes another common type of solid tumor that has yet to benefit from the recent advances in immunotherapy (31). It is intriguing to hypothesize that the VCAN-versikine axis may regulate immune infiltration across a wide spectrum of solid tumors.

Our data confirm and extend previous findings regarding the mechanisms regulating T-cell infiltration or exclusion from the tumor site. In particular, we confirm previous observations implicating melanoma-intrinsic WNT signaling in T-cell exclusion and extend these findings to CRC (20). Mechanistic analyses in melanoma suggested that WNT signaling acts through CCL4 to regulate tumor infiltration by Batf3-lineage DC (CD103+DC in peripheral tissues). Our data raise the testable hypothesis that WNT signaling enhances VCAN accumulation in the tumor microenvironment, potentially through the recruitment of immunosuppressive, VCAN-producing, macrophages. VCAN promotes DC dysfunction through Toll-like recep-tor-2 (TLR2) signaling (14). It is tempting to speculate that tumor-intrinsic WNT signaling radically remodels the myeloid immune contexture of the tumor through inhibition of immunogenic, Batf3-expressing DC together with recruit-
ment of immunosuppressive, VCAN-producing, macrophages. We are currently testing these hypotheses.

The data presented in this manuscript suggest that VCAN processing may influence the balance between tolerogenic and immunogenic inflammation in common solid tumors. Further to our earlier work (15), corroborating evidence has lately come from different angles. A recent paper suggested a link between VCAN turnover and anti-viral T-cell responses in mice (32). We speculate the analogous mechanisms may operate during innate immune sensing of tumors (33). VCAN-producing, immunosuppressive macrophages were shown to expand post-therapy in myeloma and inhibit T-cell proliferation (34). The abundance of VCAN in CRCs is likely regulated both at the transcriptional level through WNT signaling and post-translationally, through ADAMTS proteases encoded by loci that are epigenetically regulated upon CRC progression (35). The data provide a rationale for investigating VCAN proteolysis as a novel immune biomarker in solid tumor settings. Moreover, therapeutic manipulation of the VCAN-versikine axis through targeted proteolysis of VCAN or administration of recombinant proteolytic fragment, versikine, could be clinically tested for synergy with modern immunotherapy modalities against CRC regardless of mismatch repair status.

REFERENCES

1. Marley A R, Nan H. Epidemiology of colorectal cancer. Int J Mol Epidemiol Genet 2016; 7(3):105-14.
2. Lynch D, Murphy A. The emerging role of immunotherapy in colorectal cancer. Ann Trans1 Med 2016; 4(16): 305.
3. Topalian S L, Hodi F S, Brahmer J R, Gettinger S N, Smith D C, McDermott D F, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 2012; 366(26):2443-54.
4. Westdorp H, Fennemann F L, Weren R D, Bisseling T M, Ligtenberg M J, Figdor C G, et al. Opportunities for immunotherapy in microsatellite instable colorectal cancer. Cancer Immunol Immunother 2016; 65(10):1249-59.
5. Bupathi M, Wu C. Biomarkers for immune therapy in colorectal cancer: mismatch-repair deficiency and others. J Gastrointest Oncol 2016; 7(5):713-20.
6. Galon J, Costes A, Sanchez-Cabo F, Kirilovsky A, Mlecnik B, Lagorce-Pages C, et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 2006; 313(5795):1960-4.
7. Hope C, Ollar S J, Heninger E, Hebron E, Jensen J L, Kim J, et al. TPL2 kinase regulates the inflammatory milieu of the myeloma niche. Blood 2014; 123(21):3305-15.
8. Du W W, Yang W, Yee A J. Roles of versican in cancer biology-tumorigenesis, progression and metastasis. Histol Histopathol 2013; 28(6):701-13.
9. Ricciardelli C, Sakko A J, Ween M P, Russell D L, Horsfall D J. The biological role and regulation of versican levels in cancer. Cancer Metastasis Rev 2009; 28(1-2):233-45.
10. Wight T N, Kang I, Merrilees M J. Versican and the control of inflammation. Matrix Biol 2014; 35:152-61.
11. Zhang Z, Miao L, Wang L Inflammation amplification by versican: the first mediator. Int J Mol Sci 2012; 13(6): 6873-82.
12. Gao D, Joshi N, Choi H, Ryu S, Hahn M, Catena R, et al. Myeloid progenitor cells in the premetastatic lung promote metastases by inducing mesenchymal to epithelial transition. Cancer Res 2012; 72(6):1384-94.
13. Kim S, Takahashi H, Lin W W, Descargues P, Grivennikov S, Kim Y, et al. Carcinoma-produced factors activate myeloid cells through TLR2 to stimulate metastasis. Nature 2009; 457(7225):102-6.
14. Tang M, Diao J, Gu H, Khatri I, Zhao J, Cattral M S. Toll-like Receptor 2 Activation Promotes Tumor Dendritic Cell Dysfunction by Regulating IL-6 and IL-10 Receptor Signaling. Cell Rep 2015; 13(12):2851-64.
15. Hope C, Foulcer S, Jagodinsky J, Chen S X, Jensen J L, Patel S, et al. Immunoregulatory roles of versican proteolysis in the myeloma microenvironment. Blood 2016; 128(5):680-5.
16. Nandadasa S, Foulcer S, Apte S S. The multiple, complex roles of versican and its proteolytic turnover by ADAMTS proteases during embryogenesis. Matrix Biol 2014; 35:34-41.
17. Wang K, Karin M. Tumor-Elicited Inflammation and Colorectal Cancer. Adv Cancer Res 2015; 128:173-96.
18. Foulcer S J, Day A J, Apte S S. Isolation and purification of versican and analysis of versican proteolysis. Methods Mol Biol 2015; 1229:587-604.
19. Brasel K, De Smedt T, Smith J L, Maliszewski C R. Generation of murine dendritic cells from flt3-ligandsupplemented bone marrow cultures. Blood 2000; 96(9): 3029-39.
20. Spranger S, Bao R, Gajewski T F. Melanoma-intrinsic beta-catenin signalling prevents anti-tumour immunity. Nature 2015; 523(7559):231-5.
21. Markowitz S D, Bertagnolli M M. Molecular origins of cancer: Molecular basis of colorectal cancer. N Eng1 J Med 2009; 361(25):2449-60.
22. Sichien D, Scott C L, Martens L, Vanderkerken M, Van Gassen S, Plantinga M, et al. IRF8 Transcription Factor Controls Survival and Function of Terminally Differentiated Conventional and Plasmacytoid Dendritic Cells, Respectively. Immunity 2016.
23. Broz M L, Binnewies M, Boldajipour B, Nelson A E, Pollack J L, Erle D J, et al. Dissecting the tumor myeloid compartment reveals rare activating antigen-presenting cells critical for T cell immunity. Cancer Cell 2014; 26(5):638-52.
24. Salmon H, Idoyaga J, Rahman A, Leboeuf M, Remark R, Jordan S, et al. Expansion and Activation of CD103(+) Dendritic Cell Progenitors at the Tumor Site Enhances Tumor Responses to Therapeutic PD-L1 and BRAF Inhibition. Immunity 2016; 44(4):924-38.
25. Wu Y J, La Pierre D P, Wu J, Yee A J, Yang B B. The interaction of versican with its binding partners. Cell Res 2005; 15(7):483-94.
26. Pitt J M, Vetizou M, Waldschmitt N, Kroemer G, Chamaillard M, Boneca I G, et al. Fine-Tuning Cancer Immunotherapy: Optimizing the Gut Microbiome. Cancer Res 2016; 76(16):4602-7.
27. Spranger S, Sivan A, Corrales L, Gajewski T F. Tumor and Host Factors Controlling Antitumor Immunity and Efficacy of Cancer Immunotherapy. Adv Immunol 2016; 130:75-93.
28. Goldszmid R S, Dzutsev A, Viaud S, Zitvogel L, Restifo N P, Trinchieri G. Microbiota modulation of myeloid cells in cancer therapy. Cancer Immunol Res 2015; 3(2):103-9.
29. Coombes J L, Powrie F. Dendritic cells in intestinal immune regulation. Nat Rev Immunol 2008; 8(6):435-46.
30. Cross N A, Chandrasekharan S, Jokonya N, Fowles A, Hamdy F C, Buttle D J, et al. The expression and regulation of ADAMTS-1, $-4,-5,-9$, and -15, and TIMP-3 by TGFbetal in prostate cells: relevance to the accumulation of versican. Prostate 2005; 63(3):269-75.
31. Rekoske B T, McNeel D G. Immunotherapy for prostate cancer: False promises or true hope? Cancer 2016; 122 (23):3598-607.
32. McMahon M, Ye S, Izzard L, Dlugolenski D, Tripp R A, Bean A G, et al. ADAMTS5 Is a Critical Regulator of Virus-Specific T Cell Immunity. PLoS Biol 2016; 14(11): e1002580.
33. Woo S R, Corrales L, Gajewski T F. Innate immune recognition of cancer. Annu Rev Immunol 2015; 33:44574.
34. Arana P, Zabaleta A, Lasa M, Maiso P, Alignani D, Jelinek T, et al. High-Throughput Characterization and New Insight into the Role of Tumor Associated Macrophages (TAMs) in Multiple Myeloma (MM). Blood 2016; 128(22):482-82.
35. Lind G E, Kleivi K, Meling G I, Teixeira M R, Thiis-Evensen E, Rognum T O, et al. ADAMTS1, CRABP1, and NR3C1 identified as epigenetically deregulated genes in colorectal tumorigenesis. Cell Oncol 2006; 28(5-6):259-72.
In the foregoing description, it will be readily apparent to one skilled in the art that varying substitutions and modifications may be made to the invention disclosed herein without departing from the scope and spirit of the invention. The invention illustratively described herein suitably may be practiced in the absence of any element or elements, limitation or limitations which is not specifically disclosed herein. The terms and expressions which have been employed are used as terms of description and not of limitation, and there is no intention that in the use of such terms and expressions of excluding any equivalents of the features shown and described or portions thereof, but it is recognized that various modifications are possible within the scope of the invention. Thus, it should be understood that although the present invention has been illustrated by specific embodiments and optional features, modification and/ or variation of the concepts herein disclosed may be resorted to by those skilled in the art, and that such modifications and variations are considered to be within the scope of this invention.

Citations to a number of references are made herein. All of the cited references are incorporated by reference herein in their entireties. In the event that there is an inconsistency between a definition of a term in the specification as compared to a definition of the term in a cited reference, the term should be interpreted based on the definition in the specification.

```
<160> NUMBER OF SEQ ID NOS: 27
<210> SEQ ID NO 1
<211> LENGTH: 2409
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
```


Glu	$\begin{aligned} & \text { Ser } \\ & 1625 \end{aligned}$	Asn Asp A	Asp Ser	$\begin{aligned} & \text { Thr } \\ & 1630 \end{aligned}$	Gln	Val			$\begin{aligned} & \text { Ile } \\ & 1635 \end{aligned}$	Tyr	$1 u$	Ala
Ala	$\begin{aligned} & \text { Val } \\ & 1640 \end{aligned}$	Asn Leu	Ser Leu	$\begin{aligned} & \text { Thr } \\ & 1645 \end{aligned}$	Glu	Glu	Thr		$\begin{aligned} & \text { Glu } \\ & 1650 \end{aligned}$	Gly	Ser	Ala
Asp V	$\begin{aligned} & \text { Val } \\ & 1655 \end{aligned}$	Leu Ala	Ser Tyr	$\begin{aligned} & \text { Thr } \\ & 1660 \end{aligned}$	Gln	Ala	Thr		$\begin{aligned} & \text { Asp } \\ & 1665 \end{aligned}$	Glu	Ser	Met
Thr	$\begin{aligned} & \text { Tyr } \\ & 1670 \end{aligned}$	Glu Asp	Arg Ser	$\begin{aligned} & \mathrm{Gln} \\ & 1675 \end{aligned}$	Leu	Asp	His	Met	$\begin{aligned} & \text { Gly } \\ & 1680 \end{aligned}$	Phe	His	Phe
Thr	$\begin{aligned} & \text { Thr } \\ & 1685 \end{aligned}$	Gly Ile	Pro Ala	$\begin{aligned} & \text { Pro } \\ & 1690 \end{aligned}$	Ser	Thr	Glu	Thr	$\begin{aligned} & \text { Glu } \\ & 1695 \end{aligned}$	Leu	Asp	Val
Leu	Leu 1700	Pro Thr	Ala Thr	$\begin{aligned} & \text { Ser } \\ & 1705 \end{aligned}$	Leu	Pro	Ile	ro	$\begin{aligned} & \text { Arg } \\ & 1710 \end{aligned}$	Lys	Ser	Ala
Thr V	$\begin{aligned} & \text { Val } \\ & 1715 \end{aligned}$	Ile Pro	u Ile	$\begin{aligned} & \text { Glu } \\ & 1720 \end{aligned}$	Gly	Ile	s	Ala	$\begin{aligned} & \text { Glu } \\ & 1725 \end{aligned}$	Ala	ys	Ala
Leu	Asp 1730	Asp Met	Phe Glu	$\begin{aligned} & \text { Ser } \\ & 1735 \end{aligned}$	Ser	Thr	Leu	Ser	$\begin{aligned} & \text { Asp } \\ & 1740 \end{aligned}$	Gly	Gln	Ala
Ile A	Ala 1745	Asp Gln S	Ser Glu	$\begin{aligned} & \text { Ile } \\ & 1750 \end{aligned}$	Ile	Pro	Thr	Leu	$\begin{aligned} & \text { Gly } \\ & 1755 \end{aligned}$	Gln	Phe	Glu
Arg	$\begin{aligned} & \text { Thr } \\ & 1760 \end{aligned}$	Gln Glu	Glu Tyr	$\begin{aligned} & \text { Glu } \\ & 1765 \end{aligned}$	Asp	Lys	Lys	His	$\begin{aligned} & \text { Ala } \\ & 1770 \end{aligned}$	Gly	Pro	Ser
Phe	$\begin{aligned} & \text { Gln } \\ & 1775 \end{aligned}$	Pro Glu	Se Ser	$\begin{aligned} & \text { Ser } \\ & 1780 \end{aligned}$	Gly	Ala	lu	lu	$\begin{aligned} & \text { Ala } \\ & 1785 \end{aligned}$	Leu	Val	Asp
His	$\begin{aligned} & \text { Thr } \\ & 1790 \end{aligned}$	Pro Tyr	u Ser	$\begin{aligned} & \text { Ile } \\ & 1795 \end{aligned}$	Ala	Thr	hr	is	Leu 1800	Met	Asp	Gln
Ser Val	$\begin{aligned} & \text { Val } \\ & 1805 \end{aligned}$	Thr Glu	l Pro	Asp 1810	Val	et	$1 u$	Gly	$\begin{aligned} & \text { Ser } \\ & 1815 \end{aligned}$	Asn	Pro	Pro
Tyx	$\begin{aligned} & \text { Tyr } \\ & 1820 \end{aligned}$	Thr Asp	Tr Thr	Leu 1825	Ala	al	er	hr	Phe 1830	Ala	Lys	Leu
r	$\begin{aligned} & \text { Ser } \\ & 1835 \end{aligned}$	Gln Thr	10	$\begin{aligned} & \text { Ser } \\ & 1840 \end{aligned}$	Pro	u	r	$1 e$	$\begin{aligned} & \text { Tyr } \\ & 1845 \end{aligned}$	Ser	Gly	Ser
Glu	$\begin{aligned} & \text { Ala } \\ & 1850 \end{aligned}$	Ser Gly	His Thr	$\begin{aligned} & \text { Glu } \\ & 1855 \end{aligned}$	Ile	ro	1 n	ro	$\begin{aligned} & \text { Ser } \\ & 1860 \end{aligned}$	Ala	Leu	Pro
Gly	$\begin{aligned} & \text { Ile } \\ & 1865 \end{aligned}$	Asp Val	Gly	$\begin{aligned} & \text { Ser } \\ & 1870 \end{aligned}$	Val	Met	er	ro	$\begin{aligned} & \text { Gln } \\ & 1875 \end{aligned}$	Asp	Ser	Phe
s	$\begin{aligned} & \text { Glu } \\ & 1880 \end{aligned}$	Ile His	A Asn	$\begin{aligned} & \text { Ile } \\ & 1885 \end{aligned}$	Glu	la	nr	he	$\begin{aligned} & \text { Lys } \\ & 1890 \end{aligned}$	Pro	er	Ser
Glu	$\begin{aligned} & \text { Glu } \\ & 1895 \end{aligned}$	Tyr Leu	is Ile	$\begin{aligned} & \text { Thr } \\ & 1900 \end{aligned}$	Glu	Pro	ro	Ser	$\begin{aligned} & \text { Leu } \\ & 1905 \end{aligned}$	Ser	Pro	Asp
Thr L	$\begin{aligned} & \text { Lys } \\ & 1910 \end{aligned}$	Leu Glu	r	$\begin{aligned} & \text { Glu } \\ & 1915 \end{aligned}$	Asp	Asp	Gly	Lys	$\begin{aligned} & \text { Pro } \\ & 1920 \end{aligned}$	Glu	u	Leu
Glu	$\begin{aligned} & \text { Glu } \\ & 1925 \end{aligned}$	Met Glu	Ala Ser	$\begin{aligned} & \text { Pro } \\ & 1930 \end{aligned}$	Thr	Glu	Leu	Ile	$\begin{aligned} & \text { Ala } \\ & 1935 \end{aligned}$	Val	Glu	Gly
Thr	$\begin{aligned} & \text { Glu } \\ & 1940 \end{aligned}$	Ile Leu	Gln Asp	Phe 1945	Gln	Asn	ys	Thr	$\begin{aligned} & \text { Asp } \\ & 1950 \end{aligned}$	Gly	Gln	Val
Ser	$\begin{aligned} & \text { Gly } \\ & 1955 \end{aligned}$	Glu Ala	Ile Lys	Met 1960	Phe	Pro	Thr	le	$\begin{aligned} & \text { Lys } \\ & 1965 \end{aligned}$	Thr	Pro	Glu
Ala	$\begin{aligned} & \text { Gly } \\ & 1970 \end{aligned}$	Thr Val	Ile Thr	$\begin{aligned} & \text { Thr } \\ & 1975 \end{aligned}$	Ala	Asp	Glu	Ile	$\begin{aligned} & \text { Glu } \\ & 1980 \end{aligned}$	Leu	Glu	Gly
Ala	Thr 1985	Gln Trp	Pro His	$\begin{aligned} & \text { Ser } \\ & 1990 \end{aligned}$		Ser	Ala	Ser	$\begin{aligned} & \text { Ala } \\ & 1995 \end{aligned}$	Thr	Tyr	Gly
Val	$\begin{aligned} & \text { Glu } \\ & 2000 \end{aligned}$	Ala Gly V	Val Val	$\begin{aligned} & \text { Pro } \\ & 2005 \end{aligned}$	Trp	Leu	Ser	ro	$\begin{aligned} & \text { Gln } \\ & 2010 \end{aligned}$	Thr	Ser	Glu

$<210>$ SEQ ID NO 2
$<211>$ LENGTH: 2389
$<212>$ TYPE : PRT
$<213>$ ORGANISM: Homo sapiens
$<400>$ SEQUENCE : 2

$<210>$	SEQ ID NO 3
$<211>$	LENGTH: 2390
$<212>$	TYPE: PRT
$<213>$	ORGANISM: Artificial
$<220>$	FEATURE:
$<223>$	OTHER INFORMATION: Full length human versican (V1) (minus signal
	peptide, plus N-terminal methionine)
$<400>$	SEQUENCE: 3

Arg	$\begin{aligned} & \text { Glu } \\ & 1520 \end{aligned}$	Phe Glu Asp Ser	$\begin{aligned} & \text { Thr } \\ & 1525 \end{aligned}$					$\begin{aligned} & \text { Arg } \\ & 1530 \end{aligned}$	Lys		Pro
Thr	$\begin{aligned} & \text { Glu } \\ & 1535 \end{aligned}$	Asn Ile Ile Ile	Asp 1540	Leu	Asp	Lys	Glu	Asp 1545	Lys	Asp	Leu
Ile	Leu 1550	Thr Ile Thr Glu	Ser 1555	Thr	Ile	Leu	Glu	$\begin{aligned} & \text { Ile } \\ & 1560 \end{aligned}$	Leu	Pro	Glu
Leu	$\begin{aligned} & \text { Thr } \\ & 1565 \end{aligned}$	Ser Asp Lys Asn	$\begin{aligned} & \text { Thr } \\ & 1570 \end{aligned}$	Ile	Ile	Asp	Ile	Asp 1575	His	Thr	LYs
Pro	$\begin{aligned} & \text { Val } \\ & 1580 \end{aligned}$	Tyr Glu Asp Ile	Leu 1585	Gly	Met	Gln	Thr	$\begin{aligned} & \text { Asp } \\ & 1590 \end{aligned}$	Ile	Asp	Thr
Glu	$\begin{aligned} & \text { Val } \\ & 1595 \end{aligned}$	Pro Ser Glu Pro	$\begin{aligned} & \mathrm{His} \\ & 1600 \end{aligned}$	Asp	Ser	n	Asp	$\begin{aligned} & \text { Glu } \\ & 1605 \end{aligned}$	Ser	Asn	Asp
Asp	$\begin{aligned} & \text { Ser } \\ & 1610 \end{aligned}$	Thr Gln Val Gln	$\begin{aligned} & \mathrm{Glu} \\ & 1615 \end{aligned}$	Ile	Tyr	Glu	Ala	$\begin{aligned} & \text { Ala } \\ & 1620 \end{aligned}$	Val	Asn	Leu
Ser	$\begin{aligned} & \text { Leu } \\ & 1625 \end{aligned}$	Thr Glu Glu Thr	Phe 1630	Glu	Gly	Ser	Ala	Asp 1635	Val	Leu	Ala
Ser	$\begin{aligned} & \text { Tyr } \\ & 1640 \end{aligned}$	Thr Gln Ala Thr	His 1645	Asp	Glu	Ser	et	$\begin{aligned} & \text { Thr } \\ & 1650 \end{aligned}$	Tyr	Glu	Asp
Arg	$\begin{aligned} & \text { Ser } \\ & 1655 \end{aligned}$	Gln Leu Asp His	Met 1660	Gly	Phe	His	e	$\begin{aligned} & \text { Thr } \\ & 1665 \end{aligned}$	Thr	Gly	Ile
Pro A	$\begin{aligned} & \text { Ala } \\ & 1670 \end{aligned}$	Pro Ser Thr Glu	$\begin{aligned} & \text { Thr } \\ & 1675 \end{aligned}$	Glu	Leu	p	Val	$\begin{aligned} & \text { Leu } \\ & 1680 \end{aligned}$	Leu	Pro	Thr
Ala	$\begin{aligned} & \text { Thr } \\ & 1685 \end{aligned}$	Ser Leu Pro Ile	$\begin{aligned} & \text { Pro } \\ & 1690 \end{aligned}$	Arg	Lys	Ser	la	$\begin{aligned} & \text { Thr } \\ & 1695 \end{aligned}$	Val	Ile	Pro
u	$\begin{aligned} & \text { Ile } \\ & 1700 \end{aligned}$	Glu Gly Ile Lys	$\begin{aligned} & \text { Ala } \\ & 1705 \end{aligned}$	Glu	Ala	Lys	Ala	$\begin{aligned} & \text { Leu } \\ & 1710 \end{aligned}$	Asp	Asp	Met
Phe	$\begin{aligned} & \text { Glu } \\ & 1715 \end{aligned}$	Ser Ser Thr Leu	$\begin{aligned} & \text { Ser } \\ & 1720 \end{aligned}$	Asp	Gly	ln	la	Ile 1725	Ala	Asp	Gln
	$\begin{aligned} & \text { Glu } \\ & 17.30 \end{aligned}$	Ile Ile Pro Thr	$\begin{aligned} & \text { Leu } \\ & 1735 \end{aligned}$	Gly	$1 n$		Glu	Arg 1740	Thr	Gln	1 u
Glu	$\begin{aligned} & \text { Tyr } \\ & 1745 \end{aligned}$	Glu Asp Lys Lys	$\begin{aligned} & \mathrm{His} \\ & 1750 \end{aligned}$	Ala	Gly	ro	er	Phe 1755	Gln	Pro	Glu
Phe	$\begin{aligned} & \text { Ser } \\ & 1760 \end{aligned}$	Ser Gly Ala Glu	Glu 1765	Ala	Leu	l	sp	His 1770	Thr	ro	TYr
	$\begin{aligned} & \text { Ser } \\ & 1775 \end{aligned}$	le Ala Thr Thr	$\begin{aligned} & \text { His } \\ & 1780 \end{aligned}$	Leu	et	sp	\ln	$\begin{aligned} & \text { Ser } \\ & 1785 \end{aligned}$	Val	'hr	Glu
Val	$\begin{aligned} & \text { Pro } \\ & 1790 \end{aligned}$	Asp Val Met Glu	$\begin{aligned} & \text { Gly } \\ & 1795 \end{aligned}$	Ser	Asn	ro	ro	$\begin{aligned} & \text { Tyr } \\ & 1800 \end{aligned}$	Tyr	Thr	Asp
Thr	$\begin{aligned} & \text { Thr } \\ & 1805 \end{aligned}$	Leu Ala Val Ser	$\begin{aligned} & \text { Thr } \\ & 1810 \end{aligned}$	Phe	la	Ys	eu	$\begin{aligned} & \text { Ser } \\ & 1815 \end{aligned}$	Ser	ln	hr
- 1	$\begin{aligned} & \text { Ser } \\ & 1820 \end{aligned}$	Ser Pro Leu Thr	$\begin{aligned} & \text { Ile } \\ & 1825 \end{aligned}$	Tyr	Ser	Gly	Ser	$\begin{aligned} & \text { Glu } \\ & 1830 \end{aligned}$	Ala	Ser	Gly
His	$\begin{aligned} & \text { Thr } \\ & 1835 \end{aligned}$	Glu Ile Pro Gln	$\begin{aligned} & \text { Pro } \\ & 1840 \end{aligned}$	Ser	Ala	Leu	Pro	$\begin{aligned} & \text { Gly } \\ & 1845 \end{aligned}$	Ile	Asp	Val
Gly	$\begin{aligned} & \text { Ser } \\ & 1850 \end{aligned}$	Ser Val Met Ser	$\begin{aligned} & \text { Pro } \\ & 1855 \end{aligned}$	Gln	Asp	Ser	Phe	$\begin{aligned} & \text { Lys } \\ & 1860 \end{aligned}$	Glu	Ile	His
Val	$\begin{aligned} & \text { Asn } \\ & 1865 \end{aligned}$	Ile Glu Ala Thr	Phe 1870	Lys	Pro	Ser	Ser	$\begin{aligned} & \text { Glu } \\ & 1875 \end{aligned}$	Glu	Tyr	Leu
His	Ile 1880	Thr Glu Pro Pro	$\begin{aligned} & \text { Ser } \\ & 1885 \end{aligned}$	Leu	Ser	Pro	Asp	Thr 1890	Lys	Leu	Glu
ro	$\begin{aligned} & \text { Ser } \\ & 1895 \end{aligned}$	Glu Asp Asp Gly	$\begin{aligned} & \text { Lys } \\ & 1900 \end{aligned}$	Pro	Glu	Leu	Leu	$\begin{aligned} & \text { Glu } \\ & 1905 \end{aligned}$	Glu	Met	Glu

$<210>$ SEQ ID NO 4
$<211>$ LENGTH: 1968
$<212>$ TYPE : PRT
$<213>$ ORGANISM: Homo sapiens
$<400>$ SEQUENCE : 4

$<210>$ SEQ ID NO 5
$<211>$ LENGTH: 441
$<212>$ TYPE : PRT
$<213>$ ORGANISM: Homo sapiens
$<400>$ SEQUENCE: 5

$\begin{aligned} & \text { Met } \\ & 1 \end{aligned}$	e		$\begin{aligned} & \text { Asn } I \\ & 5 \end{aligned}$	$\begin{aligned} & \text { Ile } \\ & 5 \end{aligned}$	Lys			u	$\begin{aligned} & \text { Trp } \\ & 10 \end{aligned}$	et	Cys			$\begin{aligned} & \text { Leu } \\ & 15 \end{aligned}$	Ile
Val	Thr	His	$\begin{aligned} & \text { Ala L } \\ & 20 \end{aligned}$	Leu	His	Lys	Val	$\begin{aligned} & \text { Lys } \\ & 25 \end{aligned}$	Val	Gly	Lys	Ser	$\begin{aligned} & \text { Pro } \\ & 30 \end{aligned}$	Pro	Val
Arg	Gly	$\begin{aligned} & \text { Ser L } \\ & 35 \end{aligned}$	Leu S	Ser	Gly	Lys	$\begin{aligned} & \text { Val } \\ & 40 \end{aligned}$	Ser	Leu	Pro	Cys	$\begin{aligned} & \text { His } \\ & 45 \end{aligned}$	Phe	Ser	Thr
Met	$\begin{aligned} & \text { Pro } \\ & 50 \end{aligned}$	Thr	Leu P	ro	ro	$\begin{aligned} & \text { Ser } \\ & 55 \end{aligned}$	Tyr	sn	Thr	Ser	$\begin{aligned} & \text { Glu } \\ & 60 \end{aligned}$	Phe	Leu	Arg	Ile
$\begin{aligned} & \text { Lys } \\ & 65 \end{aligned}$	Trp	Ser	Lys I	Ile	$\begin{aligned} & \text { Glu } \\ & 70 \end{aligned}$	val	Asp	y^{s}	Asn	$\begin{aligned} & \text { Gly } \\ & 75 \end{aligned}$	Lys	Asp	Leu	Lys	$\begin{aligned} & \mathrm{Glu} \\ & 80 \end{aligned}$
Thr	Thr	Val L	Leu V	Val 85	Ala	Gln	Asn	Gly	$\begin{aligned} & \text { Asn } \\ & 90 \end{aligned}$	le	ys	le	Gly	$\begin{aligned} & \mathrm{Gln} \\ & 95 \end{aligned}$	Asp
Tyr	Lys	Gly	$\begin{aligned} & \text { Arg V } \\ & 100 \end{aligned}$	Val	Ser	Val	Pro	$\begin{aligned} & \text { Thr I } \\ & 105 \end{aligned}$	His	Pro	Glu	Ala	$\begin{aligned} & \text { Val } \\ & 110 \end{aligned}$	Gly	Asp
Ala	Ser	$\begin{aligned} & \text { Leu } \\ & 115 \end{aligned}$	Thr V	Val	Val	Lys	$\begin{aligned} & \text { Leu } \\ & 120 \end{aligned}$	Leu	Ala	Ser	Asp	$\begin{aligned} & \text { Ala } \\ & 125 \end{aligned}$	Gly	Leu	Tyr
Arg	$\begin{aligned} & \text { Cys } \\ & 130 \end{aligned}$	Asp	Val M	Met	Tyr	$\begin{aligned} & \text { Gly } \\ & 135 \end{aligned}$	Ile	Glu	Asp	Thr	$\begin{aligned} & \text { Gln } \\ & 140 \end{aligned}$	Asp	Thr	Val	Ser
$\begin{aligned} & \text { Leu } \\ & 145 \end{aligned}$	Thr	Val	Asp	Gly	$\begin{aligned} & \text { Val } \\ & 150 \end{aligned}$	val	Phe	His	$\begin{array}{r} \text { Tyr } \\ 1 \end{array}$	$\begin{aligned} & \text { Arg } \\ & 155 \end{aligned}$	Ala	Ala	Thr	Ser	$\begin{aligned} & \text { Arg } \\ & 160 \end{aligned}$
Tyr	Thr	Leu A	Asn P	Phe 165	Glu	Ala	Ala	Gln	$\begin{aligned} & \text { Lys } \\ & 170 \end{aligned}$	Ala	Cys	Leu.	Asp	$\begin{aligned} & \mathrm{Val} \\ & 175 \end{aligned}$	Gly
Ala	Val	Ile	$\begin{aligned} & \text { Ala T } \\ & 180 \end{aligned}$	Thr	Pro	Glu	Gln	$\begin{aligned} & \text { Leu } \\ & 185 \end{aligned}$	Phe	Ala	Ala	Tyr	$\begin{aligned} & \text { Glu } \\ & 190 \end{aligned}$	Asp	Gly
Phe	Glu	$\begin{aligned} & \text { Gln } \\ & 195 \end{aligned}$	Cys A	Asp	Ala	Gly	$\begin{aligned} & \operatorname{Trp} \\ & 200 \end{aligned}$	Leu	Ala	Asp	Gln	$\begin{aligned} & \text { Thr } \\ & 205 \end{aligned}$	Val	Arg	TYr
Pro	$\begin{aligned} & \text { Ile } \\ & 210 \end{aligned}$	Arg	Ala	Pro	Arg	$\begin{aligned} & \text { Val } \\ & 215 \end{aligned}$	Gly	Cys	Tyr	Gly	Asp	Lys	Met	Gly	Lys
$\begin{aligned} & \text { Ala } \\ & 225 \end{aligned}$	Gly	Val	rg	r	$\begin{aligned} & \text { Tyr } \\ & 230 \end{aligned}$	Gly	he	rg	er	$\begin{aligned} & \text { Pro } \\ & 235 \end{aligned}$	Gln	Glu	Chr	Tyr	$\begin{aligned} & \text { Asp } \\ & 240 \end{aligned}$
Val	Tyr	Cys		$\begin{aligned} & \text { Val } \\ & 245 \end{aligned}$	Asp	His	Leu A	Asp	$\begin{aligned} & \text { Gly } \mathrm{F} \\ & 250 \end{aligned}$	Asp	Val	Phe	His	$\begin{aligned} & \text { Leu } \\ & 255 \end{aligned}$	Thr
Val	Pro	Ser	$\begin{aligned} & \text { Lys P } \\ & 260 \end{aligned}$	Phe	Thr	Phe	Glu	$\begin{aligned} & \text { Glu } \\ & 265 \end{aligned}$	Ala	Ala	Lys	Glu	$\begin{aligned} & \text { Cys } \\ & 270 \end{aligned}$	Glu	Asn
Gln	sp	Ala 275	Arg L	Leu	Ala	Thr	$\begin{aligned} & \mathrm{Val} \\ & 280 \end{aligned}$	Gly	Glu	Leu	Gln	$\begin{aligned} & \text { Ala } \\ & 285 \end{aligned}$	Ala	Trp	Arg

$<210>$ SEQ ID NO 6
$<211>$ LENGTH: 421
$<212>$ TYPE : PRT
$<213>$ ORGANISM: Homo sapiens
$<400>$ SEQUENCE: 6

$<210>$	SEQ ID NO 7
$<211>$	LENGTH: 422
$<212>$	TYPE: PRT
$<213>$	ORGANISM: Artificial
$<220>$	FEATURE:
$<223>$	OTHER INFORMATION: Full length human versikine (minus signal
	peptide, plus N-terminal methionine)
$<400>$	SEQUENCE: 7

$<210>$ SEQ ID NO 8
$<211>$ LENGTH: 146
$<212>$ TYPE : PRT
$<213>$ ORGANISM: Homo sapiens
$<400>$ SEQUENCE : 8

Ala Ser Leu Thr Val Val Lys Leu Leu Ala Ser Asp Ala Gly Leu Tyr

115
$<210>$ SEQ ID NO 9
$<211>$ LENGTH: 126
$<212>$ TYPE : PRT
$<213>$ ORGANISM: Homo sapiens
$<400>$ SEQUENCE : 9

$<210>$	SEQ ID NO 10
$<211>$	LENGTH: 127
$<212>$	TYPE: PRT
$<213>$	ORGANISM: Artificial
$<220>$	FEATURE:
$<223>$	OTHER INFORMATION: Ig-like domain of human versikine (minus signal
	peptide, plus N-terminal methionine)

<400> SEQUENCE: 10

$<210>$ SEQ ID NO 11
$<211>$ LENGTH: 96
$<212>$ TYPE : PRT
$<213>$ ORGANISM: Homo sapiens
$<400>$ SEQUENCE: 11

$<210>$	SEQ ID NO 12
$<211>$	LENGTH: 97
$<212>$	TYPE: PRT
$<213>$	ORGANISM: Artificial
$<220>$	FEATURE:
$<223>$	OTHER INFORMATION: Linker domain 1 of human versikine (plus N-
	terminal methionine)
$<400>$	SEQUENCE: 12

$<210>$ SEQ ID NO 13
$<211>$ LENGTH: 97
$<212>$ TYPE : PRT
$<213>$ ORGANISM: Homo sapiens
$<400>$ SEQUENCE: 13

Gln Thr Gly Phe Pro Pro Pro Asp Ser Arg Phe Asp Ala Tyr Cys Phe | 85 |
| :---: |
| 90 |

Lys
<210> SEQ ID NO 14
$<211>$ LENGTH: 98
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Artificial
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Linker domain 2 of human versikine (plus N-
\quad terminal methionine)
$<400>$ SEQUENCE: 14

$<210>$ SEQ ID NO 15
$<211>$ LENGTH: 93
$<212>$ TYPE : PRT
$<213>$ ORGANISM: Homo sapiens
$<400>$ SEQUENCE : 15

$<210>$ SEQ ID NO 16
$<211>$ LENGTH: 245
$<212>$ TYPE : PRT
$<213>$ ORGANISM: Homo sapiens
$<400>$ SEQUENCE: 16

$<210>$ SEQ ID NO 17
$<211>$ LENGTH: 225
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Homo sapiens

$<210>$	SEQ ID NO 18
$<211>$	LENGTH: 226
$<212>$	TYPE: PRT
$<213>$	ORGANISM: Artificial
$<220>$	FEATURE:
$<223>$	OTHER INFORMATION: N-terminal portion of human versikine including
	Ig-like domain and Linker domain 1 (minus signal peptide, plus N-
	terminal methionine)
$<400>$	SEQUENCE: 18

$<210>$ SEQ ID NO 19
$<211>$ LENGTH: 348
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Homo sapiens

$<210>$ SEQ ID NO 20
$<211>$ LENGTH: 328
$<212>$ TYPE : PRT
$<213>$ ORGANISM: Homo sapiens

<210	$>$ SEQ ID NO 21
$<211>$	LENGTH: 329
$<212>$	TYPE: PRT
$<213>$	ORGANISM: Artificial
$<220>$	FEATURE:
$<223>$	OTHER INFORMATION: N-terminal portion of human versikine including
	Ig-like domain, Linker domain 1, and Linker domain 2 (minus signal
	peptide, plus N-terminal methionine)

$<210>$ SEQ ID NO 22
$<211>$ LENGTH: 198
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Homo sapiens
$<400>$ SEQUENCE: 22

$<210>$	SEQ ID NO 23
$<211>$	LENGTH: 199
$<212>$	TYPE: PRT
$<213>$	ORGANISM: Artificial
$<220>$	FEATURE:
$<223>$	OTHER INFORMATION: Internal portion of human versikine including
	Linker domain 1 and Linker domain 2 (plus N-terminal methionine)
$<400>$	SEQUENCE: 23

Leu Tyr Arg Phe Glu Asn Gln Thr Gly Phe Pro Pro Pro Asp Ser Arg

180
185

Phe Asp Ala Tyr Cys Phe Lys
195
$<210>$ SEQ ID NO 24
$<211>$ LENGTH: 292
$<212>$ TYPE : PRT
$<213>$ ORGANISM: Homo sapiens
$<400>$ SEQUENCE: 24

$<210>$ SEQ ID NO 25
$<211>$ LENGTH: 293
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Artificial

```
<220> FEATURE:
<223> OTHER INFORMATION: C-terminal portion of human versikine including
        Linker domain 1, Linker domain 2, and portion of Gag-beta domain
        (plus N-terminal methionine)
<400> SEQUENCE: 25
```


$<210>$ SEQ ID NO 26
$<211>$ LENGTH: 191
$<212>$ TYPE : PRT
$<213>$ ORGANISM: Homo sapiens
$<400>$ SEQUENCE: 26

<210	$>$ SEQ ID NO 27
$<211>$	LENGTH: 192
<212	$>$ TYPE: PRT
$<213>$	ORGANISM: Artificial
$<220>$	FEATURE:
$<223>$	OTHER INFORMATION: C-terminal portion of human versikine including
	Linker domain 2 and portion of Gag-beta domain (plus N-terminal
	methionine)
$<400>$	SEQUENCE: 27

We claim:

1. A method for inducing and/or potentiating a T-cell mediated immune response in a subject in need thereof, the method comprising administering to the subject a pharmaceutical composition comprising an effective amount of a molecule comprising a versican fragment or variant thereof, wherein the versican fragment or variant thereof consists of the amino acid sequence of SEQ ID NO: 5, SEQ ID NO:6, or SEQ ID NO: 7; and wherein the molecule induces and/or potentiates the T-cell mediated immune response.
2. The method of claim 1, wherein the molecule does not have any chondroitin sulfate side chains.
3. The method of claim 1, wherein administering comprises injecting locally into tumor tissue of the subject the pharmaceutical composition comprising an effective amount of the molecule.
4. A method for inducing and/or potentiating a T-cell mediated immune response in a subject in need thereof,
wherein the subject has a cell proliferative disease or disorder, the method comprising administering to the subject a pharmaceutical composition comprising an effective amount of a molecule comprising a versican fragment or variant thereof, wherein the versican fragment or variant thereof consists of the amino acid sequence of SEQ ID NO: 5, SEQ ID NO:6, or SEQ ID NO: 7; and wherein the molecule induces and/or potentiates the T-cell mediated immune response.
5. The method of claim 4, wherein the molecule does not have any chondroitin sulfate side chains.
6. The method of claim 4, wherein administering comprises injecting locally into tumor tissue of the subject the pharmaceutical composition comprising an effective amount of the molecule.
