

US010214724B2

(12) United States Patent

Qian et al.

(54) METHODS FOR DIFFERENTIATION OF HUMAN PLURIPOTENT STEM CELLS TO BRAIN MICROVASCULAR ENDOTHELIAL CELLS

- (71) Applicant: Wisconsin Alumni Research Foundation, Madison, WI (US)
- Inventors: Tongcheng Qian, Madison, WI (US);
 Eric V. Shusta, Madison, WI (US);
 Sean P. Palecek, Verona, WI (US)
- (73) Assignee: Wisconsin Alumni Research Foundation, Madison, WI (US)
- (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.
- (21) Appl. No.: 15/478,463
- (22) Filed: Apr. 4, 2017

(65) **Prior Publication Data**

US 2017/0283772 A1 Oct. 5, 2017

Related U.S. Application Data

 (60) Provisional application No. 62/318,405, filed on Apr. 5, 2016.

(51)	Int. Cl.	
	C12N 5/00	(2006.01)
	C12N 5/079	(2010.01)

- (52) U.S. Cl.
 CPC C12N 5/0618 (2013.01); C12N 2500/38 (2013.01); C12N 2500/90 (2013.01); C12N 2501/115 (2013.01); C12N 2501/415 (2013.01); C12N 2506/45 (2013.01)
- (58) Field of Classification Search CPC C12N 5/0618; C12N 5/0696 See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

2012/0015395 A1 1/2012 Shusta

OTHER PUBLICATIONS

Weksler, et al., The hCMEC/D3 cell line as a model of the human blood brain barrier. Fluids Barriers CNS 2013, 10:16.

Wilson, et al., Exploring the effects of cell seeding density on the differentiation of human pluripotent stem cells to brain microvascular endothelial cells. Fluids and Barriers of the CNS 2015, 12:13.

Wong, et al., Upregulation of intercellular adhesion molecule-1 (ICAM-1) expression in primary cultures of human brain microvessel endothelial cells by cytokines and lipopolysaccharide. Journal of Neuroimmunology 1992, 39:11-21.

Abbott, et al., Astrocyte-endothelial interactions at the blood-brain barrier. Nature Reviews Neuroscience 2006, 7:41-53.

Asahi, et al., Effects of matrix metalloproteinase-9 gene knock-out on the proteolysis of blood-brain barrier and white matter components after cerebral ischemia. The Journal of Neuroscience 2001, 21:7724-7732.

(10) Patent No.: US 10,214,724 B2 (45) Date of Patent: Feb. 26, 2019

Bauer, et al., "You Shall Not Pass"—tight junctions of the blood brain barrier. Frontiers in Neuroscience 2014, 8:392.

Belayev, et al., Quantitative evaluation of blood-brain barrier permeability following middle cerebral artery occlusion in rats. Brain Research 1996, 739:88-96.

Boyer-Di Ponio, et al., Instruction of circulating endothelial progenitors in vitro towards specialized blood-brain barrier and arterial phenotypes. PloS one 2014, 9:e84179.

Brines, et al., Erythropoietin crosses the blood-brain barrier to protect against experimental brain injury. Proceedings of the National Academy of Sciences 2000, 97:10526-10531.

Butt, et al., Electrical resistance across the blood-brain barrier in anaesthetized rats: a developmental study (1990) J. Physiol. 429:47-62.

Canfield, et al., An Isogenic Blood-Brain Barrier Model Comprising Brain Endothelial Cells, Astrocytes and Neurons Derived from Human Induced Pluripotent Stem Cells. Journal of Neurochemistry 2016.

Cecchelli, et al., A stable and reproducible human blood-brain barrier model derived from hematopoietic stem cells. PloS one 2014, 9:e99733.

Chambers, et al., Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nature Biotechnology 2009, 27:275-280.

Deli, Blood-brain barrier models. Handbook of Neurochemistry and Molecular Neurobiology: Neural Membranes and Transport 2007:29-55.

Ebert, et al., EZ spheres: a stable and expandable culture system for the generation of pre-rosette multipotent stem cells from human ESCs and iPSCs. Stem Cell Research 2013, 10:417-427.

Forster, et al., Differential effects of hydrocortisone and TNFalpha on tight junction proteins in an in vitro model of the human blood-brain barrier (2008) J. Physiol. (Lond.) 586:1937-49.

Frey, et al., Pericytes of the brain microvasculature express γ -glutamyl transpeptidase. European Journal of Biochemistry 1991, 202:421-429.

Gage, et al., Initial cell seeding density influences pancreatic endocrine development during in vitro differentiation of human embryonic stem cells. PloS one 2013, 8:e82076.

Geier, et al., Profiling solute carrier transporters in the human blood-brain barrier. Clinical Pharmacology & Therapeutics 2013, 94:636-639.

Huntley, et al., Dissecting gene expression at the blood-brain barrier. Frontiers in Neuroscience 2014, 8:355.

Kurz, Cell lineages and early patterns of embryonic CNS vascularization. Cell Adhesion & Migration 2009, 3:205-210.

Lai, et al., The critical component to establish in vitro BBB model: Pericyte. Brain Research Reviews 2005, 50:258-265.

(Continued)

Primary Examiner — Marcia S Noble

(74) Attorney, Agent, or Firm - Quarles & Brady LLP

(57) ABSTRACT

Methods for generating functional brain microvascular endothelial cells (BMECs) under chemically defined, serumfree conditions are provided. In particular, efficient and cost-effective methods for generating functional BMECs under chemically defined culture conditions are provided. BMECs obtained according to the methods provided herein are suitable for in vitro blood brain barrier (BBB) formation.

> 9 Claims, 20 Drawing Sheets (16 of 20 Drawing Sheet(s) Filed in Color)

Specification includes a Sequence Listing.

(56) **References Cited**

OTHER PUBLICATIONS

Lam, et al., Rapid and efficient differentiation of human pluripotent stem cells into intermediate mesoderm that forms tubules expressing kidney proximal tubular markers. Journal of the American Society of Nephrology 2013:ASN. 2013080831.

Lian, et al., Chemically defined, albumin-free human cardiomyocyte generation. Nature Methods 2015, 12:595-596.

Lian, et al., Efficient differentiation of human pluripotent stem cells to endothelial progenitors via small-molecule activation of WNT signaling. Stem Cell Reports 2014, 3:804-816.

Lian, et al., Robust cardiomyocyte differentiation from human pluripotent stem cells via temporal modulation of canonical Wnt signaling. Proceedings of the National Academy of Sciences 2012, 109:E1848-E1857.

Liebner, et al., Current concepts of blood-brain barrier development. International Journal of Developmental Biology 2011, 55:467-476. Liebner, et al., Wht/ β -catenin signaling controls development of the blood-brain barrier. The Journal of Cell Biology 2008, 183:409-417. Lindsley, et al., Canonical Wht signaling is required for development of embryonic stem cell-derived mesoderm. Development 2006, 133:3787-3796.

Lippmann, et al., A retinoic acid-enhanced, multicellular human blood-brain barrier model derived from stem cell sources. Scientific Reports 2014, 4:4160.

Lippmann, et al., Blood-brain barrier modeling with co-cultured neural progenitor cell-derived astrocytes and neurons. Journal of neurochemistry 2011, 119:507-520.

Lippmann, et al., Defined human pluripotent stem cell culture enables highly efficient neuroepithelium derivation without small molecule inhibitors. Stem Cells 2014, 32:1032-1042.

Lippmann, et al., Derivation of blood-brain barrier endothelial cells from human pluripotent stem cells. Nature Biotechnology 2012, 30:783-791.

Lippmann, et al., Modeling the blood-brain barrier using stem cell sources, Fluids and barriers of the CNS 2013, 10:2, pp. 1-14.

Lu et al., Effect of cell density on adipogenic differentiation of mesenchymal stem cells. Biochemical and Biophysical Research Communications 2009, 381:322-327.

Man, et al., Human brain microvascular endothelial cells and umbilical vein endothelial cells differentially facilitate eukocyte recruitment and utilize chemokines for T cell migration (2008) Clin. Dev. Immunol. 384982. Minami, et al., Generation of Brain Microvascular Endothelial-Like Cells from Human Induced Pluripotent Stem Cells by Co-Culture with C6 Glioma Cells. PloS one 2015, 10:e0128890.

Mizee, et al., Astrocyte-derived retinoic acid: a novel regulator of blood-brain barrier function in multiple sclerosis. Acta Neuropathologica 2014, 128:691-703.

Mizee, et al., Retinoic acid induces blood-brain barrier development. The Journal of Neuroscience 2013, 33:1660-1671.

Naik, et al., In vitro blood-brain barrier models: current and perspective technologies. Journal of Pharmaceutical Sciences 2012, 101:1337-1354.

Nakagawa, et al., Pericytes from brain microvessels strengthen the barrier integrity in primary cultures of rat brain endothelial cells. Cellular and molecular neurobiology 2007, 27:687-694.

Obermeier, et al., Development, maintenance and disruption of the blood-brain barrier. Nature Medicine 2013, 19:1584-1596.

Otero, et al., β -Catenin signaling is required for neural differentiation of embryonic stem cells. Development 2004, 131:3545-3557. Paolinelli, et al., Wnt activation of immortalized brain endothelial cells as a tool for generating a standardized model of the blood brain barrier in vitro. PLoS One 2013, 8:e70233.

Sano, et al., Establishment of a new conditionally immortalized human brain microvascular endothelial cell line retaining an in vivo blood-brain barrier function. Journal of Cellular Physiology 2010, 225:519-528.

Selekman, et al., Efficient generation of functional epithelial and epidermal cells from human pluripotent stem cells under defined conditions. Tissue Engineering Part C: Methods 2013, 19:949-960. Stenman, et al., Canonical Wnt signaling regulates organ-specific assembly and differentiation of CNS vasculature. Science 2008, 322:1247-1250.

Stins, et al., Selective expression of adhesion molecules on human brain microvascular endothelial cells. Journal of Neuroimmunology 1997, 76:81-90.

Syvänen, et al., Species differences in blood-brain barrier transport of three positron emission tomography radioligands with emphasis on P-glycoprotein transport. Drug Metabolism and Disposition 2009, 37:635-643.

Weidenfeller, et al., Differentiating embryonic neural progenitor cells induce blood-brain barrier properties. Journal of neurochemistry 2007, 101:555-565.

Weksler, et al., Blood-brain barrier-specific properties of a human adult brain endothelial cell line. The FASEB Journal 2005, 19:1872-1874.

FIGS. 1A-1J

FIGS. 2A-2K

FIGS. 3A-3K

Fluorescence

FIGS. 3A-3K, CONTINUED

FIGS. 4A-4J

FIGS. 4A-4J, CONTINUED

FIGS. 5A-5J

FIG. 6

FIGS. 7A-7B

(A) H9-BMECs

FIG. 8A

(A) SyntheMAX-BMECs

FIG. 8B

(B) Vitronectin-BMECs

FIG. 10

FIGS. 12A-12B

FIGS. 12A-12B, CONTINUED

FIG. 13

FIG. 14

FIG. 15

CD31/DAPI

Glut1/DAPT

MRP1/DAPI

METHODS FOR DIFFERENTIATION OF HUMAN PLURIPOTENT STEM CELLS TO BRAIN MICROVASCULAR ENDOTHELIAL CELLS

CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Application Ser. No. 62/318,405, filed Apr. 5, 2016, which is incorpo-¹⁰ rated herein as if set forth in its entirety.

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT

This invention was made with government support under NS085351 awarded by the National Institutes of Health. The government has certain rights in the invention.

BACKGROUND

The blood-brain barrier (BBB) is a dynamic interface between the blood and the central nervous system (CNS) that controls the influx and efflux of biological substances needed for the brain's metabolic processes, as well as for ²⁵ neuronal function. The BBB comprises specific endothelial cells, brain microvascular endothelial cells (BMECs), which are critical for maintaining homeostasis of the brain microenvironment and neurological health.

In vitro BBB models have been developed to study the 30 molecular mechanisms underlying development of the BBB and to screen for drugs and other chemical compounds that affect BBB integrity. Naik & Cucullo, J Pharm Sci. 2012, 101(4):1337-54; Lippmann et al., Nature Biotechnology 2012, 30:783-791. In order to understand development of 35 the BBB and mechanisms underlying neurological diseases, it is critical to have a renewable source of human BMECs. However, existing methods for differentiating human pluripotent stem cells to BMECs use undefined culture systems that exhibit line-to-line variability, making the methods 40 poorly suited for clinical applications and large scale production. Accordingly, there remains a need in the art for efficient and cost-effective protocols for generating functional brain microvascular endothelial cells under chemically defined culture conditions.

BRIEF SUMMARY

In a first aspect, provided herein is a method for generating a population of human brain microvascular endothelial 50 cells (BMECs) from human pluripotent stem cells, where the method comprises, in order, (a) culturing human pluripotent stem cells for about 24 hours in a chemically defined, serum-free culture medium that comprises an activator of Wnt/β-catenin signaling, whereby cells that express meso- 55 dermal markers are obtained; (b) culturing the cells expressing mesodermal markers for about 5 days in the presence of a chemically defined, serum-free culture medium comprising B27 supplement, whereby cells that express endothelial progenitor marker Flk-1 are obtained; and (c) culturing the 60 Flk-1+ cells of (b) for about two days in the presence of a chemically defined, serum-free endothelial medium comprising B27 supplement, bFGF/FGF2, and retinoic acid (RA), whereby a cell population comprising human BMECs is obtained. 65

In some cases, at least 95% of cells of the cell population of (c) are BMECs cells positive for expression of CD31⁺,

p-glycoprotein⁺ (Pgp⁺), and claudin-5⁺. The method can further comprise growing the human BMECs of step (c) as a monolayer to confluence. In some cases, the method comprises taking an initial transendothelial electrical resistance (TEER) measurement of the confluent monolayer, where the TEER measurement is greater than 2000 Ohm $(\Omega) \times cm^2$.

The activator of Wnt/β-catenin signaling can be a Gsk3 inhibitor. The Gsk3 inhibitor can be a small molecule
selected from the group consisting of CHIR99021, CHIR98014, BIO-acetoxime, BIO, LiCl, SB216763, SB415286, AR A014418, 1-Azakenpaullone, and Bis-7-indolylmaleimide. The Gsk3 inhibitor can be CHIR99021 and present in a concentration of about 3 µM to about 12 µM.
Preferably, no cell separation or selection step is used to obtain the cell population comprising BMECs.

In another aspect, provided herein is a human BMEC cell population according to the methods described herein.

These and other features, objects, and advantages of the present invention will become better understood from the description that follows. In the description, reference is made to the accompanying drawings, which form a part hereof and in which there is shown by way of illustration, not limitation, embodiments of the invention. The description of preferred embodiments is not intended to limit the invention to cover all modifications, equivalents and alternatives. Reference should therefore be made to the claims recited herein for interpreting the scope of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

This patent or application file contains at least one drawing executed in color. Copies of this patent or patent application publication with color drawing(s) will be provided by the Office upon request and payment of the necessary fee.

The present invention will be better understood and features, aspects and advantages other than those set forth above will become apparent when consideration is given to the following detailed description thereof. Such detailed description makes reference to the following drawings, wherein:

FIGS. 1A-1J present a schematic of BMEC differentiation protocol and progression of differentiation. (A) Singularized 45 hPSCs are seeded on six-well plates coated with Matrigel®, vitronectin or SyntheMAXTM substrate and expanded for 3 days in mTeSR1TM. Differentiation to primitive streak is initiated by 24 hour treatment with 6 µM CHIR99201 in DeSR1. Cells progress to intermediate mesoderm and endothelial progenitors during culture in serum-free defined DeSR2 medium. At day 6, BMEC specification is induced by culture in hESFM ("Human Endothelial-SFM," a basal serum-free growth medium that supports endothelial cells) supplemented with 2% B27 (50×), 10 µM RA and 20 ng/ml b-FGF/FGF2 (known as "hECSR1") for two days. After replating on Matrigel® or fibronectin/collagen IV substrates, BMECs are obtained. (B) The pluripotent state of expanded hPSCs was verified prior to differentiation by immunostaining for OCT4 (B), NANOG (C) and TRA1-60 (D). Expression of the primitive streak marker Brachyury was assessed by immunostaining (E) and flow cytometry (F) 24 hours after CHIR99021 treatment. On day 4 of differentiation, expression of the intermediate mesoderm marker PAX2 was quantified (G, H) and on day 5 the endothelial progenitor marker Flk-1 analyzed (I, J). Scale bar 100 µm.

FIGS. 2A-2K present data demonstrating that hPSCderived BMECs express key BMEC proteins and have similar gene profiles as primary human BMECs. At day 10, BMECs differentiated as shown in FIG. 1A were characterized by (A) immunostaining and (B-I) flow cytometry for key endothelial and BMEC markers. Scale bar, 100 µm. (J) Hierarchical clustering of whole transcripts was plotted 5 using GENE-E. Fastq files of undifferentiated hPSCs and hPSC-derived ectoderm, endoderm, mesoderm were downloaded from GEO or ArrayExpress. Hierarchical clustering analysis of RNA-seq expression data of undifferentiated hPSCs, hPSC-derived endoderm (Endo), ectoderm (Ecto), 10 and mesoderm (Mes), BMECs differentiated under defined conditions as illustrated in FIG. 1A ("D-BMEC1,2,3" refers to three batches of BMECs differentiated using same defined method); IMR90-4-derived BMECs at day 10), BMECs differentiated in unconditioned medium (UM-BMEC), and 15 human primary BMECs (hBMEC). A hierarchical clustering was performed on the log 2 transformed gene counts. Distances were computed using one minus pearson correlation with average linkage. (K) A set of 506 tight junction and transporter genes (see Table 3 in the Examples section) 20 was used to investigate the gene expression similarity between human BMECs, hPSC-derived BMECs differentiated under defined condition, and hPSC-derived BMECs differentiated in unconditioned-medium (UM) [32]. The gene set included: 20 tight junction related genes [1,51-54], 25 all 25 CLDN genes, all 407 solute carrier (SLC) transporters, and all 53 ATP-binding cassette (ABC) transporters. CLDN, SLC and ABC genes were included without a prior knowledge of BBB association. A threshold of >1 FPKMs was used to define expressed vs. non-expressed transcripts. 30

FIGS. 3A-3K demonstrate that hPSC-derived BMECs exhibit key BBB phenotypes. hPSC-derived BMECs were differentiated as illustrated in FIG. 1A. (A) Immunofluorescent images of von Willebrand factor (vWF, red) and DAPI nuclear staining (blue) in hPSC-derived BMECs at day 10. 35 (B) hPSC-derived BMECs were dissociated with Accutase[™] and replated 2×10⁵ cells/well of a 24-well plate coated with 300 μ L of 10 mg/L Matrigel®. After 24 hour of culture in hECSR2 supplemented with 50 ng/mL VEGF, brightfield images were taken. (C) hPSC-derived BMECs at 40 day 10 were analyzed with a LDL Uptake Assay Kit. Culture medium was aspirated and replaced with LDL-Dylight[™] 550 working solution and visualized by fluorescent microscopy. LDL is shown in red on a merged brightfield image. (D-F) ICAM-1 induction in hPSC-derived BMECs. hPSC- 45 derived BMECs at day 10 were treated with 10 ng/mL of TNF- α for 16 hours. Cells were stained for ICAM-1 (D) before and (E) after TNF- α treatment. (F) Cells were dissociated or dissociated with Accutase[™] and ICAM-1 expression quantified by flow cytometry before and after 50 TNF- α treatment. Efflux transporter activities were measured by the intracellular accumulation of (G) rhodamine 123, (H) Hoechst and (I) 2',7'-dichlorofluorescein diacetate (DCFDA) substrates for Pgp, BCRP, and MRP, respectively. CsA, Ko143, and MK571 were used as specific inhibitors of 55 Pgp, BCRP, and MRP, respectively. (J) The polarization of Pgp was measured by rhodamine 123 transport across the BMEC monolayer from the apical side to the basolateral side and a reversed Pgp-transport assay (from the basolateral side to the apical side) was carried out to assess the polar- 60 ization of Pgp. Inhibitor-treated samples were independently normalized to each respective non-inhibitor-treated control sample. Data were collected at least from three independent samples and are represented as mean±SEM. **p<0.01, ***p<0.001. (K) TEER was measured in hPSC-derived 65 BMECs co-cultured with astrocytes, neurons, and pericytes. hPSC-derived BMECs were co-cultured with primary

4

human pericytes for 24 hours in hECSR1 medium. Following co-culture with pericytes, BMECs were co-cultured with EZ-sphere derived neurons and astrocytes (1:3) in hECSR2 for the remainder of the experiment. TEER was measured as a function of time following initiation of co-culture. Data were collected from at least three independent replicates and are plotted as mean±SEM. *p<0.05. **p<0.01. Scale bar 100 µm.

FIGS. 4A-4J demonstrate that initial seeding density is critical for BMEC differentiation. (A) hPSCs were seeded at the indicated densities (from 8.8 k/cm² to 140 k/cm²) and differentiated to BMECs as illustrated in FIG. 1A. TEER was measured two days after replating on Transwell® membranes at 10⁶ cells/cm². (B) TEERs of hPSC-derived BMECs were measured daily for 7 days after replating on Transwell® membranes. Data were collected from at least three independent replicates and are plotted as mean±SEM. ***p<0.001. (C-E) The percentage of claudin-5-positive cells and expression levels of claudin-5 were quantified by flow cytometry at day 8 for cells differentiated at the indicated seeding density (cells/cm²). (F) The localization of claudin-5 in cells differentiated at different seeding densities was investigated by immunostaining. White arrows indicate areas lacking claudin-5 expression, and red arrows indicate non-uniform or discontinuous claudin-5. (G-I) The percentage of occludin-positive cells and expression levels of occludin were quantified by flow cytometry at day 8 for cells differentiated at the indicated seeding density (cells/cm²). (J) The localization of occludin in cells differentiated at different seeding densities was investigated by immunostaining. White arrows indicate areas lacking occludin expression and red arrows indicate areas with non-uniform occludin. Flow cytometry plots are representative of at least 3 independent experiments. Numbers indicate the mean fraction of cells in the gated region±SEM. Scale bar 100 µm.

FIGS. 5A-5J demonstrate that retinoic acid (RA) induces acquisition of key BMEC phenotypes in EC progenitors. BMECs were differentiated as shown in FIG. 1A in the presence or absence of RA, as indicated. (A) At day 8 expression of tight junction and transporter genes was assessed by qPCR. (B) Flow cytometry for CD31 expression was performed at days 6 and 8. (C) Pgp expression was quantified by flow cytometry at day 10. At day 6, medium was switched to hESFM containing or lacking RA, as indicated. (D) At day 8, cells were replated onto Matrigel®coated Transwell® membranes at 10⁶ cells/cm² in the presence or absence of 10 uM Y27632 (ROCK inhibitor). Y27632 was added to increase attachment (Pipparelli et al., PloS one 2013, 8:e62095) of cells differentiated in the absence of RA and permit confluent monolayer formation. TEER was measured at day 10, two days after replating (D). (E, G) Occludin and (F, G) ZO-1 expression and localization were assessed by flow cytometry and immunostaining at day 10. Red arrows indicate non-uniform occludin or ZO-1. Claudin-5 expression at day 10 was assessed by flow cytometry (H, I). (I) At day 10, expression level of claudin-5 in BMECs differentiated in the presence or absence of RA were assessed by flow cytometry. (J) Localization and expression of claudin-5 of cells differentiated in the absence of RA was determined via immunostaining (white arrows indicate nonpositive claudin-5 and red arrows indicate discontinuous claudin-5). Images and flow cytometry plots are representative of at least 3 independent experiments. Data from at least three independent replicates are plotted as mean±SEM. *p<0.05, **p<0.01, ***p<0.001. Scale bar 100 μm.

FIG. 6 presents graphs demonstrating gene expression during hPSC differentiation to BMECs. Quantitative RT- PCR was used to quantify the expression of the indicated genes expression during hPSC differentiation to BMECs using the process illustrated in FIG. 1A. Genes analyzed include the pluripotency transcription factor NANOG, primitive streak markers T and MIXL1, intermediate meso-5 derm marker PAX2, endothelial cell progenitor marker CD34, endothelial adhesion molecule CDH5, tight junction genes TJP1, CLDN5 and OCLN, and efflux transporter ABCB1. GAPDH was used as an endogenous housekeeping gene control. Data are represented as mean±SEM of at least 10 three biological replicates.

FIGS. 7A-7B are images showing BMECs differentiated from H9 hESCs and 19-9-11 iPSCs express EC and BMECrelated protein. Immunostaining of EC (CD31) and BMEC (Glut1, ZO-1, Claudin-5, occludin, MRP1, BCRP, Pgp) 15 proteins in day 10 BMECs differentiated from (A) H9 hESCs and (B) 19-9-11 iPSCs as shown in FIG. 1A. Images are representative of at least three independent differentiation experiments in each cell line. Scale bar 100 μm.

FIGS. **8**A-**8**B are images demonstrating that BMECs 20 differentiated on SyntheMAXTM and vitronectin express EC and BMEC-related proteins. Immunostaining of EC (C31, VE-cadherin) and BMEC (Glut1, ZO-1, Claudin-5, occludin, MRP1, BCRP, Pgp) proteins in day 10 BMECs differentiated as shown in FIG. **1**A from IMR90-4 hiPSCs on (A) 25 SyntheMAXTM and (B) vitronectin. Images are representative of at least three independent differentiation experiments on each matrix. Scale bar 100 μm.

FIG. **9** demonstrates that BMECs differentiated from hPSCs in defined and undefined protocols exhibit similar 30 Pgp activities. hPSC-derived BMECs were differentiated either as illustrated in FIG. **1**A (defined BMECs) or as described previously (UM (Wilson et al., *Fluids and Barriers of the CNS* 2015, 12:13)). Pgp activities were evaluated by the intracellular accumulation of rhodamine 123 (left bar 35 graph) or rhodamine 123 transport across the BMEC monolayer from the apical side to the basolateral side (right bar graph). Data were collected from at least three biological replicates for each group and are presented as mean±SEM. ******p<0.01; *******p<0.001. 40

FIG. 10 demonstrates that BMECs differentiated at different seeding densities express Flk-1 and CD31. Flow cytometry was used to quantify the Flk1-positive (Flk1+) population at day 5 and the CD31-positive population at day 10 in hPSC-derived BMECs differentiated as shown in FIG. 45 1A. hPSCs were plated at the indicated density from 8.8 k cells/cm² to 140 k cells/cm² at day –3. Plots are representative of at least three replicates, for which mean±SEM are indicated in each plot.

FIG. 11 demonstrate that BMECs differentiated at differ- 50 ent seeding densities express Pgp. Flow cytometry was used to quantify the Pgp-positive population at days 8 and 10 in hPSC-derived BMECs differentiated as shown in FIG. 1A. hPSCs were plated at the indicated density from 8.8 k cells/cm² to 140 k cells/cm² at day -3. Plots are represen- 55 tative of at least three replicates, for which mean±SEM are indicated in each plot.

FIGS. **12**A-**12**B demonstrate that BMECs differentiated at different seeding densities express related BMEC proteins, but the BMEC proteins are not nicely localized. IMR90-4 60 hiPSCs were differentiated to BMECs at the indicated day –3 seeding densities (cells/cm²) on Matrigel® using the protocol shown in FIG. **1**A. (A) Immunofluorescent images for EC (CD31, VE-cadherin) and BMEC (ZO-1, MRP1, BCRP) markers were acquired at day 10. Scale bar, 100 μm. 65 (B) The percentage of ZO-1-positive cells at days 8 and day 10 was quantified by flow cytometry. Images and flow

cytometry plots are representative of at least three independent replicates. Data were collected at least from three replicates for each group and presented as mean±SEM.

FIG. **13** presents TEER of BMECs differentiated from different hPSC lines. Different hPSC lines, including IM90-4, H9, 19-9-11 hPSCs, were seeded at a density of 35 k cells/cm² and differentiated to BMECs as illustrated in FIG. **1A**. TEER was measured two days after replating on Transwell® membranes at 10^6 cells/cm². Data were collected at least from three biological replicates for each group and presented as mean±SEM.

FIG. 14 presents TEER in BMECs differentiated from hPSCs at different seeding densities. IMR90 iPSCs were differentiated to BMECs via the protocol illustrated in FIG. 1A at the indicated day –3 seeding density (cells/cm2) on vitronectin ("VTN"), SyntheMAXTM ("SYN"), or Matrigel®. TEER was measured daily after seeding cells on Transwell® filters (Day 0). Data represent mean±SEM of at least three biological replicates.

FIG. **15** demonstrates that BMECs differentiated in the absence of RA exhibit low expression and mislocalization of EC and BMEC proteins. The images demonstrate immunostaining of markers of EC (CD31, VE-cadherin) and BMEC (Glut1, MRP1) in BMECs differentiated as shown in FIG. **1**A from IMR90-4 iPSCs, but differentiated in the absence of RA from day 6 to day 9. Images were taken at day 10 and are representative of at least three biological replicates. Scale bar 100 μ m.

While the present invention is susceptible to various modifications and alternative forms, exemplary embodiments thereof are shown by way of example in the drawings and are herein described in detail. It should be understood, however, that the description of exemplary embodiments is not intended to limit the invention to the particular forms disclosed, but on the contrary, the intention is to cover all modifications, equivalents and alternatives falling within the spirit and scope of the invention as defined by the appended claims.

DETAILED DESCRIPTION

All publications, including but not limited to patents and patent applications, cited in this specification are herein incorporated by reference as though set forth in their entirety in the present application.

Existing methods for differentiating human pluripotent stem cells into brain microvascular endothelial cells (BMECs) use undefined culture systems that tend to exhibit line-to-line variability, including variability in cell density at the start of each differentiation protocol. See, e.g., U.S. patent application Ser. No. 13/155,435 (incorporated by reference herein). The methods and compositions provided herein are based at least in part on the Inventors' discovery of a robust, chemically defined, and serum-free method for directing differentiation of human pluripotent stem cells (hPSCs) to BMECs. The current invention uses a defined system comprised of an activator of Wnt/β-catenin signaling and retinoic acid in a chemically defined, serum free medium. As described in this section and in the Examples that follow, pluripotent stem cell-derived BMECs exhibit endothelial properties, including tube formation and LDL uptake, as well as BMEC-specific efflux transporter activities. Notably, hPSC-derived BMECs cells exhibit physiologic transendothelial electrical resistance (TEER) (around 3000 $\Omega \cdot cm^2$). In this manner, the methods described herein provide an unlimited supply of BMECs having properties comparable to those of primary BMECs.

.

Accordingly, in a first aspect, provided herein is a method for generating BMEC cells, where the method comprises differentiating hPSCs under conditions that promote differentiation of the hPSCs into BMECs cells. A preferred embodiment of the method is described in FIG. 1A. In 5 general, the method of the present invention has the following steps:

Human pluripotent stem cells (hPSCs) are cultured for about 24 hours in a chemically defined, serum-free culture medium comprising an activator of Wnt/ β -catenin signaling. 10 As described elsewhere in this document, hPSCs include both hESCs and iPSCs. Any chemically defined, unconditioned (meaning, free of conditioning by mouse fibroblast feeders or other feeder cells) culture medium can be used provided that it comprises an activator of Wnt/β-catenin 15 signaling. In preferred embodiments, the chemically defined, serum-free medium comprises DMEM/F12, 0.5% GlutaMax, 1% MEM-NEAA, 100 μm β-mercaptoenthanol. Various activators of Wnt/ β -catenin signaling that can be used are described elsewhere in this document. This process 20 directs hPSCs through mesodermal lineages as evidenced by expression of mesoderm-specific genes and proteins such as brachyury/T and PAX2.

In a second step, the cells expressing mesoderm-specific markers obtained in the first step are cultured for about 5 25 days in the presence of a chemically defined, serum-free culture medium comprising a defined, serum-free B27 supplement, whereby cells that express endothelial progenitor marker Flk-1 are obtained. In preferred embodiments, the chemically defined, serum-free medium is DMEM/F12 30 supplemented with B27 ("DMEM/F12/B27"). B27 is commercially available from suppliers such as Invitrogen.

Next, the Flk-1⁺ cells are cultured for about two days in the presence of a chemically defined, serum-free endothelial medium comprising B27 supplement and retinoic acid (RA), 35 whereby a cell population comprising human BMECs is obtained. In preferred embodiments, the chemically defined, serum-free endothelial medium is human Endothelial Serum-Free Medium (hESFM) (Invitrogen) supplemented with B27 and about 10 μ M retinoic acid (RA). RA enhances 40 the functional properties and maturation of BMECs. In some cases, the endothelial medium further comprises bFGF/ FGF2. For example, in exemplary methods, cells are cultured on day 6, day 7, day 8, and day 9 in chemically defined, serum-free endothelial medium comprising 2% B27 supple- 45 ment, 10 μ M RA, and 20 ng/ml bFGF/FGF2.

Preferably, hPSCs are seeded as singularized cells to attain greater uniformity of hPSC density at the initiation of BMEC differentiation. For example, hPSCs can be seeded as singularized cells at day minus 3 ("day -3"; 3 days before 50 BMEC differentiation in the presence of a chemically defined, serum-free culture medium comprising a defined, serum-free B27 supplement) at a cell density between about 8K cells/cm² and about 200K cells/cm² (e.g., about 8 cells/ cm², 10K cells/cm², 12.5K cells/cm², 20K cells/cm², 25K 55 cells/cm², 30K cells/cm², 35K cells/cm², 50K cells/cm², 100K cells/cm², 140K cells/cm², 200K cells/cm²). Preferably, hPSCs are seeded as singularized cells at a density between about 30K cells/cm² and about 70K cells/cm². More preferably, hPSCs are seeded as singularized cells at 60 a density of about 35K cells/cm². As demonstrated in the Example that follows, cell seeding density affects BMEC differentiation and structural organization of BMEC tight junction proteins. Without being bound by any particular theory or mechanism of action, it is believed that cell 65 seeding density affects the capability for the endothelial progenitors to gain BMEC properties.

8

Useful gene expression or protein markers for identifying BMECs include, but are not limited to, CD31, Pgp, claudin-5, and occludin, BCRP1, MRP1, and combinations thereof. CD31 is an endothelial cell marker. Claudin-5 and Occludin are integral plasma-membrane proteins located at tight junctions including tight junctions between brain endothelial cells. P-glycoprotein (Pgp), Breast Cancer Resistance Protein (BCRP), and Multidrug Resistance-Associated Protein (MRP) are efflux transporters. Preferably, the method yields a cell population, at least 95% (e.g., at least 95%, 96%, 97%, 98%, 99% or more) of which are BMECs positive for expression of one or more of Pgp, occludin, and claudin-5. Molecular markers of BMECs can be detected at the mRNA expression level or protein level by standard methods in the art. In some embodiments, no cell separation step or method is used to obtain a cell population comprising at least 90% Pgp⁺ cells or at least 95% Pgp⁺ cells. In other embodiments, the proportion of BMECs in a population of cells obtained in the described methods is enriched using a cell separation, cell sorting, or enrichment method, e.g., fluorescence activated cell sorting (FACS), enzyme-linked immunosorbent assay (ELISA), magnetic beads, magnetic activated cell sorting (MACS), and combinations thereof. Preferably, FACS is used to identify and separate cells based on expression of endothelial markers appropriate for sorting other endothelial cell populations.

In some embodiments, certain BMEC functional criteria are also assessed. Such functional BMEC criteria include, without limitation, tube formation, LDL uptake, and BMEC-specific efflux transporter activities. In vitro tube formation can be assayed using an endothelial cell tube formation assay. See, for example, Jerkic et al. (2006) *Cardiovasc Res* 69:845-854. Efflux transporter activity can be assessed by detecting intracellular accumulation of a fluorescent transporter substrate or movement of a fluorescent transporter substrate across a confluent monolayer BMECs.

In some cases, it will be advantageous to obtain a transendothelial electrical resistance (TEER) measurement of BMECs obtained according to the methods provided herein. TEER measurements yield information regarding the integrity of a BMEC monolayer by monitoring the paracellular flux of small electrolytes. BMECs cells obtained according to the methods provided herein exhibit transendothelial electrical resistance of greater than about $300\Omega \times cm^2$. In some cases, the BMECs exhibit physiologic TEER measurements (about $1000\Omega \times cm^2$ to about $5000\Omega \times cm^2$). By comparison, immortalized BMECs have poor barrier properties, including low baseline transendothelial electrical resistance (TEER) and discontinuous tight junction protein expression (Weksler et al. (2005) FASEB J. 19:1872-1874; Forster et al. (2008) J. Physiol. (Lond.) 586:1937-49; Man et al. (2008) Clin. Dev. Immunol. 384982). The in vivo BBB has been measured in rats to be between $1000-3000\Omega \times cm^2$ (see Butt et al. (1990) J. Physiol. 429:47-62). TEER measurements can be carried out using a voltammeter according to any appropriate protocol.

The methods provided herein produce isolated populations of pluripotent stem cell-derived BMECs, where the isolated population is a substantially pure population of BMECs. As used herein, "isolating" and "isolated" refer to separating, selecting, or enriching for a cell type of interest or subpopulation of cells from surrounding, neighboring, or contaminating cells or from cells of another type. As used herein, the term "substantially pure" refers to a population of cells that is at least about 75% (e.g., at least about 75%, 80%, 85%, 90%, 95%, 98%, 99% or more) pure, with respect to BMECs making up a total cell population. In other words,

the term "substantially pure" refers to a population of BMECs of the present invention that contains fewer than about 25%, fewer than about 20%, fewer than about 10%, or fewer than about 5% of non-BMECs when directing differentiation to obtain cells of the BMEC lineage. The term 5 "substantially pure" also refers to a population of BMECs of the present invention that contains fewer than about 20%, about 10%, or about 5% of non-BMECs in an isolated population prior to any enrichment, expansion step, or differentiation step. Typically, a population comprising 10 BMECs obtained by the disclosed methods comprises a very high proportion of BMECs. In some embodiments, the cell population comprises about 50% to about 99% BMECs, e.g., about 52%, 55%, 67%, 70%, 72%, 75%, 80%, 85%, 90%, 95%, 98%, or another percent of BMECs from about 50% to 15 about 99% BMECs.

As will be appreciated by those of ordinary skill in the art, Wnt/ β -catenin signaling can be activated by modulating the function of one or more proteins that participate in the Wnt/ β -catenin signaling pathway to increase β -catenin 20 expression levels or activity, TCF and LEF expression levels, or β -catenin/TCF/LEF induced transcriptional activity.

In some embodiments, activation of Wnt/β-catenin signaling is achieved by inhibiting Gsk3 phosphotransferase 25 activity or Gsk3 binding interactions. While not wishing to be bound by theory, it is believed that inhibition of Gsk3 phosphorylation of β-catenin will inhibit tonic degradation of β -catenin and thereby increase the level of β -catenin and activity to drive differentiation of pluripotent stem cells to an 30 endodermal/mesodermal lineage. Gsk3 inhibition can be achieved in a variety of ways including, but not limited to, providing small molecules that inhibit Gsk3 phosphotransferase activity, RNA interference knockdown of Gsk3, and overexpression of dominant negative form of Gsk3. Domi- 35 nant negative forms of Gsk3 are known in the art as described, e.g., in Hagen et al. (2002), J. Biol. Chem., 277(26):23330-23335, which describes a Gsk3 comprising a R96A mutation.

In some embodiments, Gsk3 is inhibited by contacting a 40 cell with a small molecule that inhibits Gsk3 phosphotransferase activity or Gsk3 binding interactions. Suitable small molecule Gsk3 inhibitors include, but are not limited to, CHIR99021, CHIR98014, BIO-acetoxime, BIO, LiCl, SB 216763, SB 415286, AR A014418, 1-Azakenpaullone, Bis- 45 7-indolylmaleimide, and any combinations thereof. In some embodiments, any of CHIR99021, CHIR98014, and BIOacetoxime are used to inhibit Gsk3 in pluripotent stem cells in the differentiation methods described herein. In one embodiment, the small molecule Gsk3 inhibitor to be used 50 is CHIR99021 at a concentration ranging from about 3 µM to about 12 μ M, e.g., about 3 μ M, 4 μ M, 5 μ M, 6 μ M, 7 μ M, $8 \,\mu\text{M}, 9 \,\mu\text{M}, 10 \,\mu\text{M}, 11 \,\mu\text{M}, 12 \,\mu\text{M}$ or another concentration of CHIR99021 from about 3 µM to about 12 µM. In another embodiment, the small molecule Gsk3 inhibitor to be used 55 is CHIR98014 at a concentration ranging from about 0.1 µM to about 1 µM, e.g., about 0.1 µM, 0.2 µM, 0.3 µM, 0.4 µM, 0.5 µM, 0.6 µM, 0.7 µM, 0.8 µM, 0.9 µM or another concentration of CHIR98014 from about 0.1 µM to about 1 µM. In another embodiment, the small molecule Gsk3 60 inhibitor to be used is BIO-acetoxime at a concentration ranging from about 0.1 µM to about 1 µM, e.g., about 0.1 μΜ, 0.2 μΜ, 0.3 μΜ, 0.4 μΜ, 0.5 μΜ, 0.6 μΜ, 0.7 μΜ, 0.8 µM, 0.9 µM or another concentration of BIO-acetoxime from about 0.1 µM to about 1 µM. 65

In other embodiments, Gsk3 activity is inhibited by RNA interference knockdown of Gsk3. For example, Gsk3

expression levels can be knocked-down using commercially available siRNAs against Gsk3, e.g., SignalSilence® GSK- $3\alpha/\beta$ siRNA (catalog #6301 from Cell Signaling Technology®, Danvers, Mass.), or a retroviral vector with an inducible expression cassette for Gsk3, e.g., a commercially available Tet-inducible retroviral RNA interference (RNAi) system from Clontech (Mountain View, Calif., Catalog No. 630926), or a cumate-inducible system from Systems Biosciences, Inc. (Mountain View, Calif.), e.g., the SparQ® system, catalog no. QM200PA-2.

In other embodiments, the Wnt/ β -catenin signaling pathway is activated by overexpressing β -catenin itself, e.g., human β -catenin (exemplary nucleotide and amino acid sequences are found at GenBank Accession Nos: X87838 and CAA61107.1, respectively). In one embodiment, β -catenin overexpression is achieved using an inducible expression system, e.g., any of the just-mentioned inducible expression systems. Alternatively, a constitutively active, stabilized isoform of β -catenin is used, which contains point mutations S33A, S37A, T41A, and S45A as described, e.g., in Baba et al. (2005), *Immunity* 23(6):599-609.

In yet other embodiments, Wnt/β-catenin signaling pathway activation in pluripotent stem cells is achieved by contacting the cells with an agent that disrupts the interaction of β -catenin with Axin, a member of the β -catenin destruction complex. Disruption of the Axin/ β -catenin interaction allows β -catenin to escape degradation by the destruction complex thereby increasing the net level of β -catenin to drive β -catenin signaling. For example, the Axin/ β -catenin interaction can be disrupted in pluripotent cells by contacting the cells with the compound 5-(Furan-2-yl)-N-(3-(1H-imidazol-1-yl)propyl)-1,2-oxazole-3-carboxamide ("SKL2001"), which is commercially available, e.g., as catalog no. 681667 from EMD Millipore. An effective concentration of SKL2001 to activate Wnt/β-catenin signaling ranges from about 10 µM to about 100 µM, about 20 µM, 30 µM, 40 µM, 50 µM, 60 µM, 70 µM, 80 µM, 90 μ M or another concentration of SKL2001 from about 10 μ M to about 100 µM.

As used herein, "pluripotent stem cells" appropriate for use according to a method of the invention are cells having the capacity to differentiate into cells of all three germ layers. Pluripotent stem cells (PSCs) suitable for the differentiation methods disclosed herein include, but are not limited to, human embryonic stem cells (hESCs), human induced pluripotent stem cells (hiPSCs), non-human primate embryonic stem cells (nhpESCs), non-human primate induced pluripotent stem cells (nhpiPSCs). As used herein, "embryonic stem cells" or "ESCs" mean a pluripotent cell or population of pluripotent cells derived from an inner cell mass of a blastocyst. See Thomson et al., Science 282:1145-1147 (1998). These cells express Oct-4, SSEA-3, SSEA-4, TRA-1-60, and TRA-1-81, and appear as compact colonies having a high nucleus to cytoplasm ratio and prominent nucleolus. ESCs are commercially available from sources such as WiCell Research Institute (Madison, Wis.).

As used herein, "induced pluripotent stem cells" or "iPS cells" mean a pluripotent cell or population of pluripotent cells that may vary with respect to their differentiated somatic cell of origin, that may vary with respect to a specific set of potency-determining factors and that may vary with respect to culture conditions used to isolate them, but nonetheless are substantially genetically identical to their respective differentiated somatic cell of origin and display characteristics similar to higher potency cells, such as ESCs, as described herein. See, e.g., Yu et al., *Science* 318:1917-1920 (2007). Induced pluripotent stem cells

exhibit morphological properties (e.g., round shape, large nucleoli and scant cytoplasm) and growth properties (e.g., doubling time of about seventeen to eighteen hours) akin to ESCs. In addition, iPS cells express pluripotent cell-specific markers (e.g., Oct-4, SSEA-3, SSEA-4, Tra-1-60, or Tra-1-81, but not SSEA-1). Induced pluripotent stem cells, however, are not immediately derived from embryos. As used herein, "not immediately derived from embryos" means that the starting cell type for producing iPS cells is a nonembryonic, non-pluripotent cell, such as a multipotent cell or terminally differentiated cell, such as somatic cells obtained from a post-natal individual.

Human iPS cells can be used according to a method described herein to obtain BMECs having the genetic complement of a particular human subject. For example, it may be advantageous to obtain BMECs that exhibit one or more specific phenotypes associated with or resulting from a particular disease or disorder of the particular mammalian subject. In such cases, iPS cells are obtained by reprogram- 20 ming a somatic cell of a particular human subject according to methods known in the art. See, for example, Yu et al., Science 324(5928):797-801 (2009); Chen et al., Nat. Methods 8(5):424-9 (2011); Ebert et al., Nature 457(7227):277-80 (2009); Howden et al., Proc. Natl. Acad. Sci. U.S.A 25 108(16):6537-42 (2011). Induced pluripotent stem cell-derived BMECs allow modeling of blood brain barrier formation or integrity using BMECs and other BBB cell types obtained from an individual having, for example, a particular disease. 30

Subject-specific somatic cells for reprogramming into iPS cells can be obtained or isolated from a target tissue of interest by biopsy or other tissue sampling methods. In some cases, subject-specific cells are manipulated in vitro prior to use. For example, subject-specific cells can be expanded, 35 differentiated, genetically modified, contacted to polypeptides, nucleic acids, or other factors, cryo-preserved, or otherwise modified.

Chemically defined culture medium and substrate conditions for culturing pluripotent stem cells, as used in the 40 BMECs obtained according to the methods provided herein methods described herein, are well known in the art. Preferably, a serum-free, chemically defined culture medium is used. As used herein, the terms "chemically-defined culture conditions," "fully defined, growth factor free culture conditions," and "fully-defined conditions" indicate that the 45 identity and quantity of each medium ingredient is known and the identity and quantity of supportive surface is known. As used herein, "serum-free" means that a medium does not contain serum or serum replacement, or that it contains essentially no serum or serum replacement. For example, an 50 essentially serum-free medium can contain less than about 0.5%, 0.4%, 0.3%, 0.2% or 0.1% serum.

In some embodiments, pluripotent stem cells to be differentiated according to the methods disclosed herein are cultured in the presence of a serum-free, chemically-defined 55 culture medium such as mTESR1[™] medium (StemCell Technologies, Inc., Vancouver, Calif.), or Essential 8® medium (Life Technologies, Inc.) on a Matrigel® substrate (BD Biosciences, NJ), a Synthemax® synthetic cell culture surface (Corning) according to the manufacturer's protocol, 60 or a vitronectin-coated surface. A number of known basal culture media are suitable for use throughout the differentiation methods described herein. Such basal cell culture media include, but are not limited to, RPMI, DMEM/F12 (1:3), DMEM/F12 (1:1), DMEM/F12 (3:1), F12, DMEM, 65 and MEM. In exemplary embodiments, these basal cell culture media are supplemented with 50 to 200 µg/ml

L-Ascorbic acid 2-phosphate sesquimagnesium salt hydrate (e.g., Sigma, catalog no. A8960).

In exemplary embodiments, human pluripotent stem cells (e.g., human ESCs or iPS cells) are cultured in the absence of a feeder layer (e.g., a fibroblast layer) and in the presence of a chemically defined substrate. For example, human pluripotent cells can be cultured in the presence of a substrate comprising vitronectin, a vitronectin fragment or variant, a vitronectin peptide, a self-coating substrate such as Synthemax® (Corning), or combinations thereof. In exemplary embodiments, the chemically-defined substrate is a plate coated in vitronectin peptides or polypeptides (e.g., recombinant human vitronectin).

In another aspect, provided herein are methods for obtaining functional human BMECs, where the method comprises differentiating cells having mesoderm identity under conditions that promote differentiation of the mesoderm cells into BMECs cells. In general, such methods can use cells that express mesoderm-specific genes and proteins such as brachvury/T and PAX2, and have the following steps:

Cells expressing mesoderm-specific markers are cultured for about 5 days in the presence of a chemically defined, serum-free culture medium comprising a defined, serumfree B27 supplement, whereby cells that express endothelial progenitor marker Flk-1 are obtained. In preferred embodiments, the chemically defined, serum-free medium is DMEM/F12 supplemented with B27 ("DMEM/F12/B27"). B27 is commercially available from suppliers such as Invitrogen.

Next, the Flk-1⁺ cells are cultured for about two days in the presence of a chemically defined, serum-free endothelial medium comprising B27 supplement and retinoic acid (RA), whereby a cell population comprising human BMECs is obtained. In preferred embodiments, the chemically defined, serum-free endothelial medium is human Endothelial Serum-Free Medium (hESFM) (Invitrogen) supplemented with B27 and about 10 µM retinoic acid (RA). RA enhances the functional properties and maturation of BMECs.

It will be understood by those practioners in the art that are suitable for in vitro blood brain barrier (BBB) formation. Importantly, BMECs obtained according to the chemically defined, serum-free methods provided herein are better suited for in vitro BBB models than BMECs obtained using undefined culture systems that exhibit line-to-line variability. In some cases, an in vitro BBB is obtained by coculturing BMECs obtained according to the methods provided herein with other cell types associated with the blood brain barrier including, without limitation, astrocytes, neurons, and pericytes. Astrocytes, neurons, and pericytes suitable for preparation of an in vitro BBB can be obtained according to chemically defined, serum-free differentiation protocols, or can be primary cells or obtained from primary cell cultures. As described in the Examples that follow, hPSC-derived BMECs can be co-cultured in vitro with human pericytes, astrocytes, and/or neurons in a medium that supports growth of endothelial cells (e.g., hECSR medium).

In a further aspect, provided herein is a method of in vitro screening of an agent. For example, provided herein are methods of using in vitro-derived BMECs for high throughput screening of candidate agents. For example, BMECs obtained as described herein can be screened to identify agents that modulate development of BBB tissue. Screening methods can comprise or consist essentially of (a) contacting a test agent to a BMEC or population of BMECs obtained as described herein; and (b) detecting an effect of the agent on

the cell or cells (e.g., disrupt or otherwise alter the integrity of a BMEC monolayer). In some cases, screening methods include screening candidate compounds to identify test agents that promote the development of blood brain barrier tissue. In other cases, candidate compounds can be screened 5 for toxicity to human BMECs or blood brain barrier tissue. In some cases, detecting comprises detecting at least one positive or negative effect of the agent on morphology or life span of cells, whereby an agent that increases or reduces the life span of the cells or has a positive or negative impact on 10 the morphology of the cells is identified as having an effect on human BMECs or blood brain barrier tissues. In some cases, detecting comprises performing a method selected from the group consisting of TEER assays, adhesion assays, RNA sequencing, gene expression profiling, transcriptome 15 analysis, metabolome analysis, detecting reporter or sensor, protein expression profiling, Förster resonance energy transfer (FRET), metabolic profiling, and microdialysis. The agent can be screened for an effect on gene expression, and detecting can comprise assaving for differential gene expres- 20 sion relative to an uncontacted cell or cell population.

In exemplary embodiments, detecting and/or measuring a positive or negative change in a level of expression of at least one gene following exposure (e.g., contacting) of a test compound to BMECs comprises whole transcriptome analy- 25 sis using, for example, RNA sequencing. In such cases, gene expression is calculated using, for example, data processing software programs such as Light Cycle, RSEM (RNA-seq by Expectation-Maximization), Excel, and Prism. See Stewart et al., PLoS Comput. Biol. 9:e1002936 (2013). Where 30 appropriate, statistical comparisons can be made using ANOVA analyses, analysis of variance with Bonferroni correction, or two-tailed Student's t-test, where values are determined to be significant at P<0.05. Any appropriate method can be used to isolate RNA or protein from neural 35 constructs. For example, total RNA can be isolated and reverse transcribed to obtain cDNA for sequencing.

Test compounds can be dissolved in a solvent such as, for example, dimethyl sulfoxide (DMSO) prior to contacting to BMECs provided herein. In some cases, identifying agents 40 comprises analyzing the contacted BMECs for positive or negative changes in biological activities including, without limitation, gene expression, protein expression, cell viability, and cell proliferation. For example, microarray methods can be used to analyze gene expression profiles prior to, 45 during, or following contacting the plurality of test compounds to the BMECs. In some cases, a method of the present invention further comprises additional analyses such as metabolic assays and protein expression profiling.

Compositions

In another aspect, provided herein are preparations of BMECs. For example, provided herein are BMECs, substantially purified populations of BMECs, pharmaceutical preparations comprising BMECs, and cryopreserved preparations of the BMECs. The BMECs described herein may be 55 substantially free of at least one protein, molecule, or other impurity that is found in its natural environment (e.g., "isolated"). The BMECs may be mammalian, including, human BMECs. The invention also provides human BMECs, a substantially purified population of human 60 BMECs, pharmaceutical preparations comprising human BMECs, and cryopreserved preparations of the human BMECs. The preparation may be a preparation comprising human embryonic stem cell-derived BMECs, human iPS cell-derived BMECs, and substantially purified (with respect 65 to non-BMECs) preparations comprising differentiated pluripotent stem cell-derived BMECs.

Cell preparations provided herein are useful for various in vitro and in vivo applications such as screening for drugs affecting homeostasis of the brain microenvironment, neural development, and/or the integrity of a BMEC monolayer. The disclosed methods facilitate scalable and reproducible production and use of functional BMEC populations.

Preparations comprising BMECs useful for clinical applications must be obtained in accordance with regulations imposed by governmental agencies such as the U.S. Food and Drug Administration. Accordingly, in exemplary embodiments, the methods provided herein are conducted in accordance with Good Manufacturing Practices (GMPs), Good Tissue Practices (GTPs), and Good Laboratory Practices (GLPs). Reagents comprising animal derived components are not used, and all reagents are purchased from sources that are GMP-compliant. In the context of clinical manufacturing of a cell therapy product, such as in vitro populations of human arterial endothelial cells, GTPs govern donor consent, traceability, and infectious disease screening, whereas the GMP is relevant to the facility, processes, testing, and practices to produce a consistently safe and effective product for human use. See Lu et al., Stem Cells 27: 2126-2135 (2009). Where appropriate, oversight of patient protocols by agencies and institutional panels is envisioned to ensure that informed consent is obtained; safety, bioactivity, appropriate dosage, and efficacy of products are studied in phases; results are statistically significant; and ethical guidelines are followed.

Articles of Manufacture

The invention also provides a kit for obtaining functional brain microvascular endothelial cells by differentiating human pluripotent stem cells under chemically defined culture conditions. In some cases, the kit comprises (i) a first chemically defined, serum-free culture medium suitable for differentiation of human pluripotent stem cells into cells expressing mesodermal markers; (ii) a second culture medium suitable for differentiation of pluripotent stem cellderived mesodermal cells into cells that express endothelial progenitor marker Flk-1; (iii) a third chemically defined, serum-free endothelial medium comprising B27 supplement, bFGF/FGF2, and retinoic acid (RA); and (iv) instructions describing a method for differentiating human pluripotent stem cells into functional brain microvascular endothelial cells, the method employing the first, second, and third culture media. In some cases, the first chemically defined culture medium comprises an activator of Wnt/ β catenin signaling. In some cases, the second chemically defined culture medium comprises B27 supplement.

Unless defined otherwise, all technical and scientific 50 terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which the invention pertains. Although any methods and materials similar to or equivalent to those described herein can be used in the practice or testing of the present invention, preferred 55 methods and materials are described herein.

In describing the embodiments and claiming the invention, the following terminology will be used in accordance with the definitions set out below.

In the specification and in the claims, the terms "including" and "comprising" are open-ended terms and should be interpreted to mean "including, but not limited to" These terms encompass the more restrictive terms "consisting essentially of" and "consisting of" As used herein and in the appended claims, the singular forms "a", "an", and "the" include plural reference unless the context clearly dictates otherwise. As well, the terms "a" (or "an"), "one or more" and "at least one" can be used interchangeably herein. It is

10

also to be noted that the terms "comprising," "including," "characterized by," and "having" can be used interchangeably.

As used herein, "about" means within 5% of a stated concentration range or within 5% of a stated time frame.

As used herein, "a medium consisting essentially of" means a medium that contains the specified ingredients and those that do not materially affect its basic characteristics.

The terms "defined culture medium," "defined medium," and the like, as used herein, indicate that the identity and quantity of each medium ingredient is known. The term "defined," when used in relation to a culture medium or a culture condition, refers to a culture medium or a culture condition in which the nature and amounts of approximately 15 all the components are known.

As used herein, "effective amount" means an amount of an agent sufficient to evoke a specified cellular effect according to the present invention.

Cells are "substantially free" of exogenous genetic ele- 20 ments or vector elements, as used herein, when they have less than 10% of the element(s), and are "essentially free" of exogenous genetic elements or vector elements when they have less than 1% of the element(s). However, even more desirable are cell populations wherein less than 0.5% or less 25 than 0.1% of the total cell population comprise exogenous genetic elements or vector elements. A culture, composition, or culture medium is "essentially free" of certain reagents, such as signaling inhibitors, animal components or feeder cells, when the culture, composition, and medium, respec- 30 tively, have a level of these reagents lower than a detectable level using conventional detection methods known to a person of ordinary skill in the art or these agents have not been extrinsically added to the culture, composition, or medium.

The invention will be more fully understood upon consideration of the following non-limiting Examples. It is specifically contemplated that the methods disclosed are suited for pluripotent stem cells generally. All publications, patents, and patent applications disclosed herein are hereby 40 incorporated by reference as if set forth in their entirety.

EXAMPLES

Obtaining Brain Microvascular Endothelial Cells from 45 Human Pluripotent Stem Cells Via Wnt Signaling Modulation

An intact blood-brain barrier (BBB) serves as a key interface between the blood circulation and central nervous system (CNS). The primary anatomical component of the 50 BBB is provided by brain microvascular endothelial cells (BMECs) [1,2] that work in concert with supporting cells such as astrocytes, pericytes, and neurons to form the neurovascular unit [1,3,4]. BMECs are connected by tight junctions and display low levels of vesicular traffic, leading 55 to extremely low vascular permeability. BMECs also express molecular influx and efflux transporters, which regulate the delivery of nutrients from blood to brain and removal of compounds from the brain, respectively. A functional BBB prevents the majority of small molecule 60 drugs and nearly all large molecule biologics from entering the brain [5]. Thus, the BBB is a highly efficient barrier that protects the brain and limits CNS drug delivery [6]. Moreover, BBB dysfunction has been associated with many CNS disorders, including stroke [7-9], Alzheimer's disease [10, 65 11], multiple sclerosis [12], Parkinson's disease [13], traumatic brain injury [14,15] and HIV [16-18].

Although the BBB has been extensively studied in animal models [19-21], and using in vitro models based on primary human BMECs [22,23] and immortalized human brain endothelial cell lines [2.24.25], these models lack key attributes of the human BBB. Animal models cannot fully represent the human BBB due to species differences, particularly in transporter expression and function [26]. Human primary BMECs are difficult to obtain in sufficient quantities for drug screening and disease models and cannot be readily expanded in culture. Immortalized cell lines exhibit a loss of BMEC-specific properties, including loss of tight junctions yielding sub-physiologic TEER [27]. These limitations have prevented our full understanding of human BBB development, function and disease [28].

hPSCs have the potential to generate large quantities of specialized human cells for studying development and modeling disease [29-31]. Previously, we reported generation of pure populations of hPSC-derived BMECs via co-differentiation of hPSCs to neural and endothelial progenitors followed by selective purification of the BMECs [32]. In addition, we demonstrated that retinoic acid (RA) addition during BMEC differentiation enhanced barrier properties to physiologic levels [33]. Presumably, the neural progenitors in this co-differentiation platform induce the endothelial progenitors to acquire BMEC-specific traits, which are then enhanced by RA treatment. However, the undefined nature of this co-differentiation platform complicates investigation of mechanisms that specify BMEC fates in the hPSCderived endothelial cells. In addition, this undefined protocol can result in line-to-line and batch-to-batch variability in BMEC yield and phenotypes [32,34,35]. Other studies have also shown human BMEC-like cells can be generated from alternative stem and progenitor cell sources, including hematopoietic stem cells [36], endothelial progenitors [37], and hPSC-derived endothelial cells (ECs) co-cultured with C6 glioma cells [38]. Unfortunately, none of these prior studies report a chemically-defined, robust process for generating human BMECs exhibiting physiologic BBB phenotypes.

During embryonic development, mesoderm-derived endothelial cells form a vascular plexus covering the developing neural tube [39,40]. As nascent blood vessels enter the developing CNS, canonical Wnt signaling is necessary to induce BMEC barrier properties [41-43]. RA has also been shown to regulate BMEC specification. During BBB development, radial glial cells supply the CNS with RA [44], and this RA signaling induces barrier formation and BBBspecific gene expression [33,44,45]. In addition to Wnt regulation of BBB induction in vivo, prior studies have demonstrated that activation of canonical Wnt signaling can also direct hPSCs to mesodermal lineages in vitro [31,46-48]. Thus, we hypothesized that appropriate differentiation stage-specific modulation of canonical Wnt would induce mesodermal and endothelial commitment in hPSCs, and combine with subsequent RA signaling to drive acquisition of BMEC markers and phenotypes.

Here we report a chemically-defined method to differentiate hPSCs to BMECs via sequential Wnt and RA pathway activation. During this differentiation process, hPSCs progress through primitive streak, intermediate mesoderm, and Flk1⁺ endothelial progenitors to generate virtually pure populations of CD31⁺ endothelial cells that display key BMEC phenotypes including tight junctions, low passive permeability and polarized efflux transporters. The resultant, developmentally-relevant BMEC differentiation strategy is defined, robust, and facile.

Results

Progression of hPSC Differentiation to BMECs

17

Given the roles of canonical Wnt signaling in both mesoderm specification and BBB development, we first treated hPSCs with CHIR99021, a GSK-36 inhibitor and Wnt 5 agonist, to direct hPSCs to mesoderm-derived endothelial progenitors. Prior to treatment, IMR90-4 induced pluripotent stem cells (iPSCs) were seeded on a Matrigel-coated six-well plate at a density of 35×10³ cells/cm² and expanded in an undifferentiated state for three days in mTeSR1TM (FIG. 1A). Previously, we showed that 6 µM CHIR99201 treatment induced hPSC differentiation to primitive streak in a serum-free and albumin-free medium [49]. Hence at day 0, 6 µM of CHIR was added into DeSR1 (Unconditioned medium lacking KnockOut Serum Replacement: DMEM/ 15 F12, 1% MEM-NEAA, 0.5% GlutaMAX and 0.1 mM β -mercaptoenthanol [32]) to initiate differentiation. After 24 hours, the medium was removed and cells were transitioned to DeSR2 (DeSR1 plus B27 supplement) for another five days with daily medium changes. At day 0, pluripotency was 20 verified by OCT4, NANOG and TRA-1-60 immunostaining (FIGS. 1B-D). After 24 hr of CHIR99021 treatment, almost 100% of the cells expressed brachyury, assessed by immunostaining (FIG. 1E) and flow cytometry (FIG. 1F), indicating progression to primitive streak. In concert with 25 brachyury expression, primitive streak genes T and MIXL1 [50] peaked at day 2 and then dramatically decreased (FIG. 5). At day 4, more than 90% of the cells expressed the intermediate mesoderm marker PAX2 (FIGS. 1G, 1H) and PAX2 expression peaked at day 6 (FIG. 5). Nearly 100% of 30 the cells expressed the endothelial progenitor marker Flk-1 at day 5 (FIGS. 1I, 1J), while the expression level of the endothelial progenitor marker CD31 gradually increased and then diminished after day 6 (FIG. 5).

At day 6, cells were switched to hECSR1 medium 35 (hESFM supplemented with 20 ng/ml bFGF, 10 µM RA and B27) to induce RA signaling in the hPSC-derived endothelial progenitors in an attempt to drive specification to BMECs. Cells were maintained in this medium for two days. At day 8, cells were replated onto a Matrigel-coated sub- 40 expression, we also evaluated endothelial and BMEC phestrate in hECSR1 and at day 9, the medium was switched to hECSR2 (hECSR1 lacking RA and bFGF). Expression of CDH5 (VE-cadherin) was substantially induced after RA treatment (FIG. 5). Expression of tight junction-related genes TJP1, CLDN5 and OCLN and efflux transporter 45 ABCB1 also increased during differentiation (FIG. 5). The resultant day 10 BMEC-like cells were a pure population expressing endothelial markers (CD31, VE-Cadherin), BBB glucose transporter (GLUT-1), tight junction proteins (ZO-1, claudin-5, occludin) and efflux transporters (BCRP, MRP1, 50 Pgp) (FIGS. 2A-2I). Thus, treatment of hPSCs with CHIR99021 and RA directed hPSCs through endothelial progenitors to endothelial cells that expressed BMEC markers. We next tested whether the differentiation protocol illustrated in FIG. 1A generated cells expressing BMEC 55 markers in additional hPSC lines, including H9 human embryonic stem cells (hESCs) and 19-9-11 iPSCs. These lines also produced cells expressing endothelial and BMEC markers, including CD31, Glut1, ZO-1, claudin-5, occludin, MRP1, BCRP1 and Pgp, at day 10 (FIG. 6). 60

Next, RNA sequencing was used to compare global gene expression profiles in the hPSC-derived BMECs differentiated as shown in FIG. 1A with BMECs generated from our previously reported co-differentiation system (UM, [32]) and primary human BMECs. As expected, hPSC-derived 65 BMECs from three independent differentiations clustered closely and were similar to those generated from the unde-

fined UM platform. Moreover, the hPSC-derived BMECs clustered with primary human BMECs and were distinct from undifferentiated hPSCs and hPSC-derived ectoderm, endoderm and mesoderm (FIG. 2J). The Pearson correlation analysis was used to evaluate the gene expression similarity between defined-BMECs and primary human BEMCs. The coefficient between defined-BMECs and primary human BMECs is 0.77 (P<0.001), which suggests a strong positive association between these two groups. We next analyzed the expression of a subset of genes that regulate key BBB attributes, including tight junctions and molecular transporters. The gene set comprises 20 tight junction related genes [1,51-54] and an unbiased list of all 25 CLDN genes, all 407 solute carrier (SLC) transporters, and all 53 ATP-binding cassette (ABC) transporters regardless of prior knowledge of BBB association (Table 2). Primary human BMECs expressed 234 of these genes. BMECs differentiated from hPSCs via the defined method expressed many of these same genes (206 of 234 (88%)) as did BMECs differentiated via the UM method (208 of 234 (89%), FIG. 2K), indicating a close similarity between human BMECs from the different sources with respect to transcripts having potential relevance to BBB function.

Initially, differentiation was performed on Matrigel®, which has been shown to support BMEC generation from hPSCs [32]. However, to remove the lot-to-lot variability inherent to Matrigel® and to fully define the differentiation platform, we explored differentiation on SyntheMax™ and recombinant human vitronectin coatings. Undifferentiated IMR90-4 iPSCs were expanded on either SyntheMax[™] or vitronectin-coated surfaces for 3 days then subjected to the differentiation process shown in FIG. 1A. Cells were replated onto a human placenta-derived collagen IV/human plasma-derived fibronectin-coated surface at day 8. Immunostaining at day 10 demonstrated expression of key BMEC proteins in cells differentiated on defined matrices (FIGS. 7A-7B).

hPSC-Derived BMECs Exhibit BBB Phenotypes

In addition to examination of BMEC gene and protein notypes. After 8 days of differentiation, cells were replated onto a Matrigel®-coated surface at 1 million cells/cm² and maintained in hECSR1 medium. At day 9, culture medium was switched to hECSR2. Day 10 hPSC-derived BMECs exhibited endothelial cell properties, including expression of von Willebrand factor (vWF) (FIG. 3A), formation of tubelike structures on Matrigel® in the presence of VEGF (FIG. 3B), uptake of acetylated low-density lipoprotein (LDL) (FIG. 3C), and upregulation of ICAM-1 expression after treatment with TNF- α (FIGS. 3D-3F). BMEC efflux transporter activities were also measured at day 10. Efflux transporter accumulation assays were performed by quantifying intracellular accumulation of fluorescent substrates, including the Pgp substrate rhodamine 123, the MRP-family substrate 2',7'-dichlorofluorescein diacetate (DCFDA) and the BCRP-family substrate Hoechst. In the presence of the transporter-specific inhibitors CsA (Pgp), MK571 (MRP), and Ko143 (BCRP), the intracellular accumulation of fluorescent substrates increased between 150% and 220%, indicating activity of each class of transporters in hPSC-derived BMECs (FIGS. 3G-3I). Next, polarization of Pgp activity was demonstrated by measuring rhodamine 123 flux across the BMEC monolayer in the presence and absence of the Pgp-specific inhibitor cyclosporine A (CsA) and in both the apical to basolateral (A-B) and basolateral to apical (B-A) directions. As shown in FIG. 3J, CsA treatment increased rhodamine 123 transport across the BMEC monolayer by

160% in the A-B direction. In contrast, CsA inhibition resulted in a 23% percent decrease in rhodamine 123 crossing the barrier in the B-A direction (indicated in FIG. 1A), indicating Pgp efflux function polarized in the B-A direction. Finally, BMECs differentiated via the defined protocol 5 exhibited similar Pgp accumulation and transport as BMECs differentiated via our previously reported undefined co-differentiation protocol (FIGS. 7A-7B, UM protocol).

Finally, previous studies have shown that co-culturing BMECs, including those that are iPSC-derived, with neural 10 progenitor cells, astrocytes and pericytes can enhance BBB properties such as TEER [55-59]. Day 8 iPSC-derived BMECs seeded on Transwells were maintained either as a monoculture or co-cultured with primary human pericytes for the first 24 hr followed by co-culture with hPSC EZ- 15 sphere-derived astrocytes and neurons (1:3) [60] for 3 additional days. Maximum TEER was elevated 30% at day 2 and remained elevated throughout the duration of the experiment compared to the monoculture control (FIG. **3**K).

Cell Density is Crucial for BMEC Differentiation Cell density has been shown to be crucial for efficient hPSC differentiation to a variety of lineages, including BMECs [61-64]. Thus, in addition to the optimal initial day -3 cell seeding density employed above (35×10^3 cells/cm²), we tested a range of seeding densities, from 8.8×10^3 cells/ 25 cm^2 to 140×10³ cells/cm², to explore how density affects BMEC yield and phenotype. As shown in FIG. 4A, TEER was a strong function of seeding density, with only 35×10³ cells/cm² yielding BMECs possessing substantial barrier function at day 2 after transfer onto Transwells. The BMEC 30 TEER peaked at 2 days after replating and plateaued above 2000 $\Omega \cdot cm^2$ through day 7 (FIG. 4B). At non-optimum seeding densities, TEER gradually increased through 6 days after replating, peaking at approximately 1000 $\Omega \cdot cm^2$. We next assessed expression of endothelial markers to investi- 35 gate the endothelial specification process. Cells differentiated at all densities tested yielded endothelial cell populations with nearly 100% Flk-1 positive cells at day 5 and over 90% CD31 positive cells at day 10 (FIG. 8). This suggested that deficits in barrier function may be a result of poor 40 BMEC specification. Thus, we assessed BMEC markers in populations differentiated at different seeding densities. Nearly 100% of cells expressed Pgp after the differentiation process at either Day 8 or Day 10 (FIG. 9). However, only cells differentiated at the optimal seeding density of 35×10^3 45 cells/cm² yielded a pure claudin-5 expressing population with maximal claudin-5 expression (FIGS. 4C-4E). In addition to cells not expressing claudin-5, cells differentiated from non-optimal starting densities also displayed nonjunctional claudin-5 (FIG. 4F, white arrows) or non-uniform 50 claudin-5 distributions at cell junctions (FIG. 4F, red arrows). In addition, only cells differentiated from seeding densities of at least 35×10^3 cells/cm² yielded a nearly pure population of occludin-expressing cells (FIGS. 4G-4I). Immunostaining analysis of occludin also showed cells 55 differentiated from cell densities less than 35×10³ cells/cm² had large areas of cells lacking occludin expression (FIG. 4J, white arrows). Unlike Claudin-5 and occludin, seeding density did not have a significant effect on ZO-1 expression, but cells differentiated with 8.8×10^3 cells/cm² showed poor 60 ZO-1 localization (FIG. 10, red arrows). Immunostaining for additional BMEC markers also indicated poor localization of CD31, ZO-1, MRP1 and BCRP in cells differentiated at non-optimum cell density (FIG. 10, compare 35 k to other densities). H9 hESCs and 19-9-11 iPSCs differentiated at an 65 initial seeding density of 35×10³ cells/cm² also generated BMECs TEER at or above 2000 $\Omega \cdot cm^2$ (FIG. 11). In

addition, 35×10^3 cells/cm² was found to be the optimal seeding density for SyntheMaxTM and vitronectin substrates, with vitronectin substrates performing more closely to Matrigel® than SyntheMaxTM substrates in TEER assays (FIG. **12**).

RA Enhances BMEC Phenotypes

Previously, we have shown that RA induces BBB properties in hPSC-derived BMECs [33]. Other studies also have demonstrated that RA signaling regulates BBB formation and induces BBB phenotypes [44,45]. To determine the role of RA in specifying BMEC differentiation and enhancing the BMEC phenotypes described in FIGS. 2A-2K and FIGS. 3A-3K, we compared differentiation in the presence and absence of RA using the protocol illustrated in FIG. 1A. From day 6 to day 8, cells were maintained either in hECSR1 or hECSR1 lacking RA. qPCR showed that expression of tight junction related genes TJP1, CLDN5 and OCLN and efflux transporters ABCG2, ABCC1, and ABCB1 was greater (3-20-fold) in cells exposed to RA (FIG. 20 5A). Nearly 100% of cells expressed CD31 at day 6 and this expression was preserved in the presence of RA induction at day 8 (FIG. 5B). Immunofluorescence for CD31 and other BMEC markers for cells differentiated in the absence of RA, including VE-cadherin, Glut1 and MRP1 are shown in FIG. 13. Nearly 100% of cells differentiated in the absence and presence of RA expressed Pgp, but RA-treated cells expressed more Pgp than non-treated cells (FIG. 5C). To evaluate the barrier formation potential of the differentiated BMECs and to assess the effects of RA treatment, day 8 BMECs were replated onto Transwells and TEER measured at day 10. As shown in FIG. 5D, cells differentiated in the presence of RA exhibited physiologically relevant TEER (~4000 $\Omega \cdot cm^2$), while cells differentiated in the absence of RA exhibited significantly reduced barrier properties. We then investigated expression and localization of tight junction proteins. Both occludin and ZO-1 were expressed in nearly all cells at day 10 regardless of RA treatment; however, RA treatment significantly increased the expression levels of occludin and ZO-1 (FIGS. 5E, 5F). Although occludin and ZO-1 expression were lower in the absence of RA, immunostaining results indicate that nearly all the cells differentiated in the absence of RA still expressed occludin and ZO-1; however, the junctional distribution was nonuniform (FIG. 5G, indicated with red arrows and compare to FIG. 2A). In contrast to the results with occludin and ZO-1, in the absence of RA, only around 60% of the endothelial cells expressed claudin-5 compared to 100% of RA-treated cells expressing claudin-5 (FIGS. 5H, 5I). In addition, claudin-5 expression was also substantially greater in RAtreated cells (FIG. 5I). Immunostaining indicated that in the absence of RA, many of the cells did not express claudin-5 (FIG. 5J, white arrows) and those that did exhibited nonuniform junctional distribution of claudin-5 similar to that observed with occludin and ZO-1 (FIG. 5J, red arrows). Taken together, these results suggest that RA is not necessary for hPSC differentiation to endothelial cells but enhances key BMEC phenotypes in the hPSC-derived ECs, including the expression and localization of tight junction proteins that promote barrier function as measured by TEER.

Discussion

In this study, we demonstrate a robust and efficient process to differentiate hPSCs to BMECs in a defined manner. The cells progress as a homogeneous population from a pluripotent state through primitive streak, intermediate mesoderm, endothelial progenitors and eventually to endothelial cells that express many BMEC markers and

exhibit BBB barrier and efflux transporter properties. More importantly, this differentiation method employs a completely defined platform, including culture medium and substrates. Defined reagents exhibit less lot-to-lot variability, leading to more robust and efficient differentiation and 5 allowing differentiation results to be more reliable, repeatable and efficient. We have tested three different hPSC lines with this differentiation protocol and all these lines were able to differentiate into pure populations of BMEC with definitive BMEC properties at various cell densities.

In vivo, endothelial cells that form the BBB originate from mesoderm progenitors located outside the CNS [65]. In contrast to previous BMEC differentiation protocols [32,36] that rely on co-culture of endothelial progenitors with pericytes, astrocytes or differentiating neural cells, this differ- 15 entiation strategy instead relies on sequential Wnt and RA signaling activation to first specify endothelial cells and then enhance BMEC properties, respectively. First, activation of canonical Wnt signaling by CHIR99201 addition directs hPSCs to Brachvury-positive primitive streak cells that then 20 differentiate to PAX2-positive intermediate mesoderm and EC progenitors when cultured at the appropriate density in DeSR2 medium. Next, RA treatment for two days helps drive these endothelial progenitor cells to express key BMEC markers and exhibit BMEC-specific properties, 25 including high TEER and efflux transporter activity. Our experiments showed that while RA was not necessary to obtain ECs, RA treatment significantly increased BBB properties such as TEER. The TEER enhancement correlated with increased expression and improved localization of tight 30 junction proteins occludin and claudin-5. These findings are similar to those results observed after RA treatment of hPSC-derived BMECs generated by co-differentiation with neural cells using our previously reported protocol [33], in addition to those studies that have explored the barrier 35 enhancing effects of astrocyte or neuron co-culture with hPSC-derived BMECs [58,59].

Previously, we have shown cell seeding density can affect BMEC differentiation from hPSCs using the neural codifferentiation protocol [64]. Other studies have also dem- 40 onstrated a major role for cell seeding density in the hPSC differentiation [66-68]. An initial cell seeding density of about 35×10^3 cells/cm² at day -3 is necessary to yield homogeneous populations of BMECs with high expression and proper localization of key BBB proteins, in turn leading 45 to optimal barrier properties. In addition, this optimum seeding density translated to multiple hPSC lines and to differentiation on defined matrices. Interestingly, cells differentiated at non-optimal seeding densities expressed BMEC markers but exhibited a reduced TEER, likely result- 50 BSA (Bio-Rad) plus 0.1% Triton-X100 three times. Cells ing from diminished claudin-5 and occludin expression and improper junctional localization. Thus, RA signaling and cell density similarly regulate the capability for the endothelial progenitors to gain BMEC properties and this interplay is a target for future study.

Co-culturing hPSC-derived BMECs with pericytes, astrocytes and neurons further elevated TEER, consistent with previous studies that showed co-culturing BMECs with these neural cells can enhance BBB properties [55,56,69-71]. These data suggest that it will be possible to integrate 60 these defined hPSC-derived BMECs with other cells of the neurovascular unit to create an isogenic patient-derived model which can be used to study the role of neurovascular unit in human neurological diseases [59]. Additionally, this method has the potential to be a powerful and robust tool for 65 pre-clinical studies of pharmaceutical transport through the BBB.

22

Methods and Materials hPSC Culture and Differentiation:

hiPSCs (iPS(IMR90)-4 and iPS-DF 19-9-11T (Yu et al., Science 2007, 318:1917-1920)), hESCs (H9) (Thomson et al., Science 1998, 282:1145-1147) were maintained on Matrigel® (Corning)-coated surfaces in mTeSR1™ (STEM-CELL Technologies) as previously described (Ludwig et al., Nature methods 2006, 3:637-646). Before differentiation, hPSCs were singularized with Accutase[™] (Innovative Cell Technologies) and plated onto Matrigel®-coated plates at the density between 4×10^4 cells/cm² and 7×10^4 cells/cm² supplemented with 10 µM ROCK inhibitor Y-27632 (Selleckchem) in mTeSR1TM. hPSCs were maintained in mTeSR1TM for three days. To initiate differentiation at day 0, cells were treated with 6 µM CHIR 99021 (Selleckchem) in DMEM/F12 based serum free medium 1 (DeSR1): DMEM/ Ham's F12 (ThermoFisher), 100×MEM nonessential amino acids (ThermoFisher), 100× GlutaMAX (ThermoFisher), and 0.1 mM \beta-mercaptoethanol (Sigma). After 24 hours, medium was changed to DMEM/F12 based serum free medium 2 ("DeSR2" which is DeSR1 plus B27 Supplement $(50\times)$ (ThermoFisher)) every day for another five days. At day 6, medium was switched to hECSR1: human Endothelial Serum-Free Medium (hESFM) (ThermoFisher) supplemented with 20 ng/ml bFGF, 10 µM retinoic acid (RA), and B27 Supplement (50x) (ThermoFisher). After 2 days of culture in hECSR1 medium, day 8 cells were dissociated with Accutase[™] and plated at 1×10⁶ cells/cm² in hESCR1 onto 48-well tissue culture plates or 1.12 cm² Transwell®-Clear permeable inserts ($0.4 \mu m$ pore size) coated with 100 µg/ml Matrigel®. At day 10, medium was changed to hECSR2 (hECSR1 without RA or bFGF) for longer term maintenance.

Immunochemistry:

Cells were rinsed with ice-cold phosphate buffered saline (PBS) once and followed by fixation either with ice-cold methanol or 4% paraformaldehyde (PFA) for 15 minutes. Cells were then blocked with 10% goat serum presented with 0.3% Triton-X 100 in PBS for 30 min ("10% PBSGT"). Primary antibodies were incubated with 10% PBSGT either at 4° C. overnight or at room temperature for 2 hours. After three PBS washes, cells were incubated with secondary antibodies in 10% PBGST (goat anti-rabbit Alexa Fluor® 594 and goat anti-mouse Alexa Fluor® 488; 1:200) for 1 hour at room temperature. Cells were then washed with PBS three times followed by nuclei labelling with anti-photobleaching medium DAPI fluoromount-G (Southern Biotech) and visualized.

Flow Cytometry:

Cells were dissociated with AccutaseTM and fixed in 1% PFA for 15 min at room temperature, then washed with 0.5% were stained with primary and secondary antibodies diluted in 0.5% BSA plus 0.1% Triton-X 100 as described (Lian et al., Proceedings of the National Academy of Sciences 2012, 109:E1848-E1857). Data were collected on a FACSCaliber 55 flow cytometer (Beckton Dickinson) and analyzed using FlowJo. Corresponding isotype antibodies were used as FACS gating control. Antibodies used in this study are listed in Table 2.

Quantitative RT-PCR:

Total RNA was extracted with the RNeasy mini kit (QIAGEN) and treated with DNase (QIAGEN). 1 µg total RNA was reverse transcribed into cDNA via Oligo (dT) with Superscript III Reverse Transcriptase (Invitrogen). Realtime quantitative PCR was done in triplicate with iQSYBR Green[™] SuperMix (Bio-Rad). GAPDH was used as an endogenous housekeeping control. All the primers were validated and primer sequences are provided in Table 1.

23 TABLE 1

	Primer Sequences				
Gene name		Primer length	Product length	SEQ NO:	ID
GAPDH	-		207		
Forward Reverse	CTGATTTGGTCGTATTGGGC TGGAAGATGGTGATGGGATT	20 20		1 2	
SLC2A1	-		140		
Forward Reverse	AACTCTTCAGCCAGGGTCCAC CACAGTGAAGATGATGAAGAC	21 21		3 4	
ABCB1	-		207		
Forward Reverse	CTCATCGTTTGTCTACAGTTCG AAGACATTTCCAAGGCATCA	22 20		5 6	
PECAM1	-		117		
Forward Reverse	GAGTATTACTGCACAGCCTTCA AACCACTGCAATAAGTCCTTTC	22 22		7 8	
OCLN	-		132		
Forward Reverse	GACTTCAGGCAGCCTCGTTAC GCCAGTTGTGTGTAGTCTGTCTCA	21 22		9 10	
CLDN5	-		238		
Forward Reverse	GTTCGCCAACATTGTCGTCC GTAGTTCTTCTTGTCGTAGTCGC	20 23		11 12	
TJP1	-		128		
Forward Reverse	ACCAGTAAGTCGTCCTGATCC TCGGCCAAATCTTCTCACTCC	21 21		13 14	
CDH5	-		179		
Forward Reverse	AAGCGTGAGTCGCAAGAATG TCTCCAGGTTTTCGCCAGTG	20 20		15 16	
KDR	-		124		
Forward Reverse	GTGATCGGAAATGACACTGGAG CATGTTGGTCACTAACAGAAGCA	22 23		17 18	
CD34	-		185		
Forward Reverse	CTACAACACCTAGTACCCTTGGA GGTGAACACTGTGCTGATTACA	23 22		19 20	
OCT4	-		120		
Forward Reverse	GTGGAGGAAGCTGACAACAA ATTCTCCAGGTTGCCTCTCA	20 20		21 22	
Nanog	-		116		
Forward Reverse	TTTGTGGGCCTGAAGAAAACT AGGGCTGTCCTGAATAAGCAG	21 21		23 24	
Brachyury	-		143		
Forward Reverse	GGGAGCGAGGAGGAAGGGAA TGGTGACGGTGCTGAAGTGC	20 20		25 26	
MIXL1	-		130		
Forward Reverse	GGCGTCAGAGTGGGAAATCC GGCAGGCAGTTCACATCTACC	20 21		27 28	
PAX2	-		92		
Forward Reverse	TCAAGTCGAGTCTATCTGCATCC CATGTCACGACCAGTCACAAC	23 21		29 30	

40

	1	Antibodies Used	in This Stud	y	
Antibody	Vendor	Cat. NO.	Fixation	Dilution	Buffer
Brachyury	R&D	AF2085	4% PFA	1:100 IF	1% BSA
PAX2	Santa Cruz	sc-377181	4% PFA	1:200 IF	10% PBSG
CD31	ThermoFisher	RB-10333-P1	MeOH	1:25 IF	10% PBSG
VE-cadherin	Santa Cruz	BV9	MeOH	1:50 IF	10% PBSG
vWF	Dako	A008202-5	4% PFA	1:500 IF	10% PBSG
KDR	Santa Cruz	sc-6251	4% PFA	1:200 IF	10% PBSG
Claudin5	Invitrogen	4C3C2	MeOH	1:200 IF	10% PBSG
Occludin	Invitrogen	OC-3F10	MeOH	1:50 IF	10% PBSG
ZO-1	Invitrogen	402200	MeOH	1:200 IF	10% PBSG
GLUT1	Thermo	SPM498	MeOH	1:100 IF	10% PBSG
PGP	ThermoFisher	p170 (F4)	MeOH	1:25 IF	10% PBSG
BCRP	Millipore	MAB4155	4% PFA	1:25 IF	10% PBSG
MRP1	Millipore	MAB4100	MeOH	1:50 IF	10% PBSG
OCT3/4	Santa Cruz	sc-5279	4% PFA	1:100 IF	10% PBSG
TRA-1-60	Santa Cruz	sc-21705	4% PFA	1:100 IF	10% PBSG
NANOG	Santa Cruz	sc-374001	4% PFA	1:100 IF	10% PBSG
ICAM-1	R&D	BBA3	4% PFA	1:100 IF	10% PBSG

LDL Uptake Assay:

Differentiated BMECs at day 10 were analyzed using a LDL Uptake Assay Kit[™] (Abeam). Culture medium was aspirated and replaced with LDL-Dylight[™] 550 working ²⁵ solution. Cells were then incubated for 3 hours at 37° C. followed by three washes with PBS and visualized under the microscope with the excitation and emission wavelength at 540 nm and 570 nm, respectively. After visualization, cells were fixed with cell-based Fixative Solution for 10 minutes. Cells were then washed with TBS plus 0.1% Triton-X 100 for five minutes, each followed by 30 min blocking with Cell Based Assay Blocking Solution. Cells were then stained with Rabbit Anti-LDL receptor Primary Antibody and DyLight-488[™] Conjugated Secondary Antibody. Images were taken with a fluorescent microscope with excitation and emission wavelengths of 485 nm and 535 nm, respectively.

Efflux Accumulation and Transport Assay:

P-glycoprotein (Pgp), Breast Cancer Resistance Protein (BCRP), and Multidrug Resistance-Associated Protein (MRP) functionality were assessed by intracellular accumulation of fluorescent transporter substrates and transport of fluorescent substrate across BMEC monolayers. 10 µM 45 Rhodamine 123 (Sigma), 20 µM Hoechst (ThermoFisher) and 10 uM 2',7'-dichlorofluorescein diacetate (DCFDA: Life Technologies) were used as the specific substrates for Pgp, BCRP1, and MRP1, respectively. BMECs at day 10 were pre-treated for 1 hour with or without specific transporter 50 inhibitors (10 µM cyclosporin A (Pgp inhibitor), 10 µM Ko143 (BCRP inhibitor) (Sigma) and 1 µM MK571 (MRP inhibitor) (Sigma) in Hank's Balanced Salt Solution (HBSS). Cells were then treated with transporter substrates in HBSS and incubated for one hour at 37° C. on an orbital 55 shaker. Cells were washed with PBS three times and then lysed with radioimmunoprecipitation assay buffer (RIPA buffer) (Pierce Biotechnology). Fluorescence intensity was measured on a plate reader (485 nm excitation and 530 nm emission for Rhodamine 123 and DCFDA, 360 nm excita- 60 tion and 497 nm emission for Hoechst). Fluorescence intensity was subsequently normalized to cell number determined using a hemacytometer.

Endothelial Cell Tube Formation:

Each well of a 24-well tissue culture plate was coated with 65 300 µL of 10 mg/L Matrigel®. BMECs at day 10 were dissociated with Accutase[™] and plated in hECSM1 plus 50

ng/mL VEGF without RA or bFGF at 2×10⁵ cells/well. Phase contrast images were acquired after 24 hours.

RNA Sequencing and Data Analysis:

Total RNA of day 10 IMR90-4 iPSC-derived BMECs and primary human brain microvascular endothelial cells (Cell Systems, ACBRI 376) were prepared with the Direct-Zol[™] RNA MiniPrep Plus kit (Zymo Research) according to the manufacturer's instructions. Samples were sequenced on an Illumina HiSeq2500 at the University of Wisconsin-Madison Biotechnology Center. The resulting sequence reads were mapped to the human genome (hg19) using HISAT49, and the RefSeq transcript levels (FPKMs) were quantified using the Python script rpkmforgenes.py50. A hierarchical clustering of whole transcripts was performed using GENE-E on the log 2 transformed gene counts. Distances were computed using one minus pearson correlation with average linkage. Fastq files of hPSCs (Dye et al., Elife 2015, 4:e05098; Tadeu et al., *PloS one* 2015, 10:e0122493; Prasain et al., Nature biotechnology 2014, 32:1151-1157), hPSCderived ectoderm (Tadeu et al., PloS one 2015, 10:e0122493), endoderm (Dye et al., Elife 2015, 4:e05098), mesoderm (Prasain et al., Nature biotechnology 2014, 32:1151-1157) were downloaded from GEO or ArrayExpress (available at ebi.ac.uk/arrayexpress/ on the World Wide Web). The expression of a subset of genes that regulate key BBB attributes, including tight junctions and molecular transporters was analyzed. The gene set comprises 20 tight junction related genes (Bauer et al., Frontiers in neuroscience 2014, 8:392; Geier et al., Clinical Pharmacology & Therapeutics 2013, 94:636-639; Huntley et al., Frontiers in neuroscience 2014, 8:355; Liebner et al., International Journal of Developmental Biology 2011, 55:467-476; Obermeier et al., Nature medicine 2013, 19:1584-1596) and an unbiased list of all 25 CLDN genes, all 407 solute carrier (SLC) transporters, and all 53 ATP-binding cassette (ABC) transporters regardless of prior knowledge of BBB association (Table 3). Transcript levels (FPKMs) were set at a threshold >1 FPKMs, which indicates moderate expression (Schultz et al., Bioinformatics 2012, 28:1086-1092). Primary human BMECs were used to screen out the BBB-related genes from that gene list with the threshold >1FPKMs.

REFERENCES

All publications, including but not limited to patents and patent applications, cited below are herein incorporated by reference as though set forth in their entirety in the present application.

- 1. Obermeier B, Daneman R, Ransohoff R M: Development, maintenance and disruption of the blood-brain barrier. Nature Medicine 2013, 19:1584-1596.
- 2. Weksler B, Subileau E, Perriere N, Charneau P, Holloway K, Leveque M, Tricoire-Leignel H, Nicotra A, Bourdou- 5 lous S, Turowski P: Blood-brain barrier-specific properties of a human adult brain endothelial cell line. The FASEB Journal 2005, 19:1872-1874.
- 3. Abbott N J, Rönnbäck L, Hansson E: Astrocyte-endothelial interactions at the blood-brain barrier. Nature 10 Reviews Neuroscience 2006, 7:41-53.
- 4. Ballabh P, Braun A, Nedergaard M: The blood-brain barrier: an overview: structure, regulation, and clinical implications. Neurobiology of Disease 2004, 16:1-13.
- 5. Pardridge W M: The blood-brain barrier: bottleneck in 15 brain drug development. NeuroRx 2005, 2:3-14.
- 6. Chen Y, Liu L: Modern methods for delivery of drugs across the blood-brain barrier. Advanced Drug Delivery Reviews 2012, 64:640-665.
- 7. Sandoval K E, Witt K A: Blood-brain barrier tight 20 junction permeability and ischemic stroke. Neurobiology of Disease 2008, 32:200-219.
- 8. Fernández-Lopez D, Faustino J, Daneman R, Zhou L, Lee S Y, Derugin N, Wendland M F, Vexler Z S: Blood-brain barrier permeability is increased after acute adult stroke 25 but not neonatal stroke in the rat. The Journal of Neuroscience 2012, 32:9588-9600.
- 9. Yang Y, Rosenberg G A: Blood-brain barrier breakdown in acute and chronic cerebrovascular disease. Stroke 2011, 42:3323-3328.
- 10. Cirrito J R, Deane R, Fagan A M, Spinner M L, Parsadanian M, Finn M B, Jiang H, Prior J L, Sagare A, Bales K R: P-glycoprotein deficiency at the blood-brain barrier increases amyloid-ß deposition in an Alzheimer disease mouse model. The Journal of Clinical Investiga- 35 26. Syvänen S, Lindhe Ö, Palner M, Kornum B R, Rahman tion 2005, 115:3285-3290.
- 11. Bowman G, Kaye J, Moore M, Waichunas D, Carlson N, Quinn J: Blood-brain barrier impairment in Alzheimer disease Stability and functional significance. Neurology 2007, 68:1809-1814.
- 12. Minagar A, Alexander J S: Blood-brain barrier disruption in multiple sclerosis. Multiple Sclerosis 2003, 9:540-549.
- 13. Kortekaas R, Leenders K L, van Oostrom J C, Vaalburg W, Bart J, Willemsen A, Hendrikse N H: Blood-brain 45 barrier dysfunction in parkinsonian midbrain in vivo. Annals of Neurology 2005, 57:176-179.
- 14. Shlosberg D, Benifla M, Kaufer D, Friedman A: Bloodbrain barrier breakdown as a therapeutic target in traumatic brain injury. Nature Reviews Neurology 2010, 50 6:393-403
- 15. Beaumont A, Marmarou A, Hayasaki K, Barzo P, Fatouros P, Corwin F, Marmarou C, Dunbar J: The permissive nature of blood brain barrier (BBB) opening in edema formation following traumatic brain injury. In 55 31. Lian X, Hsiao C, Wilson G, Zhu K, Hazeltine L B, Brain Edema XI. Edited by: Springer; 2000:125-129.
- 16. Huber J D, Egleton R D, Davis T P: Molecular physiology and pathophysiology of tight junctions in the bloodbrain barrier. Trends in Neurosciences 2001, 24:719-725.
- 17. Persidsky Y, Stins M, Way D, Witte M H, Weinand M, 60 Kim K S, Bock P, Gendelman H E, Fiala M: A model for monocyte migration through the blood-brain barrier during HIV-1 encephalitis. The Journal of Immunology 1997, 158:3499-3510.
- 18. Annunziata P: Blood-brain barrier changes during inva- 65 sion of the central nervous system by HIV-1. Journal of Neurology 2003, 250:901-906.

- 19. Brines M L, Ghezzi P, Keenan S, Agnello D, De Lanerolle N C, Cerami C, Itri L M, Cerami A: Erythropoietin crosses the blood-brain barrier to protect against experimental brain injury. Proceedings of the National Academy of Sciences 2000, 97:10526-10531.
- 20. Belayev L, Busto R, Zhao W, Ginsberg M D: Ouantitative evaluation of blood-brain barrier permeability following middle cerebral artery occlusion in rats. Brain Research 1996, 739:88-96.
- 21. Asahi M, Wang X, Mori T, Sumii T, Jung J-C, Moskowitz M A, Fini M E, Lo E H: Effects of matrix metalloproteinase-9 gene knock-out on the proteolysis of bloodbrain barrier and white matter components after cerebral ischemia. The Journal of Neuroscience 2001, 21:7724-7732.
- 22. Stins M F, Gilles F, Kim K S: Selective expression of adhesion molecules on human brain microvascular endothelial cells. Journal of Neuroimmunology 1997, 76:81-90.
- 23. Wong D, Dorovini-Zis K: Upregulation of intercellular adhesion molecule-1 (ICAM-1) expression in primary cultures of human brain microvessel endothelial cells by cytokines and lipopolysaccharide. Journal of Neuroimmunology 1992, 39:11-21.
- 24. Sano Y, Shimizu F, Abe M, Maeda T, Kashiwamura Y, Ohtsuki S, Terasaki T, Obinata M, Kajiwara K, Fujii M: Establishment of a new conditionally immortalized human brain microvascular endothelial cell line retaining an in vivo blood-brain barrier function. Journal of Cellular Physiology 2010, 225:519-528.
- 25. Weksler B, Romero I A, Couraud P-O: The hCMEC/D3 cell line as a model of the human blood brain barrier. Fluids Barriers CNS 2013, 10:16.
- O, Långstrom B, Knudsen G M, Hammarlund-Udenaes M: Species differences in blood-brain barrier transport of three positron emission tomography radioligands with emphasis on P-glycoprotein transport. Drug Metabolism and Disposition 2009, 37:635-643.
- 27. Deli M: Blood-brain barrier models. Handbook of Neurochemistry and Molecular Neurobiology: Neural Membranes and Transport 2007:29-55.
- 28. Naik P, Cucullo L: In vitro blood-brain barrier models: current and perspective technologies. Journal of Pharmaceutical Sciences 2012, 101:1337-1354.
- 29. Thomson J.A. Itskovitz-Eldor J. Shapiro S S. Waknitz M A, Swiergiel J J, Marshall V S, Jones J M: Embryonic stem cell lines derived from human blastocysts. Science 1998, 282:1145-1147.
- 30. Zhang S-C, Wernig M, Duncan I D, Brüstle O, Thomson J A: In vitro differentiation of transplantable neural precursors from human embryonic stem cells. Nature Biotechnology 2001, 19:1129-1133.
- Azarin S M, Raval K K, Zhang J, Kamp T J, Palecek S P: Robust cardiomyocyte differentiation from human pluripotent stem cells via temporal modulation of canonical Wnt signaling. Proceedings of the National Academy of Sciences 2012, 109:E1848-E1857.
- 32. Lippmann E S, Azarin S M, Kay J E, Nessler R A, Wilson H K, Al-Ahmad A, Palecek S P, Shusta E V: Derivation of blood-brain barrier endothelial cells from human pluripotent stem cells. Nature Biotechnology 2012, 30:783-791.
- 33. Lippmann E S, Al-Ahmad A, Azarin S M, Palecek S P, Shusta E V: A retinoic acid-enhanced, multicellular

human blood-brain barrier model derived from stem cell sources. Scientific Reports 2014, 4.

- 34. Lippmann E S, Al-Ahmad A, Palecek S P, Shusta E V: Modeling the blood-brain barrier using stem cell sources. Fluids and barriers of the CNS 2013, 10:2.
- 35. Wilson H K, Canfield S G, Hjortness M K, Palecek S P, Shusta E V: Exploring the effects of cell seeding density on the differentiation of human pluripotent stem cells to brain microvascular endothelial cells. *Fluids and Barriers* of the CNS 2015, 12:13.
- 36. Cecchelli R, Aday S, Sevin E, Almeida C, Culot M, Dehouck L, Coisne C, Engelhardt B,
- Dehouck M-P, Ferreira L: A stable and reproducible human blood-brain barrier model derived from hematopoietic 15 stem cells. PloS one 2014, 9:e99733.
- 37. Boyer-Di Ponio J, El-Ayoubi F, Glacial F, Ganeshamoorthy K, Driancourt C, Godet M, Perrière N, Guillevic O, Couraud P O, Uzan G: Instruction of circulating endothebarrier and arterial phenotypes. PloS one 2014, 9:e84179.
- 38. Minami H, Tashiro K, Okada A, Hirata N, Yamaguchi T, Takayama K, Mizuguchi H, Kawabata K: Generation of Brain Microvascular Endothelial-Like Cells from Human Induced Pluripotent Stem Cells by Co-Culture with C6 25 Glioma Cells. PloS one 2015, 10:e0128890.
- 39. Risau W, Wolburg H: Development of the blood-brain barrier. Trends in Neurosciences 1990, 13:174-178.
- 40. Era T, Izumi N, Hayashi M, Tada S, Nishikawa S, Nishikawa S I: Multiple mesoderm subsets give rise to 30 endothelial cells, whereas hematopoietic cells are differentiated only from a restricted subset in embryonic stem cell differentiation culture. Stem Cells 2008, 26:401-411.
- 41. Liebner S, Corada M, Bangsow T, Babbage J, Taddei A, Czupalla C J, Reis M, Felici A, Wolburg H, Fruttiger M: 35 56. Lippmann E S, Weidenfeller C, Svendsen C N, Shusta E Wnt/ β -catenin signaling controls development of the blood-brain barrier. The Journal of Cell Biology 2008, 183:409-417.
- 42. Paolinelli R, Corada M, Ferrarini L, Devraj K, Artus C, Czupalla C J, Rudini N, Maddaluno L, Papa E, Engelhardt 40 B: Wnt activation of immortalized brain endothelial cells as a tool for generating a standardized model of the blood brain barrier in vitro. PLoS One 2013, 8:e70233.
- 43. Stenman J M, Rajagopal J, Carroll T J, Ishibashi M, McMahon J, McMahon A P: Canonical Wnt signaling 45 regulates organ-specific assembly and differentiation of CNS vasculature. Science 2008, 322:1247-1250.
- 44. Mizee M R, Wooldrik D, Lakeman K A, van het Hof B, Drexhage J A, Geerts D, Bugiani M, Aronica E, Mebius R E, Prat A: Retinoic acid induces blood-brain barrier 50 development. The Journal of Neuroscience 2013, 33:1660-1671.
- 45. Mizee M R, Nijland P G, van der Pol S M, Drexhage J A, van het Hof B, Mebius R, van der Valk P, van Horssen J, Reijerkerk A, de Vries H E: Astrocyte-derived retinoic 55 acid: a novel regulator of blood-brain barrier function in multiple sclerosis. Acta Neuropathologica 2014, 128:691-703.
- 46. Lindsley R C, Gill J G, Kyba M, Murphy T L, Murphy K M: Canonical Wnt signaling is required for develop- 60 ment of embryonic stem cell-derived mesoderm. Development 2006, 133:3787-3796.
- 47. Lian X, Bao X, Al-Ahmad A, Liu J, Wu Y, Dong W, Dunn K K, Shusta E V, Palecek S P: Efficient differentiation of human pluripotent stem cells to endothelial 65 progenitors via small-molecule activation of WNT signaling. Stem Cell Reports 2014, 3:804-816.

- 48. Lam A Q, Freedman B S, Morizane R, Lerou P H, Valerius M T, Bonventre J V: Rapid and efficient differentiation of human pluripotent stem cells into intermediate mesoderm that forms tubules expressing kidney proximal tubular markers. Journal of the American Society of Nephrology 2013:ASN. 2013080831.
- 49. Lian X, Bao X, Zilberter M, Westman M, Fisahn A, Hsiao C, Hazeltine L B, Dunn K K, Kamp T J, Palecek S P: Chemically defined, albumin-free human cardiomyocyte generation. Nature Methods 2015, 12:595-596.
- 50. Ng E S, Azzola L, Sourris K, Robb L, Stanley E G, Elefanty AG: The primitive streak gene Mix11 is required for efficient haematopoiesis and BMP4-induced ventral mesoderm patterning in differentiating ES cells. Development 2005, 132:873-884.
- 51. Bauer H-C, Krizbai I A, Bauer H, Traweger A: "You Shall Not Pass"-tight junctions of the blood brain barrier. Frontiers in Neuroscience 2014, 8:392.
- lial progenitors in vitro towards specialized blood-brain 20 52. Geier E G, Chen E C, Webb A, Papp A C, Yee S W, Sadee W, Giacomini K M: Profiling solute carrier transporters in the human blood-brain barrier. Clinical Pharmacology & Therapeutics 2013, 94:636-639.
 - 53. Huntley M A, Bien-Ly N, Daneman R, Watts R J: Dissecting gene expression at the blood-brain barrier. Frontiers in Neuroscience 2014, 8:355.
 - 54. Liebner S, Czupalla C J, Wolburg H: Current concepts of blood-brain barrier development. International Journal of Developmental Biology 2011, 55:467-476.
 - 55. Weidenfeller C, Svendsen C N, Shusta E V: Differentiating embryonic neural progenitor cells induce bloodbrain barrier properties. Journal of neurochemistry 2007, 101:555-565.
 - V: Blood-brain barrier modeling with co-cultured neural progenitor cell-derived astrocytes and neurons. Journal of neurochemistry 2011, 119:507-520.
 - 57. Lai C-H, Kuo K-H: The critical component to establish in vitro BBB model: Pericyte. Brain Research Reviews 2005, 50:258-265.
 - 58. Lippmann E S, Al-Ahmad A, Azarin S M, Palecek S P, Shusta E V: A retinoic acid-enhanced, multicellular human blood-brain barrier model derived from stem cell sources. Scientific Reports 2014, 4:4160.
 - 59. Canfield S G, Stebbins M J, Morales B S, Asai S W, Vatine G D, Svendsen C N, Palecek S P, Shusta E V: An Isogenic Blood-Brain Barrier Model Comprising Brain Endothelial Cells, Astrocytes and Neurons Derived from Human Induced Pluripotent Stem Cells. Journal of Neurochemistry 2016.
 - 60. Ebert A D, Shelley B C, Hurley A M, Onorati M, Castiglioni V, Patitucci T N, Svendsen S P, Mattis V B, McGivern J V, Schwab A J: E Z spheres: a stable and expandable culture system for the generation of prerosette multipotent stem cells from human ESCs and iPSCs. Stem Cell Research 2013, 10:417-427.
 - 61. Gage B K, Webber T D, Kieffer T J: Initial cell seeding density influences pancreatic endocrine development during in vitro differentiation of human embryonic stem cells. PloS one 2013, 8:e82076.
 - 62. Lu H, Guo L, Wozniak M J, Kawazoe N, Tateishi T, Zhang X, Chen G: Effect of cell density on adipogenic differentiation of mesenchymal stem cells. Biochemical and Biophysical Research Communications 2009, 381: 322-327.

- 63. Otero J J, Fu W, Kan L, Cuadra A E, Kessler J A: β-Catenin signaling is required for neural differentiation of embryonic stem cells. *Development* 2004, 131:3545-3557.
- 64. Wilson H K, Canfield S G, Hjortness M K, Palecek S P, 5 Shusta E V: Exploring the effects of cell seeding density on the differentiation of human pluripotent stem cells to brain microvascular endothelial cells. *Fluids and Barriers of the CNS* 2015, 12:1.
- 65. Kurz H: Cell lineages and early patterns of embryonic 10 CNS vascularization. *Cell Adhesion & Migration* 2009, 3:205-210.
- 66. Chambers S M, Fasano C A, Papapetrou E P, Tomishima M, Sadelain M, Studer L: Highly efficient neural conversion of human E S and iPS cells by dual inhibition of 15 SMAD signaling. *Nature Biotechnology* 2009, 27:275-280.
- 67. Selekman J A, Grundl N J, Kolz J M, Palecek S P: Efficient generation of functional epithelial and epidermal cells from human pluripotent stem cells under defined 20 conditions. *Tissue Engineering Part C: Methods* 2013, 19:949-960.
- 68. Lippmann E S, Estevez-Silva M C, Ashton R S: Defined human pluripotent stem cell culture enables highly efficient neuroepithelium derivation without small molecule 25 inhibitors. *Stem Cells* 2014, 32:1032-1042.

- 69. FREY A, MECKELEIN B, WEILER-GÜTTLER H, MÖCKEL B, FLACH R, GASSEN H G: Pericytes of the brain microvasculature express γ-glutamyl transpeptidase. *European Journal of Biochemistry* 1991, 202:421-429.
- 70. Nakagawa S, Deli M A, Kawaguchi H, Shimizudani T, Shimono T, Kittel A, Tanaka K, Niwa M: A new bloodbrain barrier model using primary rat brain endothelial cells, pericytes and astrocytes. *Neurochemistry international* 2009, 54:253-263.
- 71. Nakagawa S, Deli M A, Nakao S, Honda M, Hayashi K, Nakaoke R, Kataoka Y, Niwa M: Pericytes from brain microvessels strengthen the barrier integrity in primary cultures of rat brain endothelial cells. *Cellular and molecular neurobiology* 2007, 27:687-694.
- 72. Pipparelli A, Arsenijevic Y, Thuret G, Gain P, Nicolas M, Majo F: ROCK inhibitor enhances adhesion and wound healing of human corneal endothelial cells. *PloS one* 2013, 8:e62095.
- The present invention has been presented by way of illustration and is not intended to be limited to the disclosed embodiments. Accordingly, those skilled in the art will realize that the invention is intended to encompass all modifications and alternative arrangements within the spirit and scope of the invention as set forth in the appended claims.

TABLE 3

			Gene list			
#506 BBB gene list	234 gene list	hBMECs	234 gene list	DF- BMECs	234 gene list	UM- BMECs
ABCA11	CAV1	923.7407	SLC2A3	252.0928	SLC2A3	610.8353
ABCC7	ICAM2	278.3834	SLC25A6	213.1756	HIF1A	151.1465
SLC25A9	MCAM	274.1456	SLC25A5	186.9119	SLC25A5	142.1456
SLC42A3	HIF1A	249.6294	SLC25A3	157.2549	SLC25A3	138.6716
SLC24A6	CDH5	234.3097	SLC16A1	143.3172	SLC2A14	123.62
SLC9A11	PECAM1	203.7012	HIF1A	122.4893	SLC38A1	105.316
CAV1	SLC25A3	183.5255	SLC2A1	93.9611	SLC38A2	100.156
ICAM2	SLC25A5	165.756	SLC38A1	92.72981	SLC16A1	90.03843
MCAM	CLDN11	136.989	SLC38A2	81.24737	SLC25A6	87.75701
HIF1A	SLC38A2	136.0453	SLC44A2	67.27332	F11R	74.97036
CDH5	CAV2	106.9793	SLC25A13	61.07322	SLC3A2	71.89055
PECAM1	FLT1	105.9402	TJP1	56.69343	TJP1	71.70241
SLC25A3	SLC29A1	90.7043	ABCE1	56.32067	SLC2A1	70.75552
SLC25A5	ABCE1	86.04381	SLC3A2	56.19216	CLDN10	68.96303
CLDN11	SLC38A1	82.47343	SLC2A14	56.11487	SLC44A2	68.81839
SLC38A2	TJP1	76.45356	F11R	55.14908	SLC7A5	63.41564
CAV2	SLC43A3	74.88526	SLC1A5	53.58474	SLC39A1	53.76249
FLT1	VWF	73.26097	SLC25A39	52.78089	SLC25A13	52.07851
SLC29A1	SLC16A1	68.35225	SLC39A1	51.60302	SLC39A10	51.38782
ABCE1	TJP2	67.96791	TJP2	49.49886	TJP2	50.06371
SLC38A1	SLC20A1	62.491	SLC39A10	48.06552	ABCE1	45.28388
TJP1	SLC7A11	60.69881	SLC30A9	46.72972	SLC30A9	44.90368
SLC43A3	F11R	57.99209	CLDN7	44.32662	SLC35F2	40.78186
VWF	SLC25A6	57.5346	SLC29A1	44.28459	SLC39A6	40.62602
SLC16A1	JAM3	54.89288	SLC9A3R1	41.81585	CLDND1	38.92117
TJP2	SLC3A2	50.75996	SLC39A6	37.77367	SLC25A23	37.91454
SLC20A1	SLC35F2	46.47151	SLC35F2	35.70086	SLC25A39	35.84938
SLC7A11	SLC4A7	43.35404	CLDND1	33.66144	SLC9A3R1	33.92086
F11R	SLC39A1	42.83734	SLC25A1	33.53528	CLDN7	33.84267
SLC25A6	SLC25A24	41.87745	SLC7A5	33.22988	SLC25A24	29.86583
JAM3	SLC35B1	34.06834	SLC25A36	28.83266	SLC1A5	28.91319
SLC3A2	SLC30A9	33.06038	ABCD3	28.48802	SLC35D2	28.25116
SLC35F2	CLDND1	32.75058	CDH5	28.00627	SLC29A1	25.86402
SLC4A7	SLC39A9	31.23809	CLDN10	26.98014	SLC9A7	25.72785
SLC39A1	SLC39A10	30.98473	SLC25A24	26.75072	SLC35B2	24.7002
SLC25A24	SLC4A1AP	28.62383	SLC5A6	26.0891	SLC11A2	24.61003
SLC35B1	ABCF2	24.58603	SLC39A8	24.77252	SLC20A1	24.17319
SLC30A9	SLC25A51	24.22399	SLC4A7	23.76598	SLC5A6	23.3824
CLDND1	SLC25A46	24.21591	SLC5A3	23.47273	SLC25A36	23.11703
SLC39A9	SLC44A2	23.91665	SLC37A4	22.58407	SLC48A1	22.83945
SLC39A10	SLC25A32	23.63031	SLC11A2	21.88627	SLC50A1	22.61239
SLC4A1AP	SLC25A39	22.65866	SLC39A9	21.62626	SLC25A1	22.59764

TABLE 3-continued

		Gene list			
#506 BBB gene list	234 gene list	234 gene hBMECs list	DF- BMECs	234 gene list	UM- BMECs
ABCF2	SLC1A1	20.44956 SLC25A23	20.90531	SLC39A9	22.25151
SLC25A51	SLC11A2	19.93301 SLC35A4	20.18808	SLC35B1	21.83007
SLC25A46	SLC1A5	19.51665 SLC7A2	19.87333	ABCD3	21.43351
SLC25A32	SLC25A44	17.91983 SLC35D2	19.664424	SLC38A9	20.73522
SLC25A39	SLC35B2	17.85137 SLC25A46	19.4795	SLC35A4	20.20352
SLC1A1	SLC44A1	15.89151 SLC35B2	18.90054	SLC25A46	19.9377
SLCHA2	SLC50A1 SLC33A1	15.65628 CLDN12 15.40879 SLC6A6	18.12411	SLC4A7 ABCE2	19.62326
SLC39A14	SLC35F5	15.4087 SLC20A1	17.32783	SLC44A1	18.02392
SLC25A44	SLC2A3	15.20934 SLC44A1	17.26487	SLC25A11	17.19072
SLC35B2	SLC35A5	15.09354 SLC35E2B	17.26174	OCLN SLC4A1AB	16.99925
SLC50A1	SLC30A5	14.43843 SLC33B1	16.41598	SLC4AIAF SLC25A14	16.88279
SLC33A1	SLC30A7	14.2732 ABCF2	16.39811	SLC35A2	16.35939
SLC35F5	SLC7A6	14.19045 ABCB7	15.97855	SLC35E2B	16.35016
SLC2A3	ABCD3	13.96953 OCLN 13.81484 SLC25A38	15.75396	SLC6A6	16.11681
SLC35D2	SLC35A4	13.62119 SLC50A1	15.23794	ABCB7	15.0576
SLC30A5	SLC37A3	13.46261 SLC35A1	15.04173	SLC5A3	14.85095
SLC30A7	SLC25A23	13.33278 SLC35A5	14.90034	SLC39A8	14.82668
SLC12A2	ABCB7	13.12365 SLC10A3	14.71892	CAV1	14.0809
ABCD3	SLC31A1	12.37542 SLC25A17	14.35371	MCAM	14.49007
SLC35A4	SLC35F6	12.24834 SLC4A1AP	14.30081	SLC25A38	14.20695
SLC37A3	SLC12A6	12.19731 SLC35B4	14.16154	SLC25A17	13.24071
SLC25A25 SLC7A1	SLC6A6	11.43204 SLC39A14	13.38355	SLC7A0 SLC31A1	12.83048
ABCB7	SLC25A20	11.31557 SLC19A2	13.18775	CLDN12	12.82142
SLC31A1	SLC35A1	11.20306 SLC41A3	12.72882	SLC43A3	12.7829
SLC35F6 SLC12A6	ABCC1	10.98087 SLC38A10 10.95128 SLC35C2	12.62832	SLC35AI SLC35E2	12.16555
ABCC4	SLC40A1	10.8633 SLC25A29	12.07869	SLC37A4	12.08897
SLC6A6	SLC25A36	10.83388 ABCA1	11.91767	SLC41A3	12.01466
SLC25A20	SLC25A13	10.77849 SLC10A7	11.5767	SLC25A44	11.94043
SLC41A3	SLC25A57 SLC17A5	10.53626 ABCG2	11.55531	SLC12A4	11.74317
ABCC1	SLC25A38	10.31958 SLC35F5	11.48433	ABCC5	11.71671
SLC40A1	SLC23A2	10.23087 SLC18B1	11.47867	SLC35E1	11.66272
SLC25A30	SLC9A3K2 SLC46A3	9.998613 SLC9A6 9.908212 SLC7A6OS	11.40468	SLC12A2 SLC35B4	11.3905
SLC25A37	SLC18B1	9.879486 SLC38A9	11.21661	SLC35A5	11.30591
SLC17A5	SLC25A11	9.742069 SLC33A1	10.70683	ABCA1	11.03958
SLC25A38	SLC38A6 SLC25A43	9.526767 ABCF3 9.417356 SLC25A51	10.66462	SLC25A32	10.88902
SLC9A3R2	SLC20A45 SLC30A6	9.213449 SLC35E2	10.26557	SLC35F5	10.72137
SLC46A3	SLC26A2	9.058527 SLC35E1	10.2129	JAM3	10.65142
SLC18B1	SLC10A7	8.942612 SLC12A4	9.863589	SLC7A2	10.49417
SLC25AII SLC38A6	SLC35B3	8.76971 SLC4A2	9.823099	SLC30A3	10.22101
SLC25A43	SLC30A1	8.588276 SLC25A40	9.707604	ABCC1	10.11523
SLC30A6	ABCG2	8.238564 SLC23A2	9.34232	SLC39A14	10.04289
SLC26A2 SLC10A7	SLC39A6	8.167096 ABCC5 7.967356 SI C25A44	9.335807	SLC25A51	9.995096
SLC7A6OS	SLC25A30	7.889163 SLC20A2	9.178483	ABCG2	9.820886
SLC35B3	SLC35E2	7.855851 SLC16A9	9.121988	SLC25A37	9.197012
SLC30A1	ABCB10	7.797414 CAV1	8.869287	SLC35F6	9.093918
SLC39A6	SLC38A9 SLC25A40	7.663975 SLC43A3	8.580978	SLC35A1	8.823200 8.81682
SLC5A6	ABCF3	7.630236 SLC25A32	8.390015	SLC25A40	8.7024
SLC25A30	SLC35E1	7.556514 SLC25A37	8.388699	CDH5	8.69502
ABCB10	SLC25A1 SLC25A16	7.525357 JAM3 7.489493 SLC7A5P2	8.364314	SLC4A2	8.643693
SLC38A9	SLC6A8	7.323966 SLC36A4	8.231476	SLC12A6	8.571138
SLC25A40	SLC9B2	7.128162 ABCC1	8.111134	SLC39A11	8.513285
ABCF3	SLC41A1	6.930944 SLC30A5	8.007126	SLC23A2	8.253028
SLC35E1	SLC57A4 SLC15A4	6.853793 SLC25A14	7,713775	SLC35B5 SLC16A9	8.046499
SLC25A16	CLDN14	6.841163 SLC18A2	7.713735	ABCD4	7.969777
SLC6A8	SLC25A12	6.82804 SLC12A2	7.700731	SLC7A6OS	7.959892
SLC9B2 SLC41A1	SLC48A1 SLC25A28	6.787476 SLC/A6 6.720037 ABCC4	7.455157	SLC35C2 SLC40A1	7.733024 7.668746
SLC37A4	SLC25A52	6.667478 SLC40A1	7.327833	SLC36A4	7.60958
SLC15A4	SLC2A1	6.404123 SLC52A2	7.315052	SLC25A28	7.353667
CLDN14	SLC25A17	6.374539 SLC48A1	7.237134	SLC38A7	7.330979

35

TABLE 3-continued

			Gene list			
#506 BBB gene list	234 gene list	hBMECs	234 gene list	DF- BMECs	234 gene list	UM- BMECs
SLC25A12	SLC45A3	6.179573	SLC35B3	7.148587	SLC41A1	7.329091
SLC48A1	SLC25A14	6.176458	SLC35F6	7.063546	SLC16A4	7.285852
SLC25A28	SLC7A7	6.056539	SLC30A7	6.950792	SLC25A15	7.018179
SLC25A52	ABCA3 SLC35A3	6.041/55 5.07345	SLC12A6 SLC2A12	6.870094	SLC3/AI	6.981045
SLC25A17	SLC35C2	5.886805	SLC25A4	6.80334	CAV2	6.763466
SLC45A3	SLC9A1	5.774904	SLC16A2	6.771058	SLC18B1	6.680213
SLC25A14	SLC35E2B	5.77416	SLC2A4RG	6.751262	SLC7A5P2	6.638324
SLC7A7	SLC35B4	5.684548	SLC35A3	6.730863	SLC16A2	6.366558
ABCA3	ABCD4 SLC35G2	5.651213	ABCB10	6.690164	SLC18A2	6.316656
SLC35C2	SLC38A7	5 42276	SLC10A3	6 629065	CLDN11	6 212397
SLC9A1	SLC5A3	5.388036	SLC25A15	6.429072	SLC24A1	6.16772
SLC35E2B	SLC39A13	5.291944	SLC37A1	6.369922	SLC52A2	6.15893
SLC35B4	SLC41A2	5.17794	ABCD4	6.305381	SLC25A20	5.875959
ABCD4	ABCA6	5.101244	SLC25A26	6.26727	SLC25A33	5.870099
SLC35G2 SLC38A7	SLC9A6 SLC20A2	5.032552 4.791322	SLC/AI SLC2A8	6.19808	SLCIUA7	5.844128
SLC5A3	SLC20A2 SLC12A4	4.7702	SLC16A4	5.860985	SLC25A29	5.624951
SLC39A13	SLC25A4	4.728352	SLC2A13	5.773666	SLC35E3	5.548845
SLC41A2	SLC4A2	4.708312	SLC24A1	5.706535	SLC35A3	5.367006
ABCA6	CLDN7	4.651275	SLC17A5	5.640505	SLC10A3	5.354412
SLC9A6	SLC8B1	4.624652	SLC39A3	5.478398	SLC44A5	5.338708
SLC20A2	SLC9A3KI SLC35E3	4.624386	SLC35E3	5.30/30/	ABCC4	5.146036
SLC25A4	SLC36A4	4.524488	SLC30A4	5.206057	SLC25A16	5.091252
SLC4A2	SLC4A8	4.492913	SLC25A33	5.145579	SLC16A3	5.054938
CLDN7	SLC18A2	4.410194	SLC27A4	4.704437	SLC6A15	4.943508
SLC8B1	SLC16A3	4.18688	SLC25A19	4.699116	SLC26A6	4.881237
SLC9A3R1	SLC7A11-AS1	4.169528	SLC26A6	4.556017	SLC17A5	4.600665
SLC35E3	SLC38A10 SLC39A8	4.141603	MCAM	4.530791	SLC30A4	4.521532
SLC4A8	SLC24A1	4.090698	SLC7A7	4.204975	SLC22A23	4.188286
SLC18A2	SLC35A2	4.080426	SLC1A1	4.184253	SLC25A26	4.108745
SLC16A3	SLC9A7	3.991476	SLC38A6	4.177333	SLC25A12	4.009335
SLC7A11-AS1	SLC1A4	3.876767	SLC27A3	4.125926	SLC35D1	3.982762
SLC38A10	SLC25AI5	3.823741	SLC25A16	3.98039	ABCC10	3.951296
SLC24A1	SLC25A33	3 663425	SLC44A5	3 923323	SLC38A6	3 67615
SLC35A2	SLC25A19	3.649016	SLC4A8	3.868711	SLC2A8	3.626527
SLC9A7	SLC43A1	3.605161	ABCC10	3.728089	SLC6A8	3.567135
SLC1A4	SLC25A29	3.500198	SLC39A13	3.712465	ABCB10	3.541202
SLC25A15	SLC7A5	3.422199	SLC12A9	3.497827	SLC1A4	3.520103
ABCC3 SLC25A33	ABCB0	3 242039	SLC2AII SLC7AII	3 46873	ABCA11P	3 413526
SLC25A19	SLC6A15	3.200893	SLC9A8	3.439343	SLC26A2	3.382889
SLC43A1	SLC2A10	3.189633	SLC26A2	3.346508	SLC27A4	3.379123
SLC25A29	SLC10A3	3.187604	SLC19A1	3.325034	SLC4A8	3.300027
SLC7A5	CLDN12	3.170898	SLC6A15	3.323116	SLC2A13	3.26573
ABCB6	CLDN5 SLC16A2	3.144691	SLC22A23	3.075992	SLC4IA2	3.226567
SLC6A15	SLC10A2 SLC26A6	2 928897	SLC36A1	3.061966	SLC25A30	3.023375
SLC2A10	ABCG1	2.899549	SLC35G1	3.047712	SLC2A10	3.000119
SLC10A3	SLC19A2	2.873943	SLC25A25	3.024935	SLC35G1	2.911678
CLDN12	SLC25A25	2.813299	SLC25A27	2.911114	SLC1A1	2.888386
CLDN5	SLC25A26	2.807377	ABCB6	2.894889	FLT1	2.871825
SLC16A2	SLC33E4 SLC47A1	2.807577	SLC9AI SLC26A11	2.870734	SLC25AI9	2.798509
ABCG1	SLC4/AI SLC36A1	2.78136	SLC25A30	2.820294	SLC25A43	2.497151
SLC19A2	ABCC5-AS1	2.717161	SLC25A12	2.773978	SLC9B2	2.457178
SLC25A25	SLC27A4	2.71138	SLC12A7	2.681496	SLC2A11	2.416716
SLC25A26	SLC35D1	2.643386	SLC25A43	2.6356	SLC16A5	2.402106
SLC35E4	SLC16A7	2.565574	SLC25A21- AS1	2.63491	SLC7A11	2.338561
SLC47A1	SLC2A14	2.492277	SLC6A8	2.617316	SLC25A27	2.333854
SLC36A1	SLC9A8	2.44206	SLC9B2	2.599457	SLC25A25	2.291076
ABCC5-AS1	SLC2A13 SLC16A4	2.402028	ABCA5	2.493851	SLC9A8	2.282608
SLC27A4 SLC35D1	SLC10A4 SLC39A4	2.330933	SLCIOAI-ASI	2.4//813	SLC36A1	∠.∠/0040 2.25587
SLC16A7	SLC31A2	2.298712	SLC27A1	2.291298	SLC25A52	2.144389
SLC2A14	SLC7A2	2.197604	SLC22A5	2.280795	CLDN15	2.086779
SLC9A8	ABCA11P	2.162356	ABCA11P	2.183504	SLC12A7	2.036138
SLC2A13	SLC4A11	2.067843	CAV2	2.170436	SLC22A5	1.881857
SLC16A4	ABCA9	2.062904	ABCA3	1.994074	CLDN20	1.839093
SLC39A4	SLC16A13	2.041291	SLC35D1	1.887128	SLC16A13	1.817148

TABLE 3-continued

#506 BBB gene list 234 gene hBMECs DF bMECs 234 gene BMEcs UM- BMEcs SLC31A2 SLC9A3 2.037834 SLC1A13 1.85977 ABCG1 1.80681 SLC7A2 SLC9A3 J.203607 SLC4A1 1.85977 ABCG1 1.80681 SLC7A2 SLC9A3 J.204607 SLC4A1 1.89778 ABCG1 1.63081 ABCA11 SLC2A2 J.95354 SLC7A3 1.64084 1.64084 SLC4A1 SLC17A9 I.12626 CLD203 1.660859 SLC3A2 1.61144 SLC5A0 SLC4A45 I.72678 SLC3C41 1.54246 SLC4A11 1.54268 SLC2A40 SLC4A45 I.7276 FLT1 1.482148 SLC4A11 1.28365 SLC2A40 I.6131 SLC1A4 J.234516 SLC4A11 J.23855 SLC2A42 SLC4A145 SLC3A44 J.234516 SLC4A11 J.23855 SLC4A45 SLC2A463 SLC3A11 J.66161 SLC4A11 J.23855 SLC4A45 SL				Gene list			
LC1AL2 SLCMAP 2.07844 SLC1AA1 1.889779 ABCG1 1.800817 SLCAA SLC3AS1 1.972902 CLDM15 1.76215 SLC4AS1 1.680569 SLCAAL1 SLC2AA4 1.95554 SLC6AS3 1.680569 SLC3AA2 1.61144 SLCAAL1 SLC2AA1 1.76929 SLC8B1 1.76215 SLC1AA2 1.61144 SLC3AC1 SLC2AA2 1.76406 SLC1AA 1.511380 SLC2A1 1.601919 SLC3AC3 SLC2AA2 SLC2AA2 1.76406 SLC1A 1.531380 SLC2A1 1.340947 SLC3AC4 SLC2AA2 1.20876 FLT1 1.482148 SLC8A1 1.349947 SLC2AA3 SLC3AR6 1.61618 SLC1A4 1.324516 SLC4A1 1.324516 SLC2AA3 SLC3AR6 1.61618 SLC3A2 1.203741 JA227351 JA30947 SLC2AA3 SLC3AR6 SLC3A4 1.324564 SLC4A1 1.324564 SLC4A1 JA30947 SLC2AA3 SLC3A6 SLC3A74 JA3044 SLC3A7 JA3044 JA30947 <td< th=""><th>#506 BBB gene list</th><th>234 gene list</th><th>hBMECs</th><th>234 gene list</th><th>DF- BMECs</th><th>234 gene list</th><th>UM- BMECs</th></td<>	#506 BBB gene list	234 gene list	hBMECs	234 gene list	DF- BMECs	234 gene list	UM- BMECs
SLC7A2 SLC35C1 J.29290 CLC47A1 1.88928 SLC45A3 1.784481 ABCA11 SLC35C1 J.97290 CLC9N15 1.76125 ABC69 SLC37A1 I.63026 SLC4A1 SLC24A J.95354 SLC47A3 1.682169 SLC1A2 I.16104 SLC4A0 SLC1A0 I.76028 SLC24A1 I.50028 SLC25A21 I.601919 SLC3A0 SLC1A4A5 I.71749 ABC649 I.398731 SLC3A12 I.31138 SLC2A4A SLC34A5 I.71749 ABC639 SLC34A12 I.338731 SLC3A12 I.31138 SLC1AA SLC2A46 I.61613 SLC1A24 I.342416 SLC4A12 I.20395 ABCA3 I.24897 SLC1AA SLC2A46 SLC3A11 I.99118 SLC2A44 I.324951 SLC4A141 I.2885 SLC1AA SLC3A44 SLC3A44 SLC3A41 J.20395 ABCA3 I.248962 SLC4AA5 SLC3A44 SLC3A43 SLC4A43 I.20394 SLC4A43 I.20394 SLC4A45 SLC3A44 SLC3A52 I.02744 J.80569	SLC31A2	SLC9A9	2.037834	SLC16A13	1.859779	ABCG1	1.806817
ABCALIP SLC311 1.972902 CLDN15 1.716215 ABCA6 1.683953 SLC4A11 1.83226 CLDN20 1.680569 SLC12A0 1.611464 SLC16A13 SLC27A1 1.8226 CLDN20 1.680569 SLC12A2 1.611464 SLC3A1 SLC2A43 1.76929 SLC341 1.570282 SLC2321 1.611464 SLC3A0 SLC14A3 1.76406 SLC14A1 1.432484 SLC8B1 1.449263 SLC3A1 SLC14A4 1.61651 SLC31A2 1.33903 SLC4A43 1.33146 SLC2A43 SLC3A46 1.61651 SLC14A2 1.23857 SLC3A44 1.24854 SLC2A44 SLC3A46 I.01141 SLC3A52 1.02374 1.43044 SLC2A45 SLC3A41 I.531483 SLC4A41 1.24854 SLC4A43 1.24854 SLC2A46 SLC3A11 I.531439 SLC3A21 1.20374 I.43054 SLC2A45 SLC3A11 I.531439 SLC3A12 I.33146 SLC4A43 I.331	SLC7A2	SLC39A3	2.026507	SLC47A1	1.858928	SLC45A3	1.784481
SLC4A1 SLC24A 1.95324 SLC4SA1 1.68215 SLC13A2 1.611464 SLC6A13 SLC17A9 1.76929 SLC8B1 1.570282 SLC3A21 1.6101919 SLC9A0 SLC2A23 1.764405 SLC16A1-AS1 1.572368 SLC2A23 SLC5A1A SLC14A1-AS1 SLC2A4 SLC3A3 SLC6A1-AS1 SLC3A4 SLC3A44	ABCA11P	SLC35C1	1.972902	CLDN15	1.716215	ABCB6	1.683963
ABCA9 SLC31A1 1.81226 CLDN20 1.680599 SLC31A2 1.611469 SLC16A1 SLC32A2 1.765406 SLC16A7 SLC31A2 1.610190 SLC30A3 SLC16A1-AS1 1.72676 FLT1 1.482144 SLC39A13 1.4450447 SLC37L1 SLC34A4 BAC84 1.652087 SLC31A2 1.332146 SLC24A4 BAC84 1.652087 SLC31A2 1.332416 SLC41A1 1.288521 SLC24A3 SLC44R6 1.6131 SLC4A4 1.324516 SLC41A1 1.288521 SLC24A3 SLC34R6 I.6131 SLC4A4 1.324516 SLC4A11 1.28557 SLC4A45 SLC3A11 L59181 SLC4A4 1.240541 1.23597 SLC1A468 CLDN15 1.554813 SLC3A4 0.866443 SLC7A3 1.35288 SLC2A486 SLC3A7 1.549238 SLC3A4 0.86143 SLC2A6 0.96726 SLC2A48 SLC3A4 1.51883 SLC3A4 0.886443 SLC2A6 0.942145 SLC2A4 SLC3A4 1.51683 SLC3A4 0.88714	SLC4A11	SLC22A4	1.953524	SLC45A3	1.682159	SLC12A9	1.630878
SLC16A13 SLC1A2 1.69029 SLC8A7 1.50129 SLC9A3 SLC4A45 1.72676 FLTI 1.482148 SLC8A1 SLC2A4 SLC3A4 1.72676 FLTI 1.482148 SLC3A1 1.45047 SLC2A4 ABCA8 1.652067 SLC3AC1 1.482148 SLC3A1 1.442148 SLC1A1-SLC2A4 ABCA8 1.65107 SLC3AC1 1.398033 SLC4A32 1.32816 SLC1A1-SLC2A4 SLC3AC1 1.31480 SLC4A11 1.23895 SLC4A12 1.28855 SLC1A4-SLCAA52 L608011 SLC1A4 1.238451 SLC4A12 1.240954 SLC4A45 SLC4A11 L591181 SLC4A32 1.240954 SLC4A33 1.23597 SLC2A46 SLC2A1 L54343 SLC3A31 0.681649 ABCC3 1.240954 SLC2A47 SLC3A51 L67471 L52845 SLC4A43 1.205741 SLC4A61 L20471 L57433 SLC3A52 L02A54 L20574 SLC4A61 SLC3A51	ABCA9	SLC37A1	1.81226	CLDN20	1.680569	SLC31A2	1.611464
SLC9A9 SLC22A23 1.764406 SLC16A7 1.551389 SLC27A1 1.522368 SLC39A3 SLC16A1-AS1 1.72676 FLT1 1.442148 SLC39A13 1.4450447 SLC37L1 SLC4AA BC2807 SLC3AC1 1.398731 SLC3AL3 1.322146 SLC37L1 SLC2AA4 BCA8 1.66151 SLC1AA 1.324151 BCC43A2 1.323145 SLC2A23 SLC7A5P SLC2AA11 I.518183 SLC1AA1 1.238521 SLC3A12 1.23597 SLC1AA51 OCLN 1.60714 SLC3A2 1.23597 SLC3A14 1.240541 ABCA8 CLDN15 1.554813 SLC3A41 0.96161 SLC4A3 1.139848 SLC2A46 SLC2A11 1.532339 SLC3A40 0.851669 ABC19 0.950726 SLC2A48 SLC2A11 1.532439 SLC3A40 0.851649 ABCA5 0.30788 SLC2A46 SLC3A4 1.51885 SLC3A4 0.851645 ABCC43 0.66143 SLC3A4 0.491245 OCLM SLC3A2 1.413125 SLC3A4 0.87714 SLC2A4 </td <td>SLC16A13</td> <td>SLC17A9</td> <td>1.769929</td> <td>SLC8B1</td> <td>1.570282</td> <td>SLC25A21-</td> <td>1.601919</td>	SLC16A13	SLC17A9	1.769929	SLC8B1	1.570282	SLC25A21-	1.601919
Dictorya SLC (SAL AS) 1.7276 FLT 1.481248 SLC (SDA) 1 1.49428 SLC 3C1 SLC (ALAS) 1.70179 ABCB9 1.398731 SLC 29A,13 1.451947 SLC 3C1 SLC 1AAS 1.621087 SLC 3SC1 1.341948 SLC 29A,13 1.451947 SLC 2AAK SLC 2AKR 1.66131 SLC 1A4 1.344316 SLC 4AAL 1.28855 SLC 2AAK OCLAN 1.607444 SLC 4AA 1.238457 SLC 4AAL 1.28855 SLC 4AAAS SLC 4AAL 1.248453 SLC 4AAL 1.248528 SLC 4AAL 1.248458 SLC 4AALS SLC 2AAL 1.607414 SLC 4AAL 1.248543 SLC 2AAL 1.248543 SLC 2AAR SLC 2AAL 1.544313 SLC 4AAL SLC 4ACA 1.248543 SLC 3AA 1.354481 SLC 2AAL 1.544313 1.45643 1.159448 SLC 3AC 1.24853 SLC 3AA 1.354518 SLC 4AA 1.265741 1.534413 SLC 3AA 1.354518 SLC 4AA 1.554518 SLC 3AA 1.354518 SLC 4AA 1.554518 SLC 3AA 1.3554518 SLC 3AA 1.35	SLCOAO	SI C22A23	1 764406	SLC16A7	1 551380	ASI SLC27A1	1 522368
SIC33CL SIC4AAS 1701749 ABCA9 1398731 SIC3AAL 1450947 SIC22A4 ABCA8 1.65087 SIC3SCL 1398033 SIC4AA2 132146 SIC27A1 SIC2A4 SIC3ACL 1398033 SIC4AA2 1324516 SIC4A11 1.28853 SIC2A2 SIC7A52 LC64WG 1.66151 SIC1A4 1.324516 SIC4A11 1.28857 SIC2A2 SIC7A52 LC64WG 1.66191 SIC4A42 1.20397 ABCA8 1.2405741 ABCA8 CLDN15 1.5548413 SIC2A41 0.205741 ABCA8 1.2405741 ABCA8 SIC2A41 SIC354813 SIC3452 0.752173 SIC2A61 0.950726 SIC2A41 SIC3343 SIC352 0.752173 SIC2A61 0.950726 SIC2A41 SIC374 LA89023 SIC3404 0.85169 ABCB9 0.950726 SIC2A16 SIC2A1 LC2A1 LA9033 SIC2A61 0.95161 SIC4A1 0.65376 SIC2A1 SIC3A2 SIC3A2 SIC3A2 SIC3A3 1.626473 0.63174	SLC39A3	SLC16A1-AS1	1.72676	FLT1	1.482148	SLC8B1	1.494263
SLC22A4 ABCA8 1.65087 SLC31A2 1.332430 ABCA5 1.31138 SLC7A0 SLC2AARG 1.61613 SLC31A2 1.234931 ABCA5 1.31138 SLC7A0 SLC2AARG 1.61031 SLC3A2 1.288651 SLC1A1 1.258971 SLC16A1-ASI OCLN 1.607414 SLC4A2 1.28861 SLC1A43 1.246954 SLC2A4AS SLC2A411 1.59181 SLC3A52 1.028764 JAM2 1.265741 SLC2A4RG SLC2A41 1.513433 SLC3A41 0.96161 SLC24A3 1.139848 SLC2A4RG SLC3A1 1.513433 SLC3A31 0.681691 ABC59 0.9950726 SLC7A72 SLC3A3 1.47873 SLC3A31 0.681691 ABC59 0.9950726 SLC2A11 SLC1A1 1.474173 SLC3A31 0.681691 ABC54 0.677266 SLC2A11 SLC3A4 0.408163 SLC3A71 0.63856 SLC4A11 0.63856 SLC2A41 I.478175 SLC4A41 0.63175 SLC5A4 0.63875 SLC2A41 I.480841 SLC3A4<	SLC35C1	SLC44A5	1.701749	ABCB9	1.398731	SLC39A13	1.450947
SLC37AI SLC12A9 SLC2A4R6 1.613 SLC1A4 1.324516 SLC4A1 1.28855 SLC2A23 SLC7A5P2 1.608011 SLC1A4 1.324516 SLC4A11 1.28855 SLC2A23 SLC7A5P2 1.608011 SLC1A4 1.288551 SLC19A1 1.25357 SLC6A1.AS1 OCLN 1.607144 SLC41A2 1.20857 ABCA3 1.240594 SLC4AA5 SLC26A11 1.591181 SLC2A52 1.028764 JAM2 1.205741 ABCA8 CLDN15 1.554813 SLC4A11 0.028764 JAM2 1.205741 ABCA8 SLC2A41 1.352439 SLC3A2 0.792349 SLC2A6 0.942145 OCLN SLC12A7 1.489623 SLC3A2 0.792349 ALBC5-AS1 0.667236 SLC2A11 SLC2A8 1.431852 CLDN14 0.501681 SLC16A1.AB 0.633586 SLC2A11 SLC2A8 1.431852 CLDN14 0.501681 SLC16A1.AB 0.633586 SLC3A11 SLC2A8 1.431852 CLDN14 0.501681 SLC16A1.AB 0.633575 SLC36A2 SLC36A4 1.220397 SLC2A6 0.433048 SLC47A1 0.58182 SLC16A7 SLC2A6 1.292097 SLC2A6 0.434048 SLC3A4 0.449928 SLC16A9 SLC2A6 1.292097 SLC2A6 0.434048 SLC3A4 0.449282 SLC16A9 SLC2A6 1.292049 SLC2A3 0.90006 SLC2AA 0.448925 SLC16A9 SLC2A6 1.292049 SLC3A3 0.90006 SLC2AA 0.486925 SLC2A8 SLC36A1 1.29249 ABCG1 0.361173 SLC25A34 0.301395 SLC16A3 SLC3A21 1.292049 SLC3A1 0.312971 VWF 0.215762 SLC2A6 SLC3A21 1.29208 SLC7A1 0.312971 VWF 0.215762 SLC2A6 SLC3A21 1.01742 SLC9A9 0.280095 FECAM1 0.489275 SLC2A6 SLC3A21 1.01742 SLC9A9 0.280095 FECAM1 0.44097 SLC35G1 SLC4A32 1.05606 FECAM1 0.91256 ABCA6 0.059977 ABCA1 CLDN20 1.048874 ABCA6 0.038165 SLC17A9 0 SLC3A21 SLC4A32 1.056906 FECAM1 0.91256 ABCA6 0.059977 SLC3A5 SLC4A4 1.048847 ABCA6 0.038165 SLC17A9 0 SLC3A51 SLC4A5 SLC4A4 1.048847 ABCA6 0.038165 SLC17A9 0 SLC3A51 SLC4A5 SLC4A5 SLC4A5 SLC5A4 0 SLC35A5 SLC4A5 SLC4A5 SLC5A5 SLC5A5 0 SLC5A51 SLC5A5 SLC4A5 SLC4A5 SLC5A5 S	SLC22A4	ABCA8	1.652087	SLC35C1	1.398033	SLC43A2	1.332146
SLC17A9 SLC2A23 SLC7A5P I. 608011 SLC4A4 1.224516 SLC4A11 1.28857 SLC2A23 SLC7A5P I. 608011 SLC43A2 1.28867 SLC19A1 1.25397 SLC16A1-ASI OCLN 1.607414 SLC41A2 1.20395 ABCCA3 1.246954 SLC2AA1 SLC2A11 1.55118 SLC2AA2 1.00395 ABCCA3 1.139848 SLC2AA8G CLDN15 1.554813 SLC4A11 0.96161 SLC46A3 1.139848 SLC2AA8G SLC2A11 1.532439 SLC39A4 0.851669 ABCB9 0.950726 SLC7A5P2 SLC30A4 1.511683 SLC35A2 0.752173 SLC9A3R2 0.876967 SLC26A11 SLC27A3 1.47873 SLC43A1 0.626891 ABCC5-ASI 0.677265 CLDN15 ABCC10 1.474117 SLC17A9 0.488174 SLC04A1 0.653575 SLC2A11 SLC2A6 1.470279 SLC04A1 0.901681 SLC16A1-ASI 0.635375 SLC2A11 SLC2A6 1.470279 SLC04A1 0.901681 SLC16A1-ASI 0.635857 SLC2A11 SLC2A8 1.431852 CLDN14 0.495553 SLC354 0.6475726 SLC1A04 ICAM1 1.413326 SLC35E4 0.479577 SLC35E4 0.6248729 SLC12A7 SLC9A34 1.328311 CLDN11 0.434721 CLDN14 0.5484041 ABCC10 SLC2A12 1.32007 SLC2A6 0.430468 SLC39A4 0.499288 SLC16A9 SLC2A6 1.295948 JAM2 0.423 ICAM1 0.489275 SLC2A8 SLC36G1 1.274349 ABCC61 0.361173 SLC25A34 0.310395 SLC12A8 SLC36G1 1.27459 ACC61 0.361173 SLC25A34 0.310395 SLC19A1 ABCA1 1.261972 SLC7A11-ASI 0.327711 SLC735A4 0.489275 SLC2A8 SLC36G1 1.27459 ABCC61 0.361173 SLC25A34 0.310395 SLC19A1 ABCA1 1.261972 SLC7A11-ASI 0.32711 SLC7A11-ASI 0.292754 SLC2A8 SLC36A2 1.239062 ICAM1 0.312371 VWF 0.215762 SLC2A8 SLC35A27 1.123599 SLC22A4 0.311468 SLC9A9 0.175152 SLC2A8 SLC36A2 1.230502 ICAM1 0.312371 VWF 0.215762 SLC2A8 SLC36A1 1.048847 ABCA6 0.038305 SLC17A9 0 SLC35A21 SLC3A32 1.056906 FECAM1 0.91256 ABCA6 0.059977 ABCA CLDN20 I.64025 ZBCA8 0.071191 ABCA9 0.05041 SLC35A21 SLC3A1 1.07782 VWF 0.207022 SLC43A1 0.140407 SLC35G1 SLC43A2 1.056905 FECAM1 0.91256 ABCA6 0.059977 ABCA CLDN20 I.64042 ZBCA8 0.071191 ABCA9 0.05041 SLC3453 SLC441 1.048847 ABCA6 0.038305 SLC17A9 0 SLC3451 SLC3A1 1.07782 SWF 0.207022 SLC43A1 0.140407 SLC35G6 SLC441 1.048847 ABCA6 0.38365 SLC17A9 0 SLC35A3 SLC25A5 SLC3A4 ABCC692 SLC34A3 SLC445 SL	SLC37A1	SLC12A9	1.61651	SLC31A2	1.374391	ABCA5	1.31138
SLC22A23 SLC1A3P2 1.008011 SLC43A2 1.288621 SLC19A1 1.23954 SLC16A1-X81 SLC26A11 1.591181 SLC25A52 1.028764 JAM2 1.20657 SLC4A4A5 SLC26A11 1.591181 SLC25A52 1.028764 JAM2 1.2065741 ABCA8 CLDN15 1.554813 SLC4A11 0.96161 SLC46A3 1.139484 SLC12A9 SLC52A2 1.544335 ABCC5-AS1 0.866443 SLC27A3 1.053084 SLC24A6 SLC2A11 1.532439 SLC3AA4 0.851669 ABCB9 0.950726 SLC7A5P2 SLC30A4 1.511683 SLC35G2 0.792349 SLC2A6 0.942145 OCLN SLC12A7 1.489602 SLC3A3R2 0.752173 SLC9A3R2 0.876967 SLC7A5P2 SLC30A4 1.511683 SLC35G2 0.792349 SLC2A6 0.942145 OCLN SLC12A7 1.489602 SLC3A11 0.628691 ABCC5-AS1 0.677266 CLDN15 ABCC10 1.474117 SLC17A9 0.348714 SLC04A1 0.6533575 SLC3A21 SLC16A9 1.470279 SLC04A1 0.901681 SLC16A1-X81.0633386 SLC3A11 SLC2A8 1.431852 CLDN14 0.495563 SLC16A7 0.62852 SLC3A24 SLC16A1 1.230097 SLC2A6 0.430468 SLC39A4 0.49287 SLC2A6 SLC2A12 1.330097 SLC2A6 0.430468 SLC39A4 0.49288 SLC16A9 SLC2A6 1.29548 JAM2 0.423 UCAM1 0.548641 ABCC10 SLC2A12 1.330097 SLC2A6 0.430468 SLC39A4 0.499288 SLC16A9 SLC2A6 1.29548 JAM2 0.423 UCAM1 0.489275 SLC2A8 SLC39A1 1.29319 SLC2A34 0.397096 SLC22A4 0.486925 SLC4A8 SLC39A1 1.29319 SLC2A34 0.397096 SLC22A4 0.486925 SLC4A8 SLC39A1 1.2174349 ABCG1 0.016173 SLC25A14 0.310395 SLC2A6 SLC25A21 1.123908 SLC25A34 0.397096 SLC22A4 0.486925 SLC3A4 SLC16A5 1.239062 ICAM1 0.312711 VWF 0.215762 SLC2A6 SLC25A21 1.123959 SLC22A6 0.331468 SLC39A4 0.499288 SLC39A1 SLC37A1 1.077825 VWF 0.207022 SLC43A1 0.140407 SLC35G1 SLC342 1.033148 ICAM2 0 ICAM2 0 SLC35A21 SLC4A5 1.033148 ICAM2 0 ICAM2 0 SLC35A21 SLC4A5 1.03148 ICAM2 0 SLC15A4 0 SLC35A21 SLC4A5 1.03148 ICAM2 0 SLC4A6 0.039077 ABCA1 CLDN20 1.04052 ABCA8 0.071191 ABCA9 0.050411 SLC36G6 SLC34A1 1.048273 SLC15A4 0 SLC35A21 SLC4A5 1.03148 ICAM2 0 ICAM2 0 SLC35A3 SLC35A3 SLC35A3 SLC35A3 SLC35A3 SLC35A3 SLC35A3 SLC35A3 SLC35A3 SLC35A3 SLC35A3 SLC35A5 SLC35A3 SLC35A5 SLC35A3 SLC35A5 SLC35A3 SLC35A5 SLC35A3 SLC35A5 SLC35A3 SLC35A5 SLC35A3 SLC35A5 SLC35A3 SLC35A5 SLC35A3 SLC35A5 SLC35A5 SLC35A5 SLC35A5 SLC35A5 SLC35A5 SLC3	SLC17A9	SLC2A4RG	1.6131	SLC1A4	1.324516	SLC4A11	1.28855
SIC1017A31 OLLX 1.00474 SIC41A2 1.00393 ABCAD 1.205744 ABCA8 CLDN15 1.554813 SIC4A411 0.96161 SIC4A43 1.305088 SIC12A9 SIC52A21 1.54433 SIC4A411 0.86143 SIC2A52 0.972349 OLS2A2 0.972149 OLS2A4 0.851669 0.9501765 SIC1A522 SIC3A40 SIC4A61 1.511683 SIC3A20 0.752173 SIC9A3R2 0.972149 SIC2A61 0.6677266 SIC2A11 SIC2A73 1.47873 SIC4A3A1 0.628691 ABCC5-AS1 0.677266 SIC2A11 SIC2A73 SIC4A41 0.490175 SIC04A1 0.638575 SIC5A44 1.248044 0.495358 SIC16A7 0.62852 SIC10A7 SIC2A64 1.470279 SIC04A1 0.40458 SIC4A14 0.48484 SIC4A14 0.49585 SIC4443 0.43928 SIC16A7 0.62852 SIC1A7 SIC2A64 1.29349 SIC25A34 0.43468 SIC3944 0.4492928 SIC4A1 0.499288 SIC4A1 0.499288 SIC2A4 0.434686 SIC25A24	SLC22A23	SLC/A5P2	1.608011	SLC43A2	1.288621	ADCA2	1.25397
ABCARO CLDN15 1:54013 SLC4AII 0:96161 SLC46A3 1:159481 ABCA8 CLDN15 1:544313 SLC4AII 0:96161 SLC46A3 1:159481 SLC12A9 SLC2A12 1:44335 ABCC5-AS1 0:866443 SLC27A3 1:053088 SLC7AR6 SLC2AII 1:51248 SLC35A2 0:752173 SLC9A3E 0:942145 OCLN SLC12A7 1:449653 SLC9A3E 0:752173 SLC9A3E 0:876967 SLC26A11 SLC27A3 1:47873 SLC9A3L 0:028691 ABCC5-AS1 0:677266 CLDN15 ABCC10 1:474117 SLC17A9 0:454714 SLC04A1 0:653375 SLC52A2 SLC16A9 1:470279 SLC04A1 0:501681 SLC16A1-AS1 0:633876 SLC2A11 SLC27A3 1:4470279 SLC04A1 0:495163 SLC16A7 0:62852 SLC2A41 1:413226 SLC35E4 0:479577 SLC35E4 0:624779 SLC12A7 SLC19A1 1:408644 SLC46A3 0:435388 SLC47A1 0:581022 SLC2A43 1:225414 1:323007 SLC2A6 0:430468 SLC39A4 0:499288 SLC16A9 SLC2A6 1:25948 JAM2 0:423 ICCAM1 0:480275 SLC2A8 SLC39A11 1:292349 SLC25A34 0:397096 SLC22A4 0:486925 SLC2A6 SLC2A6 1:25948 JAM2 0:423 ICCAM1 0:480275 SLC2A8 SLC39A11 1:292349 SLC25A34 0:397096 SLC22A4 0:486925 SLC2A6 SLC25A27 1:123599 SLC2A4 0:310478 SLC9A9 0:175152 SLC2A8 SLC39A1 1:292349 SLC25A34 0:397096 SLC22A4 0:486925 SLC2A6 SLC25A27 1:123599 SLC2A4 0:310478 SLC9A9 0:175152 SLC2A6 SLC25A27 1:123599 SLC2A4 0:310478 SLC9A9 0:175152 SLC2A6 SLC25A21 1:101742 SLC9A9 0:280055 PECAM1 0:14262 AS1 SLC25A1 SLC25A21 1:101742 SLC9A9 0:280055 PECAM1 0:142662 AS1 SLC25A27 CLDN10 1:049052 ABCA8 0:071191 ABCA9 0:059411 SLC35G1 SLC3A21 1:04896 ZBCA8 0:071191 ABCA9 0:059411 SLC25A27 CLDN10 1:049052 ABCA9 0 ABCA8 0 SLC25A27 CLDN10 1:049052 ABCA9 0 ABCA8 0 SLC25A27 CLDN10 1:049052 ABCA9 0 ABCA8 0 SLC25A27 CLDN10 1:049052 ABCA9 0 SLC15A4 0 SLC25A27 CLDN10 1:049052 ABCA9 0 SLC15A4 0 SLC25A27 CLDN10 1:049052 ABCA9 0 ABCA8 0 SLC25A21 SLC25A1 1:0088 CLDN5 0 CLDN5 0 CLDN20 SLC25A21 SLC3A4 1:048847 ABCA6 0:038105 SLC17A9 0 SLC25A21 SLC25A5 1:0108 SLC15A4 0 SLC15A4 0 SLC35G6 SLC344 SLC35G6 SLC344 SLC35G5 SLC343 SLC345	SLCIOAI-ASI	SLC26A11	1.00/414	SLC41A2 SLC25A52	1.20393	ABCA5 IAM2	1.240954
SLC12A9 SLC2A2 SLC2A4RG SLC2A11 1.532439 SLC3A4 0.851669 ABCB9 0.950726 SLC7A5P SLC3A44 1.51168 SLC35G2 0.792349 SLC2A6 0.942145 OCLN SLC12A7 1.489623 SLC9A3R2 0.752173 SLC9A3R2 0.876967 SLC26A11 SLC27A3 1.47873 SLC43A1 0.628691 ABCC5-AS1 0.677266 CLDN15 ABCC10 1.474117 SLC17A9 0.548714 SLC04A1 0.653575 SLC3A2 SLC16A9 1.470279 SLC04A1 0.501681 SLC16A1-AS1 0.63386 SLC2A11 SLC2A8 1.431852 CLDN14 0.501681 SLC16A1-AS1 0.638856 SLC2A11 SLC2A8 1.431852 CLDN14 0.495563 SLC16A7 0.628779 SLC04A1 0.635388 SLC47A1 0.58122 SLC12A7 SLC19A1 1.408644 SLC46A3 0.435388 SLC47A1 0.58122 SLC2A6 SLC2A6 1.295948 JAM2 0.423 ICCAM1 0.4849215 SLC16A9 SLC2A6 1.295948 JAM2 0.423 ICCAM1 0.489275 SLC16A9 SLC2A6 1.295948 JAM2 0.423 ICCAM1 0.489275 SLC16A9 SLC2A6 1.239062 ICAM1 0.31173 SLC25A4 0.480925 SLC16A9 SLC2A6 1.239062 ICAM1 0.312971 VWF 0.215762 SLC2A8 SLC39A1 1.202349 SLC25A34 0.397066 SLC2A4 0.480925 SLC2A8 SLC39A1 1.202349 SLC25A34 0.31468 SLC39A 0.499288 SLC36A1 SLC25A21 1.1077825 VWF 0.207022 SLC43A1 0.140407 SLC35G1 SLC43A2 1.056906 PECAM1 0.0312971 VWF 0.215762 SLC2A12 SLC25A21 1.1077825 VWF 0.207022 SLC43A1 0.140407 SLC35G1 SLC43A2 1.056906 PECAM1 0.049254 ABCA6 0.059977 ABCA1 0.124622 ASI SLC3A41 SLC27A1 1.077825 VWF 0.207022 SLC43A1 0.140407 SLC35G1 SLC43A2 1.056906 PECAM1 0.049254 ABCA6 0.059047 ABCA9 0.ABCA8 0 SLC39A11 SLC27A1 1.07825 AWF 0.207022 SLC43A1 0.140407 SLC35A7 CLDN10 1.042052 ABCA8 0.071191 ABCA9 0.050411 SLC36A1 SLC2A5 1.033148 ICAM2 0 ICAM2 0 ASI SLC3A41 SLC2A5 1.033148 ICAM2 0 ICAM2 0 SLC3A5 SLC3A4 ABCB9 1.010985 CLDN5 0 CLDN5 0 CLDN5 0 SLC2A45 SLC3A4 ABCB9 1.010985 CLDN5 0 SLC15A4 0 SLC3A41 SLC3A4 SLC35A5 SLC3A4 ABCC82 SLC3A5 SLC3A4 SLC35A5 SLC3A5 SLC3A4 ABCC92 SLC3A5 SL	ABCA8	CLDN15	1.554813	SLC4A11	0.96161	SLC46A3	1.139848
SLC2A4RG SLC2A11 1.532439 SLC39A4 0.851669 ABCB9 0.992765 SLC7A5P2 SLC30A4 1.511683 SLC52G2 0.792349 SLC2A6 0.942145 OCIN SLC12A7 1.47873 SLC43A1 0.628691 ABCCS-ASI 0.677266 SLC2A11 SLC27A3 1.47717 SLC17A9 0.548714 SLC6A14 0.653357 SLC2A2 SLC16A9 1.470279 SLC04A1 0.40565 SLC16A7 0.62852 SLC2A11 SLC2AA1 1.408644 SLC46A3 0.479577 SLC35E4 0.62852 SLC2A7 SLC19A1 1.408644 SLC46A3 0.430468 SLC24A1 0.581222 SLC10A9 SLC2A12 1.320077 SLC2A6 0.430468 SLC39A1 0.68928 SLC10A9 SLC2A12 1.320097 SLC2A6 0.430468 SLC39A1 0.48025 SLC4A8 SLC30311 1.2924949 ABCG1 0.30175 SLC2A40 0.448025 SLC4A8 SLC312 1.026972 SLC4A11 0.312971 WF 0.292754 SLC2A6 SL	SLC12A9	SLC52A2	1.544335	ABCC5-AS1	0.866443	SLC27A3	1.053088
SLC7A572 SLC20A4 1.511683 SLC3562 0.792349 SLC2A6 0.942145 OCLN SLC12A7 1.489623 SLC9A3R2 0.752173 SLC9A3R2 0.876667 SLC26A11 SLC27A3 1.47873 SLC43A1 0.628691 ABCC5-AS1 0.677266 CLDN15 ABCC10 1.474117 SLC17A9 0.548714 SLC0A1 0.6515575 SLC32A2 SLC16A9 1.470279 SLC04A1 0.501681 SLC16A1-AS1 0.633586 SLC2A11 SLC2A8 1.431852 CLDN14 0.495563 SLC16A7 0.62852 SLC30A4 1.2A011 1.408644 SLC46A3 0.435388 SLC47A1 0.581024 ABCC10 SLC2A12 1.32007 SLC2A6 0.430468 SLC39A4 0.499278 SLC16A9 SLC2A6 1.295948 JAM2 0.423 1CAM1 0.498275 SLC16A9 SLC2A6 1.295948 JAM2 0.423 1CAM1 0.489275 SLC2A8 SLC3361 1.292349 SLC25A34 0.397096 SLC22A4 0.486925 SLC4A1 SLC35G1 1.274349 ABCG1 0.31173 SLC25A34 0.30195 SLC2A6 SLC2A71 1.23599 SLC22A4 0.311468 SLC99A9 0.175152 SLC2A6 SLC25A21- 1.101742 SLC7A1 0.312971 VWF 0.212762 SLC2A6 SLC25A21- 1.101742 SLC7A4 0.312971 VWF 0.212762 SLC2A6 SLC25A21- 1.101742 SLC9A9 0.280095 PECAM1 0.142662 AS1 SLC3A6 SLC25A21- 1.017825 VWF 0.207022 SLC43A1 0.140407 SLC35G1 SLC43A2 1.056906 PECAM1 0.04256 ABCA6 0.039977 ABCA1 CLDN20 1.054052 ABCA8 0.071191 ABCA9 0.050411 SLC35G1 SLC43A2 1.056906 PECAM1 0.01256 ABCA6 0.059977 ABCA1 CLDN20 1.054052 ABCA8 0.071191 ABCA9 0.050411 SLC35A1 SLC43A2 1.056906 PECAM1 0.01256 ABCA6 0.039977 SLC32A27 CLDN10 1.042052 ABCA9 0 ABCA8 0 SLC25A21- SLC2A51 1.017825 VWF 0.20702 SLC43A1 0.140407 SLC35G1 SLC43A2 1.056906 PECAM1 0.01256 ABCA6 0.039977 ABCA9 0.51 SLC3AA1 CLDN20 1.054052 ABCA8 0.071191 ABCA9 0.050411 SLC45A5 SLC04A1 1.048847 ABCA6 0.038365 SLC17A9 0 SLC25A21- SLC2A5 1.033148 ICAM2 0 ICAM2 0 AS1 SLC35A1 ABCB9 1.010985 CLDN5 0 CLDN5 0 CLDN50 0 SLC25A21- SLC2A5 1.033148 ICAM2 0 SLC15A4 0 SLC35A3 SLC25A35 SLC3A6 SLC35A3 SLC25A35 SLC35A5 SLC35A5 SLC35A6 SLC35A5 SLC35A5 SLC35A5 SLC35A5 SLC35A5 SLC35A5 SLC35A5 SLC35A5 SLC35A5 SLC35A5 SLC35A5 SLC35A6 SLC35A5 SLC35A6 SLC35A5 SLC35A5 SLC35A5 SLC35A5 SLC35A5 SLC35A5 SLC35A6 SLC35A6 SLC35A5 SLC35A5 SLC35A5 SLC35A5 SLC35A5 SLC35A5 SLC35A65 SLC35A65 SLC35A5 SLC35A5 SLC35A5 SLC35A5 SLC35A5 SLC35A	SLC2A4RG	SLC2A11	1.532439	SLC39A4	0.851669	ABCB9	0.950726
OCLN SLC12A7 1.489623 SLC9A3R2 0.752173 SLC9A3R2 0.6787667 SLC26A11 SLC27A11 SLC2A11 0.638755 SLC3A11 0.628691 ABCC-SAS1 0.677266 SLC2A11 SLC2AA11 0.548714 SLC04A1 0.653575 SLC3A14 SLC4A11 0.633586 SLC2A11 SLC2AA1 1.449644 SLC46A3 0.435563 SLC1A7 0.62852 SLC30A4 ICAM1 1.413326 SLC3SE4 0.439568 SLC4A11 0.581222 SLC2A3 SLC25A34 1.328311 CLDN11 0.434721 CLDN14 0.489255 SLC2A8 SLC393A11 1.292349 SLC25A34 0.30706 SLC22A41 0.310895 SLC2A12 SLC35A1 1.263907 SLC2A41 0.31688 SLC3A34 0.302955 SLC2A12 SLC35A1 1.263902 ICAM1 0.312717 SLC7A11-AS1 0.22274 SLC36A1 SLC36A2 I.037490 SLC3A4 0.31468 SLC3A4 0.305977 SLC2A	SLC7A5P2	SLC30A4	1.511683	SLC35G2	0.792349	SLC2A6	0.942145
SLC20A11 SLC27A3 1.47873 SLC43A1 0.628691 ABCC5-AS1 0.67/260 CLDN15 ABCC10 1.474117 SLC17A9 0.548714 SLC04A1 0.635385 SLC2A11 SLC2A8 1.431852 CLDN14 0.495563 SLC16A7 0.62852 SLC30A4 ICAM1 1.413326 SLC35E4 0.479577 SLC35E4 0.624779 SLC12A7 SLC19A1 1.408644 SLC46A3 0.435388 SLC47A1 0.581222 SLC27A3 SLC25A34 1.328311 CLDN11 0.434721 CLDN14 0.548041 ABCC10 SLC2A12 1.320097 SLC2A6 0.430468 SLC39A4 0.499285 SLC16A9 SLC2A6 1.29548 JAAC 0.423 ICAM1 0.489275 SLC2A8 SLC39A11 1.292349 SLC25A34 0.397096 SLC22A4 0.486925 ICAM1 SLC35G1 1.274349 ABCG1 0.361173 SLC25A34 0.310395 SLC2A8 SLC3A7 1.12599 SLC2A4 0.311468 SLC9A9A 0.4126 SLC2A12 SLC5A27 1.123599 SLC2A4 0.311468 SLC9A9A 0.175152 SLC2A6 SLC25A21 1.101742 SLC9A9 0.280095 PECAM1 0.142662 AS1 SLC36G1 SLC43A2 1.056906 PECAM1 0.0312971 VWF 0.215762 SLC39A1 SLC27A1 1.077825 VWF 0.207022 SLC43A1 0.140407 SLC35G1 SLC43A2 1.056906 PECAM1 0.091256 ABCA6 0.059977 ABCA1 CLDN20 1.054052 ABCA8 0.071191 ABCA9 0.050411 SLC35A7 CLDN10 1.042052 ABCA8 0.071191 ABCA9 0.050411 SLC35A7 CLDN10 1.042052 ABCA9 0 ABCA8 0 SLC25A27 CLDN10 1.042052 ABCA9 0 SLC15A4 0 SLC43A2 ABCB9 1.010985 CLDN5 0 CLDN5 0 CLDN5 0 SLC43A2 ABCB9 1.010985 CLDN5 0 SLC15A4 0 SLC43A5 SLC4A4 SLC4A5 SLC4A4 SLC4A5 SLC4A5 SLC4A5 SLC454 SLC454 SLC454 SLC454 SLC454 SLC4A5 SLC4A5 SLC454 SLC454 SLC454 SLC454 SLC454 SLC4545 SLC4545 SLC43A5 SLC45A5 SLC4A5 SLC454 SLC454 SLC454 SLC4545 SLC4545 SLC45A5 SLC45A5 SLC45A5 SLC454 SLC4545 SLC4545 SLC45A5 SLC45A5 SLC4545 SLC4545 SLC4545 SLC4545 SLC4545 SLC45A5 SLC45A5 SLC4545 SLC4545 SLC4545 SLC4545 SLC4545 SLC4545 SLC45A5 SLC45A5 SLC4545 SLC454	OCLN	SLC12A7	1.489623	SLC9A3R2	0.752173	SLC9A3R2	0.876967
CLDN15 ABCC10 1.47417 S1C17A9 0.348714 S1C0A1 0.635378 SLC52A2 SLC16A9 1.474279 SLC0A41 0.50168 1.CC16A1-AS1 0.63536 SLC2A1 SLC2A8 1.431852 CLDN14 0.495563 SLC16A7 0.62852 SLC30A4 ICAMI 1.41336 SLC3554 0.47977 SLC35E4 0.624779 SLC12A7 SLC19A1 1.408644 SLC46A3 0.435388 SLC47A1 0.581222 SLC27A3 SLC25A34 1.328311 CLDN11 0.434721 CLDN14 0.548041 ABCC10 SLC2A12 1.320097 SLC2A6 0.430468 SLC39A4 0.499288 SLC16A9 SLC2A6 1.295948 JAM2 0.423 ICAM1 0.4489275 SLC2A8 SLC39A1 1.292349 SLC25A34 0.37096 SLC22A4 0.446925 SLC4A8 SLC39A1 1.292349 SLC25A34 0.37096 SLC22A4 0.446925 SLC2A8 SLC36G1 1.274349 ABCG1 0.361173 SLC25A34 0.30095 SLC19A1 ABCA1 1.261972 SLC7A11-AS1 0.327711 SLC7A11-AS1 0.292754 SLC2A12 SLC25A27 1.123590 SLC22A4 0.311468 SLC9A9 0.175152 SLC2A12 SLC25A21 1.101742 SLC9A9 0.280095 PECAM1 0.142662 AS1 SLC3A1 SLC27A1 1.077825 VWF 0.207022 SLC43A1 0.140407 SLC35G1 SLC43A2 1.056906 PECAM1 0.091256 ABCA6 0.059977 ABCA1 CLDN20 1.054052 ABCA8 0.071191 ABCA9 0.050411 SLC25A27 CLDN10 1.054052 ABCA8 0.071191 ABCA9 0.050411 SLC25A27 CLDN10 1.042052 ABCA9 0.4BCA8 0 SLC25A27 CLDN10 1.04055 ABCA6 0.059977 ABCA1 CLDN20 SLC2A5 1.03148 ICAM2 0 ICAM2 0 AS1 SLC25A21 JAM2 1.027943 SLC15A4 0 SLC15A4 0 SLC25A21 JAM2 1.027943 SLC15A4 0 SLC43A3 ABCB9 SLC43A3 ABCB9 SLC43A3 ABCB9 SLC43A3 ABCB1 ICAM3 ISC15A4 ISC15A4 ISC15A4 ISC15A4 ISC15A4 ISC15A4 ISC15A3 SLC43A5 ISC4A4 SLC43A5 ISC4A4 SLC43A5 ISC43A5 ISC43A5 ISC53A5 ISC53A5 ISC53A5 ISC53A5 ISC53A5 SLC43A5 ISC43A5 ISC53A5 ISC53A5 ISC53A5 ISC53A5 ISC53A5 ISC53A5 SLC25A35 SLC25A35 SLC25A35 SLC25A35 SLC25A35 SLC25A35 SLC25A35 SLC25A35 SLC25A35	SLC26A11	SLC27A3	1.47873	SLC43A1	0.628691	ABCC5-AS1	0.677266
SLC2A1 SLC10A9 1.4702/9 SLC3A1 0.345563 SLC16A7 0.62852 SLC3A1 I SLC2A18 1.431852 CLDN14 0.495563 SLC16A7 0.62875 SLC3A1 ICAMI 1.413326 SLC35E4 0.479577 SLC35E4 0.624779 SLC12A7 SLC19A1 1.408644 SLC46A3 0.435388 SLC47A1 0.581222 SLC27A3 SLC25A34 1.328311 CLDN11 0.434721 CLDN14 0.548041 ABCC10 SLC2A12 1.320097 SLC2A6 0.430468 SLC39A4 0.499288 SLC16A9 SLC2A6 1.295948 JAM2 0.423 ICAMI 0.489275 SLC2A8 SLC39A11 1.292349 SLC25A34 0.397096 SLC22A4 0.486925 SLC2A8 SLC36A1 1.261972 SLC7A11-AS1 0.327711 SLC7A11-AS1 0.292754 SLC2A12 SLC25A21 1.101742 SLC7A11-AS1 0.327711 SLC7A11-AS1 0.292754 SLC2A4 SLC16A5 1.239062 ICAMI 0.312971 VWF 0.215762 SLC2A4 SLC25A21 1.101742 SLC9A9 0.280095 PECAMI 0.142662 AS1 SLC39A11 SLC37A1 1.077825 VWF 0.207022 SLC43A1 0.140407 SLC35G1 SLC43A2 1.056906 PECAMI 0.091256 ABCA6 0.059977 SLC25A27 CLDN10 1.042052 ABCA8 0.071191 ABCA6 SLC35A1 SLC43A2 1.056906 PECAM1 0.091256 ABCA6 0.059917 SLC25A21- SLC22A5 1.033148 ICAM2 0 ABCA8 0 SLC25A21- SLC2A52 1.033148 ICAM2 0 ABCA8 0 SLC25A21- SLC2A52 1.033148 ICAM2 0 SLC15A4 0 SLC43A2 ABCB9 1.010985 CLDN5 0 CLDN5 0 SLC4A1 CLDN20 1.056052 ABCA6 0.783365 SLC17A9 0 SLC4A32 ABCB9 1.010985 CLDN5 0 CLDN5 0 SLC4A32 ABCB9 1.010985 CLDN5 0 SLC15A4 0 SLC4A32 ABCB9 1.010985 CLDN5 0 SLC15A4 0 SLC4A34 ABCB9 1.010985 CLDN5 0 SLC15A4 0 SLC4A35 SLC4A3 ABCB9 1.010985 CLDN5 0 SLC15A4 0 SLC4A3 ABCB9 SLC3A3 SLC5A4 SLC4A4 SLC4A5 SLC4A	CLDNI5 SLC52A2	ABCCIU SLC16A0	1.4/411/	SLCI/A9	0.548/14	SLCO4AI	0.633586
SLC30A4 ICANI 1.413326 SLC35E4 0.479577 SLC35E4 0.624779 SLC12A7 SLC19A1 1.408644 SLC46A3 0.435388 SLC47A1 0.581222 SLC27A3 SLC25A34 1.328311 CLDN11 0.434721 CLDN14 0.548041 ABCC10 SLC2A12 1.320097 SLC2A6 0.430468 SLC39A4 0.499288 SLC16A9 SLC2A6 1.295948 JAM2 0.423 ICAM1 0.489275 SLC2A8 SLC39A11 1.292349 SLC25A34 0.39706 SLC22A4 0.486025 ICAM1 SLC35G1 1.274349 ABCG1 0.361173 SLC25A34 0.310935 SLC19A1 ABCA1 1.261972 SLC7A11-AS1 0.327711 SLC7A11-AS1 0.292754 SLC25A34 SLC16A5 1.239062 ICAM1 0.312971 VWF 0.215762 SLC2A12 SLC25A271 1.107142 SLC9A9 0.280095 PECAM1 0.142662 AS1 SLC36G1 SLC43A2 1.056906 PECAM1 0.312671 VWF 0.215762 SLC361 SLC43A2 1.056906 PECAM1 0.091256 ABCA6 0.059977 ABCA1 CLDN20 1.054052 ABCA8 0.071191 ABCA9 0.050411 SLC25A27 CLDN10 1.042052 ABCA8 0.071191 ABCA9 0.050411 SLC25A27 CLDN10 1.042052 ABCA8 0.071191 ABCA9 0.050411 SLC25A27 CLDN10 1.042052 ABCA9 0 ABCA8 0 SLC25A21 JLC2A5 1.03148 ICAM2 0 ICAM2 0 SLC25A21 JLC2A5 1.03148 ICAM2 0 ICAM2 0 SLC25A21 JAM2 1.027943 SLC15A4 0 SLC15A4 0 SLC25A21 JAM2 1.027943 SLC15A4 0 SLC15A4 0 SLC25A21 JAM2 1.027943 SLC15A4 0 SLC25A5 SLC2A4 JBCB9 1.010985 CLDN5 0 CLDN5 0 CLDN5 0 CLDN5 0 SLC25A5 SLC2A45 SLC2A5 I.033148 ICAM2 ICAM3 ICAM	SLC2A11	SLC10A9	1.470279	CLDN14	0.301081	SLC16A7	0.033380
SLC12A7 SLC19A1 1.408644 SLC46A3 0.435388 SLC47A1 0.581222 SLC27A3 SLC25A34 1.328311 CLDN11 0.434721 CLDN14 0.548041 ABCC10 SLC2A6 1.29007 SLC2A6 0.430468 SLC39A4 0.489228 SLC16A9 SLC2A6 1.295348 JAM2 0.423 ICAM1 0.489225 SLC2A8 SLC35G1 1.292349 SLC2A34 0.397066 SLC22A4 0.48625 SLC3A4 SLC16A5 1.239062 ICAM1 0.312971 WF 0.215762 SLC2A8 SLC15A1 1.239062 ICAM1 0.312971 WF 0.215762 SLC2A4 SLC45A21 1.059062 PCAM1 0.031263 BCA94 0.175152 SLC3A1 SLC4A2 1.056906 PCAM1 0.01256 BCA4 0.140407 SLC35A1 SLC4A1 1.04847 ABCA6 0.038365 SLC1A3 0.650977 ABCA1 CLDN20 1.042052 ABCA8 0.07119 ABCA8 0 SLC25A21 SLC4A1 1.04847 <	SLC30A4	ICAM1	1.413326	SLC35E4	0.479577	SLC35E4	0.624779
SIC27A3 SIC25A34 1.328311 CLDN11 0.43421 CLDN14 0.548041 ABCC10 SIC2A12 1.320097 SIC2A6 0.430468 SIC39A4 0.499288 SIC16A9 SIC2A6 1.295948 JAM2 0.423 ICAMI 0.489275 SIC2A8 SIC39A11 1.292349 SIC2FA4 0.397096 SIC22A4 0.486925 SIC16A9 ABCA1 1.261972 SIC7A11-AS1 0.312711 SIC7A13 0.292754 SIC2A40 SIC25A27 1.123599 SIC2A40 0.312671 SIC7A152 SIC2A4 0.31168 SICA949 0.142662 SIC23A11 SIC25A21 1.101742 SIC9A9 0.280095 PECAM1 0.142662 SIC39A11 SIC25A21 1.017825 VWF 0.207022 SIC43A1 0.140407 SIC35G1 SIC43A2 1.056906 PECAM1 0.091256 ABCA9 0 SIC16A5 SIC04A1 1.04847 ABCA8 0.038365 SIC17A9 0 SIC25A21 SIC22A5 1.03148 ICAM2 0 ICAM2 0	SLC12A7	SLC19A1	1.408644	SLC46A3	0.435388	SLC47A1	0.581222
ABCC10 SLC2A12 1.320097 SLC2A6 0.430468 SLC39A4 0.499288 SLC16A9 SLC2A6 1.295948 JAM2 0.423 ICAM1 0.489275 SLC2A8 SLC39A11 1.292349 SLC2SA34 0.397096 SLC22A4 0.486925 ICAM1 SLC35G1 1.274349 ABCG1 0.361173 SLC25A34 0.310395 SLC29A1 ABCA1 1.261972 SLC7A11-AS1 0.327711 SLC7A11-AS1 0.292754 SLC25A34 SLC16A5 1.239062 ICAM1 0.312971 VWF 0.215762 SLC2A12 SLC25A21 1.101742 SLC9A9 0.280095 PECAM1 0.142662 AS1 SLC39A11 SLC27A1 1.077825 VWF 0.207022 SLC43A1 0.140407 SLC35G1 SLC43A2 1.05606 PECAM1 0.091256 ABCA6 0.059977 ABCA1 CLDN20 1.054052 ABCA8 0.071191 ABCA9 0.050411 SLC16A5 SLC04A1 1.048052 ABCA8 0.071191 ABCA9 0.050411 SLC16A5 SLC04A1 1.048052 ABCA8 0.071191 ABCA9 0.050411 SLC25A21- SLC25A2 1.033148 ICAM2 0 ICAM2 0 SLC25A21- SLC22A5 1.033148 ICAM2 0 ICAM2 0 SLC25A21- SLC22A5 1.033148 ICAM2 0 SLC15A4 0 SLC43A2 ABCB9 1.010985 CLDN5 0 CLDN5 0 CLDN20 SLC04A1 CLDN10 SLC4A3 SLC36G SLC44A5 SLC4A	SLC27A3	SLC25A34	1.328311	CLDN11	0.434721	CLDN14	0.548041
SLC16A9 SLC2A6 1.295948 JAM2 0.423 ICAMI 0.489275 SLC2A8 SLC35G1 1.292349 SLC25A34 0.397066 SLC22A4 0.486925 ICAM1 SLC35G1 1.274349 ABCG1 0.361173 SLC25A34 0.310395 SLC19A1 ABCA1 1.261972 SLC7A11-AS1 0.321711 SLC7A11-AS1 0.2215762 SLC2A4 SLC25A27 1.123599 SLC2A4 0.311468 SLC9A9 0.175152 SLC36A1 SLC25A21- 1.101742 SLC9A9 0.280095 PECAM1 0.142662 ASI SLC35G1 SLC43A2 1.056906 PECAM1 0.091256 ABCA6 0.059977 ABCA1 CLDN20 1.054052 ABCA8 0.071191 ABCA9 0 0 SLC25A21- SLC4A1 1.048847 ABCA6 0.038365 SLC17A9 0 SLC25A21- SLC2A2 1.002952 ABCA9 0 BCA8 0 SLC25A21- SLC2A25 1.03148 ICAM2 0 SLC43A 0 SLC43A2 ABCB9 <td>ABCC10</td> <td>SLC2A12</td> <td>1.320097</td> <td>SLC2A6</td> <td>0.430468</td> <td>SLC39A4</td> <td>0.499288</td>	ABCC10	SLC2A12	1.320097	SLC2A6	0.430468	SLC39A4	0.499288
SLC2A8 SLC39A11 1.292349 SLC2SA34 0.397096 SLC2SA34 0.486925 ICAM1 SLC35G1 1.274349 ABCG1 0.361173 SLC2SA34 0.301095 SLC2A1 ABCA1 1.261972 SLC7A11-AS1 0.327711 SLC2A11-AS1 0.292754 SLC2A3 SLC16A5 1.239062 ICAM1 0.311468 SLC9A9 0.175152 SLC2A6 SLC25A27 1.12359 SLC2A4 0.311468 SLC9A9 0.175152 SLC39A11 SLC27A1 1.077825 VWF 0.207022 SLC43A1 0.140607 SLC35G1 SLC43A2 1.056906 PECAM1 0.091256 ABCA6 0.059977 ABCA1 CLDN20 1.048847 ABCA6 0.038136 SLC17A9 0 SLC25A27 CLDN10 1.042052 ABCA9 0 ABCA8 0 SLC25A21 SLC25A2 1.03148 ICAM2 0 ICAM2 0 SLC25A21 SLC25A2 1.03148 ICAM2 0 SLC15A4 0 SLC25A21 JAM2 I.027943 SLC15A4	SLC16A9	SLC2A6	1.295948	JAM2	0.423	ICAM1	0.489275
ICAMI SLC3501 1.2/4349 ABCG1 0.3011/3 SLC23A34 0.310395 SLC19A1 ABCA1 1.2261972 SLC7A11-ASI 0.327711 VWF 0.215762 SLC2A12 SLC25A27 1.123599 SLC22A4 0.311468 SLC9A0 0.175152 SLC2A6 SLC25A21 1.01742 SLC9A9 0.280095 PECAMI 0.142662 ASI SLC39A11 SLC27A1 1.077825 VWF 0.207022 SLC43A1 0.140407 SLC35G1 SLC43A2 1.056906 PECAMI 0.091256 ABCA6 0.059977 ABCA1 CLDN20 1.054052 ABCA8 0.071191 ABCA9 0.050411 SLC16A5 SLC04A1 1.048847 ABCA6 0.038365 SLC17A9 0 SLC25A21- SLC22A5 1.033148 ICAM2 0 ICAM2 0 SLC25A21- SLC22A5 1.033148 ICAM2 0 ICAM2 0 SLC25A21- SLC245 1.033148 ICAM2 0 ICAM2 0 SLC43A2 ABCB9 1.010985 CLDN5 0 CLDN5 0 CLDN20 SLC04A1 CLDN10 I.042052 ABCA9 0 SLC15A4 0 SLC25A21- SLC22A5 1.039148 ICAM2 0 SLC15A4 0 SLC25A21- SLC22A5 1.039148 ICAM2 0 ICAM2 0 SLC25A21- SLC22A5 1.039148 ICAM2 ICAM2 ICAM2 0 SLC25A21- SLC22A5 1.039148 ICAM2 ICAM2 ICAM2 ICAM2 ICAM2 ICAM2 SLC25A21- SLC22A5 I.039148 ICAM2 ICAM3	SLC2A8	SLC39A11	1.292349	SLC25A34	0.397096	SLC22A4	0.486925
SICISAIA SICIGAS IL20572 SIC/AII/ASI 0.21711 SIC/AII/961 0.212574 SIC25A34 SICIGAS IL205427 1.123599 SIC22A4 0.311468 SIC9A9 0.175152 SIC22A3 SIC25A27 1.101742 SIC9A9 0.280095 PECAMI 0.142662 ASI SIC39A11 SIC27A1 1.077825 VWF 0.207022 SIC43A1 0.140407 SIC35G1 SIC43A2 1.056906 PECAMI 0.091256 ABCA6 0.059977 ABCA1 CLDN20 1.054052 ABCA8 0.071191 ABCA9 0.050411 SIC16A5 SIC04A1 1.048847 ABCA6 0.038365 SIC17A9 0 SIC25A27 CLDN10 1.042052 ABCA8 0.038365 SIC17A9 0 SIC25A27 CLDN10 1.042052 ABCA9 0 ABCA8 0 SIC25A27 SIC22A5 1.03148 ICAM2 0 ICAM2 0 SIC25A27 SIC22A5 1.03148 ICAM2 0 ICAM2 0 SIC25A27 ABCB9 1.01985 CLDN5 0 CLDN5 0 CLDN20 SIC04A1 CLDN20 SIC15A4 0 SIC22A5 ABCB9 1.01985 CLDN5 0 CLDN50 SIC25A21 SIC22A5 SIC17A9 SIC15A4 0 SIC24A1 SIC22A5 SIC15A4 0 SIC25A21 SIC22A5 SIC15A4 0 SIC25A21 SIC22A5 SIC17A9 SIC15A4 0 SIC25A21 SIC22A5 SIC15A4 0 SIC25A21 SIC22A5 SIC15A4 0 SIC25A21 SIC22A5 SIC15A4 0 SIC25A21 SIC25A5 SIC4A1 SIC15A4 0 SIC25A21 SIC25A5 SIC4A1 SIC15A4 0 SIC25A21 SIC25A5 SIC4A1 SIC15A4 0 SIC25A21 SIC25A5 SIC4A1 SIC15A4 SIC4A5 SIC4	SLC19A1	ABCA1	1.2/4349	ABCGI SLC7A11-AS1	0.3011/3	SLC25A34 SLC7A11-AS1	0.310393
SLC2A12 SLC25A27 1.123599 SLC22A4 0.311468 SLC9A9 0.175152 SLC2A6 SLC25A21- 1.101742 SLC9A9 0.280095 PECAM1 0.142662 AS1 SLC39A11 SLC27A1 1.077825 VWF 0.207022 SLC43A1 0.140407 SLC35G1 SLC43A2 1.056906 PECAM1 0.091256 ABCA6 0.059977 ABCA1 CLDN20 1.054052 ABCA8 0.071191 ABCA9 0.050411 SLC16A5 SLC04A1 1.048847 ABCA6 0.038365 SLC17A9 0 SLC25A27 CLDN10 1.042052 ABCA9 0 ABCA8 0 SLC25A21- SLC22A5 1.033148 ICAM2 0 ICAM2 0 SLC25A21- SLC22A5 1.033148 ICAM2 0 SLC15A4 0 SLC24A2 ABCB9 1.010985 CLDN5 0 CLDN5 0 CLDN20 SLC04A1 CLDN10 SLC24A5 SLC24A5 SLC24A5 SLC24A5 SLC24A5 SLC24A5 SLC24A5 SLC24A5 SLC24A5 SLC24A5 SLC24A5 SLC24A5 SLC24A5 SLC24A5 SLC24A5 SLC24A5 SLC24A5 SLC25A21 SLC35G6 SLC35A3 SLC25A35 SLC25A35 SLC25A35 SLC25A35 SLC25A35 SLC25A35 SLC25A35 SLC25A35 SLC25A35 SLC25A35 SLC25A35	SLC25A34	SLC16A5	1 239062	ICAM1	0.327711	VWF	0.215762
SLC2A6 SLC25A21- 1.101742 SLC9A9 0.280095 PECAM1 0.142662 AS1 SLC39A11 SLC27A1 1.077825 VWF 0.207022 SLC43A1 0.140407 SLC35G1 SLC43A2 1.056906 PECAM1 0.091256 ABCA6 0.059977 ABCA1 CLDN20 1.054052 ABCA8 0.071191 ABCA9 0 SLC16A5 SLC04A1 1.048847 ABCA6 0.038365 SLC17A9 0 SLC25A27 CLDN10 1.042052 ABCA9 0 ABCA8 0 SLC25A21- SLC22A5 1.03148 ICAM2 0 ICAM2 0 SLC27A1 JAM2 1.027943 SLC15A4 0 SLC15A4 0 SLC24A1 1.01985 CLDN5 0 CLDN5 0 CLDN5 0 SLC25A1 JAM2 JABCB9 1.010985 CLDN5 0 CLDN5 0 SLC43A1 SLC25A1 SLC25A2 SLC25A2 SLC25A2 SLC25A2 SLC25A2 SLC25A2 SLC25A35 SLC25A35 SLC25A35	SLC2A12	SLC25A27	1.123599	SLC22A4	0.311468	SLC9A9	0.175152
AS1 SLC39A11 SLC27A1 1.077825 VWF 0.207022 SLC43A1 0.140407 SLC35G1 SLC43A2 1.056906 PECAM1 0.091256 ABCA6 0.059977 ABCA1 CLDN20 1.054052 ABCA8 0.071191 ABCA9 0 0.050411 SLC15A2 SLC04A1 1.04847 ABCA6 0.038365 SLC17A9 0 SLC25A21- SLC2A5 1.03148 ICAM2 0 ICAM2 0 AS1	SLC2A6	SLC25A21-	1.101742	SLC9A9	0.280095	PECAM1	0.142662
SLC39A11 SLC27A1 1.07/825 VWF 0.207022 SLC3A1 0.140407 SLC35G1 SLC43A2 1.056906 PECAM1 0.091256 ABCA6 0.059977 ABCA1 CLDN20 1.054052 ABCA8 0.071191 ABCA9 0.050411 SLC16A5 SLC04A1 1.048847 ABCA6 0.038365 SLC17A9 0 SLC25A27 CLDN10 1.042052 ABCA9 0 ABCA8 0 SLC25A21- SLC22A5 1.033148 ICAM2 0 ICAM2 0 SLC25A21 JAM2 1.027943 SLC15A4 0 SLC15A4 0 SLC43A2 ABCB9 1.010985 CLDN5 0 CLDN5 0 CLDN20 SLC04A1 CLDN10 SLC2A5 JAM2 ABCB9 1.010985 CLDN5 0 SLC04A1 CLDN10 SLC2A5 JAM2 ABCB9 1.010985 CLDN5 0 SLC04A1 CLDN10 SLC2A5 JAM2 ABCB9 JAM2 ABCB9 JAM2 ABCB9 SLC25A21 SLC2A5 JAM2 ABCB9 JAM2 ABCB9 JAM2 ABCB9 SLC25A21 SLC39A2 SLC15A4 JAM2 JAM2 ABCB9 JAM2 ABCB9 SLC25A21 SLC39A2 SLC25A3 SLC15A4 JAM2 ABCB8 SLC15A3 SLC25A21 SLC39A2 SLC25A21 SLC39A2 SLC25A5 JAM2 ABCB8 SLC25A35 SLC25A5 SLC24A5 SLC4A5 SLC5A4 ABCC692 ABCA2 SLC25A35 SLC25A35 SLC25A35 SLC25A33 SLC25A33 SLC25A35 SLC25A35 SLC25A35 SLC25A35 SLC25A35 SLC25A35 SLC25A35 SLC25A35 SLC25A31 SLC25A35 SLC25A35 SLC25A31 SLC35A3 SLC25A35 SLC25A34 ABCC692 ABCA2 SLC25A35 SL	77 000 144	AS1					
SILC33G1 SILC43A2 1.03906 FBCAMI 0.039236 0.039236 0.039977 ABCA1 CLDN20 1.054052 ABCA8 0.071191 ABCA9 0.039977 SILC25A27 CLDN10 1.048847 ABCA6 0.038365 SILC17A9 0 SILC25A27 CLDN10 1.042052 ABCA9 0 ABCA8 0 SILC25A21 SILC22A5 1.033148 ICAM2 0 ICAM2 0 SILC43A2 ABCB9 1.010985 CLDN5 0 CLDN5 0 SILC25A5 SILC4A1 SILC4A5 SILC5A2 SILC5A2 SILC5A35 SILC5A35 SILC25A35 SILC25A35 <td< td=""><td>SLC39AII</td><td>SLC2/AI</td><td>1.07/825</td><td>VWF DECAM1</td><td>0.207022</td><td>ADCA6</td><td>0.140407</td></td<>	SLC39AII	SLC2/AI	1.07/825	VWF DECAM1	0.207022	ADCA6	0.140407
ABCAT CEDATA 10.488 1 10.488 4 ABCAS 0.031101 ACAD 0.05011 SLC25A27 CLDN10 1.048247 ABCA6 0.038365 SLC17A9 0 SLC25A21- SLC22A5 1.033148 ICAM2 0 ICAM2 0 AS1 SLC27A1 JAM2 1.027943 SLC15A4 0 SLC15A4 0 SLC43A2 ABCB9 1.010985 CLDN5 0 CLDN5 0 CLDN20 SLC04A1 CLDN10 SLC22A5 JAM2 ABCB9 1.010985 CLDN5 0 CLDN5 0 SLC04A1 SLC22A5 JAM2 ABCB9 SLC15A4 0 SLC15A4 0 SLC24A5 SLC25A21 SLC25A21 SLC24A5 SLC24A5 SLC25A21 SLC39A2 SLC24A5 SLC25A4 ABCC6P2 ABCA2 SLC25A23 SLC25A35 SLC25A35 SLC25A35 SLC25A35 SLC25A31 SLC25A35 SLC25A31 SLC25A35 SLC25A35 SLC25A35 SLC25A31 SLC25A35 SLC25A31 SLC25A35 SLC25A35 SLC25A35 SLC25A35 SLC25A35 SLC25A31 SLC25A35 SLC25A31 SLC25A35 SLC25A35 SLC25A35 SLC25A31 SLC25A35 SLC25A31 SLC35A3 SLC25A35 SLC25A35 SLC25A35 SLC25A31 SLC35A3 SLC25A35 SLC25A35 SLC25A35 SLC25A34 SLC35A3 SLC35A3 SLC35A3 SLC35A3 SLC35A35 SLC35A3 SLC35A3 SLC35A3 SLC35A35 SLC35A55 SLC35A35 SLC35A55 SLC35A55 SLC3	ABCA1	CLDN20	1.050900	ABCA8	0.091230	ABCA0	0.039977
SLC25A27 CLDN10 1.042052 ABCA9 0 ABCA8 0 SLC25A21- SLC22A5 1.033148 ICAM2 0 ICAM2 0 AS1 SLC27A1 JAM2 1.027943 SLC15A4 0 SLC15A4 0 SLC43A2 ABCB9 1.010985 CLDN5 0 CLDN5 0 CLDN20 SLC04A1 CLDN10 SLC22A5 JAM2 ABCB9 SLC25A5 SLC25A21 SLC25A21 SLC25A21 SLC35G6 SLC25A23 SLC25A35 SLC25A35 SLC25A35 SLC25A35 SLC25A31 SLC25A35 SLC25A35 SLC25A35 SLC25A35 SLC25A35 SLC25A36 SLC25A35 SLC25A36 SLC25A36 SLC25A35 SLC25A37 SLC25A35 SLC25A35 SLC25A35 SLC25A36 SLC25A35 SLC25A35 SLC25A35 SLC25A36 SLC25A36 SLC25A35 SLC25A36 SLC25A35 SLC25A36 SLC25A31 SLC35G5	SLC16A5	SLCO4A1	1.048847	ABCA6	0.038365	SLC17A9	0
SLC25A21- SLC22A5 1.033148 ICAM2 0 ICAM2 0 AS1 JAM2 1.027943 SLC15A4 0 SLC15A4 0 SLC43A2 ABCB9 1.010985 CLDN5 0 CLDN5 0 CLDN20 SLC04A1 SLC22A5 JAM2	SLC25A27	CLDN10	1.042052	ABCA9	0	ABCA8	0
AS1 SLC27A1 JAM2 1.027943 SLC15A4 0 SLC15A4 0 SLC43A2 ABCB9 1.010985 CLDN5 0 CLDN5 0 CLDN20 SLC04A1 CLDN10 SLC22A5 JAM2 ABCB9 SLC03A1 ABCB8 SLC15A3 SLC25A21 SLC25A21 SLC39A2 SLC4A5 SLC4A5 SLC4A5 SLC4A5 SLC4A5 SLC4A5 SLC364 ABCC6P2 ABCA2 SLC25A21 SLC25A21 SLC35A3 SLC25A24 SLC364 SLC35A4 ABCC6P2 ABCA2 SLC25A25 SLC25A25 SLC25A21 SLC35A3 SLC35A4 ABCC6P2 ABCA2 SLC25A21 SLC25A21 SLC35A3 SLC25A21 SLC35A3 SLC25A21 SLC35A4 ABCC6P2 ABCA2 SLC25A21 SLC25A35 SLC25A35 SLC25A35 SLC25A35 SLC25A36 SLC25A35 SLC25A36 SLC25A35 SLC25A35 SLC25A36 SLC25A35 SLC25A35 SLC25A36 SLC25A35 SLC25A36 SLC25A35 SLC25A36 SLC25A36 SLC25A36 SLC25A36 SLC25A37 SLC25A36 SLC25A36 SLC25A37 SLC25A36 SLC25A	SLC25A21-	SLC22A5	1.033148	ICAM2	0	ICAM2	0
SLC27A1 JAM2 1.027943 SLC15A4 0 SLC15A4 0 SLC43A2 ABCB9 1.010985 CLDN5 0 CLDN5 0 CLDN20 SLC04A1 CLDN10 SLC22A5 JAM2 ABCB9 SLC03A1 ABCB8 SLC15A3 SLC25A21 SLC25A21 SLC25A21 SLC39A2 SLC4A5 SLC5A4 ABCC6P2 ABCA2 SLC5A2 SLC5A25 SLC5A5 SLC55A2 SLC55A2 SLC55A3 SLC25A35 SLC25A35 SLC25A35 SLC25A10 SLC35G5	AS1						
SLC43A2 ABCB9 1.010985 CLDNS 0 CLDNS 0 CLDN20 SLC04A1 CLDN10 SLC22A5 JAM2 ABCB9 SLC03A1 ABCB8 SLC15A3 SLC25A21 SLC25A21 SLC25A21 SLC25A21 SLC24A5 SLC24A5 SLC4A5 SLC24A5 SLC24A5 SLC24A5 SLC24A5 SLC24A5 SLC24A5 SLC3A4 ABCC6P2 ABCA2 SLC35A2 SLC35A2 SLC35A2 SLC25A21 SLC35A2 SLC35A3 SLC35A1 SLC35A3 SLC35A3 SLC35A3 SLC35A3 SLC35A1 SLC35A3	SLC27A1	JAM2	1.027943	SLC15A4	0	SLC15A4	0
CLDN10 SLC24A1 CLDN10 SLC22A5 JAM2 ABCB9 SLC05A1 ABCB8 SLC15A3 SLC25A21 SLC39A2 SLC24A5 SLC24A5 SLC24A5 SLC24A5 SLC24A5 SLC3A1 ICAM3 CLDN10-AS1 SLC35G6 SLC35G6 SLC35A2 ABCC6P2 ABCA2 SLC25A22 SLC7A8 SLC25A35 SLC25A35 SLC25A35 SLC25A36 SLC25A36 SLC25A35 SLC25A35 SLC25A35 SLC25A36 SLC25A35 SLC25A35 SLC25A35 SLC25A36 SLC25A36 SLC25A35 SLC25A36 SLC25A35 SLC25A36 SLC25A36 SLC25A35 SLC25A36 SLC25A35 SLC25A36 SLC25A35 SLC25A35 SLC25A36 SLC25A36 SLC25A36 SLC25A35 SLC25A36 SLC25A36 SLC25A36 SLC25A36 SLC25A36 SLC25A36 SLC25A36 SLC25A36 SLC25A35 SLC25A35 SLC25A36 SLC25A36 SLC25A35 SLC25A36 SLC25A36 SLC25A36 SLC35A36 SL	SLC43A2	ABCB9	1.010985	CLDN5	0	CLDN5	0
SLC0311 SLC22A5 JAM2 ABCB9 SLC03A1 ABCB8 SLC15A3 SLC25A21 SLC39A2 SLC4A5 SLC4A5 SLC4A5 SLC4A5 SLC566 SLC544 ABC62 SLC5A2 SLC5A4 SLC5A5 SLC5A4 SLC5A4 SLC5A5 SLC5A4 SLC5A5 SLC5A2 SLC25A25 SLC25A35 SLC25A35 SLC25A10 SLC35G5	SLCO4A1						
SLC22A5 JAM2 ABCB9 SLC03A1 ABCB8 SLC15A3 SLC25A21 SLC25A21 SLC39A2 SLC24A5 SLC24A5 SLC4A5 SLC4A5 SLC4A5 SLC4A3 SLC4A5 SLC366 SLC366 SLC366 SLC5A4 ABCC6P2 ABCA2 SLC25A22 SLC7A8 SLC25A35 SLC25A35 SLC25A35 SLC25A35 SLC25A35 SLC25A35 SLC25A30 SLC25A30 SLC25A30 SLC25A31	CLDN10						
JAM2 ABCB9 SLC03A1 ABCB8 SLC15A3 SLC25A21 SLC39A2 SLC39A2 SLC24A5 SLC4A5 SLC4A5 SLC4A5 SLC4A3 CLDN10-AS1 SLC35G6 SLC5A4 ABCC6P2 ABCA2 SLC25A22 SLC25A25 SLC25A35 SLC25A35 SLC25A35 SLC25A35 SLC25A36 SLC25A35 SLC25A35 SLC25A35 SLC25A30 SLC25A30 SLC25A30 SLC25A30 SLC25A30 SLC25A30 SLC25A31 SLC35G5	SLC22A5						
ABCB9 SLC03A1 ABCB8 SLC15A3 SLC25A21 SLC39A2 SLC24A5 SLC4A5 SLC4A5 SLC4A5 SLC4A5 SLC3A1 ICAM3 CLDN10-AS1 SLC35G6 SLC5A4 ABCC6P2 ABCA2 SLC25A22 SLC25A35 SLC25A35 SLC25A35 SLC25A36 SLC25A36 SLC25A36 SLC25A37 SLC35G5	JAM2						
SLC03A1 ABCB8 SLC15A3 SLC25A21 SLC25A21 SLC24A5 SLC24A5 SLC4A5 SLC4A5 SLC3A3 CLDN10-AS1 SLC35G6 SLC3A4 ABCC6P2 ABCA2 SLC25A22 SLC25A22 SLC25A35 SLC25A35 SLC25A35 SLC25A35 SLC25A35 SLC25A35 SLC25A35 SLC25A31	ABCB9						
ABC88 SLC15A3 SLC25A21 SLC39A2 SLC24A5 SLC4A5 SLC4A5 SLC8A1 ICAM3 CLDN10-AS1 SLC35G6 SLC35A4 ABCC6P2 ABCA2 SLC25A22 SLC7A8 SLC25A35 SLC25A35 SLC25A35 SLC25A35 SLC25A35 SLC25A36 SLC25A35 SLC25A5 SLC25A5 SLC25A5 SLC25A5 SLC25A5 SLC25A5 SLC	SLCO3A1						
SLC13A3 SLC25A21 SLC24A5 SLC24A5 SLC4A5 SLC8A1 ICAM3 CLDN10-AS1 SLC35G6 SLC35G6 SLC5A4 ABCC6P2 ABCA2 SLC25A22 SLC7A8 SLC25A35 SLC25A5 SLC25A5 SLC25A5 SLC25A5 SLC25A5 SLC25A5	ABCB8						
SLC39A2 SLC34A5 SLC4A5 SLC4A5 SLC4A5 SLC4A5 CLDN10-AS1 SLC35G6 SLC35G6 SLC35A4 ABCC6P2 ABCA2 SLC25A22 SLC7A8 SLC25A35 SLC25A5 SLC25A5 SLC25A5 SLC25A5 SLC25A5 SLC25A5	SLCI5A3						
SLC24A5 SLC24A5 SLC4A5 SLC3A1 ICAM3 CLDN10-AS1 SLC35G6 SLC35A4 ABCC6P2 ABCA2 SLC25A22 SLC7A8 SLC25A35 SLC25A35 SLC25A35 SLC25A35 SLC25A35 SLC25A35 SLC25A35 SLC25A35 SLC25A35 SLC25A35	SLC39A21						
SLC4A5 SLC8A1 ICAM3 CLDN10-AS1 SLC35G6 SLC5A4 ABCC6P2 ABCA2 SLC25A22 SLC7A8 SLC25A35 SLC25A35 SLC25A35 SLC25A35 SLC25A35 SLC25A35 SLC25A35 SLC25A35 SLC25A35 SLC25A35 SLC25A35	SLC24A5						
SLC8A1 ICAM3 CLDN10-AS1 SLC35G6 SLC5A4 ABCC6P2 ABCA2 SLC25A22 SLC25A35 SLC25A35 SLC25A35 SLC25A35 SLC25A35 SLC25A35 SLC25A35	SLC4A5						
ICAM3 CLDN10-AS1 SLC35G6 SLC5A4 ABCC6P2 ABCA2 SLC25A22 SLC25A35 SLC25A35 SLC25A35 SLC25A35 SLC25A10 SLC35G5	SLC8A1						
CLDNI0-AS1 SLC35G6 SLC5A4 ABCC6P2 ABCA2 SLC25A22 SLC7A8 SLC25A35 SLC25A35 SLC25A33 SLC25A30 SLC25A10 SLC35G5	ICAM3						
SLC53G0 SLC5A4 ABCC6P2 ABCA2 SLC25A22 SLC7A8 SLC25A35 SLC25A35 SLC25A33 SLC25A10 SLC35G5	CLDN10-AS1						
ABCC6P2 ABCC2 SLC25A22 SLC25A35 SLC25A35 SLC25A35 SLC25A30 SLC25A10 SLC35G5	SLC35G6						
ABCA2 SLC25A22 SLC7A8 SLC25A35 SLC25A35 SLC25A33 SLC25A10 SLC35G5	ABCC6P2						
SLC25A22 SLC7A8 SLC25A35 SLC25A53 SLC25A53 SLC29A3 SLC25A10 SLC35G5	ABCA2						
SLC7A8 SLC25A35 SLC25A53 SLC29A3 SLC25A10 SLC35G5	SLC25A22						
SLC25A35 SLC25A53 SLC29A3 SLC25A10 SLC35G5	SLC7A8						
SLC25A53 SLC29A3 SLC25A10 SLC35G5	SLC25A35						
SLC29A3 SLC25A10 SLC35G5	SLC25A53						
SLC25A10 SLC35G5	SLC29A3						
9703/03	SLC25A10						
SI C25A51P1	SI C25A51D1						
SLC9B1	SLC9B1						

39

TABLE 3-continued

			Gene list			
#506 BBB gene list	234 gene list	hBMECs	234 gene list	DF- BMECs	234 gene list	UM- BMECs
SLC23A3						
ABCC6						
SLC5A10						
SLC37A2						
SLC35G3						
SLC25A18 SLC45A2						
SLC26A5						
SLC51A						
ABCC2						
ABCG4						
SLC46A1						
ADCA4						
SLC34A1						
SLC9A5						
SLC25A30-						
AS1						
SLC25A45						
SLC7A3						
SLC25AI						
ABCD1						
SLC7A5P1						
SLC2A4						
SLC25A42						
ABCA10						
CLDNI SLC25A5AS1						
SLC23A3-AST SLC22A17						
CLDN2						
SLC38A4						
SLC6A1OP						
SLC44A3						
SLC26A4						
SLC9A7P1						
SLC36A2						
SLC27A6						
SLCO1A2						
SLC6A4						
SLC29A4						
SLC20A5						
SLC17A7						
SLC38A5						
SLC8A1-AS1						
SLC15A1						
ABCA17P						
SLC5504F SLC04A1-AS1						
SLC22A6						
SLC47A2						
SLC1A6						
SLC26A9						
SLC13A3						
SLC35D5						
SLC22A20						
SLC4A4						
SLC35F1						
SLC2A5						
SLC28A2						
SLC38A3 SLC26A4-AS1						
SLC14A1						
SLC16A6						
SLC17A8						
SLC22A13						
SLC24A3						
SLC10A5						
SLCI3A2						
SLC38A8						
SLC22A18						

41 TABLE 3-continued

			Gene list			
#506 BBB gene list	234 gene list	hBMECs	234 gene list	DF- BMECs	234 gene list	UM- BMECs
SLC22A18AS						
SLC13A4						
SLC28A3						
SLC26A5 SLC4A9						
SLC5A12						
ABCB1						
SLC5AI SLC13A5						
SLC10A1						
CLDN16						
SLC5A8						
SLC22A25						
ABCC9						
ABCF1						
ABCA7 SLC35E4						
SLCJJ14 SLC12A8						
SLC8A3						
SLC6A20						
SLC17A4 SLC25A31						
CLDN4						
SLC6A7						
SLC10A2						
SLC1A2 SLC24A4						
SLC11A1						
SLC12A5						
CLDN23 SLC6A11						
CLDN9						
SLC30A3						
SLCO2A1						
SLC10A4 SLC24A2						
SLC39A12						
SLC26A7						
SLC16A14						
SLC27A2						
SLC6A1						
ABCA12						
SLC12A1 SLC22A9						
SLC22A15						
SLC52A1						
ABCB11 SLC1A7						
SLC46A2						
SLCO6A1						
SLC22A11						
SLC22A10 SLC32A1						
ABCC3						
ABCC12						
ABCB5						
SLC9A2						
ABCC6P1						
ABCG5						
SLCO1B1						
ABCC13						
SLC6A12						
SLC16A10 SLC15A5						
SLCO1B3						
SLCO1C1						
CLDN18						
SLC3A9 SLC2A2						
SLCO5A1						
SLC7A14						

42

TABLE 3-continued

		Gene list		
#506 BBB gene list	234 gene list	234 gene hBMECs list	DF- 234 gene BMECs list	UM- BMECs
ABCA13				
SLC19A3				
ABCB4				
SLCO2B1				
SLC34A2				
SLC9A4				
ABCC8				
SI C4A1				
SLC8A2				
SLC5A7				
SLC6A19				
ABCD2				
SLC6A17				
SLC25A3P1				
SLC2A1-AS1				
SLCSIB				
SLC6A1-AS1				
SLC9C1				
CLDN6				
SLC39A7				
SLC1A3				
SLC29A2				
TJP3				
CLDN3				
SLC/A4				
CI DN19				
SLC4A3				
CLDND2				
CLDN8				
SLC30A2				
SLC44A4				
SLC16A11				
CLDN24				
SLCI3A2				
SLC10AD				
SLC35F3				
SLC6A16				
SLC16A8				
SLC25A48				
SLC12A3				
SLC22A3				
SLC25A2				
SLC0A15				
SLC43A1				
SLC5A5				
ABCG8				
SLC34A3				
SLC22A12				
SLC2A9				
SLC22A31				
SLC14A2				
ICAM4				
CLDN17				
SLC22A7				
SLC6A18				
SLC36A3				
SLC22A2				
SLC25A47				
SLC22A14				
SLC22A10				
SLC13A1				
SLC30A8				
SLC30A10				
SLC2A7				
SLC6A5				
SLC7A9				
SLC26A8				
SLC38A11				

TABLE 3-continued

			Gene list			
#506 BBB gene list	234 gene list	hBMECs	234 gene list	DF- BMECs	234 gene list	UM- BMECs
SLC17A1						
SLC22A1						
SLC22A8						
SLC17A6						
SLC3A1						
SLC7A13						
SLC5A2						
VCAM1						
SLC18A1						
SLC28A1						
SLC7A10						
CLDN22						
CLDN25						
SLC10A6						
SLC17A3						
SLC39A5						
SLC5A11						
SLC6A14						
SLCO1B7						

SEQUENCE LISTING <160> NUMBER OF SEQ ID NOS: 30 <210> SEQ ID NO 1 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: For GAPDH <400> SEQUENCE: 1 ctgatttggt cgtattgggc <210> SEQ ID NO 2 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Rev GAPDH <400> SEQUENCE: 2 tggaagatgg tgatgggatt <210> SEQ ID NO 3 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: For SLC2A1 <400> SEQUENCE: 3 aactcttcag ccagggtcca c

<210> SEQ ID NO 4 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Rev SLC2A1

<400> SEQUENCE: 4

20

20

US 10,214,724 B2

48

-continued

<210> SEQ ID NO 5	
<211> LENGTH: 22	
<212> TYPE: DNA <213> OPCINISM. Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: For ABCB1	
<400> SEQUENCE: 5	
ctcatcgttt gtctacagtt cg	22
<210> SEQ ID NO 6	
<211> LENGTH: 20	
<212> TIPE: DNA <213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Rev ABCB1	
<400> SEQUENCE: 6	
aagacatttc caaggcatca	20
<210> SEQ ID NO 7	
<211> LENGTH: 22	
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: For PECAM1	
<400> SEQUENCE: 7	
gagtattact gcacagcott ca	22
Jugeneenee generalgeere en	22
-010, CEO ID NO 9	
<2105 SEQ ID NO 8 <2115 LENGTH: 22	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE: <223> OTHER INFORMATION: Rev PECAM1	
<400> SEQUENCE: 8	
aaccactgca ataagtcctt tc	22
<210> SEQ ID NO 9	
<211> LENGTH: 21 <212> TYDE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: FOR OCLN	
<400> SEQUENCE: 9	
gacttcaggc agcctcgtta c	21
<210> SEQ ID NO 10	
<211> LENGTH: 22 <212> TYPE: DNA	
<pre><213> ORGANISM: Artificial Sequence</pre>	
<220> FEATURE:	
<223> OTHER INFORMATION: Rev OCLN	
<400> SEQUENCE: 10	
accaattata taatctatct ca	22
<210> SEO ID NO 11	
<211> LENGTH: 20	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	

-,__.,.**_.**

-continued			
<223> OTHER INFORMATION: For CLDN5			
<400> SEQUENCE: 11			
gttegecaac attgtegtee	20		
<210> SEQ ID NO 12 <211> LENGTH: 23 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Rev CLDN5			
<400> SEQUENCE: 12			
gtagttette ttgtegtagt ege	23		
<210> SEQ ID NO 13 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: For TJP1			
<400> SEQUENCE: 13			
accagtaagt cgtcctgatc c	21		
<210> SEQ ID NO 14 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Rev TJP1			
<400> SEQUENCE: 14			
tcggccaaat cttctcactc c	21		
<pre><210> SEQ ID NO 15 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: For CDH5 </pre>			
<400> SEQUENCE: 15	20		
<pre><210> SEQ ID NO 16 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Rev CDH5</pre>			
<400> SEQUENCE: 16			
tetecaggtt ttegecagtg	20		
<210> SEQ ID NO 17 <211> LENGTH: 22 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: For KDR <400> SEQUENCE: 17			

continued

	-concinded
<210> SEO ID NO 18	
<211> LENGTH: 23	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Rev KDR	
<400> SEQUENCE: 18	
~	
catgttggtc actaacagaa gca	23
<210> SEO ID NO 19	
<211> LENGTH: 23	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: FOI CD34	
<400> SEQUENCE: 19	
CTACAACACC TAGTACCCTT GGA	23
<210> SEQ ID NO 20	
<211> LENGTH: 22	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<223> OTHER INFORMATION: Rev CD34	
<400> SEQUENCE: 20	
ggtgaagagt gtggtgatta ga	22
<210> SEQ ID NO 21	
<211> LENGTH: 20	
<212> TIPE: DNA <213> ORGANISM· Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: For OCT4	
<400> SEQUENCE: 21	
gtggaggaag ctgacaacaa	20
-210, SEO ID NO 22	
<2103 SEQ 1D NO 22 <211> LENGTH: 20	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Rev OCT4	
<400> SEQUENCE: 22	
attetecagg ttgeetetea	20
<210> SEQ ID NO 23	
<211> LENGTH: 21	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEALORE: <223> OTHER INFORMATION: For NANOG	
IN THE AND MAILENT FOR MEMOU	
<400> SEQUENCE: 23	
	~-
tttgtgggcc tgaagaaaac t	21
<210> SEQ ID NO 24	
<211> LENGTH: 21	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Rev NANOG	

US 10,214,724 B2

= -
^
22

-continued	

<400> SEQUENCE: 24	
agggctgtcc tgaataagca g	21
<210> SEQ ID NO 25 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: For Brachyury	
<400> SEQUENCE: 25	
gggagcgagg aggaagggaa	20
<210> SEQ ID NO 26 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Rev Brachyury	
<400> SEQUENCE: 26	
tggtgacggt gctgaagtgc	20
<210> SEQ ID NO 27 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: For MIXL1	
<400> SEQUENCE: 27	
ggcgtcagag tgggaaatcc	20
<210> SEQ ID NO 28 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Rev MIXL1	
<400> SEQUENCE: 28	
ggcaggcagt tcacatctac c	21
<210> SEQ ID NO 29 <211> LENGTH: 23 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: For PAX2	
<400> SEQUENCE: 29	
tcaagtcgag tctatctgca tcc	23
<210> SEQ ID NO 30 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Rev PAX2	
<400> SEQUENCE: 30	
catgtcacga ccagtcacaa c	21

We claim: **1**. A method for generating a population of human brain microvascular endothelial cells (BMECs) from human pluripotent stem cells, wherein the method comprises, in order,

- (a) culturing human pluripotent stem cells for about 24 hours in a chemically defined, serum-free culture medium that comprises an activator of Wnt/β-catenin signaling, whereby cells that express mesodermal markers are obtained;
- (b) culturing the cells expressing mesodermal markers for about 5 days in the presence of a chemically defined, serum-free culture medium comprising a neuronal cell culture supplement, whereby cells that express endothelial progenitor marker Flk-1 are obtained; and
- (c) culturing the Flk-1+ cells of (b) for about two days in the presence of a chemically defined, serum-free endothelial medium comprising a neuronal cell culture supplement, bFGF/FGF2, and retinoic acid (RA), whereby a cell population comprising human BMECs is obtained.

2. The method of claim 1, wherein the human pluripotent stem cells of (a) are cultured in a chemically defined, serum-free culture medium at a cell density of about 35×10^3 cells/cm' for about 3 days prior to exposure to the chemically defined, serum-free culture medium comprising an activator of Wnt/ β -catenin signaling.

3. The method of claim **1**, wherein at least 95% of cells of the cell population comprising human BMECs are BMECs positive for expression of one or more of CD31, p-glycoprotein (Pgp), occludin, and claudin-5.

4. The method of claim **1**, further comprising growing the human BMECs of step (c) as a monolayer to confluence.

5. The method of claim **4**, comprising the step of taking an initial transendothelial electrical resistance (TEER) measurement of the confluent monolayer, wherein the TEER measurement is greater than 2000 Ohm (Ω)×cm².

6. The method of claim **1**, wherein the activator of Wnt/ β -catenin signaling is a Gsk3 inhibitor.

7. The method of claim **6**, wherein the Gsk3 inhibitor is a small molecule selected from the group consisting of CHIR99021, CHIR98014, BIO-acetoxime, BIO, LiCl, SB216763, SB415286, AR A014418, 1-Azakenpaullone, and Bis-7-indolylmaleimide.

8. The method of claim 6, wherein the Gsk3 inhibitor is $_{20}$ CHIR99021 and is present in a concentration of about 3 μ M to about 12 μ M.

9. The method of claim **1**, wherein no selecting, separating, or enriching steps are applied to the cells of step (a), (b), and (c) to generate the cell population of human BMECs.

* * * * *