
I 1111111111111111 1111111111 11111 11111 111111111111111 IIIII IIIIII IIII IIII IIII

c12) United States Patent
Akella et al.

(54) STATE EXTRACTOR FOR MIDDLEBOX
MANAGEMENT SYSTEM

(71) Applicant: Wisconsin Alumni Research
Foundation, Madison, WI (US)

(72) Inventors: Srinivasa Aditya Akella, Middleton,
WI (US); Junaid Khalid, Madison, WI
(US); Aaron Robert
Gember-Jacobson, Madison, WI (US)

(73) Assignee: Wisconsin Alumni Research
Foundation, Madison, WI (US)

(*) Notice: Subject to any disclaimer, the term ofthis
patent is extended or adjusted under 35
U.S.C. 154(b) by 534 days.

Appl. No.: 15/282,130 (21)

(22)

(65)

Filed: Sep. 30, 2016

Prior Publication Data

US 2018/0095773 Al

(51) Int. Cl.
H04L 67101
H04L 67114

(52) U.S. Cl.

Apr. 5, 2018

(2022.01)
(2022.01)

CPC H04L 67101 (2022.05); H04L 67114
(2013.01)

(58) Field of Classification Search
CPC G06F 9/5083; H04L 43/026; H04L 47/621
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

8,095,668 B2
8,155,116 B2

1/2012 Mitchell et al.
4/2012 Eriksson et al.

~2J

44

29

US011895177B2

(IO) Patent No.:
(45) Date of Patent:

US 11,895,177 B2
Feb.6,2024

8,468,259 B2 6/2013 Mitchell et al.
8,489,751 B2 7/2013 Mitchell et al.
8,621,058 B2 * 12/2013 Eswaran G06F 9/5072

709/223
8,762,501 B2 6/2014 Kempf et al.
8,891,520 B2 11/2014 Ali cherry et al.
8,923,294 B2 12/2014 Chao et al.
8,958,298 B2 2/2015 Zhang et al.
9,104,492 B2 8/2015 Gember et al.

2010/0115606 Al 5/2010 Samovskiy et al.
2011/0173692 Al * 7/2011 Liu H04L63/101

726/13
2013/0003735 Al 1/2013 Chao et al.
2013/0013664 Al 1/2013 Baird et al.
2013/0125120 Al* 5/2013 Zhang H04L 41/0823

(Continued)

OTHER PUBLICATIONS

718/1

Gember, Aaron, et al. "Toward software-defined middlebox net­
working." Oct. 2012. Proceedings of the 11th ACM Workshop on
Hot Topics in Networks. ACM. (Year: 2012).*

(Continued)

Primary Examiner - Kenneth Tang
(74) Attorney, Agent, or Firm - Boyle Fredrickson SC

(57) ABSTRACT

A method of automatically identifying state information in
different middlebox programs first identifies relevant pro­
gram portions by expanding outward from a packet process­
ing loop to statements dependent either by control or data
dependency on that packet processing loop. Persistent vari­
ables in the statements are then collected and optionally
winnowed by whether they are "used" or modified by those
statements. The identified state variables may be segregated
according to flow-spaces and/or output function so that a
request for state data may be tailored precisely to the
necessary state data greatly reducing network burden in state
data transfer.

12 Claims, 3 Drawing Sheets

-50

(56) References Cited

US 11,895,177 B2
Page 2

OTHER PUBLICATIONS

U.S. PATENT DOCUMENTS Joseph, Dilip A., et al., A Policy-aware Switching Layer for Data
Centers, SIGCOMM '08, Aug. 17-22, 2008, pp. 51-62. Seattle,
Washington. 2013/0223234 Al* 8/2013 Fuhs G06F 9/5083

370/242
2013/0332983 Al 12/2013 Koorevaar et al.
2014/0007088 Al 1/2014 Jamjoom et al.
2014/0007094 Al 1/2014 Jamjoom et al.
2015/0006714 Al* 1/2015 Jain H04L 43/026

709/224
2015/0180715 Al* 6/2015 Ozawa H04L 41/0803

709/221
2015/0180769 Al* 6/2015 Wang H04L 45/38

370/236
2016/0149788 Al* 5/2016 Zhang H04L 43/10

709/224
2016/0191384 Al* 6/2016 Shelar H04L 45/742

370/392
2017/0026301 Al* 1/2017 Keller H04L 47/621
2017/0353373 Al* 12/2017 Agarwal H04L 63/1408

Benson, Theophilus, et al., CloudNaaS: A Cloud Networking Plat­
form for Enterprise Applications, SOCG '11, Oct. 27-28, 2011.
Cascais, Portugal.
Benson, Theophilus, et al., EPIC; Platoform-as-a-Service Model for
Cloud Networking, Computer Sciences Department, University of
Wisconsin Madison, Technical Report #1686, pp. 1-14, Feb. 2011.
Meng, Xiaoqiao, et al., Improving the Scalability of Data Center
Networks with Traffic-aware Virtual Machine Placement, Presented
by Peter Izsak (236635) on the Management and Efficiency of
Cloud Based Services, pp. 1-39, Dec. 8, 2010.
Benson, Theophilus, et al., Stratos; Virtual Middleboxes as First­
Class Entities, CS Technical Reports, Citation TR1771, pp. 1-2,
University of Wisconsin-Madison Department of Computer Sci­
ences, Jun. 18, 2012.

* cited by examiner

U.S. Patent Feb.6,2024 Sheet 1 of 3 US 11,895,177 B2

r-------------------, r----, r----, r----,

32 ,-----r \.,_ □□

40-

16
\

FIG. 1

44

FIG. 2

14

22

28
29

·30

-..
.....

I I -..
I I I \ ' '-..

I \ ' -..

; I~,~

--50

U.S. Patent Feb.6,2024 Sheet 2 of 3 US 11,895,177 B2

IDENTIFY PERSISTENTVAR!ABLES

REMOVE UNUSED VARIABLES

SEGREGATE BY FLOW SPACE

SEGREGATE BY MIDDLE BOX FUNCTION

F!G,3

r --- --- , -· _{~~-~:

1 ,,----------,, i 70
1 flhlD PAC!<ET i-+-,..1

PROCESSING LOOP
I "''"'''"'""""'"""""'"'"'""'"'"-'

U.S. Patent Feb.6,2024 Sheet 3 of 3

FLOW

FIG. 6
1 08 , - - - - -- - - -· -· --· _, _, _, .

\ __ '. IDENTIFY OUTPUT C/\LLS ~~
:..----...,.....---~ I ~

FUNCTION
SUCE BY CALL LOG

NOT
LOGGIN(,

""' ~,-...,,,,,,,,, ,,, ,,,,..-,..,,;.

F!G. 7

..f

,f

FIG. 8

US 11,895,177 B2

STATE

STATE

............ ,, ~
-· --.,..,,. ... -- ~

36
) _..,

126
\

PROVIDE ALL
STATE

PROVIDE INTERSECTION
OF STATE SUBSET

F!G. 9

US 11,895,177 B2
1

STATE EXTRACTOR FOR MIDDLEBOX
MANAGEMENT SYSTEM

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT

This invention was made with government support under
CNS1330308 and CNS1302041 awarded by the National
Science Foundation. The government has certain rights in
the invention.

CROSS REFERENCE TO RELATED
APPLICATION

10

2
meaning that the output provided by the middleboxes imme­
diately after the redistribution is equivalent to the output that
would have occurred if the redistribution had not occurred,
This is possible by a buffering system capturing incoming
packets during the redistribution and a system of transferring
state information between middleboxes that allows uninter­
rupted operation. The state information transferred from the
middle box reflects a history of processing of earlier packets
such as can affect current packets.

SUMMARY OF THE INVENTION

The previously described scaling system requires that

BACKGROUND OF THE INVENTION

The present invention relates to cloud-based computing,
in which computer resources are provided in a scalable
fashion as virtual machines executing on an array of com­
puters, and in particular to a method of implementing
"middlebox" functionality in such cloud-based systems with
flexible scaling in a mamier consistent with cloud-based
computing.

15
each middlebox be able to output, on command, state
information that captures the knowledge obtained by the
middlebox from previous packet processing. This feature is
not available natively in most middle box programs and must
be created after the fact, for example, by manual inspection

20 of the middlebox programs. This process can be laborious
and require sophisticated understanding of the middlebox
program and the possibly proprietary operation of each
middlebox program. The problem of making state output
available for a set of diverse middlebox programs, desirable

25 in a cloud computing architecture, is a significant obstacle in
providing cloud architecture with scalable middlebox func-"Middleboxes" are important components of large com­

puter installations and service provider networks having
multiple computers executing applications such as Web
servers, application servers, file servers or databases or the
like (enterprises). In this environment, middleboxes provide 30

network related functions such as protecting the network and
its applications from attacks (e.g., intrusion detection sys­
tems (IDS) and firewalls) and enhancing network efficiency
(e.g., load balancers, WAN optimizers, and the like).

tions.
The present invention provides a computer program that

can extract state information from a wide range of different
middlebox programs with little or no programmer input or
without a detailed understanding of the middlebox program.
The invention exploits the insight that state information can
be identified as variables that persist outside of a standard
packet processing "loop" and identifies strategies for auto­
matically identifying these variables which are then further
winnowed into a compact set suitable for real-time trans-
mission through the cloud architecture. In this latter regard,
state variables may be associated with particular flow-spaces
so that a request for state indicating a flow-space may

Most simply, middleboxes may be directly wired in the 35

path of data to the enterprise computers with which they are
associated. Middleboxes may be similarly installed by pro­
gramming network switches used to control interconnec­
tions on the network joining the middleboxes and applica­
tion computers. 40 require only the transmission of the value of a subset of state

variables necessary for that flow-space. Similarly state vari­
ables may be associated with particular middlebox functions
(for example, logging or packet output and these functions

Cloud computing provides a computer system architec­
ture in which computing resources are provided on-demand
in the form of virtual and/or actual machines that are flexibly
allocated to multiple users as demand requires. A cloud
application manages the machines so that users of the cloud 45

can acquire additional machines at periods of high demand
and return those machines when the demand drops. By
aggregating many users, significant economy of scale may
be realized in terms of maintenance of the hardware, pro­
vision of physical resources such as power and cooling, and 50

smoothing of peak demands.
It is known how to implement middlebox functions on

virtual machines in a cloud computing system. Unlike the
scaling of other processes, however, it can be difficult to
scale middlebox functions in a way that satisfies perfor- 55

mance standards ("service level agreements") and mini­
mizes operating costs without adversely affecting the accu­
racy of the middlebox functions.

U.S. Pat. No. 9,104,492 entitled "Cloud-Based Middle­
box Management System.", assigned to the assignee of the 60

present application and hereby incorporated by reference,
describes a method for automatic scaling of middlebox
functionality in the environment of cloud computing. In this
system, virtual middlebox functions are transferred, created
or destroyed (collectively termed redistribution) and traffic 65

is redistributed among the virtual middlebox functions, so
that the processing of packets is substantially uninterrupted,

may be identified in a request for state so that only the value
of state variables associated with this function need to be
transmitted. By providing a compact set of state variables,
real-time monitoring of the modification of the state vari­
ables since the last state transfer can be performed further
reducing the transmission burden on the network particu­
larly when a middlebox is operated in a backup capacity.

More specifically, the invention provides, in one embodi­
ment, a method of extracting state variables from a middle­
box program in a cloud computing architecture by executing
a program on electronic computer to: (a) receive a middle­
box program; and (b) identify in the middle box program a
set of top-level variables including state variables by select-
ing variables persistent after a packet processing loop, the
packet processing loop executing for each packet received
by the middlebox program and where these top-level vari­
ables are modified by a first execution of the packet pro­
cessing loop receiving a first packet and persistent during a
second subsequent execution of the packet processing loop
receiving a second packet. The program then (c) generates a
program portion that interacts with the middlebox program
to provide the top-level variables in response to a request to
the middlebox program for state data during use of the given
middlebox program in a cloud computing architecture.

US 11,895,177 B2
3

It is thus a feature of at least one embodiment of the
invention to provide an improved method of modifying a
variety of different middlebox programs to permit automatic
redistribution of network traffic in a manner consistent with
reallocation of execution resources underlying cloud com­
puting architectures. The system allows rapid identification
of state variables with reduced effort and without the need
for detailed understanding of the middlebox program.

Step (b) may identify the top-level variables by identify-
ing control-flow-linked statements called directly or indi- 10

rectly by the packet processing loop.
It is thus a feature of at least one embodiment of the

invention to isolate a portion of the program likely to hold
persistent state variables modified by a given packet pro­
cessing.

Step (b) may further refine top-level variables by identi­
fying data-dependency-linked statements having a data
dependency with variables of the control-flow-linked state­
ments.

15

It is thus a feature of at least one embodiment of the 20

4
cloud computing architecture, for top-level variables asso­
ciated with the given flow-space.

It is thus a feature of at least one embodiment of the
invention to permit state to be linked to flow-space so that
only a subset of state needs to be transmitted in certain
instances of middlebox redistribution greatly reducing the
time and burden on the cloud architecture network in such
redistribution.

The step of associating the top-level variables with a
flow-space may identify flow-space related statements asso­
ciated with variables holding parameters of packets defining
a flow-space and partition the top-level variables according
to variables used by the flow-space related statements.

It is thus a feature of at least one embodiment of the
invention to provide an automatic method of associating
state to different flow-space through the partitioning of
statements according to their association with standard vari­
ables denoting flow-space such as those denoting packet
source address, packet destination address, packet source
port, and packet destination port.

The method may further include the step of partitioning
the top-level variables according to an output of the middle­
box; and wherein step (c) generates program elements

invention to capture statements that may generate state
without direct control flow connection, for example, work­
ing with data that has been enqueued by control flow
statements thus creating a data dependency without control
flow dependency.

The data-dependency-linked statements may include
those statements having a data dependency with an alias of
variables of the control-flow-linked statements.

It is thus a feature of at least one embodiment of the
invention to capture cases where a value has multiple names.

25 interacting with the middlebox program to provide the
top-level variables, in response to the request to the middle­
box program for state data of a middlebox function during
use of the middlebox program in a cloud computing archi­
tecture, for top-level variables associated with the middle-

30 box function.
Step (b) may select top-level variables from static and

global variables accessed by the data-dependency-linked
statements and control-flow-linked statements.

It is thus a feature of at least one embodiment of the
invention to quickly identify variables that can be persistent 35

to hold state data between packets.
Step (b) may select as the top-level variables data-depen­

dency-linked variables and control-flow-linked variables
only if they are subject to modification by statements.

It is thus a feature of at least one embodiment of the 40

invention to substantially reduce the amount of data that
needs to be transmitted as state data by removing persistent
variables that are not modified.

The method may further identify top-level variables to
include loop-procedure variables used by statements within 45

a packet processing procedure holding the packet processing
loop and configuring and initializing the packet processing
loop.

It is thus a feature of at least one embodiment of the
invention to include some local variables preceding the 50

packet processing procedure that can represent persistent
state.

It is thus a feature of at least one embodiment of the
invention to provide even more winnowing of state data in
the case where only selected middlebox functions are
required, for example, packet control without logging.

These particular objects and advantages may apply to
only some embodiments falling within the claims and thus
do not define the scope of the invention.

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1 is a simplified representation of an array of
computers interconnected by switches, for example, in a
cloud-based processing network such as may provide a set
of virtual machines organized in enterprises, each virtual
machine providing a virtual processor and memory as man­
aged by a cloud application in real time;

FIG. 2 is a block diagram of an electronic computer that
can receive a middlebox program and execute the state
identification process of the present invention for identifying
state of that middlebox program;

FIG. 3 is a top-level flowchart of the state identification
process of the present invention providing steps of identi­
fication of persistent variables, winnowing of those variables
to remove urnnodified variables, segregating variables by

The packet processing loop may be identified using a
standard library name of a library providing a packet pro­
cessing loop.

It is thus a feature of at least one embodiment of the
invention to leverage the use of standard libraries in iden­
tifying a packet processing loop (and hence state variables)
cross a wide variety of different middlebox types and
architectures.

55 flow-space and segregating variables by middlebox func­
tion;

60

The method may further associate the top-level variables
with a flow-space, the flow-space being a parameter of
packets received by the packet processing loop and step (c)
may generate program elements interacting with the middle­
box program to provide the top-level variables, in response 65

to the request to the middlebox program for state data of a
given flow-space during use of the middlebox program in a

FIG. 4 is a detailed flowchart of the first step of FIG. 3
showing identification of persistent variables representing
top-level variables;

FIG. 5 is a figure similar to FIG. 4 showing a detailed
flowchart of the second step of FIG. 3;

FIG. 6 is a detailed flowchart showing the third step of
FIG. 3 in generation of a flow-space table used by the
middleboxes during operation;

FIG. 7 is a detailed flowchart of the fourth step of FIG. 3
showing the generation of a middlebox function table used
by middleboxes during operation;

US 11,895,177 B2
5

FIG. 8 is a diagrammatic representation of a taint table
that may be used by the middleboxes according to the
present invention: and

FIG. 9 is a flowchart showing the operation of a modifi­
cation of the middlebox in responding to a state request.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

6
manner described in the above referenced' 492 patent allow­
ing seamless redistribution of middlebox functionality.

In this regard, the redistribution statement 32 may contain
information about the type of redistribution (creation,
destruction, duplication, and transfer) as well as a flow­
space implicated in the redistribution and identification of a
middlebox function implicated in the redistribution. The
redistribution portion 30 responds to flow-space information
and middlebox function in the redistribution statement 32

Referring now to FIG. 1, a cloud-computing facility 10
may provide for a set of server racks 12 each holding
multiple electronic computers 14 intercommunicating on a
network 16. The network 16, for example, may be managed
by network switches 18 represented here as an intervening
matrix in dotted lines. The network switches 18 may connect
with one or more routers 19 to an external network such as

10 information using flow-space table 34 identifying state vari­
ables of the middlebox program 29 with respect to different
flow-spaces and a middlebox function table 36 identifying
state variables of the middlebox program 29 with respect to
different output functions of the program associated with the

the Internet 21 or the like. Generally, the cloud computer
facility may, for example, provide "Infrastructure as a Ser­
vice" (Iaas) functionality.

15 state variables. In addition the redistribution portion 30 may
respond to the redistribution statement 32 (especially when
it indicates the creation or updating of a backup) using taint
table 37 which identifies whether the state variables of the
middlebox program 29 have been updated since a previous

20 event, for example, a time or previous transfer of state data.
As is understood in the art, each of the electronic com­

puters 14 may provide a processor 20 having one or more
cores, a memory system 22 including RAM and disk or other
memory, and a network card 24 for interconnecting to the
network 16. The memory system 22 may include an aper- 25

ating system 26, for example, allowing virtualization, and
virtual machine software 28, for example, implementing a
virtual application computer or, as shown, implementing a
virtual middlebox using a middlebox program 29.

The middlebox programs 29 implemented by the virtual 30

machine software 28 may provide network functions (NF)
such as, but not limited to, an intrusion detection system
(IDS), a proxy server, a wide area network (WAN) opti­
mizer, and a load balancer. Generally each virtual middlebox
will be on a separate virtual electronic computer appearing 35

as if it has its own processor 20 and dedicated memory
system 22 by virtue of a virtualizing operating system such
as a hypervisor.

As is generally understood in the art, a WAN optimizer
middlebox may implement a variety of optimization tech- 40

niques to increase data transmission efficiencies over the
network to the electronic computers 14, for example, by
eliminating redundant data transfer, compression of data,
caching and the like. An IDS middlebox may monitor traffic
flowing over the network to detect malware or network 45

intrusions or the like. A load balancer middlebox may
distribute requests by users to the various application
machines while preserving consistent communication
threads with any given user. A proxy server may fetch web
objects on behalf of web clients and cache these objects to 50

serve later web requests. In order to operate, an IDS may
generate a state extracted from multiple packets of the given
flow, for example, to create a signature and to compare that
signature against a whitelist or blacklist. Other middlebox
functions such as proxy servers, WAN optimizers, and load 55

balancers, extract states from flows of packets in order to
associate new packets with a given flow and, for example,
destination.

The middlebox program 29 may include a redistribution
portion 30 used for the redistribution (creation, destruction, 60

duplication, and transfer) of middlebox function according
to the techniques in the above described patent application.
In this regard, the redistribution portion 30 may receive a
middlebox redistribution statement 32 implemented by a
standard application programmer interface (API) recognized 65

by the redistribution portion. The redistribution portion
operates to implement a portion of the redistribution in a

In response to the redistribution statement 32, the redistri­
bution portion 30 will output state data that can be used
according to the above described patent application to
flexibly change the configuration of virtual middle box pro­
grams in a cloud architecture.

Referring now also to FIG. 2, generation of state data
needed for the middlebox program 29 and necessary for
redistribution may be performed on an automatic basis using
an electronic computer 40. Such a computer 40 as is
understood in the art may have a processor 42 communi­
cating with a memory system 44 and with standard periph-
erals such as a user terminal 46 for accepting user commands
and providing outputs to a user, and a network circuit 48
providing communication with the internet 21 or equivalent
network, removable media, or the like.

The memory system 44 may contain operating system 50
as well as an unprocessed middlebox program 29 that will
eventually be incorporated with the redistribution portion 30
described above for implementation by virtual machine
software 28. For this purpose, the operating system 50 may
execute a state analyzer program 54 that identifies state
variables of the middlebox program 29 and that associates
identified state variables or portions of those variables with
different flow-spaces and middlebox function to create the
flow-space function 34 and middlebox function table 36. For
this purpose, the state analyzer program 54 uses a number of
data tables including a standard flow-space variable name
table 56, a standard packet processing library name table 58,
and a standard middlebox function table 60 as will be
discussed below.

Referring now to FIG. 3, the state analyzer program 54
can be broken into four primary execution steps each of will
be discussed in more detail below. The first execution step,
indicated by process block 62, identifies a packet processing
loop that is invoked for the receipt of each packet by the
middlebox program 29 and that operates to forward the
packet and/or information about the packet to necessary
processing code in other portions of the middlebox program
29.

The packet processing loop is used as a key to identify
with other portions of the middlebox program 29 having
connections to the packet processing loop which in tum will
identify variables that can be persistent between executions
of the packet processing loop and thus which can represent
state variables. This focus on persistence between execu­
tions of the packet processing loop reflects the basic insight
that only information derived from a given packet that is

US 11,895,177 B2
7

persistent to affect future packets can properly be considered
state data of the type necessary to transfer for the processing
of future packets by a new middlebox.

At a next step indicated by process block 64, this set of
variables is winnowed to remove those variables, for
example, that are read-only variables and thus, while per­
sistent, are not used for the storage of state data.

At succeeding process block 66, the program 54 links the
remaining variables to particular flow-space keys denoting
particular flow spaces. The flow space keys identify vari­
ables or portions of variables (for example fields) that relate
to a given flow space allowing a function to be developed
that receives a flow space and by using the appropriate flow
space key, identifies top-level variables or portions of those
variables that are relevant to the flow space. An example
flow space might be a range of source addresses of received
packets. In this case, the flow space key might identify a
field, for example, in a "black list" table of packet source
addresses identifying the black list rules (e.g. block, route,
log) to numeric ranges of packet source addresses. The
function would then take a flow space denoted, for example,
by a range of source addresses and review those fields
indicated by the flow space key to identify rows of the black
list table relevant to that flow space. Those identified rows
would then be transmitted in their entirety in response to the
request designating a range of IP source addresses. This
developed flow space function allows the middle box to
filter state information that is needed and not needed for
particular packet processing tasks required of a new middle
box instance.

At succeeding block 68, a similar association of the state
data is performed with respect to the function of the middle­
box using that state data. Generally some state variables will
be used for logging purposes and some state variables will
be used for control of packet processing, for example,
routing or blocking of packets.

When only consistency in the output of this latter function
is required in the new middlebox, for example, state data
only associated with this function is transmitted in the
redistribution, saving network bandwidth and speeding the
redistribution process. This information relating state data to
middlebox function is ultimately enrolled in middlebox
function table 36.

Different functions can have overlap in the set of variable
associated with them.

Referring now also to FIG. 4, this first process block 62
which identifies a set of possible state variable values
(termed top-level values) may begin as indicated by process
block 70 by reviewing the packet processing library name
table 58 to identify the name of standard packet reading/
writing libraries holding a packet processing loop. These
standard packet reading/writing libraries will identify within
the middlebox program 29 statements associated with a
middlebox procedure 72 holding a packet processing loop
74. For example, identified packet-reading calls (system
calls or library functions) in the standard packet reading/
writing libraries may be used to identify the packet process­
ing loop 74. Example standard libraries for packet process­
ing include: "pcap_next", or "recv". A packet processing
loop 74 is a set of statements that repeatedly loops to: (1)
check for the existence of a new packet received by the
middlebox program 29; and (2) pass the received packet to
packet processing routines for processing according to the
middlebox function. Precise identification of the packet
reading calls for each of the standard reading/writing librar­
ies, used to identify the packet processing loop 74, may also
be enrolled in the packet processing library name table 58.

8
Generally the middlebox procedure 72 includes initializa­
tion and configuration code that may be distinguished from
the code of the packet processing loop 74.

Once the packet processing loop 74 is identified, addi­
tional procedures called or dependent on the packet process­
ing loop 74 are also identified. These procedures can gen­
erate variable values dependent on a current processed
packet that can persist to affect the next processed packet.
The first identified procedures are "called-procedures" 76a

10 that are called by the packet processing loop 74 directly or
indirectly (e.g., via a previously called procedure) and
"data-dependent procedure" 76b where there is a data
dependency between variables of the packet processing loop
and the called-procedure 76a without direct control flow.

15 Data dependency, for example, can occur without a call
when data is enqueued for later processing.

The called-procedures 76a and the data-dependent pro­
cedure 76b may be determined by preparing a system
dependence graph consisting of multiple program depen-

20 dence graphs for each procedure. Each program dependence
graph has vertices for each statement along with the data and
control dependency edges. A data dependency edge is cre­
ated between statements if there is an execution path
between them and one statement may update a value which

25 the other statement reads. A control dependency edge is
created if one statement is a conditional statement determin­
ing whether or not the other statement executes. This tech­
nique is described in S. Horwitz, T. Reps, and D. Binkley,
"Interprocedural slicing using dependence graphs", PLDI

30 '88, Proceedings of the ACM SIGPLAN 1988 conference on
Programming language design and implementation, Pages
35-46, ACM, New York, NY

Using the system dependence graph, a forward program
slice is computed for the variable which stores the received

35 packet at the packet processing loop 74. All procedures
associated with the statements in the slice are collected in a
state procedures group 80 per process block 82.

At process block 84, the state procedures group 80 is then
analyzed to identify all global and static variables that are

40 used or accessed within the state procedures group 80 to
provide a top-level variable group 86. To this group of
identified variables are added local variables of the middle­
box procedure 72 which are also persistent outside of the
packet processing loop 74. Together these variables provide

45 a top-level variable group 86 which represents a superset of
state variables.

Referring now to FIGS. 3 and 5, the variables of the
top-level variable group 86 are then analyzed statically to
see if they are in fact modified and thus could actually store

50 dynamic state. At decision block 90 each variable of the
top-level variable group 86 is analyzed to see it if it is on the
left-hand side of an assignment statement within at least one
of the procedures in state procedures group 80 such as would
indicate the possibility that its value could be modified. If so,

55 it is retained in the top-level variable group 86 as indicated
by process block 92. If not, at decision block 94 a "points­
to-set" of variables is established for the particular variable
being analyzed. A variable's "points-to-set" contains all the
variables whose associated storage locations are reachable

60 from the variable being analyzed and thus addresses the fact
that some variables have multiple effective names. If at
decision block 94 there is no "points-to-set variable" for the
variable being analyzed on the left-hand side of an assign­
ment statement (that is, if the intersection of the "points-to-

65 set" of the variables on the left-hand side of an assignment
statement and the "points-to-set" of the top level variables is
empty) within at least one of the procedures in state proce-

US 11,895,177 B2
9 10

used to identify standard names for these programs to
identify the relevant code sections for different standard
middlebox functions.

At process block 110, a slice of program 54 is computed

<lures group 80 then that variable being analyzed is dis­
carded (removed from the top-level variable group 86) as
indicated by process block 96. Otherwise the variable being
analyzed is retained in the top-level variable group 86 per
process block 92.

Referring now to FIGS. 1, 2 and 6, the operation of
process block 66 of FIG. 3 which associates state data with
flow-space, as indicated by process block 100, begins by
identifying variable names used to identify particular packet
fields (packet header field (PHF) variables), for example,
such as hold different portions of the received packet as
received by the packet processing loop. These packet header
field variable names may be pre-stored in the packet pro­
cessing library name table 58 and are identified to different
flow-spaces, for example, the flow-space of the packet
source IP address, the packet destination IP address, the
packet source input port, the packet destination output port
and the packet protocol. Standard packet field names include

5 backward from each output call site (where the output
routine is called) and the top-level variables found in that
slice identified per process block 112. These variables may
be used to populate output function table 36 (in a second
column) linked by rows to the identified middlebox output

10 functions (in a first column) determined at process block
108. Using this function table 36, the redistribution state­
ment 32 may designate a subset of the state variables
associated with a particular middlebox output function (for

15 example, all output functions other than logging) to greatly
reduce the bandwidth of transmitted state data.

for example: src_ip, dest_ip, src_port, dest_port, and proto. 20

Once these PHF variables have been identified, the top­
level variable group 86 is reviewed at process block 102 to
find data structures that represent a mechanism used to steer
packet processing to particular portions of the program
based on those fields. Only those structures or pointers in 25

statements that accept as arguments PHF variables are
considered. Such data structures may be a hash table or
linked list. For each such identified structure, a "chop" of the
program 54 is computed between the packet received func­
tion and a point where the value of each PHF variable is 30

accessed within the state procedures group 80 (shown in
FIG. 4) to provide a set of statements invoked in the
processing of each PHF variable. This is shown by process
block 104.

Referring now to FIGS. 1 and 8, the present invention's
ability to accurately identify state variables and to reduce the
number of such variables permits the middlebox to also
provide a "taint analysis" during middlebox operation. This
taint analysis monitors state data to identify state data that
has changed since the last transmission of the state data so
that only the change to state data need be transmitted. In the
case of generating a new update of a backup or redundant
middlebox, this taint analysis can greatly reduce the amount
of state data that needs to be transmitted repetitively at each
update interval. For the purpose of discussion herein, the
updating of a redundant middlebox will be considered a
redistribution creating a new middlebox that is updated.

This taint analysis is performed by the redistribution
portion 30 having received state data extracted as described
above and simply instruments the middlebox program 29 to
set a bit in a taint table 114 associated with each state
variable when that state variable is modified. When state

These statements are then reviewed to segregate the
top-level variables according to PHF variable per process
block 106. In this way distinct sets of state variables maybe
identified to each flow-space associated with a packet field
name.

35 data is transmitted each of these bits is reset.

The flow-state function 34 may then be created that
operates with index linking in rows standardized flow-space
keys (in a first column) and related to a particular flow space,

The amount of instrumentation code needed to update the
taint table 114 may be reduced by identifying state data that
will be updated at the same time (on a single control path)
so that a single instrumentation statement can provide an

40 updating that updates multiple bits in the taint table 114.
Such opportunities for multiple updates using a single
statement can be assessed by creating a control flow graph
of a fully instrumented middle box program 54 (e.g., having
an instrumentation statement for each bit in the taint table

45 114). Starting from the bottom of the graph (depth-first) the
bits that have updating instrumentation statements are
tracked. When a new updating instrumentation statement is
arrived at, if every incoming edge has previously updated

to state variables or portions of state variables (for example
fields related to the PHF variable names) (listed in a second
column) that relate to a flow space of the flow space key. As
discussed above with respect to FIG. 1, this allows the
redistribution statement 32 to designate a particular flow­
space (by a standardized flow-space name). The flows-state
function 34 then identifies the flow space key and the state
variables or portions of the state variables to search those 50

state variables or portions of state variables for values
related to that flow space.

that state bit, this updating statement may be pruned.
Referring now to FIG. 1 and when a redistribution state-

ment 32 is received by the middlebox program 29, as
indicated by process block 116, the redistribution portion 30
determines whether there is a flow-space specified by the
redistribution statement 32 at decision block 118. If not, at

Referring now to FIGS. 1 and 7, an additional but similar
analysis may be performed on the top-level variables to
associate them with middlebox output function to create
output function table 36 so that the redistribution statement
32 may request only state data relevant to a particular
middlebox output function when the consistency require­
ments on middlebox output will be limited. In one example
the middlebox output functions may include logging infor­
mation about the packets (that is, recording the operation of
the middlebox) and active control of packet processing such
as routing, filtering or the like. This segregation is performed

55 decision block 120, the redistribution statement 32 is
checked to see whether it has a middlebox function "output"
specified. If not, at next process block 122 determination is
made as to whether the middlebox state has previously been
requested as part of a regular updating of a backup middle-

60 box and thus can be winnowed by the taint table 114. If not,
identified state variables are provided in response to the
redistribution statement 32 as indicated by process block
124.

as indicated at process block 108 by first identifying stan­
dard libraries associated with these different functions such 65

as provide outputs from packet processing. In this regard,

If at any of these decision blocks 118, 120, and 122 the
redistribution statement 32 includes a qualification of the
state, the intersection of a subset of the states identified by
decision blocks 118, 120, and 122 is determined at process the middlebox function table 60 (shown in FIG. 2) may be

US 11,895,177 B2
11

block 126 and only this connnon state data is returned for
instantiating or updating a new middlebox.

Certain terminology is used herein for purposes of refer­
ence only, and thus is not intended to be limiting. For
example, terms such as "upper", "lower", "above", and
"below" refer to directions in the drawings to which refer­
ence is made. Terms such as "front", "back", "rear", "bot­
tom" and "side", describe the orientation of portions of the
component within a consistent but arbitrary frame of refer­
ence which is made clear by reference to the text and the 10

associated drawings describing the component under dis­
cussion. Such terminology may include the words specifi­
cally mentioned above, derivatives thereof, and words of
similar import. Similarly, the terms "first", "second" and
other such numerical terms referring to structures do not 15

imply a sequence or order unless clearly indicated by the
context.

When introducing elements or features of the present
disclosure and the exemplary embodiments, the articles "a",
"an", "the" and "said" are intended to mean that there are 20

one or more of such elements or features. The terms "com­
prising", "including" and "having" are intended to be inclu­
sive and mean that there may be additional elements or
features other than those specifically noted. It is further to be
understood that the method steps, processes, and operations 25

described herein are not to be construed as necessarily
requiring their performance in the particular order discussed
or illustrated, unless specifically identified as an order of
performance. It is also to be understood that additional or
alternative steps may be employed. 30

References to "a machine" and "a virtual machine" or "a
computer" and "a processor," can be understood to include
one or more virtual machines or underlying processors that
can connnunicate in a stand-alone and/or a distributed
environment(s), and can thus be configured to connnunicate 35

via wired or wireless connnunications with other processors,
where such one or more processor can be configured to
operate on one or more processor-controlled devices that can

12
middlebox virtual machines executing middlebox programs
enforcing rules related to a transport of data between appli­
cation virtual machines,

the method comprising the steps of executing a program
on an electronic computer to:

(a) receive a middlebox program separate from the pro­
gram executed on the electronic computer;

(b) analyze the middlebox program by reviewing instruc­
tions of the middlebox program to identify, in the
middlebox program, a set of top-level variables includ­
ing state variables by selecting, through this analysis,
variables of the middle box program that are persistent
in the middlebox program after a packet processing
loop, the packet processing loop executing for each
packet received by the middlebox program, where the
top-level variables are modified by a first given loop of
the packet processing loop receiving a first packet and
persistent during a second subsequent given loop of the
packet processing loop receiving a second packet; and

(c) use the analysis of (b) to generate a program portion
interacting with the middlebox program as received to
provide the identified top-level variables in response to
a request to the middlebox program for state data
affecting the transport of future data during use of the
given middlebox program in a cloud computing archi-
tecture;

wherein the packet processing loop is identified using a
standard library name of a library providing a packet
processing loop.

2. The method of claim 1 wherein step (b) identifies the
top-level variables by identifying control-flow-linked state­
ments called directly or indirectly, by the packet processing
loop.

3. The method of claim 2 wherein step (b) further iden­
tifies top-level variables by identifying data-dependency­
linked statements having a data dependency with variables
of the control-flow-linked statements.

be similar or different devices. The term virtual machine
should be understood broadly to include virtual containers
and the like which provide alternative methods of virtual­
ization. Furthermore, references to memory, unless other­
wise specified, can include one or more processor-readable
and accessible memory elements and/or components that
can be internal to the processor-controlled device, external
to the processor-controlled device, and can be accessed via
a wired or wireless network.

4. The method of claim 3 wherein the data-dependency-
40 linked statements include statements having a data depen­

dency with an alias of variables of the control-flow-linked
statements.

It is specifically intended that the present invention not be
limited to the embodiments and illustrations contained

5. The method of claim 4 wherein step (b) wherein the
top-level variables include data-dependency-linked vari-

45 ables and control-flow-linked variables only if they are
subject to modification by statements.

6. The method of claim 4 wherein step (b) wherein the

herein and the claims should be understood to include 50

top-level variables further include loop-procedure variables
used by statements within a packet processing procedure
holding the packet processing loop, the packet processing
procedure further configuring and initializing the packet
processing loop.

modified forms of those embodiments including portions of
the embodiments and combinations of elements of different
embodiments as come within the scope of the following
claims. All of the publications described herein, including
patents and non-patent publications are hereby incorporated
herein by reference in their entireties.

7. The method of claim 3 wherein step (b) wherein
top-level variables are selected from static and global vari-

55 ables accessed by the data-dependency-linked statements
and control-flow-linked statements.

What we claim is:
8. The method of claim 1 further including the step of

establishing a function receiving a flow space identifier and
identifying top-level variables or portions of top-level vari-

60 ables associated with a flow space of the flow space iden­
tifier; and

1. A method of extracting state variables from a middle­
box program of a type used in a cloud computing architec­
ture implementing virtual machines, the cloud computing
architecture further being controlled by a cloud application
that dynamically allocates virtual machines to different
enterprises and monitors costs of the virtual machines
against an account for each enterprise, the virtual machines 65

including application virtual machines executing application
programs to implement an application for the enterprise and

wherein step (c) generates statements interacting with the
middlebox program to provide the top-level variables
or portions of the top level variables associated with a
given flow space in response to the request to the
middlebox program for state data of the given flow-
space during use of the middle box program in a cloud

US 11,895,177 B2
13

computing architecture for top-level variables associ­
ated with the given flow-space.

9. The method of claim 8 wherein the function identifies
flow-space related statements associated with variables
holding parameters of packets defining a flow-space to
identify top-level variables or portions of top-level variables
associated a flow space of the flow space related statements.

10. The method of claim 9 wherein the flow-space is
selected from the group consisting of packet source address,
packet destination address, packet source port, and packet 10

destination port or a range of such addresses or ports.
11. The method of claim 1 further including the step of

associating the top-level variables to middlebox output
functions of the middle box program; and wherein step (c)
generates statements interacting with the middlebox pro- 15

gram to provide the top-level variables, in response to the
request to the middle box program for state data of a middle­
box output function during use of the middlebox program in
a cloud computing architecture, to provide for top-level
variables associated with the middlebox output function. 20

12. The method of claim 11 wherein the middlebox output
functions are selected from the group consisting of packet
control and middlebox function logging.

* * * * *

14

