
c12) United States Patent
Li et al.

(54) ASSOCIATIVE COMPUTER PROVIDING
SEMI-PARALLEL ARCHITECTURE

(71) Applicant: Wisconsin Alumni Research
Foundation, Madison, WI (US)

(72) Inventors: Jing Li, Madison, WI (US); Soroosh
Khoram, Madison, WI (US)

(73) Assignee: Wisconsin Alumni Research
Foundation, Madison, WI (US)

(*) Notice: Subject to any disclaimer, the term ofthis
patent is extended or adjusted under 35
U.S.C. 154(b) by 257 days.

(21) Appl. No.: 15/334,398

(22) Filed:

(65)

Oct. 26, 2016

Prior Publication Data

US 2018/0113839 Al

(51) Int. Cl.
G06F 7138
G06F 15178

(52) U.S. Cl.

Apr. 26, 2018

(2006.01)
(2006.01)

CPC G06F 1517839 (2013.01); G06F 7138
(2013.01); G06F 1517821 (2013.01)

r

I 1111111111111111 1111111111 1111111111 111111111111111 IIIII IIIIII IIII IIII IIII
US010503691B2

(IO) Patent No.: US 10,503,691 B2
Dec. 10, 2019 (45) Date of Patent:

(58) Field of Classification Search

(56)

CPC G06F 15/7839; G06F 15/7821; G06F 7/38
See application file for complete search history.

References Cited

PUBLICATIONS

L. Yavits, S. Kvatinsky, A. Morad and R. Ginosar, "Resistive
Associative Processor," in IEEE Computer Architecture Letters,
vol. 14, No. 2, pp. 148-151, Jul.-Dec. 1, 2015. (Year: 2015).*
I. Koren, "Digital Computer Arithmetic, Part 5a, Fast Addition"
(Year: 2008). *

* cited by examiner

Primary Examiner - Benjamin P Geib
Assistant Examiner - Kasim Alli
(74) Attorney, Agent, or Firm - Boyle Fredrickson, S.C.

(57) ABSTRACT

An associative processor separates the arithmetic operation
of addition from the carry process to pre-compute contingent
carries before the addition which then allows improved
parallelism in the addition process. A portion of the contin­
gent carry computation may also be conducted in parallel.
The result is higher-speed operations resulting from
increased parallelism.

25

18 Claims, 5 Drawing Sheets

I
38

24
\

□

34, ,_' ~~---~-~~-~-~
C1 C0 R,

U.S. Patent

'
I
I
I
I
!
i
I
J

I
!

j

I

i

Dec. 10, 2019 Sheet 1 of 5

25

"
36 36

I

34~/
i--~~~-~~~~~-~-

40

US 10,503,691 B2

Fig. 1

38

24
'\

□

U.S. Patent Dec. 10, 2019

SETUP

CALCULATE
Cout FOR EACH
OF 2 Cin VALUES

"'"i
PROPAGATE

CARRY VALUES

I
PERFORM
ADDITION

48

-·50 /

✓-,,,

Sheet 2 of 5 US 10,503,691 B2

Fig. 2

(22

U.S. Patent Dec. 10, 2019

r---~-----------,
; SET UP l_,,,,,.- 46
I I
1 LOADA,B 1

J Cin C 1, Cout R l
L____ _ ____ J 48

1-------------- _________ J
I CALCULATE CONTINGENT l
I CARRY RULES 1
i t.
I I
I r------------1 ~54

1
11 TEST FOR CASE 1 Ir/!

I I I I l I .
j I I
! I l
! l l
j I I
I I l
! I l
f I I

I l I
I l I I

II I ,,,...--1---!-I 5 8
{ / I

I I · I !
I ,---------'-, I I
I ' I I I ADJUSTC1 Co I ,
'--------------' I

I
I
I

I
I

I
I r--------~-·~---- -

I I
I I
I I

!
I
I
I
I
I

I
I

I
I
I
I

l
!
!
I
I

I l 60

/
✓---rr

I i

1..-T-ES_T_FO_R_C_AS-E ~] ! !
I I
l I
l I
I I
! I t 62

I ,------<-, I
I

I

I
1 ADJUSTC 1 Co ;

l l _________________ .1 1

l ___ [==--·NEXT ____ :::::J __ J

Sheet 3 of 5 US 10,503,691 B2

C 1 Co R Cout B A C 1 Co R C1n B A

I 1 I O I O I O I O I 111 1 I o I o I o I 1 I 1 I ~*---
22

12 11 10 9 8 7 6 5 4 3 2 1
-----v-----1 '----~r----'

34b 34a

#--14
j-o-!o-lo~l-o -I 1-!-1 1-lo_l_o -I ◊-1-0 ~I 1~1-, I KEY

----16
,--,-.--,-~~---.-~~~~--I O I 1 I O l O ! 1 I 1 II O I 1 I O I O I 1 I 1 I MASK

C 1 Co R C1n 8 A C 1 Co R Cout B A

I 1 I O l O I O I O I 1 II 1 I O [0 I O I 1 j 1 j DATA

~---- 22
@J---36 OJ-3 6

I O 11 I O I O I O i O II O I 1 I O I O I O I O I KEY

IO j 1 IO IO I 1 I 1 II O 1, I O I O , , , , I MASK

C 1 C0 R C;n 8 A C 1 C0 R C;11 B A

! 1 I O I O I O I O I 1 111 I O I O I O I 1 I 1 I DATA

@}---. 36 i OJ-36

I l I O ! 0 I O I O I 1 II 1 I l I O I O I l I 1 I DATA

I O I O I O I O I O I O II O I O I O I O I O I O I KEY

I O I 1 I O I O I 1 I 1 II O I 1 j O l O I 1 I 1 I MASK

C1 Co R Cin B A C1 Co R Cin B A

, , I O I O I O I O j 1 111 11 I O I O I 1 I 1 l DATA

Fig. 3

U.S. Patent Dec. 10, 2019 Sheet 4 of 5 US 10,503,691 B2

______________ r50
I iJ
I PROPAGATE !

! CARRIES ! '~ 0 I O I O I O I O I O 111 I O I O I 1 l O I O I KEY

l ------------7,"'I 64 14
I i . / I l /~, 0 I O I O I O I O I O II O I 1 l O ! 1 I O I O I MASK
t I TEST UNES l 1 1 6
! I 6, 7, 8 ! I C 1 Co R Cin 8 A C 1 Co R Cin B A

! l ! I /'11 I o I o I o I o 1, II 1 j 1 I o I o I 1 I 1 I oArA r 24
1 1 YJ-. 66 22 , L

i l , NO CARRY ! l rp 1 ~ 7)--LQJ
1 1 PROPAGATION 1 I -35 36
I ! __ --- --- ····- ... --· ··- ·-•· - -- - I I
I _ _...1.-6 7
I ,,...- I
I I I r··------····--·-·--- ·---1 I

l j TEST CASE 1 I I
ll ~--~ 11
I I I I
I I I I
I I I I
I I I
I I I I ! I I !
I ' I !
I I I
I I I
I I I

!

l I
-4-68

/l1

,-----"---, I I
I I

f CARRY PROPAGATE I I
!_ ___ __, ! I
~ _____________ I I

I

I NEXT PAIR I !
I ..__ __ __, i
~-----------------

____ s2

[ADDITION (

r4 0 j O I O I O I O l O II O j 1 I O j O j O I O j KEY
14
/7 0 I O I O I O I O I O II O I 1 I O I 1 I O j O I MASK

16
C 1 Co R Cin B A C 1 Co R Cin B A

tDl O j O l O I O I 1 !I 1 j 1 I O I O I 1 I 1 I DATA L-24
22 3 6--177----7 I rr(36 -~ -i.__J---ill

,✓-I O I O I O I 1 I O I O II O j O I O I O I O I O j KEY
14
/~1 ° I O I O 11 I O I O II O I O I O I O I O I O I

16

rJ , I o I o I o I o 11 11, 11 1 o I o 11 I 1 1
22 OJ OJ

C1 Co R C1n B A C1 Co R Cin B A

71 1 I O I O I 1 I O 1 1 11 1 I 1 I O I O 1 1 I 1 I

22

Fig. 4

MASK

DATA

DATA

U.S. Patent Dec. 10, 2019 Sheet 5 of 5 US 10,503,691 B2

US 10,503,691 B2
1

ASSOCIATIVE COMPUTER PROVIDING
SEMI-PARALLEL ARCHITECTURE

BACKGROUND OF THE INVENTION

2
The tag bits can be used to control subsequent write opera­
tions so that data words can be changed based on the results
of the previous search.

An associative processor using a content addressable

The present invention relates to computer architectures
and in particular to an associative computer providing
improved parallelism.

5 memory may simultaneously search its data words for
operands matching successive patterns of an operation.
Where matches occur, tag bits are set and used to control a
subsequent writing of results to those matching data words.

Widely used von Neumann-type computer architectures,
in which one or more processors communicate with a 10

separate memory holding instructions and data, face a tech­
nical limitation termed the "von Neumann bottleneck". The
von Neumann bottleneck relates to the communication chan­
nel between the processors and the memory required for

15
each transfer of instructions and data and which fundamen-
tally limits computer execution speed.

SUMMARY OF THE INVENTION

While associative processors operate in parallel on each
data word, this parallel operation is interrupted by the need
to compute carry bits (for example, during addition of
operands) in bit-serial fashion from lower order bits of each
operand to the higher order bits. Thus for example, five
search patterns may be first applied to the least significant bit
of the operands to compute a result and a carry out bit. This
carry out bit is then used during the application of five search

One solution to this bottleneck may be found in computer
architectures using "processing-in-memory" (PIM). Pro­
cessing-in-memory architectures, as the name implies,
endeavor to operate on data without moving the data out of
memory into the processors and thus avoid the von Neu­
mann bottleneck.

20 patterns to the next more significant bit to compute a result
and a carry out bit and so forth.

The present inventors have recognized that the time and
cost of propagating carry bits can be greatly reduced by
separating the operands into "subwords" and performing a One variant of these latter architectures is the associative

processor (AP). An associative processor is constructed
using an associative memory of a type permitting parallel
searching and writing to multiple memory words. This
searching and writing can be used to implement operations
on the data in the memory without transferring that data.
Generally, an associative processor operates in parallel on
multiple words in memory each holding two operands. The
associative processor sequentially applies search patterns to
these operands where each search pattern represents an
operand pattern consistent with a particular operation result.

25 "contingent" propagation of the carry bits in parallel within
subwords. A limited "actual" carry propagation can then
occur between subwords allowing the subsequent computa­
tional operation to be performed in parallel on the subwords.
The net result is to substantially reduce the number of

30 searches that must be conducted in bit-serial fashion across

As particular operand patterns are identified, the correspond- 35

ing results may be written to the identified words. By
operating in parallel on each of these operands, and asso­
ciative processor may implement high-speed "single instruc­
tion, multiple data" (SIMD) processing.

For example, a two-bit addition (without carry-in) can be 40

decomposed into four basic patterns of operands (00, 01, 10,
and 11) each associated with a particular result (0, 1, 1, 0
with carry). Four successive searches maybe conducted
simultaneously on all the words of the memory for these four
basic patterns. Once a pattern is found, the corresponding 45

result is written to that word effectively computing the
operation results for each word.

In practice, the number of patterns that must be searched
increases with the consideration of carry-in bit C,n; however,
this increased number of patterns can then be further 50

reduced by eliminating patterns that do not change a default
result value (e.g., zero) limiting the total number of patterns
that need to be considered for addition to around five. The
time required to test for and write the results for each pattern

the entire word.
The "contingent" propagation of the carry bits determines

a carry propagation for both cases of a carry-in bit C,n being
0 or 1. This can be performed in parallel among the
subwords. The actual carry propagation across the entire
word then simply applies an initial carry-in value C,n to each
of these contingent carry relationships for each subword
providing a greatly accelerated carry bit propagation (for
example, equal to the number of subwords rather than the
number of bits in the word).

Specifically then, the present invention provides an asso­
ciative processor having a plurality of rows of content
addressable memory and a controller communicating with
the rows to search the rows in parallel for a pattern and to
write to the rows in parallel according to a pattern. The
controller operates to load each row with two words repre-
senting addends to be summed, each word including mul­
tiple subwords. The controller next applies search and write
cycles to the subwords using first predetermined patterns to
determine whether an addition of the subwords would
produce a carry-out bit under both states of an assumed
carry-in bit of one and an assumed carry-in bit of zero to
determine a contingent carry relationship of each subword.
Next the controller applies search and write cycles to the

of an operation is more than offset by the extremely large
number of words that can be simultaneously processed.

55 subwords using second predetermined patterns to propagate
carry bits through the subwords according to the contingent
carry relationship of each subword and a carry-in bit of zero
for the least significant subwords. Finally the controller
applies search and write cycles on the subwords using third

New generations of content addressable memories
employing, for example, phase change memory or resistive
memory elements make associative processors more attrac­
tive on a cost basis. Such content addressable memories are
currently used for network switches and the like which
require high-speed network address lookup, or applications
such as machine learning. As required for associative pro­
cessing, these content addressable memories provide mul­
tiple words of storage that can be simultaneously searched or 65

simultaneously written to. Each word is associated with a tag
bit that is set when a search applied to that word matches.

60 predetermined patterns to add corresponding subword using
the propagated carry bits.

It is thus a feature of one embodiment of the invention to
separate carry propagation from the search as required for
other steps of the operation thereby allowing a greater
degree of parallelism in an associative processor.

The associative processor may compute the contingent
carry relationships on multibit subwords in parallel.

US 10,503,691 B2
3

It is thus a feature of one embodiment of the invention to
recast the carry process so that a portion of the carry process
can be computed in parallel on different subwords.

The associative processor may compute the actual carry
on multibit subwords in series.

It is thus a feature of one embodiment of the invention to
limit the number of actual carry steps to the number of
subwords rather than the number of bits in the word.

The associative processor computes the addition of mul­
tibit subwords in parallel.

It is thus a feature of one embodiment of the invention to
provide parallel addition in multiple subwords by pre­
computation of carry bits.

4
BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of an associative processor
according to the present invention showing a controller unit

5 communicating through a key and a masked register with
multiple data words each associated with a tag and received
by a reduction tree circuit, and further showing an expansion
of each data word to show subwords and subtags together
with an arrangement of data logically in the subwords;

1° FIG. 2 is a top-level flowchart of the principal steps of the
operation of the controller unit in implementing an addition
in the multiple data words including set up, contingent carry
relationship calculation, carry propagation, and addition;

The subwords may have multiple bits of each operand. In
15

one example, where words are of length m and each sub­
word has a bit length of 1, the number of bits may approxi­
mately conform to the following equation:

FIG. 3 is an expanded flowchart of the first two steps of
the set up and contingent carry relationship calculation;

FIG. 4 is expanded flowchart of the second two steps of
carry propagation and addition;

m 3 ,---­
l = {2 vm.

FIG. 5 is a flow diagram showing the parallel and serial
20 operation implemented with respect to the subwords

employed by the present invention;
FIG. 6 is a flow diagram similar to FIG. 5 showing

parallel and serial operation implemented with single bit
subwords. In one example, the words are of length 64 and the

subwords may have a bit length of four.
25

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT It is thus a feature of one embodiment of the invention to

provide flexible optimization of the number of bits in a
subword.

In one extreme, the subwords have only a single bit of 30
each operand bit.

Referring now to FIG. 1, an associative processor 10
constructed according the present invention may provide for
a control unit 12 that can communicate through a key
register 14 and a mask register 16 with multiple data lines 18
communicating in parallel with a plurality of words 22. As
depicted for simplicity, the key register 14 and mask register

It is thus a feature of one embodiment of the invention to
provide increased parallelism where additional word
memory is available.

The first predetermined patterns used for determining the
contingent carry relationships maybe limited to two patterns
identifying whether corresponding bits of a subword are
identical being either both ones or both zeros.

It is thus a feature of one embodiment of the invention to
provide a compact search pattern for a contingent carry
relationship determination greatly reduced from the search
pattern required for the operation.

The third predetermined patterns maybe limited to pat­
terns in which the addend bits produce a result different from
a default result loaded into the words. In one embodiment,
the patterns may be those unique patterns associated with
carry-free addition.

It is thus a feature of one embodiment of the invention to
provide a further reduced set of patterns for addition includ­
ing reductions possible because the carry process has been
separated from the addition process.

The associative processor may include a tag bit associated
with each subword.

It is thus a feature of one embodiment of the invention to

35 16 may each have a bit length equal to the bit length of the
words 22. Alternatively, the key register 14 and mask
register 16 may have a width equal to a subword as
described below to reduce register sizes. In this latter case,
the key register 14 and mask register 16 are reused among

40 subword operations.
Each of the words 22 may be associated with a word tag

bit 24. The word tag bits 24 may be set automatically in
response to a search producing a match on a respective word
22 associated with the word tag bit 24. Likewise, the word

45 tag bits 24 may control whether its associated word 20 is
subject to a subsequent writing. Together the word tag bits
24 provide outputs to a reduction tree circuit 25 which may
provide additional processing of the data of the word tag bits
24, for example, to identify a first set of word tag bits 24 of

50 all of the set tag bits 24 or may count the number of set tag
bits 24 or perform other Boolean operations on the received
data from the tag bits 24.

provide an architecture that permits subword parallel pro- 55

The control unit 12 may employ one or more conventional
computer processors 26 or functionally similar discrete
circuitry executing a stored operating program 28, which
will be described below, to implement one or more arith-cessing.

The associative processor may further include a tag bit
associated with each word operating to be set or reset
depending on a search applied to the associated word and
selectively control the writing of the associated word
according to whether it is set or reset and communicating
with other tag bits in a reduction tree circuit.

It is thus a feature of one embodiment of the invention to
permit both subword and word parallel processing.

These particular objects and advantages may apply to
only some embodiments falling within the claims and thus
do not define the scope of the invention.

metic operations on the words 22. In this regard, the program
28 may make use of stored patterns 30 describing values of
the key register 14 and mask register 16 used in sequences

60 of searches and writes of the words 22 to implement the
desired operations.

Generally, the control unit 12 may also communicate with
an external processing system 32 to receive an application
program having instructions which may be decoded and

65 executed by the control unit 12 and to receive data for the
initial loading of the words 22. The program 28 may be
implemented either as software or as firmware.

US 10,503,691 B2
5

Each of the words 22 may be subdivided into subwords 34
whose length will be optimized as discussed below. In one
example, a 64-bit word 22 may provide for four 16-bit
subwords 34. Each subword 34 is also associated with a
subword tag bit 36 whose output may be received by a 5

circuit 38 providing the value of word tag bit 24.
The program 28 may generally provide for search and

write functions typical of a ternary content addressable
memory. A search operation may search for a pattern
described by a pattern of O's and l's loaded into the key 10

register 14 equal in length to the bit length of the words 22.
The mask register 16 provides corresponding bits that
"mask" bits of the key register 14 so that only bits of the key
register 14 associated with 1 's in the mask register 16 are

15
involved in the search making the other bits essentially
"don't care" or wildcard search bits.

The pattern implemented by the key register 14 and
masked register 16 is applied in parallel to each of the words
22, and subword tag bits 36 are set for each subword 34 20

matching a corresponding subword portion of the pattern,
and word tag bits 24 are set for each word 22 that matches
the entire search pattern.

Each subword 34 may include one or more bit sets 40
each representing one bit 44 of a first and second operand 25

(A, B) that will be operated upon together with a result bit
(R). Generally each subword 34 will provide for successive

6
not perform the addition operation and for this reason is
much faster and requires fewer searches than the actual
addition operation.

At succeeding block 50, actual carry values are propa­
gated through the subwords 34 by assuming the carry-in C,n
input to the first or least significant subwords 34 is O (or
some other predetermined value) and using the previously
determined contingent carry relationships for each subword
34 to compute actual carry-out C

0
u, values for each of the

subwords 34 (recorded as the C,n values of the succeeding
subword 34). This propagation requires successive opera-
tions only equal to the number of subwords 34 and thus may
be fewer than the number of bits of the operands A and B.

Finally, at process block 52, the operation (e.g., addition)
is performed without calculation of carry values which have
previously been determined at process block 50. This cal­
culation may be performed in parallel between the subwords
34 of each word 22 but occurs in bit serial form within each
subword 34 so that intervening carry values for each bit of
the arguments A and B can be determined. The number of
computational steps provided by this process will be dis­
cussed below with respect to FIGS. 5 and 6 after the steps
are described in more detail.

Referring now to FIG. 3, an example will be provided for
the addition of two, two-bit operands A, B where operand A
is equal to 3 (1 1 binary) and operand B is equal to 1 (0 1
binary). In this example, for clarity, each subword 34 is a
single bit of each operand A and B.

At the set up block 46, data is loaded into a word 22 with
the least significant bits of operands A and B loaded into a
right or least significant subword 34a and the most signifi­
cant bits of operands A, and B loaded into the left or most
significant subword 34b as depicted. Thus for a 12-bit word

bit order portions of the operands. Each subword 34 will also
include a carry-in bit (C,n) and contingent carry relationship
bits (C0 , C1) shared among the bit sets 40. In the limiting 30

case where a subword 34 contains only a single bit of the
first and second operands (A, B), the carry-in bit (C,n) and
contingent carry relationship bits (C0 , C1) are associated
with only those single bits.

35 22, first subword 34a will comprise bits 1-6 and the second
subword 34b will comprise bits 7-12. The least significant
bit of operands A and B are loaded respectively into bits 1
and 2 of the word 22, and the most significant bits of

While a particular arrangement of these various subwords
34 and bit sets 40 is depicted, it should be understood that
the ordering and grouping of the data into subwords 34 and
bit sets 40 is logical only and the actual physical arrange­
ment of the data within the word may be freely changed. 40

FIG. 2 provides an overview of the steps of an example
addition of two multibit operands (A, B). It will be appre­
ciated that the addition operation as will be described can
also be used to implement other arithmetic operations
founded on addition (e.g., multiplication, subtraction, and 45

division). The steps will be described in more detail further
below.

operands A and B are loaded respectively into bits 7 and 8
of the word 22. Bits 3 and 9 provide for carry-in bit C,n
values for these respective subwords 34 which will be
initially set to 0. The actual value of the carry-in bits C,n will
normally be unknown except for the first subword 34a
where there is an implicit C,n value ofO because there are no
previous subwords 34. Bits 4 and 10 provide for a result
output for each of the subwords 34 also unknown at this
point. Finally bits 5 and 6 of subword 34 and bits 11 and 12
of subword 34 described the contingent carry relationship
for the subword 34 recording an expected carry-out bit C

0
u,

At a first step, indicated by process block 46, memory
words 22 may be loaded with data partitioned as subwords
34 each holding operands A and B. This data may be
obtained from external processing system 32, for example.

At succeeding process block 48, a contingent carry rela­
tionship is calculated for each subword 34 as will be
discussed in more detail below. This contingent carry rela­
tionship calculates a carry-out C

0
u, bit for each subword 34

for two different cases: a first case where a carry-in bit C,n
for the subword 34 is O and the second case where the
carry-in bit C,n for the subword 34 is 1.

50 for the subword 34 for the two cases where the carry-in bit
C,n (as yet unknown) is either a O or 1 respectively. This
relationship will be explained in greater detail below and is
recorded in bits designated C0 and C1

The set up process of block 46 may be repeated for each
55 word 22 in the associative processor 10.

Within each subword 34, this process is "bit serial". That

Referring still to FIG. 3, at process block 48 (shown also
in FIG. 2) a determination of the contingent carry relation­
ship (defining a carry-out bit C

0
u, for each subword 34 based

on two different possible carry-in bit C,n values of O and 1)
60 may be performed by applying two search patterns to each

bit pair of the operands A and B. For a multibit sub word 34,
this process will occur in a serial fashion within each sub
word 34 moving from bit to bit and using the contingent

is, within each subword 34, contingent carry relationships
must be determined in series for successive bits in the
operands A and B. These contingent carry relationships are
used to compute a contingent carry relationship for the entire
subword 34. Between each subword 34, this process is
"subword parallel". That is, the contingent carry relation- 65

ships may be computed at the same time among subwords
34. The calculation of the contingent carry relationship does

carry bits C0 and C1 for each previously computed bit.
Referring now to the following Table I, it can be seen that

there are eight possible combinations of bit values of A, B
and C,n that define carry-out bit C

0
u,.

US 10,503,691 B2
7

TABLE I

C;n B

0 0

A cout

0 0

8
from the least significant to the most significant bits of each
operand A and B within each subword 34. The contingent
carry relationship for each bit may be applied to the con­
tingent carry relationship derived for the succeeding bit to

2 0
3 0
4 (case 1) 0
5 (case 2)

0
0

0 0

0
0

0

5 produce a recorded contingent carry relationship for the
succeeding bit and so forth in order to provide the contingent
carry relationship for the subword 34.

6 0
7 0
8

In most of these combinations (rows 1-3 and 6-8) the
carry-out bit C

0
u, is equal to the carry-in bit C,n· This is

expressed by a default setting of C1 to 1 and Ca to O where
the value of C1 will express the carry-out bit C

0
u, with a

contingency of the carry-in bit C,n being 1, and the value of
Ca will express the carry-out bit C

0
u, with a contingency of

the carry-in bit C,n being 0.

Specifically, the contingent carry bits C1 and Ca of the first
bit of each subword 34 are determined using Table I for the

10 first bit pair (A, B) by evaluating Ca based on an assumption
that C,n is O and evaluating C1 based on an assumption that
C,n is 1. This can be done on all subwords 34 in parallel for
the first bit pairs of those subwords 34. Next, looking at the

15
second bit pairs of the subword 34 and still using Table I, Ca
is evaluated based on an assumption that C,n is the previ­
ously evaluated Ca of the previous bits and C1 is evaluated
based on an assumption C,n is C1 as determined for the
previous bit pair. This provides a single collective value of

Only two rows (4, 5) violate this convention and thus
require a changing of the default values ofC1 and Ca. These
two conditions (designated case 1 and case 2) are by test
searches indicated by process blocks 54 and 62 and the
values of C1 and Ca changed as appropriate when these
conditions are found as indicated by condition resets of
process blocks 58 and 62.

20 C1 and Ca for the collected first and second bit pairs. The
second step is then repeated for each successive bit pair of
the subword 34 until at the end of this process yields a
collected value for Ca and C1 for the entire subword 34. That
is, a value for Ca and C1 is determined that can be used to

25 find C
0
u, for the entire subword 34 in one step once C,n for

that subword 34 is known.
In the first test case indicated by process block 54, a

search of all words 22 will be conducted with the key
registers for each subword 34 set to { 0, 0, 0, 0, 1, 1} and in
the mask register set to { 0, 1, 0, 0, 1, 1} thus checking for 30

the condition where operands A and B are each 1 and Ca is
not already set to 1. This condition occurs only in subword
34a. Accordingly, at the conclusion of this search of process
block 54, subword tag bit 36 for subword 34a will be set and
subword tag bit 36 for subword 34b will not be set. 35

At subsequent process block 58, a write is then conducted
of all subwords 34 of words 22 using key registers for each
subword 34 set to { 0, 1, 0, 0, 0, 0} and in the mask register
set to {0, 1, 0, 0, 0, 0}. This writing process will only apply

Referring to FIG. 2, at process block 50, once the con­
tingent carry relationships have been determined for each
subword 34, an actual carry value maybe propagated
through each subwords 34 starting with the least significant
subword 34 using the following Table II in which "x"
indicates a "don't care" state.

cin (current
subword)

0

TABLE II

C0 (current
subword) C1 (current subword)

X

otherwise

X

C;n (next subword)

0

During standard addition operations, the value of C,n will
be O but other values of C,n are possible, for example, if
subtraction is being performed and it is desired to invert all

to subword 34a by virtue of only its subword tag bit 36 being 40

set to 1 and will write a 1 into the value of Ca for subword
34a indicating that the carry-out bit C

0
u, will always be 1

regardless of the carry-in bit C,n· In contrast the values ofC1

and Ca for subword 34b will indicate that the carry-out bit
C

0
u, will be identical to the carry-in bit C,n· 45 the bits of one of the operands. Generally, when a carry-in

bit c,n is 1, cl is used as the carry-out cout bit. Conversely,
when a carry-in bit C,n is 0, Ca is used as the carry-out C

0
u,

bit. This process may evaluate only the subwords 34 and

As indicated by process block 60, it is then necessary to
test for case 2 of the above Table I. In this test, a search of
all words 22 will be conducted with the key registers 14 for
each subword 34 set to { 0, 1, 0, 0, 0, 0} and in the mask
register 16 set to { 0, 1, 0, 0, 1, 1} thus checking for the 50

condition where operands A and B are each O and Ca is not
already set to 0.

This condition is true for neither subword 34a nor 34b,
and accordingly, at the conclusion of this search of process
block 60 subword tag bit 36 for both subword 34a and 34b 55

will be reset and so no adjustment to the values of C1 and Ca
need to be performed in this example. Although not shown
in detail, another set carry process per process block 62,
similar to process block 58, may be conducted setting the
value of C1 to O for all subwords 34 matching the test 60

condition of the test case of process block 60 per process
block 62.

At this point contingency carry bits C1 and Ca have been
set for each word 22. In cases where the subwords 34 are
multiple bits, values of C1 and Ca are recorded only for each 65

subword 34, and accordingly, the search process of process
blocks 54, 58, 60, and 62 may be conducted in bit serial form

therefore is faster than a carry propagation through each of
the bits of the word 22 for arguments A and B.

Referring to FIG. 4, at process block 64, successive
subwords 34 are first examined to see if the carry-in bit C,n
of the first subword 34 would produce a carry-out bit C

0
u, of

1 to the next subword 34 according to rows 6, 7, and 8 of
Table I. In the example of FIGS. 3 and 4, this employs a
search of all words 22 on a pairwise basis of successive
subwords 34 using a key register 14 spanning two subwords
34 of {0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0} with the mask register
16 set to { 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0} thus checking for
the condition where C,n of the first subword 34a is 1 and C1

is 1 indicating that a carry bit should occur contingent on C,n
being 1 (as it is). The search conducted with respect to
subword 34b is simply a null search which is always true. In
this case only word tag bit 24 is used (being a logical AND
of subword tag bits 36), and in the example, because both of
subword tag bits 36 are not set (subword tag bit 36 for
subword 34a is reset), there is no carry propagation as

US 10,503,691 B2
9

indicated by process block 66. An example of carry propa­
gation will be provided below.

Continuing with the example at process block 67, case 1
(row 4 in Table I) is tested by performing a search on the
same pairwise basis using the same pair as selected above. 5
In the example of FIGS. 3 and 4, this employs a search of
all words 22 on a pairwise basis using a key register 14 {O,
0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0}, and the mask register 16 is set
to {0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0} thus checking for the
condition where C,n of the first operand bit 44 is O and Ca is 10
1 indicating that a carry bit should occur contingent on C,n
being O (as it is). Again, a search conducted with respect to
subword 34a is simply a null search which is always true. In
this case word tag bit 24 is considered only, and in the
example because both subword tag bits 36 are set, a carry 15
propagation will now be provided as indicated by process
block 68.

In this carry propagation, a write will occur to all words
22 having their word tag bit 24 set.

In the example of FIGS. 3 and 4, this employs a write of 20
all words 22 on a pairwise basis targeting the same pair of
subwords 34 as previously searched. At this time, the key
register 14 is set to {0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0} and the
mask register 16 set to {0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0} thus
setting the carry-in C,n bit for the second subword 34b 25
implementing a carry from subword 34a to subword 34b.

At this point, carries have been propagated through each
subword 34 of the example, and as indicated by process
block 52 of FIG. 2, a carry-less addition may then be
implemented in parallel on all subwords 34 in bit serial 30
fashion within the subwords 34. This carry-less addition is
implemented by testing each pair of bits from operands A
and B in order for the following cases of Table III for each
in a similar procedure as described above.

10
In contrast, the propagation of the carry values per process

block 50 through each bit element 40 will be a function of
the number of subwords 34 and must be conducted in
subword serial fashion requiring 2n searches.

Finally the performance of the post carry addition of
process block 52 may again be conducted in bit-serial
fashion within the subwords 34 and in parallel across
subwords 34 requiring 5 min searches. The optimum value
of dividing a word 22 into subwords 34 can be determined
by determining a minimum point for the function

m
f(n) = 9- + 2n.

n

This produces an optimum value of n of:

n=m (rounded to the nearest integer value).
Similarly the length of each subword 1 should conform to:

(rounded to the nearest integer value).
Referring now to FIGS. 2 and 6, a limiting case for each

subword 34 holds only a single pair of bits of the operands
A and B, and thus each pair of bits associated with values of

35 Ca, C1 , and C,n, the calculation of contingent carry relation-
TABLE III

c,n B A R cout

1 (no change) 0 0 0 0 0
2 0 0 0
3 0 0 0
4 0 0
5 0 0 0
6 (no change) 0 0
7 (no change) 0 0
8

It will be noted that for the example of FIGS. 3 and 4, all
carries have been precomputed and rows 1, 6, and 7 do not
change the result bit R. Accordingly only the conditions of
2, 3, 4, 5, and 8 need to be tested. In this testing process,
which will not be depicted, a search is made for each of the
patterns represented by the second, third, and fourth col­
unms (C,m B, A) and, where a bit set 40 matches those
patterns, providing a write to the R bit.

In the more general case of a multibit subword 34, both
the R bit and C

0
u, bits will need to be written and accord­

ingly all but the first row must be tested.
Referring now to FIGS. 2 and 5, in the case of a multibit

subword 34, the first step of calculating contingent carry
relationships per process block 48 of FIG. 2 involves the
application of two search patterns (cases 1 and 2 of Table I
above) successively for each of the bits in the subword 34.
For a word 22 having a length of m divided into n subwords,
this will require 4 min (the number of bits in each subword)
searches to compute the values of Ca, and C1 for the
subword 34. This bit-serial process may be conducted in
parallel among subwords 34.

40

45

ships for each bit can be performed in parallel as indicated
by arrows resulting in a search burden of 2. Carry propa­
gation can then be performed for each bit with a search
burden of 2 min. With all the carry-in bits C,n calculated, a
short form of Table III having only five searches can be used
in parallel as indicated by arrows 72 to compute the result
values with a search burden of 5 for extremely fast process­
ing that require substantial additional memory.

Although the present disclosure shows only the funda­
mental operation of addition, it will be appreciated that this
additional operation can be readily converted into subtrac­
tion through the use of twos complement arithmetic well
understood in the art. With addition and subtraction, multi­
plication and division can be implemented through the use

50 of repeated addition or subtraction operations as is also
understood in the art. Multiplication can alternatively be
implemented by first allocating a result and setting it to 0.
Then multiplying one bit of the first operand by the second
operand and adding it to the result using the procedure

55 already explained for addition. Finally shifting the result by
one bit. This process is repeated until all of the first operand
has been multiplied by the second operand. Although, this
method also repeatedly performs additions, fewer number of
operations are required compared to implementing multipli-

60 cation just by performing several additions. Accordingly the
present invention provides improved acceleration for fun­
damental arithmetic operations of addition, subtraction,
multiplication, and division.

Certain terminology is used herein for purposes of refer-
65 ence only, and thus is not intended to be limiting. For

example, terms such as "upper", "lower", "above", and
"below" refer to directions in the drawings to which refer-

US 10,503,691 B2
11

ence is made. Terms such as "front", "back", "rear", "bot­
tom" and "side", describe the orientation of portions of the
component within a consistent but arbitrary frame of refer­
ence which is made clear by reference to the text and the
associated drawings describing the component under dis- 5

cussion. Such terminology may include the words specifi­
cally mentioned above, derivatives thereof, and words of
similar import. Similarly, the terms "first", "second" and
other such numerical terms referring to structures do not
imply a sequence or order unless clearly indicated by the 10

context.
When introducing elements or features of the present

disclosure and the exemplary embodiments, the articles "a",
"an", "the" and "said" are intended to mean that there are
one or more of such elements or features. The terms "com- 15

12
to the stored data of the subwords to store a result
indicating the contingent carry relationships for the
subwords;

(c) apply search and write cycles to the subwords using
second predetermined patterns to propagate carry bits
through the subwords according to the contingent carry
relationship of each subword and a carry-in bit of zero
for the least significant subwords, the search and write
cycles providing a logical comparison of the second
predetermined patterns to the stored data of the sub­
words to propagate carry bits through the subwords;
and

(d) apply search and write cycles on the subwords using
third predetermined patterns to add corresponding sub­
words using the propagated carry bits, the search and
write cycles providing a logical comparison of the third
predetermined patterns to the stored data of the sub­
words to add the corresponding carry bits.

prising", "including" and "having" are intended to be inclu­
sive and mean that there may be additional elements or
features other than those specifically noted. It is further to be
understood that the method steps, processes, and operations
described herein are not to be construed as necessarily
requiring their performance in the particular order discussed
or illustrated, unless specifically identified as an order of
performance. It is also to be understood that additional or
alternative steps may be employed.

2. The associative processor of claim 1 wherein step (b)
20 operates on multibit subwords in parallel.

3. The associative processor of claim 2 wherein step (c)
operates on multibit subwords in series.

References to "a microprocessor" and "a processor" or
"the microprocessor" and "the processor," can be under­
stood to include one or more microprocessors that can
communicate in a stand-alone and/or a distributed environ­
ment(s), and can thus be configured to communicate via
wired or wireless communications with other processors,
where such one or more processor can be configured to
operate on one or more processor-controlled devices that can

4. The associative processor of claim 1 wherein step (d)
operates on multibit subwords in parallel.

25 5. The associative processor of claim 1 wherein the
subwords have multiple bits of each operand.

6. The associative processor of claim 5 wherein the words
are of length m and each subword has a bit length rounded
to the nearest integer value of a value indicated by the letter

30 1 in the formula:

be similar or different devices. Furthermore, references to
memory, unless otherwise specified, can include one or more
processor-readable and accessible memory elements and/or 35

components that can be internal to the processor-controlled
device, external to the processor-controlled device, and can
be accessed via a wired or wireless network.

It is specifically intended that the present invention not be
limited to the embodiments and illustrations contained 40

herein and the claims should be understood to include
modified forms of those embodiments including portions of
the embodiments and combinations of elements of different
embodiments as come within the scope of the following
claims. All of the publications described herein, including 45

patents and non-patent publications, are hereby incorporated
herein by reference in their entireties.

What we claim is:

7. The associative processor of claim 6 wherein the words
are of length 64 and the subwords have a bit length of four.

8. The associative processor of claim 1 wherein the
subwords have only a single bit of each operand.

9. The associative processor of claim 1 wherein the first
predetermined patterns are limited to two patterns identify­
ing whether corresponding bits of a subword are identical
being either both ones or both zeros.

10. The associative processor of claim 1 wherein the third
predetermined patterns are limited to patterns in which the
added bits produce a result different from a default result
loaded into the words.

1. An associative processor comprising:
a plurality of rows of content addressable memory, each

row operating to define stored data; and

11. The associative processor of claim 1 wherein the third
50 predetermined patterns are only unique patterns associated

with carry-free addition.
12. The associative processor of claim 1 further including

a subword tag bit associated with each subword.
13. The associative processor of claim 12 wherein the

a controller communicating with the rows to search the
rows in parallel for a pattern distinct from the stored
data and to write to the rows in parallel according to a
pattern distinct from the stored data;

the controller operating to:
(a) load each row with stored data representing two words

being addends to be summed, each word including
multiple subwords;

55 subword tag bit operates to be set or reset depending on a
search applied to the associated subword and to selectively
control a writing of the associated subword according to
whether the tag bit is set or reset.

14. The associative processor of claim 12 further includ-
60 ing a word tag bit associated with each word operating to be

set or reset depending on a search applied to the associated
word and selectively control a writing of the associated word
according to whether it is set or reset and communicating

(b) apply search and write cycles in parallel to the
subwords using first predetermined patterns to deter­
mine whether an addition of the subwords would
produce a carry-out bit under both states of an assumed
carry-in bit of one and an assumed of carry-in bit of
zero to determine a contingent carry relationship of 65

each subword, the search and write cycles providing a
logical comparison of the first predetermined patterns

with other word tag bits in a reduction tree circuit.
15. The associative processor of claim 14 wherein the

word tag bit of a given word is a logical AND of the subword
tag bits on subwords of the given word.

US 10,503,691 B2
13

16. The associative processor of claim 12 further includ­
ing a key register and a mask register wherein the key
register holds values for matching or writing and the mask
register indicates values that have "don't care" states match­
ing all values during searching and changing no values 5

during writing.
17. The associative processor of claim 16 wherein each bit

of each word is associated with a carry-in bit, a first
carry-out bit assuming a one-valued carry-in bit, a second
carry-out bit assuming a zero-valued carry-in bit, a result bit, 10

and first and second addend bits and wherein the contingent
carry relationship is stored in the first and second carry-out
bits.

18. An method of operating an associative memory to 15
provide for associative processing, the associative memory
providing a plurality of rows of content addressable
memory, each row operating to define stored data and a
controller communicating with the rows to search the rows
in parallel for a pattern distinct from the sorted data and to 20

write to the rows in parallel according to a pattern distinct
from the stored data; the method comprising the steps of:

(a) loading each row with stored data representing two
words being addends to be summed, each word includ­
ing multiple subwords representing successive bits of
the words;

14
(b) applying search and write cycles in parallel to the

subwords using first predetermined patterns to deter­
mine whether an addition of the subwords would
produce a carry-out bit under both states of an assumed
carry-in bit of one and an assumed carry-in bit of zero
to determine a contingent carry relationship of each
subword, the search and write cycles providing a logi­
cal comparison of the first predetermined patterns to the
stored data of the subwords to store a result indicating
the contingent carry relationships for the subwords;

(c) applying search and write cycles to the subwords using
second predetermined patterns to propagate carry bits
through the subwords according to the contingent carry
relationship of each subword and a carry-in bit of zero
for the least significant subwords, the search and write
cycles providing a logical comparison of the second
predetermined patterns to the stored data of the sub­
words to propagate carry bits through the subwords;
and

(d) applying search and write cycles on the subwords
using third predetermined patterns to add correspond­
ing subwords using the propagated carry bits, the
search and write cycles providing a logical comparison
of the third predetermined patterns to the stored data of
the subwords to add the corresponding carry bits.

* * * * *

