
c12) United States Patent
Sankaralingam et al.

(54) RECONFIGURABLE COMPUTER
ACCELERATOR PROVIDING STREAM
PROCESSOR AND DATAFLOW PROCESSOR

(71) Applicant: Wisconsin Alumni Research
Foundation, Madison, WI (US)

(72) Inventors: Karthikeyan Sankaralingam, Madison,
WI (US); Anthony Nowatzki, Madison,
WI (US); Vinay Gangadhar, Madison,
WI (US)

(73) Assignee: Wisconsin Alumni Research
Foundation, Madison, WI (US)

(*) Notice: Subject to any disclaimer, the term ofthis
patent is extended or adjusted under 35
U.S.C. 154(b) by 1225 days.

(21)

(22)

(65)

(51)

(52)

Appl. No.: 15/416,670

Filed: Jan. 26, 2017

Prior Publication Data

US 2018/0210730 Al

Int. Cl.
G06F 9/38
G06F 15178
G06F 13/40
G06F 13/16
G06F 9/30
G06F 9/448
G06F 15176
G06F 9/345
G06F 15182
U.S. Cl.

Jul. 26, 2018

(2018.01)
(2006.01)
(2006.01)
(2006.01)
(2018.01)
(2018.01)
(2006.01)
(2018.01)
(2006.01)

CPC G06F 13/4022 (2013.01); G06F 9/30087
(2013.01); G06F 9/3455 (2013.01); G06F

9/3834 (2013.01); G06F 9/3877 (2013.01);

I 1111111111111111 1111111111 11111 111111111111111 IIIII IIIII IIIIII IIII IIII IIII
US011853244B2

(IO) Patent No.: US 11,853,244 B2
Dec. 26, 2023 (45) Date of Patent:

G06F 9/4494 (2018.02); G06F 13/1689
(2013.01); G06F 15176 (2013.01); G06F

1517889 (2013.01); G06F 151825 (2013.01)
(58) Field of Classification Search

(56)

CPC .. G06F 9/3877; G06F 9/3885; G06F 15/7889;
G06F 15/825

See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS

7,590,823 Bl* 9/2009 Ansari G06F 9/30145
712/200

2006/0059310 Al* 3/2006 Asher G06F 9/30014
711/126

2006/0251092 Al 11/2006 Matterne et al.

(Continued)

OTHER PUBLICATIONS

Shantanu Gupta; Shuguang Feng; Amin Ansari; Scott Mahlke;
David August. "Bundled execution of recurring traces for energy­
efficient general purpose processing" 44th Annual IEEE/ ACM
International Symposium on Microarchitecture (MICRO) (Year:
2011).*

(Continued)

Primary Examiner - Jacob Petranek
(74) Attorney, Agent, or Firm - Boyle Fredrickson, S.C.

(57) ABSTRACT

A reconfigurable hardware accelerator for computers com­
bines a high-speed dataflow processor, having program­
mable functional units rapidly reconfigured in a network of
programmable switches, with a stream processor that may
autonomously access memory in predefined access patterns
after receiving simple stream instructions. The result is a

(Continued)

:j5

QOCK

'El..EME.~f __ _[-4
: CONf1GURATION
! SWITCH ,
i REG!STER

j f CONFIGURATION I
I ! FUNCTION ~

I REGISTER • 4 7

46 70

) l

~
~o

G

US 11,853,244 B2
Page 2

compact, high-speed processor that may exploit parallelism
associated with many application-specific programs suscep­
tible to acceleration.

2 Claims, 4 Drawing Sheets

(56) References Cited

U.S. PATENT DOCUMENTS

2007/0186036 Al * 8/2007 Bittner, Jr. GllC 15/00
711/108

2008/0244238 Al
2009/0217266 Al
2009/0300337 Al
2010/0199069 Al*

2011/0238948 Al*

2012/0011349 Al*

2012/0204008 Al*

2012/0303932 Al*

2015/0261528 Al
2015/0268963 Al
2016/0048396 Al *

2017 /0024167 Al
2017 /0083313 Al *

10/2008 Mitu
8/2009 Krishnamurthy et al.

12/2009 Wang et al.
8/2010 Kim G06F 9/3897

712/30
9/2011 Vorbach G06F 15/7867

712/15
1/2012 Khailany G06F 9/30014

712/225
8/2012 Dockser G06F 9/3802

712/208
11/2012 Farabet G06F 15/7867

712/30
9/2015 Hoetal.
9/2015 Etsion et al.
2/2016 Wieneke G06F 9/3877

712/34
1/2017 Lavasani
3/2017 Sankaralingam ... G06F 15/7867

OTHER PUBLICATIONS

Cilviu Ciricescu et al.; "The reconfigurable streaming vector pro­

cessor (RSVPTM)." In Proceedings of the 36th annual IEEE/ACM
International Symposium on Microarchitecture, pp. 1-10; IEEE
Computer Society, 2003. US.
Angshuman Parashar et al.; "Triggered instructions: A control
paradigm for spatially-progranuned architectures." InACM SIGARCH
Computer Architecture News, vol. 41, No. 3, pp. 142-153. ACM,
2013. us.
Brucek Khailany et al.; "Imagine: Media processing with streams."
IEFE micro 21, No. 2 (2001): pp. 35-46. US.
International Search Report dated Sep. 27, 2018; 16 pages.
Venkatesh et al. "Conservation cores: reducing the energy of mature
computations." In ACM SIGARCH Computer Architecture News,
vol. 38, No. 1, pp. 205-218. ACM, 2010. US.
Fan et al. "Increasing hardware efficiency with multifunction loop
accelerators." In Hardware/Software Codesign and System Synthe­
sis, 2006. Codes+ ISSS'06. Proceedings of the 4th International
Conference, pp. 276-281. IEEE, 2006. US.
Baumgarte Vet al.: "Pact XPP-A Self-Reconfigurable Data Pro­
cessing Architecture" Journal of Supercomputing, Kluwer Aca­
demic Publishers, Dordrecht, NL, vol. 26, Jan. 1, 2003; pp. 167-184
us.
Anonymous; "Coprocessor-Wikipedia" Retrieved from the Inter­
net URL:https://en.wikipedia.org/w/index.php?title~Copressor&oldid~
757515844; Dec. 31, 2016. US.

* cited by examiner

U.S. Patent Dec. 26, 2023 Sheet 1 of 4 US 11,853,244 B2

26

18 16

10~ 20

12
PROCESSOR

14~
23

24 26

1 MEMORY SYSTEM
:~22
! L__I 25

: f2~~~~1TII
l CONFIGURATION
! IMAGE

ACCELERATOR

28 PROCESSING UNIT
PROCESSING UNIT

27

28 PROCESSING UNIT
PROCESSING UNIT -~

---~-;:-30 r32
~-

34, 36~~-~---
((PROCESSING UNIT l \

LIGHTWEIGHT lo
ISCRATCHPADI STREAM DATAFLOW MEMORY CORE PROCESSOR PROCESSOR

PROCESSING UNIT

LIGHTWEIGHT lo
ISCRATCHPADI STREAM DATAFLOW MEMORY CORE PROCESSOR PROCESSOR

PROCESSING UNIT

LIGHTWEIGHT ~
ISCRATCHPADI STREAM DATAFLOW MEMORY CORE PROCESSOR PROCESSOR FIG. 1

~---------------------------- -
I
I

I
' !

12 i
)i LIGHTWEIGHT

CORE
30

' I
36'

32

i 50
1

~---J
FIG. 2

:--- A B C D ' I l
! IBUFFERI 3° BUFFER BUFFER BUFFER V 32 46 46 70

.. 41, ! A
"' 1 11 , " l 50

43a 43b___, 43c--1 i \.. IBUF~ERI
--------------------.U-----INPUT-PORTS _..J ------------------;L-l i

) l D)
B IBUFFERI

' --------------------____________________________ , c ··-----·-Ir"' -.:,.1.--;--3 3
46

'

35

CLOCK

FUNCTIONAL
X UNIT

ELEMENT! 45
r··----------c.
: CONFIGURATION !
! SWITCH i

50

42a

,.........,._...........,
FUNCTIONAL
+ UNIT

42b

! ___ REGISTER___ 1
l
I

l

i f CONFIGURATION !
l ! FUNCTION t-"\

~.

~o
' i REGISTER : ! ' --------------- I 4 7

G

-------1-----------·-=:: ____ ~ _
4
~~----------·-·ouT®1-QRTli ____ i ____________ _

_____ ::=~~---------------------

L _______ I

' I
' __ I
' I

I ~ !
i ~ IBUFFERI IBUFFERI j

i ~ 50 § 49 !
' E F G H ! L ___ _

50' FIG. 3

e •
00 .
~ a
~ = ~

c
('D

~
N

~Cl's

N
0
N
~

rJJ
=­('D
('D
N

0
.i;...

d
rJl.

"'""' "'""' 00
UI w
'N
~
~

~
N

ENQUEUED DISPATCHED IN USE COMPLETE

Cl MEM -ll>o-- SCR ~o ~ / ♦/
C2 SCR-READ BARRIER

C3 SCR ~ PORT A

C4 MEM PORT B

C5 MEM.....,. PORT D

C6 PORT G -ll>o-- MEM

C7 MEM -ll>o-- PORT 8

C8 ALL BARRIER

MICRO CORE

DATAFLOW PROCESSOR

0

0

V-74

•
Olli ' ..

0 •--+----• 11
''

o•

9
71~

! !
''
II .•
'' I 84 8'------~ v--

1 I

~80 82~

'

' 'i ,' ,'

I
78 78 78 78

TIME--

FIG. 4

e
•
00 .
~
~
~
~ = ~

c
('D

~
N

~Cl's

N
0
N
~

rJJ

=­('D
('D
~

0
.i;...

d
r.,;_

"'""' "'""' 00
UI w
'N
~
~

~
N

U.S. Patent Dec. 26, 2023 Sheet 4 of 4 US 11,853,244 B2

66
}60

~64 } -- 65

64

___)}68

62~--~--

~
62~ 67

TIME! ----------

62~ ~64

ADDRESS----

FIG. 5

12

0 0 0 0
14-4-------- 0 0 0 33

0 0 0 0 V-
O O 0

0 0 0 0

FIG. 6
50

US 11,853,244 B2
1

RECONFIGURABLE COMPUTER
ACCELERATOR PROVIDING STREAM

PROCESSOR AND DATAFLOW PROCESSOR

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT

2
compet1t1ve with application-specific accelerators while
avoiding the drawbacks associated with special-purpose
hardware.

This invention was made with government support under
CNS1218432 awarded by the National Science Foundation.
The government has certain rights in the invention.

CROSS REFERENCE TO RELATED
APPLICATION

Accordingly, in one embodiment, the invention provides
a reconfigurable accelerator architecture including: (1) a
microcontroller adapted to receive instructions and data to
control other components of the accelerator; (2) a stream
processor receiving instructions from the microcontroller to
autonomously read multiple input values stored in memory

10 according to a selected set of predefined memory access
patterns and to autonomously write multiple output values
from the accelerator to memory according to a selected set
of predefined memory access patterns; and (3) a reconfig-

BACKGROUND OF THE INVENTION

15 urable dataflow processor configured by the microcontroller
to receive the multiple input values to provide output values
based on that configuration.

It is thus a feature of at least one embodiment of the
invention to implement the common functions of fixed The present invention relates to electronic computer

architectures and in particular to an application-specific
computer accelerator that can be reconfigured for different
applications.

The need for increased computer processing speed and
improved energy efficiency has motivated the development

20 special-purpose accelerators in a reconfigurable accelerator
that can implement the function of many special-purpose
accelerators. Current simulations suggest the architecture of
the present invention can match performance of special­
purpose accelerators, providing the advantage of versatility

25 with tolerably small increases in power consumption and
circuit area.

of data-parallel architectures like single instruction multiple
data (SIMD) machines and general-purpose graphic pro­
cessing units (GPGPU) machines that can replace general­
purpose von Neumann type processors for many applica­
tions. For even more demanding applications such as
machine learning and computer vision, these general-pur­
pose data-parallel architectures may be replaced with appli­
cation-specific accelerators such as the Microsoft Catapult
FPGA accelerator, for use in data centers, and Google's
Tensor processing unit for distributed machine learning.
These application-specific accelerators are normally teamed 35

with a general purpose, high-performance von Neumann
processor, for example, implementing advanced architec­
tural features including out-of-order execution and specula-

The reconfigurable dataflow processor may provide a set
of progranimable switches interconnecting functional units
in a mesh between input ports receiving input values and

30 output ports providing output values, the functional units
providing selectable multiple arithmetic functions, the mesh
providing paths from input ports through functional units to
output ports determined by the switch programming.

tive execution.
The special-purpose hardware used in these application- 40

specific accelerators adversely affects the implementation of
new processing algorithms. This is because new algorithms,
as executed on the special-purpose hardware of an accel­
erator, normally require a costly redesign and verification of
a new architecture. In addition, the narrow functionality of 45

application-specific accelerators limits their value in com­
puter systems where a wide range of applications must be
implemented. Finally, to the extent that such application­
specific accelerators address niche markets, they may not
attract academic interest such as promotes analysis and 50

improvement in these architectures.

SUMMARY OF THE INVENTION

The present inventors have recognized that, despite the 55

wide variety of application-specific accelerators, there are
certain common features of the software they execute.
Specifically, software executed by application-specific
accelerators tends to have simple memory and reuse patterns
and high computational intensity in long phases. This in turn 60

suggests that a "general-purpose" application-specific accel­
erator could be constructed by combining a stream processor
that can automatically handle simple memory access pat­
terns with a fast, efficient processor for handling computa­
tional intensity. This latter processing requirement can be 65

met by a dataflow processor adapted to be quickly recon­
figured. The result is a general-purpose accelerator that is

It is thus a feature of at least one embodiment of the
invention to provide a high-speed data flow processor com­
parable in speed to those found in fixed purpose accelerators
and yet rapidly re-reprogrammable, for example, through the
use of image files setting the switches and configuring the
functional units.

The mesh may provide direct interconnections between
switches and functional units and direct interconnections
between switches.

It is thus a feature of at least one embodiment of the
invention to provide a versatile mesh that may both inter­
connect functional units and bypass functional units.

The mesh may provide for at least thirty-two parallel data
lines, for example, as many as sixty-four parallel data lines,
between switches and between switches and functional
units.

It is thus a feature of at least one embodiment of the
invention to provide rapid communication of large data
words consistent with current processing architectures.

The functional units may provide different selections of
arithmetic and logical operations.

It is thus a feature of at least one embodiment of the
invention to permit the use of heterogeneous functional units
allowing a flexible trade-off between versatility and chip
area.

The functional units may operate in parallel.
It is thus a feature of at least one embodiment of the

invention to provide a high degree of parallelism in the
computational engine.

The data flow between functional units may be deter­
mined by switch settings and the dataflow processor may
further include a clock permitting the moving of data
between switches by one switch or between functional units
by one functional unit for each clock cycle.

US 11,853,244 B2
3

It is thus a feature of at least one embodiment of the
invention to provide a clocking function to allow operands
of multistage calculations to be coordinated through switch
settings that provide proper selection of their path through
the mesh.

The microcontroller may control the reconfigurable data­
flow processor by loading an image file defining program­
ming of the switches and selection of the functions of the
functional units.

It is thus a feature of at least one embodiment of the 10

4
The microcontroller may further issue barrier commands

to the stream processor defining a necessary completion
order of memory accesses before and after the barrier
command.

It is thus a feature of at least one embodiment of the
invention to provide a simple mechanism for limiting par­
allelism when necessary to avoid race conditions or prob­
lems with data dependencies.

The computer architecture may further include a scratch­
pad memory communicating with the stream processor to
read data from the memory or write data to the memory as
controlled by the stream processor.

invention to provide extremely rapid change in configuration
of the dataflow processor without the need for compilation.

The microcontroller may be a von Neumann, single-issue,
in-order core.

It is thus a feature of at least one embodiment of the
invention to eliminate unnecessary memory accesses for

15 improved execution speed.
It is thus a feature of at least one embodiment of the

invention to provide a flexible circuit for coordinating the
elements of the accelerator that requires low-power and
small chip areas and that, in some situations, can be used to
execute a larger instruction set than possible with the data- 20

flow processor.
The microcontroller may be further adapted to receive

instructions and data from the primary processor to execute
logical and arithmetic instructions in response to the instruc­
tions and data to return data to the primary processor without 25

involvement of the stream processor or the reconfigurable
dataflow processor.

It is thus a feature of at least one embodiment of the
invention to allow the use of the microcontroller without the
dataflow processor for certain tasks.

The stream processor may provide pre-defined memory
access patterns including a linear access pattern of contigu-

30

ous addresses between two memory addresses and a strided
access pattern of regularly spaced discontiguous addresses

35
between two memory addresses.

The computer architecture may include a single memory
interface shared by the scratchpad memory and the recon­
figurable dataflow processor.

It is thus a feature of at least one embodiment of the
invention to simplify the elemental component of the accel­
erator while still allowing high-bandwidth communication
with memory among the dataflow processors.

The microcontroller may respond to predetermined
instructions to provide information about the number and
type of functional units in the reconfigurable dataflow pro­
cessor.

These particular objects and advantages may apply to
only some embodiments falling within the claims and thus
do not define the scope of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of a processor system employ­
ing the reconfigurable application-specific accelerator of the
present invention and providing an expanded detail of the
accelerator comprised of multiple stream-dataflow proces­
sors; It is thus a feature of at least one embodiment of the

invention to provide memory access patterns commonly
used in application-specific acceleration.

The stream processor may use data obtained with the
pre-defined memory access patterns as addresses of data to
be used as the multiple input values provided to the recon­
figurable dataflow processor.

FIG. 2 is a detailed block diagram of a single stream­
dataflow processor showing the combination of a light-

40 weight core with a dataflow mesh, scratchpad memory and

It is thus a feature of at least one embodiment of the
invention to provide for indirect addressing implementing
pointer-type functionality.

The stream processor may operate autonomously with
respect to the microcontroller after progranmiing by the
microcontroller.

stream processor;
FIG. 3 is a detailed block diagram of the dataflow mesh

showing implementation of a simple dataflow graph;
FIG. 4 is a timing diagram showing processing of a stream

45 of data using the dataflow graph of FIG. 3 such as provides
a high degree of parallelism;

FIG. 5 is a schematic representation of predetermined
memory access patterns that can be implemented by the
stream processor, and

It is thus a feature of at least one embodiment of the 50 FIG. 6 is a block diagram of a processor system using a
general-purpose core and the dataflow processor of FIG. 3
directly.

invention to provide extremely fast memory access opera­
tions possible with a dedicated state machine or similar
design permitting the dataflow processor to be efficiently
focused on calculations only.

The reconfigurable dataflow processor may include input 55

and output buffers to decoupled access-execute operations
permitting operation asynchronously with respect to the
stream processor.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

Referring now to FIG. 1, a computer system 10 con­
structed according to the present invention may provide for
a high-performance, von Neumann processor 12, for It is thus a feature of at least one embodiment of the

invention to permit a decoupling between memory opera­
tions and calculations for improved parallelism.

The microcontroller may issue stream commands to the
stream processor defining a data source, a data destination,
and an access pattern of data.

It is thus a feature of at least one embodiment of the
invention to provide an extremely simple instruction set for
stream processing.

60 example, providing for out-of-order execution and specula­
tive execution of a rich instruction set of arithmetic and
logical instructions. Examples of such processors 12 include
those manufactured by the Intel Corporation under the trade
name of "i7" as well as similar devices manufactured by

65 Advanced Micro Devices, Inc. and ARM Ltd.
The processor 12 may include an L1 cache 14 for com­

munication with a memory system 16 providing a standard

US 11,853,244 B2
5

memory hierarchy including but not limited to additional
levels of cache 18 coupled with one or more layers of larger
scale memory 20, for example, composed of random access
memory (RAM), disk memory and the like.

The memory system 16 may store a program 22 for
execution by the computer system 10 such as may benefit
from hardware acceleration, for example, including vision
processing, machine learning, graph processing or the like.

The memory system 16 and the processor 12 may com­
municate with a reconfigurable hardware accelerator 24, for
example, by control lines 26 as well as address and data lines
23 allowing the processor 12 to enlist the hardware accel­
erator 24 for execution of portions of the program 22
amenable to acceleration. Using the control lines 26 and/or
data transferred through the memory system 16 by the
address and data lines 23, the processor 12 may offload
intense calculations having simple memory access patterns
to the hardware accelerator 24 for independent execution. In
this regard the processor 12 coordinates the beginning and
conclusion of that execution but may shut down or be used
for other tasks during that calculation. During operation, the
hardware accelerator 24 may independently access the
memory system 16 at the L2 cache in the manner of a
multicore processor autonomously without assistance of the
processor 12.

The memory system 16 may include a set of configuration
files 25 providing configuration images 27 that will be used
to program a specific application-specific calculation to be
performed by the hardware accelerator 24 for the desired
portions of the program 22. By loading different configura­
tion images 27, different application-specific calculations
may be optimized. These configuration images 27 may be
developed and standardize for particular applications, for
example, to provide different functionalities of conventional
application-specific accelerators using the current design of
the hardware accelerator 24. Generally the hardware accel­
erator 24 will be invoked using special instructions that will
be described below which may be generated by a compiler.

Referring now also to FIG. 2, the hardware accelerator 24
may include multiple independently operating processing
units 28 that each may receive portions of the program 22 to
operate in parallel. Each processing unit 28 includes a
lightweight core 30, a dataflow processor 32, a scratchpad
memory 34 and a stream processor 36. In one embodiment,
each of the lightweight core 30, dataflow processor 32,
scratchpad memory 34, and stream processor 36 of a given
processing unit 28 may share a common memory access
interface 40 to the memory system 16 to provide indepen­
dent and parallel memory access among the processing units
28.

Generally, the lightweight core 30 will be a von Neumann,
single-issue, in-order core without speculative execution.
Nevertheless, this lightweight core 30 will be able to handle
a wider range of different types of arithmetic and logical
instructions than the dataflow processor 32 and for this
reason may be used by the processor 12 for some types of
acceleration without involvement of the remainder of the
processing unit 28 including, for example, the data flow
processor 32. The lightweight core 30 will require much less
integrated circuit area than the processor 12 and will use
much less power. It will be appreciated that the lightweight
core may be any general purpose processor capable of
arithmetic and logical functions.

During typical operation, the lightweight core 30 will
issue instructions to the stream processor 36 to load a
configuration image 27 from the memory system 16 to
dataflow processor 32 that will configure the dataflow pro-

6
cessor 32 for the necessary calculations. The lightweight
core 30 will then issue instructions to the stream processor
36 which in turn will control the memory access interface 40
to obtain information necessary for calculation by the data­
flow processor 32 sending this data either directly to the
dataflow processor 32 or to a scratchpad memory 34.

The instructions provided by the lightweight core 30 to
the stream processor 36 will include: (1) configuration
instructions for configuring the dataflow processor 32 by

10 obtaining and loading and appropriate configuration image
27; (2) stream instructions for providing a stream of data to
the dataflow processor 32 without involvement of the light­
weight core 30 or the processor 12; and (3) barrier instruc­
tions used to enforce some degree of serialization of the

15 instructions executed by the processing unit 28 as will be
discussed below.

Referring now to FIG. 3, the dataflow processor 32 may
provide for a set of functional units 42 arranged in a mesh
33 formed by interconnecting switches 44. The switches 44

20 are arranged in logical columns extending from input points
46 to corresponding output points 48 to provide parallel data
paths therebetween. Switches 44 are also arranged in logical
rows joined by parallel data paths equal in width to the width
of the data paths of the logical columns. The functional units

25 42 are positioned logically between sets of four switches 44
in successive rows and colunms to communicate with each
of those switches 44 to receive data therefrom or provide
data thereto. Each switch 44 may therefore generally direct
data received at the switch 44 to a switch in an adjacent

30 colunm or in a lower adjacent row or to up to two lower
functional units 42.

The particular direction of data flow provided by the
switch 44 may be determined by a bit value in a mesh 33
configuration switch register 45 associated with the switches

35 44 determined by a particular configuration image 27 being
loaded. The data paths provided by the mesh 33 from an
input point 46 through successive switches 44 and functional
units 42 to an output point 48 will generally be equal to the
width of a computer word, for example, thirty-two or

40 sixty-four bits.
Each of the functional units 42 may implement one of

several arithmetic or logical functions but generally fewer
functions than provided by the lightweight core 30. For
example, a given functional unit 42 may implement one or

45 more of integer or floating-point multiplication, subtraction,
addition, etc.; and/or logical functions such as shift, com­
pare, bit wise AND, OR, etc.; and/or special-purpose func­
tions such as sigmoid function, transcendental functions, etc.
In addition, the functional units 42 may have a low-power or

50 off state when they are not being used drastically reducing
their power consumption. The functions that may be imple­
mented by each functional unit 42 may be different for
different functional units 42. This particular function pro­
vided by a functional unit 42 is determined by a bit value in

55 a mesh 33 configuration function register 47 associated with
each of the functional units 42 as set by a loaded configu­
ration image 27.

While generally the dataflow processor 32 may execute
independently from and asynchronously with respect to the

60 lightweight core 30, the data passing through the dataflow
processor 32 will be clocked, for example using a self­
contained clock element 35, to provide predictable execu­
tion. Specifically, data may flow through the mesh 33 of
functional units 42 and switches 44 to move generally

65 horizontally and/or downwardly by one step for each clock
cycle where a step may be data flow from an input point 46
to a switch 44, or from a switch 44 to a second switch 44,

US 11,853,244 B2
7

or from a switch 44 to an output point 48, or from a switch
44 to a functional unit 42, or from a functional unit 42 to a
switch 44. In this way, the coordination of operands to arrive
at functional units 42 as required by a calculation may be
controlled by the interposition of switches (or no-op func­
tional units) in the data path in an amount necessary to
obtain the desired delay. The necessary routing may be
predetermined and incorporated into the configuration
image 27 either manually or through use of a special
program (such as a complier) for generating configuration 10

images 27.
Generally, the dataflow processor 32 does not provide a

program counter or control flow instructions but rather the
control flow is determined by the interconnection of the 15
switches 44 and functional units 42. In addition, access to
register files or memories by the functional units 42 is not
required. Calculations occur as soon as operands are avail­
able within the constraint of the clocking which may occur
at high speed. The functional units 42 may be implemented
with dataflow circuitry or with iterating circuitry operating
at sufficient speed to complete calculations within one clock
cycle. The dataflow processor 32 thus provides extremely
fast calculation.

20

8
three circuits may operate independently (but for synchro­
nization through the memory access interface 40) for high
speed operation.

The stream processor 36 may also provide for the move­
ment of the data of a configuration image 27 to the mesh 33
configuration registers 45 and 47 of the dataflow processor
32 as is discussed below for configuration.

More specifically, and as mentioned briefly above, the
stream processor 36 operates according to configuration
instructions, stream instructions, and barrier instructions that
may be issued by the lightweight core 30. A configuration
instruction format is shown in Table I below.

Command Name

SD_Config

TABLE I

Configuration Instruction

Parameters

Configuration image
address, Size

Description

Set dataflow processor
configuration from
configuration image at
address

This instruction provides the stream processor 36 with the
starting address and size of a configuration image 27 in the
memory system 16 and operates to load the configuration
image 27 into the mesh 33 configuration registers 45 and 47.
This process will provide the desired configuration of the
mesh 33 of the dataflow processor 32 and the functions of
the functional units 42 needed for acceleration of the pro­
gram 22, for example, as triggered by the processor 12
communicating over the control lines 26 to the accelerator
24.

Each of the input points 46 and output points 48 of the 25

dataflow processor 32 are associated with a first-in, first-out
buffer 50 that may be filled asynchronously or emptied
asynchronously to the processing performed by the dataflow
processor 32 under the control of the stream processor 36.
The buffers 50 thus provide for parallel data acquisition and 30

data processing. In one embodiment, each buffer 50 may be
provide eight, sixty-four bits words, thus being 8x64 wide
and have an arbitrary depth. The invention also contemplates
that the different widths may be employed as desired.

35
Additional similar buffers 50' independent of input points 46
and output points 48 may be used for storing streaming
addresses for indirect loads and stores as will be discussed.
The input points 46 connect to the respective buffers 50
through an interconnect 41 providing fixed connections
allowing given input buffers 50 to communicate with one or
more of the first row of switches 44, with each switch 44
receiving data from only one of any of the buffers 50
according to a predefined interconnection pattern. Accord­
ingly, different 64-bit words from a given buffer 50 may be
forwarded to different switches 44.

The stream instructions (shown in Table II) provided by
the lightweight core 30 to the stream processor 36 generally
identify a source of data, destination data, and the data

40 pattern as follows:

In addition, the output points 48 connect to respective
buffers 50 through an interconnect 49 providing fixed con­
nections allowing given output points 48 to connect to one
or more output buffers 50, each output buffer receiving data
from only one of any of the output points 48 according to a
predefined interconnection pattern.

The stream processor 36 provides a simple state machine
that can move data autonomously between the memory
system 16 and another storage location once it receives
program instructions from the lightweight core 30. Gener­
ally the stream processor 36 will move input data from the
memory system 16 to either the scratchpad memory 34 or

45

50

55

Command Name

SD Mem_ Ser

SD Ser_ Port

SD Mem_ Port

the buffers 50, or from the scratchpad memory 34 to the
input buffers 50, or may move output data from the scratch­
pad memory 34 to the memory system 16, or from buffers
50 to the scratchpad memory 34 or the memory system 16

60 SD Const_Port

or another buffer 50 according to a predefined pattern. In this
regard, the stream processor 36 may provide for three
separate circuits, one for memory, one for scratchpad, and 65

one for controlling re-cycling of data from output port to
input port and also the generation of constant values. These

SD Chuck_Port

TABLE II

Stream Instructions

Parameters

Source Memory
Address, Access
Size, Stride
Length, Number of
Strides, Destination
Scratchpad Address

Description

Read from memory
system 16 to the
scratchpad memory 34
using the indicated
access pattern

Source Scratchpad Read from scratchpad
Address, Access Size, memory 34 to the
Stride Length, Number designated input
of Strides, Input point 46 using to the
Port Number indicated pattern
Source Memory Read from memory system
Address, Access 16 to the designated
Size, Stride input point 46 using the
Length, Number of indicated pattern
Strides, Input Port
Number
Constant Value,
Number of Elements,
Destination Port
Number
Number of Elements,
Source Port Number

Send a series of constant
values to the designated
input point 46

Eject a defined series of
values from a buffer 50 of
the designated output point
48

US 11,853,244 B2
9

TABLE II-continued

Stream Instructions

Command Name Parameters Description

SD Port_ Port Source Port Nwnber, Recirculate a defined
Number of elements, series of values from the
Destination Port designated output point 48
Number to tbe designated input

point 46.
SD Port_ Ser Source Port Nwnber, Write a defined series of

Number of elements, values from tbe designated
Destination Scratchpad output point 48 to
address. scratchpad memory 34

SD Port_ Mem Source Port Nwnber, Write from tbe designated
Access Size, Stride output point 48 to memory
Lengtb, Number of system 16 using tbe
Strides, Destination indicated pattern
Memory Address.

SD IndPort_ Port Indirect Port Number, Indirect load from memory
Offset Address, system 16 based on address
Destination Port data in designated indirect
Number output point 48 for storage

in designated destination
port

SD IndPort_ Mem Indirect Port Number, Indirect store to memory
Offset Address, system 16 based on address
Destination Port in indirect port from
Number designated output port

These instructions transfer data between storage locations
autonomously using a designated pattern as will be dis­
cussed below.

10

15

20

25

10
length equal to a nonzero value which describes a gap or
stride 66 in addresses between access portions 67 defined by
the access size.

Similarly, an overlapped axis pattern 68 may be invoked
by setting the access size to greater than the stride size which
signals an overlapping pattern. A repeated pattern 69 is
easily obtained by setting the stride length to zero with the
repetition being provided by the number of strides.

The lightweight core 30 may also provide for barrier
instructions to the stream processor 36 which block the
issuance of new memory access instructions until certain
previous instructions associated with a data storage resource
are complete. For example, a barrier instruction (shown in
Table III below) associated with a writing to the scratchpad
memory 34 will block subsequent writing to the scratchpad
memory 34 until all writings to the scratchpad memory 34
before the barrier instruction are completed. Barriers can
also be used to signal completion of the calculation to the
lightweight core 30.

Command Name

SD Bar_Scr_Rd

SD Bar_Scr_ Wr

TABLE III

Barrier Instructions

Parameters Description

Barrier for Scratchpad
Reads
Barrier for Scratchpad
Writes

Indirect addressing is possible using stored data (for 30

example, in a buffer 50') as an address value. In indirect
addressing, data, for example, from the streaming pattern, is
used as the address to obtain further data that is operated on

SD Bar_All Barrier to wait for all
commands completion

Referring now to FIGS. 3 and 4, an example calculation
may provide a data flow graph 70 receiving inputs at input
buffers 50 designated A, B and D communicating in this
example with single adjacent input points 46. Successive

by the functional units 42. This indirect addressing effects
pointers, useful, for example, when accessing the rows of a 35

sparse matrix. The stream processor 36 may provide capa­
bility to facilitate indirect access by chaining two streams
together, the first stream for accessing a contiguous or
strided pattern of pointers, and subsequent streams to load
those pointers' values from the memory system 16 and 40

deliver them to the reconfigurable dataflow processor 32.
Additional instructions are provided to generate constant
values (rather than loading these from memory) and to
discard unused output values (as opposed to loading them

45
into nonfunctional memory areas).

values from buffers 50 associated with ports A and B are
provided through appropriate switches 44 to a functional
unit 42a to be multiplied together. In the simplest case, the
necessary operands for a given cycle of calculations (being
one pass through the mesh 33 from input points 46 to output
points 48) are coordinated to be released from the buffers 50
into the mesh 33 at the same time. The release of operands
may be monitored by a simple ready-monitoring logic,
which knows when to trigger a fire signal based on the data
'size' configured for each buffer. The invention, however,

Generally each of these instructions may be issued
directly by the processor 12 as part of the instruction set
architecture of the accelerator and the data in these instruc-
tions used with minimal processing by the lightweight core
30 to control other components of the accelerator.

Referring now to FIG. 5, the stream processor 36 provides
a state machine for autonomous loading or writing data
between storage locations using simple patterns of memory
access. The simplest pattern is a linear pattern 60 that reads
(or writes) sequentially every memory address between a
starting address 62 and ending address 64 designated by the
instruction. This pattern is indicated by setting the stride
length equal to zero. The starting address is designated in the
above instructions as the source address for reads and the
destination address for writes while the ending address is
either the number of elements when the source is a port, or
a product of the access size times the stride length times the
number of strides added to the starting address when the
source is the memory or scratchpad.

Alternatively, the stream processor 36 may be pro­
grammed to use a strided pattern 65 by setting the stride

also contemplates that staggered release from the buffers 50
may be used as part of the synchronization of operands at
particular functional units 42 as they pass through the mesh

50 33. The output of functional unit 42a passes through appro­
priate switches to a functional unit 42b to be added to the
value of the buffer 50 associated with input point 46 desig­
nated D. Note that the data from buffers A and B pass
through the same number of switches 44 and functional units

55 42 before being received at functional unit 42b as the data
from port D is being received at the functional unit 42b
ensuring that the corresponding data in the buffers 50 are
processed in this calculation. The configuration image 27 for
each particular algorithm executed by the dataflow processor

60 32 is adjusted to ensure proper coordination of data flow
path lengths either manually or through the use of a program
such as a compiler. A compiler may operate by identifying
particular operations of the executed algorithm to sequential
time slices according to data dependencies of the data used

65 by the operations, ensuring that operations requiring data
dependent on earlier operations are in later time slices. The
path of data from an input port to each functional units 42

US 11,853,244 B2
11

associated with each of the operations (clock cycles through
switches 44 or functional units 42) may then be adjusted to
be equal. Thus, for example, for the addition operation at
functional unit 42a, the path of data from the buffers A, B
and D is made equal with the path from buffer A passing
through two switches 44 and one functional unit 42a (during
four clock cycles) as shown by a dotted line 43a, the path
from buffer B passing through two switches 44 and one
functional unit 42a (during four clock cycles) as shown by
a dotted line 43b, and the path from buffer D passing through 10

three switches 44 (during four clock cycles) as shown by a
dotted line 43c. A staggered or late release of operands from
the buffers 50 may be used to simulate additional clock
cycles in some versions of the invention.

Upon completion of the addition at functional unit 42b, 15

the output passes to output buffer 50 designated G.
Generally this process will be repeated for multiple data

value stored in the input ports A and B. Each multiplication
at functional unit 42a being performed concurrently with
additions at functional unit 42b in the manner of a pipeline 20

and providing for high throughput.
Referring now to FIG. 4, this calculation may be imple­

mented through eight instructions issued from the light­
weight core 30 designated in FIG. 4 as instructions (Cl-CS).
As depicted, these instructions will be enqueued, dispatched 25

and completed at different times indicated on the horizontal
scale. Before the calculation, the dataflow processor 32 is
configured by configuration instructions (not shown in this
example). Once all of the instructions have been enqueued,
the lightweight core 30 may be put into an idle state at time 30

71.

12
instruction CS and signaling to the lightweight core 30 that
the calculation is complete so that new instructions may be
received from the lightweight core 30. The "all" barrier of
instruction CS is released when all of the buffers 50 are
empty detected by hardware.

During the processing of instruction (C4), after loading
port B from memory, a second instruction (C7) may be
enqueued also loading from memory system 16 to Port B. A
natural barrier is created in the circumstances by the stream
processor 36 which serializes loading of buffer 50 intrinsi­
cally.

Also note that the second stream for instruction (C7) for
loading data into buffer B may not have the same access
pattern as the previous one. Also, its type (e.g., source or
destination) can be different as well. More generally, the
stream commands for a given buffer 50 can change while the
dataflow architecture and other stream commands are
actively being processed. This leads to more progranmiing
flexibility and parallelism.

It will be appreciated that substantial parallelism is
obtained in this processing provided by the dataflow pro­
cessor 32 based on the overlapping line segments indicated
in FIG. 4. This, combined with the parallelism obtained by
having multiple data flow processors 28 that may be enlisted
by the processor 12, permits extremely fast processing.

Referring now to FIG. 6, it will be appreciated that the
element of the dataflow processor 32 may also be used
independently of the stream processor 36, scratchpad
memory 34 and lightweight core 30 by having the processor
12 directly handle memory accesses and load and read the
buffers 50 as well as provide the memory image files to
configure the switches 44 and functional units 42 This
configuration greatly simplifies the architecture; however, it
requires the processor 12 to handle memory access patterns.

The first instruction (Cl) provides a transfer from
memory system 16 to the scratchpad memory 34 of data that
will ultimately used to load the buffer 50 of port A. This
instruction begins executing immediately after it is
enqueued. Is important that the scratchpad memory not be
read until it is fully loaded and accordingly the next instruc­
tion (C2) provides a scratchpad memory read barrier ensur-

35 This additional duty performed by the processor 12 may still
be efficient when there are long computational runs. In this
case the buffers 50 may also be increased in size to con­
solidate memory access operations.

The lightweight core 30 may also expose hardware ing that there is no reading of the scratchpad memory 34
until instruction (Cl) is complete. Accordingly instruction
(C3), which provides a reading of the scratchpad memory 34
into port A, is delayed until completion of instruction (Cl)
at time 74. The barrier instructions may be simply enforced
by stalling subsequent commands from the dataflow proces­
sor 32 related to the barrier condition allowing all previous
commands to proceed in parallel.

40 parameters of the hardware accelerator 24 including a num­
ber and type of functional units 42, a depth of buffers 50 and
50', the size of the scratchpad memory 34, and the longest
recurrence (recycling) of data through the dataflow proces­
sor 32 for use by a compiler as is generally understood in the

45 art.

The barrier instruction (C2) does not block instruction
(C4) reading memory to the buffer of port B because there
is no conflicted resource. Accordingly this transfer process
may begin before and continue in parallel with the transfer 50

process of instruction (C3). Similarly transfer from memory
system 16 to port D may be performed shortly after this
instruction is enqueued.

At time 76 values will be present in each of ports A, B,
and D allowing the dataflow processor 32 to begin calcula- 55

tion and these values to be released from their buffers 50.
These calculations performed by the dataflow processor 32
will be repeated using successive values in each of the
buffers 50 of the input points 46 and provide new calculated
values into the output buffers 50 of the output points 48 as 60

indicated by processing cycles 78.
Once the first processing cycle 78 is completed, at time

80, a writing from the output buffer of port G to memory
system 16 may begin.

After the conclusion of all processing cycles 78 for the 65

data held in the buffers 50, at time 82, the writing from port
G to memory system 16 concludes releasing the barrier of

As used herein, predefined memory access pattern means
a limited number of patterns that may be defined prior to the
calculation for which the memory accesses require to be
performed as opposed to memory access patterns that are a
function of calculations made. Autonomous as is used herein
means without necessary further guidance by the micro core
or the data fabric.

Certain terminology is used herein for purposes of refer­
ence only, and thus is not intended to be limiting. For
example, terms such as "upper", "lower", "above", and
"below" refer to directions in the drawings to which refer­
ence is made. Terms such as "front", "back", "rear", "bot­
tom" and "side", describe the orientation of portions of the
component within a consistent but arbitrary frame of refer­
ence which is made clear by reference to the text and the
associated drawings describing the component under dis­
cussion. Such terminology may include the words specifi­
cally mentioned above, derivatives thereof, and words of
similar import. Similarly, the terms "first", "second" and
other such numerical terms referring to structures do not
imply a sequence or order unless clearly indicated by the
context.

US 11,853,244 B2
13

When introducing elements or features of the present
disclosure and the exemplary embodiments, the articles "a",
"an", "the" and "said" are intended to mean that there are
one or more of such elements or features. The terms "com­
prising", "including" and "having" are intended to be inclu­
sive and mean that there may be additional elements or
features other than those specifically noted. It is further to be
understood that the method steps, processes, and operations
described herein are not to be construed as necessarily
requiring their performance in the particular order discussed 10

or illustrated, unless specifically identified as an order of
performance. It is also to be understood that additional or
alternative steps may be employed.

References to microcontroller should be understood to
include any circuit capable of executing the functions 15

described herein including but not necessarily limited to von
Neumami architectures.

It is specifically intended that the present invention not be
limited to the embodiments and illustrations contained
herein and the claims should be understood to include 20

modified forms of those embodiments including portions of
the embodiments and combinations of elements of different
embodiments as come within the scope of the following
claims. All of the publications described herein, including
patents and non-patent publications, are hereby incorporated 25

herein by reference in their entireties.

What we claim is:
1. A data flow computer architecture comprising:

14
the interconnection providing paths from input ports
through functional units to output ports determined by
the switch programming;

a clock requiring synchronous movement of data among
functional units and progranimable switches by one
step for each clock cycle, a step being from a functional
unit to a switch or from a switch to a functional unit;
and

a configuration store holding data configuring the inter­
connection of the functional units and the arithmetic
functions of the functional units to execute a predeter­
mined program in which data received at the input ports
is clocked through the functional units and program­
mable switches to the output ports to implement a
sequence of arithmetic functions on the data;

wherein the functional units operate so that calculations
occur as soon as operands are available at the func­
tional units and so that memories for storing operands
at the functional units are not required, and wherein the
configuration store defines paths of data through the
dataflow processor ensuring corresponding operands
arrive at the same time at each functional unit accord­
ing to the program by adjusting the path of data through
the dataflow processor without a need for additional
buffer storage elements.

2. The dataflow computer architecture of claim 1 further
including a set of buffers associated with input ports of the
dataflow processor, the buffers synchronized with the clock
to release data to the input ports at times adapted to ensure a dataflow processor providing set of functional units and

programmable switches interconnecting the functional
units between input ports receiving input values and
output ports providing output values, the functional
units providing programmable arithmetic functions and

30 corresponding operands arrive at the same time at each
functional unit according to the program and the configu-
ration store.

* * * * *

