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(57) ABSTRACT 

A reconfigurable hardware accelerator for computers com­
bines a high-speed dataflow processor, having program­
mable functional units rapidly reconfigured in a network of 
programmable switches, with a stream processor that may 
autonomously access memory in predefined access patterns 
after receiving simple stream instructions. The result is a 
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compact, high-speed processor that may exploit parallelism 
associated with many application-specific programs suscep­
tible to acceleration. 

2 Claims, 4 Drawing Sheets 
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RECONFIGURABLE COMPUTER 
ACCELERATOR PROVIDING STREAM 

PROCESSOR AND DATAFLOW PROCESSOR 

STATEMENT REGARDING FEDERALLY 
SPONSORED RESEARCH OR DEVELOPMENT 

2 
compet1t1ve with application-specific accelerators while 
avoiding the drawbacks associated with special-purpose 
hardware. 

This invention was made with government support under 
CNS1218432 awarded by the National Science Foundation. 
The government has certain rights in the invention. 

CROSS REFERENCE TO RELATED 
APPLICATION 

Accordingly, in one embodiment, the invention provides 
a reconfigurable accelerator architecture including: (1) a 
microcontroller adapted to receive instructions and data to 
control other components of the accelerator; (2) a stream 
processor receiving instructions from the microcontroller to 
autonomously read multiple input values stored in memory 

10 according to a selected set of predefined memory access 
patterns and to autonomously write multiple output values 
from the accelerator to memory according to a selected set 
of predefined memory access patterns; and (3) a reconfig-

BACKGROUND OF THE INVENTION 

15 urable dataflow processor configured by the microcontroller 
to receive the multiple input values to provide output values 
based on that configuration. 

It is thus a feature of at least one embodiment of the 
invention to implement the common functions of fixed The present invention relates to electronic computer 

architectures and in particular to an application-specific 
computer accelerator that can be reconfigured for different 
applications. 

The need for increased computer processing speed and 
improved energy efficiency has motivated the development 

20 special-purpose accelerators in a reconfigurable accelerator 
that can implement the function of many special-purpose 
accelerators. Current simulations suggest the architecture of 
the present invention can match performance of special­
purpose accelerators, providing the advantage of versatility 

25 with tolerably small increases in power consumption and 
circuit area. 

of data-parallel architectures like single instruction multiple 
data (SIMD) machines and general-purpose graphic pro­
cessing units (GPGPU) machines that can replace general­
purpose von Neumann type processors for many applica­
tions. For even more demanding applications such as 
machine learning and computer vision, these general-pur­
pose data-parallel architectures may be replaced with appli­
cation-specific accelerators such as the Microsoft Catapult 
FPGA accelerator, for use in data centers, and Google's 
Tensor processing unit for distributed machine learning. 
These application-specific accelerators are normally teamed 35 

with a general purpose, high-performance von Neumann 
processor, for example, implementing advanced architec­
tural features including out-of-order execution and specula-

The reconfigurable dataflow processor may provide a set 
of progranimable switches interconnecting functional units 
in a mesh between input ports receiving input values and 

30 output ports providing output values, the functional units 
providing selectable multiple arithmetic functions, the mesh 
providing paths from input ports through functional units to 
output ports determined by the switch programming. 

tive execution. 
The special-purpose hardware used in these application- 40 

specific accelerators adversely affects the implementation of 
new processing algorithms. This is because new algorithms, 
as executed on the special-purpose hardware of an accel­
erator, normally require a costly redesign and verification of 
a new architecture. In addition, the narrow functionality of 45 

application-specific accelerators limits their value in com­
puter systems where a wide range of applications must be 
implemented. Finally, to the extent that such application­
specific accelerators address niche markets, they may not 
attract academic interest such as promotes analysis and 50 

improvement in these architectures. 

SUMMARY OF THE INVENTION 

The present inventors have recognized that, despite the 55 

wide variety of application-specific accelerators, there are 
certain common features of the software they execute. 
Specifically, software executed by application-specific 
accelerators tends to have simple memory and reuse patterns 
and high computational intensity in long phases. This in turn 60 

suggests that a "general-purpose" application-specific accel­
erator could be constructed by combining a stream processor 
that can automatically handle simple memory access pat­
terns with a fast, efficient processor for handling computa­
tional intensity. This latter processing requirement can be 65 

met by a dataflow processor adapted to be quickly recon­
figured. The result is a general-purpose accelerator that is 

It is thus a feature of at least one embodiment of the 
invention to provide a high-speed data flow processor com­
parable in speed to those found in fixed purpose accelerators 
and yet rapidly re-reprogrammable, for example, through the 
use of image files setting the switches and configuring the 
functional units. 

The mesh may provide direct interconnections between 
switches and functional units and direct interconnections 
between switches. 

It is thus a feature of at least one embodiment of the 
invention to provide a versatile mesh that may both inter­
connect functional units and bypass functional units. 

The mesh may provide for at least thirty-two parallel data 
lines, for example, as many as sixty-four parallel data lines, 
between switches and between switches and functional 
units. 

It is thus a feature of at least one embodiment of the 
invention to provide rapid communication of large data 
words consistent with current processing architectures. 

The functional units may provide different selections of 
arithmetic and logical operations. 

It is thus a feature of at least one embodiment of the 
invention to permit the use of heterogeneous functional units 
allowing a flexible trade-off between versatility and chip 
area. 

The functional units may operate in parallel. 
It is thus a feature of at least one embodiment of the 

invention to provide a high degree of parallelism in the 
computational engine. 

The data flow between functional units may be deter­
mined by switch settings and the dataflow processor may 
further include a clock permitting the moving of data 
between switches by one switch or between functional units 
by one functional unit for each clock cycle. 



US 11,853,244 B2 
3 

It is thus a feature of at least one embodiment of the 
invention to provide a clocking function to allow operands 
of multistage calculations to be coordinated through switch 
settings that provide proper selection of their path through 
the mesh. 

The microcontroller may control the reconfigurable data­
flow processor by loading an image file defining program­
ming of the switches and selection of the functions of the 
functional units. 

It is thus a feature of at least one embodiment of the 10 

4 
The microcontroller may further issue barrier commands 

to the stream processor defining a necessary completion 
order of memory accesses before and after the barrier 
command. 

It is thus a feature of at least one embodiment of the 
invention to provide a simple mechanism for limiting par­
allelism when necessary to avoid race conditions or prob­
lems with data dependencies. 

The computer architecture may further include a scratch­
pad memory communicating with the stream processor to 
read data from the memory or write data to the memory as 
controlled by the stream processor. 

invention to provide extremely rapid change in configuration 
of the dataflow processor without the need for compilation. 

The microcontroller may be a von Neumann, single-issue, 
in-order core. 

It is thus a feature of at least one embodiment of the 
invention to eliminate unnecessary memory accesses for 

15 improved execution speed. 
It is thus a feature of at least one embodiment of the 

invention to provide a flexible circuit for coordinating the 
elements of the accelerator that requires low-power and 
small chip areas and that, in some situations, can be used to 
execute a larger instruction set than possible with the data- 20 

flow processor. 
The microcontroller may be further adapted to receive 

instructions and data from the primary processor to execute 
logical and arithmetic instructions in response to the instruc­
tions and data to return data to the primary processor without 25 

involvement of the stream processor or the reconfigurable 
dataflow processor. 

It is thus a feature of at least one embodiment of the 
invention to allow the use of the microcontroller without the 
dataflow processor for certain tasks. 

The stream processor may provide pre-defined memory 
access patterns including a linear access pattern of contigu-

30 

ous addresses between two memory addresses and a strided 
access pattern of regularly spaced discontiguous addresses 

35 
between two memory addresses. 

The computer architecture may include a single memory 
interface shared by the scratchpad memory and the recon­
figurable dataflow processor. 

It is thus a feature of at least one embodiment of the 
invention to simplify the elemental component of the accel­
erator while still allowing high-bandwidth communication 
with memory among the dataflow processors. 

The microcontroller may respond to predetermined 
instructions to provide information about the number and 
type of functional units in the reconfigurable dataflow pro­
cessor. 

These particular objects and advantages may apply to 
only some embodiments falling within the claims and thus 
do not define the scope of the invention. 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1 is a block diagram of a processor system employ­
ing the reconfigurable application-specific accelerator of the 
present invention and providing an expanded detail of the 
accelerator comprised of multiple stream-dataflow proces­
sors; It is thus a feature of at least one embodiment of the 

invention to provide memory access patterns commonly 
used in application-specific acceleration. 

The stream processor may use data obtained with the 
pre-defined memory access patterns as addresses of data to 
be used as the multiple input values provided to the recon­
figurable dataflow processor. 

FIG. 2 is a detailed block diagram of a single stream­
dataflow processor showing the combination of a light-

40 weight core with a dataflow mesh, scratchpad memory and 

It is thus a feature of at least one embodiment of the 
invention to provide for indirect addressing implementing 
pointer-type functionality. 

The stream processor may operate autonomously with 
respect to the microcontroller after progranmiing by the 
microcontroller. 

stream processor; 
FIG. 3 is a detailed block diagram of the dataflow mesh 

showing implementation of a simple dataflow graph; 
FIG. 4 is a timing diagram showing processing of a stream 

45 of data using the dataflow graph of FIG. 3 such as provides 
a high degree of parallelism; 

FIG. 5 is a schematic representation of predetermined 
memory access patterns that can be implemented by the 
stream processor, and 

It is thus a feature of at least one embodiment of the 50 FIG. 6 is a block diagram of a processor system using a 
general-purpose core and the dataflow processor of FIG. 3 
directly. 

invention to provide extremely fast memory access opera­
tions possible with a dedicated state machine or similar 
design permitting the dataflow processor to be efficiently 
focused on calculations only. 

The reconfigurable dataflow processor may include input 55 

and output buffers to decoupled access-execute operations 
permitting operation asynchronously with respect to the 
stream processor. 

DETAILED DESCRIPTION OF THE 
PREFERRED EMBODIMENT 

Referring now to FIG. 1, a computer system 10 con­
structed according to the present invention may provide for 
a high-performance, von Neumann processor 12, for It is thus a feature of at least one embodiment of the 

invention to permit a decoupling between memory opera­
tions and calculations for improved parallelism. 

The microcontroller may issue stream commands to the 
stream processor defining a data source, a data destination, 
and an access pattern of data. 

It is thus a feature of at least one embodiment of the 
invention to provide an extremely simple instruction set for 
stream processing. 

60 example, providing for out-of-order execution and specula­
tive execution of a rich instruction set of arithmetic and 
logical instructions. Examples of such processors 12 include 
those manufactured by the Intel Corporation under the trade 
name of "i7" as well as similar devices manufactured by 

65 Advanced Micro Devices, Inc. and ARM Ltd. 
The processor 12 may include an L1 cache 14 for com­

munication with a memory system 16 providing a standard 
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memory hierarchy including but not limited to additional 
levels of cache 18 coupled with one or more layers of larger 
scale memory 20, for example, composed of random access 
memory (RAM), disk memory and the like. 

The memory system 16 may store a program 22 for 
execution by the computer system 10 such as may benefit 
from hardware acceleration, for example, including vision 
processing, machine learning, graph processing or the like. 

The memory system 16 and the processor 12 may com­
municate with a reconfigurable hardware accelerator 24, for 
example, by control lines 26 as well as address and data lines 
23 allowing the processor 12 to enlist the hardware accel­
erator 24 for execution of portions of the program 22 
amenable to acceleration. Using the control lines 26 and/or 
data transferred through the memory system 16 by the 
address and data lines 23, the processor 12 may offload 
intense calculations having simple memory access patterns 
to the hardware accelerator 24 for independent execution. In 
this regard the processor 12 coordinates the beginning and 
conclusion of that execution but may shut down or be used 
for other tasks during that calculation. During operation, the 
hardware accelerator 24 may independently access the 
memory system 16 at the L2 cache in the manner of a 
multicore processor autonomously without assistance of the 
processor 12. 

The memory system 16 may include a set of configuration 
files 25 providing configuration images 27 that will be used 
to program a specific application-specific calculation to be 
performed by the hardware accelerator 24 for the desired 
portions of the program 22. By loading different configura­
tion images 27, different application-specific calculations 
may be optimized. These configuration images 27 may be 
developed and standardize for particular applications, for 
example, to provide different functionalities of conventional 
application-specific accelerators using the current design of 
the hardware accelerator 24. Generally the hardware accel­
erator 24 will be invoked using special instructions that will 
be described below which may be generated by a compiler. 

Referring now also to FIG. 2, the hardware accelerator 24 
may include multiple independently operating processing 
units 28 that each may receive portions of the program 22 to 
operate in parallel. Each processing unit 28 includes a 
lightweight core 30, a dataflow processor 32, a scratchpad 
memory 34 and a stream processor 36. In one embodiment, 
each of the lightweight core 30, dataflow processor 32, 
scratchpad memory 34, and stream processor 36 of a given 
processing unit 28 may share a common memory access 
interface 40 to the memory system 16 to provide indepen­
dent and parallel memory access among the processing units 
28. 

Generally, the lightweight core 30 will be a von Neumann, 
single-issue, in-order core without speculative execution. 
Nevertheless, this lightweight core 30 will be able to handle 
a wider range of different types of arithmetic and logical 
instructions than the dataflow processor 32 and for this 
reason may be used by the processor 12 for some types of 
acceleration without involvement of the remainder of the 
processing unit 28 including, for example, the data flow 
processor 32. The lightweight core 30 will require much less 
integrated circuit area than the processor 12 and will use 
much less power. It will be appreciated that the lightweight 
core may be any general purpose processor capable of 
arithmetic and logical functions. 

During typical operation, the lightweight core 30 will 
issue instructions to the stream processor 36 to load a 
configuration image 27 from the memory system 16 to 
dataflow processor 32 that will configure the dataflow pro-

6 
cessor 32 for the necessary calculations. The lightweight 
core 30 will then issue instructions to the stream processor 
36 which in turn will control the memory access interface 40 
to obtain information necessary for calculation by the data­
flow processor 32 sending this data either directly to the 
dataflow processor 32 or to a scratchpad memory 34. 

The instructions provided by the lightweight core 30 to 
the stream processor 36 will include: (1) configuration 
instructions for configuring the dataflow processor 32 by 

10 obtaining and loading and appropriate configuration image 
27; (2) stream instructions for providing a stream of data to 
the dataflow processor 32 without involvement of the light­
weight core 30 or the processor 12; and (3) barrier instruc­
tions used to enforce some degree of serialization of the 

15 instructions executed by the processing unit 28 as will be 
discussed below. 

Referring now to FIG. 3, the dataflow processor 32 may 
provide for a set of functional units 42 arranged in a mesh 
33 formed by interconnecting switches 44. The switches 44 

20 are arranged in logical columns extending from input points 
46 to corresponding output points 48 to provide parallel data 
paths therebetween. Switches 44 are also arranged in logical 
rows joined by parallel data paths equal in width to the width 
of the data paths of the logical columns. The functional units 

25 42 are positioned logically between sets of four switches 44 
in successive rows and colunms to communicate with each 
of those switches 44 to receive data therefrom or provide 
data thereto. Each switch 44 may therefore generally direct 
data received at the switch 44 to a switch in an adjacent 

30 colunm or in a lower adjacent row or to up to two lower 
functional units 42. 

The particular direction of data flow provided by the 
switch 44 may be determined by a bit value in a mesh 33 
configuration switch register 45 associated with the switches 

35 44 determined by a particular configuration image 27 being 
loaded. The data paths provided by the mesh 33 from an 
input point 46 through successive switches 44 and functional 
units 42 to an output point 48 will generally be equal to the 
width of a computer word, for example, thirty-two or 

40 sixty-four bits. 
Each of the functional units 42 may implement one of 

several arithmetic or logical functions but generally fewer 
functions than provided by the lightweight core 30. For 
example, a given functional unit 42 may implement one or 

45 more of integer or floating-point multiplication, subtraction, 
addition, etc.; and/or logical functions such as shift, com­
pare, bit wise AND, OR, etc.; and/or special-purpose func­
tions such as sigmoid function, transcendental functions, etc. 
In addition, the functional units 42 may have a low-power or 

50 off state when they are not being used drastically reducing 
their power consumption. The functions that may be imple­
mented by each functional unit 42 may be different for 
different functional units 42. This particular function pro­
vided by a functional unit 42 is determined by a bit value in 

55 a mesh 33 configuration function register 47 associated with 
each of the functional units 42 as set by a loaded configu­
ration image 27. 

While generally the dataflow processor 32 may execute 
independently from and asynchronously with respect to the 

60 lightweight core 30, the data passing through the dataflow 
processor 32 will be clocked, for example using a self­
contained clock element 35, to provide predictable execu­
tion. Specifically, data may flow through the mesh 33 of 
functional units 42 and switches 44 to move generally 

65 horizontally and/or downwardly by one step for each clock 
cycle where a step may be data flow from an input point 46 
to a switch 44, or from a switch 44 to a second switch 44, 
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or from a switch 44 to an output point 48, or from a switch 
44 to a functional unit 42, or from a functional unit 42 to a 
switch 44. In this way, the coordination of operands to arrive 
at functional units 42 as required by a calculation may be 
controlled by the interposition of switches ( or no-op func­
tional units) in the data path in an amount necessary to 
obtain the desired delay. The necessary routing may be 
predetermined and incorporated into the configuration 
image 27 either manually or through use of a special 
program (such as a complier) for generating configuration 10 

images 27. 
Generally, the dataflow processor 32 does not provide a 

program counter or control flow instructions but rather the 
control flow is determined by the interconnection of the 15 
switches 44 and functional units 42. In addition, access to 
register files or memories by the functional units 42 is not 
required. Calculations occur as soon as operands are avail­
able within the constraint of the clocking which may occur 
at high speed. The functional units 42 may be implemented 
with dataflow circuitry or with iterating circuitry operating 
at sufficient speed to complete calculations within one clock 
cycle. The dataflow processor 32 thus provides extremely 
fast calculation. 

20 

8 
three circuits may operate independently (but for synchro­
nization through the memory access interface 40) for high 
speed operation. 

The stream processor 36 may also provide for the move­
ment of the data of a configuration image 27 to the mesh 33 
configuration registers 45 and 47 of the dataflow processor 
32 as is discussed below for configuration. 

More specifically, and as mentioned briefly above, the 
stream processor 36 operates according to configuration 
instructions, stream instructions, and barrier instructions that 
may be issued by the lightweight core 30. A configuration 
instruction format is shown in Table I below. 

Command Name 

SD_Config 

TABLE I 

Configuration Instruction 

Parameters 

Configuration image 
address, Size 

Description 

Set dataflow processor 
configuration from 
configuration image at 
address 

This instruction provides the stream processor 36 with the 
starting address and size of a configuration image 27 in the 
memory system 16 and operates to load the configuration 
image 27 into the mesh 33 configuration registers 45 and 47. 
This process will provide the desired configuration of the 
mesh 33 of the dataflow processor 32 and the functions of 
the functional units 42 needed for acceleration of the pro­
gram 22, for example, as triggered by the processor 12 
communicating over the control lines 26 to the accelerator 
24. 

Each of the input points 46 and output points 48 of the 25 

dataflow processor 32 are associated with a first-in, first-out 
buffer 50 that may be filled asynchronously or emptied 
asynchronously to the processing performed by the dataflow 
processor 32 under the control of the stream processor 36. 
The buffers 50 thus provide for parallel data acquisition and 30 

data processing. In one embodiment, each buffer 50 may be 
provide eight, sixty-four bits words, thus being 8x64 wide 
and have an arbitrary depth. The invention also contemplates 
that the different widths may be employed as desired. 

35 
Additional similar buffers 50' independent of input points 46 
and output points 48 may be used for storing streaming 
addresses for indirect loads and stores as will be discussed. 
The input points 46 connect to the respective buffers 50 
through an interconnect 41 providing fixed connections 
allowing given input buffers 50 to communicate with one or 
more of the first row of switches 44, with each switch 44 
receiving data from only one of any of the buffers 50 
according to a predefined interconnection pattern. Accord­
ingly, different 64-bit words from a given buffer 50 may be 
forwarded to different switches 44. 

The stream instructions (shown in Table II) provided by 
the lightweight core 30 to the stream processor 36 generally 
identify a source of data, destination data, and the data 

40 pattern as follows: 

In addition, the output points 48 connect to respective 
buffers 50 through an interconnect 49 providing fixed con­
nections allowing given output points 48 to connect to one 
or more output buffers 50, each output buffer receiving data 
from only one of any of the output points 48 according to a 
predefined interconnection pattern. 

The stream processor 36 provides a simple state machine 
that can move data autonomously between the memory 
system 16 and another storage location once it receives 
program instructions from the lightweight core 30. Gener­
ally the stream processor 36 will move input data from the 
memory system 16 to either the scratchpad memory 34 or 

45 

50 

55 

Command Name 

SD Mem_ Ser 

SD Ser_ Port 

SD Mem_ Port 

the buffers 50, or from the scratchpad memory 34 to the 
input buffers 50, or may move output data from the scratch­
pad memory 34 to the memory system 16, or from buffers 
50 to the scratchpad memory 34 or the memory system 16 

60 SD Const_Port 

or another buffer 50 according to a predefined pattern. In this 
regard, the stream processor 36 may provide for three 
separate circuits, one for memory, one for scratchpad, and 65 

one for controlling re-cycling of data from output port to 
input port and also the generation of constant values. These 

SD Chuck_Port 

TABLE II 

Stream Instructions 

Parameters 

Source Memory 
Address, Access 
Size, Stride 
Length, Number of 
Strides, Destination 
Scratchpad Address 

Description 

Read from memory 
system 16 to the 
scratchpad memory 34 
using the indicated 
access pattern 

Source Scratchpad Read from scratchpad 
Address, Access Size, memory 34 to the 
Stride Length, Number designated input 
of Strides, Input point 46 using to the 
Port Number indicated pattern 
Source Memory Read from memory system 
Address, Access 16 to the designated 
Size, Stride input point 46 using the 
Length, Number of indicated pattern 
Strides, Input Port 
Number 
Constant Value, 
Number of Elements, 
Destination Port 
Number 
Number of Elements, 
Source Port Number 

Send a series of constant 
values to the designated 
input point 46 

Eject a defined series of 
values from a buffer 50 of 
the designated output point 
48 



US 11,853,244 B2 
9 

TABLE II-continued 

Stream Instructions 

Command Name Parameters Description 

SD Port_ Port Source Port Nwnber, Recirculate a defined 
Number of elements, series of values from the 
Destination Port designated output point 48 
Number to tbe designated input 

point 46. 
SD Port_ Ser Source Port Nwnber, Write a defined series of 

Number of elements, values from tbe designated 
Destination Scratchpad output point 48 to 
address. scratchpad memory 34 

SD Port_ Mem Source Port Nwnber, Write from tbe designated 
Access Size, Stride output point 48 to memory 
Lengtb, Number of system 16 using tbe 
Strides, Destination indicated pattern 
Memory Address. 

SD IndPort_ Port Indirect Port Number, Indirect load from memory 
Offset Address, system 16 based on address 
Destination Port data in designated indirect 
Number output point 48 for storage 

in designated destination 
port 

SD IndPort_ Mem Indirect Port Number, Indirect store to memory 
Offset Address, system 16 based on address 
Destination Port in indirect port from 
Number designated output port 

These instructions transfer data between storage locations 
autonomously using a designated pattern as will be dis­
cussed below. 

10 

15 

20 
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10 
length equal to a nonzero value which describes a gap or 
stride 66 in addresses between access portions 67 defined by 
the access size. 

Similarly, an overlapped axis pattern 68 may be invoked 
by setting the access size to greater than the stride size which 
signals an overlapping pattern. A repeated pattern 69 is 
easily obtained by setting the stride length to zero with the 
repetition being provided by the number of strides. 

The lightweight core 30 may also provide for barrier 
instructions to the stream processor 36 which block the 
issuance of new memory access instructions until certain 
previous instructions associated with a data storage resource 
are complete. For example, a barrier instruction (shown in 
Table III below) associated with a writing to the scratchpad 
memory 34 will block subsequent writing to the scratchpad 
memory 34 until all writings to the scratchpad memory 34 
before the barrier instruction are completed. Barriers can 
also be used to signal completion of the calculation to the 
lightweight core 30. 

Command Name 

SD Bar_Scr_Rd 

SD Bar_Scr_ Wr 

TABLE III 

Barrier Instructions 

Parameters Description 

Barrier for Scratchpad 
Reads 
Barrier for Scratchpad 
Writes 

Indirect addressing is possible using stored data (for 30 

example, in a buffer 50') as an address value. In indirect 
addressing, data, for example, from the streaming pattern, is 
used as the address to obtain further data that is operated on 

SD Bar_All Barrier to wait for all 
commands completion 

Referring now to FIGS. 3 and 4, an example calculation 
may provide a data flow graph 70 receiving inputs at input 
buffers 50 designated A, B and D communicating in this 
example with single adjacent input points 46. Successive 

by the functional units 42. This indirect addressing effects 
pointers, useful, for example, when accessing the rows of a 35 

sparse matrix. The stream processor 36 may provide capa­
bility to facilitate indirect access by chaining two streams 
together, the first stream for accessing a contiguous or 
strided pattern of pointers, and subsequent streams to load 
those pointers' values from the memory system 16 and 40 

deliver them to the reconfigurable dataflow processor 32. 
Additional instructions are provided to generate constant 
values (rather than loading these from memory) and to 
discard unused output values (as opposed to loading them 

45 
into nonfunctional memory areas). 

values from buffers 50 associated with ports A and B are 
provided through appropriate switches 44 to a functional 
unit 42a to be multiplied together. In the simplest case, the 
necessary operands for a given cycle of calculations (being 
one pass through the mesh 33 from input points 46 to output 
points 48) are coordinated to be released from the buffers 50 
into the mesh 33 at the same time. The release of operands 
may be monitored by a simple ready-monitoring logic, 
which knows when to trigger a fire signal based on the data 
'size' configured for each buffer. The invention, however, 

Generally each of these instructions may be issued 
directly by the processor 12 as part of the instruction set 
architecture of the accelerator and the data in these instruc-
tions used with minimal processing by the lightweight core 
30 to control other components of the accelerator. 

Referring now to FIG. 5, the stream processor 36 provides 
a state machine for autonomous loading or writing data 
between storage locations using simple patterns of memory 
access. The simplest pattern is a linear pattern 60 that reads 
( or writes) sequentially every memory address between a 
starting address 62 and ending address 64 designated by the 
instruction. This pattern is indicated by setting the stride 
length equal to zero. The starting address is designated in the 
above instructions as the source address for reads and the 
destination address for writes while the ending address is 
either the number of elements when the source is a port, or 
a product of the access size times the stride length times the 
number of strides added to the starting address when the 
source is the memory or scratchpad. 

Alternatively, the stream processor 36 may be pro­
grammed to use a strided pattern 65 by setting the stride 

also contemplates that staggered release from the buffers 50 
may be used as part of the synchronization of operands at 
particular functional units 42 as they pass through the mesh 

50 33. The output of functional unit 42a passes through appro­
priate switches to a functional unit 42b to be added to the 
value of the buffer 50 associated with input point 46 desig­
nated D. Note that the data from buffers A and B pass 
through the same number of switches 44 and functional units 

55 42 before being received at functional unit 42b as the data 
from port D is being received at the functional unit 42b 
ensuring that the corresponding data in the buffers 50 are 
processed in this calculation. The configuration image 27 for 
each particular algorithm executed by the dataflow processor 

60 32 is adjusted to ensure proper coordination of data flow 
path lengths either manually or through the use of a program 
such as a compiler. A compiler may operate by identifying 
particular operations of the executed algorithm to sequential 
time slices according to data dependencies of the data used 

65 by the operations, ensuring that operations requiring data 
dependent on earlier operations are in later time slices. The 
path of data from an input port to each functional units 42 
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associated with each of the operations ( clock cycles through 
switches 44 or functional units 42) may then be adjusted to 
be equal. Thus, for example, for the addition operation at 
functional unit 42a, the path of data from the buffers A, B 
and D is made equal with the path from buffer A passing 
through two switches 44 and one functional unit 42a ( during 
four clock cycles) as shown by a dotted line 43a, the path 
from buffer B passing through two switches 44 and one 
functional unit 42a (during four clock cycles) as shown by 
a dotted line 43b, and the path from buffer D passing through 10 

three switches 44 ( during four clock cycles) as shown by a 
dotted line 43c. A staggered or late release of operands from 
the buffers 50 may be used to simulate additional clock 
cycles in some versions of the invention. 

Upon completion of the addition at functional unit 42b, 15 

the output passes to output buffer 50 designated G. 
Generally this process will be repeated for multiple data 

value stored in the input ports A and B. Each multiplication 
at functional unit 42a being performed concurrently with 
additions at functional unit 42b in the manner of a pipeline 20 

and providing for high throughput. 
Referring now to FIG. 4, this calculation may be imple­

mented through eight instructions issued from the light­
weight core 30 designated in FIG. 4 as instructions (Cl-CS). 
As depicted, these instructions will be enqueued, dispatched 25 

and completed at different times indicated on the horizontal 
scale. Before the calculation, the dataflow processor 32 is 
configured by configuration instructions (not shown in this 
example). Once all of the instructions have been enqueued, 
the lightweight core 30 may be put into an idle state at time 30 

71. 

12 
instruction CS and signaling to the lightweight core 30 that 
the calculation is complete so that new instructions may be 
received from the lightweight core 30. The "all" barrier of 
instruction CS is released when all of the buffers 50 are 
empty detected by hardware. 

During the processing of instruction (C4), after loading 
port B from memory, a second instruction (C7) may be 
enqueued also loading from memory system 16 to Port B. A 
natural barrier is created in the circumstances by the stream 
processor 36 which serializes loading of buffer 50 intrinsi­
cally. 

Also note that the second stream for instruction (C7) for 
loading data into buffer B may not have the same access 
pattern as the previous one. Also, its type ( e.g., source or 
destination) can be different as well. More generally, the 
stream commands for a given buffer 50 can change while the 
dataflow architecture and other stream commands are 
actively being processed. This leads to more progranmiing 
flexibility and parallelism. 

It will be appreciated that substantial parallelism is 
obtained in this processing provided by the dataflow pro­
cessor 32 based on the overlapping line segments indicated 
in FIG. 4. This, combined with the parallelism obtained by 
having multiple data flow processors 28 that may be enlisted 
by the processor 12, permits extremely fast processing. 

Referring now to FIG. 6, it will be appreciated that the 
element of the dataflow processor 32 may also be used 
independently of the stream processor 36, scratchpad 
memory 34 and lightweight core 30 by having the processor 
12 directly handle memory accesses and load and read the 
buffers 50 as well as provide the memory image files to 
configure the switches 44 and functional units 42 This 
configuration greatly simplifies the architecture; however, it 
requires the processor 12 to handle memory access patterns. 

The first instruction (Cl) provides a transfer from 
memory system 16 to the scratchpad memory 34 of data that 
will ultimately used to load the buffer 50 of port A. This 
instruction begins executing immediately after it is 
enqueued. Is important that the scratchpad memory not be 
read until it is fully loaded and accordingly the next instruc­
tion (C2) provides a scratchpad memory read barrier ensur-

35 This additional duty performed by the processor 12 may still 
be efficient when there are long computational runs. In this 
case the buffers 50 may also be increased in size to con­
solidate memory access operations. 

The lightweight core 30 may also expose hardware ing that there is no reading of the scratchpad memory 34 
until instruction (Cl) is complete. Accordingly instruction 
(C3), which provides a reading of the scratchpad memory 34 
into port A, is delayed until completion of instruction (Cl) 
at time 74. The barrier instructions may be simply enforced 
by stalling subsequent commands from the dataflow proces­
sor 32 related to the barrier condition allowing all previous 
commands to proceed in parallel. 

40 parameters of the hardware accelerator 24 including a num­
ber and type of functional units 42, a depth of buffers 50 and 
50', the size of the scratchpad memory 34, and the longest 
recurrence (recycling) of data through the dataflow proces­
sor 32 for use by a compiler as is generally understood in the 

45 art. 

The barrier instruction (C2) does not block instruction 
(C4) reading memory to the buffer of port B because there 
is no conflicted resource. Accordingly this transfer process 
may begin before and continue in parallel with the transfer 50 

process of instruction (C3). Similarly transfer from memory 
system 16 to port D may be performed shortly after this 
instruction is enqueued. 

At time 76 values will be present in each of ports A, B, 
and D allowing the dataflow processor 32 to begin calcula- 55 

tion and these values to be released from their buffers 50. 
These calculations performed by the dataflow processor 32 
will be repeated using successive values in each of the 
buffers 50 of the input points 46 and provide new calculated 
values into the output buffers 50 of the output points 48 as 60 

indicated by processing cycles 78. 
Once the first processing cycle 78 is completed, at time 

80, a writing from the output buffer of port G to memory 
system 16 may begin. 

After the conclusion of all processing cycles 78 for the 65 

data held in the buffers 50, at time 82, the writing from port 
G to memory system 16 concludes releasing the barrier of 

As used herein, predefined memory access pattern means 
a limited number of patterns that may be defined prior to the 
calculation for which the memory accesses require to be 
performed as opposed to memory access patterns that are a 
function of calculations made. Autonomous as is used herein 
means without necessary further guidance by the micro core 
or the data fabric. 

Certain terminology is used herein for purposes of refer­
ence only, and thus is not intended to be limiting. For 
example, terms such as "upper", "lower", "above", and 
"below" refer to directions in the drawings to which refer­
ence is made. Terms such as "front", "back", "rear", "bot­
tom" and "side", describe the orientation of portions of the 
component within a consistent but arbitrary frame of refer­
ence which is made clear by reference to the text and the 
associated drawings describing the component under dis­
cussion. Such terminology may include the words specifi­
cally mentioned above, derivatives thereof, and words of 
similar import. Similarly, the terms "first", "second" and 
other such numerical terms referring to structures do not 
imply a sequence or order unless clearly indicated by the 
context. 
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When introducing elements or features of the present 
disclosure and the exemplary embodiments, the articles "a", 
"an", "the" and "said" are intended to mean that there are 
one or more of such elements or features. The terms "com­
prising", "including" and "having" are intended to be inclu­
sive and mean that there may be additional elements or 
features other than those specifically noted. It is further to be 
understood that the method steps, processes, and operations 
described herein are not to be construed as necessarily 
requiring their performance in the particular order discussed 10 

or illustrated, unless specifically identified as an order of 
performance. It is also to be understood that additional or 
alternative steps may be employed. 

References to microcontroller should be understood to 
include any circuit capable of executing the functions 15 

described herein including but not necessarily limited to von 
Neumami architectures. 

It is specifically intended that the present invention not be 
limited to the embodiments and illustrations contained 
herein and the claims should be understood to include 20 

modified forms of those embodiments including portions of 
the embodiments and combinations of elements of different 
embodiments as come within the scope of the following 
claims. All of the publications described herein, including 
patents and non-patent publications, are hereby incorporated 25 

herein by reference in their entireties. 

What we claim is: 
1. A data flow computer architecture comprising: 

14 
the interconnection providing paths from input ports 
through functional units to output ports determined by 
the switch programming; 

a clock requiring synchronous movement of data among 
functional units and progranimable switches by one 
step for each clock cycle, a step being from a functional 
unit to a switch or from a switch to a functional unit; 
and 

a configuration store holding data configuring the inter­
connection of the functional units and the arithmetic 
functions of the functional units to execute a predeter­
mined program in which data received at the input ports 
is clocked through the functional units and program­
mable switches to the output ports to implement a 
sequence of arithmetic functions on the data; 

wherein the functional units operate so that calculations 
occur as soon as operands are available at the func­
tional units and so that memories for storing operands 
at the functional units are not required, and wherein the 
configuration store defines paths of data through the 
dataflow processor ensuring corresponding operands 
arrive at the same time at each functional unit accord­
ing to the program by adjusting the path of data through 
the dataflow processor without a need for additional 
buffer storage elements. 

2. The dataflow computer architecture of claim 1 further 
including a set of buffers associated with input ports of the 
dataflow processor, the buffers synchronized with the clock 
to release data to the input ports at times adapted to ensure a dataflow processor providing set of functional units and 

programmable switches interconnecting the functional 
units between input ports receiving input values and 
output ports providing output values, the functional 
units providing programmable arithmetic functions and 

30 corresponding operands arrive at the same time at each 
functional unit according to the program and the configu-
ration store. 

* * * * * 


