

US010829745B2

# (12) United States Patent

### Donohue et al.

### (54) IN VITRO METHODS FOR PROCESSING LIGNIN AND OTHER AROMATIC COMPOUNDS

- (71) Applicant: WISCONSIN ALUMNI RESEARCH FOUNDATION, Madison, WI (US)
- (72) Inventors: Timothy James Donohue, Middleton, WI (US); Daniel Leo Gall, Madison, WI (US); Wayne S. Kontur, Madison, WI (US); Hoon Kim, Madison, WI (US); John Ralph, Madison, WI (US); Daniel R. Noguera, Madison, WI (US); Brian Fox, Madison, WI (US); Craig Bingman, Fitchburg, WI (US)
- (73) Assignee: WISCONSIN ALUMNI RESEARCH FOUNDATION, Madison, WI (US)
- (\*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.
- (21) Appl. No.: 16/103,275
- (22) Filed: Aug. 14, 2018

### (65) **Prior Publication Data**

US 2019/0048329 A1 Feb. 14, 2019

### **Related U.S. Application Data**

- (60) Provisional application No. 62/545,214, filed on Aug. 14, 2017.
- (51) Int. Cl.

| C12N 9/10 | (2006.01) |
|-----------|-----------|
| C12P 7/22 | (2006.01) |
| C12P 7/26 | (2006.01) |
| C12N 9/88 | (2006.01) |

- (58) Field of Classification Search None

See application file for complete search history.

### (56) **References Cited**

#### **U.S. PATENT DOCUMENTS**

| 8,569,465 | B2 | 10/2013 | Ralph et al.     |
|-----------|----|---------|------------------|
| 8,685,672 | B2 | 4/2014  | Grabber et al.   |
| 9,441,235 | B2 | 9/2016  | Wilkerson et al. |
| 9,487,794 | B2 | 11/2016 | Wilkerson et al. |
| 9,493,783 | B2 | 11/2016 | Wilkerson et al. |

### OTHER PUBLICATIONS

Rosini et al. Catal. Sci. Technol., 2016, 6, 2195-2205, First published on Nov. 23, 2015 (Year: 2015).\* Reiter et al. Green Chem., 2013, 15, 1373-1381. (Year: 2013).\* Accession Q01198. Apr. 1, 1993 (Year: 1993).\*

# (10) Patent No.: US 10,829,745 B2

### (45) **Date of Patent:** Nov. 10, 2020

Accession COSUK1. May 26, 2009 (Year: 2009).\* Accession P30347. Apr. 1, 1993 (Year: 1993).\* Accession Q9WXJ9. Nov. 1, 1999 (Year: 1999).\* Accession P27457. Aug. 1, 1992 (Year: 1992).\* Accession Q2G542. Mar. 21, 2006 (Year: 2006).\*

Accession D3RSV1. Apr. 20, 2010 (Year: 2010).\*

Accession Q2G4B5. Mar. 21, 2006 (Year: 2006).\*

Accession Q2G4B4. Mar. 21, 2006 (Year: 2006).\*

Li et al. Biotechnol Bioeng. Jul. 2014;111(7):1273-87. Epub May 6, 2014. (Year: 2014).\*

Chica et al. Curr Opin Biotechnol. Aug. 2005;16(4):378-84. (Year: 2005).\*

Singh et al. Curr Protein Pept Sci. 2017, 18, 1-11 (Year: 2017).\*

Adams, P.D., Afonine, P.V., Bunkóczi, G., Chen, V.B., Davis, I.W., Echols, N., Headd, J.J., Hung, L.-W., Kapral, G.J., Grosse-Kunstleve, R.W., et al. (2010). PHENIX: a comprehensive Pythonbased system for macromolecular structure solution. *Acta Crystallogr. D Biol. Crystallogr.* 66, 213-221.

Adler E, Eriksoo E: Guaiacylglycerol and its β-guaiacyl ether. *Acta chemica Scandinavica* 1955, 9:341-342.

Adler E: Structural elements of lignin. *Industrial & Engineering Chemistry* 1957, 49:1377-1383.

Adler E. (1977) Lignin chemistry—past, present and future. *Wood Sci Technol* 11(3):169-218.

Afonine, P.V., Grosse-Kunstleve, R.W., Echols, N., Headd, J.J., Moriarty, N.W., Mustyakimov, M., Terwilliger, T.C., Urzhumtsev, A., Zwart, P.H., and Adams, P.D. (2012). Towards automated crystallographic structure refinement with phenix.refine. *Acta Crystallogr. D Biol. Crystallogr.* 68, 352-367.

Akiyama T, Sugimoto T, Matsumoto Y, Meshitsuka G: Erythro/ threo ratio of  $\beta$ -O-4 structures as an important structural characteristic of lignin. I: Improvement of ozonation method for the quantitative analysis of lignin side-chain structure. *Journal of Wood Science* 2002, 48:210-215.

Bubeck P, Winkler M, Bautsch W. (1993) Rapid cloning by homologous recombination in vivo. *Nucleic Acids Res* 21(15):3601-3602. Bunkóczi, G., and Read, R.J. (2011). Improvement of molecularreplacement models with Sculptor. *Acta Crystallogr. D Biol. Crystallogr.* 67, 303-312.

Bryksin AV, Matsumura I: Overlap extension PCR cloning: a simple and reliable way to create recombinant plasmids. *Biotechniques* 2010, 48:463-465.

(Continued)

Primary Examiner — Christian L Fronda

(74) *Attorney, Agent, or Firm*—Daniel A. Blasiole; DeWitt LLP

### (57) **ABSTRACT**

Enzymes for depolymerizing lignin. The enzymes include dehydrogenases,  $\beta$ -etherases, and glutathione lyases. The dehydrogenases can comprise one or more or LigD, LigO, LigN, and LigL. The  $\beta$ -etherases can comprise one or more of LigE, LigF, LigP, and BaeA. The glutathione lyases can comprise any one or more of LigG and a number of non-stereospecific, optionally recombinant glutathione lyases derived from *Sphingobium* sp. SYK-6, *Novosphingobium aromaticivorans, Escherichia coli, Streptococcus sanguinis, Phanerochaete chrysosporium*, and other microorganisms. The enzymes can be combined in compositions and/or used in methods of processing lignin or other aromatic compounds in vitro.

> 17 Claims, 33 Drawing Sheets (27 of 33 Drawing Sheet(s) Filed in Color) Specification includes a Sequence Listing.

### (56) **References Cited**

#### OTHER PUBLICATIONS

Casanas, A., Warshamanage, R., Finke, A.D., Panepucci, E., Olieric, V., Nöll, A., Tampé, R., Brandstetter, S., Förster, A., Mueller, M., et

al. (2016). EIGER detector: application in macromolecular crystallography. *Acta Crystallogr D Struct Biol* 72, 1036-1048.

Cohen-Bazire G, Sistrom WR, Stanier RY (1957) Kinetic studies of pigment synthesis by non-sulfur purple bacteria. *J Cell Comp Physiol* 49(1):25-68.

Crawford RL, Kirk TK, Harkin JM, McCoy E (1973) Bacterial cleavage of an arylglycerol- $\beta$ -aryl ether bond. *Appl Microbiol* 25(2):322-324.

Del Rio JC, Rencoret J, Prinsen P, Martinez AT, Ralph J, Gutierrez A: Structural characterization of wheat straw lignin as revealed by analytical pyrolysis, 2D-NMR, and reductive cleavage method. *Journal of Agricultural and Food Chemistry* 2012, 60:5922-5935. Doherty AJ, Ashford SR, Brannigan JA, Wigley DB (1995) A superior host strain for the over-expression of cloned genes using the T7 promoter based vectors. *Nucleic Acids Res* 23(11):2074-2075.

Emsley, P., and Cowtan, K. (2004). Coot: model-building tools for molecular graphics. *Acta Crystallogr. D Biol. Crystallogr.* 60, 2126-2132.

Fredrickson JK, Brockman FJ, Workman DJ, Li SW, Stevens TO (1991) Isolation and characterization of a subsurface bacterium capable of growth on toluene, naphthalene, and other aromatic compounds. *Appl Environ Microbiol* 57(3):796-803.

Fredrickson JK, et al. (1995) Aromatic-degrading Sphingomonas isolates from the deep subsurface. *Appl Environ Microbiol* 61 (5):1917-1922.

Gall DL, Kim H, Lu F, Donohue TJ, Noguera DR, Ralph J: Stereochemical features of glutathione-dependent enzymes in the *Sphingobium* sp. strain SYK-6  $\beta$ -aryl etherase pathway. *J Biol Chem* 2014, 289:8656-8667.

Gall DL, Ralph J, Donohue TJ, Noguera DR: A group of sequencerelated sphingomonad enzymes catalyzes cleavage of  $\beta$ -aryl ether linkages in lignin  $\beta$ -guaiacyl and  $\beta$ -syringyl ether dimers. *Environmental Science & Technology* 2014, 48:12454-12463.

Gall DL,  $\beta$ -Etherase and benzoyl-CoA pathway enzymes mediate biodegradation of lignin-derived Aromatic Compounds, Thesis 2015 (Broken into Parts 1 thru 4).

Gall DL, Ralph J, Donohue TJ, Noguera DR: Biochemical transformation of lignin for deriving valued commodities from lignocellulose. (In Review). *Current Opinion in Biotechnology* 2017.

Gall et al., In Vitro Enzymatic Depolymerization of Lignin with Release of Syringyl, Guaiacyl, and Tricin Units, *Applied and Environ. Micro.* 2018, vol. 84, Issue 3, 1-17.

Gay P, Le Coq D, Steinmetz M, Berkelman T, Kado CI: Positive selection procedure for entrapment of insertion sequence elements in gram-negative bacteria. *J Bacteriol* 1985, 164(2):918-921.

Goren MA, Nozawa A, Makino S, Wrobel R, Fox BG: Cell-free translation of integral membrane proteins into unilamelar liposomes. *Meth. Enzymol.* 2009, 463:647-673.

Grabber JH, Ralph J, Hatfield RD, Quideau S, Kuster T, Pell AN. Dehydrogenation polymer-cell wall complexes as a model for lignified grass walls. *J. Agric. Food Chem.*, 1996, 44(6):1453-1459. Helmich KE, Pereira JH, Gall DL, Heins RA, Mcandrew RP, Bingman C, Deng K, Holland KC, Noguera DR, Simmons BA, et al.: Structural basis of stereospecificity in the bacterial enzymatic cleavage of  $\beta$ -aryl ether bonds in lignin. *Journal of Biological Chemistry* 2016, 291:5234-5246.

Higuchi T: Lignin structure and morphological distribution in plant cell walls. In *Lignin biodegradation: microbiology, chemistry and potential applications*. Edited by Kirk TK, Higuchi T, Chang H: CRC Press; 1980:1-20. vol. I.

Hishiyama S, Otsuka Y, Nakamura M, Ohara S, Kajita S, Masai E, Katayama Y: Convenient synthesis of chiral lignin model compounds via optical resolution: four stereoisomers of guaiacylglycerolβ-guaiacyl ether and both enantiomers of 3-hydroxy-1-(4-hydroxy3-methoxyphenyl)-2-(2-methoxy-phenoxy)-propan-1-one (erone). *Tetrahedron Letters* 2012, 53:842-845.

Horton RM: In vitro recombination and mutagenesis of DNA : SOEing together tailor-made genes. *Methods in molecular biology* (Clifton, N.J.) 1993, 15:251-261.

Horton RM, Cai Z, Ho SN, Pease LR: Gene splicing by overlap extension: tailor-made genes using the polymerase chain reaction. *Biotechniques* 2013, 54:129-133.

Kabsch, W. (2010). XDS. Acta Crystallogr. D Biol. Crystallogr. 66, 125-132.

Katoh K, Misawa K, Kuma K, Miyata T. Mafft: a novel method for rapid multiple sequence alignment based on fast Fourier transform. *Nucleic Acids Res.* 2002, 9(14):3059-3066.

Kontur WS, Bingman CA, Olmsted CN, Wassarman DR, Ulbrich A, Gall DL, Smith RW, Yusko LM, Fox BG, Noguera DR, Coon JJ, Donohue TJ: *Novosphingobium aromaticivorans* uses a Nu-class glutathione S-transferase as a glutathione lyase in breaking the  $\beta$ -aryl ether bond of lignin *J. Biol. Chem.* 2018, 293: 4955-4968. Lan W, Lu FC, Morreel K, Rencoret J, Del Rio JC, Zakai U, Jones D, Zhu YM, Boerjan W, Ralph J: Tricin: A novel monomer in grass lignins. *Abstracts of Papers of the American Chemical Society* 2014, 247.

Lan W, Lu FC, Regner M, Zhu YM, Rencoret J, Ralph SA, Zakai UI, Morreel K, Boerjan W, Ralph J: Tricin, a flavonoid monomer in monocot lignification. *Plant Physiology* 2015, 167:1284-U1265.

Lan W, Morreel K, Lu FC, Rencoret J, Del Rio JC, Voorend W, Vermerris W, Boerjan W, Ralph J: Maize tricin-oligolignol metabolites and their implications for monocot lignification. *Plant Physiology* 2016, 171:810-820.

Larkin MA, Blackshields G, Brown NP, Chenna R, Mcgettigan PA, Mcwilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG. (2007). Clustal W and Clustal X version 2.0. Bioinformatics, 23, 2947-2948.

Lewis NG, Yamamoto E: Lignin—occurrence, biogenesis and biodegradation. *Annual Review of Plant Physiology and Plant Molecular Biology* 1990, 41:455-496.

Makino S, Beebe ET. Markley JL, Fox BG: Cell-free protein synthesis for functional and structural studies. *Methods Mol. Biol.* 2014, 1091:161-178.

Masai E, Katayama Y, Nishikawa S, Yamasaki M, Morohoshi N, Haraguchi T: Detection and localization of a new enzyme catalyzing the  $\beta$ -aryl ether cleavage in the soil bacterium (*Pseudomonas paucimobilis* SYK-6). *Febs Letters* 1989, 249:348-352.

Masai E, Kubota S, Katayama Y, Kawai S, Yamasaki M, Morohoshi N: Characterization of the C $\alpha$ -dehydrogenase gene involved in the cleavage of  $\beta$ -aryl ether by *Pseudomonas paucimobilis. Bioscience Biotechnology and Biochemistry* 1993, 57:1655-1659.

Masai E, Katayama Y, Kubota S, Kawai S, Yamasaki M, Morohoshi N: A bacterial enzyme degrading the model lignin compound  $\beta$ -etherase is a member of the glutathione-S-transferase superfamily. *Febs Letters* 1993, 323:135-140.

Masai E, Ichimura A, Sato Y, Miyauchi K, Katayama Y, Fukuda M: Roles of the enantioselective glutathione S-transferases in cleavage of  $\beta$ -aryl ether. *Journal of Bacteriology* 2003, 185:1768-1775.

Masai E, Katayama Y, Fukuda M (2007) Genetic and biochemical investigations on bacterial catabolic pathways for lignin-derived aromatic compounds. *Biosci Biotechnol Biochem* 71(1):1-15.

Mashiyama, S.T., Malabanan, M.M., Akiva, E., Bhosle, R., Branch, M.C., Hillerich, B., Jagessar, K., Kim, J., Patskovsky, Y., Seidel, R.D., et al. (2014). Large-scale determination of sequence, structure, and function relationships in cytosolic glutathione transferases across the biosphere. PLoS Biol. 12, e1001843.

McCoy, A.J., Grosse-Kunstleve, R.W., Adams, P.D., Winn, M.D., Storoni, L.C., and Read, R.J. (2007). Phaser crystallographic software. *J Appl Crystallogr* 40, 658-674.

Moore DD: Current protocols in molecular biology. Edited by Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K: John Wiley & Sons; 2003 (Book).

Notomista E, et al. (2011) the marine isolate *Novosphingobium* sp. PP1Y shows specific adaptation to use the aromatic fraction of fuels as the sole carbon and energy source. *Microb Ecol* 61(3):582-594.

### (56) **References Cited**

### OTHER PUBLICATIONS

Ohta Y, Nishi S, Hasegawa R, Hatada Y. (2015) Combination of six enzymes of a marine Novosphingobium converts the stereoisomers of  $\beta$ -O-4 lignin model dimers into the respective monomers. *Sci Rep* 5:15105.

Palamuru S, et al. (2015) Phylogenetic and kinetic characterization of a suite of dehydrogenases from a newly isolated bacterium, strain SG61-1L, that catalyze the turnover of guaiacylglycerol- $\beta$ -guaiacyl ether stereoisomers. *Appl Environ Microbiol* 81(23):8164-8176.

Pal, R., Bhasin, V.K., and Lal, R. (2006). Proposal to reclassify [Sphingomonas] xenophaga Stolz et al. 2000 and [Sphingomonas] taejonensis Lee et al. 2001 as Sphingobium xenophagum comb. nov. and Sphingopyxis taejonensis comb. nov., respectively. Int. J. Syst. Evol. Microbiol. 56, 667-670.

Patskovsky Y, et al. PDB ID: 4mzw Crystal structure of nu-class glutathione transferase Yghu from *Streptococcus sanguinis* SK36, complex with glutathione disulfide, target EFI-507286. doi:10.2210/ pdb4mzw/pdb.

Pereira JH, Heins RA, Gall DL, McAndrew RP, Deng K, Holland KC, Donohue TJ, Noguera DR, Simmons BA, Sale KL, et al.: Structural and biochemical characterization of the early and late enzymes in the lignin  $\beta$ -aryl ether cleavage pathway from *Sphingobium* sp. SYK-6. *Journal of Biological Chemistry* 2016, 291:10228-10238.

Pettersen EF, et al. (2004) UCSF Chimera—a visualization system for exploratory research and analysis. *J Comput Chem* 25(13):1605-1612.

The PyMOL Molecular Graphics System, Version 1.8.2.1 Schrödinger, LLC Available at: https://www.pymol.org/.

Rahimi A, Azarpira A, Kim H, Ralph J, Stahl SS: Chemoselective metal-free aerobic alcohol oxidation in lignin. *Journal of the American Chemical Society* 2013, 135:6415-6418.

Rahimi A, Ulbrich A, Coon JJ, Stahl SS: Formic-acid-induced depolymerization of oxidized lignin to aromatics. *Nature* 2014, 515:249-252.

Ralph J, Peng JP, Lu FC, Hatfield RD, Helm RF: Are lignins optically active? *Journal of Agricultural and Food Chemistry* 1999, 47:2991-2996.

Reiter J, Pick A, Wiemann LO, Schieder D, Sieber V: A novel natural NADH and NADPH dependent glutathione reductase as tool in biotechnological applications. *JSM Biotechnol Bioeng* 2014, 2:1028-1035.

Santos RB, Hart P, Jameel H, Chang H. Wood based lignin reactions important to the biorefinery and pulp and paper industries. *BioResources* 2013, 8(1):1456-1477.

Sato Y, et al. (2009) Identification of three alcohol dehydrogenase genes involved in the stereospecific catabolism of arylglycerol- $\beta$ -aryl ether by *Sphingobium* sp. strain SYK-6. *Appl Environ Microbiol* 75(16):5195-5201.

Schäfer, A., Tauch, A., Jäger, W., Kalinowski, J., Thierbach, G., and Pühler, A. (1994). Small mobilizable multi-purpose cloning vectors derived from the *Escherichia coli* plasmids pK18 and pK19: selection of defined deletions in the chromosome of *Corynebacterium glutamicum. Gene* 145, 69-73.

Shevchuk NA, Bryksin AV, Nusinovich YA, Cabello FC, Sutherland M, Ladisch S: Construction of long DNA molecules using long PCR-based fusion of several fragments simultaneously. *Nucleic Acids Research* 2004, 32.

Shuai L, Amiri MT, Questell-Santiago YM, Heroguel F, Li Y, Kim H, Meilan R, Chapple C, Ralph J, Luterbacher JS: Stabilization with formaldehyde facilitates the high-yield production of monomers from lignin during integrated biomass depolymerization. *Science* 2016, 354(6310):329-333.

Simon, R., Priefer, U., and Pühler, A. (1983). A Broad Host Range Mobilization System for In Vivo Genetic Engineering: Transposon Mutagenesis in Gram Negative Bacteria. *Nat Biotech* 1, 784-791. Sinha AK, Sharma UK, Sharma N: A comprehensive review on vanilla flavor: Extraction, isolation and quantification of vanillin and others constituents. *International Journal of Food Sciences and Nutrition* 2008, 59:299-326.

Sistrom WR (1962) The kinetics of the synthesis of photopigments in *Rhodopseudomonas spheroides*. J Gen Microbiol 28:607-616.

Stanier RY, Palleroni NJ, Doudoroff M (1966) The aerobic pseudomonads: a taxonomic study. *J Gen Microbiol* 43(2): 159-271. Stewart JJ, Akiyama T, Chapple C, Ralph J, Mansfield SD: The effects on lignin structure of overexpression of ferulate 5-hydroxylase in hybrid poplar. *Plant Physiology* 2009, 150:621-635.

Stolz A, et al. (2000) Description of *Sphingomonas xenophaga* sp. nov. for strains  $BN6^T$  and N,N which degrade xenobiotic aromatic compounds. *Int J Syst Evol Microbiol* 50 Pt 1:35-41.

Stourman NV, et al. (2011) Structure and function of YghU, a nu-class glutathione transferase related to YfcG from *Escherichia coli*. *Biochemistry* 50(7):1274-1281.

Studier FW (2005) Protein production by auto-induction in high density shaking cultures. *Protein Expr Purif* 41(1):207-234.

Sugimoto T, Akiyama T, Matsumoto Y, Meshitsuka G: The erythro/ threo ratio of  $\beta$ -O-4 structures as an important structural characteristic of lignin—Part 2. Changes in erythro/threo (E/T) ratio of  $\beta$ -O-4 structures during delignification reactions. *Holzforschung* 2002, 56:416-421.

Tanamura K, Kasai D, Nakamura M, Katayama Y, Fukuda M, Masai E: Identification of the third glutathione S-transferase gene involved in the stereospecific cleavage of  $\beta$ -aryl ether in *Sphingobium* sp. strain SYK-6. *Journal of Biotechnology* 2010, 150:S235-S235.

Tavano CL, Podevels AM, Donohue TJ (2005) Identification of genes required for recycling reducing power during photosynthetic growth. *J Bacteriol* 187(15):5249-5258.

Taylor, R.G., Walker, D.C., and McInnes, R.R. (1993). *E. coli* host strains significantly affect the quality of small scale plasmid DNA preparations used for sequencing. *Nucleic Acids Res.* 21, 1677-1678.

Thuillier, A., Roret, T., Favier, F., Gelhaye, E., Jacquot, J.-P., Didierjean, C., and Morel-Rouhier, M. (2013). Atypical features of a Ure2p glutathione transferase from Phanerochaete chrysosporium. *FEBS Lett.* 587, 2125-2130.

Tsien RY. (1998) The green fluorescent protein. *Annu Rev Biochem.* 67:509-44.

U.S. DOE (2015) Lignocellulose Biomass for Advanced Biofuels and Bioproducts: Workshop Report, DOE/SC-0170. U.S. Department of Energy Office of Science. Available at: http://genomicscience. energy.gov/biofuels/lignocellulose/ [Accessed May 17, 2017].

Vicuña R, González B, Mozuch MD, Kirk TK (1987) Metabolism of lignin model compounds of the arylglycerol-β-aryl ether type by *Pseudomonas acidovorans* D(3). *Appl Environ Microbiol* 53(11):2605-2609.

Wadington MC, Ladner JE, Stourman NV, Harp JM, Armstrong RN (2009) Analysis of the structure and function of YfcG from *Escherichia coli* reveals an efficient and unique disulfide bond reductase. *Biochemistry* 48(28):6559-6561.

Wadington MC, Ladner JE, Stourman NV, Harp JM, Armstrong RN (2010) Correction to Analysis of the structure and function of YfcG from *Escherichia coli* reveals an efficient and unique disulfide bond reductase. *Biochemistry* 49(50):10765.

Wood WB (1966) Host specificity of DNA produced by *Escherichia coli:* bacterial mutations affecting the restriction and modification of DNA. *J Mol Biol* 16(1):118-133.

\* cited by examiner



U.S.

Patent



FIG. 2A



FIG. 2B

Nov. 10, 2020 Sheet 3 of 33



**FIG. 3** 



FIG. 4A



| NaGSTNu<br>SYK6GSTNu<br>ecYghU<br>ssYghU<br>ecYfcG<br>GST3<br>PcUre2pB1 | MSSEYVPPKVWKWDKANGGAFASVNRPVAGPTSERELPVGKHPFQVYSLGT<br>MADSDPSMNQPTGYVPPKVWTWDKENGGQFSNINAPTAGARQDVTLPVGEHPIQLYSLGT<br>MTDNTYQPAKVWTWDKSAGGAFANINRPVSGPTHEKTLPVGKHPLQLYSLGT<br>MTYQLPKVWSAADSDQGKFSGINQPTAGVRFEQKLPVGKEPFQLYSLGT<br>MIDLYFAPT<br>MIDLYFAPT<br>MATNTDKPVVHYTAPT                                                                                                                                                                               | 51<br>60<br>52<br>49<br>9<br>9                |
|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| NaGSTNu<br>SYK6GSTNu<br>ecYghU<br>ssYghU<br>ecYfcG<br>GST3              | * **<br>PNGQKATIMLEELLQLGFSEAEYDAWLIKIFEGDQFTSG-FVDINPNSKIPAMV<br>PNGQKVTIMLEELLAAGF-DAEYDAWLIKIYTGEQFGSD-FVAINPNSKIPAMM<br>PNGQKVTIMLEELLALGVTGAEYDAWLIRIGDGDQFSSG-FVEVNPNSKIPALR<br>PNGVKVTIMLEELLAAGVTEATYDLYKISIMDGDQFGSD-FVKINPNSKIPALL<br>PNGHKITLFLEEAELDYRLIKVDLGKGGQFRPE-FLRISPNNKIPAIV<br>PNGWKTTIMLEELDANYTLRPISLTNREQKEDW-YLARNPNGRIPTLI                                                                                                         | 104<br>112<br>105<br>102<br>56<br>56          |
| PcUre2pB1                                                               | PNGWVPAILLEELKAV-YGGPDYE'TVKMSIRDADIGKVHNQVKSDWFLKICPNGRIPAI-                                                                                                                                                                                                                                                                                                                                                                                                | 74                                            |
| NaGSTNu<br>SYK6GSTNu<br>ecYghU<br>ssYghU<br>ecYfcG<br>GST3<br>PcUre2pB1 | DRSGPEPFRVFESGAILMHLAEKFGVFLPTSGPARAECLSWLFWQVGSAPF<br>DHGLDPPLRLFESGSMLVYLAEKFGAFLPTEIRKRTETFNWLMWQMGSAPF<br>DHTHNPPIRVFESGSILLYLAEKFGYFLPQDLAKRTETMNWLFWLQGAAPF<br>DQSGHKPIPVFESANILLYLAEKFGKLIPSDLAGRTEVLNWLFWQTGAAPF<br>DHSPADGGEPLSLFESGAILLYLAEKTGLFLSHETRERAATLQWLFWQVGGLGP<br>DHEVDAGNGGFAVFESGAILIYLAEKFGRFLPADTMGRSRAIQWVMWQMSGLGP<br>THEGFPVFETSAILLYLAQHFDKENAFSRDPVKDPKGYSEELQWLFFAHGGIGP                                                       | 155<br>163<br>156<br>153<br>110<br>110<br>129 |
|                                                                         | # *                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                               |
| NaGSTNu<br>SYK6GSTNu<br>ecYghU<br>ssYghU<br>ecYfcG<br>GST3<br>PcUre2pB1 | IGGGFGHFYNYAPIKIEYAIDRYAMETKRLFDVANRRLAESRYLAGDEYTIADLATYTWF<br>VGGGFGHFYAYAPFKIEYAIDRYAMETKRQLDVLDKNLADREFMIGDEITIADFAIFPWY<br>LGGGFGHFYHYAPVKIEYAINRFTMEAKRLLDVLDKQLAQHKFVAGDEYTIADMAIWPWF<br>LGGGFGHFFNYAPEKLEYPINRFTMEAKRQLDLLDKELAKKAYIAGEDYSIADIAIWSWY<br>MLGQNHHFNHAAPQTIPYAIERYQVETQRLYHVLNKRLENSPWLGGENYSIADIACWPWV<br>MMGQATVFNRYFEPRLPEVIDRYTRESRRLFEVMDTHLADNEFLAG-DYSIADIACFPWV<br>MQGQANHFNLYAPEKIPYAINRYLNESKRLYRVLDDRLKGREYILG-TYGIADIKIFGWA | 215<br>223<br>216<br>213<br>170<br>169<br>187 |
| NaGSTNu<br>SYK6GSTNu<br>ecYghU<br>ssYghU<br>ecYfcG<br>GST3<br>PcUre2pB1 | #<br>GNIYRGEAYGEAATFLSMHEYEHVGRWVGEIDARPGVLRGRLVNSSKGLAERHDA<br>GSIMRGG-Y-NAQEFLSTHEYRNVDRWVTQLSERTGVKRGLLVNSAGRP-GGGIAERHSA<br>GNVVLGGVY-DAAEFLDAGSYKHVQRWAKEVGERPAVKRGRIVNRTNGPLNEQLHERHDA<br>GQLVQDKLYPGAAEFLDAASYKHLSAWAEKIAARPAVQRGLAAEYQEI<br>NAWTRQRIDLAMYPAVKNWHERIRSRPATGQALLKAQLGDERSDS<br>RGHDWACIDMEGLPHLQRWFETIGERPAVQRGLLLPEPPKADEMAEK<br>RIAPRTGLDLDEFPNVKAWVERIEKRPAVQAGINSCN                                                                | 270<br>280<br>275<br>261<br>215<br>216<br>224 |
| NaGSTNu<br>SYK6GSTNu<br>ecYghU<br>ssYghU<br>ecYfcG<br>GST3<br>PcUre2pB1 | # SDFDALPPESLQAIVKG-F 288 SEQ ID NO:18 ADLDASIKAAEQEAAKTEA 299 SEQ ID NO:22 SDFETNTEDKRQG 288 SEQ ID NO:26 K 262 SEQ ID NO:32                                                                                                                                                                                                                                                                                                                                |                                               |





**FIG.** 7









FIG. 11

















FIG. 16



## **FIG. 17A**



FIG. 17B



FIG. 18



**FIG. 19A** 



**FIG. 19B** 



FIG. 20



FIG. 21



FIG. 22



**FIG. 23A** 



**FIG. 23B** 



FIG. 24

US 10,829,745 B2

U.S.

Patent

Nov. 10, 2020

Sheet 28 of 33



Concentrations of MPHPV, GS-HPV, and guaiacol following *in vitro* reactions (mM)





FIG. 27

US 10,829,745 B2



Nov. 10, 2020

Alignments of Saro\_2872 and Saro\_2873 with known LigF enzymes.

| Saro_2872<br>Saro_2873<br>Saro_2865<br>Saro_2091<br>SLG_08650<br>PP1Y_AT11660<br>GST4_MBES04 | MSALLYHGEPNGASLTVLAALAETGLDIECRRIDLLAGERHSLPGIVDPV<br>MDEVSLYHWEPNANSGKPMLALMEKGVPFSSHYIDMLQFDQHKPE<br>MALKYYHAEPLANSLKSMVPLKEKGLAYESIYVDLHKFEQHQPW<br>MVIPLGEDNTIMLKLYSFGPAANSMKPLLTVFEKGLDVEKHRLDPAKFEHHTDW<br>MTLKLYSFGPGANSLKPLATLYEKGLEFEQVFVDPSKFEQHSDW<br>MLTLYSFGPGANSLKPLLALYEKGLEFTPRFVDPTRFEHHEEW<br>MLTLYSFGPGANSLKPLLALYEKGLEFTPRFVDPTKFEHHEEW<br>* * . * . : : *.*: : : : : : : : : : : :                                                                              | 50<br>45<br>44<br>54<br>43<br>43              |
|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| Saro_2872<br>Saro_2873<br>Saro_2865<br>Saro_2091<br>SLG_08650<br>PP1Y_AT11660<br>GST4_MBES04 | ALDLSIEGEGPVLVIDGEAMTESVFLAQYLDEAAGGVGLQPTDAYARWEMMMWCR<br>YLAINPQGTIPAMTHNGQVLTESTAIMEYVNDRFDGPDLMPADAQDRWRVRWWMK<br>FTAINPEGQVPVLDHDGTIITHTTVINEYLEDAFPDAQPADAPLRPRDPVGAARMRYWNK<br>FKAINPRGQVPALVDGDKVVTESTVICEYLEDEYPTE-VALRPADSFGKAQMRIWTK<br>FKKINPRGQVPALWHDGKVVTESTVICEYLEDVFPESGNSLRPADPFKRAEMRVWTK<br>FKKINPRGQVPALDHDGHIITESTVICEYLEDAFPEA-PRLRPVDPVMIAEMRVWTK<br>FKKINPRGQVPALDHDGNVITESTVICEYLEDAFPEA-PRLRPTDPVQIAEMRVWTK<br>:* *.: :*.:: :*::: * * * .: * : :: * ::    | 105<br>100<br>104<br>110<br>101<br>99<br>99   |
| Saro_2872<br>Saro_2873<br>Saro_2865<br>Saro_2091<br>SLG_08650<br>PP1Y_AT11660<br>GST4_MBES04 | QITERLSPAAALLGNLATSQSAIAAIPAEDFAILA-ARIVSDDLRERWQALNDDAVNAAQ<br>FMDQWLGPSFSMIGWSVFVGPMVRQRDPAELAAAI-DRIPLPERRTAWRKAINGDFSESE<br>FIDEHVMNYVSMHGWHRMVGVIARNIASGDFEKLL-ESIPLPDQRKKWATARSG-FSEAD<br>WVDEYFCWCVSTIGWHRYVGNMVKSLSDAEFEEKV-KAIPVIEQQVKWRRAREG-FPQDM<br>WVDEYFCWCVSTIGWAFGIKAIAQKMSDEEFEEHINKNVPIPEQQLKWRRARNG-FPQEM<br>WVDEYFCWCVSTIGWERMIGPMARALSDEEFEAKV-ARIPVPEQRTKWRTARTG-FPKEV<br>WVDEYFCWCVSTIGWERGIGPMARALSDEEFEEKV-KRIPIPEQQAKWRSARAG-FPKEV<br>: : . : * *          | 164<br>159<br>162<br>168<br>160<br>157<br>157 |
| Saro_2872<br>Saro_2873<br>Saro_2865<br>Saro_2091<br>SLG_08650<br>PP1Y_AT11660<br>GST4_MBES04 | VADSETKVAAAVDRCEKQLGDGREWLMGTFSIADLVTYSWLAGMEPLRPAAFADA<br>MAESRRRVGLGIAKLEEELGKRPYVGSNQYSLADINIFNSTYSLPISQPDLAGKDRT<br>LANATAKIEYALDKVEKQLGETKWLAGDTYTLADINFYSHCGAMVERMFPEMEVARRA<br>LDEEMRKIAYSVRKLDDHLADHEWLVPGQYTLADICNFAIANGMQFGFAELVNKQDT<br>LDEEFRKVGVSVARLEETLSKQDYLVDTGYSLADICNFAIANGLQRPGGFFGDYVNQEKT<br>LDEEMRKIGVSVNRLETRLAESPWLAGENFSLADVCNFAIANGMQNGFSDIVNREAT<br>LDEEMRKIRVSIDRLEKRLSESTWLAGEDYTLADICNFAIANGMEKGFDDIVNTAAT<br>; : ;; ;; ;; ;; ;; ;; ;; ;; ;; ;; ;; ;; | 219<br>216<br>220<br>225<br>220<br>214<br>214 |
| Saro_2872<br>Saro_2873<br>Saro_2865<br>Saro_2091<br>SLG_08650<br>PP1Y_AT11660<br>GST4_MBES04 | PLVKAWLARTAARPCVQAALARATISEPLRAWAPGPEINRWG261PNIMRWLKRVYTREAVKKTWAMGKTDLAHRYGLIMAEIEG256PRLCEWRDRVAARPAVAEALKSEDRTAPGLRVWSGEVR258PHLVRWIEQINERPAVKOMFAQVELEKLGPRE257PGLCAWLDRINARPAIKEMFEKSKREDLLKRQNEKVA257PHLVAWIEKINDRPACKAMFANSKSEFADRGQKVTA250PNLVAWIERINARPACIEMFAKSKSEFAARKPFAKSEEQAQA256* : * : * .* .                                                                                                                                                                       |                                               |
| Saro_2872<br>Saro_2873<br>Saro_2865<br>Saro_2091<br>SLG_08650<br>PP1Y_AT11660<br>GST4_MBES04 | SEQ ID NO:40<br>SEQ ID NO:42<br>SEQ ID NO:43<br>SEQ ID NO:44<br>SEQ ID NO:45<br>SEQ ID NO:46<br>SEQ ID NO:47                                                                                                                                                                                                                                                                                                                                                                         |                                               |
# IN VITRO METHODS FOR PROCESSING LIGNIN AND OTHER AROMATIC COMPOUNDS

# STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH

This invention was made with government support under DE-FC02-07ER64494 and DE-SC0018409 awarded by the US Department of Energy. The government has certain rights in the invention.

# FIELD OF THE INVENTION

The invention relates to the enzymatic depolymerization <sup>15</sup> of lignin and the enzymatic processing of other aromatic compounds.

#### BACKGROUND

Lignin provides structural rigidity in terrestrial plants and is largely comprised of guaiacyl and syringyl monoaromatic phenylpropanoid units that are covalently linked together in a purely chemical radical coupling polymerization process. The most prevalent type of inter-unit linkage between units <sup>25</sup> is the  $\beta$ -ether linkage in so-called  $\beta$ -ether units making up the lignin polymer.

Because lignin is rich in aromatics, lignin can potentially serve as a source for a number of valuable aromatic polymers, oligomers, and monomers. However, lignin is notoriously difficult to process or depolymerize into simpler compounds.

A number of chemical methods for depolymerizing lignin are known, but these methods tend to involve high temperatures or pressures, expensive catalysts, and organic solvents. <sup>35</sup> Tools and methods of depolymerizing lignin that avoid at least some of these drawbacks are needed.

# SUMMARY OF THE INVENTION

The invention at least in part is directed to an enzymatic system that catalyzes  $\beta$ -ether cleavage of actual lignin in vitro with the recycling of cosubstrates NAD<sup>+</sup> and GSH. In an exemplary version, the system uses the known LigD, LigN, LigE, and LigF enzymes from Sphingobium sp. strain 45 SYK-6, plus a novel, non-stereospecific glutathione transferase from Novosphingobium aromaticivorans DSM12444 (NaGST<sub>Nu</sub>). BaeA can be used in addition to or in place of LigE. A glutathione reductase from Allochromatium vinosum DSM180 (AvGR) is used to recycle the cosubstrates. 50 The depolymerization of actual lignin with these enzymes is illustrated in FIGS. 1 and 16. The enzymatic depolymerization of lignin provided herein has several advantages over chemical routes as it (1) does not require high temperatures or pressures; (2) does not require expensive catalysts; (3) 55 could be performed in an aqueous environment, eliminating the need for solvents (and subsequent separation/recycle); and (4) results in a well-defined set of aromatic monomers that have not undergone chemical transformations, and hence are more amenable for downstream processing (i.e., 60 upgrading).

More generally, the invention encompasses methods of processing lignin. One method of the invention comprises contacting lignin comprising  $\beta$ -O-4 ether ( $\beta$ -ether) linkages in vitro with a dehydrogenase, a  $\beta$ -etherase, and a gluta-65 thione lyase. The dehydrogenase preferably comprises at least one of LigD, LigO, LigN, and LigL. The  $\beta$ -etherase

2

preferably comprises at least one of LigE, LigF, LigP, and BaeA. The glutathione lyase preferably comprises at least one of LigG and a non-stereospecific glutathione lyase comprising an amino acid sequence at least about 80%, 85%, 90%, or 95% identical to any of: SEQ ID NO:18 (NaGST<sub>Nu</sub>); residues 21-313 of SEQ ID NO:20 (recombinant NaGST<sub>Nu</sub>); SEQ ID NO:22 (SYK6GST<sub>Nu</sub>); residues 21-324 of SEQ ID NO:24 (recombinant SYK6GST<sub>Nu</sub>); SEQ ID NO:26 (ecYghU); residues 21-313 of SEQ ID NO:28 (recombinant ecYghU); SEQ ID NO:30 (ecYfcG); SEQ ID NO:32 (ssYghU); SEQ ID NO:34 (GST3); and SEQ ID NO:36 (PcUre2pB1).

In some versions, the non-stereospecific glutathione lyase comprises at least one, at least two, at least three, at least four, at least five, at least six, at least seven, at least eight, at least nine, at least ten, or all of: asparagine or a conservative variant of asparagine at a position corresponding to position 25 of SEQ ID NO:18 (NaGST<sub>Nu</sub>); threonine or a 20 conservative variant of threonine at a position corresponding to position 51 of SEQ ID NO:18 (NaGST<sub>Nu</sub>); asparagine or a conservative variant of asparagine at a position corresponding to position 53 of SEQ ID NO:18 (NaGST<sub>Nu</sub>); glutamine or a conservative variant of glutamine at a position corresponding to position 86 of SEQ ID NO:18 (NaG- $ST_{N_{\mu}}$ ; lysine, a conservative variant of lysine, arginine, or a conservative variant of arginine at a position corresponding to position 99 of SEQ ID NO:18 (NaGST<sub>Nu</sub>); isoleucine or a conservative variant of isoleucine at a position corresponding to position 100 of SEQ ID NO:18 (NaGST<sub>Nu</sub>); glutamate or a conservative variant of glutamate at a position corresponding to position 116 of SEQ ID NO:18 (NaGST<sub>Nu</sub>); serine, threonine, a conservative variant of serine, or a conservative variant of threonine at a position corresponding to position 117 of SEQ ID NO:18 (NaG- $ST_{Nu}$ ; tyrosine or a conservative variant of tyrosine at a position corresponding to position 166 of SEQ ID NO:18 (NaGST<sub>Nu</sub>); arginine or a conservative variant of arginine at 40 a position corresponding to position 177 of SEQ ID NO:18 (NaGST<sub>Nu</sub>); and tyrosine or a conservative variant of tyro-</sub> sine at a position corresponding to position 224 of SEQ ID NO:18 (NaGST<sub>Nu</sub>).

In some versions, the contacting occurs in the presence of a glutathione (GSH) reductase that catalyzes reduction of glutathione disulfide (GSSG). The GSH reductase in some versions comprises an amino acid sequence at least 95% identical to SEQ ID NO:38 (AvGR).

Another method of the invention is a method of chemical conversion. The chemicals converted in the method preferably comprise aromatic chemicals. One method comprises contacting a first compound in vitro with a non-stereospecific glutathione lyase to yield a second compound. The non-stereospecific glutathione lyase may comprise any of those described above or elsewhere herein but preferably comprises a non-stereospecific glutathione lyase having an amino acid sequence at least about 80%, 85%, 90%, or 95% identical to any of: SEQ ID NO:18 (NaGST<sub>Nu</sub>); residues 21-313 of SEQ ID NO:20 (recombinant NaGST<sub>Nu</sub>); SEQ ID NO:22 (SYK6GST<sub>Nu</sub>); residues 21-324 of SEQ ID NO:24 (recombinant SYK6GST<sub>Nu</sub>); SEQ ID NO:26 (ecYghU); residues 21-313 of SEQ ID NO:28 (recombinant ecYghU); SEQ ID NO:30 (ecYfcG); SEQ ID NO:32 (ssYghU); SEQ ID NO:34 (GST3); and SEQ ID NO:36 (PcUre2pB1). The first compound preferably has a structure of Formula I or a salt thereof:

(I)



wherein R<sup>1</sup>, R<sup>2</sup>, and R<sup>3</sup> are each independently —H, —OH, 15 —O-alkyl, —O-lignin, or -lignin; R<sup>4</sup> is —H, —OH, —SH, —COOH, —SO<sub>3</sub>H, or —O-lignin; and SG is glutathione bound in an S or R configuration. The second compound has a structure of Formula II or a salt thereof:



wherein  $R^1$ ,  $R^2$ ,  $R^3$ , and  $R^4$  are as defined above.

The invention also encompasses compositions. The compositions may include any of the components employed in the methods described herein. One composition of the invention comprises lignin comprising  $\beta$ -O-4 ether linkages, a dehydrogenase, a  $\beta$ -etherase, and a glutathione lyase. The 40 dehydrogenase, a  $\beta$ -etherase, and a glutathione lyase preferably include any of those described above or elsewhere herein. In some versions, the composition further comprises a glutathione (GSH) reductase that catalyzes reduction of glutathione disulfide (GSSG). The GSH reductase in some 45 versions comprises a sequence at least about 95% identical to SEQ ID NO:38 (AvGR).

The invention also encompasses recombinant enzymes. The recombinant enzymes may include recombinant versions of any of the enzymes described above or elsewhere 50 herein. The recombinant enzymes preferably include a recombinant non-stereospecific glutathione lyase. The nonstereospecific glutathione lyase may comprise any of those described above or elsewhere herein but preferably comprises a non-stereospecific glutathione lyase having an 55 amino acid sequence at least about 80%, 85%, 90%, or 95% identical to any of: SEQ ID NO:18 (NaGST<sub>Nu</sub>); residues 21-313 of SEQ ID NO:20 (recombinant NaGST<sub>Nu</sub>); SEQ ID NO:22 (SYK6GST<sub>Nu</sub>); residues 21-324 of SEQ ID NO:24 (recombinant SYK6GST<sub>Nu</sub>); SEQ ID NO:26 (ecYghU); 60 residues 21-313 of SEQ ID NO:28 (recombinant ecYghU); SEQ ID NO:30 (ecYfcG); SEQ ID NO:32 (ssYghU); SEQ ID NO:34 (GST3); and SEQ ID NO:36 (PcUre2pB1). The recombinant non-stereospecific glutathione lyase preferably comprises at least one non-native modification selected from 65 the group consisting of an amino acid addition, an amino acid deletion, and an amino acid substitution.

The invention also encompasses processed lignin or compounds obtained through any of the methods described herein.

The objects and advantages of the invention will appear 5 more fully from the following detailed description of the preferred embodiment of the invention made in conjunction with the accompanying drawings.

# BRIEF DESCRIPTION OF THE DRAWINGS

The patent or application file contains at least one drawing executed in color. Copies of this patent or patent application publication with color drawing(s) will be provided by the Office upon request and payment of the necessary fee.

FIG. 1 shows the sphingomonadales  $\beta$ -etherase pathway, used to break the  $\beta$ -aryl ether ((3-O-4) bond of compounds such as guaiacylglycerol-β-guaiacyl ether (GGE). Names of enzymes catalyzing each reaction are taken from Sphingobium sp. SYK-6 (LigLNDOFEPG; Masai et al. 2003, Sato 20 et al. 2009; Tanamura et al. 2011), Novosphingobium sp. MBESO4 (GST3) (Ohta et al. 2015), or Novosphingobium aromaticivorans (NaGST<sub>Nu</sub>) (Example 1); the color of each enzyme name matches the arrow color of the reaction it catalyzes. Below each enzyme is listed which of the three sphingomonads investigated in Example 1 (Novosphingobium sp. PP1Y, Novosphingobium aromaticivorans, and Sphingobium xenophagum) are predicted to contain that enzyme. The  $\alpha$ ,  $\beta$ , and  $\gamma$  carbons of GGE are labeled in the topmost molecule, and the stereochemical designations of 30 all chiral molecules are shown. As shown, metabolism of GGE begins with the stereoselective, NAD<sup>+</sup>-dependent oxidation (by LigD, LigO, LigL, LigN) of the  $\beta$ -aryl alcohol into the  $\alpha$ -ketone,  $\beta$ -(2-methoxyphenoxy)- $\gamma$ -hydroxypropiovanillone (MPHPV) (Sato et al. 2009).  $\beta(S)$ - and  $\beta(R)$ -35 MPHPV are then cleaved by stereospecific glutathione (GSH)-dependent  $\beta$ -etherases (e.g., LigF, LigE/P) to yield the  $\beta(R)$ - and  $\beta(S)$ -stereoisomers of the glutathione conjugate  $\beta$ -glutathionyl- $\gamma$ -hydroxypropiovanillone (GS-HPV) and guaiacol (Masai et al. 2003, Gall and Kim et al. 2014). GSH-dependent enzymes that remove the glutathione moiety from GS-HPV to form hydroxypropiovanillone (HPV) and glutathione disulfide (GSSG) have been identified in vitro: LigG reacts specifically with  $\beta(R)$ -GS-HPV (Masai et al. 2003), whereas GST3 and NaGST<sub>Nu</sub> react with both the  $\beta(R)$ - and  $\beta(S)$ -stereoisomers (Ohta et al. 2015).

FIGS. 2A and 2B show cell densities and extracellular metabolite concentrations of *N. aromaticivorans* cultures grown in SMB containing 3 mM GGE (FIG. 2A, panels A-F), or 4 mM vanillate and 1.5 mM GGE (FIG. 2B, panels G-L). Data are shown for strains 12444 $\Delta$ 1879 (panels A,B, G,H), 12444 $\Delta$ 2595 (panels C,D,I,J), and 12444ecyghU (panels E,F,K,L). The y-axes of panels H, J, and L use different scales. For comparison, cell density data for cultures grown in SMB containing 4 mM vanillate only are included in panels G, I, and K.

FIG. **3** shows growth and extracellular metabolite levels in a representative culture of *Novosphingobium aromaticiv*orans 12444 $\Delta$ 1879 in SMB containing 200  $\mu$ M GGE. The rate of GGE metabolism by *N. aromaticivorans* (~200  $\mu$ M within ~30 h) is comparable to that of *Erythrobacter* sp. SG61-1L (~200  $\mu$ M within ~60 h, though this strain apparently cannot further metabolize guaiacol; Palamuru et al. 2015) and *Novosphingobium* sp. MBESO4 (~900  $\mu$ M within ~40 h, though this strain apparently cannot assimilate carbon from GGE into cell material; Ohta et al. 2015).

FIGS. 4A and 4B show cell densities and extracellular metabolite concentrations from cultures of *Novosphingo*-

*bium* sp. PP1Y (FIG. 4A, panels A,B,E,F) and *Sphingobium xenophagum* (FIG. 4B, panels C,D,G,H) grown in SMB containing 3 mM GGE (FIGS. 4A and 4B, panels A,B,C,D); or 4 mM vanillate (FIG. 4A, panels E,F) or glucose (FIG. 4B, panels G,H) with 1.5 mM GGE. The y-axis segments of panels D,F,H of FIGS. 4A and 4B are at different concentration scales. For comparison, cell density data for cultures grown in SMB containing 4 mM vanillate only are included in panels.

FIG. 5 shows an amino acid sequence alignment of various exemplary non-stereospecific glutathione lyases of the invention. The aligned glutathione lyase sequences include those of NaGST<sub>Nu</sub> (SEQ ID NO:18), SYK6GST<sub>Nu</sub> (SEQ ID NO:22), ecYghU (SEQ ID NO:26), ecYfcG (SEQ ID NO:30), ssYghU (SEQ ID NO:32), GST3 (SEQ ID NO:34), and PcUre2pB1 (SEQ ID NO:36). The NaGST<sub> $N_{\mu}$ </sub>, ecYghU, ssYghU, ecYfcG, and PcUre2pB1 proteins have been structurally characterized. Residues from structurally solved proteins predicted to interact with GSH or GSSG 20 molecules indicated with "\*" and correspond to the following residues in SEQ ID NO:18 (NaGST<sub>Nu</sub>): Asn25, Thr51, Asn53, Gln86, Lys99, Ile100, Glu116, Ser117, and Arg177. Residues predicted to be involved in the reaction mechanism are indicated with "#" and correspond to the following 25 residues in SEQ ID NO:18 (NaGST<sub>Nu</sub>): Tyr166, Tyr224, and Phe288. Alignment was made using MAFFT version 7 (mafft.cbrc.jp) (Katoh et al. 2002) in MegAlign Pro, which is part of the Lasergene 14.0 suite (DNASTAR, Madison, 30 Wis.).

FIG. **6** shows kinetics of the conversion of the  $\beta(R)$ - (A) and  $\beta(S)$ - (B) stereoisomers of GS-HPV into HPV. Reactions used 8 nM NaGST<sub>Nu</sub>, 195 nM ecYghU, 195 nM ecYfcG, or 47 (A) or 18 (B) nM SYK6-GST<sub>Nu</sub>. The lines are non-linear least squares best fits to the experimental data using the Michaelis-Menten equation.

FIG. **7** shows time courses for the reaction of cell extracts from *N. aromaticivorans* strains 12444 $\Delta$ 1879 (A) and 12444 $\Delta$ 2595 (B) with a racemic sample of  $\beta$ (R)- and  $\beta$ (S)-MPHPV. The red dotted line in panel B indicates the time at which recombinant NaGST<sub>*Nu*</sub> and additional GSH were added to the reaction. FIG. **13** shows a phylogenetic analysis of Nu-class glutathione-S-transferases. BLAST searches of the NCBI nonredundant protein database were performed using NaGST<sub>*Nu*</sub> and GST3 as queries. The top 5,000 hits from both of these searches were collected; every fifth member from each of

FIG. **8** shows the structure of NaGST<sub>*Nu*</sub> (pdb 5uuo). (A) Domain structure of one subunit of the homodimer. The 45 GST1 N-terminal (thioredoxin) domain extends from Val39 to Gly129 (green), the GST2 C-terminal domain extends from Ser135 to Leu257 (maroon), and an extension of the C-terminal extends from Val258 to Phe288 (orange). (B) Residue contacts to the GSH dithiol (60% occupancy) and 50 GS-SG (40%) in the NaGST<sub>*Nu*</sub> 5uuo structure. The carbon atoms of GSH1 are colored light cyan; those of GSH2 are dark cyan; those of GS-SG are light orange. NaGST<sub>*Nu*</sub> residues with 3.2 Å or shorter contacts to either GSH1 or GSH2 are labeled, and colored according to domain origin 55 defined above. Selected distances between interacting atoms are shown.

FIG. **9** shows a comparison of the active site in closely related Nu-class GSTs. (A) Alignment of subunits of NaG-ST<sub>*Nit*</sub> (pdb 5uuo; open form, white; closed form, blue), 60 ecYghU (pdb 3ec8; orange), and ssYghU (pdb 4mzw; green). (B) Spatially conserved positions (Phe82, Tyr224 and Lys262) in the open form subunit of NaGST<sub>*Nit*</sub> that define a triangle over the entrance to the active site used to approximate the size of the channel opening. (C) Positions 65 (Phe82, Tyr224 and Phe288) and triangle defined in the closed form of NaGST<sub>*Nit*</sub>. (D) Positions (Gly83, Tyr225 and

Gly263) and triangle defined in ecYghU. (E) Positions (Met80, Tyr222 and Ala255) and triangle defined in ssY-ghU.

FIG. **10** shows: (A) Molecular docking and energyminimized positions of (R)- and (S)-GS-HPV (orange and purple lines, respectively) in the outwardly branching entrance to the active site of NaGST<sub>Nu</sub> (the sulfur atom of GSH1 in the active site is visible as a yellow sphere); (B) Predicted residue interactions with (R)-GS-HPV; and (C) Predicted residue interactions with (S)-GS-HPV.

FIG. 11 shows a proposed mechanism for NaGST<sub>*Nu*</sub>catalyzed cleavage of either (R)- (left column) or (S)- (right column) thioether bonds in GS-HPV. (A) SG1 is close to the thiol of GHS2. Conserved Thr51, which lies within 3.0 Å of SG1, provides a hydrogen bond that promotes attack of SG1 on SG2 and formation of G1S-SG2. (B) Rupture of the thioether bond is facilitated by Y166, which stabilizes a transient enolate intermediate. (C) Collapse of the enolate to the observed products.

FIG. 12 shows modeling of substrates into the active sites of NaGST<sub> $N_{\mu}$ </sub> and ecYghU. Panels (A) and (B) show modeling of  $\beta(R)$ - and  $\beta(S)$ -GS-HPV into NaGST<sub>Nu</sub>. Panels (C) and (D) show modeling of  $\beta(R)\text{-}$  and  $\beta(S)\text{-}GS\text{-}HPV$  into ecYghU. Panels (E) and (F) show modeling of  $\beta(R)$ - and  $\beta$ (S)-GS-conjugated syringyl phenylpropanoids into NaG- $ST_{N_{\mu}}$ . Coloring for NaGST<sub>N<sub>\mu</sub></sub> is the same as in FIG. 8 (with residues for ecYghU in parentheses): E4 (T5) to P38 (P39) in gray; V39 (V40) to G129 (G130) in green; V130 (Y131) to T134 (Q135) in gray; S135 (D136) to L257 (1257) in maroon; V258 (V258) to F288 (G288) in orange. Residues predicted to be involved in catalysis of the glutathione lyase reaction are Tyr66 and Tyr224 (Tyr167 and Tyr225 in ecYghU). Resides that contribute to differences in active site channel interiors between NaGST $_{Nu}$  and ecYghU are Phe82 and Phe288 in NaGST<sub>Nu</sub>, and Arg260 and Asn262 in ecYghU. Carbon atoms of GSH1 are yellow, and those of the GS-conjugated substrates (GS-HPV or the syringyl analogue) are cvan.

FIG. 13 shows a phylogenetic analysis of Nu-class gluredundant protein database were performed using NaGST<sub> $N\mu$ </sub> and GST3 as queries. The top 5,000 hits from both of these searches were collected; every fifth member from each of these sets was transferred into a new combined set of 2,000 proteins. Sequences for SYK6GST<sub>Nu</sub> and ecYfcG were added to the combined set, to give a set of 2,002 proteins. Proteins in this set were aligned using MAFFT in MegAlign Pro, which is part of the Lasergene 14.0 suite (DNASTAR, Madison, Wis.). A phylogenetic tree was calculated via the maximum likelihood method in RAxML v8.2.3 (Stamatakis, 2014), using 100 rapid bootstrap inferences. The tree was visualized using Interactive Tree of Life v3 (http://itol.embl.de). Enzymes experimentally reported here (NaGST<sub>Nu</sub>,  $SYK6GST_{Nu}$  ecYghU, ecYfcG) or elsewhere (GST3 (Ohta et al., 2015)) to be able to convert GS-HPV into HPV are identified.

FIG. 14 shows percent methanol in the running buffer during HPLC analysis as used in the experiments in Example 1. The remainder of the running buffer was Buffer A (5 mM formic acid, 5% acetonitrile in  $H_2O$ ), and the flow rate was 1 mL/minute.

FIG. **15** shows absorbance (280 nm) and retention times of metabolites identified by HPLC as described in Example 1.

FIG. **16** shows aromatic monomers and the  $\beta$ -etherase pathway. Panel (A) shows the structures of predominant monomeric phenylpropanoids found in lignin, guaiacyl (G,

in blue), syringyl (S, in red), as well as tricin (T, in green) units. Arrows indicate where inter-unit linkages are formed during radical coupling reactions. Dashed lines indicate positions that may form additional covalent bonds during post-coupling reaction mechanisms. Panel (B) shows β-etherase pathway-mediated degradation of the diaromatic β-ether-linked model compound GGE via NAD<sup>+</sup>-dependent dehydrogenases LigD and LigN to form GGE-ketone (also referred to herein as " $\beta$ -(2-methoxyphenoxy)- $\gamma$ -hydroxypropiovanillone" or "MPHPV") and NADH. GGE-ketone 10 undergoes GSH-dependent  $\beta$ -ether cleavage by  $\beta$ -etherase enzymes LigE and LigF to yield guaiacol and GS-HPV as monoaromatic derivative products. GS-HPV undergoes GSH-dependent thioether cleavage by NaGST<sub>Nu</sub> or LigG,</sub> producing GSSG and monoaromatic product HPV. As indi- 15 cated by the dashed arrows, AvGR recycles co-substrates GSH and NAD<sup>+</sup> via NADH-dependent reduction of GSSG. For reactions involving an R- or S-configured epimer as the substrate, the isomer towards which each enzyme exhibits activity is shown in grev text. Panel (C) shows how  $\beta$ -ether- 20 ase pathway enzymes degrade GTE through intermediate GTE-ketone to yield tricin and HPV.

FIGS. 17A and 17B show HPLC chromatographic traces of substrates and products of  $\beta$ -etherase pathway assays using NAD<sup>+</sup> (2.0 mM), GSH (4.0 mM), and erythro-GGE 25 (6.0 mM). Elution time of compounds (absorbance at 280 nm) are highlighted by shading: NAD+ and NADH (~3.0 min), GS-HPV (~4.5 min), HPV (~9.0 min), guaiacol (~14.0 min), erythro-GGE (~18.0 min), threo-GGE (~19.0 min), and GGE-ketone (~21.5 min). Structures of GS-HPV, HPV, 30 guaiacol, GGE, and GGE-ketone are shown in FIG. 16 (B). Panel (A) of FIG. 17A shows a control sample to which no enzymes were added. After 4 h incubation with one of the following combinations of enzymatic catalysts (50 µg/mL each): the remaining panels in FIGS. 17A and 17B show 35 products in assays containing (FIG. 17A, panel B) LigDNEF and NaGST<sub>Nu</sub>; (FIG. 17A, panel C) LigDNEF, NaGST<sub>Nu</sub>, and AvGR; (FIG. 17B, panel D) LigDNEF and LigG; and (FIG. 17B, panel E) LigDNEF, LigG, and AvGR.

FIG. **18** shows time-dependent changes in concentrations 40 of erythro-GGE (-), threo-GGE (-), GGE-ketone (-o-), HPV (-), and guaiacol (-) in an assay that, at 0 min, was supplemented with NAD<sup>+</sup> (2.0 mM), GSH (4.0 mM), and erythro-GGE (6.0 mM), as well as (50 µg/mL each) LigD, LigN, LigE, LigF, NaGST<sub>Nu</sub>, and AvGR. Numbers in paren-45 theses represent the measured concentration (mM) of each compound after 4 h of incubation. Structures of HPV, guaiacol, GGE, and GGE-ketone are shown in FIG. **16** (B). erythro-GGE is a mixture of enantiomers ( $\alpha$ R, $\beta$ S)-GGE and ( $\alpha$ S, $\beta$ R)-GGE. threo-GGE is a mixture of enantiomers ( $\alpha$ S, 50  $\beta$ S)-GGE and ( $\alpha$ R, $\beta$ R)-GGE.

FIGS. 19A and 19B show HPLC chromatographic traces of  $\beta$ -etherase pathway products in reactions containing the indicated enzymes and NAD+ (5.0 mM), GSH (5.0 mM), and GTE (1.0 mM, a 6:1 mixture of erythro-GTE to threo-55 GTE). Elution time of compounds (absorbance at 280 nm) are highlighted: NAD<sup>+</sup> and NADH (~3.0 min), GS-HPV (~5.5 min), HPV (~16.5 min), tricin (~51.5 min), threo-GTE (~52.0 min), erythro-GTE (~56.0 min), and GTE-ketone (~58.5 min). Panel (A) of FIG. 19A shows the control 60 sample to which no enzymes were added. After 4 h incubation with one of the following combinations of enzymatic catalysts (50 µg/mL each): the panels in FIG. 19B show products in assays containing (panel B) LigD, LigN, LigE, LigF, and NaGST<sub>Nu</sub>; (panel C) LigD, LigN, LigE and LigF; 65 (panel D) LigD and LigN. Structures of GS-HPV, HPV, tricin, GTE, and GTE-ketone are shown in FIG. 16 (C).

FIG. **20** shows analytical GPC traces ( $\lambda$ =200 nm) showing the size distribution of (A) unfractionated HP lignin (MW=8,665), (B) fractions of MCS lignin collected from preparative GPC, and (C) the fractions that were pooled and used as the substrate in enzyme assays: fraction 1 (MW=11, 550), fraction 2 (MW=10,780), and fraction 3 (MW=9,340). For reference, the approximate MW of a 10-mer is indicated with a dashed line.

FIG. **21** shows HPLC chromatographic traces of coupled  $\beta$ -etherase pathway reactions supplemented with NAD<sup>+</sup> (2.0 mM), GSH (4.0 mM), and HP lignin fractions (2.2 mg mL<sup>-1</sup>). Elution times of compounds (absorbance at 280 nm) are highlighted: NAD<sup>+</sup> and NADH (~3.0 min), HPS (~10.0 min), unknown (grey, ~20.0 min), and syringaresinol (~21.5 min). Panel (A) shows the pooled GPC fractions 1 (MW=11, 550), 2 (MW=10,780), and 3 (MW=9,340) without enzyme addition. Panel (B) shows after 4 h incubation with LigD, LigN, LigE, LigF, NaGST<sub>Nu</sub> and AvGR (50 µg/mL each) and pooled HP lignin fractions 1-3 as the substrate.

FIG. **22** shows analytical GPC traces ( $\lambda$ =200 nm) showing the distribution of (A) unfractionated MCS lignin (MW=5,980), (B) fractions of MCS lignin collected from preparative GPC, and (C) the fractions used as substrates in enzyme assays: fraction 1 (MW=10,710), fraction 5 (MW=5,370), fraction 8 (MW=1,390), fraction 14 (MW=660), and fraction 17 (MW=460). For reference, the approximate MW of a 10-mer is indicated with a dashed line.

FIGS. 23A and 23B show HPLC chromatographic traces of  $\beta$ -etherase pathway enzyme activities in reactions containing NAD<sup>+</sup> (2.0 mM), GSH (4.0 mM), and MCS lignin or the indicated MCS lignin fractions (2.2 mg mL<sup>-1</sup>). Elution times (absorbance at 280 nm) are highlighted by shading: NAD<sup>+</sup> (~3.0 min), HPV (~9.0 min), HPS (~10.0 min), unknowns (grey, ~18.0-19.0 min), and tricin (~26.5 min), and an unknown broad peak (orange, ~22.0-29.0 min). Panel A in FIG. 23A shows the control sample (unfractionated by GPC) to which no enzymes were added. The remaining panels in FIGS. 23A and 23B show products after 4 h incubation with 50 µg/mL each of LigD, LigN, LigE, LigF,  $NaGST_{N\mu}$  and AVGR, and one of the following MCS lignin fractions: (FIG. 23A, panel B) fraction 1 (MW=10,710), (FIG. 23A, panel C) fraction 5 (MW=5,3670), (FIG. 23B, panel D) fraction 8 (MW=1,390), (FIG. 23B, panel E) fraction 14 (MW=660), and (FIG. 23B, panel F) fraction 17 (MW=460). Structures of HPV, HPS, and tricin are shown in FIG. 16.

FIG. **24** shows the extracellular concentration of metabolites with growth of *N. aromaticivorans* strains 12444 $\Delta$ 1879 (effective wild-type; A), 12444 $\Delta$ ligE (B), 12444 $\Delta$ 2872 (C), 12444 $\Delta$ ligE $\Delta$ 2872 (D), and 12444 $\Delta$ ligE $\Delta$ 2873 (E) in Standard Mineral Base (SMB) containing 3 mM vanillate and 1 mM erythro-GGE. Extracellular concentrations of vanillate are not shown. The segments of panels A-E use different x-axis scales for clarity of presentation.

FIG. **25** shows stereoisomer(s) of MPHPV remaining in the media in samples from the final time point of the experiment shown for FIG. **24** for the 12444 $\Delta$ ligE $\Delta$ 2872 and 12444 $\Delta$ ligE $\Delta$ 2873 cultures (F-H and I-K, respectively). The final time point samples were combined with H<sub>2</sub>O, recombinant LigF, or recombinant LigE to determine which stereoisomer(s) of MPHPV remained in the media. The two stereoisomers each of erythro-GGE, threo-GGE, MPHPV, and GS-HPV are not distinguishable in our method of analysis.

FIG. 26 shows reactions of racemic MPHPV with the Saro\_2872 and Saro\_2873 polypeptides individually and

combined. Racemic ( $\beta(R)$  and  $\beta(S)$ ) MPHPV was initially mixed with H<sub>2</sub>O (A), or the Saro\_2872 or Saro\_2873 polypeptides individually (B,C), or combined (D). The samples containing both Saro 2872 and Saro 2873 was then split and combined with either LigE (Saro\_2405) or 5 LigF1 (Saro\_2091). All reactions contain at least 5 mM GSH. The  $\beta(R)$  and  $\beta(S)$  stereoisomers of both MPHPV and GS-HPV are indistinguishable in our analysis.

FIG. 27 shows gel permeation chromatography of various BaeA (Saro\_2872 and Saro\_2873 heterodimer) variants and 10 other standard proteins of known molecular weights.

FIG. 28 shows a phylogentic tree of LigE and LigF homologues and the Saro 2872 and Saro 2873 polypeptides.

FIG. 29 shows a polypeptide sequence alignment of 15 Saro 2872 and Saro 2873 with known LigF enzymes.

## DETAILED DESCRIPTION OF THE INVENTION

One aspect of the invention includes methods of processing lignin. The term "lignin" used herein refers to any compound comprising covalently linked phenylpropanoid units. Phenylpropanoids include compounds commonly referred to as "phenylpropane units," "lignin monomer 25 are purified enzymes. The term "isolated" or "purified" units," or variants thereof, and are well-known compounds in the art. Phenylpropanoids include a substituted or nonsubstituted six-carbon aromatic phenyl group and a substituted or non-substituted three-carbon tail. The phenyl group and tail may be substituted or unsubstituted. The tail may be 30 saturated or unsaturated. The substitutions on the phenyl group may include hydroxy and alkoxy (e.g., methoxy) groups, among others. The substitutions on the tail may include hydroxy, alkoxy, carboxy, thiol, and sulfonate groups, among others. Exemplary phenylpropanoid units 35 include the p-hydroxyphenyl (H), guaiacyl (G), and syringyl (S) units derived from p-coumaryl alcohol, coniferyl alcohol, and sinapyl alcohol, respectively. The phenylpropanoid units can be linked to other phenylpropanoid units, flavonoid units such as tricin, or other types of chemical units. The 40 phenylpropanoid units are preferably linked through radical coupling. Exemplary linkages include  $\beta$ -O-4, 5-5,  $\beta$ -5,  $\beta$ -1, 4-O-5, and  $\beta$ - $\beta$  linkages. See, e.g., Santos et al. 2013.

Two types of lignin include natural lignin and synthetic lignin. "Natural lignin" refers to lignin in which the phe- 45 nylpropanoid units are covalently linked in nature (in vivo), regardless of whether or not the lignin is subsequently processed in vitro. Natural lignin encompasses lignin from non-genetically engineered plants as well as genetically engineered plants. The genetically engineered plants include 50 plants that have been genetically engineered for altered lignin production, such as incorporation of ferulates moieties (U.S. Pat. Nos. 8,569,465 and 9,388,285), flavan-3-ols and/or gallic acid derivatives (U.S. Pat. No. 8,685,672), high syringyl content (see the examples), or other modifications 55 (U.S. Pat. Nos. 9,487,794; 9,441,235; and 9,493,783). "Synthetic lignin" refers to lignin in which the phenylpropanoid units are covalently linked in vitro. Methods of covalently linking phenylpropanoid units in vitro through radical coupling reactions are well known in the art. See, e.g., Grabber 60 et al. 1996.

"Processing" or grammatical variants thereof refers herein to modifying lignin in any manner to result in at least one structural change. Processing can occur through chemical, physical, or enzymatic methods. Examples of process- 65 ing include depolymerization, oxidation, acid treatment, base treatment, enzyme treatment, heating, mechanical

shearing, etc. The processing may depolymerize the lignin (at least to some degree), chemically modify the lignin, physically break apart the lignin, remove or add functional groups on the lignin, or result in other structural changes.

Certain methods of the invention are directed to enzymatically processing lignin comprising β-O-4 linkages ( $\beta$ -ether linkage) to break at least a portion of the  $\beta$ -O-4 linkages and/or release compounds from the lignin. The processing can advantageously be performed in vitro using one or more enzymes. The term "in vitro" in this context refers to processing with enzymes in which the enzymes are not actively produced by any intact, living organisms, and is contrasted with in vivo processing, in which the enzymes involved with the processing are actively produced by one or more intact, living organisms. Thus, in some versions, the enzymes involved in the processing are not actively produced during the duration of the processing. In some versions, the processing occurs in the absence of intact, living microorganisms. In some versions, the processing occurs in 20 the absence of any intact, living Sphingobium species, Erythrobacter species, Novosphingobium species, Escherichia species, Streptococcus species, and/or Phanerochaete species.

In some versions, the enzymes involved in the processing means a material that is removed from its original environment, for example, the natural environment if it is naturally occurring, or a fermentation broth if it is produced in a recombinant host cell fermentation medium. A material is said to be "purified" when it is present in a particular composition in a higher or lower concentration than the concentration that exists prior to the purification step(s). For example, with respect to a composition normally found in a naturally-occurring or wild type organism, such a composition is "purified" when the final composition does not include some material from the original matrix. As another example, where a composition is found in combination with other components in a recombinant host cell fermentation medium, that composition is purified when the fermentation medium is treated in a way to remove some component of the fermentation, for example, cell debris or other fermentation products, through, for example, centrifugation or distillation. As another example, a naturally-occurring polynucleotide or polypeptide present in a living animal is not isolated, but the same polynucleotide or polypeptide, separated from some or all of the coexisting materials in the natural system, is isolated, whether such process is through genetic engineering or mechanical separation. In another example, a polynucleotide or protein is said to be purified if it gives rise to essentially one band in an electrophoretic gel or a blot.

A first step in the enzymatic processing involves contacting lignin comprising  $\beta$ -O-4 ( $\beta$ -ether) linkages with a dehydrogenase. The dehydrogenase is preferably capable of oxidizing  $\alpha$ -hydroxyls on  $\beta$ -ether units to corresponding  $\alpha$ -ketones. The term " $\beta$ -ether unit" is used herein to refer to a phenylpropanoid moiety linked to a second phenylpropanoid moiety via a  $\beta$ -O-4 linkage. See, e.g., FIGS. 1 and 16. Exemplary enzymes used for this step include any one or more of LigD, LigO, LigN, and LigL. Exemplary LigD, LigO, LigN, and LigL enzymes include those from Sphingobium sp. SYK-6 having the sequences of SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, and SEQ ID NO:8, respectively, which are encoded by SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, and SEQ ID NO:7, respectively. LigD, LigO, LigN, and LigL enzymes are found in organisms other than Sphingobium sp. SYK-6 and can be used in place of or in

addition to those from *Sphingobium* sp. SYK-6. Modified forms of the native LigD, LigO, LigN, and LigL enzymes can also suitably be used, provided the modified forms maintain the activity of the native enzymes. Such modified forms that maintain the activity of the native enzymes are also referred to herein as LigD, LigO, LigN, and LigL enzymes. The modified forms comprise sequences at least 95% identical to the amino acid sequences of the corresponding native enzymes.

The LigD and LigO enzymes from *Sphingobium* sp. <sup>10</sup> SYK-6 have a specificity for  $\alpha$ -hydroxyls in the  $\alpha$ (R) stereochemical configuration. The LigN and LigL enzymes from *Sphingobium* sp. SYK-6 have a specificity for  $\alpha$ -hydroxyls in the  $\alpha$ (S) stereochemical configuration. To ensure efficient processing in a non-stereospecific manner, it is preferred that the lignin is contacted with at least one  $\alpha$ (R) stereospecific enzyme and least one  $\alpha$ (S) stereospecific enzyme. Accordingly, preferred combinations include one or more of LigD and LigO with one or more of LigN and LigL. <sub>20</sub>

LigD, LigO, LigN, and LigL homologs from *Erythrobacter* sp. SG61-1L can react with all four possible stereoisomers of GGE (see Palamuru et al. 2015) and can be used in place of or in combination with the enzymes from *Sphingobium* sp. SYK-6.

A second step in the enzymatic processing involves contacting preprocessed (preliminarily processed) lignin, such as a product of the first step, with a  $\beta$ -etherase. The  $\beta$ -etherase is preferably capable of catalyzing glutathionedependent  $\beta$ -ether cleavage to yield a  $\beta$ -glutathione-linked 30 phenylpropanoid unit in place of the  $\beta$ -ether phenylpropanoid unit. See, e.g., FIGS. **1** and **16**. The second step can be performed simultaneously with or subsequent to the first step. Exemplary enzymes used for this step include any one or more of LigE, LigF, LigP, and BaeA. 35

Exemplary LigE, LigF, and LigP enzymes include those from *Sphingobium* sp. SYK-6 having the sequences of SEQ ID NO:10, SEQ ID NO:12, and SEQ ID NO:14, respectively, which are encoded by SEQ ID NO:9, SEQ ID NO:11, and SEQ ID NO:13, respectively. LigE, LigF, and LigP 40 enzymes are found in organisms other than *Sphingobium* sp. SYK-6 and can suitably be used in place of or in addition to those from *Sphingobium* sp. SYK-6. Modified forms of the native LigE, LigF, and LigP enzymes can also suitably be used, provided the modified forms maintain the activity of 45 the native enzymes. Such modified forms that maintain the activity of the native enzymes are also referred to herein as LigE, LigF, and LigP enzymes. The modified forms comprise sequences at least 95% identical to the amino acid sequences of the corresponding native enzymes. 50

'BaeA" refers to a heterodimer of a first polypeptide having an amino acid sequence of SEQ ID NO:40 or an amino acid sequence at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or more identical thereto and a second polypeptide having an amino acid sequence of SEQ ID 55 NO:42 or an amino acid sequence at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or more identical thereto. An exemplary BaeA is a heterodimer of Saro 2872 from Novosphingobium aromaticivorans (encoded by SEQ ID NO:39 and represented by SEQ ID NO:40) and Saro\_2873 60 from Novosphingobium aromaticivorans (encoded by SEQ ID NO:41 and represented by SEQ ID NO:42). The second polypeptide preferably comprises an asparagine or a conservative variant of asparagine at a position corresponding to position 14 of SEQ ID NO:41 and/or a serine or a conser- 65 vative variant of serine at a position corresponding to position 15 of SEQ ID NO:42.

The LigE and LigP enzymes from *Sphingobium* sp. SYK-6 and BaeA have a specificity for cleaving  $\beta$ -ether linkages in the  $\beta(R)$  stereochemical configuration. The LigF enzyme from *Sphingobium* sp. SYK-6 has a specificity for cleaving  $\beta$ -ether linkages in the  $\beta(S)$  stereochemical configuration. To ensure efficient processing in a non-stereospecific manner, it is preferred that the substrate is contacted with at least one  $\beta(R)$  stereospecific enzyme and least one  $\beta(S)$  stereospecific enzyme. Accordingly, preferred combinations include one or more of LigE, LigP, and BaeA with LigF.

LigE/P and LigF homologues from other organisms are also expected to be stereospecific. See for example Gall and Ralph et al. 2014. SLG\_08660 (SYK-6 LigE), PP1Y\_AT11664 (*Novosphingobium* sp. PP1Y), SLG\_32600 (SYK-6 LigP), and Saro\_2405 (*Novosphingobium aromaticivorans*) were all shown to be specific for β(R)-compounds. Likewise, SLG\_08650 (SYK-6 LigF), Saro\_2091 (*Novosphingobium aromaticivorans*), and Saro\_2865 (*Novosphingobium aromaticivorans*) were all shown to be specific for β(S)-compounds.

A third step in the enzymatic processing involves contacting preprocessed lignin, such as a product of the second step, with a glutathione lyase. The glutathione lyase is preferably capable of cleaving glutathione from  $\beta$ -glutathione-linked phenylpropanoid units. The cleavage may use glutathione as a cosubstrate and produce glutathione disulfide in the process. See, e.g., FIGS. 1 and 16. The third step can be performed simultaneously with or subsequent to the second step and/or the first and second steps. Exemplary enzymes used for this step include any one or more of LigG from Sphingobium sp. SYK-6 having the amino acid sequence of SEQ ID NO:16 (encoded by SEQ ID NO:15), a Nu-class glutathione 5-transferase (GST) from Novosphingobium aromaticivorans DSM 12444 having the amino acid sequence of SEQ ID NO:18 (NaGST<sub> $N\mu$ </sub>) (encoded by SEQ ID NO:17), a recombinant NaGST<sub>Nu</sub> having the amino acid sequence of residues 21-313 of SEQ ID NO:20 (encoded by SEQ ID NO:19 prior to cleavage), a Nu-class GST from Sphingobium sp. SYK-6 having the amino acid sequence of SEQ ID NO:22 (SYK6GST $_{Nu}$ ) (encoded by SEQ ID NO:21), a recombinant SYK6GST<sub>Nu</sub> having the amino acid sequence of residues 21-324 of SEQ ID NO:24 (encoded by SEQ ID NO:23 prior to cleavage), a Nu-class GST from Escherichia coli DH5a having the amino acid sequence of SEQ ID NO:26 (ecYghU) (encoded by SEQ ID NO:25), a recombinant ecYghU having the amino acid sequence of residues 21-313 of SEQ ID NO:28 (encoded by SEQ ID NO:27 prior to cleavage), a Nu-class GST from Escherichia coli DH5 $\alpha$  having the amino acid sequence of SEQ ID NO:30 (ecYfcG) (encoded by SEQ ID NO:29), a Nu-class GST from Streptococcus sanguinis SK36 having the amino acid sequence of SEQ ID NO:32 (ssYghU) (encoded by SEQ ID NO:31), a Nu-class GST from Novosphingobium sp. MBESO4 having the amino acid sequence of SEQ ID NO:34 (GST3) (encoded by SEQ ID NO:33), and a Nu-class GST from Phanerochaete chrysosporium RP-78 having the amino acid sequence of SEQ ID NO:36 (PcUre2pB1) (encoded by SEQ ID NO:35).

The LigG from *Sphingobium* sp. SYK-6 has a specificity for  $\beta$ -glutathione-linked phenylpropanoid units with the glutathione moieties linked in the  $\beta(R)$  stereochemical configuration and is referred to herein as a "stereospecific glutathione lyase." By contrast, the Nu-class glutathione S-transferase (GST) from *Novosphingobium aromaticivorans DSM* 12444 having the amino acid sequence of SEQ ID NO:18 (NaGST<sub>Nu</sub>) (encoded by SEQ ID NO:17), the recombinant  $NaGST_{Nu}$  having the amino acid sequence of residues 21-313 of SEQ ID NO:20 (encoded by SEQ ID NO:19 prior to cleavage), the Nu-class GST from Sphingobium sp. SYK-6 having the amino acid sequence of SEQ ID NO:22 (SYK6GST<sub>Nu</sub>) (encoded by SEQ ID NO:21), the recombinant SYK6GST<sub>Nu</sub> having the amino acid sequence of residues 21-324 of SEQ ID NO:24 (encoded by SEQ ID NO:23 prior to cleavage), the Nu-class GST from Escheri*chia coli* DH5 $\alpha$  having the amino acid sequence of SEQ ID NO:26 (ecYghU) (encoded by SEQ ID NO:25), the recombinant ecYghU having the amino acid sequence of residues 21-313 of SEQ ID NO:28 (encoded by SEQ ID NO:27 prior to cleavage), the Nu-class GST from Escherichia coli DH5a having the amino acid sequence of SEQ ID NO:30 (ecYfcG) (encoded by SEQ ID NO:29), the Nu-class GST from Streptococcus sanguinis SK36 having the amino acid sequence of SEQ ID NO:32 (ssYghU) (encoded by SEQ ID NO:31), the Nu-class GST from Novosphingobium sp. MBESO4 having the amino acid sequence of SEQ ID 20 NO:34 (GST3) (encoded by SEQ ID NO:33), and the Nu-class GST from Phanerochaete chrysosporium having the amino acid sequence of SEQ ID NO:36 (PcUre2pB1) (encoded by SEQ ID NO:35) are capable or predicted to be capable of cleaving  $\beta$ -glutathione-linked phenylpropanoid 25 units with the glutathione moieties linked in either the  $\beta(R)$ or  $\beta(S)$  stereochemical configuration and are referred to herein as "non-stereospecific glutathione lyases." To ensure efficient processing in a non-stereospecific manner, it is preferred that the substrate is contacted with at least one 30 non-stereospecific glutathione lyase. Accordingly, preferred combinations include one or more of any of the nonstereospecific glutathione lyases described herein with or without LigG.

Other non-stereospecific glutathione lyases that can be 35 used in place of or in addition to the non-stereospecific glutathione lyases described above include enzymes at least about 35%, at least about 40%, at least about 45%, at least about 50%, at least about 60%, at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least 40 about 85%, at least about 90%, or at least about 95% identical to any one of SEQ ID NO:18 (NaGST<sub>Nu</sub>), residues 21-313 of SEQ ID NO:20 (recombinant NaGST<sub>Nu</sub>), SEQ ID NO:22 (SYK6GST<sub>Nu</sub>), residues 21-324 of SEQ ID NO:24 (recombinant SYK6GST<sub>Nu</sub>), SEQ ID NO:26 (ecYghU), 45 residues 21-313 of SEQ ID NO:28 (recombinant ecYghU), SEQ ID NO:30 (ecYfcG), SEQ ID NO:34 (GST3); SEQ ID NO:32 (ssYghU), and SEQ ID NO:36 (PcUre2pB1). Such enzymes may be native enzymes or modified forms of native enzymes.

As discussed in the following examples, a number of residues of the non-stereospecific glutathione lyases described herein play at least some role in the enzymatic activity. See, e.g., FIG. 5. These include Asn25 of SEQ ID NO:18 (NaGST<sub>Nu</sub>), Thr51 of SEQ ID NO:18 (NaGST<sub>Nu</sub>), 55 Asn53 of SEQ ID NO:18 (NaGST<sub>Nu</sub>), Gln86 of SEQ ID NO:18 (NaGST<sub>Nu</sub>), Lys99 of SEQ ID NO:18 (NaGST<sub>Nu</sub>), Ile100 of SEQ ID NO:18 (NaGST<sub>Nu</sub>), Glu 116 of SEQ ID</sub> NO:18 (NaGST<sub>Nu</sub>), Ser117 of SEQ ID NO:18 (NaGST<sub>Nu</sub>), Tyr166 of SEQ ID NO:18 (NaGST<sub>Nu</sub>), Arg177 of SEQ ID 60 NO:18 (NaGST<sub>Nu</sub>), Tyr224 of SEQ ID NO:18 (NaGST<sub>Nu</sub>),</sub> and corresponding residues in the other enzymes. A number of these residues are conserved across all the non-stereospecific glutathione lyases described herein. These include Thr51 of SEQ ID NO:18 (NaGST<sub>Nu</sub>), Asn53 of SEQ ID NO:18 (NaGST<sub>Nu</sub>), Gln86 of SEQ ID NO:18 (NaGST<sub>Nu</sub>), Ile100 of SEQ ID NO:18 (NaGST<sub>Nu</sub>), Glu 116 of SEQ ID

NO:18 (NaGST<sub>Nu</sub>), Arg177 of SEQ ID NO:18 (NaGST<sub>Nu</sub>), and corresponding residues in the other enzymes.

Accordingly, suitable enzymes at least about 60%, at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, or at least about 95% identical to the non-stereospecific glutathione lyases described herein preferably comprise at least one, at least two, at least three, at least four, at least five, at least six, at least seven, or all of threonine or a conservative variant of threonine at a position corresponding to position 51 of SEQ ID NO:18 (NaGST<sub>Nu</sub>), asparagine or a conservative variant of asparagine at a position corresponding to position 53 of SEQ ID NO:18 (NaGST<sub>Nu</sub>), glutamine or a conservative</sub> variant of glutamine at a position corresponding to position 86 of SEQ ID NO:18 (NaGST<sub>Nu</sub>), lysine, a conservative variant of lysine, arginine, or a conservative variant of arginine at a position corresponding to position 99 of SEQ ID NO:18 (NaGST<sub>Nu</sub>), isoleucine or a conservative variant of isoleucine at a position corresponding to position 100 of SEQ ID NO:18 (NaGST<sub>Nu</sub>), glutamate or a conservative variant of glutamate at a position corresponding to position 116 of SEQ ID NO:18 (NaGST<sub>Nu</sub>), serine, threonine, a conservative variant of serine, or a conservative variant of threonine at a position corresponding to position 117 of SEQ ID NO:18 (NaGST<sub>Nu</sub>), arginine or a conservative variant of arginine at a position corresponding to position 177 of SEQ ID NO:18 (NaGST<sub> $N\mu$ </sub>).

Suitable enzymes at least about 60%, at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, or at least about 95% identical to the non-stereospecific glutathione lyases described herein more preferably comprise at least one, at least two, at least three, at least four, at least five, at least six, at least seven, at least eight, at least nine, at least ten, or all of asparagine or a conservative variant of asparagine at a position corresponding to position 25 of SEQ ID NO:18 (NaGST<sub>Nu</sub>), threenine or a conservative variant of threenine</sub> at a position corresponding to position 51 of SEQ ID NO:18 (NaGST<sub>Nu</sub>), asparagine or a conservative variant of aspara-</sub> gine at a position corresponding to position 53 of SEQ ID NO:18 (NaGST<sub>Nu</sub>), glutamine or a conservative variant of glutamine at a position corresponding to position 86 of SEQ ID NO:18 (NaGST<sub>Nu</sub>), lysine, a conservative variant of lysine, arginine, or a conservative variant of arginine at a position corresponding to position 99 of SEQ ID NO:18 (NaGST<sub>Nu</sub>), isoleucine or a conservative variant of isoleucine at a position corresponding to position 100 of SEQ ID NO:18 (NaGST<sub>Nu</sub>), glutamate or a conservative variant of glutamate at a position corresponding to position 116 of SEQ ID NO:18 (NaGST<sub>Nu</sub>), serine, threonine, a conservative variant of serine, or a conservative variant of threonine at a position corresponding to position 117 of SEQ ID NO:18 (NaGST<sub>Nu</sub>), tyrosine or a conservative variant of tyrosine at a position corresponding to position 166 of SEQ ID NO:18 (NaGST<sub>Nu</sub>), arginine or a conservative variant of arginine at a position corresponding to position 177 of SEQ ID NO:18 (NaGST<sub>Nu</sub>), and tyrosine or a conservative variant of tyrosine at a position corresponding to position 224 of SEQ ID NO:18 (NaGST<sub>Nu</sub>).

Positions in a given enzyme that correspond to positions in a given sequence such as SEQ ID NO:18 (NaGST<sub>*Nu*</sub>), SEQ ID NO:40 (Saro\_2872), and SEQ ID NO:42 (Saro\_2873), or any other sequence provided herein, can be identified through alignment of the sequence of the enzyme with the given sequence. A number of sequence alignment algorithms are known in the art. Exemplary sequence alignment algorithms include MAFFT version 7 (mafft.cbrc.jp) (Katoh et al. 2002) and Clustal W and other Clustal programs (Larkin et al. 2007). Other algorithms and programs are known in the art.

"Conservative variant" refers to residues that are functionally similar to a given residue such that one or more of the functionally similar residues may substitute for the given residue. Conservative variants of the standard amino acids are well known in the art. In some versions, aliphatic, non-polar amino acids (Gly, Ala, Ile, Leu, and Val) are conservative variants of one another. In some versions, aliphatic, polar amino acids (Cys, Ser, Thr, Met, Asn, Tyr and Gln) are conservative variants of one another. In some versions, aromatic amino acids (Phe, Tyr, Trp, and His) are conservative variants of one another. In some versions, basic amino acids (Lys, Arg, and His) are conservative variants of one another. In some versions, acidic amino acids (Asp and Glu) are conservative variants of one another. In some versions, an amino acid with an acidic side chain, Glu or Asp, is a conservative variant of its uncharged counterpart, Gln or Asn, respectively; or vice versa. In some versions, each of the following groups contains other exemplary amino acids that are conservative variants of one another: Ala and Gly; Asp and Glu; Asn and Gln; Arg and Lys; Ile, 25 Leu, Met, and Val; Phe, Tyr, and Trp; Ser and Thr; and Cys and Met.

A fourth step in the enzymatic processing involves conducting the first three steps in the presence of a glutathione (GSH) reductase that catalyzes reduction of glutathione disulfide (GSSG). The GSH reductase regenerates the GSH cosubstrate of the second and third steps from the GSSG co-product of the third step and regenerates the NAD+ cosubstrate of the first step from the NADH co-product of 35 the first step. See, e.g., FIGS. 1 and 16. An exemplary GSH reductase is the GSH reductase from Allochromatium vinosum DSM180 (AvGR) having the sequence of SEQ ID NO:38 (encoded by SEQ ID NO:37). Other GSH reductases are known in the art and can be used in this step. Modified forms of the native AvGR and other suitable enzymes can also suitably be used, provided the modified forms maintain the activity of the native enzymes. The modified forms comprise sequences at least 95% identical to the amino acid 45 sequences of the corresponding native enzymes.

The enzymatic processing outlined above is capable of depolymerizing lignin and/or releasing compounds therefrom. Compounds that are capable of being released from lignin include monomeric phenylpropanoid units and monomeric flavones. Examples of monomeric phenylpropanoid units capable of being released from lignin include monomeric guaiacyl phenylpropanoid units, monomeric syringyl phenylpropanoid units, and monomeric p-hydroxyphenyl phenylpropanoid units. Examples of flavones capable of 55 being released from lignin include monomeric tricin units.

The lignin subjected to the enzymatic processing outlined above may have any of a number of average molecular weights (MW). The average molecular weight (MW) in some versions, for example, may be at least about 100, at 60 least about 200, at least about 300, at least about 400, at least about 500, at least about 300, at least about 700, at least about 500, at least about 600, at least about 700, at least about 1,250, at least about 900, at least about 1,750, at least about 2,000, at least about 2,500, at least about 3,000, 65 at least about 3,500, at least about 4,000, at least about 4,500, at least about 5,000, at least about 6,000, at least

about 7,000, at least about 8,000, at least about 9,000, at least about 10,000, at least about 11,000, at least about 13,000, at least about 15,000, or more. The average molecular weight (MW) in some versions may be up to about 150, up to about 200, up to about 300, up to about 400, up to about 500, up to about 600, up to about 700, up to about 800, up to about 900, up to about 1,250, up to about 1,250, up to about 1,500, up to about 1,250, up to about 1,500, up to about 1,750, up to about 2,000, up to about 4,000, up to about 3,000, up to about 3,500, up to about 4,000, up to about 4,500, up to about 5,000, up to about 9,000, up to about 10,000, up to about 11,000, up to about 13,000, up to about 13,000, up to about 13,000, up to about 13,000, up to about 10,000, up to about 13,000 or more.

Certain methods of the invention are directed to methods of chemical conversion. Such methods may comprise contacting a first compound in vitro with a non-stereospecific glutathione lyase to yield a second compound.

The non-stereospecific glutathione lyase used in the methods of chemical conversion may comprise any of the nonstereospecific glutathione lyases described herein. Preferred non-stereospecific glutathione lyases include non-stereospecific glutathione lyases comprising an amino acid sequence at least about 60% identical, at least about 65% identical, at least about 70% identical, at least about 75% identical, at least about 80% identical, at least about 85% identical, at least about 90% identical, or at least about 95% identical to any of SEQ ID NO:18 (NaGST $_{Nu}$ ), residues 21-313 of SEQ ID NO:20 (recombinant NaGST<sub>Nu</sub>), SEQ ID NO:22 (SYK6GST<sub> $N\mu$ </sub>), residues 21-324 of SEQ ID NO:24 (recombinant SYK6GST<sub>Nu</sub>), SEQ ID NO:26 (ecYghU), residues 21-313 of SEQ ID NO:28 (recombinant ecYghU), SEQ ID NO:30 (ecYfcG), SEQ ID NO:32 (ssYghU), SEQ ID NO:34 (GST3), and SEQ ID NO:36 (PcUre2pB1).

The first compound contacted with the non-stereospecific glutathione lyase in the methods of chemical conversion preferably has a structure of Formula I or a salt thereof:



wherein: R<sup>1</sup>, R<sup>2</sup>, and R<sup>3</sup> are each independently —H, —OH, —O-alkyl, —O-lignin, or -lignin; R<sup>4</sup> is —H, —OH, —SH, —COOH, —SO<sub>3</sub>H, or —O-lignin; and SG is glutathione bound in an S or R configuration.

The second compound yielded by contacting the first compound with the non-stereospecific glutathione lyase in the methods of chemical conversion preferably has a structure of Formula II or a salt thereof:

(I)

25

(II)



wherein  $R^1$ ,  $R^2$ ,  $R^3$ , and  $R^4$  are as defined above.

Contacting the first compound with the non-stereospecific glutathione lyase in the methods of chemical conversion may occur in in the presence of NADH and a GSH reductase that catalyzes reduction of glutathione disulfide, such as a GSH reductase comprising an amino acid sequence at least 20 95% identical to SEQ ID NO:38 (AvGR).

The first compound may be generated by contacting lignin comprising  $\beta$ -O-4 ether linkages with any dehydrogenase described herein and/or any  $\beta$ -etherase described herein. The lignin may be contacted with these enzymes in vitro.

Another aspect of the invention includes recombinant enzymes. The recombinant enzymes may be used in any of the methods described herein. The recombinant enzymes may comprise recombinant versions of any enzyme described or encompassed herein, including non-stereospe- 30 cific glutathione lyases or other enzymes. The term "recombinant" used with reference to an enzyme refers to nonnaturally occurring enzymes containing two or more linked polypeptide sequences. Thus, the recombinant enzymes may contain one or more non-native modifications selected from 35 the group consisting of an amino acid addition, an amino acid deletion, and an amino acid substitution. "Non-native modification" refers to a modification that is not found in any native protein. The recombinant enzymes can be produced by recombination methods, particularly genetic engi- 40 neering techniques, or can be produced by chemical synthesis.

In some versions, the recombinant enzyme comprises a recombinant non-stereospecific glutathione lyase of the invention. The recombinant non-stereospecific glutathione 45 lyase may be a recombinant version of any of the nonstereospecific glutathione lyases described or encompassed herein. Preferred recombinant non-stereospecific glutathione lyases include non-stereospecific glutathione lyases comprising an amino acid sequence at least about 60% 50 identical, at least about 65% identical, at least about 70% identical, at least about 75% identical, at least about 80% identical, at least about 85% identical, at least about 90% identical, or at least about 95% identical to any of: SEQ ID NO:18 (NaGST<sub>Nu</sub>); residues 21-313 of SEQ ID NO:20 55 (recombinant NaGST<sub>Nu</sub>); SEQ ID NO:22 (SYK6GST<sub>Nu</sub>); residues 21-324 of SEQ ID NO:24 (recombinant SYK6GST<sub>Nu</sub>); SEQ ID NO:26 (ecYghU); residues 21-313 of SEQ ID NO:28 (recombinant ecYghU); SEQ ID NO:30 (ecYfcG); SEQ ID NO:32 (ssYghU); SEQ ID NO:34 60 include plural referents unless the content clearly dictates (GST3); and SEQ ID NO:36 (PcUre2pB1). The design of amino acid deletions and substitutions in the recombinant non-stereospecific glutathione lyases can be guided by the alignment of the native non-stereospecific glutathione lyases provided in FIG. 5. 65

Amino acid additions in the recombinant enzymes of the invention, including the recombinant non-stereospecific glutathione lyases, may comprise the addition of any amino acid on the N-terminus, the C-terminus, or both the N-terminus and C-terminus of any native enzyme.

The added amino acids may comprise fusion tags. A number of fusion tags are known in the art. Some fusion tags are used for protein detection. These include green fluorescent protein (GFP) and its many variants (Tsien 1998). Some fusion tags are used for increasing expression and solubility of proteins. These include maltose binding protein (MBP), 10 small ubiquitin-like modifier (SUMO), and glutathione S-transferase (GST), among others (Bell et al. 2013, Butt et al. 2005). Some fusion tags, sometimes referred to as "affinity tags," are used for purification, detection with antibodies, or other uses. A number of affinity tags are 15 known in the art. Exemplary affinity tags include the His tag, the Strep II tag, the T7 tag, the FLAG tag, the S tag, the HA tag, the c-Myc tag, the dihydrofolate reductase (DHFR) tag, the chitin binding domain tag, the calmodulin binding domain tag, and the cellulose binding domain tag. The sequences of each of these tags are well-known in the art.

The recombinant enzymes of the invention, including the recombinant non-stereospecific glutathione lyases, may comprise a peptide cleavage sequence. The peptide cleavage sequence is preferably disposed between the enzyme portion and any fusion tag attached thereto. This permits separation of the fusion tag from the target protein, which may be useful for certain applications. The peptide cleavage sequence may be a recognition sequence for a site-specific peptidase. A number of site-specific peptidases are known in the art. These include Arg-C proteinase, Asp-N endopeptidase, Asp-N endopeptidase+N-terminal glu, BNPS-Skatole, caspase1, caspase2, caspase3, caspase4, caspase5, caspase6, caspase7, caspase8, caspase9, caspase10, chymotrypsinhigh specificity (C-term to [FYW], not before P), chymotrypsin-low specificity (C-term to [FYWML], not before P), clostripain (clostridiopeptidase B), CNBr, enterokinase, factor Xa, formic acid, glutamyl endopeptidase, granzymeB, hydroxylamine, iodosobenzoic acid, Lys-C, Lys-N, NTCB (2-nitro-5-thiocyanobenzoic acid), neutrophil elastase, pepsin (pH1.3), pepsin (pH>2), proline-endopeptidase, proteinase K, SUMO proteases (Ulp1, Senp2, and SUMOstar), staphylococcal peptidase I, subtilisin BPN, tobacco etch virus (TEV) protease, thermolysin, thrombin, and trypsin, and variants thereof, among others. The cleavage recognition sites for these and other site-specific peptidases are well known in the art. Exemplary peptide cleavage sequences include the ExxYxQ $\downarrow$ (G/S) recognition sequence of TEV (and AcTEV and ProTEV), the LVPR↓G recognition sequence of thrombin, the IEGR $\downarrow$ x recognition sequence of factor Xa, and the DDDDK 1 x recognition sequence of enterokinase.

The elements and method steps described herein can be used in any combination whether explicitly described or not.

All combinations of method steps as used herein can be performed in any order, unless otherwise specified or clearly implied to the contrary by the context in which the referenced combination is made.

As used herein, the singular forms "a," "an," and "the" otherwise.

Numerical ranges as used herein are intended to include every number and subset of numbers contained within that range, whether specifically disclosed or not. Further, these numerical ranges should be construed as providing support for a claim directed to any number or subset of numbers in that range. For example, a disclosure of from 1 to 10 should

65

be construed as supporting a range of from 2 to 8, from 3 to 7, from 5 to 6, from 1 to 9, from 3.6 to 4.6, from 3.5 to 9.9, and so forth.

All patents, patent publications, and peer-reviewed publications (i.e., "references") cited herein are expressly incorporated by reference to the same extent as if each individual reference were specifically and individually indicated as being incorporated by reference. In case of conflict between the present disclosure and the incorporated references, the present disclosure controls.

It is understood that the invention is not confined to the particular construction and arrangement of parts herein illustrated and described, but embraces such modified forms thereof as come within the scope of the claims.

# Example 1

## Nu-Class Glutathione-S-Transferases can Act as Glutathione Lyases in the Bacterial Pathway for Breaking β-Aryl Ether Bonds in Lignin

#### Summary

As a major component of plant cells walls, lignin is a potential renewable source of valuable chemicals. Several sphingomonad bacteria have been identified that can use 25 glutathione to break the  $\beta$ -aryl ether bond commonly found between phenylpropanoid units of the lignin heteropolymer. To explore bacterial strategies for depolymerizing lignin, we tested the abilities of three sphingomonads to metabolize the β-aryl ether containing dimeric aromatic compound guaiacylglycerol-β-guaiacyl ether (GGE). We found that Novosphingobium aromaticivorans metabolized GGE at amongst the fastest rates thus far reported. After the  $\beta$ -aryl ether bond of GGE is broken, the glutathione moiety must be removed from the resultant phenylpropanoid conjugate ( $\alpha$ -glutathionyl- $\beta$ -hydroxypropio-vanillone (GS-HPV)). We found that a  $^{35}$ Nu-class glutathione-S-transferase (GST) is necessary and sufficient for removing glutathione from both the R and S stereoisomers of GS-HPV in N. aromaticivorans. To investigate the prevalence of this glutathione lyase activity within 40 related proteins, we tested Nu-class GSTs from Sphingobium sp. SYK-6 and Escherichia coli and found that they also cleave both stereoisomers of GS-HPV. We solved the crystal structure of the N. aromaticivorans Nu-class GST and used it to develop models for how this enzyme binds and 45 cleaves both stereoisomers of GS-HPV.

#### Significance

There is considerable interest is identifying biological strategies to produce valuable products from renewable <sup>50</sup> resources. The non-edible, lignocellulosic, fraction of plant biomass has been identified as a renewable source of biobased products, but the properties of the aromatic polymer lignin present a major hurdle in realizing this goal. Here, we describe a novel role for a Nu-class glutathione-S-trans-<sup>55</sup> ferase (GST) in cleavage of the  $\beta$ -aryl ether bond that connects many aromatic units in lignin. We show that homologues of this enzyme from other bacteria also have this activity, suggesting that this function may be common throughout this widespread class of enzymes. Structural and <sup>60</sup> biochemical analysis of Nu-class GSTs are used to model substrate binding and cleavage by these enzymes.

## Introduction

As society looks to diversify its sources of fuels and chemicals, there are compelling reasons to develop renewable sources for them. Lignocellulosic plant biomass is the most abundant renewable material on Earth, so it is a promising but underutilized feedstock for generating products currently derived from petroleum or other non-renewable sources. Lignin, which can compose ~25% of plant biomass (U.S. DOE 2015), is a phenylpropanoid heteropolymer containing several classes of covalent linkages, including a majority of  $\beta$ -aryl ether ( $\beta$ -O-4) bonds (Adler 1977). The properties of lignin create challenges to using it as an industrial raw material. Because of its abundance and potential value, there is interest in developing economical and environmentally sustainable methods to depolymerize lignin to its aromatic substituents. We are interested in analyzing biological processes for lignin depolymerization and conversion to valuable chemicals.

The β-etherase pathway of sphingomonadales bacteria, which cleaves the  $\beta$ -aryl ether bond (FIG. 1), is a promising route for lignin depolymerization. Although several species are known to contain this pathway (Masai et al. 1989, Palamuru et al. 2015, Ohta et al. 2015), characterizing the strategies and proteins employed could help to develop biological systems for depolymerizing lignin. In this work, we tested sphingomonads predicted to contain the  $\beta$ -etherase pathway (Ohta et al. 2015), and found that N. aromaticivorans most rapidly and completely metabolized the dimeric aromatic compound guaiacylglycerol-β-guaiacyl ether (GGE; FIG. 1). We also found that the Saro\_2595 gene of N. aromaticivorans encodes a previously uncharacterized Nuclass glutathione-S-transferase (named here NaGST<sub> $N_{\mu}$ </sub>) that is capable of cleaving glutathione from both the  $\beta(R)$ - and  $\beta(S)$ -stereoisomers of the pathway intermediate  $\beta$ -glutathionyl-y-hydroxypropiovanillone (GS-HPV; FIG. 1) in vitro, and we show that it is the sole enzyme in N. aromaticivorans required for this reaction in vivo.

Nu-class GSTs are found in many organisms (Stourman et al. 2011; Mashiyama et al., 2014), but their physiological roles are unknown. Although the *Escherichia coli* Nu-class GSTs ecYfcG and ecYghU can reduce the disulfide bond of 2-hydroxyethyl disulfide in vitro (Stourman et al. 2011, Wadington et al. 2009, Wadington et al. 2010), the physiological relevance of this reaction has not been established. To test the prevalence of the glutathione lyase activity in Nu-class GSTs, we assayed ecYghU, ecYfcG, and a Nu-class GST from *Sphingobium* sp. SYK-6 (encoded by SLG\_04120; named here SYK6GST<sub>Nu</sub>), and found that they also cleave  $\beta(R)$ - and  $\beta(S)$ -GS-HPV in vitro. Furthermore, ecYghU complements growth of an *N. aromaticivorans*  $\Delta$ NaGST<sub>Nu</sub> mutant, showing that it is active in vivo.

Crystal structures reported here show that NaGST<sub>*Nu*</sub> is similar to ecYghU (Stourman et al. 2011) and *Streptococcus sanguinis* SK36 YghU (Patskovsky et al.), although there are notable differences in the channels leading to the active sites. We propose a mechanism for the glutathione lyase activity of the Nu-class GSTs and use molecular modeling to show how the active site channels of these enzymes can accommodate the  $\beta(R)$ - and  $\beta(S)$ -stereoisomers of GS-HPV. Indeed, the approach to the active site of these Nu-class GSTs can accommodate a variety of GSH-conjugated substrates, independent of C—S bond stereochemistry, including other GSH-conjugates derived from lignin depolymerization, or ones that might be found in organisms that do not metabolize lignin.

# General Materials and Methods

Bacterial Strains and Growth Media.

Strains used are listed in Table 1. Unless otherwise noted, *E. coli* cultures were grown in Lysogeny Broth (LB), and 5 shaken at ~200 rpm at  $37^{\circ}$  C. For routine storage and manipulation, sphingomonad cultures were grown in LB at  $30^{\circ}$  C. GluSis is a modification of Sistrom's minimal medium (Sistrom 1962) in which the succinate has been 22

replaced by 22.6 mM glucose. Standard Mineral Base (SMB) (Stanier et al. 1966) contains 20 mM  $Na_2HPO_4$ , 20 mM  $KH_2PO_4$ , 1 g/L ( $NH_4$ )<sub>2</sub>SO<sub>4</sub>, and 20 mL Hutner's vitamin-free concentrated base (adapted from (Cohen et al. 1957), but lacking nicotinic acid, thiamin, and biotin) per liter, final pH 6.8. SMB was supplemented with carbon sources as described below. Where needed to select for plasmids, media were supplemented with 50 µg/mL kanamycin and/or 10 µg/mL chloramphenicol.

| TABLE | 21 |
|-------|----|
|-------|----|

|                                                                      | Bacterial strains and plasmids used.                                                                                                                                                                           |                                                                   |
|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|
| Strains                                                              | Relevant characteristics                                                                                                                                                                                       | References                                                        |
| Novosphingobium<br>aromaticivorans strains                           | _                                                                                                                                                                                                              |                                                                   |
| DSM 12444<br>12444∆1879<br>12444∆2595<br>12444ecyghU                 | Wild-type; also called F199<br>DSM 12444 ΔSaro_1879<br>12444Δ1879 ΔSaro_2595<br>12444Δ2595 containing <i>E. coli</i> yghU at<br>the Saro_2595 locus                                                            | Fredrickson et al. 1991<br>This study<br>This study<br>This study |
| Novosphingobium sp.<br>PP1Y                                          | Wild-type                                                                                                                                                                                                      | Notomista et al. 2011                                             |
| Sphingobium<br>xenophagum NBRC<br>107872<br>Escherichia coli strains | Wild-type; also called $BN6^T$ and $DSM$<br>$6383^T$                                                                                                                                                           | Stolz et al. 2000; Pal e<br>al. 2006                              |
| DH5a                                                                 | F-\$\$0lacZ \DeltaM15 \Delta(lacZYA-argF)<br>U169 recA1 endA1 hsdR17 (rK-,<br>mK+) phoA supE44 \\[\lambda] + thi-1 gyrA96                                                                                      | Bethesda Research<br>Laboratories<br>Taylor (1993)                |
| S17-1<br>Turbo                                                       | recA pro hsdR RP4-2-Tc::Mu-Km::Tn7<br>F'proA <sup>+</sup> B <sup>+</sup> lacl <sup>q</sup> ΔlacZM15/<br>fhuA2 Δ(lac-proAB) glnV galK16<br>galE15 R(zgb-210::Tn10)Tet <sup>S</sup> endA1<br>thi-1 Δ(lsdS-mcrB)5 | Simon et al. 1983<br>New England Biolabs                          |
| NEB 5-alpha Competent<br>E. coli                                     | fhuA2 $\Delta(\arg F-lacZ)U169$ phoA glnV44<br>$\phi 80\Delta(lacZ)M15$ gyrA96 recA1 relA1                                                                                                                     | New England Biolabs                                               |
| E. cloni 10G                                                         | F- mcrA Δ(mrr-hsdRMS-<br>mcrBC) endA1 recA1 φ<br>80d/acZΔM15ΔlacX74 araD139<br>Δ(ara,leu)7697galU galK msL nupG λ-<br>ton Δ (StrB)                                                                             | Lucigen                                                           |
| B834                                                                 | F-hsdS metE gal ompT                                                                                                                                                                                           | Wood 1966; Doherty<br>1995                                        |
| Plasmids                                                             |                                                                                                                                                                                                                |                                                                   |
| pK18mobsacB                                                          | pMB1ori sacB kan <sup>R</sup> mobT oriT(RP4)<br>lacZa                                                                                                                                                          | Schafer et al. 1994                                               |
| pK18msB-MCS1                                                         | pK18mobsacB lacking the multiple<br>cloning site                                                                                                                                                               | Present example                                                   |
| pVP302K                                                              | lac promoter lacI, Tev site rtxA (V.<br>cholera) kan <sup>R</sup> ; coding sequence for<br>8 × His-tag                                                                                                         | Supplemental<br>Materials of Gall and<br>Ralph et al. 2014        |
| pRARE2                                                               | p15a ori camR; tRNA genes for 7 rare codons in <i>E. coli</i>                                                                                                                                                  | Novagen                                                           |
| pK18msB/ΔSaro1879                                                    | pK18 mobsacB containing genomic<br>regions flanking Saro_1879                                                                                                                                                  | Present example                                                   |
| pK18msB/∆Saro2595                                                    | pK18 mobsacB containing genomic<br>regions flanking Saro_2595                                                                                                                                                  | Present example                                                   |
| pK18msB/ecyghU-<br>Δ2595                                             | pK18mobsacB containing <i>E. coli</i> yghU between the Saro_2595 flanking regions                                                                                                                              | Present example                                                   |
| pVP302K/Ctag-2595                                                    | pVP302K containing Saro_2595<br>upstream of rtxA and His-tag sequence                                                                                                                                          | Present example                                                   |
| pVP302K/Untagged2595<br>pVP302K/Ntag-2595                            | pVP302K containing Saro_2595<br>pVP302K containing Saro_2595<br>downstream of His-tag coding sequence<br>and Tev protease site                                                                                 | Present example<br>Present example                                |
| pVP302K/Ntag-ecyghU                                                  | pVP302K containing yghU downstream<br>of His-tag coding sequence and Tev<br>protease site                                                                                                                      | Present example                                                   |

TABLE 1-continued

| Bacterial strains and plasmids used. |                                                                                                |                 |
|--------------------------------------|------------------------------------------------------------------------------------------------|-----------------|
| Strains                              | Relevant characteristics                                                                       | References      |
| pVP302K/Ntag-ecyfcG                  | pVP302K containing yfcG downstream<br>of His-tag coding sequence and Tev<br>protease site      | Present example |
| pVP302K/Ntag-<br>SLG_04120           | pVP302K containing SLG_04120<br>downstream of His-tag coding sequence<br>and Tev protease site | Present example |

Construction of Defined N. aromaticivorans Mutants.

We deleted Saro\_1879 from the *Novosphingobium aromaticivorans* DSM 12444 genome to create a strain <sup>15</sup> (12444 $\Delta$ 1879) amenable to genomic modifications using a sacB-containing vector. We used 12444 $\Delta$ 1879 to generate strains in which Saro\_2595 was deleted from the genome (12444 $\Delta$ 2595) and in which Saro\_2595 was replaced in the genome by the *E. coli* yghU gene (12444ecyghU). <sup>20</sup>

Sphingomonad Growth Experiments.

Cell densities were measured using a Klett-Summerson photoelectric colorimeter with a red filter. For N. aromaticivorans, 1 Klett Unit (KU) is equal to ~8×10<sup>6</sup> cells/mL (Table 2). Experimental cultures of N. aromaticivorans and <sup>25</sup> Novosphingobium sp. PP1Y were grown in SMB containing either vanillate or GGE alone (4 mM and 3 mM, respectively), or a combination of vanillate and GGE (4 mM and 1.5 mM, respectively). For S. xenophagum cultures, vanillate was replaced by glucose, since we found this strain to 30 be unable to metabolize vanillate. N. aromaticivorans was also grown in SMB containing 200 µM GGE. Starter cultures were grown in SMB with 4 mM vanillate or glucose, and cells were pelleted and washed with PBS (10 mM  $\rm Na_2HPO_4,\, 1.8~mM~KH_2PO_4,\, 137~mM~NaCl,\, 2.7~mM~KCl;^{-35}$ pH=7.4). Pellets were resuspended into culture medium and used to inoculate experimental cultures to initial cell densities of <5 KU.

Cultures were incubated at 30° C., in 125 mL conical flasks containing 20-40 mL of medium and shaken at ~200<sup>40</sup> rpm. Aliquots (400-600  $\mu$ L) were removed at specified time points and filtered through 0.22  $\mu$ m syringe tip filters (e.g., Whatman Puradisc filters, GE Healthcare, Piscataway, N.J.) before HPLC analysis of extracellular aromatics. Every culture was grown at least three times; data shown are from <sup>45</sup> representative cultures.

TABLE 2

| Relationship between Klett Units (KU) and colony forming units (CFUs) for<br>Novosphingobium aromaticivorans +/- sucrose (CFU mL <sup>-1</sup> KU <sup>-1</sup> ). |                                                |                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|----------------------------------|
|                                                                                                                                                                    | -sucrose                                       | +sucrose                         |
| DSM 12444<br>12444∆1879                                                                                                                                            | 8.0 (±3.2) × $10^{6}$<br>8.1 (±1.7) × $10^{6}$ | $0 \\ 7.3 (\pm 3.4) \times 10^6$ |

To acquire these data, cultures of *Novosphingobium aromaticivorans DSM* 12444 and 12444 $\Delta$ 1879, were grown in liquid medium. Cell densities were measured using a Klett-Summerson photoelectric colorimeter with a red filter. Cul- 60 tures were diluted, then plated onto solid media +/-10% sucrose.

Enzyme Purifications.

Genes Saro\_2595, *E. coli* yghU, *E. coli* yfcG, and SLG\_04120 from *Sphingobium* sp. SYK-6 (codon-opti-65 mized for expression in *E. coli*) were individually cloned into plasmid pVP302K (Gall and Ralph et al. 2014) so that

transcripts from the plasmids would be translated into proteins containing a His8-tag connected to the N-terminus via a tobacco etch virus (TEV) protease recognition site. Recombinant proteins were expressed in E. coli B834 (Wood 1966, Doherty et al. 1995) containing plasmid pRARE2 (Novagen, Madison, Wis.) grown for ~24 h at 27° C. in ZYM-5052 Autoinduction Medium (Studier 2005) containing kanamycin and chloramphenicol. Recombinant proteins were purified essentially as described previously (Gall and Kim et al. 2014); see below for modifications to the procedure. After removal of His8-tags using TEV protease, recombinant proteins retained a Ser-Ala-Ile-Ala-Glypeptide on their N-termini, derived from the linker between the protein and the TEV protease recognition site. Recombinant LigE and LigF1 from N. aromaticivorans were purified as previously described (Gall and Ralph et al. 2014).

Kinetics Analysis of GS-HPV Cleavage.

The Reaction Buffer (RB) consisted of 25 mM Tris-HCl (pH 8.5) and 25 mM NaCl. The  $\beta(R)$ - and  $\beta(S)$ -stereoisomers of GS-HPV were separately generated by incubating racemic MPHPV (0.46 mM) in RB with 5 mM reduced glutathione (GSH) and either 38 µg/mL LigF1 or 36 µg/mL LigE, respectively, for several h. This sample, containing a single GS-HPV stereoisomer, guaiacol, and the unreacted MPHPV stereoisomer, was diluted with RB to achieve the desired concentration of GS-HPV for the time course reaction (0.005, 0.011, 0.022, 0.096, or 0.193 mM). An additional 5 mM GSH (dissolved in RB) was added prior to initiation of each time course. At time zero, 100 µL of the indicated enzyme sample (resuspended in RB) was combined with 1800 µL of the diluted GS-HPV reaction mixture to achieve final concentrations of 8 nM NaGST<sub>Nu</sub>, 195 nM ecYghU, 195 nM ecYfcG, or 47 nM (for  $\beta(R)$ -GS-HPV reactions) or 18 nM (for  $\beta(S)$ -GS-HPV reactions) SYK6GST<sub>Nu</sub>. Assays were performed at 25° C., and at specified time points, 300 µL of the reaction was removed 50 and combined with 100 µL 1 M HCl (Acros Organics; Geel, Belgium) to stop the reaction before HPLC analysis to quantify HPV formed.

N. aromaticivorans Crude Cell Extract Assays.

*N. aromaticivorans* cells were grown in 500 mL conical flasks containing 267 mL SMB medium with 4 mM vanillate and 1 mM GGE. When cell densities reached  $\sim 1 \times 10^9$ cells/mL, cells were lysed by the sonication procedure used to generate *E. coli* lysates for protein purification. Samples were centrifuged at 7000×g for 15 minutes, and the super-60 natants were used as crude cell extracts.

Assays containing 50 mM Tris-HCl (pH 8.0), 50 mM NaCl, 10 mM GSH, 0.407 mM racemic MPHPV (a mixture of the  $\beta$ (R)- and  $\beta$ (S)-isomers) and cellular extract from 12444 $\Delta$ 1879 or 12444 $\Delta$ 2595 (final concentrations of 269 and 186 µg protein/mL, respectively) were performed at 30° C. At defined time points, 300 µL aliquots were combined with 100 µL 1 M HCl to stop the reaction before HPLC

analysis. At the indicated time, recombinant NaGST<sub>Nu</sub> (30 µg protein/mL) was added to the 12444 $\Delta$ 2595 cell extract reaction, along with an additional 10 mM GSH.

HPLC Analysis.

After extracellular aromatics were identified using LC-MS, routine analysis and quantification of aromatics were performed using an Ultra AQ C18 5  $\mu$ m column (Restek, Bellefonte, Pa.) attached to a System Gold HPLC (Beckman Coulter, Brea, Calif.) with running buffers and chromatography conditions described in FIG. **14**. The eluent was analyzed for light absorbance between 191 and 600 nm, and absorbances at 280 nm were used for quantification of aromatic metabolites by comparing peak areas to those of standards (retention times of measured metabolites are shown in FIG. **15**).

Production of cDNA Libraries from *N. aromaticivorans* Cultures and Real-Time PCR.

*N. aromaticivorans* cultures were grown in 120 mL of SMB containing either 4 mM vanillate or 4 mM vanillate and 1 mM GGE. When the cultures reached densities of <sup>20</sup> ~8×10<sup>8</sup> cells/mL, 40 mL were removed and combined with 5.71 mL ice-cold Stop Solution (95% ethanol, 5% acid phenol: chloroform (5:1 solution, pH 4.5)). These mixtures were centrifuged at 4° C. for 12 min at 6,000×g. Cell pellets were resuspended into 2 mL Lysis Solution (2% SDS, 16 <sup>25</sup> mM EDTA in RNase-free water), then incubated at 65° C. for 5 min. RNA purification and cDNA synthesis were performed as previously described (Tavano et al. 2005), using SuperScript III reverse transcriptase (Thermo Fisher Scientific, Waltham, Mass.) to construct the cDNA library. <sup>30</sup>

Real-time PCR was performed on a 7500 Real Time PCR System (Applied Biosystems, Forest City, Calif.) using SYBR Green JumpStart Taq ReadyMix (Sigma-Aldrich, St. Louis, Mo.). Primers used to detect transcripts are contained in Table 3. Transcript levels were normalized to those of <sup>35</sup> Saro\_0141 (rpoZ, coding for the RNA polymerase omega subunit). Determination of Chemical Oxygen Demand (COD).

Initial culture COD values were obtained either from uninoculated medium, or from inoculated medium that was immediately passed through a 0.22  $\mu$ m filter. Final COD values were obtained when cultures reached their maximum cell densities. For these samples, we analyzed the COD of both the entire culture (cells and medium) and the filtered medium. The difference in COD between the unfiltered and filtered final samples is defined as the COD of cellular biomass. Samples were diluted as needed and combined with High Range COD Digestion Solution (Hach, Loveland, Colo.). The mixtures were heated to 150° C. for 120 min to oxidize the materials before absorbances were measured at 600 nm. Standards with known COD values were analyzed in parallel.

Chemicals.

Vanillate, guaiacol, reduced L-glutathione (GSH), and 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ) were purchased from Sigma-Aldrich (St. Louis, Mo.). erythro-Guaiacylglycerol- $\beta$ -guaiacyl ether (erythro-GGE) was purchased from TCI America (Portland, Oreg.).

A racemic mixture of  $\beta$ -(2-methoxyphenoxy)- $\gamma$ -hydroxypropiovanillone (MPHPV) was synthesized by dissolving erythro-GGE into ethyl acetate (Fisher Scientific), then slowly adding 1.25 molar equivalents of 2,3-dichloro-5,6dicyano-p-benzoquinone (DDQ) and stirring for 30 min. The reaction was washed three times with saturated NaHCO<sub>3</sub> to remove DDQH<sub>2</sub> formed during the reaction. The MPHPV was purified via flash chromatography using hexane/ethyl acetate=1/3, as previously described (Gall and Kim et al. 2014), then crystallized from the eluent via solvent evaporation.

Hydroxypropiovanillone (HPV) was synthesized as previously described for synthesis of  $\beta$ -deoxy- $\alpha$ -veratrylglycerone, except using 4-O-benzyl-acetovanillone as starting material, rather than acetoveratrone (Gall and Kim et al.

TABLE 3

| Primers used for RT qPCR of<br>Novosphingobium aromaticivorans genes. |        |                                                                                                           |  |
|-----------------------------------------------------------------------|--------|-----------------------------------------------------------------------------------------------------------|--|
| Transcript<br>assayed fo                                              | r      | Primers                                                                                                   |  |
| Saro_0141<br>(rpoZ)                                                   |        | 5'-GAGATCGCGGAAGAAACCGTGC-3' (SEQ ID NO: 48)<br>5'-GATTTCATCCACCTCGTCGTCGTC-3' (SEQ ID NO: 49)            |  |
| Saro_0205                                                             | (ligD) | 5'-CAACATCAAGTCGAACATCGCGGAAG-3' (SEQ ID NO: 50)<br>5'-CTGGTGGATCGAATGCAGCGAG-3' (SEQ ID NO: 51)          |  |
| Saro_0793                                                             | (ligO) | 5'-GATCGAGGAATCTTCCTACGACGACTG-3' (SEQ ID NO: 52)<br>5'-GTTTACCACGCCGTGGAGGTTCAC-3' (SEQ ID NO: 53)       |  |
| Saro_0794                                                             | (ligN) | 5'-CATATCGTCTGCACCGCTTCGATGTC-3' (SEQ ID NO: 54)<br>5'-GCAGAATGCCGAGCAGATCACG-3' (SEQ ID NO: 55)          |  |
| Saro_1875                                                             | (ligL) | 5'-CCATGTCGTCAACACCGCATCG-3' (SEQ ID NO: 56)<br>5'-CATGTTCTCGGTCAGGTTCAGCAC-3' (SEQ ID NO: 57)            |  |
| Saro_2091                                                             | (ligF) | 5'-GCTGCTGACGGTGTTCGAGAAG-3' (SEQ ID NO: 58)<br>5'-CTTGAACCAGTCGGTGTGATGCTC-3' (SEQ ID NO: 59)            |  |
| Saro_2405                                                             | (ligP) | 5'-CATCGTCGAATACCTCGATGCCAAGTATC-3' (SEQ ID<br>NO: 60)<br>5'-GTCCTGGCAGAAGCAGAACATCCAC-3' (SEQ ID NO: 61) |  |
| Saro_2595                                                             |        | 5'-CCACGATCATGCTGGAAGAACTGCTC-3' (SEQ ID NO: 62)<br>5'-GATTCGAAGAGCGCGAACGGTTCAG-3' (SEO ID NO: 63)       |  |

2014). Synthesis of HPV required an additional debenzylation step that was unnecessary in the synthesis of  $\beta$ -deoxy- $\alpha$ -veratrylglycerone.

Structural Analysis of  $\text{NaGST}_{Nu}$  and Molecular Modeling.

 $NaGST_{Nu}$  was screened for crystal formation against several commercial screens at 277 and 293K using a TTP Labtech Mosquito® crystallization robot. The best diffracting ammonium acetate precipitated crystal was obtained at 293K, by mixing 0.2 µL of protein solution (277 µM protein 10 preincubated for 50 min with 10 mM GSH (neutralized with NaOH)) with 0.2 µL of reservoir solution (4 M ammonium acetate buffered with 100 mM sodium acetate, pH 4.6). This crystal was mounted directly from the growth solution by drawing it through a layer of fomblin oil, thinning the 15 surrounding liquid with a paper wick, and was plunged into liquid nitrogen. The best diffracting ammonium sulfate precipitated crystal was obtained at 293K using 0.13 µL of protein solution and 85 nL of reservoir solution (1.35 M ammonium sulfate, 0.1 M lithium sulfate, and 0.1 M bis- 20 trispropane, pH 7.5). This crystal was cryopreserved by adding 0.5 µL of a solution composed of 2 parts reservoir solution and one part neat glycerol to the droplet containing the crystal, and equilibrating for 11 min prior to looping and plunging into liquid nitrogen. 25

Diffraction data were obtained at the GM/CA beam-line at Argonne National Laboratory with an Eiger 16M detector (Casanas et al. 2016). Data were collected on the ammonium acetate and ammonium sulfate crystal forms using 1.033 Å (for 1.45 Å resolution) or 0.7749 Å (for 1.25 Å resolution) 30 X-rays, respectively. Diffraction data were reduced using XDS (Kabsch 2010). Both crystals belonged to space group  $P2_12_12_1$  with a predicted solvent content of 60%. The structure was solved by molecular replacement with Phaser (McCoy et al. 2007) in the Phenix suite (Adams et al. 2010), 35 using a search model based on PDB ID 3C8E:A (ecYghU (Stourman et al. 2011)) modified with phenix sculptor (Bunkóczi et al. 2011), based on primary sequence alignment. Structure solution revealed two copies of the protein per asymmetric unit, with strong electron density present for 40 the paired active site glutathione molecules. Phenix.refine (Afonine et al. 2012) and COOT (Emsley et al. 2004) were alternatively used to refine the structure and fit the model to electron density maps.

For modeling  $\beta(R)$ - and  $\beta(S)$ -GS-HPV and their syringyl 45 phenylpropanoid analogues into the active sites of  $NaGST_{Nu}$ and ecYghU, the PvMOL Builder function (The PvMOL Molecular Graphics System, Version 1.8.2.1) was used to create molecules of GS-HPV or GS-syringyl by adding atoms onto the GSH2 molecule bound in each active site. 50 Atoms were added so as to visually minimize steric clash with the proteins. The potential energies of the protein-GSphenylpropanoid complexes were minimized using the Minimize Structure function of UCSF Chimera (Pettersen et al. 2004). For the energy minimization, all of the atoms of 55 the protein-GS-phenylpropanoid complex were held rigid except for those of the phenylpropanoid moiety and the Cys sidechain of GSH2. One-hundred steepest descent steps were run, followed by twenty conjugate gradient steps, and all step sizes were 0.05 Å.

Recipes for Media Components:

Hutner's vitamin-free Concentrated Base (Cohen-Bazire et al. 1957) (per 500 mL): 5 g Nitrilotriacetic acid 14.78 g MgSO<sub>4</sub>.7H<sub>2</sub>O 1.67 g CaCl<sub>2</sub>.2H<sub>2</sub>O 4.625 mg (NH<sub>4</sub>)<sub>6</sub>Mo<sub>7</sub>O<sub>24</sub>.4H<sub>2</sub>O 28

49.5 mg FeSO<sub>4</sub>.7H<sub>2</sub>O

25 mL Metals "44"

Metals "44" (per 500 mL):

1.25 g EDTA (free acid) [Add this first; use 10 M NaOH to help dissolve it.]

5.475 g ZnSO<sub>4</sub>.7H<sub>2</sub>O

 $2.5 \text{ g FeSO}_4.7\text{H}_2\text{O}$ 

- 0.77 g MnSO<sub>4</sub>.H<sub>2</sub>O 0.196 g CuSO<sub>4</sub>.5H<sub>2</sub>O
- $0.125 \text{ g Co(NO_3)}_{2.6\text{H}_2\text{O}}$
- $0.0885 \text{ g Na}_2\text{B}_4\text{O}_7.10\text{H}_2\text{O}$

Construction of Defined N. aromaticivorans Mutants.

N. aromaticivorans has been reported to use sucrose as sole carbon source (Stolz et al. 2000), but we found it to be incapable of growing in the presence of ≥10% sucrose (Table 2). We also noticed that the gene Saro\_1879 is annotated as sacB, whose product, levansucrase, makes sucrose inhibitory to growth of many Gram-negative bacteria (Gay et al. 1985). To create an N. aromaticivorans strain that we could modify using a sacB-containing plasmid, we deleted Saro\_1879 from its genome. To do this, we constructed plasmid pK18msB/\DeltaSaro1879, in which genomic DNA from upstream and downstream of Saro\_1879 was cloned into pK18msB-MCS1 (for details of plasmid construction, see below). This plasmid was mobilized into N. aromaticivorans via electroporation using a single 2.5 kV pulse in a 0.2 cm cuvette in a MicroPulser apparatus (Bio-Rad, Hercules, Calif.). N. aromaticivorans was made electrocompetent by washing exponential phase cells from LB cultures twice with ice-cold 0.5 M glucose, then resuspending the cells into 10% glycerol. Transformants in which the plasmid was integrated into the genome via homologous recombination (single crossovers) were selected for by growth on solid LB containing kanamycin. These strains were grown in liquid LB to allow plasmid loss via homologous recombination, then plated on solid LB containing 10% sucrose to select for sucrose-tolerance. Sucrose-tolerant strains in which Saro 1879 had been deleted from the genome were confirmed by PCR amplification and sequencing of genomic DNA. One of these strains (12444 $\Delta$ 1879) was used as the parent strain for subsequent genetic modifications.

To inactivate Saro\_2595, we electroporated plasmid pK18msB/ $\Delta$ Saro2595 (in which genomic DNA from upstream and downstream of Saro\_2595 was cloned into pK18msB-MCS1) into strain 12444 $\Delta$ 1879, and a strain lacking the Saro\_2595 gene (referred to as 12444 $\Delta$ 2595) was isolated via the process described above for deleting Saro\_1879.

To generate a strain (referred to as 12444ecyghU) in which Saro\_2595 was replaced in the *N. aromaticivorans* genome with the *E. coli* yghU gene, we constructed plasmid pK18msB/ecyghU-42595, in which yghU (amplified from *E. coli* DH5α genomic DNA) was cloned into pK18msB/
ΔSaro2595. This plasmid was mobilized into 12444Δ2595 via conjugation from *E. coli* S17-1. Transconjugants (single crossovers) of *N. aromaticivorans* were isolated on solid GluSis containing kanamycin. After growth in liquid GluSis, strains that lost the plasmid and retained the yghU gene at the native Saro\_2595 locus were isolated on solid GluSis medium containing sucrose. The presence of the yghU gene in the genome was confirmed via PCR and sequencing.

Purification of Recombinant Proteins.

Recombinant proteins were purified as described previously (Gall and Kim et al. 2014), except that cells were lysed by sonication, first using a Branson Sonifier 450 (Branson Ultrasonics, Danbury, Conn.) (duty cycle 50%, output level 6, for six rounds of 1-2 min), then a Qsonica Q500 with a cup horn attachment (Qsonica, Newtown, Conn.) (60% amplitude for 10 minutes with cycles of 10 s on, 10 s off). His-tagged proteins were purified from lysates over a column packed with Ni<sup>2+</sup>-NTA resin (Qiagen, Hilden, Germany) attached to an AKTAprime plus FPLC (GE Healthcare Life Sciences), then incubated with TEV protease to remove the His-tag. The protease reaction mixture was passed through a Ni<sup>2+</sup>-NTA column to separate the recombinant protein from the cleaved His<sub>8</sub>-tag and TEV protease (which also contained a His-tag).

30

Procedures to Construct Plasmids for Genomic Modifications for *N. aromaticivorans* and for Purifying Enzymes

Biological reagents. All PCR reactions were performed with Herculase II polymerase (Agilent Technologies, Santa Clara, Calif.). Primers were phosphorylated with polynucleotide kinase from Promega (Madison, Wis.). All other enzymes were from New England Biolabs (Ipswich, Mass.). All primers were from Integrated DNA Technologies (Coralville, Iowa). See Table 4.

| TABLE 4 | Ļ |
|---------|---|
|---------|---|

|                                    |                                                                              | and expression.                                                        |
|------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------|
| Name                               | Sequence                                                                     | Notes                                                                  |
| pK18msB AseI<br>ampl F             | 5'-CTGTCGTGCCAGCTGC <u>ATTAAT</u> G-3' (SEQ<br>ID NO: 64)                    | AseI site<br>(underlined) native<br>to template                        |
| pK18msB-<br>MCS XbaI R             | 5'-GAACA <u>tcTAGA</u> AAGCCAGTCCGCAGAA<br>AC-3' (SEQ ID NO: 65)             | XbaI site<br>(underlined);<br>lowercase bases do<br>not match template |
| Saro1879<br>lvnsucr ampl F<br>AseI | 5'-CCCGA <u>attaAT</u> CGTGACGGTATCAACCT<br>CC-3' (SEQ ID NO: 66)            | AseI site<br>(underlined);<br>lowercase bases do<br>not match template |
| Saro1879<br>lvnsucr ampl R<br>XbaI | 5'-GTTTCGG <u>tCtAGA</u> TCGAGCTGACCGAA<br>ATC-3' (SEQ ID NO: 67)            | XbaI site<br>(underlined);<br>lowercase bases do<br>not match template |
| Saro_2595<br>amp AseI for          | 5'-GTCG <u>atTAat</u> AGTCCGAGATCGAGGC<br>TGC-3' (SEQ ID NO: 68)             | AseI site<br>(underlined);<br>lowercase bases do<br>not match template |
| Saro_2595<br>amp XbaI rev          | 5'-CGAC <u>tctAGa</u> CAGAGCCTGAACGAA<br>GTC-3' (SEQ ID NO: 69)              | XbaI site<br>(underlined);<br>lowercase bases do<br>not match template |
| Saro1879<br>lvnsucr del<br>REV     | 5'-CCGACTTTCTTGAAACAGATTTGGCTT<br>AAGAC-3' (SEQ ID NO: 70)                   |                                                                        |
| Saro1879<br>lvnsucr del<br>FOR     | 5'-GTTCATGCTTAACTTCGATGGCGAGC-3'<br>(SEQ ID NO: 71)                          |                                                                        |
| Saro_2595 del<br>rev               | 5'-CCTGCTCCTTGGGGATATTGTTAGTG<br>TTG-3' (SEQ ID NO: 72)                      |                                                                        |
| Saro_2595 del<br>for               | 5'-GGAATCGTTGCAAGCGATCGTCAAG-3'<br>(SEQ ID NO: 73)                           |                                                                        |
| D2595pK18-<br>ecYghU F             | 5'- <u>GGAGCAGGCG</u> ATGACAGACAATACTT<br>ATCAGCCCGCGAAAG-3' (SEQ ID NO: 74) | underlined region<br>matches sequence in<br>pK18msB/∆Saro2595          |
| D2595pK18-<br>ecYghU R             | 5'- <u>CGAGGCGGGT</u> TTACCCCTGACGCTTAT<br>CTTCCGTATTCGTC-3' (SEQ ID NO: 75) | underlined region<br>matches sequence in<br>pK18msB/∆Saro2595          |
| ecYghU-<br>D2595pK18 F             | 5'- <u>TCAGGGGTAA</u> ACCCGCCTCGAGACCG<br>GCGAAC-3' (SEQ ID NO: 76)          | underlined region<br>matches sequence in<br>vahU                       |

# TABLE 4-continued

| Primers used in genomic modifications and enzyme expression. |                                                                                                       |                                                                                                                                                                                   |  |
|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Name                                                         | Sequence                                                                                              | Notes                                                                                                                                                                             |  |
| ecYghU-<br>D2595pK18 R                                       | 5'- <u>TGTCTGTCAT</u> cgCCTGCTCCTTGGGGAT<br>ATTGTTAGTG-3' (SEQ ID NO: 77)                             | underlined region<br>matches sequence in<br>yghU; lowercase<br>bases are not present<br>in<br>pK18msB/ASaro2595,<br>but are present in<br>the <i>N. aromaticivorans</i><br>genome |  |
| Saro2595 Ctag<br>PciI F                                      | 5'-GCAGG <u>acATGT</u> CCTCAGAGTACGTTCC-3'<br>(SEQ ID NO: 78)                                         | PciI site<br>(underlined);<br>lowercase bases do<br>not match template                                                                                                            |  |
| Saro2595 Ctag<br>BsaI R                                      | 5'-GTTatctgc <u>gagacc</u> ACGATCGCTTGCAACG<br>ATTC-3' (SEQ ID NO: 79)                                | Bsal site<br>(underlined);<br>lowercase bases do<br>not match template                                                                                                            |  |
| pVP302K Ctag<br>Bsal F                                       | 5'-CTGC <u>GGTCTC</u> GCAGATGGTAAAATT<br>CTG-3' (SEQ ID NO: 80)                                       | Bsal site<br>(underlined)                                                                                                                                                         |  |
| pVP302K Ctag<br>NcoI R                                       | 5'-GGTGATGTC <u>CCATGG</u> TTAATTTCTCCTC<br>TTTAATG-3' (SEQ ID NO: 81)                                | Ncol site<br>(underlined)                                                                                                                                                         |  |
| Ctag 2595-pVP<br>add Stop R                                  | 5'- <u>tca</u> gaagcccttgACGATCGCTTGCAACGA<br>TTC-3' (SEQ ID NO: 82)                                  | lowercase bases do<br>not match pCtag-<br>2595/pVP302K;<br>underlined bases are<br>stop codon                                                                                     |  |
| pVP302K Ntag<br>HindIII F                                    | 5'-CATTAA <u>AAGGTT</u> AAACGAATTCGGACT<br>CGGTACGC-3' (SEQ ID NO: 83)                                | HindIII site<br>(underlined);<br>lowercase bases do<br>not match template                                                                                                         |  |
| 2595-pVP C to<br>Ntag F                                      | 5'-ca <u>aqcgaaaatctqtattttcaqaqc</u> gcgatcgcagga <b>ATG</b><br>TCCTCAGAGTACGTTCC-3' (SEQ ID NO: 84) | lowercase bases do<br>not match template;<br>bold ATG is<br>Saro_2595 start site;<br>underlined region is<br>Tev protease<br>recognition site                                     |  |
| pVP302 C to<br>Ntag R                                        | 5'-ccaatgc <u>atgqtqatqqtqatqqtqatqtcccat</u> GGTT<br>AATTTCTCCTCTTTAATG-3' (SEQ ID NO: 85)           | lowercase bases do<br>not match template;<br>compliment of<br>coding region for<br>8X-Histidine tag is<br>underlined                                                              |  |
| pVP302K-<br>ecYghU F                                         | 5'- <u>GATCGCAGGA</u> ATGACAGACAATACTT<br>ATCAGCCCGCGAAAG-3' (SEQ ID NO: 86)                          | underlined region<br>matches sequence in<br>pVP302K                                                                                                                               |  |
| pVP302K-<br>ecYghU R                                         | 5'- <u>CGGCTTTCTG</u> TTACCCCTGACGCTTATC<br>TTCCGTATTCGTC-3' (SEQ ID NO: 87)                          | underlined region<br>matches sequence in<br>pVP302K                                                                                                                               |  |
| ecYghU-<br>pVP302K F                                         | 5'- <u>TCAGGGGTAA</u> CAGAAAGCCGAAAATA<br>ACAAAGTTAGCCTGAGCTG-3' (SEQ ID<br>NO: 88)                   | underlined region<br>matches sequence in<br>yghU                                                                                                                                  |  |
| ecYghU-<br>pVP302K R                                         | 5'- <u>TGTCTGTCAT</u> TCCTGCGATCGCGCTCT<br>GAAAATACAGATTTTCG-3' (SEQ ID NO: 89)                       | underlined region<br>matches sequence in<br>yghU                                                                                                                                  |  |
| pVP302K-<br>HiFi-ATW-R                                       | 5'-TCCTGCGATCGCGCTCTGAAAATACAG<br>ATTTTCG-3' (SEQ ID NO: 90)                                          |                                                                                                                                                                                   |  |
| pVP302K-<br>HiFi-ATW-F                                       | 5'-CAGAAAGCCGAAAATAACAAAGTTAG<br>CCTGAGCTG-3' (SEQ ID NO: 91)                                         |                                                                                                                                                                                   |  |

| Pr                         | imers used in genomic modifications and enzym                                          | e expression.                                                    |
|----------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------|
| Name                       | Sequence                                                                               | Notes                                                            |
| ecYfcG-pVP-<br>Ntag-HiFi-F | 5'-<br>gtattttcagagcgcgatcgcaggaATGATCGATCTCTA<br>TTTCGCCCCGACAC-3' (SEQ ID NO: 92)    | lowercase region<br>complementary to<br>"pVP302K-HiFi-<br>ATW-R" |
| ecYfcG-pVP-<br>Ntag-HiFi-R | 5'-<br>ctaactttgttattttcggctttctgTTAACTATCCGAACGC<br>TCATCACCGAGTTG-3' (SEQ ID NO: 93) | lowercase region<br>complementary to<br>"pVP302K-HiFi-<br>ATW-F" |
| SYK6 yghU<br>pVP fix R     | 5'-gttattttcggctttctgttaagCTTCGGTCTTCG-3'<br>(SEQ ID NO: 94)                           | Lowercase region<br>complementary to<br>"SYK6 yghU pVP<br>fix F" |
| SYK6 yghU<br>pVP fix F     | 5'-cttaacagaaagccgaaaataacAAAGTTAGCCT<br>GAG-3' (SEQ ID NO: 95)                        | Lowercase region<br>complementary to<br>"SYK6 yghU pVP<br>fix R" |

TABLE 4-continued

Construction of pK18msB-MCS1.

Plasmid pK18mobsacB (Schafer et al. 1994) was ampli-25 fied via PCR with phosphorylated primers "pK18msB AseI ampl F" and "pK18msB-MCS XbaI R". The product was circularized with T4 DNA ligase, then transformed into E. coli DH5a. The final 5278-base pair (bp) plasmid, pK18msB-MCS1, is similar to pK18mobsacB, except that 30 the multiple cloning site has been removed, and a new XbaI site is 24 bp from one of the plasmid's native AseI sites (with the other native AseI site removed).

33

Plasmids for Deleting Saro 1879 or Saro 2595.

Regions of N. aromaticivorans genomic DNA containing 35 either Saro\_1879 or Saro\_2595, along with ~1300-1600 bp flanking regions upstream and downstream of each gene, were separately amplified via PCR using the primer pairs "Saro1879 lvnsucr ampl F Asel"/"Saro1879 lvnsucr ampl R Xbal" and "Saro\_2595 amp AseI for"/"Saro\_2595 amp XbaI 40 PciI and BsaI. The expression vector pVP302K (Gall and rev". The amplified DNA fragments were digested with AseI and XbaI, then ligated with T4 DNA ligase into AseI- and XbaI-digested pK18msB-MCS1. The resulting plasmids (pK18msB/Saro1879 and pK18msB/Saro2595) were transformed into E. coli (strain DH5a for the Saro\_1879 plasmid 45 and Turbo for the Saro\_2595 plasmid). PCR was performed on the purified plasmids using the phosphorylated primer pairs "Saro1879 lvnsucr del REV"/"Saro1879 lvnsucr del FOR" or "Saro\_2595 del rev"/"Saro\_2595 del for" to generate linear plasmids lacking the majority of the Saro\_1879 50 and Saro\_2595 coding regions, respectively. These DNA fragments were circularized with T4 DNA ligase to form plasmids pK18msB/\DeltaSaro1879 and pK18msB/\DeltaSaro2595.

Plasmid for Incorporating E. coli yghU into the N. aromaticivorans Genome.

The yghU gene (locus tag Ga0077588 1407) was amplified from E. coli DH5a genomic DNA using primers "D2595pK18-ecYghU F" and "D2595pK18-ecYghU R", which each contain a sequence on their 5' end that is complementary to a region in the plasmid pK18msB/ 60 recognition site and Saro\_2595. ΔSaro2595. pK18msB/ΔSaro2595 was amplified with the primers "ecYghU-D2595pK18 F" and "ecYghU-D2595pK18 R", which each contain a sequence on their 5' ends that is complementary to E. coli yghU, to generate a linear fragment in which pK18msB-MCS1 contains the 65 regions flanking Saro\_2595 in the N. aromaticivorans genome, along with the regions complementary to yghU.

The PCR amplified fragments were connected using NEBuilder HiFi DNA Assembly Master Mix (New England Biolabs) (using 81 ng of the linear pK18msB/ΔSaro2595 fragment and 22 ng of the yghU fragment) and transformed into NEB 5-alpha competent E. coli (New England Biolabs). The resulting plasmid (pK18msB/ecyghU-Δ2595) consisted of pK18msB-MCS1 containing the E. coli yghU gene flanked by regions that flank Saro\_2595 in the N. aromaticivorans genome (i.e., with the start and stop codons positioned where the respective codons of Saro\_2595 would naturally be).

Enzyme Expression Plasmids

Recombinant Saro 2595.

Saro 2595 was amplified from N. aromaticivorans genomic DNA with the primers "Saro2595 Ctag PciI F" and "Saro2595 Ctag BsaI R". This fragment was digested with Ralph et al. 2014) was amplified using the primers "pVP302K Ctag Bsal F" and "pVP302K Ctag Ncol R". This fragment was digested with BsaI and NcoI. The digested fragments were ligated using T4 DNA ligase, generating plasmid pVP302K/Ctag-2595, which consists of a T5 promoter followed by the coding sequences of Saro\_2595, the RtxA protease from Vibrio cholerae, and an 8X-Histidine tag.

pVP302K/Ctag-2595 was amplified using phosphorylated primers "Ctag 2595-pVP add Stop R" and "pVP302K Ntag HindIII F". This fragment was circularized using T4 DNA ligase to generate plasmid pVP302K/Untagged2595, in which a stop codon has been introduced directly after Saro\_2595. pVP302K/Untagged2595 was amplified via 55 PCR using phosphorylated primers "2595-pVPC to Ntag F" and "pVP302 C to Ntag R". This fragment was circularized using T4 DNA ligase to generate plasmid pVP302K/Ntag-2595, which contains a T5 promoter followed by coding sequences for a His<sub>8</sub> tag, a tobacco etch virus (Tev) protease

Recombinant E. coli YghU.

The yghU gene was amplified from E. coli DH5a genomic DNA using the primers "pVP302K-ecYghU F" and "pVP302K-ecYghU R". pVP302K was amplified by PCR using the primers "ecYghU-pVP302K F" and "ecYghUpVP302K R". The two amplified fragments, with ends that are complementary to each other, were concurrently transformed (94 ng linear pVP302K, 168 ng yghU gene, in 4 µL TE buffer) into E. cloni 10G chemically competent cells (Lucigen, Middleton, Wis.). The fragments were combined via homologous recombination in vivo (Bubeck et al. 1993). and the resulting plasmid, pVP302K/Ntag-ecyghU, was 5 purified from the cells and verified via Sanger sequencing.

Recombinant E. coli YfcG.

The yfcG gene was amplified from E. coli DH5a genomic DNA using the primers "ecYfcG-pVP-Ntag-HiFi-F" and "ecYfcG-pVP-Ntag-HiFi-R". pVP302K was amplified via <sup>10</sup> PCR using the primers "pVP302K-HiFi-ATW-R" and "pVP302K-HiFi-ATW-F". The two amplified fragments, with ends that are complementary to each other, were combined using NEBuilder HiFi DNA Assembly Master Mix (New England Biolabs) (100 ng linear pVP302K, 48 ng yghU gene) and transformed into NEB 5-alpha competent E. coli (New England Biolabs). The resulting plasmid, pVP302K/Ntag-ecyfcG, was purified and verified via sequencing. 20

Recombinant SLG\_04120.

A fragment containing the SLG\_04120 gene, codonoptimized for E. coli, with ends complementary to pVP302K, was ordered as a gBlock from New England Biolabs. The sequence of the fragment was:

(SEQ ID NO: 96)

TGAATCAGCCGACGGGTTACGTCCCGCCGAAAGTTTGGACCTGGGACAAA GAGAACGGCGGTCAGTTCAGCAATATCAACGCCCCTACGGCTGGTGCGCG CCAGGACGTCACGCTCCCTGTAGGGGAGCACCCTATCCAATTATATAGTC TCGGCACTCCGAATGGTCAGAAAGTTACTATCATGTTGGAAGAACTGCTG GCTGCTGGCTTTGATGCTGAGTATGACGCCTGGCTCATCAAAATCTACAC AGGCGAGCAATTCGGATCTGATTTCGTCGCCATTAACCCTAATAGCAAAA TTCCGGCTATGATGGACCATGGTCTCGATCCGCCGCTCCGTTTATTTGAG TCTGGTTCTATGTTAGTTTATCTGGCCGAAAAGTTTGGCGCATTCCTCCC GACCGAAATCCGCAAACGTACGGAAACCTTTAACTGGCTCATGTGGCAGA TGGGTTCTGCTCCTTTTGTGGGTGGTGGCTTTGGCCACTTCTATGCGTAC GCCCCATTTAAAATCGAATATGCCATTGATCGTTACGCGATGGAAACCAA GCGCCAACTGGACGTTCTGGATAAAAATCTGGCCGATCGTGAATTTATGA TCGGCGATGAAATCACCATCGCAGATTTTGCGATTTTCCCTTGGTACGGC TCGATTATGCGTGGCGGTTACAACGCGCAAGAATTCTTGAGCACTCACGA GTACCGTAACGTTGATCGCTGGGTTACGCAGCTTTCTGAACGTACGGGCG TAAAGCGTGGTCTCCTTGTCAATTCCGCGGGTCGCCCGGGAGGTGGCATT GCGGAACGCCATAGCGCGGCTGATTTAGACGCGTCGATTAAAGCGGCTGA ACAAGAGGCCGCGAAGACCGAAGCTtAACAGAAAGCCGAAAATAACAAAG TTAG-3' (underlined regions match sequences in

#### pVP302K)

pVP302K was amplified via PCR using the primers "pVP302K-HiFi-ATW-R" and "pVP302K-HiFi-ATW-F"

The amplified pVP302K fragment was combined with SLG\_04120 gBlock using ligation-free cloning: fragments were mixed (57 ng linear pVP302K, 84 ng SLG\_04120, in 65 4 µL TE buffer), then transformed into E. cloni 10G competent cells (Lucigen, Middleton, Wis.). DNA sequencing

was used to identify a plasmid containing the correct DNA sequence for SLG\_04120 in pVP302K, resulting in plasmid pVP302K/Ntag-SLG\_04120

Îdentification and Quantification of Extracellular Metabolites

Initial Identification Using LC-MS.

Compounds were separated on a Phenomenex PFP 250× 4.6-mm column attached to an Accela LC pump equipped with a PDA UV detector. Running buffers A (5 mM formic acid and 5% acetonitrile in  $H_2O$  and B (methanol) were initially at 82.5% and 17.5%, respectively. Buffer B was held at 17.5% for 18 minutes, then increased to 50% over 5 minutes, held at 50% for 3 minutes, then returned to initial conditions and re-equilibrated for 4 minutes. Flow rate was 1 mL per minute. UV absorbance data from 190-500 nm at Hz and single wavelength data at 254 nm (20 Hz, 9 nm bandwidth) were collected.

Samples were analyzed by high resolution, tandem mass spectrometry using a Thermo Scientific Q Exactive Orbitrap mass spectrometer. The mass spectrometer was operated in fast polarity switching mode with acquisition of MS/MS spectra of the two most abundant precursor ions from the preceding MS1 scan (50-750 Th). Resolution was 35,000 at 200 Th for MS1 scans and 17,500 at 200 Th for MS/MS scans. Capillary voltage was set at 4000V in both polarities, sheath gas at 50 units, auxiliary gas at 20 units, probe heater at 350° C., inlet capillary at 325° C., and the S-Lens at 50 units. AGC target was 1e6 for MS1 scans and 2e5 for MS/MS scans with a maximum injection time of 50 ms. The isolation width for MS/MS scans was set to 2 Th and a 5 s dynamic exclusion time was used.

Elemental compositions of the metabolites were derived from the mass measurements. From the MS/MS fragmentation patterns and previous data, we provisionally identified the metabolites. We used standards to confirm these putative identifications by matching retention times and mass spectra.

Results

25

35

50

55

60

GGE Metabolism by Sphingomonads.

Genomic sequences predict (Ohta et al. 2015) that N. aromaticivorans DSM 12444 (Fredrickson et al. 1991, Fredrickson et al. 1995), Novosphingobium sp. PP1Y (Notomista et al. 2011), and Sphingobium xenophagum NBRC 107872 (Stolz et al. 2000) contain genes that encode enzymes required to metabolize guaiacylglycerol-β-guaiacyl (GGE) via the bacterial  $\beta$ -etherase pathway (FIG. 1). To test this, we fed these bacteria erythro-GGE (FIG. 1), either as sole carbon source or in the presence of another organic molecule.

We found that N. aromaticivorans  $12444\Delta 1879$  metabolized erythro-GGE and assimilated it into cell material when fed GGE alone (FIG. 2A (panels A,B) and FIG. 3) or GGE plus vanillate (FIG. 2B (panels G,H) and Table 5). β-Etherase pathway intermediates threo-GGE, MPHPV, and HPV transiently appeared in the media of both cultures (FIGS. 2A and 2B (panels B,H) and FIG. 3), whereas the pathway intermediate guaiacol was only detected in the medium of the culture fed GGE plus vanillate (FIG. 2B (panel H)). The predicted pathway intermediate GS-HPV was not detected in the medium of either culture.

Compared to N. aromaticivorans, Novosphingobium sp. PP1Y grew significantly slower in medium containing only GGE (FIG. 4A (panels A,B)). The maximum cell density and amount of COD incorporated into biomass were the same when Novosphingobium sp. PP1Y was fed either GGE plus vanillate or vanillate only (FIG. 4A (panels E,F) and Table 5), suggesting that this strain did not convert a significant amount of GGE into biomass in the presence of vanillate. S. xenophagum did not assimilate GGE into cell material in any culture tested (based on cell density and COD measurements; FIG. 4B (panels C,G) and Table 5), although low levels of some  $\beta$ -etherase pathway intermediates were observed in its culture media (FIG. 4B (panels D,H)).

|                                   | Chemical oxygen dem                                 | and (COD) a                 | analysis of b                       | acterial cultur                     | es. <sup>a</sup>                                   |                                     |
|-----------------------------------|-----------------------------------------------------|-----------------------------|-------------------------------------|-------------------------------------|----------------------------------------------------|-------------------------------------|
| Strain                            | Carbon souces                                       | Initial<br>COD <sup>b</sup> | Final COD<br>(biomass) <sup>c</sup> | Final COD<br>(soluble) <sup>d</sup> | % COD<br>incorporated<br>into biomass <sup>e</sup> | % COI<br>lost from<br>the<br>cultue |
| N. aromaticivorans                | 3 mM GGE                                            | 2100 ± 100                  | <b>480 ±</b> 70                     | 500 ± 100                           | 22%                                                | 53%                                 |
| 12444∆1879                        | (FIG. 2A (A, B))<br>4 mM vanillate (FIG.<br>2B (G)) | 1300 ± 100                  | 530 ± 40                            | 280 ± 80                            | 41%                                                | 37%                                 |
|                                   | 4 mM vanillate,<br>15 mM GGE                        | 2170 ± 80                   | 720 ± 80                            | 340 ± 60                            | 33%                                                | 51%                                 |
| Novophingobium sp.<br>PP1Y        | 4 mM vanillate (FIG.<br>4A (E))                     | $1200 \pm 100$              | 420 ± 20                            | $240 \pm 30$                        | 36%                                                | 44%                                 |
|                                   | 4 mM vanillate,<br>15 mM GGE                        | 2070 ± 90                   | 420 ± 20                            | 1080 ± 20                           | 20%                                                | 28%                                 |
| S. xenophagum NBRC                | (FIG. 4A (E, F)<br>4 mM glucose<br>(FIG. 4B (G))    | 1040 ± 30                   | <b>490 ± 3</b> 0                    | <b>34</b> 0 ± 20                    | 47%                                                | 20%                                 |
| 10/0/2                            | 4 mM glucose,<br>15 mM GGE<br>(FIG, 4B (G, H))      | 1970 ± 50                   | 460 ± 30                            | 1270 ± 30                           | 23%                                                | 12%                                 |
| N. aromaticivorans<br>12444∆2595  | 3 mM GGE<br>(FIG. 2A (C, D))                        | 2090 ± 40                   | 30 ± 100                            | 1900 ± 30                           | 1%                                                 | 6%                                  |
|                                   | 4 mM vanillate (FIG. 2B (I))                        | 1300 ± 200                  | 550 ± 100                           | $330 \pm 70$                        | 41%                                                | 34%                                 |
|                                   | 4 mM vanillate,<br>15 mM GGE<br>(FIG. 2B (I, J))    | 2200 ± 100                  | 520 ± 80                            | 1200 ± 100                          | 23%                                                | 24%                                 |
| N. aromaticivorans<br>12444ecyghU | 3 mM GGE<br>(FIG. 2A (E)                            | 2200 ± 90                   | 500 ± 100                           | $500 \pm 100$                       | 23%                                                | 52%                                 |
|                                   | 4 mM vanillate (FIG. 2B (K))                        | 1400 ± 300                  | 570 ± 50                            | $430 \pm 50$                        | 42%                                                | 26%                                 |
|                                   | 4 mM vanillate,<br>15 mM GGE                        | <b>24</b> 00 ± 100          | 600 ± 100                           | $450 \pm 80$                        | 26%                                                | 55%                                 |

TABLE 5

"Units of COD are mg/L

Saro\_2091

<sup>b</sup>Initial COD is that of the medium before inoculation.

"Final COD (biomass) is the difference between the unfiltered and filtered final samples.

(FIG 2B (K, L))

<sup>d</sup>Final COD (soluble) is the COD remaining in the medium after filtering the final sample.

<sup>e</sup>% COD incorporated into biomass is the ratio of Final COD (biomass) to Initial COD.

 $^{f_{0}}$  COD lost = 1 – (Final COD (biomass) + Final COD (soluble))/Initial COD. It is assumed that the lost COD represents the electrons in the system that were combined with oxygen during cell growth.

 $8 \pm 1$ 

40

Transcripts of Predicted β-Etherase Pathway Genes Increase in Abundance when N. aromaticivorans Grows in the Presence of GGE.

Since N. aromaticivorans metabolized GGE, we investigated the expression of genes predicted to be involved in the  $^{45}$  $\beta$ -etherase pathway in this organism. With the exception of ligL, transcription levels of the genes we tested were increased in cells grown in the presence of GGE versus its absence (Table 6). Among the GGE-induced transcripts was one derived from Saro\_2595, which encodes a Nu-class glutathione-S-transferase (named here  $NaGST_{Nu}$ ).

| TABLE 6 | 5 |
|---------|---|
|---------|---|

| Fold-changes of transcript levels in <i>N. aromaticivorans</i> cultures grown in vanillate with or without GGE. <sup><i>a</i></sup> |                         |                          |
|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------------------|
| Gene                                                                                                                                | Homologue <sup>b</sup>  | Fold-change <sup>c</sup> |
| Saro_0205                                                                                                                           | SLG_08640, LigD (77.6%) | 11 ± 3                   |
| Saro_0793                                                                                                                           | SLG_35880, LigO (41.5%) | 6 ± 2                    |
| Saro_0794                                                                                                                           | SLG_35900, LigN (44.7%) | 9 ± 1                    |
| Saro_1875                                                                                                                           | SLG_33660, LigL (48.7%) | 1 ± 1                    |

SLG\_08650, LigF (59.1%)

TABLE 6-continued

| Fold-changes of transcript levels in <i>N. aromaticivorans</i><br>cultures grown in vanillate with or without GGE. <sup>a</sup> |                                                      |                          |  |
|---------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|--------------------------|--|
| Gene                                                                                                                            | Homologue <sup>b</sup>                               | Fold-change <sup>c</sup> |  |
| Saro_2405<br>Saro_2595                                                                                                          | SLG_32600, LigP (65.9%)<br>MBENS4_2527, GST3 (37.6%) | 17 ± 9<br>8 ± 2          |  |

<sup>a</sup>Transcript levels for each culture were normalized to those of Saro\_0141 (rpoZ).

<sup>h</sup> Homologue is the gene that codes for a product from *Sphingobium* sp. SYK-6 (SLG) or *Novosphingobium* sp. MBES04 (MBENS4) with the highest % amino acid identity to the product of the indicated *N. aromaticivorans* (Saro) gene. <sup>\*</sup>Fold-change is the ratio of the normalized transcript level in cells grown in the presence of GGE to that in cells grown in the absence of GGE. 50

# NaGST<sub>Nu</sub> cleaves $\beta(R)$ - and $\beta(S)$ -GS-HPV.

NaGST<sub>Nu</sub> is 38% identical in amino acid sequence to <sup>55</sup> Novosphingobium sp. MBESO4 GST3 (FIG. 5), which can cleave both  $\beta(R)$ - and  $\beta(S)$ -GS-HPV into HPV in vitro (FIG. 1; (Ohta et al. 2015)). Since N. aromaticivorans lacks any homologues of LigG (the enzyme from Sphingobium sp. SYK-6 that cleaves the  $\beta(R)$ -stereoisomer of GS-HPV (FIG. <sup>60</sup> 1; (Masai et al. 2003)), we tested whether  $NaGST_{Nu}$  could cleave both  $\beta(R)$ - and  $\beta(S)$ -GS-HPV in N. aromaticivorans. We found that recombinant NaGST<sub>Nu</sub> cleaved both  $\beta(R)$ -and  $\beta(S)$ -GS-HPV in vitro (FIG. 6). Kinetic analysis of NaGST<sub>Nu</sub> showed that it had slightly higher  $k_{cat}$  and ~5-fold 65 higher  $K_M$  with  $\beta(R)$ -GS-HPV than with  $\beta(S)$ -GS-HPV, resulting in a ~4-fold higher  $k_{cat}/K_M$  with the  $\beta(S)$ -isomer (Table 7).

| C01                           | iversion                                                  | of GS-HPV into                 | HPV. <sup>a</sup>                                                           |                                                                                          |   |
|-------------------------------|-----------------------------------------------------------|--------------------------------|-----------------------------------------------------------------------------|------------------------------------------------------------------------------------------|---|
| Protein                       | $\begin{array}{c} \text{GS-} \\ \text{HPV}^b \end{array}$ | $\substack{k_{cat}\\(s^{-1})}$ | $\begin{array}{c} \mathbf{K}_{\mathcal{M}} \\ (\mu \mathbf{M}) \end{array}$ | $\substack{\mathbf{k}_{cat}/\mathbf{K}_{M}\\(\mathbf{m}\mathbf{M}^{-1}\mathbf{s}^{-1})}$ |   |
| NaGST <sub>Nu</sub> (8 nM)    | $\beta(R)$                                                | 80 ± 10                        | 40 ± 6                                                                      | 1900 ± 400                                                                               |   |
| SYK6GST <sub>Nu</sub> (47 nM) | $\beta(R)$                                                | $13 \pm 1$                     | 55 ± 7                                                                      | 240 ± 40                                                                                 |   |
| ecYghU (195 nM)               | $\beta(R)$                                                | $0.43 \pm 0.03$                | $28 \pm 4$                                                                  | 16 ± 3                                                                                   |   |
| ecYfcG (195 nM)               | $\beta(R)$                                                | $0.04 \pm 0.01$                | $160 \pm 60$                                                                | $0.2 \pm 0.1$                                                                            | 1 |
| NaGST <sub>Nu</sub> (8 nM)    | $\beta(S)$                                                | 57 ± 9                         | 8 ± 3                                                                       | 8000 ± 3000                                                                              |   |
| SYK6GST <sub>Nu</sub> (18 nM) | $\beta(S)$                                                | 30 ± 5                         | 11 ± 2                                                                      | 2700 ± 700                                                                               |   |
| ecYghU (195 nM)               | $\beta(S)$                                                | $0.29 \pm 0.03$                | $12 \pm 3$                                                                  | 24 ± 6                                                                                   |   |
| ecYfcG (195 nM)               | $\beta(S)$                                                | $0.017 \pm 0.004$              | $130 \pm 40$                                                                | $0.14 \pm 0.06$                                                                          |   |

<sup>a</sup>Kinetic data are from fits shown in FIG. 6

<sup>b</sup>Stereoisomer of GS-HPV used in reaction (see FIG. 1)

 $NaGST_{Nu}$  is Necessary for GGE Metabolism In Vivo.

To test for an in vivo role of  $NaGST_{Nu}$ , we generated an aromaticivorans Saro\_2595 mutant lacking N. 20 (12444 $\Delta$ 2595). Unlike its parent strain (12444 $\Delta$ 1879), 12444A2595 did not incorporate significant GGE into cell material in any culture (based on cell density and COD measurements; FIGS. 2A and B (panels C,I)) and Table 5). When provided only erythro-GGE,  $12444\Delta 2595$  produced 25 only a small amount of MPHPV and threo-GGE in the medium (FIG. 2A (panel D)). When  $12444\Delta 2595$  was fed both vanillate and erythro-GGE, it completely metabolized the vanillate, and converted almost all of the GGE into MPHPV (FIG. 2B (panel J)). A small amount of guaiacol 30 also appeared in the medium of this culture, suggesting that some MPHPV was cleaved by 12444A2595. However, unlike the situation for the parent strain, no extracellular HPV was detected in the 12444A2595 culture (FIGS. 2A and **2**B (panels D,J)). These results show that NaGST<sub> $N_{H}$ </sub> is 35 necessary for complete GGE metabolism by N. aromaticivorans

 $NaGST_{Nu}$  is Sufficient for Conversion of GS-HPV into HPV in *N. aromaticivorans*.

To determine which step in the  $\beta$ -etherase pathway 40 requires NaGST<sub>Nu</sub>, we incubated cell extracts of</sub> 12444 $\Delta$ 2595 and its parent strain (12444 $\Delta$ 1879) with racemic MPHPV and GSH. With the 12444A1879 extract, MPHPV was converted to roughly equimolar amounts of guaiacol and HPV, along with a small amount of GS-HPV 45 (FIG. 7 (A)). In contrast, the 12444 $\Delta$ 2595 extract incompletely cleaved MPHPV, producing roughly equimolar amounts of guaiacol and GS-HPV along with a low level of HPV (~2% of the level of GS-HPV formed; FIG. 7 (B)). Thus, it appeared that the  $12444\Delta 2595$  extract was defective 50 in the conversion of GS-HPV into HPV. When recombinant NaGST<sub>Nu</sub> was added to the 12444 $\Delta$ 2595 extract (FIG. 7 (B)), the GS-HPV disappeared, with a concomitant increase in HPV, showing that the defect in GS-HPV cleavage by 12444 $\Delta$ 2595 extract was caused by the lack of NaGST<sub>Nu</sub>. 55

NaGST<sub>*Nu*</sub> Homologues Cleave  $\beta$ (R)- and  $\beta$ (S)-GS-HPV. The GST Nu-class is a widespread protein family (Stourman et al. 2011, Mashiyama et al. 2014). Indeed, a nonredundant BLAST search of the NCBI database using NaG-ST<sub>*Nu*</sub> as query identified over 1,000 proteins with amino acid 60 identities of >61% and E-values <2.0×10<sup>-124</sup>. Besides GST3 from *Novosphingobium* sp. MBESO4 (Ohta et al. 2015), the only other Nu-class GSTs that have been analyzed for catalytic activity are *E. coli* ecYghU and ecYfcG (61% and 42% amino acid sequence identity with NaGST<sub>*Nu*</sub>, respec-55 tively; FIG. **5**). The roles of these enzymes are unknown, but they are reported to have disulfide bond oxidoreductase

activity in vitro (Stourman et al. 2011, Wadington et al. 2009, Wadington et al. 2010, Mashiyama et al. 2014). Though *E. coli* is not known to metabolize lignin-derived GSH adducts, we found that recombinant ecYghU and ecYfcG were both able to cleave  $\beta$ (R)- and  $\beta$ (S)-GS-HPV in vitro (FIG. 6). While the K<sub>M</sub> values for ecYghU were comparable to those of NaGST<sub>Nu</sub> (Table 7), its k<sub>cat</sub> values were much lower than those of NaGST<sub>Nu</sub>, resulting in k<sub>cat</sub>/K<sub>M</sub> values for ecYghU with GS-HPV ~100-fold lower than those of NaGST<sub>Nu</sub> under our assay conditions (Table 7). For ecYfcG, K<sub>M</sub> values were ~10-fold higher and k<sub>cat</sub> values were ~10-fold lower than those of ecYghU, leading to k<sub>cat</sub>/K<sub>M</sub> values with GS-HPV ~100-fold lower for ecYfcG than for ecYghU.

To test whether ecYghU can function in the  $\beta$ -etherase pathway in vivo, we created a strain of *N. aromaticivorans* in which Saro\_2595 was replaced in the genome by the *E. coli* yghU gene. The resulting strain, 12444ecyghU, metabolized GGE slower than 12444 $\Delta$ 1879 (the strain containing NaGST<sub>Nu</sub>; FIGS. **2**A and **2**B), but still removed all of the GGE from the medium and assimilated it into biomass, whereas 12444 $\Delta$ 2595 could not (FIGS. **2**A and **2**B (panels E,F,K,L); Table 5). This shows that ecYghU can substitute for NaGST<sub>Nu</sub> in the *N. aromaticivorans*  $\beta$ -etherase pathway.

Although the sphingomonad *Sphingobium* sp. SYK-6 can metabolize GGE (Palamuru et al. 2015, Sato et al. 2009), no enzyme capable of cleaving  $\beta$ (S)-GS-HPV has been identified in this organism (Masai et al. 2003). We tested a recombinant version of the Nu-class GST from *Sphingobium* sp. SYK-6, coded for by SLG\_04120 and named here SYK6GST<sub>Nu</sub> and found that it cleaved both  $\beta$ (S)- and  $\beta$ (R)-GS-HPV in vitro (FIG. 6). SYK6GST<sub>Nu</sub> had higher k<sub>cat</sub> and lower K<sub>M</sub> with  $\beta$ (S)-GS-HPV than with  $\beta$ (R)-GS-HPV, leading to a ~10-fold greater k<sub>cat</sub>/K<sub>M</sub> with the  $\beta$ (S)-isomer (Table 7). Thus, SYK6GST<sub>Nu</sub> could cleave  $\beta$ (S)-GS-HPV cleavage in *Sphingobium* sp. SYK-6 (Masai et al. 2003).

Structural Characterization of NaGST<sub>Nu</sub>.

We solved two structures of NaGST<sub>*Nu*</sub>, crystallized under different conditions, with resolutions of 1.25 (pdb 5uuo) and 1.45 (pdb 5uun) Å (Table 8). The structures align with each other with an RMS distance of 0.108 over 7381 atoms. NaGST<sub>*Nu*</sub> is a homo-dimer; each subunit contains a characteristic N-terminal GST (thioredoxin-like) domain (Val39 to Gly129), a C-terminal GST domain (Ser135 to Leu257), and a C-terminal extension not present in most other characterized classes of GSTs (Val258 to Phe288)\* (FIG. **8** (A)).

TABLE 8

| Statistics for the crystal structure determinations of $\text{NaGST}_{Nu}$ . |                         |                         |  |  |
|------------------------------------------------------------------------------|-------------------------|-------------------------|--|--|
| PDB entry                                                                    | 5uuo                    | 5uun                    |  |  |
| Precipitant                                                                  | Ammonium sulfate        | Ammonium acetate        |  |  |
| Wavelength                                                                   | 0.7749                  | 1.033                   |  |  |
| Resolution range                                                             | 29.36-1.25 (1.295-1.25) | 43.97-1.45 (1.502-1.45) |  |  |
| Space group                                                                  | P 21 21 21              | P 21 21 21              |  |  |
| Unit cell                                                                    | 68.81 70.39             | 68.59 70.64             |  |  |
|                                                                              | 168.23 90 90 90         | 168.57 90 90 90         |  |  |
| Total reflections                                                            | 3049254 (309691)        | 1854065 (113574)        |  |  |
| Unique reflections                                                           | 225346 (22262)          | 140421 (11067)          |  |  |
| Multiplicity                                                                 | 13.5 (13.9)             | 13.2 (10.3)             |  |  |
| Completeness (%)                                                             | 99.91 (99.70)           | 96.48 (76.88)           |  |  |
| Mean I/sigma(I)                                                              | 23.67 (1.96)            | 36.36 (8.82)            |  |  |
| Wilson B-factor                                                              | 16.03                   | 13.23                   |  |  |
| R-Merge                                                                      | 0.05235 (1.297)         | 0.04367 (0.2047)        |  |  |
| R-Means                                                                      | 0.05445 (1.346)         | 0.04544 (0.2159)        |  |  |
| R-Pim                                                                        | 0.01485 (0.3565)        | 0.01239 (0.06599)       |  |  |
| CC1/2                                                                        | 1 (0.841)               | 1 (0.986)               |  |  |

25

| Statistics for the crystal structure determinations of $\text{NaGST}_{Nu}$ . |                   |                    |  |  |
|------------------------------------------------------------------------------|-------------------|--------------------|--|--|
| CC*                                                                          | 1 (0.956)         | 1 (0.997)          |  |  |
| Reflections used                                                             | 225262 (22242)    | 140408 (11066)     |  |  |
| in refinement                                                                |                   |                    |  |  |
| Reflections used                                                             | 1963 (197)        | 1852 (154)         |  |  |
| for R-free                                                                   |                   |                    |  |  |
| R-Work                                                                       | 0.1303 (0.2607)   | 0.1357 (0.206)     |  |  |
| R-Free                                                                       | 0.1324 (0.2979)   | 0.1365 (0.1595)    |  |  |
| CC(work)                                                                     | 0.978 (0.913)     | 0.978 (0.971)      |  |  |
| CC(free)                                                                     | 0.988 (0.851)     | 0.975 (0.9363)     |  |  |
| Non-H atoms                                                                  | 5658              | 5852               |  |  |
| Macromolecules                                                               | 4626              | 4628               |  |  |
| Ligands                                                                      | 252               | 244                |  |  |
| Solvent                                                                      | 780               | 980                |  |  |
| Protein residues                                                             | 569               | 1040               |  |  |
| RMS(bonds)                                                                   | 0.007             | 0.008              |  |  |
| RMS(angles)                                                                  | 1.02              | 1.08               |  |  |
| Ramachandran                                                                 | 93.75/2.30/0.35   | 96.82/2.65/0.53    |  |  |
| favored/allowed/                                                             |                   |                    |  |  |
| outliers (%)                                                                 |                   |                    |  |  |
| Rotamer                                                                      | 0.43              | 0.43               |  |  |
| outliers (%)                                                                 |                   |                    |  |  |
| Clashscore                                                                   | 1.89              | 2.13               |  |  |
| Average B-factor                                                             | 22.39             | 19.61              |  |  |
| B-Factor                                                                     | 20.02/26.98/34.97 | 16.91/19.017/33.64 |  |  |
| macromolecules/<br>ligands/solvent                                           |                   |                    |  |  |
| No. TLS groups                                                               | 9                 | 9                  |  |  |

\*The residue numbers used here for NaGST<sub>Ni</sub> are for the native protein represented by SEQ ID NO: 18; residues numbers in the pdb entries differ by +5 since the protein used for crystallization contained an N-terminal extension left after proteolytic removal of the His<sub>8</sub>-tag.

Statistics for the highest-resolution shell are shown in parentheses.

The structure of  $NaGST_{Nu}$  is most similar to those of the Nu-class GSTs ecYghU (pdb 3c8e (Stourman et al. 2011), with an RMSD of 0.49 Å over 3116 atoms) and Streptococcus sanguinis SK36 YghU (ssYghU; pdb 4mzw (Patskovsky et al.), with an RMSD of 0.58 Å over 3004 atoms). In 35  $NaGST_{Nu}$ , ecYghU, and ssYghU, a short channel leads from the active site pocket to the solvent (FIGS. 9 and 12). In other structurally characterized Nu-class GSTs, including ecYfcG (pdb 3gx0 (Wadington et al. 2009)), the active site is more solvent exposed, since these proteins lack N-termi- 40 nal residues that contribute to the channel walls in the other proteins (FIG. 5; Supplemental Materials of Thuillier et al. 2013).

The active site electron density in NaGST<sub>Nu</sub> was modeled as a mixed population of GSH1 and GSH2 thiols with an 45 S—S distance of 2.4 Å (~60% occupancy) and GS-SG disulfide with an S—S distance of 2.0 Å (~40% occupancy) (FIG. 8 (B)). Since the crystallization solutions initially contained only GSH, the disulfide likely formed via adventitious oxidation of the closely situated GSH thiols during 50 the crystallization period (~4 weeks), or during X-ray diffraction data collection. For comparison, ecYghU shows a dithiol configuration with HS-SH distance of 2.8 Å (Stourman et al. 2011), whereas ssYghU and ecYfcG each show a disulfide configuration with S-S distance of 2.1 Å (Wad- 55 ington et al. 2009, Patskovsky et al.).

In NaGST<sub>Nu</sub>, seven residues make close contacts with GSH1 (Thr51, Asn53, Gln86, Lys99, Ile100, Glu116, and Ser117) and three residues make close contacts with GSH2 (Asn25, Asn53, and Arg177 from the opposite chain in the 60 dimer) (FIG. 8 (B)). These residues and contacts to the GSHs are conserved in the YghU structures ((Stourman et al. 2011, Patskovsky et al.); ecYfcG is missing an analogue of Asn25, as it is truncated at its N-terminus relative to the other proteins (FIG. 5). The conserved threonine forms a 65 hydrogen-bond with the GSH1 thiol that is characteristic of Nu-class GSTs (Stourman et al. 2011) (FIG. 8 (B); 3.0 Å

interatomic distance for Thr 51 in NaGST<sub>Nu</sub>). ecYghU is predicted to have one additional interaction with GSH1 (via Gln151 (Stourman et al. 2011)) not present in NaGST<sub>Nu</sub>, ssYghU, or ecYfcG (which contain Val150, Thr148, and Val105 at this position, respectively).

Alignment of the individual subunits of  $NaGST_{Nu}$ , ecYghU and ssYghU shows four different configurations for their C-termini (FIG. 9 (A)): two for NaGST<sub>Nu</sub> (FIG. 9</sub> (B,C)) and one each for ecYghU (FIG. 9 (D)) and ssYghU <sup>10</sup> (FIG. 9 (E)). The C-terminal region of ecYfcG is in essentially the same configuration as that of ssYghU, though the last eleven residues of ecYfcG are not present in its crystal structure. The two  $\text{NaGST}_{Nu}$  subunits differ in the positioning of residues Leu258 to Phe288, with Phe288 being distant <sup>15</sup> from the active site channel in one subunit (5uun open, FIG. 9 (B)), and near the channel entrance in the other (5uun closed, FIG. 9 (C)), a difference of ~18 Å. The closed  $NaGST_{Nu}$  configuration is stabilized by hydrogen-bonds between the sidechain amide of Lys262 and the carbonyl 20 oxygen of Lys286, and the sidechain amide of Lys286 and the carbonyl oxygen of Arg220. The open configuration lacks these interactions and the sidechain of Arg220 has two rotamer positions. The sizes of the active site channel opening in the open and closed configurations of  $NaGST_{Nu}$ are ~18 Å<sup>2</sup> and ~11 Å<sup>2</sup>, respectively (FIG. 9 (B,C)). For comparison, the area of active site access for both ecYghU and ssYghU is ~25 Å<sup>2</sup> (FIG. 9 (D,E)). The placement of helices-10 and 11 in ecYghU (FIG. 9 (D)), and the truncated C-terminal sequence of ssYghU (FIG. 9 (D), FIG. 5), make it is unlikely that either of these C-termini can occupy a position similar to that seen in NaGST<sub>N</sub>,

Modeling of  $\beta(R)$ - and  $\beta(S)$ -GS-HPV into the GSH2 position in the NaGST<sub> $N\mu$ </sub> active site predicts that their HPV moieties extend into the active site channel in different orientations (FIG. 10 (A)). The channel interior includes the phenol groups of Tyr166 and Tyr224, and the carboxylate of Phe288 in the closed configuration. Our models predict that these three residues interact differently with  $\beta(R)$ - and  $\beta$ (S)-GS-HPV. With the less reactive  $\beta$ (R)-GS-HPV, Tyr166 is predicted to provide a long interaction (4 Å) with the  $\alpha$ -ketone, whereas Tyr224 hydrogen-bonds to the  $\gamma$ -hydroxyl (3.1 Å), which in turn hydrogen-bonds to the  $\alpha$ -ketone (FIG. 10 (B)). With the more reactive  $\beta$ (S)-GS-HPV, Tyr166 is predicted to provide a cation-n interaction with its aromatic ring (average distance 3.4 Å), whereas Tyr224 provides a hydrogen-bond to its  $\gamma$ -hydroxyl (FIG. 10 (C)). Phe288 is also predicted to hydrogen-bond with the phenolic group of both  $\beta(R)$ - and  $\beta(S)$ -GS-HPV in the closed configuration of NaGST<sub>Nu</sub>.

## Discussion

In developing bio-based systems to depolymerize lignin, optimized cellular and enzyme catalysts are needed. In this study, we tested sphingomonads for the ability to break the  $\beta$ -aryl ether bond commonly found in lignin (FIG. 1), and characterized a Nu-class glutathione-S-transferase from N. aromaticivorans that acts as a glutathione lyase in the  $\beta$ -etherase pathway (NaGST<sub>Nu</sub>). Our finding that other Nuclass GSTs also catalyze this reaction provides important insight into the function of this enzyme family in lignin depolymerization and possibly metabolism of other compounds that proceed via GSH-conjugates.

Differences in GGE Metabolism.

We found that N. aromaticivorans was the most effective species studied here at metabolizing the dimeric aromatic compound GGE and assimilating it into cellular material.

The rate of GGE metabolism by *N. aromaticivorans* is comparable to those of *Erythrobacter* sp. SG61-1L (Palamuru et al. 2015) and *Novosphingobium* sp. MBESO4 (Ohta et al. 2015) (FIG. **3**). *Sphingobium* sp. SYK-6 (Palamuru et al. 2015), *Novosphingobium* sp. PP1Y (FIG. **4**A), and S. 5 *xenophagum* (FIG. **4**B) are slower and/or less efficient at metabolizing GGE, even though they each contain enzymes implicated in the  $\beta$ -etherase pathway.

GGE Metabolism by N. aromaticivorans.

The appearance of extracellular MPHPV, threo-GGE, and 10 HPV in N. aromaticivorans cultures suggests that it excretes these  $\beta$ -etherase pathway intermediates (FIGS. 2A and 2B). The appearance of threo-GGE in cultures fed erythro-GGE shows that GGE oxidation is reversible in vivo, as was previously found for Pseudomonas acidovorans D3 (Vicuña 15 et al. 1987). The low level of extracellular guaiacol, and the absence of extracellular GS-HPV in GGE-fed cultures suggest that MPHPV cleavage occurred intracellularly, as was proposed for Novosphingobium sp. MBESO4 (Ohta et al. 2015), and which was expected, based on the requirement 20 for GSH for this reaction (FIG. 1). Since the conversion of GS-HPV into HPV also requires GSH, this reaction also likely occurred intracellularly. The relatively late uptake of HPV from the media (FIGS. 2A and 2B (panels B,H)) suggests that N. aromaticivorans metabolized and assimi- 25 lated guaiacol before HPV. In contrast, Erythrobacter sp. SG61-1L metabolized HPV, but not guaiacol (Palamura et al. 2015), and Pseudomonas acidovorans E-3 consumed the guaiacol only after consuming the phenylpropanoid formed from splitting veratrylglycerol- $\beta$ -guaiacyl ether (Crawford 30 et al. 1973). This shows that species use different strategies for metabolizing  $\beta$ -etherase pathway intermediates, a feature that could be useful in developing strains that produce specific pathway intermediates.

Bacterial metabolism of HPV has been proposed to pro- 35 ceed through acetovanillone, vanillin, vanillate, and protocatechuate (Crawford et al., 1973; Masai et al., 2007; Palamuru et al., 2015; Vicuña et al., 1987), and metabolism of guaiacol has been proposed to proceed through catechol (Crawford et al., 1973). However, we failed to detect any of 40 these compounds in *N. aromaticivorans* culture media, suggesting that aromatic intermediates downstream of HPV and guaiacol were retained within the cells upon formation.

Nu-Class GSTs can Function as Glutathione Lyases.

We found that NaGST<sub>Nu</sub> SYK6GST<sub>Nu</sub> ecYghU, and 45 ecYfcG cleave the GS-moiety from both  $\beta$ (R)- and  $\beta$ (S)-GS-HPV, though with a wide range of catalytic efficiencies ( $k_{cat}/K_M$ ) (at least 10<sup>4</sup>-fold; Table 7). Thus, along with GST3 from *Novosphingobium* sp. MBESO4 (Ohta et al., 2015), all five of the Nu-class GSTs that have been tested for GS-HPV 50 cleavage show glutathione lyase (deglutathionylation) activity with both stereoisomers of this substrate. Phylogenetic analysis of Nu-class GSTs shows these enzymes lie in widely separate sub-clades, suggesting that this activity may be widespread throughout this large class of proteins (FIG. 55 **13**).

Proposed Mechanism for the Nu-Class GST Glutathione Lyase Reaction.

We modeled the GS-moiety of GS-HPV into the GSH2 active site position of NaGST<sub>Nu</sub> (FIG. 8 (B)), with the HPV 60 moieties of  $\beta$ (R)- and  $\beta$ (S)-GS-HPV extending into the active site channel in different orientations (FIG. 10(A) and FIG. 12 (A,B)). We propose a mechanism for the glutathione lyase reaction (FIG. 11) in which the thiol of the GSH1 molecule (FIG. 8 (B)) is activated by hydrogen-bonding 65 with the conserved active site threonine (Thr51), which has moderate reactivity as a base at pH 8.5 (FIG. 11 (A)). The 44

activated GS1 thiol attacks the GS- of GS-HPV to form a disulfide GS-SG. In our proposed mechanism, the lyase reaction (C-S bond cleavage) is facilitated by polarization of the GS-HPV  $\alpha$ -ketone by interactions involving Tyr166 and Tyr224 (which are highly conserved amongst many Nu-class GSTs; FIG. 5), and the  $\gamma$ -hydroxyl of HPV, with different interactions for the two GS-HPV stereoisomers (FIG. 11 (A)). With  $\beta$ (R)-GS-HPV, Tyr166 is predicted to provide a long interaction (3.9 Å) with the  $\alpha$ -ketone, while Tyr224 hydrogen-bonds to the  $\gamma$ -hydroxyl (3.1 Å), which in turn hydrogen-bonds to the  $\alpha$ -ketone (FIGS. 10 (B) and 11 (A)). Tyr166 is predicted to provide a cation- $\pi$  interaction with the aromatic ring of the tighter binding  $\beta$ (S)-GS-HPV (average distance 3.4 Å), while Tyr224 provides a hydrogenbond to its y-hydroxyl (FIGS. 10 (C) and 11 (A)). Phe288 is also predicted to hydrogen-bond with the phenolic group of both  $\beta(R)$ - and  $\beta(S)$ -GS-HPV in the closed C-terminal configuration of NaGST<sub>Nu</sub> (FIGS. 10 (B,C) and 11). ecYfcG lacks analogues of these Tyr residues (FIG. 5), which may contribute to its diminished catalytic capability (k<sub>cat</sub>/K<sub>M</sub> values ~10<sup>4</sup>-fold lower than those of NaGST<sub>Nu</sub>; Table 7). In the absence of a redox cofactor, we propose that a transient enolate (FIG. 11 (B)) stores the 2e<sup>-</sup> reducing equivalents released by disulfide bond formation as an incipient carbanion. Due to active site steric constraints, our model places the reactive portion (S—C<sub> $\beta$ </sub>—(C<sub> $\alpha$ </sub>=O)-aryl) of both  $\beta$ (R)and  $\beta(S)$ -GS-HPV into roughly planar configurations in the NaGST<sub>Nu</sub> channel (FIG. 10 and FIG. 12 (A,B)), which should promote the formation of the enolate intermediate (FIG. 11 (B)). In contrast, steric constraints in the ecYghU active site channel resulting from differences between its channel interior and that of  $NaGST_{Nu}$  place these reactive GS-HPV atoms ~45° out of alignment in our ecYghU models (FIG. 12 (C,D)), providing a possible explanation for the slower reactivity of ecYghU with GS-HPV compared to NaGST<sub>Nu</sub> (ecYghU has values of  $k_{cat}/K_{M} \sim 100$ -fold lower than those of  $NaGST_{Nu}$ ; Table 7). Collapse of the proposed enolate intermediate proceeds with carbanion trapping of a solvent-derived proton, corresponding to reduction of the carbon atom originally containing the thioether bond (FIG. 11 (C)).

This proposed mechanism for Nu-class GSTs with GS-HPV is different from that proposed for the omega class GST LigG, in which  $\beta(R)$ -GS-HPV initially forms a mixed disulfide with a cysteine residue, releasing the HPV moiety (Pereira et al. 2016). A GSH molecule then enters the LigG active site and combines with the enzyme bound GS-moiety to form GSSG. A side chain thiol is unlikely to be involved in Nu-class glutathione lyase activity, since NaGST<sub>Nu</sub> only contains one cysteine, which is ~21 Å away from the active site, and SYK6GST<sub>Nu</sub> and ecYghU do not contain any cysteine residues.

NaGST<sub>*Nu*</sub> Converts  $\beta(R)$ - and  $\beta(S)$ -GS-HPV into HPV in *N. aromaticivorans.* 

Although GST3 from *Novosphingobium* sp. MBESO4 can convert  $\beta$ (R)- and  $\beta$ (S)-GS-HPV into HPV in vitro (Ohta et al. 2015), a physiological role in the  $\beta$ -etherase pathway has not been established. The inability of *N. aromaticivorans* 12444 $\Delta$ 2595 to completely metabolize GGE (FIGS. **2**A and **2**B (panels C,D,I,J)) shows that NaGST<sub>*Nu*</sub> is necessary for the  $\beta$ -etherase pathway in *N. aromaticivorans*. Unexpectedly, we found that 12444 $\Delta$ 2595 accumulated extracellular MPHPV. Cleavage of MPHPV into guaiacol and GS-HPV is catalyzed by LigF and LigE/P (FIG. **1**), enzymes that are likely expressed in 12444 $\Delta$ 2595, since crude extract from this strain can cleave MPHPV (FIG. **7** (B)). We hypothesize that without NaGST<sub>*Nu*</sub> GS-HPV accu-

65

mulates intracellularly in 12444 $\Delta$ 2595, and cells become limited for the GSH that is needed to cleave MPHPV.

It is unclear whether the trace amount of HPV formed in assays using 12444 $\Delta$ 2595 extract (FIG. 7 (B)) resulted from activity of an unknown enzyme or spontaneous cleavage of 5 GS-HPV. In any event, addition of recombinant NaGST<sub> $N_{u}$ </sub> to the 12444 $\Delta$ 2595 extract resulted in the complete conversion of GS-HPV into HPV (FIG. 7 (B)), providing the first demonstration of a single enzyme being sufficient for one of the steps of the  $\beta$ -etherase pathway in vivo.

The Role of Nu-Class GSTs in the  $\beta$ -Etherase Pathway. The ability of Nu-class GSTs to cleave both  $\beta(R)$ - and  $\beta$ (S)-GS-HPV raises the question of why some species contain both this enzyme and LigG (e.g. Sphingobium sp. SYK-6), which is specific for the  $\beta(R)$ -isomer (FIG. 1). Our 15 data show that both  $NaGST_{Nu}$  and  $SYK6GST_{Nu}$  have a higher  $k_{cat}/K_M$  value with  $\beta(S)$ -GS-HPV than with the  $\beta(R)$ -isomer (Table 7). For NaGST<sub>Nu</sub>, this difference in  $k_{cat}/K_M$  values between the stereoisomers was ~4-fold and the values (~8000 and ~1900 mM<sup>-1</sup> s<sup>-1</sup> for the  $\beta$ (S)- and 20  $\beta(R)$ -isomers, respectively) are both greater than that reported for LigG with  $\beta(R)$ -GS-HPV (1700 mM<sup>-1</sup> s<sup>-1</sup> (Pereira et al. 2016)). For SYK6GST<sub>Nu</sub>, the difference in  $k_{cat}/K_M$  values between the isomers is ~10-fold, and the value with  $\beta(R)$ -GS-HPV (~240 mM<sup>-1</sup> s<sup>-1</sup>) is lower than 25 that reported for LigG. These observations suggest that SYK6GST<sub>Nu</sub> likely cleaves  $\beta$ (S)-GS-HPV in Sphingobium sp. SYK-6, but that LigG may play a role in cleaving  $\beta$ (R)-GS-HPV in that organism. Although cell extract from a Sphingobium sp. SYK-6 ALigG mutant completely 30 cleaved a racemic GS-HPV sample (since the lysate presumably contained active SYK6GST<sub>Nu</sub>) the physiological</sub> effect of deleting LigG was not reported (Masai et al. 2003). Perhaps organisms like N. aromaticivorans that lack LigG need Nu-class GSTs to have higher efficiencies toward 35  $\beta(R)$ -GS-HPV than Nu-class GSTs in species that contain a stereospecific enzyme like LigG.

The Potential Role(s) of Nu-Class GSTs in Bacteria that do not Contain the 13-Etherase Pathway.

Many organisms contain Nu-class GSTs, including those 40 not known or predicted to use the  $\beta$ -etherase pathway (Mashiyama et al., 2014; Stourman et al., 2011). Whereas several of these enzymes have been found to have disulfide bond reductase activity in vitro, the physiological roles of most of these proteins are unknown (Mashiyama et al., 45 2014; Stourman et al., 2011). We found that ecYghU and ecYfcG from E. coli, an organism not known to metabolize lignin-derived phenylpropanoids, can cleave both  $\beta(R)$ - and  $\beta$ (S)-GS-HPV in vitro, though with lower catalytic efficiencies than NaGST<sub>Nu</sub> and SYK6GST<sub>Nu</sub> (Table 2). The fact that 50 ecYghU can replace NaGST<sub>Nu</sub> in N. aromaticivorans (FIGS. 2A and 2B (panels E,F,K,L)) shows that it can indeed function as a glutathione lyase in vivo. The relatively low  $k_{cat}/K_M$  values of ecYghU and ecYfcG in cleavage of GS-HPV compared to NaGST<sub>Nu</sub> and SYK6GST<sub>Nu</sub> could 55 renewable resources as raw materials for production of reflect the fact that GS-HPV is not a natural substrate for the E. coli enzymes. Although the overall structures of Nu-class GSTs are similar, differences in the residues surrounding the active sites (as seen between NaGST<sub>Nu</sub> and ecYghU, for</sub> example; FIG. 12) could make enzymes from other organ- 60 isms better suited for binding and cleaving other GSconjugates that they more commonly encounter.

## Conclusion

This work shows that N. aromaticivorans can rapidly and completely metabolize the *β*-aryl ether-containing compound GGE, and that the Nu-class glutathione-S-transferase  $NaGST_{Nu}$  plays a direct role in this process. The following example illustrates that  $NaGST_{Nu}$  can participate in cleavage of bona fide lignin oligomers in vitro, indicating utility of this enzyme in converting biomass into valuable chemicals.  $NaGST_{N\mu}$  and other Nu-class GSTs can cleave both the  $\beta(R)$ - and  $\beta(S)$ -stereoisomers of the  $\beta$ -etherase pathway intermediate GS-HPV, in contrast to the other characterized enzymes in the pathway, which are stereospecific (FIG. 1). Our finding that ecYghU also cleaves GS-HPV shows that Nu-class GSTs from organisms lacking the β-etherase pathway can nevertheless act as racemic glutathione lyases.

## Example 2

In Vitro Enzymatic Release of Syringyl, Guaiacyl, and Tricin Units from Lignin

#### Summary

New information and processes are needed to derive valuable compounds from renewable resources. Lignin is an abundant, heterogeneous, and racemic polymer in terrestrial plants, and it is comprised predominantly of guaiacyl and syringyl monoaromatic phenylpropanoid units that are covalently linked together in a purely chemical radical coupling polymerization process. In addition, the plant secondary metabolite, tricin, is a recently found and abundant lignin monomer in grasses. The most prevalent type of inter-unit linkage between guaiacyl, syringyl, and tricin units is the  $\beta$ -ether linkage. Previous studies have shown that enzymes in the bacterial  $\beta$ -etherase pathway catalyze glutathionedependent cleavage of  $\beta$ -ether bonds in dimeric  $\beta$ -ether lignin model compounds, resulting in the release of monoaromatic products, the reduction of nicotinamide adenine dinucleotide (NAD<sup>+</sup>) to NADH, and the oxidation of glutathione (GSH) to glutathione disulfide (GSSG). To date, however, it remains unclear whether the known  $\beta$ -etherase enzymes are active on lignin polymers. Here, we report on enzymes that catalyze  $\beta$ -ether cleavage from model compounds and bona fide lignin, under conditions that recycle the cosubstrates NAD<sup>+</sup> and GSH. Guaiacyl, syringyl and tricin derivatives were identified as reaction products when different model compounds or lignin fractions were used as substrates. These results provide the first demonstration of an in vitro enzymatic system that can recycle NAD<sup>+</sup> and GSH while releasing aromatic monomers from model compounds as well as natural and engineered lignin oligomers. These findings can improve the ability to produce valuable aromatic compounds from a renewable resource like lignin.

#### Introduction

There is economic and environmental interest in using chemicals that are currently derived from fossil fuels. Lignin, a renewable resource that accounts for ~15-30% (dry weight) of vascular plant cell walls (Higuchi 1980, Lewis et al. 1990), is comprised of aromatic compounds that may be valuable commodities for the biofuel, chemical, cosmetic, food, and pharmaceutical industries (Sinha et al. 2008). Consequently, intensive efforts are currently aimed at developing chemical, enzymatic and hybrid methods for deriving simpler and lower molecular weight products from lignin (Gall et al. 2017).

The lignin backbone is predominantly composed of guaiacyl (G) and syringyl (S) phenylpropanoid units (FIG. 16 (A)) that derive from the monomers coniferyl and sinapyl alcohol that become covalently linked during lignification via radical coupling reactions, primarily by endwise addition of a monomer (radical) to the phenolic end of the growing polymer (radical). G and S units are inter-linked by a variety of chemical bonds by which the units are characterized: resinols ( $\beta$ - $\beta$ ), 4-O-5-diaryl ethers, phenylcoumarans ( $\beta$ -5), and  $\beta$ -O-4-aryl ethers (termed  $\beta$ -ethers hereafter)] (Adler 1977, Adler 1957, Adler 1955). In grasses, the flavone tricin (T units, FIG. 16 (A)) begins a chain and is covalently linked 10 to the next unit via a 4-O- $\beta$ -ether bond (Lan et al. 2016, Lan et al. 2015, del Rio et al. 2012). Given that approximately 50-70% of all inter-unit linkages in lignin are  $\beta$ -ethers (Adler 1977, Adler 1957, Adler 1955), cleavage of these bonds is crucial for processes aiming to derive valuable low 15 molecular weight compounds from lignin in high yields. The formation of β-ether linkages during lignification generates a racemic lignin product containing both  $\beta(R)$ - and  $\beta(S)$ carbons that, after re-aromatization of the quinone methide intermediate by proton-assisted water addition, are adjacent 20 to either  $\alpha(R)$ - or  $\alpha(S)$ -configured benzylic alcohols (Akiyama et al. 2002, Sugimoto et al. 2002, Ralph et al. 1999). Each unit therefore has 4 optical isomers and two 'real' isomers-the so-designated threo and erythro (or syn and anti) isomers. Lignin depolymerization via  $\beta$ -ether bond 25 cleavage has been demonstrated with chemical catalysis (Rahimi et al. 2013, Rahimi et al. 2014). In addition, cytoplasmic enzymes in a sphingomonad β-etherase pathway have been identified that oxidize and cleave model  $\beta$ -ether linked aromatic dimers (Masai et al. 2007).

The  $\beta$ -etherase pathway is present in *Sphingobium* sp. strain SYK-6 and other sphingomonads (e.g., Novosphingobium spp.) (Masai et al. 2007, Gall and Ralph et al. 2014). The diaromatic  $\beta$ -ether-linked guaiacylglycerol- $\beta$ -guaiacyl ether (GGE, FIG. 16 (B)) lignin model compound has been 35 used as a substrate to identify the following three enzymatic steps in cleavage of β-ether linkages in vitro (Gall and Ralph et al. 2014, Masai et al. 2003, Sato et al. 2009, Tanamura et al. 2010, Gall and Kim et al. 2014): (1) a set of dehydrogenases catalyze nicotinamide adenine dinucleotide 40 (NAD<sup>+</sup>)-dependent  $\alpha$ -oxidation of GGE to GGE-ketone and NADH (Sato et al. 2009, Masai and Kubota et al. 1993), (2) β-etherases that are members of the glutathione S-transferase superfamily, carry out glutathione (GSH)-dependent cleavage of GGE-ketone, releasing guaiacol and β-S-gluta- 45 thionyl-y-hydroxy-propiovanillone (GS-HPV) (Masai et al. 2003, Gall and Kim et al. 2014, Masai and Katavama et al. 1993), and (3) one or more glutathione lyases catalyze GSH-dependent cleavage of GS-HPV, yielding glutathione disulfide (GSSG) and y-hydroxypropiovanillone (HPV) 50 (Masai et al. 2003, Gall and Kim et al. 2014, Rosini et al. 2016, Kontur et al. 2018).

The use for multiple enzymes at some of the pathway's steps is attributable to the existence of both R- and S-configured chiral centers in lignin (Akiyama et al. 2002, Sug- 55 imoto et al. 2002, Ralph et al. 1999). The known NAD<sup>+</sup>dependent dehydrogenases (LigD, LigL, LigN, and LigO) exhibit strict stereospecificity at the a position with indifference to the configuration at the  $\beta$  position (Sato et al. 2009). With model diaromatic substrates, LigD and LigO are 60 active on the R-configured  $\alpha$ -epimers, whereas LigL and LigN are active on the S-configured  $\alpha$ -epimers. Because the combined activity of these dehydrogenases eliminates the chiral center at a, GGE-ketone exists as two  $\beta$ -enantiomers that are cleaved by stereospecific  $\beta$ -etherases LigE, LigP and 65 LigF, each of which catalyzes the release of guaiacol with chiral inversion at the  $\beta$  position, and one of two  $\beta$ -epimers

of GS-HPV (LigE and LigP convert  $\beta(R)$ -GGE-ketone to  $\beta(S)$ -GS-HPV and LigF converts  $\beta(S)$ -GGE-ketone to  $\beta(R)$ -GS-HPV) (Gall and Kim et al. 2014). The final step is the GSH-dependent cleavage of the GS-HPV epimers, yielding GSSG and HPV as coproducts. LigG has been shown to cleave both  $\beta(R)$ -GS-HPV and  $\beta(S)$ -GS-HPV (Rosini et al. 2016), although it appears to have a strong preference for the former (Masai et al. 2003, Gall and Kim et al. 2014). Recently, a GSH transferase from *Novosphingobium aro-maticivorans* DSM12444 (NaGST<sub>NU</sub>; Saro\_2595 in Gen-Bank assembly GCA\_000013325.1) (Kontur et al. 2018) has been shown to have high activity with  $\beta(R)$ -GS-HPV and  $\beta(S)$ -GS-HPV both in vivo and in vitro, producing HPV and GSSG as products (FIG. **16** (B)).

Despite what is known about the activity of individual β-etherase pathway enzymes with model diaromatic compounds, there is little information on their function with lignin oligomers. In vivo activity may be limited to aromatic dimers or small lignin oligomers due to restrictions in transporting large polymers into the bacterial cytoplasm where the  $\beta$ -etherase pathway enzymes are found. To better understand the function of  $\beta$ -etherase pathway enzymes, we sought to use a minimal set of enzymes to develop a coupled in vitro assay capable of releasing G, S and T aromatic monomers and recycling the cosubstrates NAD<sup>+</sup> and GSH. Here we demonstrate complete conversion of GGE to guaiacol and HPV in a reaction containing LigD, LigN, LigE, LigF, NaGST<sub>Nu</sub>, and the Allochromatium vinosum DSM180 GSH reductase (AvGR), which catalyzes NADH-dependent reduction of GSSG (FIG. 16 (B)) (Reiter et al. 2013). We also show that this same combination of enzymes releases tricin from the model compound guaiacylglycerol-β-tricin ether (GTE, FIG. 16 (C)). In addition, we show that the same combination of enzymes releases G, S, and T units from bona fide lignin oligomers; this is the first report to demonstrate the release of tricin from lignin units by biological methods. We discuss new insights gained from this study and its implications for the future production of these and possibly other valuable products from lignin. Methods

General

GGE was purchased from TCI America (Portland, Oreg.). Tricin, GTE, GTE-ketone, HPV, γ-hydroxypropiosyringone (HPS) and GGE-ketone were synthesized by previously described methods (Adler et al. 1955, Lan et al. 2015, Masai et al. 1989). All other chemicals were purchased from Sigma-Aldrich (St. Louis, Mo.). Methods to isolate and characterize maize (Zea mays) corn stover (MCS) and hybrid poplar (HP) lignin samples were described previously (Lan et al. 2015, Stewart et al. 2009, Shuai et al. 2016). <sup>1</sup>H and <sup>13</sup>C NMR spectra were recorded on a Bruker Biospin (Billerica, Mass.) AVANCE 700 MHz spectrometer fitted with a cryogenically-cooled 5-mm quadruple-resonance <sup>1</sup>H/<sup>31</sup>P/<sup>13</sup>C/<sup>15</sup>N QCI gradient probe with inverse geometry (proton coils closest to the sample). Manipulation of DNA and preparation of Escherichia coli transformant cultures were carried out according to previously described methods (Moore 2003). All lig genes from Sphingobium sp. strain SYK-6, as well as those encoding AvGR from A. vinosum DSM180 were codon optimized for expression in E. coli and obtained from GeneArt® (Life Technologies). NaGST<sub>Nu</sub></sub> was amplified and cloned from N. aromaticivorans DSM12444 genomic DNA (Kontur et al. 2018).

Plasmid and Protein Preparation.

Procedures for cloning, recombinant expression and purification of Tev protease, LigE, LigF, LigG, and NaGST<sub>Nu</sub> are described elsewhere (Gall and Kim et al. 2014, Kontur et al.

2017). Codon-optimized ligD, ligN and genes AvGR were cloned into plasmid pVP302K (Gall and Kim et al. 2014) via the PCR overlap method (Shevchuk et al. 2004, Bryksin et al. 2010, Horton et al. 2013, Horton 1993). Expression and purification of LigD, LigN, NaGST<sub>Nu</sub>, and AvGR followed 5 similar procedures as those used previously (Gall and Kim et al. 2014). Briefly, E. coli strain B834 cultures, transformed with expression plasmids, were grown aerobically overnight in 1 L of auto-induction ZYM-5052 medium (Studier 2005) supplemented with 100  $\mu$ g mL<sup>-1</sup> kanamycin. 10 Cells were pelleted and extracts prepared via compression and sonication. Histidine-tagged proteins were purified from cell lysates via Ni-NTA affinity chromatography with QIA-GEN Ni-NTA resin. His-tagged Tev protease was used to liberate N-terminal His-tags and a second round of Ni-NTA 15 affinity chromatography was used to remove the tag and Tev protease before separation by size-exclusion chromatography. Protein preparations were concentrated and frozen with liquid N<sub>2</sub>.

Enzyme Assays.

In vitro enzyme assays containing LigD, LigN, LigE, LigF, NaGST<sub>Nu</sub> (or LigG), and AvGR (or a subset of those enzymes) were conducted in assay buffer (25 mM Tris, 2.0% DMSO, pH 8.0). The concentration of each enzyme was 50  $\mu g m L^{-1}$  in all assays. When GGE (6 mM) was the substrate, 25 the initial cosubstrate concentrations were 2 mM NAD+ and 4 mM GSH. When GTE (1 mM) was the substrate, the initial cosubstrate concentrations were 5 mM NAD+ and 5 mM GSH. When an isolated lignin sample was used as the substrate (2.2 mg mL<sup>-1</sup>), the initial cosubstrate concentrations were 2 mM NAD<sup>+</sup> and 4 mM GSH. Enzyme assays (1 mL or larger volume as needed) were carried out (in duplicate) as follows: (1) the substrate (GGE, GTE, or lignin) was dissolved in DMSO (50-times concentrated above the intended assay concentration) and 20 µL of the solution were 35 added to a 2 mL vial, (2) 880 µL of 25.6 mM Tris pH 11.5 (where the acidic effect of GSH drops the pH to 8.0 after addition of 5 mM GSH), (3) 50 µL of a stock solution in 25 mM Tris containing NAD+ and GSH (each is 20-times concentrated above the intended assay concentration), and 40 (4) 50  $\mu$ L of 20-times concentrated mixture of the desired enzymes. At indicated time points, 150 µL samples were removed from an assay and enzymatic activity was abolished by pipetting into 5 µL of 5 M phosphoric acid. GGE, guaiacol, HPV, and HPS concentrations were quantified for 45 each time point [see below] using a linear regression of known standards for each compound.

Preparative Gel-Permeation Chromatography (GPC). GPC of lignin samples was carried out using a Beckman 125NM solvent delivery module equipped with a Beckman 50 168 UV detector ( $\lambda$ =280 nm) and a 30 mL Bio-Rad Bio Bead S-X3 column (a neutral, porous styrene-divinylbenzene copolymer). Dimethylformamide (DMF) was used as the mobile phase at a flow rate of 1.0 mL min<sup>-1</sup>. Between 20 and 50 mg of lignin was dissolved in a minimal amount of 55 DMF, injected into the mobile phase, and 1 mL fractions were collected until UV absorption decreased to baseline levels. Fractions were then subjected to analytical GPC to estimate their average molecular weight (MW). The DMF was evaporated in vacuo in order to recover material used 60 for enzyme assays.

Analytical GPC.

Analytical GPC of lignin samples was carried out with a Shimadzu Prominence Ultra Fast Liquid Chromatography system (LC-20AD pumps, SIL-20AC HT autosampler, 65 CTO-20A column oven and CBM-20A controller) and using two TSKgel Alpha-2500 (300×7.8 mm; Tosoh Bioscience)

columns at 40° C. Samples (10  $\mu$ L injection volume) containing approximately 1 mg mL<sup>-1</sup> of isolated or GPCfractionated lignin were injected into a mobile phase (100  $\mu$ M LiBr in DMF) at a flow rate of 0.3 mL min<sup>-1</sup> with a run length of 90 min. An SPD-M20A photodiode array detector ( $\lambda$ =200 nm) was used for the determination of elution times that were subsequently converted to MW values using regression analysis of ReadyCal-Kit Polystyrene standards. C<sub>18</sub>-Chromatography.

 $C_{18}$ -Chromatographic separations were carried out using a Beckman 125NM solvent delivery module equipped with a Beckman 168 UV detector. 150 µL samples from enzyme assays were collected and 20 µL aliquots were injected into either a 4×120 mm Restek Ultra Aqueous C18-reversed stationary phase column, or a 4.6×250 mm Phenomenex Luna 5u  $C_{18}(2)$ -reversed stationary phase column with a 1.0 mL min<sup>-1</sup> mobile phase composed of a mixture of an aqueous buffer (5 mM formic acid in 95/5 H<sub>2</sub>O/acetonitrile) and methanol. Samples from enzyme assays using GTE as the substrate were analyzed on the Phenomenex column to improve separation of GTE and tricin. All other C18-chromatographic separations were carried out using the Restek column. For the Restek column, the methanol fraction of the buffer (with water as the remainder) was adjusted as follows: 0-6 min, 30% methanol; 6-15 min, gradient from 30 to 80% methanol; 15-27 min, 80% methanol; 27-28 min, gradient from 80 to 30% methanol; 28-33 min, 30% methanol. For the Phenomenex column, the gradient system was as follows: 0-6 min, 10% methanol; 6-50 min, gradient from 10 to 90% methanol; 50-63 min, 90% methanol; 63-64 min, gradient from 90 to 10% methanol; 64-70 min, 10% methanol.

#### Results

Design of a Coupled In Vitro Assay for Cleavage of  $\beta$ -Ether-Linked Diaromatic Compounds.

As an initial substrate for this assay we used erythro-GGE, which is a mixture of enantiomers ( $\alpha R,\beta S$ )-GGE and  $(\alpha S,\beta R)$ -GGE that has been used extensively as a substrate with  $\beta$ -etherase pathway enzymes vitro (Gall and Ralph et al. 2014, Masai et al. 2003, Sato et al. 2009, Tanamura et al. 2010, Gall and Kim et al. 2014). We used recombinant preparations of LigD and LigN as these dehydrogenases are reported to be sufficient for the NAD+-dependent oxidation of R- and S-configured a-anomers of erythro-GGE in vitro (Sato et al. 2009). The assay also contained recombinant preparations of LigE and LigF that have been shown to separately catalyze the GSH-dependent conversion of a racemic mixture of GGE to guaiacol and the S- and R-epimers of GSH-HPV (Gall and Kim et al. 2014). NaG- $ST_{Nu}$  was present to catalyze the GSH-dependent cleavage of the GSH-HPV epimers to HPV and GSSG. The properties of individual enzymes (FIG. 16 (B)) predicts that this coupled system will require equimolar concentrations of GGE and NAD<sup>+</sup> and twice as much GSH for complete conversion of GGE to HPV and guaiacol.

In an attempt to reduce the amount of added NAD<sup>+</sup> and GSH that would be needed for full conversion of diaromatic substrate to products, some reactions included recombinant AvGR, which catalyzes the NADH-dependent reduction of GSSG (Reiter et al. 2013), thereby recycling the cosubstrates NAD<sup>+</sup> and GSH for continued conversion of the  $\beta$ -ether substrates. This cosubstrate recycling system was tested with 6 mM erythro-GGE and limiting concentrations of NAD<sup>+</sup> (2 mM) and GSH (4 mM) (FIG. **17**A (panel A)). Using a mixture of LigD, LigN, LigE, LigF, and NaGST<sub>Nu</sub> (without AvGR), we observed that erythro-GGE was partially converted to HPV and guaiacol (FIG. 17A (panel B)). Quantification of this assay revealed that the erythro-GGE concentration decreased from 6.0 mM to 3.8 mM at the end of the assay, whereas the HPV and guaiacol concentrations 5 were each 2.0 mM, the NAD+ levels were non-detectable, and the threo-GGE [a mixture of enantiomers ( $\alpha R,\beta R$ )-GGE and  $(\alpha S,\beta S)$ -GGE] concentration increased to 0.1 mM presumably due to the reported reversibility of the LigD/LigN reactions (Pereira et al. 2016). Thus, the final GGE concen- 10 tration (3.9 mM, the sum of erythro-GGE and threo-GGE concentrations) was consistent with consumption of 2.0 mM NAD<sup>+</sup>. In addition, the production of 2.0 mM (each) of HPV and guaiacol was consistent with the consumption of 4.0 mM GSH, where 2.0 mM GSH was consumed in the 15 LigE/LigF reactions and an additional 2.0 mM GSH was consumed in the NaGST<sub>Nu</sub> reaction.

To test the impact of AvGR on this assay, we added it to a parallel in vitro reaction. In the presence of AvGR (FIG. 17A (panel C)), we found that GGE was completely con- 20 sumed along with the appearance of equimolar amounts of HPV and guaiacol (6.0 mM each) without a detectable change in the NAD<sup>+</sup> concentration or accumulation of any  $\beta$ -etherase pathway intermediates by the time of the assay's conclusion. To determine if any  $\beta$ -etherase pathway inter- 25 mM GSH with the combination of LigD, LigN, LigE, LigF mediates accumulated over the course of the assay, we tested for time-dependent changes in the concentrations of the substrate, known pathway intermediates and products in a parallel reaction (FIG. 18). We found that as erythro-GGE degradation occurs there is a time-dependent accumulation 30 and depletion of GGE-ketone and threo-GGE and, eventually, complete equimolar conversion of the substrate to HPV and guaiacol (FIG. 17A (panels A-C)). From these results, we conclude that the combination of LigD, LigN, LigE, LigF, NaGST<sub>Nu</sub>, and AvGR is sufficient to process all of the 35</sub> chiral centers in a  $\beta$ -ether substrate such as erythro-GGE. In addition, we conclude that the presence of AvGR is sufficient to recycle the cosubstrates NAD+ and GSH that are needed for cleavage of β-ether bonds in a model diaromatic compound such as erythro-GGE.

From information available in the literature, it has remained unclear whether the GSH lyase from Sphingobium strain SYK-6, LigG, exhibits a preference for  $\beta(R)$ -GS-HPV (Masai et al. 2003, Gall and Kim et al. 2014), or is capable of cleaving the thioether linkages in both  $\beta(R)$ -GS-HPV and 45  $\beta$ (S)-GS-HPV (Rosini et al. 2016). As the presence of NaGST<sub>Nu</sub> resulted in cleavage of both  $\beta(R)$ -GS-HPV and  $\beta$ (S)-GS-HPV in this coupled reaction system (FIG. 17A (panels A-C)), we sought to use this in vitro assay to test the activity of LigG under identical conditions. When we per- 50 formed an assay using 6.0 mM erythro-GGE, 2.0 mM NAD<sup>+</sup>, and 4.0 mM GSH, as well as the mixture of LigD, LigN, LigE, LigF, and LigG (without AvGR), we observed partial conversion of GGE to HPV and guaiacol (FIG. 17B (panel D)). At the end of this assay, the total GGE concen- 55 tration (4.0 mM, the sum of erythro-GGE and threo-GGE concentrations) was expected based on the consumption of 2.0 mM NAD<sup>+</sup>. Further, the production of 2.0 mM (each) of HPV and guaiacol was consistent with the consumption of 4.0 mM GSH (2.0 mM GSH consumed by each of the 60 LigE/LigF and LigG reaction steps). When we added AvGR to a parallel reaction that contained GGE (6.0 mM), NAD<sup>+</sup> (2 mM), GSH (4 mM) and a combination of LigD, LigN, LigE, LigF, and LigG, we did not observe complete conversion of GGE to HPV and guaiacol (FIG. 17B (panel E)). 65 Instead, we detected the diaromatic substrate (erythro-GGE), threo-GGE, GS-HPV, and GGE-ketone (0.7 mM). In

contrast to what is found when  $NaGST_{Nu}$  was present under identical reaction conditions, the presence of LigG led to incomplete utilization of the diaromatic substrate and the accumulation of  $\beta$ -etherase pathway intermediates. From these results we conclude that LigG is not able to completely cleave both  $\beta$ -epimers of GS-HPV in vitro. Consequently, all subsequent assays were performed using  $NaGST_{N\mu}$  as a source of GSH lyase activity.

Production of Tricin from GTE In Vitro.

In grasses, the flavone tricin (T, FIG. 16 (A)) is covalently linked to one end of lignin, via a  $\beta$ -ether bond (Lan et al. 2016, Lan et al. 2015, Lan et al. 2014). Although  $\beta$ -etherase pathway enzymes have been shown to cleave  $\beta$ -ether-linked diaromatic model compounds containing G and S monomers, to date there is no published data on their ability to remove the diaromatic flavonoid T units from any substrate. Thus, we sought to test the ability of the coupled assay to cleave GTE (FIG. 16 (C)), a model compound containing a β-ether linked tricin moiety. HPLC analysis of the synthetic GTE (FIG. 19A (A)) indicated that it contained a 6:1 ratio of erythro-GTE [( $\alpha R,\beta S$ )-GTE and ( $\alpha S,\beta R$ )-GTE] to three-GTE [( $\alpha R,\beta R$ )-GTE and ( $\alpha S,\beta S$ )-GTE], which was consistent with the NMR analysis of this material (Lan et al. 2016).

When we incubated 1.0 mM GTE, 5.0 mM NAD<sup>+</sup>, 5.0 and NaGST<sub> $N\mu$ </sub> (FIG. **19**B (B)) we observed the complete conversion of GTE to tricin and HPV. This result predicts that LigD and LigN oxidize GTE to form GTE-ketone, LigE and LigF catalyze  $\beta$ -ether cleavage in GTE-ketone to form GS-HPV and tricin, and NaGST<sub>Nu</sub> releases HPV from GS-HPV (FIG. 16 (C)), suggesting that the larger  $\beta$ -ether-linked flavone model was able to access the active sites in LigD, LigN, LigE, and LigF. To further test this hypothesis, we assayed for the presence of the expected  $\beta$ -etherase pathway intermediates, GS-HPV and GTE-ketone, from GTE. By performing a parallel reaction containing the same substrates and only LigD, LigN, LigE, and LigF (FIG. 19B (C)), we observed that GTE was degraded and tricin was produced. However, in this assay, there was no detectable production 40 of HPV and we observed accumulation of GS-HPV. These findings indicate that the absence of NaGST<sub>Nu</sub> prevented the conversion of GS-HPV to HPV (FIG. 16 (C)). Finally, in an assay containing only the enzymes LigD and LigN (FIG. 19B (D)), we found that GTE was almost completely converted to GTE-ketone, as expected from the NAD+dependent  $\alpha$ -oxidation activity of GTE. Together, the data show for the first time that T units can be derived from β-ether-linked model compounds in vitro using enzymes, cosubstrates and intermediates that are known to be part of the  $\beta$ -etherase pathway (FIG. 16).

Release of G, S, and T Units from Lignin Oligomers.

With the coupled enzymatic system in place, we tested it for activity with lignin oligomers. First, we tested if a mixture of LigD, LigN, LigE, LigF, NaGST<sub>Nu</sub>, and AvGR produced S units from a high-syringyl hybrid poplar (HP) lignin polymer (Stewart et al. 2009, Shuai et al. 2016). To ensure that the test was performed with lignin oligomers rather than low-MW material, we fractionated the HP lignin by GPC and pooled the high-MW fractions (FIG. 20, Table 9) for use as a substrate (FIG. 21 (A-B)). From 2.2 mg mL<sup>-</sup> lignin oligomers having MW between 9,000 and 12,000 (with 2 mM NAD<sup>+</sup> and 4 mM GSH), we detected the production of 1.0 mM HPS, the HPV analog expected to be produced by cleavage of  $\beta$ -ether bonds from a syringyl unit at one end of the lignin chain. We also detected the formation of an unknown product in this reaction (FIG. 21 (B)), which could be either a chemically modified S unit released

from the HP lignin or a GS-linked intermediate product. Furthermore, syringaresinol, a dimeric unit in the HP lignin polymer (Stewart et al. 2009), was not detected as a product of the enzymatic reaction.

#### TABLE 9

Estimated size of the HP lignin fractions after preparative GPC (size distributions are shown in FIG. 9-2). Size was determined from analytical GPC and is reported in Da and the corresponding polymer length is reported in number of units, based on the MW of syringaresinol (418.44) and β-ether-linked syringyl units (228.24).

|                                    | Average<br>MW | Average<br>Length (Units) |      |
|------------------------------------|---------------|---------------------------|------|
| Original sample, pre-fractionation | 8,665         | 38.3                      | - 15 |
| Fraction 1*                        | 11,550        | 51.0                      |      |
| Fraction 2*                        | 10,780        | 47.6                      |      |
| Fraction 3*                        | 9,340         | 41.3                      |      |
| Fraction 4                         | 7,240         | 32.0                      |      |
| Fraction 5                         | 5,200         | 23.0                      |      |
| Fraction 6                         | 3,720         | 16.5                      | 20   |
| Fraction 7                         | 2,660         | 11.8                      | 20   |
| Fraction 8                         | 1,910         | 8.5                       |      |
| Fraction 9                         | 1,280         | 5.8                       |      |

Asterisks highlight fractions that were pooled and used as the substrate in enzyme assays.

Given the ability of the enzymatic assay to release HPS from HP lignin, we also tested for the release of aromatic monomers from a more complex lignin, such as the one derived from maize corn stover (MCS) (Lan et al. 2016, Lan et al. 2015). To generate substrates for these assays, we used  $_{30}$ preparative GPC to size-fractionate MCS lignin (FIG. 22, Table 10) and tested materials with different apparent MW values as the source of lignin oligomer substrates for enzyme assays (FIGS. 23A and 23B). To test for activity with these samples, we incubated LigD, LigN, LigE, LigF, 35 NaGST<sub>Nu</sub> and AvGR with MCS lignin oligomers (2.2 mg mL<sup>-1</sup>), 2.0 mM NAD<sup>+</sup> and 4.0 mM GSH (FIG. 23A (panel A)). In these experiments, we detected release of HPV and HPS in assays using lignin oligomers with average MW ranging from 460 to 10,710 (FIG. 22). The highest concen- 40 trations of HPV (0.4 mM) and HPS (0.1 mM) were observed with lignin oligomers having an average MW of 1,390 (FIG. 23B (panel D)) as the substrate. In general, larger lignin oligomers resulted in lower accumulation of HPV and HPS. In addition, similar to the observations with HP lignin, 45 unknown products were detected in most of the enzymatic reactions with the different lignin fractions (FIGS. 23A and 23B). Tricin was only observed as a reaction product when using the lowest MW fraction tested (MW=460, FIG. 23B (panel F)). In sum, we conclude from these experiments that  $_{50}$ a combination of LigD, LigN, LigE, LigF, NaGST<sub>Nu</sub>, and AvGR can release some, but not all, G, S and T units from MCS lignin oligomers.

TABLE 10

| Estimate size of the MCS lignin fractions after preparative GPC (size distributions are shown in FIG. 5). Size was determined |    |
|-------------------------------------------------------------------------------------------------------------------------------|----|
| from analytical GPC and is reported in Da and the                                                                             |    |
| corresponding polymer length is reported in number of units, based                                                            |    |
| on the crude assumption that the average unit has a MW of 210.                                                                | 60 |

|                                    | Average<br>MW | Average<br>Length (Units) |   |
|------------------------------------|---------------|---------------------------|---|
| Original sample, pre-fractionation | 5,980         | 28.5                      | - |
| Fraction 1*                        | 10,710        | 51.0                      |   |
| Fraction 2                         | 9,860         | 46.9                      |   |
| Fraction 3                         | 8,320         | 39.6                      |   |

TABLE 10-continued

| (size distributions are shown in FIG. 5). Size was determined      |          |                 |
|--------------------------------------------------------------------|----------|-----------------|
| from analytical GPC and is report                                  | ed in Da | and the         |
| corresponding polymer length is reported in number of units, based |          | of units, based |
| on the crude assumption that the average                           | unit has | a MW of 210.    |
|                                                                    |          |                 |
| Ave                                                                | erage    | Average         |
| M                                                                  | 1W       | Length (Units)  |

|    |              | 141 44 | Length (Chits) |
|----|--------------|--------|----------------|
| 10 | Fraction 4   | 6,690  | 31.9           |
|    | Fraction 5*  | 5,370  | 25.6           |
|    | Fraction 6   | 3,930  | 18.7           |
|    | Fraction 7   | 2,110  | 10.1           |
|    | Fraction 8*  | 1,390  | 6.6            |
|    | Fraction 11  | 880    | 4.2            |
| 15 | Fraction 14* | 660    | 3.1            |
| 15 | Fraction 17* | 460    | 2.2            |
|    |              |        |                |

Asterisks highlight fractions that were used as the substrate in enzyme assays

## Discussion

In order to use a polymer like lignin as a source of valuable aromatics and other chemicals it is necessary to develop new or improve on existing depolymerization strategies. There has been considerable interest in exploring the use of the bacterial  $\beta$ -etherase pathway for the biological production of aromatics from this renewable plant polymer. There is now a large amount of information on the types of model diaromatic substrates recognized by individual  $\beta$ -etherase enzymes in vitro, the products of their activity, and their structural or functional relationships to other known enzymes (Pereira et al. 2016, Helmich et al. 2016). Despite this, information is lacking on their activity with lignin oligomers. In addition, as these are cytoplasmic enzymes, it is plausible that they evolved to break down  $\beta$ -ether links only in the smaller lignin oligomers that could be transported inside the cells. In this work, we sought to develop a coupled in vitro system containing a set of  $\beta$ -etherase pathway enzymes that was capable of releasing monoaromatic compounds when incubated with different substrates. We reasoned that such a system would provide additional information on the  $\beta$ -etherase enzymes and aid in studies aimed at determining the requirements for release of valuable aromatics from bona fide lignin oligomers.

In this study, we identified a minimum set of enzymes (LigD, LigN, LigE, LigF, NaGST<sub>Nu</sub>, and AvGR) that is capable of cleaving  $\beta$ -ether linkages and completely converting model diaromatic compounds to aromatic monomers. We further showed that this coupled in vitro assay system is capable of stoichiometric production of monoaromatic products from model diaromatics in the presence of limiting amounts of the cosubstrates NAD<sup>+</sup> and GSH. The ability to recycle NAD<sup>+</sup> and GSH reduces the need for expensive cofactors and increases the future utility of a 55 coupled enzyme system for processing lignin oligomers in vitro. Finally, we showed that this coupled enzyme system has activity with fractionated lignin oligomers. Below we summarize the new information gained from using this assay with widely used or new model  $\beta$ -ether linked substrates as well as lignin oligomers of different sizes.

Insights Gained from Using the Coupled Assay with Diaromatic Compounds.

Using GGE as a substrate, we demonstrated that the GSH reductase AvGR is capable of recycling the cosubstrates 55 NAD<sup>+</sup> and GSH, enabling the β-etherase enzymes to completely cleave GGE in the presence of sub-stoichiometric amounts of these cofactors (FIG. 17A (panels A-C)). The *A*. vinosum DSM180 AvGR is well-suited for this purpose, as most glutathione reductases described in the literature use NADPH instead of NADH as an electron donor (Reiter et al. 2014). When AvGR was not present in an assay in which GGE concentrations were greater than those of NAD<sup>+</sup> and GSH, there was incomplete hydrolysis of this diaromatic substrate, accumulation of  $\beta$ -etherase pathway intermediates, and depletion of NAD<sup>+</sup>, as expected if the reaction was cofactor limited.

We were also able to detect the release of tricin when GTE was used as a substrate in this assay, showing for the first time that  $\beta$ -etherase pathway enzymes are capable of  $\beta$ -ether bond cleavage in a substrate bearing a large flavonoid moiety. This further shows that the  $\beta$ -etherase pathway enzymes are not limited to substrates containing only G and S monoaromatic units. In prior research, we had demonstrated the ability of LigE and LigF to cleave G-G, G-S, S-G, and S-S dimer models (Gall and Ralph et al. 2014, Gall and Kim et al. 2014), so this result extends the knowledge of the 20 diversity of substrates for these enzymes to the G-T dimers. Thus, although the  $\beta$ -etherase pathway enzymes are thought to be highly stereospecific, they are also capable of recognizing the many different configurations of  $\beta$ -ether linked aromatics potentially present in lignin. With the results of 25 these and previous findings combined (Gall and Ralph et al. 2014, Gall and Kim et al. 2014), we conclude that the minimal set of enzymes used in this study is sufficient to enable the  $\beta$ -etherase pathway in vitro to release of G, S, and T units from compounds modeling  $\beta$ -ether units in lignin.

This coupled assay also allowed us to directly compare the ability of LigG and NaGST<sub>Nu</sub> to function in the  $\beta$ -etherase pathway. We found that the presence of  $NaGST_{Nu}$ , AvGR, along with LigD, LigN, LigE, and LigF, was sufficient to allow complete conversion of GGE to HPV and 35 guaiacol (FIG. 17A (panels A-C)). This is consistent with our prediction that NaGST<sub>Nu</sub> can accommodate both GS-HPV epimers in its active site (Kontur et al. 2018) and the ability of this enzyme to produce stoichiometric amounts of HPV from GGE when added to this coupled assay. In 40 contrast when LigG replaced NaGST<sub>Nu</sub> under otherwise</sub> identical assay conditions, there was incomplete hydrolysis of GGE to HPV and guaiacol, with significant accumulation of GGE-ketone and lower amounts of GS-HPV (FIGS. 17A and 17B (panels A,D-E)). Thus, although it has been sug- 45 gested that LigG can hydrolyze both  $\beta$ -epimers of GS-HPV (Rosini et al. 2016), this result, along with those published previously (Gall and Kim et al. 2014), support the hypothesis that LigG has a strong preference for  $\beta(R)$ -GS-HPV. This direct comparison of substrate conversion to products 50 in assays that differ only in the addition of LigG or NaGST $_{Nu}$ allows us to conclude that use of the latter enzyme has advantages owing to its greater ability to release HPV from both GS-HPV epimers under comparable conditions in vitro. Release of Aromatic Monomers from Lignin Oligomers In 55 Vitro.

The features of this coupled  $\beta$ -etherase assay allowed us to begin testing the ability to remove monomer aromatics from bona fide lignin. Lignin is a heterogeneous, high molecular weight polymer, with only limited solubility 60 under the aqueous buffer conditions used for this assay. Consequently, to increase our chances of observing aromatic products under the conditions used for the coupled assay, we used several different lignin oligomers. We also fractionated these materials to test for release of aromatics from different 65 sized lignin oligomers. This has provided several important new insights into the activity of  $\beta$ -etherase enzymes with

lignin oligomers and identified opportunities for increasing our understanding of this pathway.

We tested the ability of this enzyme mixture to cleave lignin oligomers that were derived from an engineered poplar line that contains a high content of S units (Stewart et al. 2009). HPS was detected as a product when high molecular weight fractions of the HP lignin were used as the substrate. This provides direct proof that the enzyme mixture will cleave aromatic oligomers containing S units and that this set of  $\beta$ -etherase pathway enzymes are active with lignin oligomers. Given that the vast majority of the aromatic units in HP lignin are S units (Stewart et al. 2009), we estimate that the oligomers used in the enzymatic assay had between 40 and 50 aromatic units (Table 9). With the concentration of lignin oligomer used in this assay (~2.2 mg mL<sup>-1</sup>), complete substrate degradation would yield ~8 mM HPS. The measured HPS concentration in this assay was 1.0 mM, resulting in a 12.5% yield of HPS from HP lignin. Thus, it appears that the mixture of enzymes used in this study, although sufficient for complete cleavage of model diaromatic compounds, and of some  $\beta$ -ether links in HP lignin, is not capable of complete cleavage of all the  $\beta$ -ether linkages in the HP lignin oligomers. It is possible that a heretofore undescribed protein is required to further process these lignin oligomers, or that inhibition of enzyme activity was caused by the presence of some of the high MW oligomers. Although our findings with the model dimers, and previous research, indicate that LigD and LigN are sufficient for complete oxidation of diaromatic compounds (FIGS. 17A and 17B) (Sato et al. 2009, Hishiyama et al. 2012), it is possible that the seemingly redundant dehydrogenases LigO and LigL have a higher affinity for higher MW lignin oligomers. Similarly, LigP, a GSH-S-transferase with apparent redundant activity with LigE (Tanamura et al. 2010), may be of interest for the optimization of in vitro lignin depolymerization.

In the assays using HP lignin as a substrate, we did not detect syringaresinol as a product, even though this dimer is found in low abundance in this polymer (Stewart et al. 2009). Existing models for the composition of HP lignin predict that syringaresinol is primarily internal to the polymer (Stewart et al. 2009). Thus, it is possible that the failure to detect syringaresinol as a reaction product reflects the inability of the tested  $\beta$ -etherase enzymes to access and cleave  $\beta$ -ether bonds that are adjacent to a syringaresinol moiety or that the enzymes exhibited only limited exolytic activity, thus never reaching the syringaresinol unit.

Having established that the coupled enzymatic assay exhibited β-etherase catalytic activity with high-MW fractions of the HP lignin oligomers, we tested a more complex lignin sample from corn stover as a substrate (MCS lignin). Fractionation of this lignin was also carried out and experiments with a wider array of lignin fractions were conducted to test for the release of the major aromatic monomers present in this material (G, S and T units). The detection of HPV, HPS, and tricin from different MCS lignin fractions confirms the observations with the  $\beta$ -ether linked models that the enzyme set used was active in the release of G, S, and T units from lignin. However, tricin was only observed with the lignin fraction having an average MW of 460 (FIG. 22). Using a crude assumption that the average aromatic unit in lignin has a MW of 210 and the known MW of tricin (330), this fraction represents mostly lignin dimers or a T unit with at most one or two other S or G unit. Thus, the ability of the enzymes to cleave the  $\beta$ -ether linkage next to a flavonoid moiety appears restricted to lower MW oligomers. In contrast, HPS and HPV were released from MCS

lignin in assays using all of the fractions tested (FIGS. 23A and 23B), which we estimate to encompass a range of oligomers from dimers to 50-unit oligomers (Table 10). The highest measured concentration of HPS and HPV corresponded to the lignin fraction with average MW of 1,390, or 5 ~7 aromatic units (Table 10). Using the same assumption of 210 as the average MW of an aromatic unit in lignin, and the mass of lignin used in the assay  $(2.2 \text{ mg mL}^{-1})$ , we estimate a yield of HPS plus HPV of ~5%, which is lower than the estimated HPS yield from HP lignin. This lower release of substrates from MCS than HP lignin likely reflects the more heterogeneous and complex structure of the MCS lignin sample and potential inability of the  $\beta$ -etherase pathway enzymes to access and cleave all  $\beta$ -ether bonds in the polymer.

Taken together, the findings presented here reveal new and exciting features of the  $\beta$ -etherase pathway enzymes. We identified tricin as a valuable flavonoid that can be enzymatically cleaved from  $\beta$ -ether linked models and from low-MW lignin fractions. We also demonstrated β-etherase 20 activity with intact lignin oligomers of varying sizes, some of which might even be too large to be transported into cells. These findings therefore provide the first demonstration that in vitro depolymerization of lignin is possible with  $\beta$ -etherase enzymes, an important step towards the development of 25 biotechnological applications designed to derive high-value monomeric compounds from bona fide lignin polymers. The activity of this set of enzymes on oligomeric substrates provides an opportunity to develop and optimize conditions for aromatic release from lignin fractions derived from 30 biomass deconstruction chemistries that are or will be used by industry.

#### Abbreviations

NAD<sup>+</sup>, nicotinamide adenine dinucleotide; NADH, reduced nicotinamide adenine di-nucleotide; GSH, glutathione; GSSG, glutathione disulfide; GS-HPV, β-S-glutathionyl-γ-hydroxypropiovanillone; GS-HPS, β-S -glutathionyl-γ-hydroxypropiosyringone; HPV, 40 y-hydroxypropiovanillone; HPS, y-hydroxypropiosyringone; GGE, guaiacylglycerol-β-guaiacyl ether; GGE-ketone,  $\alpha$ -oxidized GGE; GTE, guaiacylglycerol- $\beta$ -tricin ether; GTE-ketone,  $\alpha$ -oxidized GTE; NaGST<sub>Nw</sub> Novosphingobium aromaticivorans strain DSM12444 glutathione 45 lyase; AvGR, Allochromatium vinosum DSM180 glutathione reductase; GPC, gel-permeation chromatography.

#### Example 3

A Heterodimeric  $\beta$ -Etherase Capable of Sterospecifically Breaking the β-Aryl Ether Bond Commonly Found in Lignin

#### Summary

This example describes a newly identified enzyme that can cleave the major  $\beta$ -aryl ether linkage in plant lignin. Lignin is a heterogeneous polymer of aromatic units that can constitute as much as 30% of a plant's dry cell weight, making it one of the most abundant renewable materials on Earth. Currently, there are few economical uses for lignin; the polymer is typically disposed of or burned for energy. The aromatic compounds that make up lignin could potentially be used in the chemical, cosmetic, food, and pharmaceutical industries; however, due largely to its irregular, 65 covalently bonded structure, lignin has historically been difficult to depolymerize. Consequently, intensive efforts are

currently aimed at developing chemical, enzymatic, and hybrid methods for deriving simpler and lower molecular weight products from lignin.

Some sphingomonad bacteria (e.g. Novosphingobium aromaticivorans) can break the bonds between aromatic units in the lignin polymer, including the  $\beta$ -aryl ether ((3-O-4) bond, the most common linkage between aromatic units in lignin (typically >50% of the total linkages). The sphingomonad pathway for breaking the  $\beta$ -aryl ether bond involves three initial steps. First, the  $\alpha$ -hydroxyl is oxidized by one of several stereospecific NAD+-dependent dehydrogenases (LigL, LigN, LigD, LigO). Next, stereospecific  $\beta$ -etherases (LigF, LigE, LigP) replace the  $\beta$ -ether bond of the resulting  $\alpha$ -ketone with a thioether bond involving glutathione (GSH), releasing a glutathione conjugated phenylpropanoid. Finally, the glutathione moiety is removed from the GS-phenylpropanoid by either a stereospecific (i.e. LigG) or non-stereospecific (i.e.  $GST_{Nu}$ ) glutathione lyase. All of the characterized GSH-dependent  $\beta$ -etherases in this pathway function as homodimers.

The  $\beta$ -etherases that react with a particular stereoisomer of the  $\beta$ -aryl ether bond are similar in amino acid sequence to each other. These  $\beta$ -aryl etherases fall into distinct groups that cleave either the R- (LigE and LigP homodimers) or the S-stereoisomers (LigF homodimers), and the enzymes that cleave the two different stereoisomers of the  $\beta$ -aryl ether bond are phylogenetically distinct from each other. We report here a heterodimeric  $\beta$ -aryl etherase (BaeA, comprised of the Saro\_2872 and Saro\_2873 proteins) that cleaves the R-stereoisomer of the  $\beta$ -aryl ether bond (like LigE and LigP), but is composed of polypeptides that are more similar in sequence to (but still phylogenetically distinct from) the enzymes in the LigF group.

This expands the known range of enzymes capable of <sup>35</sup> breaking the  $\beta$ -aryl ether bond commonly found in lignin, some of which may have kinetic or other properties better suited to operating within an in vitro lignin depolymerization system than the previously characterized LigE and LigP enzymes.

Construction of N. aromaticivorans Mutants

Biological Reagents.

All PCR reactions were performed with Herculase II polymerase (Agilent Technologies, Santa Clara, Calif.). Primers were phosphorylated with polynucleotide kinase from Promega (Madison, Wis.). All other enzymes were from New England Biolabs (Ipswich, Mass.). All primers were from Integrated DNA Technologies (Coralville, Iowa).

For cloning using the NEBuilder HiFi Assembly system (New England Biolabs), plasmid pK18msB-MCS (Schafer et al. 1994) was amplified using primers "pK18msB AseI ampl F" and "pK18msB-MCS XbaI R" to generate the linear fragment pK18msB-MCS (see Example 1 above).

Strains.

60

The strains used in the present example are presented in 55 Table 11.

TABLE 1

| Novosphingobium aromaticivorans strains used in this example.                         |                                                                                                                                     |                                                                                |  |
|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--|
| Strain                                                                                | Genotype                                                                                                                            | Reference                                                                      |  |
| 12444Δ1879<br>12444ΔligE<br>12444Δ2872<br>12444Δ2873<br>12444Δ2873<br>12444ΔligEΔ2872 | DSM 12444 ΔSaro_1879<br>1244441879 ΔSaro_2405<br>1244441879 ΔSaro_2872<br>1244441879 ΔSaro_2873<br>1244441879 ΔSaro_2405 ΔSaro_2872 | Examples above<br>This example<br>This example<br>This example<br>This example |  |

(underlined)

| Primers used in genomic modifications and enzyme expression. |                                                                                                  |                                                                         |  |  |
|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|--|--|
| Name                                                         | Sequence                                                                                         | Notes                                                                   |  |  |
| pK18msB<br>AseI ampl F                                       | 5'-CTGTCGTGCCAGCTGC <u>ATTAAT</u> G-3' (SEQ ID<br>NO: 64)                                        | AseI site<br>(underlined) native<br>to template                         |  |  |
| pK18msB-<br>MCS XbaI R                                       | 5'-GAACA <u>tcTAGA</u> AAGCCAGTCCGCAGAA AC-<br>3' (SEQ ID NO: 65)                                | XbaI site<br>(underlined);<br>lowercase bases do<br>not match template  |  |  |
| pK18-ligE<br>OvExt F                                         | 5'- <u>GTTTCTGCGGACTGGCTTTCTAGATGTTC</u> C<br>AGTGCTCTACAACCAGTCGTACCACATG-3'<br>(SEQ ID NO: 97) | Underlined region<br>is complementary<br>to pK18msB-MCS                 |  |  |
| pK18-ligE<br>OvExt R                                         | 5'- <u>CGATTCATTAATGCAGCTGGCACGACAG</u> CG<br>AGTTGAACGAAACCTCCTCGTTCATG-3' (SEQ<br>ID NO: 98)   | Underlined region<br>is complementary<br>to pK18msB-MCS                 |  |  |
| Saro2405<br>ligE del F                                       | 5'-GCATCACCGAAGGCATGAAGAAGTAAACG-<br>3' (SEQ ID NO: 99)                                          |                                                                         |  |  |
| Saro2405<br>ligE del R                                       | 5'-GTGACTCAATTGCCGTCACCCTGAACTTG-3'<br>(SEQ ID NO: 100)                                          |                                                                         |  |  |
| Saro_2872<br>ampl AseI F2                                    | 5'-CATC <u>attaAT</u> TCGACCTGGCCATAGGACTG-3'<br>(SEQ ID NO: 101)                                | AseI site<br>(underlined);<br>lowercase bases do<br>not match template  |  |  |
| Saro_2872<br>ampl XbaI R                                     | 5'-taGt <u>tCtaGA</u> CCATCTTTTCCGCTGGAGC-3'<br>(SEQ ID NO: 102)                                 | XbaI site<br>(underlined);<br>lowercase bases do<br>not match template  |  |  |
| Saro_2872<br>del R                                           | 5'-GCTTGTCAAGGCCTGGCTTGC-3' (SEQ ID<br>NO: 103)                                                  |                                                                         |  |  |
| Saro_2872<br>del F                                           | 5'-TLATCCCTCGATCTCCGCCATGATGAG-3'<br>(SEQ ID NO: 104)                                            | lowercase base<br>does not match<br>template                            |  |  |
| Saro_2873-<br>pk18 hifi<br>ampl R                            | 5'- <u>GTTTCTGCGGACTGGCTTTCTAGATGTTC</u> CC<br>TACAAGGGAGGGCAGTGAAATGAAGC-3' (SEQ<br>ID NO: 105) | Underlined region<br>is complementary<br>to pK18msB-MCS                 |  |  |
| Saro_2873<br>hifi del F                                      | 5'- <u>CATCCCTCGAT</u> CTCGTCCATCCGCTGCCCA<br>TCC-3' (SEQ ID NO: 106)                            | Underlined region<br>is complementary<br>to Saro_2873 hifi<br>del R     |  |  |
| Saro_2873-<br>pk18 hifi<br>ampl F                            | 5'- <u>CGATTCATTAATGCAGCTGGCACGACAG</u> G<br>GACGAATGATAGACCAGCCACTTCAGG-3'<br>(SEQ ID NO: 107)  | Underlined region<br>is complementary<br>to pK18msB-MCS                 |  |  |
| Saro_2873<br>nifi del R                                      | 5'- <u>GATGGACGAG</u> ATCGAGGGATGAGCGCGCT<br>TCTTTACC-3' (SEQ ID NO: 108)                        | Underlined region<br>is complementary<br>to Saro_2873 hifi<br>del F     |  |  |
| Saro2872<br>Stag Bsal F                                      | 5'-GGCatctgc <u>gaGacc</u> TCCCCAACGGTTGATTTC<br>AG-3' (SEQ ID NO: 109)                          | BsaI site<br>(underlined);<br>lowercase bases do<br>not match template  |  |  |
| Saro2872<br>Ctag BspHI R                                     | 5'-CGAG <u>tcATGA</u> GCGCGCTTCTTTACCACG-3'<br>(SEQ ID NO: 110)                                  | BspHI site<br>(underlined);<br>lowercase bases do<br>not match template |  |  |
| pVP302K<br>Ctag Bsal F                                       | 5'-CTGC <u>GGTCTC</u> GCAGATGGTAAAATTCTG-3'<br>(SEQ ID NO: 80)                                   | BsaI site<br>(underlined)                                               |  |  |
| pVP302K                                                      | 5 ' - GGTGATGTCCCATGGTTAATTTCTCCTCTTT                                                            | Ncol site                                                               |  |  |

Ctag Ncol R AATG-3' (SEQ ID NO: 81)

Name

Ctag 2872-

pVP302K Ntag HindIII F

pVP add Stop R

# TABLE 12-continued

| Primers used in genomic modifications and enzyme expr                                   | ression.                                                                  |
|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| Sequence                                                                                | Notes                                                                     |
| 5'-CGAGttaTCCCCAACGGTTGATTTCAGG-3'<br>(SEQ ID NO: 111)                                  | lowercase bases do<br>not match template                                  |
| 5'-CATTAA <u>aAGcTT</u> AAACGAATTCGGACTCGG<br>TACGC-3' (SEQ ID NO: 83)                  | HindIII site<br>(underlined);<br>lowercase bases do<br>not match template |
| 5'-caagcgaaaatctgtattttcagagcgcgatcgcaggaATGAGC<br>GCGCTTCTTTACCACG-3' (SEQ ID NO: 112) | lowercase bases do<br>not match template                                  |
| 5'-ccaatgcatggtgatggtgatgatggtgatgtcccatGGTTAAT<br>TCTCCTCTTTAATG-3' (SEQ ID NO: 85)    | lowercase bases do<br>not match template                                  |
| 5'-caaqcqaaaatctqtattttcaqaqcqcqatcqcaqqaAGCGCG                                         | lowercase bases do                                                        |

|                                 |                                                                                               | not match tempiate                                                |
|---------------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------|
| 2872-pVP C<br>to Ntag F         | 5'-caagcgaaaatctgtattttcagagcgcgatcgcaggaATGAGC<br>GCGCTTCTTTACCACG-3' (SEQ ID NO: 112)       | lowercase bases do<br>not match template                          |
| pVP302 C to<br>Ntag R           | 5'-ccaatgcatggtgatggtgatggtgatggtgatgtcccatGGTTAAT<br>TCTCCTCTTTAATG-3' (SEQ ID NO: 85)       | Tlowercase bases do<br>not match template                         |
| Saro2872<br>gNtag R             | 5'-caagcgaaaatctgtattttcagagcgcgatcgcaggaAGCGCG<br>CTTCTTTACCACGG-3' (SEQ ID NO: 113)         | lowercase bases do<br>not match template                          |
| Saro2872<br>gNtag F             | 5'-ccaatgcatggtgatggtgatggtgatggtgatgtaTCATCCCTCG<br>ATCTCCGCCATGATG-3' (SEQ ID NO: 114)      | lowercase bases do<br>not match template                          |
| 2872-<br>3_pVP_HiFi_F           | 5'- <u>CTAACTTTGTTATTTTCGGCTTTCTG</u> TTATC<br>CCCAACGGTTGATTTCAGG-3' (SEQ ID NO: 115)        | Underlined region<br>is complementary<br>to pVP302K               |
| Saro2872-<br>3NOTAG_pVP_HiFi_R  | 5'- <u>GAATTCATTAAAGAGGAGAAATTAACC</u> AT<br>GGACGAGGTAAGCCTCTATCATTGG-3' (SEQ ID<br>NO: 116) | Underlined region<br>is complementary<br>to pVP302K               |
| pVP302K-<br>HiFi-noTag-R        | 5'-GGTTAATTTCTCCTCTTTAATGAATTCTGTG<br>TGAAATTG-3' (SEQ ID NO: 117)                            |                                                                   |
| pVP302K-<br>HiFi-ATW-F          | 5'-CAGAAAGCCGAAAATAACAAAGTTAGCCT<br>GAGCTG-3' (SEQ ID NO: 91)                                 |                                                                   |
| Saro2872-<br>3Ntag_pVP_HiFi_R   | 5'- <u>GTATTTTCAGAGCGCGATCGCAGGA</u> ATGG<br>ACGAGGTAAGCCTCTATCATTGG-3' (SEQ ID<br>NO: 118)   | Underlined region<br>is complementary<br>to pVP302K               |
| pVP302K-<br>HiFi-ATW-R          | 5'-TCCTGCGATCGCGCTCTGAAAATACAGATT<br>TTCG-3' (SEQ ID NO: 90)                                  |                                                                   |
| Saro2872-<br>S14 <u>A</u> R     | 5'-CGCG <u>GCG</u> CTCACCGTTCTTGC-3' (SEQ ID<br>NO: 119)                                      | Lowercase g<br>introduces S→A<br>mutation in<br>underlined codon  |
| Saro2872-<br>S14A_F             | 5'-CCGTTGGGCTCGCCGTGGTAAAGAAG-3'<br>(SEQ ID NO: 120)                                          |                                                                   |
| Saro2873-<br>S15A_R             | 5'-GCAAGCCGATGCTCGCGTTGATG-3' (SEQ ID<br>NO: 121)                                             |                                                                   |
| Saro2873-<br>S15A_F             | 5'-C <u>AGC</u> GTTGGCATTGGGTTCCCAATGATAG<br>AG-3' (SEQ ID NO: 122)                           | Lowercase c<br>introduces S→A<br>mutation in<br>underlined codon  |
| Saro2873-<br>N14A_F             | 5'-CAGA <u>Gqc</u> GGCATTGGGTTCCCAATGATAG<br>AG-3' (SEQ ID NO: 123)                           | Lowercase gc<br>introduces N→A<br>mutation in<br>underlined codon |
| pEU-HiFi-<br>ATW-R              | 5'-GTGATGATGATGATGATGTCCCATTAAC-3'<br>(SEQ ID NO: 124)                                        |                                                                   |
| pEU-HiFi-<br>ATW-F              | 5'-TAGTTTAAACGAATTCGAGCTCGG-3' (SEQ<br>ID NO: 125)                                            |                                                                   |
| Saro2872-<br>pEU2394-<br>HiFi-F | 5'- <u>GGACATCATCATCATCATCAC</u> GCATTGGCA<br>AGCGAAAATCTGTATTTTCAG-3' (SEQ ID<br>NO: 126)    | Underlined region<br>is complementary<br>to pEU                   |
| Saro2872-<br>pEU2394-<br>HiFi-R | 5'- <u>CCGAGCTCGAATTCGTTTAAACTA</u> CGAGTT<br>ATCCCCAACGGTTGATTTCAGG-3' (SEQ ID<br>NO: 127)   | Underlined region<br>is complementary<br>to pEU                   |

| J |
|---|
|   |

| Name                     | Sequence                                                                                        | Notes                                                                 |
|--------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| pEU-2872-<br>fix-R       | 5'- <u>CATTAACTAACTAGT</u> GTAGTTGTAGAATGT<br>AAAATGTAATGTTGTTGTTGTTGTTG-3' (SEQ ID<br>NO: 128) | Underlined region<br>was missing in<br>originally created<br>pEU-2872 |
| pEU-2872-<br>fix-F       | 5'-GGACATCATCATCATCATCACGCATTGG-3'<br>(SEQ ID NO: 129)                                          |                                                                       |
| Saro_2873-<br>pEU_HiFi-F | 5'- <u>CAACTACACTAGTTAGTTAATG</u> GACGAGGT<br>AAGCCTCTATCATTGG-3' (SEQ ID NO: 130)              | Underlined region<br>is complementary<br>to pEU                       |
| Saro_2873-<br>pEU_HiFi-R | 5'- <u>CGAGCTCGAATTCGTTTAAACTAC</u> TCATCC<br>CTCGATCTCCGCCATG-3' (SEQ ID NO: 131)              | Underlined region<br>is complementary<br>to pEU                       |
| pEU2394 F                | 5'-GTAGTTTAAACGAATTCGAGCTCGGTACC-3'<br>(SEQ ID NO: 132)                                         |                                                                       |

TABLE 12-continued

Plasmid for Deleting Saro\_2405.

A 3844 bp region of the N. aromaticivorans genome 25 extending from 1501 bp upstream of Saro\_2405 to 1503 bp downstream of the gene was amplified from purified genomic DNA using primers "pK18-ligE OvExt F" and "pK18-ligE OvExt R", which contain 5' ends that are complementary to the ends of linearized pK18msB-MCS. 30 1. For the conjugation, cultures of E. coli S17-1 harboring The genomic DNA fragment was combined with linearized pK18msB-MCS using the NEBuilder HiFi Assembly system to produce plasmid pK18msB-ligE. This plasmid was amplified using kinase phosphorylated primers "Saro2405 ligE del F" and "Saro2405 ligE del R" to produce a linear fragment 35 in which the majority of Saro\_2405 (including the start codon) was missing. This linear fragment was circularized using T4 DNA Ligase to generate plasmid pK18msB- $\Delta$ ligE.

63

Plasmid for Deleting Saro\_2872.

A ~2813 bp region of the N. aromaticivorans genome 40 extending from 1073 bp upstream of Saro\_2872 to 954 bp downstream of the gene was amplified from purified genomic DNA using primers "Saro\_2872 ampl AseI F2" and "Saro\_2872 ampl XbaI R", which contain recognition sites for the restriction enzymes AseI or XbaI, respectively, 45 incorporated into their 5' ends. The resulting fragment was digested with AseI and XbaI, then ligated with pK18msB-MCS that had been digested with AseI and XbaI, using T4 DNA Ligase, to form plasmid pK18msB-Saro2872. This plasmid was amplified using kinase phosphorylated primers 50 "Saro\_2872 del R" and "Saro\_2872 del F" to produce a linear fragment in which the majority of Saro 2872 was missing. Since the start codon of Saro\_2872 overlaps with the stop codon of Saro\_2873, "Saro\_2872 del F" contains a single base mismatch with pK18msB-Saro2872, to inacti- 55 vate the Saro\_2872 start codon, while preserving the Saro\_2873 stop codon. This linear fragment was circularized using T4 DNA Ligase to generate plasmid pK18msB-ΔSaro2872.

Plasmid for Deleting Saro\_2873.

~1100 bp regions from upstream and downstream of Saro\_2873 in the N. aromaticivorans genome were separately amplified from purified genomic DNA using primer sets "Saro 2873-pk18 hifi ampl R" and "Saro 2873 hifi del F", and "Saro\_2873-pk18 hifi ampl F" and "Saro\_2873 hifi 65 del R", respectively. These two fragments were combined with linearized pK18msB-MCS using the NEBuilder HiFi

Assembly system to produce plasmid pK18msB- $\Delta$ Saro2873, in which the regions that naturally flank Saro\_2873 in the genome are adjacent to each other.

Deleting Genes from the N. aromaticivorans Genome. Deletion plasmids were separately mobilized into N. aromaticivorans via conjugation with Escherichia coli S17the plasmid and N. aromaticivorans were grown up overnight in Lysogeny Broth containing kanamycin or GluSis, respectively. Cultures were subcultured and allowed to resume exponential growth before being harvested by centrifugation. E. coli and N. aromaticivorans cell pellets were washed in lysogeny broth, then resuspended together into 90 µL lysogeny broth. Conjugations were allowed to proceed overnight at 30° C. The following day, the conjugations were outgrown in GluSis at 30° C. for >1 h, then plated onto solid GluSis with kanamycin to select for N. aromaticivorans cells in which the plasmid had incorporated into the genome via homologous recombination (single crossovers). Single crossovers were confirmed through the inability to immediately grow on GluSis containing 10% sucrose.

Single crossovers were cultured in 5 mL of GluSis containing 10% sucrose and shaken at 30° C. until growth commenced (usually after several days), which signified loss of the plasmid from the genome via a second round of homologous recombination. These cultures were streaked onto solid GluSis+10% sucrose to isolate individual strains that has lost the plasmid (double crossovers), and plasmid loss was confirmed by the inability to grow on GluSis+ kanamycin. The absences of the desired genes were confirmed via PCR performed on isolated genomic DNA and Sanger sequencing.

Bacterial Growth Media

60

E. coli cultures used for cloning were grown in lysogeny broth (LB), and shaken at ~200 rpm at 37° C. For routine storage and manipulation, N. aromaticivorans cultures were grown in LB or GluSis at 30° C. GluSis is a modification of Sistrom's minimal medium in which the succinate has been replaced by 22.6 mM glucose (see Example 1, above). N. aromaticivorans growth experiments used Standard Mineral Base (SMB) minimal medium, as described in Example 1, except at pH 7.0. Where needed to select for plasmids, media were supplemented with 100 µg/mL ampicillin, 50 µg/mL kanamycin, or 20 µg/mL chloramphenicol.

N. aromaticivorans Growth Experiments

Starter cultures of N. aromaticivorans were grown in 4 mL SMB containing 4 mM vanillate. Experimental cultures were grown in 20-30 mL of SMB containing 3 mM vanillate and 1 mM GGE, in 125 mL conical growth flasks shaken at 5 200 rpm at 30° C. Aliquots (400-600 µL) were removed at specified time points and filtered through 0.22 um svringe tip filters (e.g. Whatman Puradisc filters, GE Healthcare) before HPLC analysis of extracellular aromatics. Every culture was grown at least three times; data shown are from representative cultures.

For the 12444 $\Delta$ ligE $\Delta$ 2872 and 12444 $\Delta$ ligE $\Delta$ 2873 cultures, we filtered >2 mL for the final time points. These samples still contained MPHPV; to determine which stereoisomer(s) of MPHPV remained present, the samples were split into three 400 uL aliquots and combined with 5 mM GSH and either  $H_2O$ , recombinant LigE (90 µg/mL), or recombinant LigF1 (147 µg/mL), and incubated at 30° C. for 1 h. These samples were then analyzed via HPLC as 20 3\_pVP\_HiFi\_F" and "Saro2872-3Ntag\_pVP\_HiFi\_R" to described below.

Expression and Purification of Recombinant Proteins Plasmid for Expressing Recombinant Saro\_2872.

Saro\_2872 was amplified from N. aromaticivorans genomic DNA with the primers "Saro2872 Ctag BsaI F" and 25 Saro2872 Ctag BspHI R". This fragment was digested with restriction enzymes BspHI and BsaI. The expression vector pVP302K (Gall and Ralph et al. 2014) was amplified using the primers "pVP302K Ctag BsaI F" and "pVP302K Ctag NcoI R", and the resulting fragment was digested with BsaI 30 and NcoI. The digested fragments were ligated using T4 DNA ligase, generating plasmid pVP302K/Ctag-2872, which consists of a T5 promoter followed by the coding sequences of Saro\_2872 (absent the stop codon), the RtxA protease from Vibrio cholerae, and a His<sub>8</sub> tag.

pVP302K/Ctag-2872 was amplified using kinase phosphorylated primers "Ctag 2872-pVP add Stop R" and 'pVP302K Ntag HindIII F". This fragment was circularized using T4 DNA ligase to generate plasmid pVP302K/Untagged2872, in which a stop codon has been introduced 40 directly after Saro\_2872.

pVP302K/Untagged2872 was amplified via PCR using kinase phosphorylated primers "2872-pVPC to Ntag F" and "pVP302 C to Ntag R". The amplified fragment was circularized using T4 DNA ligase to generate plasmid pVP302K/ 45 Ntag-2872, which contains a T5 promoter followed by coding sequences for a His<sub>s</sub>-tag, a tobacco etch virus (Tev) protease recognition site and Saro\_2872.

Plasmids for Expressing Recombinant Saro\_2872 and Saro\_2873 Together (BaeA).

To Express BaeA Containing a His8-Tag on the N-Terminus of Saro 2872:

We first generated a strain of N. aromaticivorans in which a coding sequence for a His<sub>8</sub>-tag was incorporated into the genome so that cellular copies of Saro\_2872 protein would 55 contain a His<sub>8</sub>-tag on their N-terminus. pK18msB-Saro2872 was amplified via PCR using kinase phosphorylated primers "Saro2872 gNtag R" and "Saro2872 gNtag F", to generate a fragment containing Saro\_2873 (with its stop codon), followed by a coding sequence for a His8-tag, then a Tev 60 protease recognition site, then Saro\_2872 (missing its native start codon). This fragment was circularized using T4 DNA ligase to generate plasmid pK18msB-H<sub>8</sub>Saro2872. pK18msB-H<sub>8</sub>Saro2872 was mobilized into strain 1244442872 via conjugation from E. coli S17-1, and a strain 65 of N. aromaticivorans (12444-H<sub>8</sub>2872) containing the coding sequence for Saro\_2872 containing an N-terminal His8-

tag was generated and isolated using homologous recombination as described above for generating deletion mutants.

We ran PCR using genomic DNA from strain 12444-H<sub>8</sub>2872 as template with primers "2872-3\_pVP\_HiFi\_F" and "Saro2872-3NOTAG\_pVP\_HiFi\_R" to generate a fragment containing the coding sequence for Saro\_2873 (with stop codon intact), followed by the coding sequence for a His<sub>8</sub>-tag, then for Saro\_2872 (missing its start codon), with extensions on the ends of the fragment that are complementary to plasmid pVP302K. pVP302K was amplified via PCR using the primers "pVP302K-HiFi-noTag-R" and "pVP302K-HiFi-ATW-F". These two fragments were combined using the NEBuilder HiFi Assembly system to create plasmid pVP302K/2873-H2872.

To Express BaeA Containing a His8-Tag on the N-Terminus of Saro\_2873:

We ran PCR using genomic DNA from strain 12444∆1879 as template with primers "2872generate a fragment containing the native genomic organization of the Saro\_2873 and Saro\_2872 genes, with extensions on the ends of the fragment that are complementary to plasmid pVP302K. pVP302K was amplified via PCR using the primers "pVP302K-HiFi-ATW-R" and "pVP302K-HiFi-ATW-F". These two fragments were combined using the NEBuilder HiFi Assembly system to create plasmid pVP302K/H2873-2872.

To Express BaeA Mutants:

To generate mutant 2:S14A, pVP302K/2873-H2872 was amplified by kinase phosphorylated primers "Saro2872-S14A\_R" and "Saro2872-S14A\_F". To generate mutant 3:S15A, pVP302K/H2873-2872 was amplified by kinase "Saro2873-S15A R' phosphorylated primers and "Saro2873-S15A\_F". To generate mutant 3:N14A, pVP302K/2873-H2872 was amplified by kinase phosphorylated primers "Saro2873-S15A R" and "Saro2873-N14A\_F". These linear fragments were separately circularized using T4 DNA ligase to generate plasmids pVP302K/ 2873-H2872(S14A), pVP302K/H2873(S15A)-2872, and pVP302K/2873(N14A)-H2872, respectively.

To generate mutant 2:14A/3:S15A, pVP302K/2873-H2872(S14A) was amplified by kinase phosphorylated primers "Saro2873-S15A\_R" and "Saro2873-S15A\_F". The linear fragment was circularized using T4 DNA ligase to generate plasmid pVP302K/2873(S15A)-H2872(S14A).

Plasmids for Expressing Recombinant Saro\_2873.

We amplified plasmids pVP302K/2873-H2872 and pVP302K/H2873-2872 via PCR using kinase phosphory-50 lated primers "pVP302K-HiFi-ATW-F" and "Saro\_2872 del F". These linear fragments were separately circularized using T4 DNA ligase to generate plasmids pVP302K/Untagged2873 and pVP302K/Ntag-2873, respectively.

Expression and Purification of Recombinant Enzymes.

Recombinant proteins were expressed using the plasmids described above in E. coli B834 containing plasmid pRARE2 (Novagen) grown for ~25 hours at 25° C. in ZYM-5052 Autoinduction Medium containing kanamycin and chloramphenicol. Recombinant proteins were purified using a Ni<sup>2+</sup>-NTA column as described in Example 1 above, except using gravity-flow columns instead of an FPLC system. After removal of His8-tags using Tev protease, recombinant proteins retained a Ser-Ala-Ile-Ala-Gly-peptide on their N-termini, derived from the linker between the protein and the Tev protease recognition site. Recombinant LigF1 was purified as previously described (Gall and Ralph et al. 2014).

Recombinant enzyme concentrations were determined via the Bradford method (absorbance at 595 nm), using known concentrations of bovine serum albumin as standards (Thermo Scientific) and protein assay dye reagent from Biorad.

Cell-Free Synthesis of Saro\_2872 and Saro\_2873

Plasmid for Expressing Saro\_2872 in a Cell-Free System. Plasmid pEU-NGFP (Goren et al. 2009) was amplified via PCR using primers "pEU-HiFi-ATW-R" and "pEU-HiFi-ATW-F" to generate a linear fragment in which the gene for 10 Green Fluorescent Protein has been removed. pVP302K/ Ntag-2872 was amplified via PCR using primers "Saro2872pEU2394-HiFi-F" and "Saro2872-pEU2394-HiFi-R" to generate a linear fragment containing the coding sequence for the Tev protease recognition site followed by Saro 2872. 15 These linear fragments were combined using the NEBuilder HiFi Assembly system to create a plasmid that was missing a short sequence upstream of the translational start site. To add this sequence, we amplified the plasmid using kinase phosphorylated primers "pEU-2872-fix-R" and "pEU-2872- 20 fix-F". The linear fragment was circularized using T4 DNA ligase to form plasmid pEU-H2872, which contains a sequence for a His6-tag, followed by a Tev protease recognition site, then Saro\_2872.

Plasmid for Expressing Saro\_2873 in a Cell-Free System. 25 *N. aromaticivorans* genomic DNA was amplified via PCR using primers "Saro\_2873-pEU\_HiFi-F" and "Saro\_2873pEU\_HiFi-R" to generate a linear fragment containing Saro\_2873 with ends that are complementary to pEU. pEU-H2872 was amplified via PCR using primers "pEU-2872- 30 fix-R" and "pEU2394 F" to generate a linear fragment in which the sequences for the His<sub>6</sub>-tag, the Tev protease recognition site, and Saro\_2872 were removed. These linear fragments were combined using the NEBuilder HiFi Assembly system to create plasmid pEU-2873. 35

Cell-Free Protein Synthesis.

Cell-free protein synthesis was run essentially as previously described (Makino et al. 2014). The Saro\_2872 polypeptide contained a His<sub>6</sub>-tag and a Tev protease recognition site on its N-terminus that were not removed. The 40 Saro\_2873 polypeptide was synthesized in its native form. Synthesized polypeptides were not purified from the synthesis reaction mixture; assays for enzymatic activity were performed by adding aliquots directly from the synthesis reaction. Concentrations of the Saro\_2872 and Saro\_2873 45 polypeptides in the reaction mixtures were approximated using the intensities of the bands in an SDS-PAGE gel. Assays to Determine Activities and Stereospecificties of Saro\_2872 and Saro\_2873

0.1 mM racemic ( $\beta$ (S) and  $\beta$ (R)) MPHPV was combined 50 with 5.8 mM glutathione (GSH) in reaction buffer (RB; 25 mM Tris-HCl (pH 8.0) and 25 mM NaCl). Cell-free protein synthesis mixtures containing Saro\_2872 and Saro\_2873 were added individually or together to the MPHPV/GSH solutions to achieve concentrations of ~24 nM of each 55 polypeptide. These 625 µL reactions were incubated at 30° C. for 24 h to several days. Each was then split into 190 µL aliquots and combined with an additional 2.3 mM GSH and either H<sub>2</sub>O, 151 µg/mL LigE (Saro\_2405), or 184 µg/mL LigF1 (Saro\_2091). These 212 µL reactions were incubated 60 at 30° C. for several hours, then analyzed via HPLC.

Kinetics of the Enzymatic Cleavage of  $\beta(R)$ -MPHPV

Various concentrations of racemic MPHPV (equal amounts of the  $\beta$ (S)- and  $\beta$ (R)-stereoisomers) were combined with 5 mM GSH in RB. At time zero, 100  $\mu$ L of a 65 given enzyme in RB+5 mM GSH was combined with 1000  $\mu$ L of the racemic MPHPV/GSH sample at 25° C. (both

samples were equilibrated to 25° C. before mixing). Final concentrations of  $\beta$ (R)-MPHPV in each reaction were 0.0045, 0.010, 0.017, 0.068, or 0.13 mM. Final enzyme concentrations were 18 nM BaeA, 23 nM BaeA (2:S14A), 22 nM BaeA (3:S15A), 24 nM BaeA (2:S14A/3:S15A), 98 nM BaeA (3*N*14A), or 70 nM LigE (Saro\_2405) (all concentrations are for the dimeric enzyme, except for LigE, which is the concentration of the monomer). At specified time points, 200 µL of a reaction was removed and combined with 40 µL of 1 M HCl (Acros Organics) to stop the reaction before HPLC analysis to quantify GS-HPV formed. Control experiments were allowed to proceed for several hours to ensure that only the  $\beta$ (R)-MPHPV in the reaction mixtures was being reacted with in these experiments.

HPLC Analysis.

Analysis and quantification of aromatic compounds were performed using an Ultra AQ C18 5  $\mu$ m column (Restek) attached to a System Gold HPLC (Beckman Coulter) with running buffers and methods described in Example 1. The eluent was analyzed for light absorbance between 191 and 600 nm, and absorbances at 280 nm were used for quantification of aromatic metabolites by comparing peak areas to those of standards.

#### Results

An *N. aromaticivorans* Saro\_2405 (ligE) Deletion Mutant can Completely Metabolize Erythro-GGE.

LigE from *N. aromaticivorans* is capable of stereospecifically breaking the β-aryl ether bond of the β(R) stereoisomers of MPHPV and other di-aromatic compounds in vitro. To investigate the in vivo role of LigE in *N. aromaticivorans*, we constructed a strain in which the gene for LigE (Saro\_2405) was deleted from the genome (12444ΔligE),
and grew it, along with its parent strain (12444Δlig79), in a medium containing vanillate and erythro-GGE.

As expected from the examples provided above, 12444 $\Delta$ 1879 completely consumed both the vanillate and the GGE. Metabolism of GGE proceeded through several intermediates, including both  $\beta$ (R) and  $\beta$ (S) MPHPV, which transiently appeared in the medium, then were taken back up by the cells (FIG. **24**, panel A). Consistent with our examples above, only a trace amount of guaiacol appeared in the extracellular medium, and the glutathione conjugate GS-HPV was never observed in the medium.

As the gene product of Saro\_2405 is the only predicted homologue of LigE and LigP in N. aromaticivorans, and LigE and LigP are the only sphingomonad enzymes known to be capable of breaking the  $\beta(R)$  stereoisomer of the  $\beta$ -aryl ether bond, we expected that strain 12444∆ligE would be incapable of fully metabolizing erythro-GGE. However, although MPHPV consistently disappeared from the medium slower for  $12444\Delta ligE$  than for  $12444\Delta 1879$ , 12444∆ligE was capable of completely removing racemic MPHPV from the medium (FIG. 24, panel B). As MPHPV disappeared from the medium, HPV accumulated in the medium up to a concentration roughly equal to the initial erythro-GGE concentration, suggesting that essentially all of the GGE was metabolized through MPHPV and into HPV. These results suggest that 12444∆ligE contains an enzyme capable of breaking the  $\beta$ -aryl ether bond of  $\beta(R)$ -MPHPV. Saro\_2872 and Saro\_2873 are Required for Cleavage of

 $\beta(R)$ -MPHPV in *N. aromaticivorans* 12444 $\Delta$ ligE.

As LigE, LigP, and LigF are all classified as glutathione S-transferases, we expected that a glutathione S-transferase was reacting with  $\beta$ (R)-MPHPV in the 12444 $\Delta$ ligE strain. We thus investigated Saro\_2872 and Saro\_2873, which are

annotated as coding for glutathione-S-transferases and are located in a gene cluster with Saro\_2865, which codes for one of the two LigF isoforms in *N. aromaticivorans*. We separately deleted Saro\_2872 and Saro\_2873 from the genome of 12444 $\Delta$ ligE  $\Delta$ 2872 and Saro\_2873 from the genome of 12444 $\Delta$ ligE $\Delta$ 2872 and 12444 $\Delta$ ligE $\Delta$ 2873, respectively, could fully metabolize erythro-GGE (FIG. 24, panels D and E). Each strain accumulated MPHPV in its medium to a concentration roughly one-half of the medium's initial erythro-GGE concentration, suggesting that they 10 were deficient in metabolizing MPHPV.

Our method of analysis does not distinguish between the  $\beta(R)$  and  $\beta(S)$  stereoisomers of MPHPV. Therefore, to determine which stereoisomer(s) of MPHPV remained unreacted in the media of the  $12444\Delta ligE\Delta 2872$  and 15  $12444\Delta ligE\Delta 2873$  cultures, the spent media were filtered, and individual aliquots were combined with H2O, or recombinant LigF or LigE, which are known to react stereospecifically with the  $\beta(S)$  or  $\beta(R)$  isomers of MPHPV, respectively (FIG. 25, panels F-K). Addition of LigF to the spent 20 media samples resulted in the conversion of a small amount (<10%) of MPHPV into GS-HPV and guaiacol (FIG. 25, panels G,J), suggesting that some of the unconsumed MPHPV was the  $\beta(S)$  isomer. However, addition of LigE resulted in conversion of most of the MPHPV into GS-HPV 25 and guaiacol (FIG. 25, panels H,K), suggesting that a large fraction of the MPHPV was the  $\beta(R)$  isomer. These results suggest that 12444∆ligE requires both Saro\_2872 and Saro\_2873 for complete metabolism of MPHPV, particularly the  $\beta(R)$  isomer.

To determine whether both Saro\_2872 and Saro\_2873 are necessary for complete metabolism of MPHPV in an *N. aromaticivorans* strain with a functional LigE, we deleted Saro\_2872 from 12444 $\Delta$ 1879. The resulting strain (12444 $\Delta$ 2872) was capable of fully metabolizing erythro- 35 GGE (FIG. **24**, panel C), though it removed the MPHPV from the medium slower than 12444 $\Delta$ 1879 (FIG. **24**, panel A), similar to 12444 $\Delta$ ligE (FIG. **24**, panel B). Thus, it appears that either LigE or a combination of Saro\_2872 and Saro\_2873 is sufficient for completely metabolizing  $\beta$ (R)- 40 MPHPV.

The Saro\_2872 and Saro\_2873 Polypeptides Form a Heterodimer that is Stereospecific for  $\beta(R)$ -MPHPV.

As our genetic results suggested that the Saro\_2872 and Saro\_2873 gene products contribute to cleavage of  $\beta$ (R)- 45 MPHPV in *N. aromaticivorans*, we sought to express these proteins and test them for this activity in vitro.

Initial attempts to individually express and purify the Saro\_2872 and Saro\_2873 polypeptides recombinantly in *Escherichia coli* were unsuccessful. We thus separately <sup>50</sup> expressed each polypeptide using a cell-free protein synthesis system. When the polypeptides were individually combined with racemic ( $\beta(R)$  and  $\beta(S)$ ) MPHPV, a trace amount of GS-HPV appeared in the reactions (<1% of the initial MPHPV concentration), but essentially all of the MPHPV <sup>55</sup> remained unreacted (FIG. **26**, panels A-C), even after several days.

The lack of activity of the Saro\_2872 and Saro\_2873 polypeptides, and our observation that the Saro\_2872 and Saro\_2873 ORFs overlap in the *N. aromaticivorans* genome, 60 led us to hypothesize that the polypeptides may form a heterodimer. Indeed, when we combined the separately prepared Saro\_2872 and Saro\_2873 polypeptides with each other and with racemic MPHPV, half of the MPHPV was converted into GS-HPV and guaiacol (FIG. **26**, panel D). To 65 determine which stereoisomer(s) of MPHPV remained unreacted in this reaction, we split the reaction mixture and

added recombinant LigE (Saro\_2405) or LigF1 (Saro\_2091). Upon addition of LigE, no change in the amounts of MPHPV, GS-HPV, or guaiacol was observed (FIG. **26**, panel E). Upon addition of LigF1, the remaining MPHPV in the reaction mixture was converted into GS-HPV and guaiacol (FIG. **26**, panel F), suggesting that the MPHPV remaining after the reaction of racemic MPHPV with the mixture of Saro\_2872 and Saro\_2873 was the  $\beta(S)$  stereoisomer.

To generate larger amounts of the Saro\_2872-Saro\_2873 complex than was possible with the cell-free system, we attempted to express the Saro\_2872 and Saro\_2873 polypeptides together from a single expression vector in *E. coli*. Despite the fact that only one of the polypeptides contained a His<sub>8</sub>-tag on its N-terminus, two polypeptides from the *E. coli* cell lysate, corresponding to the expected sizes of Saro\_2872 and Saro\_2873, reversibly bound to a Ni<sup>2+</sup>-NTA column, consistent with Saro\_2872 and Saro\_2873 forming a heterodimer. Indeed, the purified recombinant protein ran as a single peak that corresponded to a dimer in gel permeation chromatography experiments (FIG. **27**).

In reactions similar to those performed with the cell-free generated polypeptides, we found that the recombinantly generated Saro\_2872-Saro\_2873 complex reacted specifically with  $\beta(R)$ -MPHPV, and did not react with  $\beta(S)$ -MPHPV. Because the Saro\_2872-Saro\_2873 heterodimer is a  $\beta$ -aryl etherase, we call the heterodimer BaeA. The fact that BaeA has the same stereospecificity as LigE (for  $\beta(R)$ -MPHPV) is curious, as both Saro\_2872 and Saro\_2873 cluster much closer to the previously characterized LigF enzymes than to the previously characterized LigE enzymes in a phylogenetic analysis (FIG. **28**). This finding likely has implications for the evolution of the enzymatic ability to break the two stereoisomers of the  $\beta$ -aryl ether bond of lignin.

The Saro\_2873 Subunit is Much More Catalytically Active than the Saro\_2872 Subunit in BaeA.

We sought to gain insight into the relative activities of the Saro\_2872 and Saro\_2873 subunits in BaeA by independently inactivating one or the other of the subunits. Previous work found that LigF from Sphingobium sp. SYK-6 (SLG\_08650) contains a serine residue in its active site (Ser<sup>14</sup>) that is important for reacting with  $\beta(S)$ -(1'-formyl-3'-methoxyphenoxy)-y-hydroxypropioveratrone (an analogue of MPHPV): mutation of the serine had a dramatic effect on the reaction rate, although it was unclear whether the effect was from changes in substrate binding, turnover, or both (Helmich et al. 2016). This serine residue is conserved in all the previously characterized LigF enzymes, and in both Saro\_2872 (Ser<sup>14</sup>) and Saro\_2873 (Ser<sup>15</sup>) (FIG. **29**). We mutated these serines into alanines separately (2:S14A and 3:S15A) and together (2:S14A/3:S15A) in BaeA and assayed the variant enzymes in vitro, along with wild-type BaeA. As we did not know the relative activities of the two subunits in BaeA, we initially calculated kinetic parameters for the enzymes using the concentrations of the dimers (and not the total concentrations of the individual putative active sites).

Wild-type BaeA and the three serine mutants all had the same  $k_{cat}$  value, suggesting that these serine residues are not involved in enzymatic turnover (Table 13). However, the variants in which Ser<sup>15</sup> in Saro\_2873 was mutated (3:S15A and 2:S14A/3:S15A) had  $K_M$  values that were 5 to 6-fold higher than that of the wild-type enzyme, suggesting that these variants bound the substrate weaker than the wild-type enzyme. The 2:S14A variant had the same  $K_M$  value as the

wild-type enzyme, which, along with the lack of an effect on k<sub>cav</sub>, implies that Ser<sup>14</sup> in Saro\_2872 is not involved in catalysis by BaeA.

TABLE 13

| Protein      | $(s^{-1})$    | $(\mu M)$    | $(\mathrm{mM}^{-1}\mathrm{s}^{-1})$ |
|--------------|---------------|--------------|-------------------------------------|
| aeA          | $2.9 \pm 0.3$ | $20 \pm 3$   | $150 \pm 30$                        |
| aeA (2:S14A) | $2.8 \pm 0.2$ | 22 ± 3       | $130 \pm 20$                        |
| aeA (3:S15A) | $2.4 \pm 0.3$ | $100 \pm 20$ | 23 ± 6                              |
| aeA          | $2.8 \pm 0.5$ | $120 \pm 30$ | 23 ± 8                              |

Analysis of the structure of LigF from Sphingobium sp. SYK-6 (PDB 4xt0) shows that the side-chain amide nitrogen 20 of Asn<sup>13</sup> is within hydrogen-bonding distance (3.3 Å) of the bound glutathione thiol group; an analogous asparagine is present in all of the previously characterized LigF enzymes, and in Saro\_2873 (Asn<sup>14</sup>) (FIG. 29). (Saro\_2872 has an Ala in this position (FIG. 29).) Active site asparagine residues 25 are known or predicted to be involved in catalysis in other glutathione S-transferases. We mutated Asn<sup>14</sup> in Saro\_2873 into Ala and found that the resulting BaeA variant (3:N14A) had a k<sub>cat</sub> value ~20-fold lower and a K<sub>M</sub> value ~12.5-fold 30 higher than wild-type BaeA (Table 13), suggesting that this residue is critical in both substrate binding and turnover in BaeA. We assume that mutation of this residue only affects the active site of the Saro\_2873 subunit and does not have any long range effects on the active site of Saro\_2872 or the overall folding or structure of the dimer; indeed, all mutant versions of BaeA used in this study ran as dimers in gel permeation chromatography (FIG. 27), similar to the wildtype enzyme, suggesting that the mutations did not affect the overall folding of the proteins or the binding between 40 Doherty A J, Ashford S R, Brannigan J A, Wigley D B subunits.

The fact that mutation of a single residue in the Saro\_2873 subunit had such a dramatic effect on the overall catalysis of BaeA suggests that Saro\_2873 is the catalytically dominant subunit of the dimer, and that, if the Saro\_2872 subunit has 45 any activity in BaeA, it is <~5% of the activity of the Saro 2873 subunit.

Catalytic Comparison of BaeA and LigE.

To directly compare catalysis between BaeA and LigE (Saro\_2405), we also analyzed recombinant LigE in our in 50 vitro reaction system. We found that LigE had a ~4-fold lower k<sub>cat</sub> value and a ~3-fold lower K<sub>M</sub> value than BaeA, leading to a catalytic efficiency  $(k_{cat}/K_M)$  for LigE that is slightly lower than that of BaeA (Table 13).

#### REFERENCES

- Adams, P. D., Afonine, P. V., Bunkóczi, G., Chen, V. B., Davis, I. W., Echols, N., Headd, J. J., Hung, L.-W., Kapral, G. J., Grosse-Kunstleve, R. W., et al. (2010). 60 PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213-221.
- Adler E (1977) Lignin chemistry-past, present and future. Wood Sci Technol 11(3):169-218.

65

Adler E: Structural elements of lignin. Industrial & Engineering Chemistry 1957, 49:1377-1383.

- Adler E, Eriksoo E: Guaiacylglycerol and its β-guaiacyl ether. Acta chemica Scandinavica 1955, 9:341-342.
- Afonine, P. V., Grosse-Kunstleve, R. W., Echols, N., Headd, J. J., Moriarty, N. W., Mustyakimov, M., Terwilliger, T.
- C., Urzhumtsev, A., Zwart, P. H., and Adams, P. D. (2012). Towards automated crystallographic structure refinement with phenix sefine. Acta Crystallogr. D Biol. Crystallogr. 68, 352-367.
- Akiyama T, Sugimoto T, Matsumoto Y, Meshitsuka G: Erythro/threo ratio of β-O-4 structures as an important structural characteristic of lignin. I: Improvement of ozonation method for the quantitative analysis of lignin side-chain structure. Journal of Wood Science 2002, 48:210-215.
- 15 Bubeck P, Winkler M, Bautsch W (1993) Rapid cloning by homologous recombination in vivo. Nucleic Acids Res 21(15):3601-3602.
  - Bunkóczi, G., and Read, R. J. (2011). Improvement of molecular-replacement models with Sculptor. Acta Crystallogr. D Biol. Crystallogr. 67, 303-312.
  - Bryksin AV, Matsumura I: Overlap extension PCR cloning: a simple and reliable way to create recombinant plasmids. Biotechniques 2010, 48:463-465.
  - Casanas, A., Warshamanage, R., Finke, A. D., Panepucci, E., Olieric, V., Nöll, A., Tampé, R., Brandstetter, S., Forster, A., Mueller, M., et al. (2016). EIGER detector: application in macromolecular crystallography. Acta Crystallogr D Struct Biol 72, 1036-1048.
  - Cohen-Bazire G, Sistrom W R, Stanier R Y (1957) Kinetic studies of pigment synthesis by non-sulfur purple bacteria. J Cell Comp Physiol 49(1):25-68.
  - Crawford R L, Kirk T K, Harkin J M, McCoy E (1973) Bacterial cleavage of an arylglycerol- $\beta$ -aryl ether bond. Appl Microbiol 25(2):322-324.
- 35 del Rio J C, Rencoret J, Prinsen P, Martinez A T, Ralph J, Gutierrez A: Structural characterization of wheat straw lignin as revealed by analytical pyrolysis, 2D-NMR, and reductive cleavage method. Journal of Agricultural and Food Chemistry 2012, 60:5922-5935.
  - (1995) A superior host strain for the over-expression of cloned genes using the T7 promoter based vectors. Nucleic Acids Res 23(11):2074-2075.
  - Emsley, P., and Cowtan, K. (2004). Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126-2132.
  - Fredrickson J K. Brockman F J. Workman D J. Li S W. Stevens T O (1991) Isolation and characterization of a subsurface bacterium capable of growth on toluene, naphthalene, and other aromatic compounds. Appl Environ Microbiol 57(3):796-803.
  - Fredrickson J K, et al. (1995) Aromatic-degrading Sphingomonas isolates from the deep subsurface. Appl Environ Microbiol 61(5):1917-1922.
- 55 Gall D L, Kim H, Lu F, Donohue T J, Noguera D R, Ralph J: Stereochemical features of glutathione-dependent enzymes in the Sphingobium sp. strain SYK-6  $\beta$ -aryl etherase pathway. J Biol Chem 2014, 289:8656-8667.
  - Gall D L, Ralph J, Donohue T J, Noguera D R: A group of sequence-related sphingomonad enzymes catalyzes cleavage of  $\beta$ -aryl ether linkages in lignin  $\beta$ -guaiacyl and β-syringyl ether dimers. Environmental Science & Technology 2014, 48:12454-12463.
  - Gall D L, Ralph J, Donohue T J, Noguera D R: Biochemical transformation of lignin for deriving valued commodities from lignocellulose. (In Review). Current Opinion in Biotechnology 2017.
- Gay P, Le Coq D, Steinmetz M, Berkelman T, Kado C I: Positive selection procedure for entrapment of insertion sequence elements in gram-negative bacteria. J Bacteriol 1985, 164(2):918-921.
- Goren M A, Nozawa A, Makino S, Wrobel R, Fox B G: 5 Cell-free translation of integral membrane proteins into unilamelar liposomes. Meth. Enzymol. 2009, 463:647-673.
- Grabber J H, Ralph J, Hatfield R D, Quideau S, Kuster T, Pell A N. Dehydrogenation polymer-cell wall complexes 10 as a model for lignified grass walls. J. Agric. Food Chem., 1996, 44(6):1453-1459.
- Helmich K E, Pereira J H, Gall D L, Heins R A, McAndrew R P, Bingman C, Deng K, Holland K C, Noguera D R, Simmons B A, et al.: Structural basis of stereospecificity 15 in the bacterial enzymatic cleavage of  $\beta$ -aryl ether bonds in lignin. Journal of Biological Chemistry 2016, 291: 5234-5246.
- Higuchi T: Lignin structure and morphological distribution in plant cell walls. In Lignin biodegradation: microbiol- 20 ogy, chemistry and potential applications. Edited by Kirk T K, Higuchi T, Chang H: CRC Press; 1980:1-20. vol I.
- Hishiyama S, Otsuka Y, Nakamura M, Ohara S, Kajita S, Masai E, Katayama Y: Convenient synthesis of chiral lignin model compounds via optical resolution: four ste- 25 reoisomers of guaiacylglycerol- $\beta$ -guaiacyl ether and both enantiomers of 3-hydroxy-1-(4-hydroxy-3-methoxyphenyl)-2-(2-methoxy-phenoxy)-propan-1-one (erone). Tetrahedron Letters 2012, 53:842-845.
- Horton R M: In vitro recombination and mutagenesis of 30 DNA: SOEing together tailor-made genes. Methods in molecular biology (Clifton, N.J.) 1993, 15:251-261.
- Horton R M, Cai Z, Ho S N, Pease L R: Gene splicing by overlap extension: tailor-made genes using the polymerase chain reaction. Biotechniques 2013, 54:129-133. 35
- Kabsch, W. (2010). XDS. Acta Crystallogr. D Biol. Crystallogr. 66, 125-132.
- Katoh K, Misawa K, Kuma K, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002, 9(14): 40 3059-3066.
- Kontur W S, Bingman C A, Olmsted C N, Wassarman D R, Ulbrich A, Gall D L, Smith R W, Yusko L M, Fox B G, Noguera D R, Coon J J, Donohue T J: Novosphingobium aromaticivorans uses a Nu-class glutathione S-transferase 45 Ohta Y, Nishi S, Hasegawa R, Hatada Y (2015) Combination as a glutathione lyase in breaking the  $\beta$ -aryl ether bond of lignin. J. Biol. Chem. 2018, 293: 4955-4968.
- Lan W, Lu F C, Morreel K, Rencoret J, Del Rio J C, Zakai U, Jones D, Zhu Y M, Boerjan W, Ralph J: Tricin: A novel monomer in grass lignins. Abstracts of Papers of the 50 American Chemical Society 2014, 247.
- Lan W, Lu F C, Regner M, Zhu Y M, Rencoret J, Ralph S A, Zakai U I, Morreel K, Boerjan W, Ralph J: Tricin, a flavonoid monomer in monocot lignification. Plant Physiology 2015, 167:1284-U1265.
- Lan W, Morreel K, Lu F C, Rencoret J, del Rio J C, Voorend W, Vermerris W, Boerjan W, Ralph J: Maize tricinoligolignol metabolites and their implications for monocot lignification. Plant Physiology 2016, 171:810-820.
- McGettigan PA, McWilliam H, Valentin F, Wallace I M, Wilm A, Lopez R, Thompson J D, Gibson T J, Higgins D G. (2007). Clustal W and Clustal X version 2.0. Bioinformatics, 23, 2947-2948.
- Lewis N G, Yamamoto E: Lignin-occurrence, biogenesis 65 and biodegradation. Annual Review of Plant Physiology and Plant Molecular Biology 1990, 41:455-496.

- Makino S, Beebe E T. Markley J L, Fox B G: Cell-free protein synthesis for functional and structural studies. Methods Mol. Biol. 2014, 1091:161-178.
- Masai E, Katayama Y, Nishikawa S, Yamasaki M, Morohoshi N, Haraguchi T: Detection and localization of a new enzyme catalyzing the β-aryl ether cleavage in the soil bacterium (Pseudomonas paucimobilis SYK-6). Febs Letters 1989, 249:348-352.
- Masai E, Kubota S, Katayama Y, Kawai S, Yamasaki M, Morohoshi N: Characterization of the Ca-dehydrogenase gene involved in the cleavage of  $\beta$ -aryl ether by Pseudomonas paucimobilis. Bioscience Biotechnology and Biochemistry 1993, 57:1655-1659.
- Masai E, Katayama Y, Kubota S, Kawai S, Yamasaki M, Morohoshi N: A bacterial enzyme degrading the model lignin compound  $\beta$ -etherase is a member of the glutathione-S-transferase superfamily. Febs Letters 1993, 323: 135-140.
- Masai E, Ichimura A, Sato Y, Miyauchi K, Katayama Y, Fukuda M: Roles of the enantioselective glutathione S-transferases in cleavage of  $\beta$ -aryl ether. Journal of Bacteriology 2003, 185:1768-1775.
- Masai E, Katayama Y, Fukuda M (2007) Genetic and biochemical investigations on bacterial catabolic pathways for lignin-derived aromatic compounds. Biosci Biotechnol Biochem 71(1):1-15.
- Mashiyama, S. T., Malabanan, M. M., Akiva, E., Bhosle, R., Branch, M. C., Hillerich, B., Jagessar, K., Kim, J., Patskovsky, Y., Seidel, R. D., et al. (2014). Large-scale determination of sequence, structure, and function relationships in cytosolic glutathione transferases across the biosphere. PLoS Biol. 12, e1001843.
- McCoy, A. J., Grosse-Kunstleve, R. W., Adams, P. D., Winn, M. D., Storoni, L. C., and Read, R. J. (2007). Phaser crystallographic software. J Appl Crystallogr 40, 658-674.
- Moore D D: Current protocols in molecular biology. Edited by Ausubel F M, Brent R, Kingston R E, Moore D D, Seidman J G, Smith J A, Struhl K: John Wiley & Sons; 2003
- Notomista E, et al. (2011) The marine isolate Novosphingobium sp. PP1Y shows specific adaptation to use the aromatic fraction of fuels as the sole carbon and energy source. Microb Ecol 61(3):582-594.
- of six enzymes of a marine Novosphingobium converts the stereoisomers of  $\beta$ -O-4 lignin model dimers into the respective monomers. Sci Rep 5:15105.
- Palamuru S, et al. (2015) Phylogenetic and kinetic characterization of a suite of dehydrogenases from a newly isolated bacterium, strain SG61-1L, that catalyze the turnover of guaiacylglycerol-β-guaiacyl ether stereoisomers. Appl Environ Microbiol 81(23):8164-8176.
- Pal, R., Bhasin, V. K., and Lal, R. (2006). Proposal to reclassify [Sphingomonas] xenophaga Stolz et al. 2000 and [Sphingomonas] taejonensis Lee et al. 2001 as Sphingobium xenophagum comb. nov. and Sphingopyxis taejonensis comb. nov., respectively. Int. J. Syst. Evol. Microbiol. 56, 667-670.
- Larkin M A, Blackshields G, Brown N P, Chenna R, 60 Patskovsky Y, et al. PDB ID: 4mzw Crystal structure of nu-class glutathione transferase Yghu from Streptococcus sanguinis SK36, complex with glutathione disulfide, target EFI-507286. doi:10.2210/pdb4mzw/pdb.
  - Pereira J H, Heins R A, Gall D L, McAndrew R P, Deng K, Holland K C, Donohue T J, Noguera D R, Simmons B A, Sale K L, et al.: Structural and biochemical characterization of the early and late enzymes in the lignin  $\beta$ -aryl ether

cleavage pathway from *Sphingobium* sp. SYK-6. *Journal* of *Biological Chemistry* 2016, 291:10228-10238.

- Pettersen E F, et al. (2004) UCSF Chimera—a visualization system for exploratory research and analysis. *J Comput Chem* 25(13):1605-1612.
- The PyMOL Molecular Graphics System, Version 1.8.2.1 Schrödinger, LLC Available at: https://www.pymol.org/.
- Rahimi A, Azarpira A, Kim H, Ralph J, Stahl S S: Chemoselective metal-free aerobic alcohol oxidation in lignin. *Journal of the American Chemical Society* 2013, 10 135:6415-6418.
- Rahimi A, Ulbrich A, Coon J J, Stahl S S: Formic-acidinduced depolymerization of oxidized lignin to aromatics. *Nature* 2014, 515:249-252.
- Ralph J, Peng J P, Lu F C, Hatfield R D, Helm R F: Are 15 lignins optically active? *Journal of Agricultural and Food Chemistry* 1999, 47:2991-2996.
- Reiter J, Strittmatter H, Wiemann L O, Schieder D, Sieber V: Enzymatic cleavage of lignin β-O-4 aryl ether bonds via net internal hydrogen transfer. *Green Chemistry* 2013, 20 15:1373-1381.
- Reiter J, Pick A, Wiemann L O, Schieder D, Sieber V: A novel natural NADH and NADPH dependent glutathione reductase as tool in biotechnological applications. *JSM Biotechnol Bioeng* 2014, 2:1028-1035.
- Rosini E, Allegretti C, Melis R, Cerioli L, Conti G, Pollegioni L, D'Arrigo P: Cascade enzymatic cleavage of the β-O-4 linkage in a lignin model compound. *Catalysis Science & Technology* 2016, 6:2195-2205.
- Santos R B, Hart P, Jameel H, Chang H. Wood based lignin 30 reactions important to the biorefinery and pulp and paper industries. *BioResources* 2013, 8(1):1456-1477.
- Sato Y, et al. (2009) Identification of three alcohol dehydrogenase genes involved in the stereospecific catabolism of arylglycerol-β-aryl ether by *Sphingobium* sp. strain 35 SYK-6. *Appl Environ Microbiol* 75(16):5195-5201.
- Schäfer, A., Tauch, A., Jager, W., Kalinowski, J., Thierbach, G., and Pühler, A. (1994). Small mobilizable multipurpose cloning vectors derived from the *Escherichia coli* plasmids pK18 and pK19: selection of defined deletions 40 in the chromosome of *Corynebacterium glutamicum*. *Gene* 145, 69-73.
- Shevchuk N A, Bryksin A V, Nusinovich Y A, Cabello F C, Sutherland M, Ladisch S: Construction of long DNA molecules using long PCR-based fusion of several fragments simultaneously. *Nucleic Acids Research* 2004, 32.
- Shuai L, Amiri M T, Questell-Santiago Y M, Héroguel F, Li Y, Kim H, Meilan R, Chapple C, Ralph J, Luterbacher J S: Stabilization with formaldehyde facilitates the highyield production of monomers from lignin during integrated biomass depolymerization. *Science* 2016, 354 (6310):329-333.
- Simon, R., Priefer, U., and Pühler, A. (1983). A Broad Host Range Mobilization System for In Vivo Genetic Engineering: Transposon Mutagenesis in Gram Negative Bac-55 teria. *Nat Biotech* 1, 784-791.
- Sinha A K, Sharma U K, Sharma N: A comprehensive review on vanilla flavor: Extraction, isolation and quantification of vanillin and others constituents. *International Journal of Food Sciences and Nutrition* 2008, 59:299- 60 326.
- Sistrom W R (1962) The kinetics of the synthesis of photopigments in *Rhodopseudomonas spheroides*. J Gen Microbiol 28:607-616.
- Stanier R Y, Palleroni N J, Doudoroff M (1966) The aerobic 65 pseudomonads: a taxonomic study. J Gen Microbiol 43(2):159-271.

- Stewart J J, Akiyama T, Chapple C, Ralph J, Mansfield S D: The effects on lignin structure of overexpression of ferulate 5-hydroxylase in hybrid poplar. *Plant Physiology* 2009, 150:621-635.
- Stolz A, et al. (2000) Description of *Sphingomonas xeno*phaga sp. nov. for strains  $BN6^T$  and
- *N*,*N* which degrade xenobiotic aromatic compounds. *Int J* Syst Evol Microbiol 50 Pt 1:35-41.
- Stourman N V, et al. (2011) Structure and function of YghU, a nu-class glutathione transferase related to YfcG from *Escherichia coli. Biochemistry* 50(7):1274-1281.
- Studier F W (2005) Protein production by auto-induction in high density shaking cultures. *Protein Expr Purif* 41(1): 207-234.
- Sugimoto T, Akiyama T, Matsumoto Y, Meshitsuka G: The erythro/threo ratio of β-O-4 structures as an important structural characteristic of lignin—Part 2. Changes in erythro/threo (E/T) ratio of β-O-4 structures during delignification reactions. *Holzforschung* 2002, 56:416-421.
- Tanamura K, Kasai D, Nakamura M, Katayama Y, Fukuda M, Masai E: Identification of the third glutathione S-transferase gene involved in the stereospecific cleavage of  $\beta$ -aryl ether in *Sphingobium* sp. strain SYK-6. *Journal of Biotechnology* 2010, 150:S235-S235.
- Tavano C L, Podevels A M, Donohue T J (2005) Identification of genes required for recycling reducing power during photosynthetic growth. *J Bacteriol* 187(15):5249-5258.
- Taylor, R. G., Walker, D. C., and McInnes, R. R. (1993). E. coli host strains significantly affect the quality of small scale plasmid DNA preparations used for sequencing. Nucleic Acids Res. 21, 1677-1678
- Thuillier, A., Roret, T., Favier, F., Gelhaye, E., Jacquot, J.-P., Didierjean, C., and Morel-Rouhier, M. (2013). Atypical features of a Ure2p glutathione transferase from *Phanerochaete chrysosporium. FEBS Lett.* 587, 2125-2130.
- Tsien R Y. (1998) The green fluorescent protein. *Annu Rev Biochem.* 67:509-44.
- U.S. DOE (2015) Lignocellulose Biomass for Advanced Biofuels and Bioproducts: Workshop Report, DOE/SC-0170. U.S. Department of Energy Office of Science. Available at: http://genomicscience.energy.gov/biofuels/ lignocellulose/[Accessed May 17, 2017].
- Vicuña R, González B, Mozuch M D, Kirk T K (1987) Metabolism of lignin model compounds of the arylglycerol-β-aryl ether type by *Pseudomonas acidovorans* D(3). *Appl Environ Microbiol* 53(11):2605-2609.
- Wadington M C, Ladner J E, Stourman N V, Harp J M, Armstrong R N (2009) Analysis of the structure and function of YfcG from *Escherichia coli* reveals an efficient and unique disulfide bond reductase. *Biochemistry* 48(28):6559-6561.
- Wadington M C, Ladner J E, Stourman N V, Harp J M, Armstrong R N (2010) Correction to Analysis of the structure and function of YfcG from *Escherichia coli* reveals an efficient and unique disulfide bond reductase. *Biochemistry* 49(50):10765.
- Wood W B (1966) Host specificity of DNA produced by *Escherichia coli*: bacterial mutations affecting the restriction and modification of DNA. *J Mol Biol* 16(1):118-133.

40

50

65

### EXEMPLARY VERSIONS OF THE INVENTION

Various exemplary versions of the invention are as follows.

Version 1: A method of processing lignin, comprising 5 contacting lignin comprising  $\beta$ -O-4 ether linkages in vitro with:

- a dehydrogenase comprising at least one of LigD, LigO, LigN, and LigL;
- a  $\beta$ -etherase comprising at least one of LigE, LigF, LigP, 10 and an enzyme comprising a first polypeptide having an amino acid sequence of SEQ ID NO:40 or an amino acid sequence at least about 95% identical thereto and a second polypeptide having an amino acid sequence of SEQ ID NO:42 or an amino acid sequence at least 15 about 95% identical thereto; and
- a glutathione lyase comprising any one or more of LigG and a non-stereospecific glutathione lyase comprising an amino acid sequence at least about 80%, 85%, 90%, or 95% identical to any of: 20
- SEQ ID NO:18 (NaGST<sub> $M_{\mu}$ </sub>);
- residues 21-313 of SEQ ID NO:20 (recombinant NaG- $ST_{Nt}$ );
- SEQ ID NO:22 (SYK6GST<sub>Nu</sub>);
- residues 21-324 of SEQ ID NO:24 (recombinant 25 SYK6GST<sub>Nu</sub>); SEQ ID NO:26 (ecYghU);
- residues 21-313 of SEQ ID NO:28 (recombinant ecY-ghU);
- SEQ ID NO:30 (ecYfcG);
- SEQ ID NO:32 (ssYghU);
- SEQ ID NO:34 (GST3); and

SEQ ID NO:36 (PcUre2pB1).

Version 2. The method of version 1, wherein the glutathione lyase comprises the non-stereospecific glutathione lyase. 35

Version 3. The method of version 1, wherein the glutathione lyase comprises the non-stereospecific glutathione lyase and the non-stereospecific glutathione lyase comprises an amino acid sequence at least about 80%, 85%, 90%, or 95% identical to any of:

SEQ ID NO:18 (NaGST<sub>Nu</sub>);

- residues 21-313 of SEQ ID NO:20 (recombinant NaG-ST<sub>Nu</sub>);
- SEQ ID NO:22 (SYK6GST<sub>Nu</sub>);
- residues 21-324 of SEQ ID NO:24 (recombinant 45  $SYK6GST_{Nu}$ );
- SEQ ID NO:26 (ecYghU);
- residues 21-313 of SEQ ID NO:28 (recombinant ecY-ghU);
- SEQ ID NO:30 (ecYfcG);
- SEQ ID NO:32 (ssYghU);
- SEQ ID NO:34 (GST3); and
- SEQ ID NO:36 (PcUre2pB1).
- Version 4. The method of version 1, wherein the glutathione lyase comprises the non-stereospecific glutathione 55 lyase and the non-stereospecific glutathione lyase comprises an amino acid sequence at least about 80%, 85%, 90%, or 95% identical to any of:

SEQ ID NO:18 (NaGST<sub>Nu</sub>);

- residues 21-313 of SEQ ID NO:20 (recombinant NaG- 60  $ST_{Nu}$ );
- SEQ ID NO:22 (SYK6GST<sub> $N_{\mu}$ </sub>);
- residues 21-324 of SEQ ID NO:24 (recombinant SYK6GST $_{Nu}$ );
- SEQ ID NO:26 (ecYghU); and residues 21-313 of SEQ ID NO:28 (recombinant ecYghU).

78

Version 5. The method of version 1, wherein the glutathione lyase comprises the non-stereospecific glutathione lyase and the non-stereospecific glutathione lyase comprises an amino acid sequence at least about 90% or 95% identical to any of:

SEQ ID NO:18 (NaGST<sub> $N\mu$ </sub>);

- residues 21-313 of SEQ ID NO:20 (recombinant NaG-ST<sub>Nu</sub>);
- SEQ ID NO:22 (SYK6GST<sub>Nu</sub>);</sub>
- residues 21-324 of SEQ ID NO:24 (recombinant SYK6GST<sub>Nu</sub>);
- SEQ ID NO:26 (ecYghU); and
- residues 21-313 of SEQ ID NO:28 (recombinant ecYghU).

Version 6. The method of any one of versions 1-5, wherein the non-stereospecific glutathione lyase comprises at least one, at least two, at least three, at least four, at least five, at least six, at least seven, or all of:

- threonine or a conservative variant of threonine at a position corresponding to position 51 of SEQ ID NO:18 (NaGST<sub>Nu</sub>);
- asparagine or a conservative variant of asparagine at a position corresponding to position 53 of SEQ ID NO:18 (NaGST<sub>Nu</sub>);
- glutamine or a conservative variant of glutamine at a position corresponding to position 86 of SEQ ID NO:18 (NaGST<sub> $N_{kl}$ </sub>);
- lysine, a conservative variant of lysine, arginine, or a conservative variant of arginine at a position corresponding to position 99 of SEQ ID NO:18 (NaGST<sub>Nu</sub>);
- isoleucine or a conservative variant of isoleucine at a position corresponding to position 100 of SEQ ID NO:18 (NaGST<sub>Nu</sub>);
- glutamate or a conservative variant of glutamate at a position corresponding to position 116 of SEQ ID NO:18 (NaGST<sub>Nu</sub>);</sub>
- serine, threonine, a conservative variant of serine, or a conservative variant of threonine at a position corresponding to position 117 of SEQ ID NO:18 (NaG- $ST_{Nu}$ );
- arginine or a conservative variant of arginine at a position corresponding to position 177 of SEQ ID NO:18 (NaG-ST<sub>Nu</sub>).
- Version 7. The method of any one of versions 1-5, wherein the non-stereospecific glutathione lyase comprises at least one, at least two, at least three, at least four, at least five, at least six, at least seven, at least eight, at least nine, at least ten, or all of:
- asparagine or a conservative variant of asparagine at a position corresponding to position 25 of SEQ ID NO:18 (NaGST<sub>Nu</sub>);
- threonine or a conservative variant of threonine at a position corresponding to position 51 of SEQ ID NO:18 (NaGST<sub> $N_{H}$ </sub>);
- asparagine or a conservative variant of asparagine at a position corresponding to position 53 of SEQ ID NO:18 (NaGST<sub>Nu</sub>);
- glutamine or a conservative variant of glutamine at a position corresponding to position 86 of SEQ ID NO:18 (NaGST<sub>Nu</sub>);
- lysine, a conservative variant of lysine, arginine, or a conservative variant of arginine at a position corresponding to position 99 of SEQ ID NO:18 (NaGST<sub>Nu</sub>);
- isoleucine or a conservative variant of isoleucine at a position corresponding to position 100 of SEQ ID NO:18 (NaGST<sub>Nu</sub>);

50

60

- glutamate or a conservative variant of glutamate at a position corresponding to position 116 of SEQ ID NO:18 (NaGST<sub>Nu</sub>);
- serine, threonine, a conservative variant of serine, or a conservative variant of threonine at a position corre- 5 sponding to position 117 of SEQ ID NO:18 (NaG-ST<sub>Nu</sub>);
- tyrosine or a conservative variant of tyrosine at a position corresponding to position 166 of SEQ ID NO:18 (NaG- $ST_{Nu}$ ;
- arginine or a conservative variant of arginine at a position corresponding to position 177 of SEQ ID NO:18 (NaG- $ST_{N_{u}}$ ; and
- tyrosine or a conservative variant of tyrosine at a position corresponding to position 224 of SEQ ID NO:18 (NaG-15  $ST_{Nu}$ ).

Version 8. The method of any one of versions 1-8, wherein the contacting occurs in the presence of a glutathione (GSH) reductase that catalyzes reduction of glutathione disulfide (GSSG).

Version 9. The method of version 8, wherein the GSH reductase comprises an amino acid sequence at least about 95% identical to SEQ ID NO:38 (AvGR).

Version 10. The method of any one of versions 1-9, wherein the contacting releases at least one of a monomeric 25 phenylpropanoid unit and a monomeric flavone.

Version 11. The method of any one of versions 1-10, wherein the contacting releases at least one of a monomeric guaiacyl phenylpropanoid unit, a monomeric syringyl phenylpropanoid unit, a monomeric p-hydroxyphenyl phenyl- 30 propanoid unit, and a monomeric tricin unit.

Version 12. The method of any one of versions 1-11, wherein the lignin comprises an average molecular weight (MW) of from about 600 to about 20,000.

Version 13. A composition, comprising:

lignin comprising  $\beta$ -O-4 ether linkages;

- a dehydrogenase comprising at least one of LigD, LigO, LigN, and LigL;
- a  $\beta$ -etherase comprising at least one of LigE, LigF, LigP, and an enzyme comprising a first polypeptide having an 40 amino acid sequence of SEQ ID NO:40 or an amino acid sequence at least about 95% identical thereto and a second polypeptide having an amino acid sequence of SEQ ID NO:42 or an amino acid sequence at least about 95% identical thereto; and 45
- a glutathione lyase comprising any one or more of LigG and a non-stereospecific glutathione lyase comprising an amino acid sequence at least about 80%, 85%, 90%, or 95% identical to any of:

- residues 21-313 of SEQ ID NO:20 (recombinant NaG- $ST_{Nu}$ ;
- SEQ ID NO:22 (SYK6GST<sub>Nu</sub>);
- residues 21-324 of SEQ ID NO:24 (recombinant SYK6GST<sub>Nu</sub>); 55

SEQ ID NO:26 (ecYghU);

residues 21-313 of SEQ ID NO:28 (recombinant ecYghU);

SEQ ID NO:30 (ecYfcG);

SEQ ID NO:32 (ssYghU);

SEQ ID NO:34 (GST3); and

SEQ ID NO:36 (PcUre2pB1).

Version 14. The composition of version 13, wherein the glutathione lyase comprises the non-stereospecific glutathione lvase. 65

Version 15. The composition of version 13, wherein the glutathione lyase comprises the non-stereospecific gluta80

thione lyase and the non-stereospecific glutathione lyase comprises an amino acid sequence at least about 80%, 85%, 90%, or 95% identical to any of:

SEQ ID NO:18 (NaGST<sub>Nu</sub>);

residues 21-313 of SEQ ID NO:20 (recombinant NaG- $ST_{Nu}$ ;

SEQ ID NO:22 (SYK6GST<sub>Nu</sub>);

residues 21-324 of SEQ ID NO:24 (recombinant SYK6GST<sub>Nu</sub>);

SEQ ID NO:26 (ecYghU);

residues 21-313 of SEQ ID NO:28 (recombinant ecYghU);

SEQ ID NO:30 (ecYfcG);

SEQ ID NO:32 (ssYghU);

SEQ ID NO:34 (GST3); and

SEQ ID NO:36 (PcUre2pB1).

Version 16. The composition of version 13, wherein the glutathione lyase comprises the non-stereospecific gluta-20 thione lyase and the non-stereospecific glutathione lyase comprises an amino acid sequence at least about 80%, 85%,

90%, or 95% identical to any of:

- SEQ ID NO:18 (NaGST<sub>Nu</sub>);
- residues 21-313 of SEQ ID NO:20 (recombinant NaG- $ST_{Nu});$
- SEQ ID NO:22 (SYK6GST<sub>Nu</sub>);
- residues 21-324 of SEQ ID NO:24 (recombinant SYK6GST<sub>Nu</sub>);

SEQ ID NO:26 (ecYghU); and

residues 21-313 of SEQ ID NO:28 (recombinant ecYghU).

Version 17. The composition of version 13, wherein the glutathione lyase comprises the non-stereospecific glutathione lyase and the non-stereospecific glutathione lyase 35 comprises an amino acid sequence at least about 90% or

95% identical to any of: SEQ ID NO:18 (NaGST<sub>Nu</sub>);

residues 21-313 of SEQ ID NO:20 (recombinant NaG- $ST_{Nu}$ ):

SEQ ID NO:22 (SYK6GST<sub>Nu</sub>);</sub>

residues 21-324 of SEQ ID NO:24 (recombinant SYK6GST<sub>Nu</sub>);

SEQ ID NO:26 (ecYghU); and

residues 21-313 of SEQ ID NO:28 (recombinant ecYghU).

Version 18. The composition of any one of versions 13-17, wherein the non-stereospecific glutathione lyase comprises at least one, at least two, at least three, at least four, at least five, at least six, at least seven, or all of:

- threonine or a conservative variant of threonine at a position corresponding to position 51 of SEQ ID NO:18 (NaGST<sub>Nu</sub>);
- asparagine or a conservative variant of asparagine at a position corresponding to position 53 of SEQ ID NO:18 (NaGST<sub>Nu</sub>);
- glutamine or a conservative variant of glutamine at a position corresponding to position 86 of SEQ ID NO:18 (NaGST<sub> $N\mu$ </sub>);
- lysine, a conservative variant of lysine, arginine, or a conservative variant of arginine at a position corresponding to position 99 of SEQ ID NO:18 (NaGST<sub>Nu</sub>);
- isoleucine or a conservative variant of isoleucine at a position corresponding to position 100 of SEQ ID NO:18 (NaGST<sub> $N\mu$ </sub>);
- glutamate or a conservative variant of glutamate at a position corresponding to position 116 of SEQ ID NO:18 (NaGST<sub>Nu</sub>);

SEQ ID NO:18 (NaGST<sub>Nu</sub>);

- serine, threonine, a conservative variant of serine, or a conservative variant of threonine at a position corresponding to position 117 of SEQ ID NO:18 (NaG- $ST_{Nu}$ ;
- arginine or a conservative variant of arginine at a position 5 corresponding to position 177 of SEQ ID NO:18 (NaG- $ST_{Nu}$ ).
- Version 19. The composition of any one of versions 13-17, wherein the non-stereospecific glutathione lyase comprises at least one, at least two, at least three, at least 10 four, at least five, at least six, at least seven, at least eight, at least nine, at least ten, or all of:
  - asparagine or a conservative variant of asparagine at a position corresponding to position 25 of SEQ ID NO:18 (NaGST<sub>Nu</sub>); 15
  - threonine or a conservative variant of threonine at a position corresponding to position 51 of SEQ ID NO:18 (NaGST<sub>Nu</sub>);
  - asparagine or a conservative variant of asparagine at a position corresponding to position 53 of SEQ ID 20 NO:18 (NaGST<sub>Nu</sub>);
  - glutamine or a conservative variant of glutamine at a position corresponding to position 86 of SEQ ID NO:18 (NaGST<sub>Nu</sub>);
  - lysine, a conservative variant of lysine, arginine, or a 25 conservative variant of arginine at a position corresponding to position 99 of SEQ ID NO:18 (NaGST<sub>Nu</sub>);</sub>
  - isoleucine or a conservative variant of isoleucine at a position corresponding to position 100 of SEQ ID NO:18 (NaGST<sub>Nu</sub>);
  - glutamate or a conservative variant of glutamate at a position corresponding to position 116 of SEQ ID NO:18 (NaGST<sub>Nu</sub>);
  - serine, threonine, a conservative variant of serine, or a conservative variant of threonine at a position corre- 35 sponding to position 117 of SEQ ID NO:18 (NaG- $ST_{Nu}$ ;
  - tyrosine or a conservative variant of tyrosine at a position corresponding to position 166 of SEQ ID NO:18 (NaG-40  $ST_{Nu}$ ;
  - arginine or a conservative variant of arginine at a position corresponding to position 177 of SEQ ID NO:18 (NaG- $ST_{Nu}$ ; and
  - tyrosine or a conservative variant of tyrosine at a position corresponding to position 224 of SEQ ID NO:18 (NaG- 45 wherein R<sup>1</sup>, R<sup>2</sup>, R<sup>3</sup>, and R<sup>4</sup> are as defined above.  $ST_{Nu}$ ).
- Version 20. The composition of any one of versions 13-19, further comprising a glutathione (GSH) reductase that catalyzes reduction of glutathione disulfide (GSSG).
- Version 21. The composition of version 20, wherein the 50 GSH reductase comprises an amino acid sequence at least about 95% identical to SEQ ID NO:38 (AvGR).
- Version 22. A method of chemical conversion, comprising contacting a first compound in vitro with a non-stereospecific glutathione lyase to yield a second compound, wherein: 55
- the non-stereospecific glutathione lyase comprises an amino acid sequence at least about 80%, 85%, 90%, or 95% identical to any of:
  - SEQ ID NO:18 (NaGST<sub>Nu</sub>);
  - residues 21-313 of SEQ ID NO:20 (recombinant NaG- 60  $ST_{Nu});$
  - SEQ  $\overline{\text{ID}}$  NO:22 (SYK6GST<sub>Nu</sub>);
  - residues 21-324 of SEQ ID NO:24 (recombinant SYK6GST<sub>Nu</sub>);
  - SEQ ID NO:26 (ecYghU);
  - residues 21-313 of SEQ ID NO:28 (recombinant ecYghU);



SEQ ID NO:30 (ecYfcG); SEQ ID NO:32 (ssYghU); SEQ ID NO:34 (GST3); and

SEQ ID NO:36 (PcUre2pB1)

the first compound has a structure of Formula I or a salt thereof:



wherein:

30

- $R^1$ ,  $R^2$ , and  $R^3$  are each independently —H, —OH, -O-alkyl, --O-lignin, or -lignin;
- R<sup>4</sup> is —H, —OH, —SH, —COOH, —SO<sub>3</sub>H, or —Olignin; and

SG is glutathione bound in an S or R configuration; and the second compound has a structure of Formula II or a salt thereof:



Version 23. The method of version 22, wherein:

 $R^1$  in Formula I and Formula II is -H or  $-OCH_2$ ;

 $R^2$  in Formula I and Formula II is -OH;

R<sup>3</sup> in Formula I and Formula II is —H or —OCH<sub>3</sub>; and

 $R^4$  in Formula I and Formula II is —OH.

Version 24. The method of any one of versions 22-23, wherein the non-stereospecific glutathione lyase comprises an amino acid sequence at least about 80%, 85%, 90%, or 95% identical to any of:

SEQ ID NO:18 (NaGST<sub>Nu</sub>);

residues 21-313 of SEQ ID NO:20 (recombinant NaG- $ST_{Nu}$ ;

SEQ ID NO:22 (SYK6GST<sub>Nu</sub>);

residues 21-324 of SEQ ID NO:24 (recombinant SYK6GST<sub>Nu</sub>);

SEQ ID NO:26 (ecYghU); and

- residues 21-313 of SEQ ID NO:28 (recombinant ecYghU).
- Version 25. The method of any one of versions 22-23, 65 wherein the non-stereospecific glutathione lyase comprises an amino acid sequence at least about 90% or 95% identical to any of:

(I)



SEQ ID NO:18 (NaGST<sub>Nu</sub>);

- residues 21-313 of SEQ ID NO:20 (recombinant NaG- $ST_{Nu}$ );
- SEQ ID NO:22 (SYK6GST<sub>Nu</sub>);
- residues 21-324 of SEQ ID NO:24 (recombinant <sup>5</sup> SYK6GST<sub>Nu</sub>);
- SEQ ID NO:26 (ecYghU); and

residues 21-313 of SEQ ID NO:28 (recombinant ecY-ghU).

Version 26. The method of any one of versions 22-25, wherein the non-stereospecific glutathione lyase comprises at least one, at least two, at least three, at least four, at least five, at least six, at least seven, or all of:

- threonine or a conservative variant of threonine at a  $_{15}$  position corresponding to position 51 of SEQ ID NO:18 (NaGST<sub>Nu</sub>);
- asparagine or a conservative variant of asparagine at a position corresponding to position 53 of SEQ ID NO:18 (NaGST<sub>Nu</sub>);
- glutamine or a conservative variant of glutamine at a position corresponding to position 86 of SEQ ID NO:18 (NaGST<sub>Nu</sub>);
- lysine, a conservative variant of lysine, arginine, or a conservative variant of arginine at a position corre- $^{25}$  sponding to position 99 of SEQ ID NO:18 (NaGST<sub>Nu</sub>);
- isoleucine or a conservative variant of isoleucine at a position corresponding to position 100 of SEQ ID NO:18 (NaGST<sub>Nu</sub>);
- glutamate or a conservative variant of glutamate at a <sup>30</sup> position corresponding to position 116 of SEQ ID NO:18 (NaGST<sub>Nu</sub>);
- serine, threonine, a conservative variant of serine, or a conservative variant of threonine at a position corresponding to position 117 of SEQ ID NO:18 (NaG- $ST_{Nu}$ );
- arginine or a conservative variant of arginine at a position corresponding to position 177 of SEQ ID NO:18 (NaG- $ST_{Nu}$ ).

Version 27. The method of any one of versions 22-25, wherein the non-stereospecific glutathione lyase comprises at least one, at least two, at least three, at least four, at least five, at least six, at least seven, at least eight, at least nine, at least ten, or all of:

- asparagine or a conservative variant of asparagine at a position corresponding to position 25 of SEQ ID NO:18 (NaGST<sub>Nu</sub>);
- threonine or a conservative variant of threonine at a position corresponding to position 51 of SEQ ID <sup>50</sup> NO:18 (NaGST<sub>Nu</sub>);
- asparagine or a conservative variant of asparagine at a position corresponding to position 53 of SEQ ID NO:18 (NaGST<sub>Nu</sub>);
- glutamine or a conservative variant of glutamine at a position corresponding to position 86 of SEQ ID NO:18 (NaGST<sub>Nu</sub>);
- lysine, a conservative variant of lysine, arginine, or a conservative variant of arginine at a position corresponding to position 99 of SEQ ID NO:18 (NaGST<sub>Nu</sub>);
- isoleucine or a conservative variant of isoleucine at a position corresponding to position 100 of SEQ ID NO:18 (NaGST<sub>Nu</sub>);
- glutamate or a conservative variant of glutamate at a  $_{65}$  position corresponding to position 116 of SEQ ID NO:18 (NaGST<sub>Nu</sub>);

- serine, threonine, a conservative variant of serine, or a conservative variant of threonine at a position corresponding to position 117 of SEQ ID NO:18 (NaG- $ST_{Nu}$ );
- tyrosine or a conservative variant of tyrosine at a position corresponding to position 166 of SEQ ID NO:18 (NaG- $ST_{Nu}$ );
- arginine or a conservative variant of arginine at a position corresponding to position 177 of SEQ ID NO:18 (NaG- $ST_{Nu}$ ); and
- tyrosine or a conservative variant of tyrosine at a position corresponding to position 224 of SEQ ID NO:18 (NaG- $ST_{Nu}$ ).

Version 28. The method of any of versions 22-27, wherein the contacting occurs in the presence of a glutathione (GSH) reductase that catalyzes reduction of glutathione disulfide (GSSG).

Version 29. The method of version 28, wherein the GSH reductase comprises an amino acid sequence at least about 20 95% identical to SEQ ID NO:38 (AvGR).

Version 30. The method of any one of versions 22-29, further comprising contacting lignin comprising  $\beta$ -O-4 ether linkages in vitro with enzymes to generate the first compound, wherein the enzymes comprise:

- a dehydrogenase comprising at least one of LigD, LigO, LigN, and LigL; and
- a  $\beta$ -etherase comprising at least one of LigE, LigF, LigP, and an enzyme comprising a first polypeptide having an amino acid sequence of SEQ ID NO:40 or an amino acid sequence at least about 95% identical thereto and
- a second polypeptide having an amino acid sequence of SEQ ID NO:42 or an amino acid sequence at least about 95% identical thereto.

Version 31. A recombinant non-stereospecific glutathione 35 lyase comprising an amino acid sequence at least about 80%,

85%, 90%, or 95% identical to any of:

SEQ ID NO:18 (NaGST<sub>Nu</sub>);</sub>

40

residues 21-313 of SEQ ID NO:20 (recombinant NaG-ST<sub>Nu</sub>);

- SEQ ID NO:22 (SYK6GST<sub> $N\mu$ </sub>); and
- residues 21-324 of SEQ ID NO:24 (recombinant SYK6GST $_{N_{IJ}}$ ).

Version 32. The glutathione lyase of version 31, comprising an amino acid sequence at least about 80%, 85%, 90%, 45 or 95% identical to any of:

SEQ ID NO:18 (NaGST<sub>Nu</sub>);

residues 21-313 of SEQ ID NO:20 (recombinant NaG- $ST_{N\nu}$ );

SEQ ID NO:22 (SYK6GST<sub>Nu</sub>); and</sub>

residues 21-324 of SEQ ID NO:24 (recombinant SYK6GST $_{Nu}$ ).

Version 33. The glutathione lyase of version 31, comprising an amino acid sequence at least about 90% or 95% identical to any of:

SEQ ID NO:18 (NaGST<sub>Nu</sub>);

residues 21-313 of SEQ ID NO:20 (recombinant NaG-ST<sub>Nu</sub>);

SEQ ID NO:22 (SYK6GST<sub>Nu</sub>); and

residues 21-324 of SEQ ID NO:24 (recombinant SYK6GST $_{Nu}$ ).

Version 34. The glutathione lyase of any one of versions 31-33, wherein the non-stereospecific glutathione lyase comprises at least one, at least two, at least three, at least four, at least five, at least six, at least seven, or all of:

threonine or a conservative variant of threonine at a position corresponding to position 51 of SEQ ID NO:18 (NaGST<sub>Nu</sub>);

- asparagine or a conservative variant of asparagine at a position corresponding to position 53 of SEQ ID NO:18 (NaGST<sub>Nu</sub>);
- glutamine or a conservative variant of glutamine at a position corresponding to position 86 of SEQ ID 5 NO:18 (NaGST<sub>Nu</sub>);
- lysine, a conservative variant of lysine, arginine, or a conservative variant of arginine at a position corresponding to position 99 of SEQ ID NO:18 (NaGST<sub>Nu</sub>);
- isoleucine or a conservative variant of isoleucine at a 10 position corresponding to position 100 of SEQ ID NO:18 (NaGST<sub>NU</sub>);
- glutamate or a conservative variant of glutamate at a position corresponding to position 116 of SEQ ID NO:18 (NaGST<sub>Nu</sub>);
- serine, threenine, a conservative variant of serine, or a conservative variant of threenine at a position corresponding to position 117 of SEQ ID NO:18 (NaG- $ST_{Nn}$ );
- arginine or a conservative variant of arginine at a position 20 corresponding to position 177 of SEQ ID NO:18 (NaG- $ST_{Nu}$ ).

Version 35. The glutathione lyase of any one of versions 31-33, wherein the non-stereospecific glutathione lyase comprises at least one, at least two, at least three, at least 25 four, at least five, at least six, at least seven, at least eight, at least nine, at least ten, or all of:

- asparagine or a conservative variant of asparagine at a position corresponding to position 25 of SEQ ID NO:18 (NaGST<sub>Nu</sub>);
- threonine or a conservative variant of threonine at a position corresponding to position 51 of SEQ ID NO:18 (NaGST<sub>Nu</sub>);

- asparagine or a conservative variant of asparagine at a position corresponding to position 53 of SEQ ID NO:18 (NaGST<sub>Nu</sub>);
- glutamine or a conservative variant of glutamine at a position corresponding to position 86 of SEQ ID NO:18 (NaGST<sub>Nu</sub>);
- lysine, a conservative variant of lysine, arginine, or a conservative variant of arginine at a position corresponding to position 99 of SEQ ID NO:18 (NaGST<sub>Nu</sub>);
- isoleucine or a conservative variant of isoleucine at a position corresponding to position 100 of SEQ ID NO:18 (NaGST<sub> $N_{H}$ </sub>);
- glutamate or a conservative variant of glutamate at a position corresponding to position 116 of SEQ ID NO:18 (NaGST<sub>Ni</sub>,);
- serine, threonine, a conservative variant of serine, or a conservative variant of threonine at a position corresponding to position 117 of SEQ ID NO:18 (NaG- $ST_{Nu}$ );
- tyrosine or a conservative variant of tyrosine at a position corresponding to position 166 of SEQ ID NO:18 (NaG- $ST_{Nu}$ );
- arginine or a conservative variant of arginine at a position corresponding to position 177 of SEQ ID NO:18 (NaG- $ST_{N\nu}$ ); and
- tyrosine or a conservative variant of tyrosine at a position corresponding to position 224 of SEQ ID NO:18 (NaG- $ST_{Nu}$ ).

Version 36. The glutathione lyase of any one of versions 30 31-35, wherein the glutathione lyase comprises at least one non-native modification selected from the group consisting of an amino acid addition, an amino acid deletion, and an amino acid substitution.

SEQUENCE LISTING

<160> NUMBER OF SEQ ID NOS: 132 <210> SEQ ID NO 1 <211> LENGTH: 918 <212> TYPE: DNA <213> ORGANISM: Sphingobium sp. SYK-6 <400> SEQUENCE: 1 atgaaggatt tccaggatca ggtcgcgttc atcacgggcg gcgcgtcggg cgccggcttc 60 ggccaggcga aagtgttcgg tcaggcaggc gcgaagatcg tggtggcgga cgtgcgggcc 120 gaageggteg agaaggeegt egeegagetg gaagggeteg ggateacege geatggeate 180 gtgctcgata tcatggaccg cgaggcctat gcccgggcgg cggacgaagt ggaggccgtg 240 tteggeeagg egeegaeget teteteeaac acegetggeg tgaacagett egggeegate 300 gagaagacca cttatgatga tttcgactgg atcatcggcg tcaatctgaa cggcgtcatc 360 aacggcatgg tgaccttcgt gccgcgcatg atcgcgagcg ggcggccggg gcacatcgtc 420 480 acceptctcept cectcepeeee cttcategoed accepted cceepeecta ttcepeeeec aaqqcqqcca qcatcaatct qatqqaaqqc tatcqqcaqq qqctaqaqaa atacqqcatc 540 600 ggcgtctccg tctgcacgcc ggccaacatc aagtcgaaca tcgcggaagc ctcgcgcctg 660 cgtcccgcga aatacggcac cagcggctat gtggagaacg aggaatcgat tgcctcgctg cactccattc accaqcacqq qctcqaqccq qaqaaqctqq cqqaaqcqat caaqaaqqqt 720 gtcgaggaca atgctctcta catcattccc tatcccgaag tgcgcgaagg actggagaag 780 cattttcaqq ccatcatcqa ttcqqtcqcq ccqatqqaqa qcqatccqqa aqqcqcccqc 840

-continued

| cagegggteg aggeaetgat ggeetgggga egggaeegea egegggtett egeegaggge                                  | 900 |
|----------------------------------------------------------------------------------------------------|-----|
| gacaagaaag gcgcctga                                                                                | 918 |
| <210> SEQ ID NO 2<br><211> LENGTH: 305<br><212> TYPE: PRT<br><213> ORGANISM: Sphingobium sp. SYK-6 |     |
| <400> SEQUENCE: 2                                                                                  |     |
| Met Lys Asp Phe Gln Asp Gln Val Ala Phe Ile Thr Gly Gly Ala Ser<br>1 5 10 15                       |     |
| Gly Ala Gly Phe Gly Gln Ala Lys Val Phe Gly Gln Ala Gly Ala Lys<br>20 25 30                        |     |
| Ile Val Val Ala Asp Val Arg Ala Glu Ala Val Glu Lys Ala Val Ala<br>35 40 45                        |     |
| Glu Leu Glu Gly Leu Gly Ile Thr Ala His Gly Ile Val Leu Asp Ile<br>50 55 60                        |     |
| Met Asp Arg Glu Ala Tyr Ala Arg Ala Ala Asp Glu Val Glu Ala Val<br>65 70 75 80                     |     |
| Phe Gly Gln Ala Pro Thr Leu Leu Ser Asn Thr Ala Gly Val Asn Ser<br>85 90 95                        |     |
| Phe Gly Pro Ile Glu Lys Thr Thr Tyr Asp Asp Phe Asp Trp Ile Ile<br>100 105 110                     |     |
| Gly Val Asn Leu Asn Gly Val Ile Asn Gly Met Val Thr Phe Val Pro<br>115 120 125                     |     |
| Arg Met Ile Ala Ser Gly Arg Pro Gly His Ile Val Thr Val Ser Ser<br>130 135 140                     |     |
| Leu Gly Gly Phe Met Gly Ser Ala Leu Ala Gly Pro Tyr Ser Ala Ala<br>145 150 155 160                 |     |
| Lys Ala Ala Ser Ile Asn Leu Met Glu Gly Tyr Arg Gln Gly Leu Glu<br>165 170 175                     |     |
| Lys Tyr Gly Ile Gly Val Ser Val Cys Thr Pro Ala Asn Ile Lys Ser<br>180 185 190                     |     |
| Asn Ile Ala Glu Ala Ser Arg Leu Arg Pro Ala Lys Tyr Gly Thr Ser<br>195 200 205                     |     |
| Gly Tyr Val Glu Asn Glu Glu Ser Ile Ala Ser Leu His Ser Ile His<br>210 215 220                     |     |
| Gln His Gly Leu Glu Pro Glu Lys Leu Ala Glu Ala Ile Lys Lys Gly<br>225 230 235 240                 |     |
| Val Glu Asp Asn Ala Leu Tyr Ile Ile Pro Tyr Pro Glu Val Arg Glu<br>245 250 255                     |     |
| Gly Leu Glu Lys His Phe Gln Ala Ile Ile Asp Ser Val Ala Pro Met<br>260 265 270                     |     |
| Glu Ser Asp Pro Glu Gly Ala Arg Gln Arg Val Glu Ala Leu Met Ala<br>275 280 285                     |     |
| Trp Gly Arg Asp Arg Thr Arg Val Phe Ala Glu Gly Asp Lys Lys Gly<br>290 295 300                     |     |
| Ala<br>305                                                                                         |     |
| <210> SEQ ID NO 3                                                                                  |     |

<lo> SEQ 1D NO 3
<211> LENGTH: 894
<212> TYPE: DNA
<213> ORGANISM: Sphingobium sp. SYK-6

89

<400> SEQUENCE: 3

### -continued

| gtgca                     | agga                         | tc t                         | ggaa                         | aggga           | aa aq      | gtcgo      | cgtto      | gto        | cacco      | gggg       | gggg       | gatco      | aaa a      | ggtgg      | gcgctc     | 60  |
|---------------------------|------------------------------|------------------------------|------------------------------|-----------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|-----|
| ggcca                     | aggc                         | ca a                         | aggto                        | gette           | ge eé      | gagga      | aagco      | g caç      | gatga      | agg        | tggt       | gato       | cgc ·      | cgaca      | atccgg     | 120 |
| cagga                     | acca                         | tc t                         | ccgao                        | gaaq            | ge ga      | atggg      | gctat      | t tt       | cageo      | caga       | agaa       | atgto      | cgc ·      | cgtco      | cacccc     | 180 |
| gtcco                     | gcct                         | cg a                         | accto                        | gacgo           | ga to      | cgcgo      | ccgco      | c tat      | gagg       | Jccd       | ccgt       | cgao       | cga g      | ggccó      | gagcag     | 240 |
| gtgtt                     | tcgg                         | ac c                         | ccgto                        | cgaco           | et go      | ctgtg      | gcaad      | c aco      | geeg       | 9999       | tcaç       | gccaç      | gtt ·      | cggco      | cccatc     | 300 |
| gagaa                     | aagc                         | ga d                         | gttt                         | gaco            | ga ct      | ggga       | actgo      | g caç      | gatgo      | jacg       | tcaa       | acgto      | gaa '      | tggcç      | gtcatc     | 360 |
| aacgo                     | gcgt                         | ga t                         | gact                         | gtca            | at go      | ccgcq      | gcate      | g ato      | cgago      | ggg        | ggca       | agggo      | cdd .      | tcaca      | atcctc     | 420 |
| atcad                     | ccgc                         | gt d                         | gate                         | gtccç           | gc ti      | tcgt       | gggg       | g ctç      | geeea      | acga       | cggg       | gaato      | cta (      | ctgca      | acgacc     | 480 |
| aaata                     | atgc                         | cg t                         | gago                         | cggco           | et tç      | geega      | aatco      | g cto      | ccggg      | gtgg       | aaat       | gccé       | gaa .      | ataca      | aatatc     | 540 |
| ggcgt                     | tctc                         | at t                         | gctt                         | tgc             | ee eg      | ggcgé      | gcgto      | g aad      | cacca      | aca        | tcca       | accgo      | gtc (      | ggtco      | gaagcc     | 600 |
| cggco                     | cgga                         | .ga a                        | aatat                        | ggca            | aa ta      | accgo      | gctat      | t tat      | gggq       | gcg        | acga       | aggeo      | cgt (      | gttco      | gccggg     | 660 |
| ctcaa                     | agcg                         | icg t                        | gato                         | cgago           | ca co      | ggctt      | ccgad      | c ccé      | ggtco      | gatc       | tcgg       | Jacad      | cgt (      | ggtgo      | ctcgat     | 720 |
| gccgt                     | tgcg                         | ca a                         | acgat                        | cggt            | t ct       | gggt       | gtt        | g cco      | ctato      | cccg       | agtt       | cget       | tga        | 33330      | cagaaa     | 780 |
| gcgcg                     | ggga                         | tc a                         | aggaa                        | agtca           | at co      | gacgo      | ccate      | g ato      | gtcct      | atg        | cgga       | accad      | cac i      | ggact      | atgcg      | 840 |
| cgccg                     | gcat                         | ga a                         | agato                        | ccgcé           | ga go      | cagat      | gaag       | g cgé      | ggaca      | atgc       | cggg       | gtago      | cga '      | ttga       |            | 894 |
| <210><211><212><212><213> | > SE<br>> LE<br>> TY<br>> OR | Q II<br>NGTH<br>PE :<br>GANI | D NO<br>H: 29<br>PRT<br>[SM: | 4<br>97<br>Sph: | ingoł      | oium       | ap.        | SYK-       | - 6        |            |            |            |            |            |            |     |
| <400>                     | > SE                         | QUE                          | ICE :                        | 4               |            |            |            |            |            |            |            |            |            |            |            |     |
| Met (<br>1                | Gln                          | Asp                          | Leu                          | Glu<br>5        | Gly        | Lys        | Val        | Ala        | Phe<br>10  | Val        | Thr        | Gly        | Gly        | Gly<br>15  | Ser        |     |
| Gly \                     | Val                          | Ala                          | Leu<br>20                    | Gly             | Gln        | Ala        | Lys        | Val<br>25  | Leu        | Ala        | Glu        | Glu        | Ala<br>30  | Gln        | Met        |     |
| Lys /                     | Val                          | Val<br>35                    | Ile                          | Ala             | Asp        | Ile        | Arg<br>40  | Gln        | Asp        | His        | Leu        | Asp<br>45  | Glu        | Ala        | Met        |     |
| Gly 1                     | Tyr<br>50                    | Phe                          | Ser                          | Gln             | Lys        | Asn<br>55  | Val        | Ala        | Val        | His        | Pro<br>60  | Val        | Arg        | Leu        | Asp        |     |
| Leu 7<br>65               | Ihr                          | Asp                          | Arg                          | Ala             | Ala<br>70  | Tyr        | Ala        | Ala        | Ala        | Val<br>75  | Asp        | Glu        | Ala        | Glu        | Gln<br>80  |     |
| Val H                     | Phe                          | Gly                          | Pro                          | Val<br>85       | Asb        | Leu        | Leu        | Cys        | Asn<br>90  | Thr        | Ala        | Gly        | Val        | Ser<br>95  | Gln        |     |
| Phe (                     | Gly                          | Pro                          | Ile<br>100                   | Glu             | Lys        | Ala        | Thr        | Phe<br>105 | Asp        | Asp        | Trp        | Asp        | Trp<br>110 | Gln        | Met        |     |
| Yab /                     | Val                          | Asn<br>115                   | Val                          | Asn             | Gly        | Val        | Ile<br>120 | Asn        | Gly        | Val        | Met        | Thr<br>125 | Val        | Met        | Pro        |     |
| Arg N                     | Met<br>130                   | Ile                          | Glu                          | Arg             | Gly        | Gln<br>135 | Gly        | Gly        | His        | Ile        | Leu<br>140 | Ile        | Thr        | Ala        | Ser        |     |
| Met 8<br>145              | Ser                          | Ala                          | Phe                          | Val             | Ala<br>150 | Leu        | Pro        | Thr        | Thr        | Gly<br>155 | Ile        | Tyr        | Cys        | Thr        | Thr<br>160 |     |
| Lys 1                     | Fyr                          | Ala                          | Val                          | Arg<br>165      | Gly        | Leu        | Ala        | Glu        | Ser<br>170 | Leu        | Arg        | Val        | Glu        | Met<br>175 | Pro        |     |
| Lys 1                     | Fyr                          | Asn                          | Ile<br>180                   | Gly             | Val        | Ser        | Leu        | Leu<br>185 | Суз        | Pro        | Gly        | Gly        | Val<br>190 | Asn        | Thr        |     |
| Asn ]                     | Ile                          | His<br>195                   | Arg                          | Ser             | Val        | Glu        | Ala<br>200 | Arg        | Pro        | Glu        | Lys        | Tyr<br>205 | Gly        | Asn        | Thr        |     |

### -continued

| Gly Tyr Tyr Gly Arg Asp Glu Ala Val Phe Ala Gly Leu Lys Arg Val<br>210 215 220     |     |
|------------------------------------------------------------------------------------|-----|
| Ile Glu His Gly Phe Asp Pro Val Asp Leu Gly Arg Val Val Leu Asp<br>225 230 235 240 |     |
| Ala Val Arg Asn Asp Arg Phe Trp Val Leu Pro Tyr Pro Glu Phe Ala                    |     |
| 245 250 255<br>Glu Glv Gln Lvs Ala Arg Asp Gln Glu Val Ile Asp Ala Met Met Ser     |     |
| 260 265 270                                                                        |     |
| Tyr Ala Asp His Pro Asp Tyr Ala Arg Arg Met Lys Ile Arg Glu Gln<br>275 280 285     |     |
| Met Lys Arg Asp Met Pro Gly Ser Asp<br>290 295                                     |     |
|                                                                                    |     |
| <210> SEQ ID NO 5<br><211> LENGTH: 936                                             |     |
| <212> TYPE: DNA<br><213> ORGANISM: Sphingobium sp. SYK-6                           |     |
| <400> SEQUENCE: 5                                                                  |     |
| atgttggacg taageggeaa gaeegeette ateaeeggeg gtgeeagegg catgggetgg                  | 60  |
| ggcatggcca aggcctttgg cgaggcaggc atgaaggtga tcatcgccga cattcgccag                  | 120 |
| gacgccctcg atcaggccat ggagggcttt tcgaagacca atcttgccgt tcactccatc                  | 180 |
| ttoggcaaca tocatgtoot ogggtogg googggtog googggtog agacgaggg                       | 300 |
| acggccacct acaaggactg ggatttcaac atgggcgtca atgtgggggg cgtcgtcaat                  | 360 |
| ggeetegtea ceatgetgee gegeatgetg geeeatggeg aggaaggeea getegtegte                  | 420 |
| acctecteea eeggaggett eteegeggta ggeggegeeg ggetetaetg tgeegeeaaa                  | 480 |
| tattgegtgg eeggeatgtt egagagtetg gegaeggaee tgegeggeae egegetegge                  | 540 |
| geeteegtet tetteeeegg eeeggtgeag acceageteg geatetegae geaggegaee                  | 600 |
| cggcccgagc atctgcgcaa cgaggcgccg ccgcctccgc ccgccagcgt gggcgctcag                  | 660 |
| caggacaagc gccccgcgcc gggcttcgac ccgagcctgt tcatgaccag cgaggaagtg                  | 720 |
| ggccagcgcg tgctgcgcgg catccgccgg cgcgacctgt tcatcatgac ccatccggaa                  | 780 |
| cccaacdadd goalogadge gogealcaac goaltegerge gygeelliee gylegaggeg                 | 900 |
| tacgatgggc agcagccgct cgacgagccg ctctga                                            | 936 |
|                                                                                    |     |
| <210> SEQ ID NO 6<br><211> LENGTH: 311                                             |     |
| <212> TYPE: PRT<br><213> ORGANISM: Sphingobium sp. SYK-6                           |     |
| <400> SEQUENCE: 6                                                                  |     |
| Met Leu Asp Val Ser Gly Lys Thr Ala Phe Ile Thr Gly Gly Ala Ser<br>1 5 10 15       |     |
| Gly Met Gly Trp Gly Met Ala Lys Ala Phe Gly Glu Ala Gly Met Lys                    |     |
| 20 25 30                                                                           |     |
| Val Ile Ile Ala Asp Ile Arg Gln Asp Ala Leu Asp Gln Ala Met Glu<br>35 40 45        |     |
| Gly Phe Ser Lys Thr Asn Leu Ala Val His Ser Ile Leu Leu Asp Val                    |     |
|                                                                                    |     |
| nn sei arg asp giy rip ala arg ala ala asp Glu ala Glu Glu Arg                     |     |

### -continued

| 65         70         75         80                                                                |         |
|----------------------------------------------------------------------------------------------------|---------|
| Phe Gly Asn Ile His Val Leu Ala Leu Asn Ala Gly Val Gly Thr Gly<br>85 90 95                        | 7       |
| Gly Ser Met Leu Thr Ala Thr Tyr Lys Asp Trp Asp Phe Asn Met Gly<br>100 105 110                     | 7       |
| Val Asn Val Gly Gly Val Val Asn Gly Leu Val Thr Met Leu Pro Arg<br>115 120 125                     | 3       |
| Met Leu Ala His Gly Glu Glu Gly Gln Leu Val Val Thr Ser Ser Thr<br>130 135 140                     | c       |
| Gly Gly Phe Ser Ala Val Gly Gly Ala Gly Leu Tyr Cys Ala Ala Lys<br>145 150 155 160                 | 9       |
| Tyr Cys Val Ala Gly Met Phe Glu Ser Leu Ala Thr Asp Leu Arg Gly<br>165 170 175                     | /       |
| Thr Ala Leu Gly Ala Ser Val Phe Phe Pro Gly Pro Val Gln Thr Gln<br>180 185 190                     | 1       |
| Leu Gly Ile Ser Thr Gln Ala Thr Arg Pro Glu His Leu Arg Asn Glu<br>195 200 205                     | 1       |
| Ala Pro Pro Pro Pro Pro Ala Ser Val Gly Ala Gln Gln Asp Lys Arg<br>210 215 220                     | 3       |
| Pro Ala Pro Gly Phe Asp Pro Ser Leu Phe Met Thr Ser Glu Glu Val225230235240                        | L       |
| Gly Gln Arg Val Leu Arg Gly Ile Arg Arg Arg Asp Leu Phe Ile Met<br>245 250 255                     | :       |
| Thr His Pro Glu Phe Thr Lys Gly Ile Glu Ala Arg Asn Asn Ala Leu<br>260 265 270                     | 1       |
| Leu Arg Ala Ile Pro Val Glu Ala Pro Asn Glu Ala Arg Ala Asn Leu<br>275 280 285                     | 1       |
| Val Ala Gln Phe Gly Thr Leu Met Tyr Asn Pro Ile Tyr Asp Gly Gln<br>290 295 300                     | 1       |
| Gln Pro Leu Asp Glu Pro Leu<br>305 310                                                             |         |
| <210> SEQ ID NO 7<br><211> LENGTH: 870<br><212> TYPE: DNA<br><213> ORGANISM: Sphingobium sp. SYK-6 |         |
| <400> SEQUENCE: 7                                                                                  |         |
| atggacatcg cagggaccac ggcgttcatc acgggcggcg cgagcggcat cggcttcg                                    | ggc 60  |
| atcgcgcagc gcctgctggc caatggcgcg cggctggtgc ttgcagatat ccggcagg                                    | gat 120 |
| catctcgacg aagccaggca gttcttcgag gagcgccagc aggggcgcaa tgtccata                                    | acc 180 |
| ateegeetgg acgteteega tegggegeag atggeggagg eegeeaggga atgegagg                                    | gcg 240 |
| gtgatgggcg ggccggacat cctcatcaac aatgccggca tcgatccgtc aggcccct                                    | 2tc 300 |
| aaggacgcga cgtatcagga ttgggattat gggctcgcca tcaatctcat ggggccga                                    | atc 360 |
| aatggcatca tggcgttcac gcccggcatg cgggcacgcg ggcgtggcgg gcacatcg                                    | gtc 420 |
| aacacggeet egetggeggg eettaegeeg atgeegaget teatggeeat etatgega                                    | act 480 |
| gccaaggccg ccgtcatcac cttgaccgag accatccggg acagcatggc ggaggata                                    | aat 540 |
| atcggcgtca ccgtgctcat gcccggtccg atcaagagcc gcatccacga atccgggc                                    | 5ag 600 |
| aaccggcccg aacgetteeg egegggeage gggetggegg aaaccgagea geageteg                                    | gcg 660 |
| aagcgcgtgg tggcggacaa ctggatggaa cccaccgagg tggggggacat gattgtcg                                   | gac 720 |

### 95

### -continued

| gccatcgttc acaacaagct gtatgtctcg acccacggca actggcggga gacttgcgaa              | 780 |
|--------------------------------------------------------------------------------|-----|
| gcgcggttcc aggccctgct cgactccatg ccggaggcca ggccgttcga tttcggcgcg              | 840 |
| tcgctggcgg tgccgaagga agaggcctga                                               | 870 |
| <210> SEO ID NO 8                                                              |     |
| <pre>&lt;211&gt; LENGTH: 289 &lt;&gt;12&gt; TABLE DET</pre>                    |     |
| <213> ORGANISM: Sphingobium sp. SYK-6                                          |     |
| <400> SEQUENCE: 8                                                              |     |
| Met Asp Ile Ala Gly Thr Thr Ala Phe Ile Thr Gly Gly Ala Ser Gly<br>1 5 10 15   |     |
| Ile Gly Phe Gly Ile Ala Gln Arg Leu Leu Ala Asn Gly Ala Arg Leu<br>20 25 30    |     |
| Val Leu Ala Asp Ile Arg Gln Asp His Leu Asp Glu Ala Arg Gln Phe                |     |
|                                                                                |     |
| 50 55 60                                                                       |     |
| Val Ser Asp Arg Ala Gln Met Ala Glu Ala Ala Arg Glu Cys Glu Ala<br>65 70 75 80 |     |
| Val Met Gly Gly Pro Asp Ile Leu Ile Asn Asn Ala Gly Ile Asp Pro<br>85 90 95    |     |
| Ser Gly Pro Phe Lys Asp Ala Thr Tyr Gln Asp Trp Asp Tyr Gly Leu<br>100 105 110 |     |
| Ala Ile Asn Leu Met Gly Pro Ile Asn Gly Ile Met Ala Phe Thr Pro                |     |
| Clu Met Arg Ale Arg Clu Arg Clu Clu Lig Ile Vel Arg Thr Ale Cor                |     |
| 130 135 140                                                                    |     |
| Leu Ala Gly Leu Thr Pro Met Pro Ser Phe Met Ala Ile Tyr Ala Thr145150150155    |     |
| Ala Lys Ala Ala Val Ile Thr Leu Thr Glu Thr Ile Arg Asp Ser Met<br>165 170 175 |     |
| Ala Glu Asp Asn Ile Gly Val Thr Val Leu Met Pro Gly Pro Ile Lys<br>180 185 190 |     |
| Ser Arg Ile His Glu Ser Gly Gln Asn Arg Pro Glu Arg Phe Arg Ala                |     |
| 195 200 205 C                                                                  |     |
| Gly Ser Gly Leu Ala Glu Thr Glu Gln Gln Leu Ala Lys Arg Val Val<br>210 215 220 |     |
| Ala Asp Asn Trp Met Glu Pro Thr Glu Val Gly Asp Met Ile Val Asp225230235240    |     |
| Ala Ile Val His Asn Lys Leu Tyr Val Ser Thr His Gly Asn Trp Arg<br>245 250 255 |     |
| Glu Thr Cys Glu Ala Arg Phe Gln Ala Leu Leu Asp Ser Met Pro Glu<br>260 265 270 |     |
| Ala Arg Pro Phe Asp Phe Gly Ala Ser Leu Ala Val Pro Lys Glu Glu                |     |
| 275 280 285                                                                    |     |
| Ala                                                                            |     |
| <210> SEQ ID NO 9                                                              |     |

LENGTH: 846
<212> TYPE: DNA
<213> ORGANISM: Sphingobium sp. SYK-6

### <400> SEQUENCE: 9

97

| agcccctatg                                             | tctggcgcac                                  | caaatatgcg        | g ctcaagcaca       | agggcttcga         | catcgacatc 120 |
|--------------------------------------------------------|---------------------------------------------|-------------------|--------------------|--------------------|----------------|
| gtgcccggcg                                             | gcttcaccgg                                  | cattcttgag        | cggaccggcg         | gccggtccga         | gcgcgtgccg 180 |
| gtcatcgtgg                                             | acgatggcga                                  | gtgggtgctc        | gacagctggg         | tgatcgcgga         | atatctcgac 240 |
| gagaaatatc                                             | ccgatcgccc                                  | catgctgttc        | gaggggccga         | cccagaagaa         | cctcatgaag 300 |
| ttcctggaca                                             | actggctgtg                                  | gtccacggcg        | gtgggcccgt         | ggttccgctg         | ctatatcctc 360 |
| gattatcatg                                             | atctctcgct                                  | gccgcaggac        | cgcgattatg         | tgcgctggag         | ccgcgagcag 420 |
| tggttcctgg                                             | gcgggcagcg                                  | cctggaagac        | gtgcaggccg         | gccgcgagga         | tcggctgccg 480 |
| ctcgtgccgc                                             | cgacgctcga                                  | gcccttccgc        | cgcattctcg         | cggaaaccaa         | gtggcttggc 540 |
| ggcgaccagc                                             | cgaacttcgc                                  | ggactattcc        | gcgctggcgg         | tgtttctctg         | gaccgcgtcc 600 |
| gtcgcccgca                                             | cgccgccgct                                  | gaccgaggat        | gatccgctgc         | gggactggct         | ggaccgtggc 660 |
| ttcgacctgt                                             | ttgatgggct                                  | ggggcggcat        | cccggcatga         | acccgctgtt         | cgggctcaag 720 |
| ctgcgggaag                                             | gcgaccccga                                  | gcctttcgtc        | cggcagaccg         | gccccgcggg         | cgctggcggg 780 |
| caggcgctca                                             | acaagggggcc                                 | gcagaccacg        | aagatgccgc         | cgcgcgtcgc         | cgagaaagcg 840 |
| gactga                                                 |                                             |                   |                    |                    | 846            |
| <210> SEQ 3<br><211> LENG<br><212> TYPE<br><213> ORGAN | ID NO 10<br>IH: 281<br>: PRT<br>NISM: Sphin | gobium sp.        | SYK-6              |                    |                |
| <400> SEQU                                             | ENCE: 10                                    |                   |                    |                    |                |
| Met Ala Arg<br>1                                       | g Asn Asn T<br>5                            | hr Ile Thr        | Leu Tyr Asp<br>10  | Leu Gln Leu        | Glu Ser<br>15  |
| Gly Cys Th:                                            | r Ile Ser P<br>20                           | ro Tyr Val        | Trp Arg Thr<br>25  | Lys Tyr Ala<br>30  | Leu Lys        |
| His Lys Gly<br>35                                      | Y Phe Asp I                                 | le Asp Ile<br>40  | Val Pro Gly        | Gly Phe Thr<br>45  | Gly Ile        |
| Leu Glu Arg<br>50                                      | g Thr Gly G                                 | ly Arg Ser<br>55  | Glu Arg Val        | Pro Val Ile<br>60  | Val Asp        |
| Asp Gly Glv<br>65                                      | ı Trp Val L<br>7                            | eu Asp Ser<br>0   | Trp Val Ile<br>75  | Ala Glu Tyr        | Leu Asp<br>80  |
| Glu Lys Ty:                                            | r Pro Asp A<br>85                           | rg Pro Met        | Leu Phe Glu<br>90  | Gly Pro Thr        | Gln Lys<br>95  |
| Asn Leu Met                                            | Lys Phe L<br>100                            | eu Asp Asn        | Trp Leu Trp<br>105 | Ser Thr Ala<br>110 | Val Gly        |
| Pro Trp Pho                                            | e Arg Cys I                                 | yr Ile Leu<br>120 | Asp Tyr His        | Asp Leu Ser        | Leu Pro        |
| Gln Asp Arg                                            | g Aap Tyr V                                 | al Arg Trp        | Ser Arg Glu        | Gln Trp Phe        | Leu Gly        |
| Gly Gln Arg                                            | g Leu Glu A                                 | sp Val Gln        | Ala Gly Arg        | Glu Asp Arg        | Leu Pro        |
| 145<br>Leu Val Pro                                     | 1<br>o Pro Thr I                            | eu Glu Pro        | 155<br>Phe Ara Ara | Ile Leu Ala        | 160<br>Glu Thr |
|                                                        | 165                                         |                   | 170                |                    | 175            |

Lys  $\operatorname{Trp}$  Leu Gly Gly Asp Gln Pro Asn Phe Ala Asp  $\operatorname{Tyr}$  Ser Ala Leu 180 185 190 Ala Val Phe Leu Trp Thr Ala Ser Val Ala Arg Thr Pro Pro Leu Thr 195 200 205

Glu Asp Asp Pro Leu Arg Asp Trp Leu Asp Arg Gly Phe Asp Leu Phe 210 215 220

### -continued

| page diy Leu diy Ang His Pro diy Met Am Pro Len Phe Gly Leu lyo<br>225 200<br>Leu Ang Glu diy Ang Pro Glu Pro Phe Val Ang din Thr Gly Pro Ala<br>250<br>Ciy Ala Gly Ql Gin Ala Leu Am Lyo Gly Pro Oln Thr Thr Lyo Met<br>250<br>Pro Pro Ang Val Ala Glu Lyo Ala Ang<br>250<br>2210 - SRQ ID NO 11<br>2232 TTPE: NAR<br>2323 TTPE: NAR<br>2324 TTPE: NAR<br>2324 TTPE: NAR<br>2325 TTPE: NAR<br>2326 TTPE: NAR<br>2327 TTPE: NAR<br>2328 TTPE: NAR<br>2328 TTPE: NAR<br>2329 TTPE: NAR<br>2329 TTPE: NAR<br>2320 TTPE:                                                                  |                                                             |                              |                  |            |           |            |            |            |            |           |            |            |            |            |     |      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|------------------------------|------------------|------------|-----------|------------|------------|------------|------------|-----------|------------|------------|------------|------------|-----|------|
| Leu Arg Glu Gly App Pro Glu Pro Phe Yal Arg Gln Thr Gly Pro Ala<br>250<br>Gly Ala Gly Gln Ala Leu Am Ly 25 Gly Pro Gln Thr Thr Lye Met<br>260<br>Pro Pro Arg Val Ala Glu Lym Ala Am<br>260<br>C100 SEO ID NO 11<br>C111: LANOTH: 774<br>C123 THE DNA<br>C123 | Asp Gly Leu<br>225                                          | Gly                          | Arg              | His<br>230 | Pro       | Gly        | Met        | Asn        | Pro<br>235 | Leu       | Phe        | Gly        | Leu        | Lys<br>240 |     | <br> |
| LitLitLitLitLitGly Ala Giy Gly Glo Ala Lau Am Lyg Gly Pro Gln Hr Trr Lyg Met200Pro Pro Arg Val Ala Glu Lyg Ala Amp210- SED 10 No 11211- LENGTH: 774212- Try From212- Try From213- Graduation214- Try From215- Try From215- Try From216- Try From217- Try From218- Try From218- Try From219- Try From210- Try From210- Try From211- Try From212- Try From212- Try From213- Try From214- Try From215- Try From216- Try From217- Try From218- Try From219- Try From219- Try From210- Stag Tro Try From210- Stag Tro Try From2110- Stag Tro Try From2111- Try From2111- Try From2111- Try From2112- Try From2113- Try From2113- Try From2114- Try From2115- Try From <td>Leu Arg Glu</td> <td>Gly</td> <td>Asp<br/>245</td> <td>Pro</td> <td>Glu</td> <td>Pro</td> <td>Phe</td> <td>Val<br/>250</td> <td>Arg</td> <td>Gln</td> <td>Thr</td> <td>Gly</td> <td>Pro</td> <td>Ala</td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Leu Arg Glu                                                 | Gly                          | Asp<br>245       | Pro        | Glu       | Pro        | Phe        | Val<br>250 | Arg        | Gln       | Thr        | Gly        | Pro        | Ala        |     |      |
| 240       265       270         Pro Pro Arg Val Ala Glu Lye Ala App 275       280         2210- SED ID NO 11       211- LENGTH: 774         2212- TYPE: INA       2212         2212- TYPE: INA       2212         2212- TYPE: INA       2210         cttogggad adcdatog ctoggtog ggggggadact cgctoggada gttoggadg 120       100         cattoggact ggttcaagaa gatcatocg cgcggtadgt tggadgedt dtogcadgac       100         ggcaagtog tcaccgaate gacggtgge gtcccaate tggadgadgt dtogcagad       200         cattoggact ggttcaagaa gacgatace ttogaggg gccgaatet cggadgadgt dtogcagac       200         aagtaggtog taccaatas gacggtgge gtcccaate tggadgacgt dtogcagac       200         cattoggac gccaate gacggtgge gtcccaate aggadgadg dtocgaggad       200         caggcgatat cgcdgagga gacacea tagggggg ctcgggggg ctcgggggg ctcgggggg acaatea caagaatgg       200         caggcgatg adtocgge cagggtgge ccggrgggg acaatea ggaagatte cgagagatg       400         ctggacgaag aattocggg caggggg ctcgg acaggtatea ggaagatate       710         ccagacetgt gcgcctgat cagtggtge ccggcgadat aggacgatatea ggaagate       720         gagaaatcga aggcgaaga actgctcaag cggcgagaa aggacgateag gaaagteg       720         gagaaatcga aggcgaggag ctggtate tggadgad aggacgataag gaaagteg       720         gagaaataga aggcgadgag ctggtate ggcgadatea ggaaagteg       720         gagaaatcga aggcgaggagga ctgt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Glv Ala Glv                                                 | Glv                          | ⊿45<br>Gln       | Ala        | Leu       | Asn        | Lvs        | ∠∋u<br>Glv | Pro        | Gln       | Thr        | Thr        | ∠⊃5<br>Lvs | Met        |     |      |
| Pro Pro Arg Val Ala Glu Lye Ala Amp 275         210.       SEQ ID N0 11         211.       LEDGTH: 774         212.       SIGNAMS: phingoblum sp. SYK-6         4400.       SEQUENCE: 11         atgaogtiga aactetacag citoggtocg ggggggagact cgcagagcag gitoggagag       60         cittacagaga agggcotcga attegagcag gitotcggg attegagcag gitoggaggag       120         cattoggact ggitogaaga gatcaatceg eggggtagg tgcoggeget tggggggg 210       200         aggegagteg tacacagaat gacgagage tgcoggege egggggggggggggggggg       200         coggacatt cgctgegece ggcoggace tteggeggg ggttggae 300       300         aaggegsteg tacacagaa gaccaacaca cacacagatgg 420       200         coggacact gacgagaget caaaggegg gattegggg ggttggae 300       300         aaggegsteg digagagaget caaaggegg gattegggg ggttggae 300       300         aaggegsteg tacgacgageaget caaaggegg eggeggega acggtgge cgggggggg ggteggae 510       200         coggacactge cgcagagagt gacgeggg gattegggg gaccacaca caacaagatgg 420       200         coggacacgg cgccc ggeoggegt cteggtggeg gaccacaca caacaagatgg 420       200         coggacatgge atteggege ggtoggege acggtggaca diggagagat tgcggagagg 420       200         coggacacgg ctgcc gacegggta cagggggat ctgggagg gaccgacaga gagagggg 420       200         cogacacgge tgccccc ggeogget ctgggagg gacctggaaga gacgacacaca agaaagteg 720       200         ggacaggae attegg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                             | 260                          |                  |            |           |            | 265        | 1          |            |           |            | 270        | -1-        |            |     |      |
| <pre>c210. SEQ ID NO 11 c211. LEMNTH: 774 c212. TYPE: DNA c212. TYPE: DNA c212. TYPE: DNA c212. TYPE: DNA c212. Constrained a constrained of the set of th</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Pro Pro Arg<br>275                                          | Val                          | Ala              | Glu        | Lys       | Ala<br>280 | Asp        |            |            |           |            |            |            |            |     |      |
| <400. SEQUENCE: 11   atgacgtitga aactitacag citicggtood ggggggaact ogotoagod gitoggaaca 60   cititacgaga agggootoga attoggacag gitottogtog atcogagoag gitoggacag 120   cattoggact ggttoaagaa gatoaatoog ogoggtoagy togoggoot otggoatag 180   ggcaagtog toacogaato gacgggtato togogaatato toggaggot gitoccocaga 240   tooggaatt ogotogoo ggcogacoot toaagoog cogaaatog ggtggaco 300   aagogatog togaagaagat gacgacago gototogoo cogoogoo attogoogoo totogoo a 340   aagogatog ogoagaagat gacgacago gototogoo attogoogoo totogoo a 340   cogatoccog agacgaat gacgacgag gaattogag gacacatoa caagaatog 420   cogatoccog agacgaagt caasgggtot togoogoo gotogaaga gacgototog 540   aagogagat attoggoa ggocgoo togoogoo gotogaaat ggaagaagatog 640   coggocatggo togaagoogo togoogoo togoogoo gotogaaag gaadtoga ggaaagaag 640   cogaacacag agoogoo ggoogoo togoo gotogaaaga gacacatoa caagaatog 640   cogaacacag agoogoo ggocgoo togoogoo gotogaaaga gaaagoo togo 720   gaaaatoga agoogoo gocogoo ggcogaaca attogoogo cogaaagaaga gaaagoo togo 720   gaaaatoga agoogoo ggcogoo cogoogoo ggcogaaagaagaagoo cotag 720   gaaaatoga agoogoo ggcogaa cogoogoo ggcogaaagaagaagoo cota 720   gaaaatoga agoogoo ggcogaa cogoogoo ggcogaaagaagaagaagoo cotag 720   coll to secu DD NO 12 211   coll Am Pro Secu INV Ser Phe Gly Pro Gly Ala Am Ser Leu Lvg 15   Pro Leu Ala Thr Leu Tyr Ser Phe Gly Pro Gly Ala Am Ser Leu Lvg 15   Pro Leu Ala Thr Leu Tyr Ser Phe Gly Pro Gly Ala Am Ser Leu Lvg 15   Am Pro Arg Gly Glu Nu I Pro A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <210> SEQ ID<br><211> LENGTH<br><212> TYPE:<br><213> ORGANI | ) NO<br>[: 77<br>DNA<br>[SM: | 11<br>'4<br>Sphi | ingoł      | oium      | ap.        | SYK-       | - 6        |            |           |            |            |            |            |     |      |
| atgacgttga aactotacag ottoggtoon ggggggaact ogotoggogg 60<br>ototacgaga agggootoga attogageag gtotogtog atcogagea gtotoggong 120<br>cattoggact ggtocaagaa gateaateog ogoggteag tgoeggeget otggoatgae 180<br>ggeaaggteg teacegaate gaeggtgate tgogaatate tggaagaeg gtotocoog 240<br>teeggeaatt egetggeee ggeeggee tteagegeg eeggeggee 300<br>aagtgggteg atgaatatt etgetggtge gtotecacea teggetggge etteggeate 360<br>aagegagteg ergeagaag gaegeaegag gaattogagg ageaeatea caagaatgg 420<br>cegateeeg ageageaget eaatggee egegegeeg a aeggateee gaaggaag 480<br>etggacagg atteegaa ggteggete teggtggee ggetggaag gaegetete 540<br>aageaggaet atteggeeg egegegee gegegege aetetgeaa tteggeate 600<br>geeaatggee tgoagegee egegeggee egegegege aatgtaa atteggae g<br>gagaaggaet atteggeegegee egegegege aatgtaa atgeagaeg 660<br>ceeggeetg egeetgget egaeggget teggegege egegegea aggaatgee 720<br>gagaaatega aggeegaggg eetgeegee egegegeae aggaatege ggaagaag me<br>segseetg egeetgget egaeggget eggeggaa agaagtege egg<br>segseatgge tgoageeggee eggeggete aggegaatea ggaaagaeg 720<br>gagaatega aggeegagga eetgeetgee eggeggatea aggaaggee egg<br>segseatgge tgoageeggee eggeggete teggeggatea aggaagteg 720<br>gagaatega aggeegagga eetgeegge eggeggaa gaagatege egg<br>segseatgge tgoageeggee eggeggete eggeggatea ggaaagteg 720<br>gagaatega aggeegagga eetgeegge eggeggaa gaagatege egg<br>segsett gegeetgge tegaeeggege eggeggaaga gaagatege egg<br>segsett gegeetgge tegaeeggeg eggeggee eggeggaa gaagatege egg<br>segsett gegeetgge eggeggege eggeggaega gaagatege egg<br>segsett gegeetggee eggeggee eggeggaag agaagtege egg<br>segsett gegeetggee eggegegee eggegegee eggeggae egg<br>segsett gegeetggee eggegegee eggegegee aatgtegae egg<br>segsett gegeetggee eggegegee eggegegee aatgtegae egg<br>segsett gegeetggee eggegegee eggegegee eggegegee eggegegee egg<br>segsett gegeetggee eggegeed aatgegegee eggegeae aggaatege egg<br>segsett gegeetggee eggeetggee eggeegees atgtes aggaategee egg<br>segsett gegeetggee eggeegeed eggeegeegee eggeegeed aaggeegee egg<br>segsett segsett segseggee eggeegeed eggeegeed eggeegeed egg<br>segsett segsett segsegeed eggeegeegeed egg                                                                                                                                                                                                                                                                                                                                                                                             | <400> SEQUEN                                                | ICE :                        | 11               |            |           |            |            |            |            |           |            |            |            |            |     |      |
| ctctacqqqq agggctcq attcqqcq gtctcqt atcqqqcaq gtctqqqcaq 120<br>cattcqqcat ggtcacqqa qaccqtcq gcgqtcag tqqqqqq gtqccqqq 240<br>tccqqcaatt cqtqqcqc ggcqqccc ttcaqqqq ggtgqqc 300<br>aqqqqqt gtqaatatt ctqcqgqg gtctcqqc agggtqqq 420<br>ccqqacccq aqcqqqq gqqqq gqtqqq gactcqqq gqcqqq aggactqq 420<br>ccqqacccq aqcqqqq gqqqq gqqq gqqq gqqq aggqcqq gacqqq 480<br>ctgqqqqq attcqqq aggqqq gqqq tcgqqqc ggcqgq aggqtqq 420<br>cqqatccqq aqcqqqq caqqqq tcqqqq ggcqgq ggcqgq aggqtqq 480<br>ctgqqqqq attcqqq aggqq cqqqq tcqqqq ggcqqq ggcqqa aggqttcc g<br>gqqqqq attcqqq aggqq cqqqq tcqqqq ggcqqq aggqq agqcqtcq 540<br>aqqcqqqq attcqqq aggqq cqqqq tcqqqqq actcqq ggcqqa aggaq gacqtctq 540<br>aqqcqqq agt attcqqq aggqqq cqqqq agqcqq ggcqq actcqqa aggaaq gacqtctq 540<br>aqqcqqq ag actcqqq aggqq cqqqq agqqq agqcqq agqaq agaqqtq 720<br>gqqaaatqq aggcqqqq cqqcqq ag cqqqqa aggqq agaqatqq 720<br>gqqaaatqq aggcqqqq cqqcqq aggqqq agaqqq agaaqtqc ctqq<br>210> SEQ ID NO 12<br>$^{211>}$ SEN ID NO 12<br>$^{211>}$ SEN ID NO 12<br>$^{211>}$ SEN ID NO 12<br>$^{211>}$ SEN ID NO 12<br>$^{2123}$ YPF FFT<br>$^{213>}$ YPF FFT<br>$^{213>}$ YPF FFT<br>$^{213>}$ YPF FFT<br>$^{213>}$ YPF FFT<br>$^{213}$ YPF YPF Ala PPe Glu PPF Oly Ala Am Ser Leu Lyp IP<br>$^{30}$ YP I App Pro Ser Lyp PPe Glu Qln His Ser Asp TPP Phe Lyp Lyp IP<br>$^{30}$ YP I App Pro Arg Gly Gln Val Pro Ala Leu Trp His Asp Gly Lyp Val Val<br>$^{50}$ YP Ql App Pro Ala App Pro Ala App Pro Phe Lyp Arg Ala Glu App<br>$^{31}$ Hi Hi Lyp Trp Val Asp Pro Phe Lyp Arg Ala Glu App<br>$^{31}$ Hi Trp Thr Lyp Trp Val Asp Pro Phe Lyp Arg Ala Glu App<br>$^{31}$ Hi Trp Thr Lyp Trp Val Asp Glu Try Phe Cyp Trp Cyp Val Ser<br>$^{32}$ Hi Glu Glu Phe Glu                                                                                                                                                                                                                                                                                                                                                | atgacgttga a                                                | acto                         | taca             | ag ct      | ttcg      | gtcc       | c ggg      | ggcga      | aact       | cgc.      | tcaa       | gec g      | gete       | gcgacg     | 60  |      |
| catteggact ggttcaagaa gatcaatecg cgcggtcagg tgccggget etggcatgate<br>ggcaaggteg tcaccgaate gacggtgate tgcgaatate tggaagaegt gttccccqa<br>100<br>aagtgggteg atgaatatt etgetggteg tetccacca teggetggge etteggoate<br>300<br>aagtgggteg atgaatatt etgetggteg tetccacca teggetggge etteggoate<br>300<br>aagtgggteg atgaatatt etgetggteg tetccacca teggetggge etteggoate<br>300<br>aagtgggteg atgaatatt etgetggge gtetccacca teggetggge etteggoage<br>300<br>aageaggateg ecgaagaeg gagegeeg gateggagg agacateca caagaatgte<br>420<br>cegateceeg ageagaagt eaagtgeeg eggeggee aeggatece gaggagag<br>300<br>aageaggaet ateeggede aaggeggete teggeggee gaetggaaga gaegetee<br>300<br>300<br>300<br>300<br>300<br>300<br>300<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ctctacgaga a                                                | ıgggo                        | ctc              | ya at      | ttcga     | agca       | g gto      | ette       | gtcg       | atc       | cgag       | caa 🤉      | gttc       | gagcag     | 120 |      |
| ggcaagtog toaccgaato gacggtgato tgcgaatato tggaggagt gttocccga240tccggcaatt cgctgcgcc ggcgaccc ttcaagcgcg cgaaatgcg ggtgtggac300aagtgggtg atgaatatt ctgctggtg gttoccaca tcggctggg cttoggcat360aaggcgatg cgcagaagat gagcgacgag gaattcgag gacactaa caagaatgt420ccgatccccg agcagcagt caaatggcg cgcgcgcga acggttcc gcaggagat480ctggacgagg attcggcg cgcggggt ctggtggg ggctggaaga gacgctccg540aagcaggat atctggtcg ccgggggtt ctggtggc ggctggaaga gacgctccg600gccaatggc tgcagcgcc cggcggct ttgggcg cgcgggata aggaatgtc720gagaaatga agcgcagga ccggctgga atggcacat ggaaaagtg660cccggcctgt gcgcctggc cgccggaac ggcagaacg agaaagtcg ctga774<210 > SKQ ID NO 12720c211 > LBNOTH:257<212 > TYER: PKT<213 > ORGANISM: Sphingobium sp. SYK-6<400 > SEQUENCE:12Met Thr Leu Lys Leu Tyr Ser Phe Gly Pro Gly Ala Asn Ser Leu Lys115Pro Leu Ala Thr Leu Tyr Glu Lys Gly Leu Glu Phe Glu Gln Val Phe<br>2070707580Val Asp Pro Ser Lys Phe Glu Gln Tyr His Asp Gly Lys Val Val<br>506570758055Ser Gly Asn Ser Leu Arg Pro Ala Asp Pro Phe Lys Arg Ala Glu Met<br>859595Arg Val Trp Thr Lys Trp Val Asp Clu Tyr Phe Cys Trp Cys Val Ser<br>105101011101110121052570707580Ser Gly Asn Ser Leu Arg Pro Ala Asp Pro Phe Lys Arg Ala Glu Met<br>8595 </td <td>cattcggact g</td> <td>gtto</td> <td>aaga</td> <td>aa ga</td> <td>atcaa</td> <td>atcco</td> <td>g cgo</td> <td>cggt</td> <td>cagg</td> <td>tgc</td> <td>cggc</td> <td>gct (</td> <td>ctgg</td> <td>catgac</td> <td>180</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | cattcggact g                                                | gtto                         | aaga             | aa ga      | atcaa     | atcco      | g cgo      | cggt       | cagg       | tgc       | cggc       | gct (      | ctgg       | catgac     | 180 |      |
| teeggeaatt egetgegeet ggeegaeee tteaagegeg eegaaatgeg ggtgtggaee 300<br>aagtgggteg atgaatatt etgetggte gtetecaeea teggetggge etteggeaee 360<br>aaggeggetg egeagaagat gagegaegag gaattegag ageaetaea eaagaatgt 420<br>cegateeeg ageageaget eaaatggege egegegege aeggatee geegagaagat 480<br>etggaegagg aatteegge eegegget eeggeggee geetggaag gaegeteeg 540<br>aageaggaet ateeggege eeggegget eeggegge geetggaag gaegetee 600<br>geeaatggee tgeageegee eggeggete teggeggae aeggaatae gaaaagaeg 660<br>ceeggeetgt geegeetgget egaeeggate aagegegete eggegateaa ggaaatgte 720<br>gagaaatega agegegaga eetgeteaag eggeagaeg agaaagtege etga<br>eelin ENDMTH: 257<br>eelin ENDMTH: 257<br>e                                                                                                                                                                                                                                                                                     | ggcaaggtcg t                                                | cacc                         | gaat             | c ga       | acggi     | gat        | tgo        | cgaat      | tatc       | tgg       | agga       | cgt        | gttc       | cccgag     | 240 |      |
| aagtgggteg atgaatatt etgetggte gtetecaeea teggetgge etteggeater 360<br>aaggggateg egeagaagat gagegaegag gaattegagg ageaeteaa eaagaatgte 420<br>cegateeeeg ageageaget eaaatggege egegegege aeeggatteee geaggaagat 480<br>etggaegagg aatteegeaa ggteggegte teggtggege ggetggaaga gaegeteteg 540<br>aageaggaet atetegteg eaeegggtet eggtggege ggetgaaga gaegeteteg 600<br>geeaatggee tgeagegee eggeeggete tteggegaet atgtgaacea ggaaaagee 660<br>ceeggeetg geegeegge egaeeggate aatgegegte eggegateaa ggaaatgte 720<br>gagaaatega ageeggagga eetgeteaa gegeagaae gagaageeeteg 720<br>gagaaatega ageeggagga eetgeteaa etgegegte eggegateaa ggaaatgte 720<br>gagaatega ageeggagga eetgeteaa eggeagaaeg agaaagtege etga<br><210> SEQ ID NO 12<br><211> INFT: PRT<br><212> TIFS: PRT<br><213> ORGANISM: Sphingobium sp. SYK-6<br><400> SEQUENCE: 12<br>Met Thr Leu Lys Leu Tyr Ser Phe Gly Pro Gly Ala Asn Ser Leu Lys<br>1<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                           | tccggcaatt c                                                | getg                         | ledec            | c gé       | geega     | accco      | c tto      | caago      | cgcg       | ccg       | aaat       | geg g      | ggtgi      | tggacc     | 300 |      |
| aagggateg egeagaagat gagegaegag gaattegagg ageaeteaa caagaatgtg 420<br>cegateeeg ageageaget eaaatggege egegegege aeggattee geeggagaag 480<br>etggaegagg aatteegeaa ggteggeget teggtggege ggetggaaga gaegeteeg<br>aageaggaet atetggtege eegegegete teggtggege ggetgaaag gaegeteeg<br>geeaatggee tgeagegee eggeggette tteggegaet atgtgaacea ggaaaageg 660<br>ceeggeetgt geegeetgee eggeeggete tteggegaat atgtgaacea ggaaaageg 720<br>gagaaatega agegegagga eetgeteaa eggeagaag agaaagtee etga<br>2210 ND 12<br>2211 LENGTH: 257<br>2212 TYPE: PRT<br>2213 ORGANISM: Sphingobium sp. SYK-6<br><400> SEQUENCE: 12<br>Met Thr Leu Lys Leu Tyr Ser Phe Gly Pro Gly Ala Asn Ser Leu Lys<br>1<br>Pro Leu Ala Thr Leu Tyr Glu Lys Gly Leu Glu Phe Glu Gln Val Phe<br>20<br>20<br>20<br>212 STR: PRT<br>40<br>40<br>Val Asp Pro Ser Lys Phe Glu Gln His Ser Asp Trp Phe Lys Lys Ile<br>35<br>40<br>Asn Pro Arg Gly Gln Val Pro Ala Leu Trp His Asp Gly Lys Val Val<br>5<br>5<br>5<br>5<br>6<br>Fur Glu Ser Thr Val Ile Cys Glu Tyr Leu Glu Asp Val Phe Pro Glu<br>65<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | aagtgggtcg a                                                | itgaa                        | tatt             | t ct       | tgct      | ggtg       | c gto      | ctcca      | acca       | tcg       | gctg       | ggc (      | cttc       | ggcatc     | 360 |      |
| ccgatccccg agoagcagct caatggcgc gcgcgcgca acggattccc gcaggagatg480ctggacgagg aattccgcaa ggtcggcgtt tcggtggcg ggctggaag gacgctctcg540aagcaggact atctggtcga cacgggttac agcctcgcgg acatctgcaa tttcgccatc600gccaatggc tgcgcctggct cgacgggtt tttcggcgact atgtgaacca ggaaaagtgt720gagaaatcga agcgcgagg cctgctcaag cggcagaacg agaaagtgc ctga774<210> SEQ ID NO 12721<211> LENGTH: 25770<213> ORGANISM: Sphingobium sp. SYK-675<400> SEQUENCE: 12Met Thr Leu Lys Leu Tyr Ser Phe Gly Pro Gly Ala Asn Ser Leu Lys<br>1015Pro Leu Ala Thr Leu Tyr Glu Lys Gly Leu Glu Phe Glu Gln Val Phe<br>20702020213 Seg Gly Gln Val Pro Ala Leu Trp His Asp Gly Lys Val Val<br>50707580Ser Gly Asn Ser Leu Arg Pro Ala Asp Pro Phe Lys Arg Ala Glu Met<br>8581Arg Val Trp Thr Lys Trp Val Asp Glu Tyr Phe Cys Trp Cys Val Ser<br>10010511010511210511010611255Asp Cys Val Ser<br>11060112707571727575707675767777777777777778787979707070707070707070707                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | aaggcgatcg c                                                | gcag                         | jaaga            | at ga      | agcga     | acga       | g gaa      | attco      | gagg       | agc.      | acat       | caa        | caaga      | aatgtg     | 420 |      |
| ctggacgagg aatteegeaa ggteggeget teggtggee ggetggaagg gaeeteteg540aageaggaet ateeggee eageggette teeggeggat aatetgeaa tttegeeate600gecaatggee tgegeetegge eggegggette tteggegaet atgtgaacea ggaaaagaeg660ceeggeetgt gegeetegget eggeeggate aatgeegget eggegateaa ggaaatgtee720gagaaatega ageeggagga eetgeetaag eggeagaaeg agaaagtee etga774<210> SEQ ID NO 12774<211> LENGTH: 257721<213> ORGANISM: Sphingobium sp. SYK-6700<400> SEQUENCE: 12Met Thr Leu Lys Leu Tyr Ser Phe Gly Pro Gly Ala Asn Ser Leu Lys<br>115Pro Leu Ala Thr Leu Tyr Glu Lys Gly Leu Glu Phe Glu Gln Val Phe<br>20Val Asp Pro Ser Lys Phe Glu Gln His Ser Asp Trp Phe Lys Lys Ile<br>4045Asn Pro Arg Gly Gln Val Pro Ala Leu Trp His Asp Gly Lys Val Val<br>50Ser Gly Asn Ser Leu Arg Pro Ala Asp Pro Phe Lys Arg Ala Glu Met<br>85Arg Val Trp Thr Lys Trp Val Asp Glu Tyr Phe Cys Trp Cys Val Ser<br>100Thr Ile Gly Trp Ala Phe Gly 11e Lys Ala Ile Ala Gln Lys Met Ser<br>120Asp Glu Glu Phe Glu Glu His Ile Asn Lys Asn Val Pro Ile Pro Glu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ccgatccccg a                                                | ıgcag                        | gcago            | et ca      | aaato     | ggcg       | c cgo      | cgcg       | cgca       | acg       | gatt       | aaa i      | gcago      | gagatg     | 480 |      |
| <ul> <li>aagcaggact atotggtcga cacgggttac agcotcgogg acatctgcaa tttcgccatc</li> <li>gccaatggcc tgcagcgccc cggcgggtte ttcggcgact atgtgaacca ggaaaagacg</li> <li>gagaaatcga agcggagga cctgctcaag cggcagaacg agaaagtcgc ctga</li> <li>774</li> <li>&lt;210&gt; SEQ ID NO 12</li> <li>&lt;211&gt; LENGTH: 257</li> <li>&lt;212&gt; TYPE: PET</li> <li>&lt;213&gt; ORGANISM: Sphingobium sp. SYK-6</li> <li>&lt;400&gt; SEQUENCE: 12</li> <li>Met Thr Leu Lys Leu Tyr Ser Phe Gly Pro Gly Ala Asn Ser Leu Lys</li> <li>1</li> <li>5</li> <li>10</li> <li>15</li> <li>Pro Leu Ala Thr Leu Tyr Glu Lys Gly Leu Glu Phe Glu Gln Val Phe</li> <li>20</li> <li>Val Asp Pro Ser Lys Phe Glu Gln His Ser Asp Trp Phe Lys Lys Ile</li> <li>40</li> <li>40</li> <li>45</li> <li>Asn Pro Arg Gly Gln Val Pro Ala Leu Trp His Asp Gly Lys Val Val</li> <li>55</li> <li>Gr Gly Asn Ser Leu Arg Pro Ala Asp Pro Phe Lys Arg Ala Glu Met</li> <li>85</li> <li>Arg Val Trp Thr Lys Trp Val Asp Glu Tyr Phe Cys Trp Cys Val Ser</li> <li>105</li> <li>Thr Ile Gly Trp Ala Phe Gly Ile Lys Ala Ile Ala Gln Lys Met Ser</li> <li>115</li> <li>120</li> <li>120</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                             | ctggacgagg a                                                | atto                         | cgca             | aa go      | gtcg      | gcgt       | c tog      | ggtg       | gcgc       | ggc.      | tgga       | aga g      | gacgo      | ctctcg     | 540 |      |
| gecaatggee tycagegeee eggeggette tteggegat atgtgaacca ggaaaageg660ceeggeetgt gegeetgget eggeeggate aatgegegte eggegateaa ggaaaagtee720gagaaatega ageeggagga eetgeteaag eggeagaaeg agaaagtege etga774<210> SEQ ID NO 12<br><211> LENNTH: 257<br><212> TYPE: PRT<br><213> ORGANISM: Sphingobium sp. SYK-6774<400> SEQUENCE: 12Met Thr Leu Lys Leu Tyr Ser Phe Gly Pro Gly Ala Asn Ser Leu Lys<br>1015Pro Leu Ala Thr Leu Tyr Glu Lys Gly Leu Glu Phe Glu Gln Val Phe<br>2030Val Asp Pro Ser Lys Phe Glu Gln His Ser Asp Trp Phe Lys Lys Ile<br>4045Asn Pro Arg Gly Gln Val Pro Ala Leu Trp His Asp Gly Lys Val Val<br>5060Thr Glu Ser Thr Val Ile Cys Glu Tyr Leu Glu Asp Val Phe Pro Glu<br>8580Ser Gly Asn Ser Leu Arg Pro Ala Asp Pro Phe Lys Arg Ala Glu Met<br>8590Ser Gly Asn Ser Leu Arg Pro Ala Asp Glu Tyr Phe Cys Trp Cys Val Ser<br>10510Thr Ile Gly Trp Ala Phe Gly Ile Lys Ala Ile Ala Gln Lys Met Ser<br>11510Thr Ile Gly Trp Ala Phe Gly Ile Lys An Val Pro Ile Pro Glu<br>12010Sep Glu Glu Phe Glu Clu His Ile Asn Lys Asn Val Pro Ile Pro Glu25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | aagcaggact a                                                | tctg                         | gtco             | ga ca      | acggo     | gtta       | c ago      | cctc       | gcgg       | aca       | tctg       | caa 1      | tttc       | gccatc     | 600 |      |
| ccccggcctgg cggcggg cggcggg cggggg cgggggg cgggggg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | gccaatggcc t                                                | gcag                         | ledeo            | ee eg      | ggcg      | getto      | c tto      | cggcé      | gact       | atg       | tgaa       | cca 🤉      | ggaaa      | aagacg     | 660 |      |
| gagaaatcga agegegagga ectgeteaag eggeagaacg agaaagtege etga 774<br><211> LENGTH: 257<br><212> TYPE: PRT<br><213> ORGANISM: Sphingobium sp. SYK-6<br><400> SEQUENCE: 12<br>Met Thr Leu Lys Leu Tyr Ser Phe Gly Pro Gly Ala Asn Ser Leu Lys<br>1 5<br>Pro Leu Ala Thr Leu Tyr Glu Lys Gly Leu Glu Phe Glu Gln Val Phe<br>20 25<br>Val Asp Pro Ser Lys Phe Glu Gln His Ser Asp Trp Phe Lys Lys Ile<br>35<br>Asn Pro Arg Gly Gln Val Pro Ala Leu Trp His Asp Gly Lys Val Val<br>55<br>Ser Gly Asn Ser Leu Arg Pro Ala Asp Pro Phe Lys Arg Ala Glu Met<br>85<br>Arg Val Trp Thr Lys Trp Val Asp Glu Tyr Phe Cys Trp Cys Val Ser<br>100<br>Thr Ile Gly Trp Ala Phe Gly Ile Lys Ala Ile Ala Gln Lys Met Ser<br>120<br>Asp Glu Glu Phe Glu Glu His Ile Asn Lys Asn Val Pro Ile Pro Glu<br>56<br>Arg Val Use Glu Glu His Ile Asn Lys Asn Val Pro Ile Pro Glu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | cccggcctgt g                                                | lcdcc                        | tggo             | et co      | gacco     | ggat       | c aat      | cgcgo      | cgtc       | cgg       | cgat       | caa 🤉      | ggaaa      | atgttc     | 720 |      |
| <pre>&lt;210&gt; SEQ ID NO 12<br/>&lt;211&gt; LENGTH: 257<br/>&lt;212&gt; TYPE: PET<br/>&lt;213&gt; ORGANISM: Sphingobium sp. SYK-6<br/>&lt;400&gt; SEQUENCE: 12<br/>Met Thr Leu Lys Leu Tyr Ser Phe Gly Pro Gly Ala Asn Ser Leu Lys<br/>1</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | gagaaatcga a                                                | ıgege                        | gago             | ja co      | ctgci     | ccaa       | g cgé      | gcaga      | aacg       | aga       | aagt       | cgc (      | ctga       |            | 774 |      |
| <ul> <li>&lt;400&gt; SEQUENCE: 12</li> <li>Met Thr Leu Lys Leu Tyr Ser Phe Gly Pro Gly Ala Asn Ser Leu Lys 15</li> <li>Pro Leu Ala Thr Leu Tyr Glu Lys Gly Leu Glu Phe Glu Gln Val Phe 20</li> <li>Asp Pro Ser Lys Phe Glu Gln His Ser Asp Trp Phe Lys Lys Ile 45</li> <li>Asn Pro Arg Gly Gln Val Pro Ala Leu Trp His Asp Gly Lys Val Val 55</li> <li>Glu Ser Thr Val Ile Cys Glu Tyr Leu Glu Asp Val Phe Pro Glu 80</li> <li>Ser Gly Asn Ser Leu Arg Pro Ala Asp Pro Phe Lys Arg Ala Glu Met 95</li> <li>Arg Val Trp Thr Lys Trp Val Asp Glu Tyr Phe Cys Trp Cys Val Ser 110</li> <li>Thr Ile Gly Trp Ala Phe Gly Ile Asp Lys Asp Val Pro Tle Pro Glu</li> <li>Asp Glu Glu Phe Glu Glu His Ile Asp Lys Asp Val Pro Tle Pro Glu</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <210> SEQ ID<br><211> LENGTH<br><212> TYPE:<br><213> ORGANI | ) NO<br>I: 25<br>PRT<br>ISM: | 12<br>57<br>Sphi | ingoł      | oium      | sp.        | SYK-       | - 6        |            |           |            |            |            |            |     |      |
| MetThrLeuLysLeuTyrSerPheGlyNoGlyAlaAsnSerLeuLysProLuaAnaThrLuaTyrGluLysGlyLuaGluGluGluSerSerValAspSpoSerLysPheGluGluPheSoTyrPheSoTyrItaAsnProArgGlyGluValProAlaLeuTyrPheLysLysItaAsnProArgGlyGluValProAlaLeuTyrPheLysLysLysItaAsnProArgGlyGluValProAlaLeuTyrPheLysLysValValAsnProArgGlyGluValProAlaLeuTyrPhiAsnGlyLysValValFroSoArgFroArgFroProProProProProProBlaFroSoSoTyrProProProProProProProBlaFroSoSoTyrProProProProProProBlaFroSoFroProProProProProProProProFroProProProProProProProPro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <400> SEQUEN                                                | ICE :                        | 12               |            |           |            |            |            |            |           |            |            |            |            |     |      |
| ProLeuAlaThrLeuTyrGluLysGlyLeuGluPheGluGluSluSuSuSuValAspProArsLysInInInInInSerAspTrpPheLysLysInAsnProArgGlyGluValProAlaArgTrpPhiAspGlyLysValValThrGluSerThrValThoValProAlaAspGluTrpPhoSerGluArgGluSerThrValTrpValAspGluTyrPhoLysArgPhoGluArgGluSerThrTrpThrValAspGluTyrPhoCysTrpCysSerArgValSerThrNaSerAspGluTyrPhoCysTrpCysNaSerThrInGluSerTrpNaSerGluSerTrpCysTrpCysTrpCysSerThrInGluFineGluHisThe SinLysAsnCysTrpCysSerSerArgValSerSerSerSerSerSerSerSerSerSerAspGluFineGluHisThe SinSenSenSen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Met Thr Leu<br>1                                            | Lys                          | Leu<br>5         | Tyr        | Ser       | Phe        | Gly        | Pro<br>10  | Gly        | Ala       | Asn        | Ser        | Leu<br>15  | Lys        |     |      |
| ValAspProSerLysPheGluGluHisSerAspTrpPheLysLysIleAsnProArgGlyGluValProAlaLeuTrpHisAspGlyLysValValThrGluSerThrValJleCysGluTyrLeuGluAspValProGluSerGluAsnSerLeuArgProAlaAspProPheLysArgAlaGluArgValTrpThrLysTrpValAspGluTyrPheCysTrpCysValSerThrIleGlyTrpAlaPheGluTyrPheCysTrpCysValSerArgValTrpAlaPheGluTyrPheCysTrpCysValSerThrIleGlyTrpAlaPheGluTyrPheCysTrpCysValSerThrIleGlyTrpAlaPheGluTyrPheCysTrpCysValSerThrIleGlyTrpAlaPheGluTyrPheCysTrpCysValSerThrIleGlyTrpAlaPheCysTrpCysNaSerSerAspGlu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Pro Leu Ala                                                 | Thr<br>20                    | Leu              | Tyr        | Glu       | Lys        | Gly<br>25  | Leu        | Glu        | Phe       | Glu        | Gln<br>30  | Val        | Phe        |     |      |
| AsnProArgGlyGlnValProAlaLeuTrpHisAspGlyLysValValThrGluSerThrValJleCysGluTyrLeuGluAspValProGluSerGlyAsnSerLeuArgProAlaAspProProProProBoArgValTrpThrLysTrpValAspGluTyrPhoCysTrpCysSerThrIleGlyTrpAlaPhoGluTyrPhoCysTrpCysSerAspGluGluFhoGlyIleLysAlaIleAlaGluSerAspGluGluHoGluHisIleAsnLysAsnValForIleAspGluGluHoGluHisIleAsnLysAsnValProIleAspGluGluHoGluHisIleAsnLysAsnValProIleProAspGluGluHoGluHisIleAsnLysAsnValProIleProAspGluFoGluHisIleAsnLysAsnValProIleProGlu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Val Asp Pro<br>35                                           | Ser                          | Lys              | Phe        | Glu       | Gln<br>40  | His        | Ser        | Asp        | Trp       | Phe<br>45  | ГЛа        | Гла        | Ile        |     |      |
| ThrGluSerThrValJeCysGluTyrLeuGluAspValPhoGlu65GlyAsnSerLeuArgProAlaAspProPhoLysArgAlaGluMetSerGlyAsnSerLeuArgProAlaAspPhoPhoLysArgAlaGluMetArgValTrpThrLysTrpValAspGluTyrPhoCysTrpCysValSerArgValTrpAlaPhoGlyTleLysAlaIleAlaGluLysMetSerThrIleGluFroGluHisIleAsnLysAsnValProIleProGluAspGluGluHeGluHisIleAsnValProIleProGlu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Asn Pro Arg<br>50                                           | Gly                          | Gln              | Val        | Pro<br>55 | Ala        | Leu        | Trp        | His        | Asp<br>60 | Gly        | Lys        | Val        | Val        |     |      |
| Ser Gly Asn Ser Leu Arg Pro Ala Asp Pro Phe Lys Arg Ala Glu Met         Arg Val Trp Thr Lys Trp Val Asp Glu Tyr Phe Cys Trp Cys Val Ser         Thr Ile Gly Trp Ala Phe Gly Ile Lys Ala Ile Ala Gln Lys Met Ser         Asp Glu Glu Phe Glu Glu His Ile Asn Lys Asn Val Pro Ile Pro Glu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Thr Glu Ser<br>65                                           | Thr                          | Val              | Ile<br>70  | Сүз       | Glu        | Tyr        | Leu        | Glu<br>75  | Asp       | Val        | Phe        | Pro        | Glu<br>80  |     |      |
| Arg Val Trp Thr Lys Trp Val Asp Glu Tyr Phe Cys Trp Cys Val Ser         100         Thr Ile Gly Trp Ala Phe Gly Ile Lys Ala Ile Ala Gln Lys Met Ser         115         Asp Glu Glu Phe Glu Glu His Ile Asn Lys Asn Val Pro Ile Pro Glu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ser Gly Asn                                                 | Ser                          | Leu<br>85        | Arg        | Pro       | Ala        | Asp        | Pro<br>90  | Phe        | Lys       | Arg        | Ala        | Glu<br>95  | Met        |     |      |
| Thr Ile Gly Trp Ala Phe Gly Ile Lys Ala Ile Ala Gln Lys Met Ser<br>115 120 125<br>Asp Glu Glu Phe Glu Glu His Ile Asn Lys Asn Val Pro Ile Pro Glu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Arg Val Trp                                                 | Thr<br>100                   | Lys              | Trp        | Val       | Asp        | Glu<br>105 | Tyr        | Phe        | Сүз       | Trp        | Сув<br>110 | Val        | Ser        |     |      |
| Asp Glu Glu Phe Glu Glu His Ile Asn Lys Asn Val Pro Ile Pro Glu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Thr Ile Gly<br>115                                          | Trp                          | Ala              | Phe        | Gly       | Ile<br>120 | Lys        | Ala        | Ile        | Ala       | Gln<br>125 | Lys        | Met        | Ser        |     |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Asp Glu Glu                                                 | Phe                          | Glu              | Glu        | His       | Ile        | Asn        | Lys        | Asn        | Val       | Pro        | Ile        | Pro        | Glu        |     |      |

| -continued                                                                                                                |
|---------------------------------------------------------------------------------------------------------------------------|
| 130 135 140                                                                                                               |
| Gln Gln Leu Lys Trp Arg Arg Ala Arg Asn Gly Phe Pro Gln Glu Met<br>145 150 155 160                                        |
| Leu Asp Glu Glu Phe Arg Lys Val Gly Val Ser Val Ala Arg Leu Glu<br>165 170 175                                            |
| Glu Thr Leu Ser Lys Gln Asp Tyr Leu Val Asp Thr Gly Tyr Ser Leu<br>180 185 190                                            |
| Ala Asp Ile Cys Asn Phe Ala Ile Ala Asn Gly Leu Gln Arg Pro Gly<br>195 200 205                                            |
| Gly Phe Phe Gly Asp Tyr Val Asn Gln Glu Lys Thr Pro Gly Leu Cys<br>210 215 220                                            |
| Ala Trp Leu Asp Arg Ile Asn Ala Arg Pro Ala Ile Lys Glu Met Phe<br>225 230 235 240                                        |
| Glu Lys Ser Lys Arg Glu Asp Leu Leu Lys Arg Gln Asn Glu Lys Val<br>245 250 255                                            |
| Ala                                                                                                                       |
| <210> SEQ ID NO 13<br><211> LENGTH: 846<br><212> TYPE: DNA<br><213> ORGANISM: Sphingobium sp. SYK-6<br><400> SEQUENCE: 13 |
| atggcaaaag acaacaagat caccatctac gatctggcgc tggcgagcgg tgcgacgatc 60                                                      |
| ageceatteg tatgggegae caaatatgee ategegeaea agggettega getggaeate 120                                                     |
| gtgcccggcg gcttttccgg cattcccgag cggaccggcg gtgtgaccga gcgcctcccg 180                                                     |
| gcgatcgtcg atgacgggaa atgggtgctc gatagctggc tgatcgccga gtatctcgac 240                                                     |
| gagacetate eegageggee gaeceteate eegeacgeea gegteaagge geteaegeaa 300                                                     |
| ggcatggaag cttggctgtg gggcgccgcc atcagcccgt ggatgacctg cttcatcaag 360                                                     |
| cagtateggg acegeteget geegeaggat catgagtatg tgaceacete gegegagegt 420                                                     |
| atgtteggte geaagatega ggacateate gtgggeegeg aggaeegeat teeeaaagtg 480                                                     |
| ccgccgacgc tgcagctgct gcgcaacgtg ctggcggaga acaagtggct gggtggcgac 540                                                     |
| acgeceaatt atgeggaett eegeetgete geegtgttee tgtteaeege eteggtegee 600                                                     |
| gacacgeegg teetgaeega tgaegaeeeg etgegegaet ggategageg eggettegat 660                                                     |
| ctctacggcg ggctgggccg gcatcccggc ctctcgccca tcttcggcct gcaactgcgc 720                                                     |
| gagggegate eegageeett cateaaggge ggegeegtgg geggeetege caegegeaac 780                                                     |
| aceggeeeca agtegaeege egeegagaee gegegeetea agggegagaa ggegeeggee 840                                                     |
| gcctga 846                                                                                                                |
| <210> SEQ ID NO 14<br><211> LENGTH: 281<br><212> TYPE: PRT<br><213> ORGANISM: Sphingobium sp. SYK-6                       |
| <400> SEQUENCE: 14                                                                                                        |
| Met Ala Lys Asp Asn Lys Ile Thr Ile Tyr Asp Leu Ala Leu Ala Ser<br>1 5 10 15                                              |
| Gly Ala Thr Ile Ser Pro Phe Val Trp Ala Thr Lys Tyr Ala Ile Ala<br>20 25 30                                               |
| His Lys Gly Phe Glu Leu Asp Ile Val Pro Gly Gly Phe Ser Gly Ile<br>35 40 45                                               |

### -continued

| Pro                  | Glu<br>50               | Arg                     | Thr                  | Gly        | Gly        | Val<br>55  | Thr        | Glu        | Arg        | Leu        | Pro<br>60  | Ala        | Ile        | Val        | Asp        |     |
|----------------------|-------------------------|-------------------------|----------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|-----|
| Asp<br>65            | Gly                     | Lys                     | Trp                  | Val        | Leu<br>70  | Asp        | Ser        | Trp        | Leu        | Ile<br>75  | Ala        | Glu        | Tyr        | Leu        | Asp<br>80  |     |
| Glu                  | Thr                     | Tyr                     | Pro                  | Glu<br>85  | Arg        | Pro        | Thr        | Leu        | Ile<br>90  | Pro        | His        | Ala        | Ser        | Val<br>95  | Lys        |     |
| Ala                  | Leu                     | Thr                     | Gln<br>100           | Gly        | Met        | Glu        | Ala        | Trp<br>105 | Leu        | Trp        | Gly        | Ala        | Ala<br>110 | Ile        | Ser        |     |
| Pro                  | Trp                     | Met<br>115              | Thr                  | Суз        | Phe        | Ile        | Lys<br>120 | Gln        | Tyr        | Arg        | Asp        | Arg<br>125 | Ser        | Leu        | Pro        |     |
| Gln                  | Asp<br>130              | His                     | Glu                  | Tyr        | Val        | Thr<br>135 | Thr        | Ser        | Arg        | Glu        | Arg<br>140 | Met        | Phe        | Gly        | Arg        |     |
| Lys<br>145           | Ile                     | Glu                     | Asp                  | Ile        | Ile<br>150 | Val        | Gly        | Arg        | Glu        | Asp<br>155 | Arg        | Ile        | Pro        | Lys        | Val<br>160 |     |
| Pro                  | Pro                     | Thr                     | Leu                  | Gln<br>165 | Leu        | Leu        | Arg        | Asn        | Val<br>170 | Leu        | Ala        | Glu        | Asn        | Lys<br>175 | Trp        |     |
| Leu                  | Gly                     | Gly                     | Asp<br>180           | Thr        | Pro        | Asn        | Tyr        | Ala<br>185 | Asp        | Phe        | Arg        | Leu        | Leu<br>190 | Ala        | Val        |     |
| Phe                  | Leu                     | Phe<br>195              | Thr                  | Ala        | Ser        | Val        | Ala<br>200 | Asp        | Thr        | Pro        | Val        | Leu<br>205 | Thr        | Asp        | Asp        |     |
| Asp                  | Pro<br>210              | Leu                     | Arg                  | Asp        | Trp        | Ile<br>215 | Glu        | Arg        | Gly        | Phe        | Asp<br>220 | Leu        | Tyr        | Gly        | Gly        |     |
| Leu<br>225           | Gly                     | Arg                     | His                  | Pro        | Gly<br>230 | Leu        | Ser        | Pro        | Ile        | Phe<br>235 | Gly        | Leu        | Gln        | Leu        | Arg<br>240 |     |
| Glu                  | Gly                     | Asp                     | Pro                  | Glu<br>245 | Pro        | Phe        | Ile        | Lys        | Gly<br>250 | Gly        | Ala        | Val        | Gly        | Gly<br>255 | Leu        |     |
| Ala                  | Thr                     | Arg                     | Asn<br>260           | Thr        | Gly        | Pro        | Lys        | Ser<br>265 | Thr        | Ala        | Ala        | Glu        | Thr<br>270 | Ala        | Arg        |     |
| Leu                  | Lys                     | Gly<br>275              | Glu                  | Lys        | Ala        | Pro        | Ala<br>280 | Ala        |            |            |            |            |            |            |            |     |
| <210<br><212<br><212 | )> SH<br>L> LH<br>2> TY | EQ II<br>ENGTH<br>ZPE : | ) NO<br>1: 79<br>DNA | 15<br>98   |            |            |            |            |            |            |            |            |            |            |            |     |
| <213                 | 3> OF                   | RGAN                    | ESM:                 | Sph:       | ingol      | oium       | sp.        | SYK        | - 6        |            |            |            |            |            |            |     |
| <400                 | )> SH                   | EQUEI                   | ICE :                | 15         |            |            |            |            |            |            |            |            |            |            |            |     |
| atgo                 | geega                   | age d                   | cacaç                | ggaa       | ct ga      | acgat      | ctat       | c cad      | catto      | cccg       | gcto       | geeed      | ett «      | ctcc       | gagegt     | 60  |
| gtgg                 | jaaat                   | cca t                   | gete                 | cgago      | et ca      | aaggo      | geete      | g ego      | arga       | agg        | atgi       | cegaç      | gat (      | egaca      | attec      | 120 |
| aagu                 | itca                    | ada a                   | taa                  | raaa       | a co       | rtcaa      | addaa      | a aqu      | rato       | itca       | taat       | aca        | ta i       | tata       | aacaa      | 240 |
| cqct                 | acco                    | ccd a                   | adaco                | adcad      | at qu      | acaca      | atcco      | c qat      | ccct       | tct        | qtca       | acqco      | qqt (      | qqaaq      | qcatq      | 300 |
| ctg                  | jeega                   | age t                   | ggeo                 | cggg       | cc tt      | ttto       | ccggo      | c gog      | ggget      | acc        | ggat       | gato       | cct (      | caaco      | cgggag     | 360 |
| atco                 | gcaa                    | age g                   | gegag                | ggaga      | at go      | gtgo       | ccgct      | t gto      | gato       | jccg       | agti       | cggo       | caa q      | ggtgg      | jacgcg     | 420 |
| ttco                 | etcaa                   | age g                   | gttat                | cgcga      | ac co      | ggcaq      | gegad      | e tto      | cctgt      | tcg        | acga       | atcgo      | ctt (      | egget      | gggcg      | 480 |
| gaaq                 | gtgga                   | ett t                   | cace                 | geega      | at gi      | tcaa       | agego      | c ctç      | gtggt      | tcc        | tgga       | actat      | ta 1       | tgaag      | gattat     | 540 |
| gaaq                 | gtgco                   | cgg d                   | ccaat                | ttc        | ga co      | cgggt      | gete       | g cgo      | ctggo      | cgcg       | cggo       | gtgo       | cac g      | ggcgo      | cateeg     | 600 |
| gccé                 | gegea                   | aat a                   | atcgo                | ctcga      | aa go      | gaaga      | agtto      | g ctç      | gaago      | ctct       | atta       | atga       | cta        | cacgo      | cagggc     | 660 |
| ggcg                 | ggcaa                   | atg g                   | geego                | catto      | cc cé      | gaggo      | ggcgo      | c ago      | catt       | cca        | gctt       | ctc        | gec é      | ggato      | gtcgac     | 720 |
| tggo                 | gtad                    | cgc ç                   | gaaaq                | gatgo      | cc go      | aaaa       | gegad      | c aaa      | atggo      | ggac       | atgo       | ggc        | gac (      | cgaco      | gcggaa     | 780 |

-continued

| ctagaactca  | cccactaa |
|-------------|----------|
| cigggeetta. | CCCGCLGa |

<210> SEQ ID NO 16 <211> LENGTH: 265 <212> TYPE: PRT <213> ORGANISM: Sphingobium sp. SYK-6 <400> SEQUENCE: 16 Met Ala Glu Pro Gln Glu Leu Thr Ile Tyr His Ile Pro Gly Cys Pro Phe Ser Glu Arg Val Glu Ile Met Leu Glu Leu Lys Gly Leu Arg Met Lys Asp Val Glu Ile Asp Ile Ser Lys Pro Arg Pro Asp Trp Leu Leu Ala Lys Thr Gly Gly Thr Thr Ala Leu Pro Leu Leu Asp Val Glu Asn Gly Glu Ser Leu Lys Glu Ser Met Val Ile Leu Arg Tyr Leu Glu Gln Arg Tyr Pro Glu Pro Ala Val Ala His Pro Asp Pro Phe Cys His Ala Val Glu Gly Met Leu Ala Glu Leu Ala Gly Pro Phe Ser Gly Ala Gly Tyr Arg Met Ile Leu Asn Arg Glu Ile Gly Lys Arg Glu Glu Met Arg Ala Ala Val Asp Ala Glu Phe Gly Lys Val Asp Ala Phe Leu Lys Arg Tyr Ala Thr Gly Ser Asp Phe Leu Phe Asp Asp Arg Phe Gly Trp Ala Glu Val Ala Phe Thr Pro Met Phe Lys Arg Leu Trp Phe Leu Asp Tyr Tyr Glu Asp Tyr Glu Val Pro Ala Asn Phe Asp Arg Val Leu Arg Trp Arg Ala Ala Cys Thr Ala His Pro Ala Ala Gln Tyr Arg Ser Lys Glu Glu Leu Leu Lys Leu Tyr Tyr Asp Tyr Thr Gln Gly Gly Gly Asn Gly Arg Ile Pro Glu Gly Arg Ser Ile Ser Ser Phe Ser Pro Asp Val Asp Trp Arg Thr Arg Pro Met Pro Pro Arg Asp Lys Trp Gly His Ala Ala Thr Asp Ala Glu Leu Gly Leu Thr Arg <210> SEQ ID NO 17 <211> LENGTH: 867 <212> TYPE: DNA <213> ORGANISM: Novosphingobium aromaticivorans <400> SEQUENCE: 17 atgtcctcag agtacgttcc cccgaaggtc tggaagtggg acaaggccaa cggcggcgcc ttcgccagcg tcaaccgccc agtcgccggc ccgacgagcg agcgcgaact gccggtcggc aagcateett tecaggteta ttegetegge acgeecaaeg ggeagaagge caegateatg ctggaagaac tgctccagct gggcttttcc gaggccgagt acgacgcctg gctgatcaag atettegaag gegaecagtt caccagegge ttegtegaea teaateegaa eteeaagate

| 1 | Λ | 7 |
|---|---|---|
|   | U | 1 |

| ccgo                         | jccat                                                                                                                          | cgg t      | tcgad      | ccgci      | tc g       | ggcco      | ctgaa      | a ccç      | gttco       | cgcg       | tctt       | cgaa       | atc d      | cggcg      | gccatt     | 360 |
|------------------------------|--------------------------------------------------------------------------------------------------------------------------------|------------|------------|------------|------------|------------|------------|------------|-------------|------------|------------|------------|------------|------------|------------|-----|
| ctga                         | atgea                                                                                                                          | acc 1      | ttgct      | tgaa       | aa g       | tttgg      | gcgtt      | t tto      | cctgo       | ccaa       | ctto       | ccggo      | ccc d      | egeed      | gegee      | 420 |
| gagt                         | geet                                                                                                                           | tat (      | cctg       | gctgi      | tt c'      | tggca      | aggto      | c ggo      | ctcc        | geee       | cgtt       | cato       | cgg (      | cggcg      | gette      | 480 |
| ggco                         | cact                                                                                                                           | cct a      | acaa       | ctac       | gc c       | ccgat      | caaç       | g ato      | cgagt       | cacg       | cgat       | cgat       | ccg d      | ctato      | gccatg     | 540 |
| gaaa                         | accaa                                                                                                                          | age q      | geett      | tttc       | ga c       | gtgg       | ccaad      | c cgt      | cgco        | ctcg       | cgga       | aaago      | ccg (      | ctato      | ttgcg      | 600 |
| aaaa                         | jacga                                                                                                                          | aat a      | acaco      | gatco      | ge e       | gacci      | tgc        | c aco      | ctaca       | acct       | ggtt       | ccggo      | caa d      | catct      | accgc      | 660 |
| ggcg                         | jaago                                                                                                                          | ect a      | acggo      | cgago      | ga g       | gega       | cctt       | e etg      | gtcga       | atgc       | acga       | aatao      | cga a      | acaco      | gtegge     | 720 |
| cgct                         | gggt                                                                                                                           | ccg 🤅      | gcga       | gatco      | ga c       | gega       | ggad       | a aaa      | ggtgo       | ctgc       | aaaa       | ggegg      | gtt g      | ggtga      | actcc      | 780 |
| agca                         | aggo                                                                                                                           | gee t      | tggca      | agago      | cg t       | cacga      | acgco      | g ago      | gati        | tcg        | acgo       | ccct       | acc é      | gccgg      | gaatcg     | 840 |
| ttgo                         | aago                                                                                                                           | cga 1      | tcgt       | caage      | gg c       | ttctç      | ga         |            |             |            |            |            |            |            |            | 867 |
| <210<br><211<br><212<br><213 | 210> SEQ ID NO 18<br>211> LENGTH: 288<br>212> TYPE: PRT<br>213> ORGANISM: Novosphingobium aromaticivorans<br>400> SEQUENCE: 18 |            |            |            |            |            |            |            |             |            |            |            |            |            |            |     |
| <400                         | )> SH                                                                                                                          | EQUEI      | NCE :      | 18         |            |            |            |            |             |            |            |            |            |            |            |     |
| Met<br>1                     | Ser                                                                                                                            | Ser        | Glu        | Tyr<br>5   | Val        | Pro        | Pro        | Lys        | Val<br>10   | Trp        | Lys        | Trp        | Asp        | Lys<br>15  | Ala        |     |
| Asn                          | Gly                                                                                                                            | Gly        | Ala<br>20  | Phe        | Ala        | Ser        | Val        | Asn<br>25  | Arg         | Pro        | Val        | Ala        | Gly<br>30  | Pro        | Thr        |     |
| Ser                          | Glu                                                                                                                            | Arg<br>35  | Glu        | Leu        | Pro        | Val        | Gly<br>40  | Lys        | His         | Pro        | Phe        | Gln<br>45  | Val        | Tyr        | Ser        |     |
| Leu                          | Gly<br>50                                                                                                                      | Thr        | Pro        | Asn        | Gly        | Gln<br>55  | Lys        | Ala        | Thr         | Ile        | Met<br>60  | Leu        | Glu        | Glu        | Leu        |     |
| Leu<br>65                    | Gln                                                                                                                            | Leu        | Gly        | Phe        | Ser<br>70  | Glu        | Ala        | Glu        | Tyr         | Asp<br>75  | Ala        | Trp        | Leu        | Ile        | Lys<br>80  |     |
| Ile                          | Phe                                                                                                                            | Glu        | Gly        | Asp<br>85  | Gln        | Phe        | Thr        | Ser        | Gly<br>90   | Phe        | Val        | Asp        | Ile        | Asn<br>95  | Pro        |     |
| Asn                          | Ser                                                                                                                            | Гла        | Ile        | Pro        | Ala        | Met        | Val        | Asp        | Arg         | Ser        | Gly        | Pro        | Glu<br>110 | Pro        | Phe        |     |
| Arg                          | Val                                                                                                                            | Phe        | Glu        | Ser        | Gly        | Ala        | Ile        | Leu        | Met         | His        | Leu        | Ala        | Glu        | Lys        | Phe        |     |
| Gly                          | Val                                                                                                                            | 115<br>Phe | Leu        | Pro        | Thr        | Ser        | ⊥20<br>Gly | Pro        | Ala         | Arg        | Ala        | 125<br>Glu | Суз        | Leu        | Ser        |     |
| Trp                          | 130<br>Leu                                                                                                                     | Phe        | Trp        | Gln        | Val        | 135<br>Gly | Ser        | Ala        | Pro         | Phe        | 140<br>Ile | Gly        | Gly        | Gly        | Phe        |     |
| 145<br>Glv                   | His                                                                                                                            | Phe        | -<br>Tvr   | Asn        | 150<br>Tvr | Ala        | Pro        | Ile        | Lva         | 155<br>Ile | Glu        | -<br>Tvr   | -<br>Ala   | Ile        | 160<br>Asp |     |
| y<br>7                       |                                                                                                                                |            | -1 ±       | 165        | - J -      | TTT        | 7          | Lev        | -70<br>170  | 7~~        | u          | - J -      | 7          | 175        | r<br>}     |     |
| Arg                          | ıyr                                                                                                                            | АТА        | Met<br>180 | GIU        | Tnr        | гла        | Arg        | ьец<br>185 | rne         | Asp        | vai        | АІА        | Asn<br>190 | Arg        | Arg        |     |
| Leu                          | Ala                                                                                                                            | Glu<br>195 | Ser        | Arg        | Tyr        | Leu        | Ala<br>200 | Gly        | Asp         | Glu        | Tyr        | Thr<br>205 | Ile        | Ala        | Asp        |     |
| Leu                          | Ala<br>210                                                                                                                     | Thr        | Tyr        | Thr        | Trp        | Phe<br>215 | Gly        | Asn        | Ile         | Tyr        | Arg<br>220 | Gly        | Glu        | Ala        | Tyr        |     |
| Gly                          | Glu                                                                                                                            | Ala        | Ala        | Thr        | Phe        | Leu        | Ser        | Met        | His         | Glu        | Tyr        | Glu        | His        | Val        | Gly        |     |
| 225<br>Arg                   | Trp                                                                                                                            | Val        | Gly        | Glu        | 230<br>Ile | Asp        | Ala        | Arg        | Pro         | 235<br>Gly | Val        | Leu        | Arg        | Gly        | 240<br>Arg |     |
| -                            | Val                                                                                                                            | Aan        | -<br>Ser   | 245<br>Ser | Lare       | Glv        | Leu        | -<br>21-   | 250<br>Glui | Arc        | цiе        | Aan        | -<br>21-   | 255<br>Ser | Agn        |     |
| ыeu                          | val                                                                                                                            | LPII       | 260        | PGT.       | пуя        | этү        | леп        | 265        | GLU         | лц         | 1172       | чар        | 270        | Pet        | her        |     |

#### -continued

Phe Asp Ala Leu Pro Pro Glu Ser Leu Gln Ala Ile Val Lys Gly Phe 275 280 285

<210> SEQ ID NO 19 <211> LENGTH: 942 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: NaGSTNu (Recombinant) <400> SEQUENCE: 19 atgggacatc accatcatca ccatcaccat gcattggcaa gcgaaaatct gtattttcag 60 agegegateg caggaatgte etcagagtae gtteeeeega aggtetggaa gtgggacaag 120 gccaacggcg gcgccttcgc cagcgtcaac cgcccagtcg ccggcccgac gagcgagcgc 180 gaactgeegg teggeaagea teettteeag gtetattege teggeaegee caaegggeag 240 aaggccacga tcatgctgga agaactgctc cagctgggct tttccgaggc cgagtacgac 300 gcctggctga tcaagatctt cgaaggcgac cagttcacca gcggcttcgt cgacatcaat 360 ccgaacteca agateccgge catggtegac egetegggee etgaacegtt eegeqtette 420 gaatcoggog coattotgat geacettget gaaaagtttg gegtttteet gecaaettee 480 ggccccgccc gcgccgagtg cctatectgg ctgttetgge aggteggete egeecegtte 540 atcggcggcg gcttcggcca cttctacaac tacgccccga tcaagatcga gtacgcgatc 600 gategetatg ceatggaaae caagegeett ttegaegtgg ceaacegteg eetegeggaa 660 720 agcogotato ttgogggggga ogaatacaog atogoogaco ttgocacota cacotggtto ggcaacatct accgcggcga agcctacggc gaggcggcga ccttcctgtc gatgcacgaa 780 tacgaacacg tcggccgctg ggtcggcgag atcgacgcga ggccgggggt gctgcggggg 840 cggttggtga actccagcaa gggcctggca gagcgtcacg acgcgagcga tttcgacgcc 900 ctcccgccgg aatcgttgca agcgatcgtc aagggcttct ga 942 <210> SEQ ID NO 20 <211> LENGTH: 313 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: NaGSTNu (Recombinant) <400> SEQUENCE: 20 Met Gly His His His His His His His Ala Leu Ala Ser Glu Asn 1 15 5 10 Leu Tyr Phe Gln Ser Ala Ile Ala Gly Met Ser Ser Glu Tyr Val Pro 20 25 Pro Lys Val Trp Lys Trp Asp Lys Ala Asn Gly Gly Ala Phe Ala Ser 40 35 45 Val Asn Arg Pro Val Ala Gly Pro Thr Ser Glu Arg Glu Leu Pro Val 50 55 60 Gly Lys His Pro Phe Gln Val Tyr Ser Leu Gly Thr Pro Asn Gly Gln 75 80 65 70 Lys Ala Thr Ile Met Leu Glu Glu Leu Leu Gln Leu Gly Phe Ser Glu 85 90 95 Ala Glu Tyr Asp Ala Trp Leu Ile Lys Ile Phe Glu Gly Asp Gln Phe 100 105 110 Thr Ser Gly Phe Val Asp Ile Asn Pro Asn Ser Lys Ile Pro Ala Met 120 115 125

### -continued

| Val                          | Asp<br>130                       | Arg                              | Ser                          | Gly              | Pro        | Glu<br>135 | Pro        | Phe        | Arg        | Val        | Phe<br>140 | Glu        | Ser        | Gly        | Ala        |       |
|------------------------------|----------------------------------|----------------------------------|------------------------------|------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|-------|
| Ile<br>145                   | Leu                              | Met                              | His                          | Leu              | Ala<br>150 | Glu        | Lys        | Phe        | Gly        | Val<br>155 | Phe        | Leu        | Pro        | Thr        | Ser<br>160 |       |
| Gly                          | Pro                              | Ala                              | Arg                          | Ala<br>165       | Glu        | Сув        | Leu        | Ser        | Trp<br>170 | Leu        | Phe        | Trp        | Gln        | Val<br>175 | Gly        |       |
| Ser                          | Ala                              | Pro                              | Phe<br>180                   | Ile              | Gly        | Gly        | Gly        | Phe<br>185 | Gly        | His        | Phe        | Tyr        | Asn<br>190 | Tyr        | Ala        |       |
| Pro                          | Ile                              | Lys<br>195                       | Ile                          | Glu              | Tyr        | Ala        | Ile<br>200 | Asp        | Arg        | Tyr        | Ala        | Met<br>205 | Glu        | Thr        | Lys        |       |
| Arg                          | Leu<br>210                       | Phe                              | Asp                          | Val              | Ala        | Asn<br>215 | Arg        | Arg        | Leu        | Ala        | Glu<br>220 | Ser        | Arg        | Tyr        | Leu        |       |
| Ala<br>225                   | Gly                              | Asp                              | Glu                          | Tyr              | Thr<br>230 | Ile        | Ala        | Asp        | Leu        | Ala<br>235 | Thr        | Tyr        | Thr        | Trp        | Phe<br>240 |       |
| Gly                          | Asn                              | Ile                              | Tyr                          | Arg<br>245       | Gly        | Glu        | Ala        | Tyr        | Gly<br>250 | Glu        | Ala        | Ala        | Thr        | Phe<br>255 | Leu        |       |
| Ser                          | Met                              | His                              | Glu<br>260                   | Tyr              | Glu        | His        | Val        | Gly<br>265 | Arg        | Trp        | Val        | Gly        | Glu<br>270 | Ile        | Asp        |       |
| Ala                          | Arg                              | Pro<br>275                       | Gly                          | Val              | Leu        | Arg        | Gly<br>280 | Arg        | Leu        | Val        | Asn        | Ser<br>285 | Ser        | Lys        | Gly        |       |
| Leu                          | Ala<br>290                       | Glu                              | Arg                          | His              | Asp        | Ala<br>295 | Ser        | Asp        | Phe        | Asp        | Ala<br>300 | Leu        | Pro        | Pro        | Glu        |       |
| Ser<br>305                   | Leu                              | Gln                              | Ala                          | Ile              | Val<br>310 | Lya        | Gly        | Phe        |            |            |            |            |            |            |            |       |
| <210<br><211<br><212<br><213 | )> SE<br>.> LE<br>:> TY<br>:> OF | EQ II<br>ENGTH<br>(PE :<br>RGANI | ) NO<br>1: 90<br>DNA<br>ISM: | 21<br>00<br>Sphi | ingol      | oium       | sp.        | SYK-       | - 6        |            |            |            |            |            |            |       |
| <400                         | )> SE                            | EQUEN                            | ICE :                        | 21               |            |            |            |            |            |            |            |            |            |            |            |       |
| atgo                         | lccda                            | aca g                            | jcgad                        | cccct            | c ca       | itgaa      | iccag      | g oct      | acag       | gct        | atgt       | geeg       | gec (      | caago      | gtctgg     | 60    |
| acct                         | ggga                             | aca a                            | aggag                        | gaato            | gg cg      | gggca      | gtto       | tco        | caaca      | atca       | atgo       | gccg       | gac g      | ggcgg      | gegee      | 120   |
| cggo                         | agga                             | acg t                            | cace                         | getge            | c to       | gtggg      | Jegag      | g cad      | ccca       | atcc       | agct       | ctat       | tc ș       | gctgg      | ggcacg     | 180   |
| ccga                         | acgo                             | gee a                            | igaaa                        | agtca            | ac ca      | atcat      | gete       | gag        | ggago      | ctgc       | tggo       | ggco       | cgg 1      | tttcg      | gaegeg     | 240   |
| gaat                         | atga                             | atg c                            | ctg                          | getea            | at ca      | agat       | ctac       | acc        | ggcg       | jagc       | agtt       | cggo       | cag (      | cgact      | tcgtc      | 300   |
| gcga                         | itcaa                            | atc c                            | ccaad                        | cagea            | aa ga      | atccc      | ggcg       | g ato      | gatgo      | gacc       | atgo       | gette      | gga (      | cccgo      | cattg      | 360   |
| cgco                         | tgtt                             | tg a                             | agago                        | cggat            | c ga       | atget      | ggto       | tat        | ctte       | geeg       | agaa       | agtto      | cgg (      | cgcct      | tcctc      | 420   |
| ccca                         | ıccga                            | aga t                            | ccgo                         | caago            | cg ca      | accga      | gaco       | tto        | caact      | ggc        | tgat       | gtgg       | gca g      | gatgo      | ggttcg     | 480   |
| gcgo                         | catt                             | cg t                             | gggo                         | cggcg            | gg at      | tcgg       | gcat       | tto        | state      | geet       | atgo       | gcco       | gtt (      | caaga      | atcgaa     | 540   |
| tato                         | ıcgat                            | cg a                             | accgo                        | ctato            | ge ea      | atgga      | igaco      | aaq        | gegee      | cagc       | tcga       | acgto      | gct g      | ggaca      | agaac      | 600   |
| ctgg                         | lccda                            | acc c                            | gegae                        | gttca            | at ga      | atcgo      | gegae      | gaq        | gatca      | acca       | ttgo       | ggad       | ett (      | cgcca      | atcttc     | 660   |
| ccct                         | ggta                             | acg g                            | gates                        | gatca            | at go      | gege       | ledde      | tac        | caato      | Jcgc       | agga       | aatto      | ect (      | ctcca      | acccat     | 720   |
| gaat                         | atco                             | gca a                            | atgto                        | cgato            | cg ct      | gggt       | gacg       | g cag      | gcttt      | ccg        | agco       | gcaco      | gg g       | ggtca      | agcgg      | r 780 |
| ggco                         | tgct                             | cg t                             | gaad                         | cageo            | ge eg      | gccc       | gccg       | a aad      | gggg       | ıgca       | tcgo       | ccgaç      | geg (      | gcaca      | agegee     | 840   |
| gcco                         | jatct                            | igg a                            | ecgco                        | gtcca            | at ca      | aggo       | egec       | gag        | gcaag      | jaag       | ccgo       | gaag       | gac (      | cgago      | gcctga     | 900   |
|                              |                                  |                                  |                              |                  |            |            |            |            |            |            |            |            |            |            |            |       |

<210> SEQ ID NO 22 <211> LENGTH: 299 <212> TYPE: PRT

| <213> ORGANI                                                                                                                                                                                                     | SM: Spl        | ningobi        | .um sp.        | SYK-       | 6          |            |            |            |            |            |            |   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------|----------------|------------|------------|------------|------------|------------|------------|------------|------------|---|
| <400> SEQUEN                                                                                                                                                                                                     | ICE: 22        |                |                |            |            |            |            |            |            |            |            |   |
| Met Ala Asp<br>1                                                                                                                                                                                                 | Ser Asj<br>5   | ) Pro S        | Ser Met        | Asn        | Gln<br>10  | Pro        | Thr        | Gly        | Tyr        | Val<br>15  | Pro        |   |
| Pro Lys Val                                                                                                                                                                                                      | Trp Th:<br>20  | r Trp A        | yab rAa        | Glu<br>25  | Asn        | Gly        | Gly        | Gln        | Phe<br>30  | Ser        | Asn        |   |
| Ile Asn Ala<br>35                                                                                                                                                                                                | Pro Th         | Ala G          | ly Ala<br>40   | Arg        | Gln        | Asp        | Val        | Thr<br>45  | Leu        | Pro        | Val        |   |
| Gly Glu His<br>50                                                                                                                                                                                                | Pro Ile        | e Gln L<br>5   | leu Tyr<br>55  | Ser        | Leu        | Gly        | Thr<br>60  | Pro        | Asn        | Gly        | Gln        |   |
| Lys Val Thr<br>65                                                                                                                                                                                                | Ile Me         | : Leu G<br>70  | Glu Glu        | Leu        | Leu        | Ala<br>75  | Ala        | Gly        | Phe        | Aab        | Ala<br>80  |   |
| Glu Tyr Asp                                                                                                                                                                                                      | Ala Trj<br>85  | ) Leu I        | le Lys         | Ile        | Tyr<br>90  | Thr        | Gly        | Glu        | Gln        | Phe<br>95  | Gly        |   |
| Ser Asp Phe                                                                                                                                                                                                      | Val Ala<br>100 | a Ile A        | Asn Pro        | Asn<br>105 | Ser        | Lys        | Ile        | Pro        | Ala<br>110 | Met        | Met        |   |
| Asp His Gly<br>115                                                                                                                                                                                               | Leu Asj        | ) Pro P        | ro Leu<br>120  | Arg        | Leu        | Phe        | Glu        | Ser<br>125 | Gly        | Ser        | Met        |   |
| Leu Val Tyr<br>130                                                                                                                                                                                               | Leu Ala        | a Glu L<br>1   | ys Phe<br>35   | Gly        | Ala        | Phe        | Leu<br>140 | Pro        | Thr        | Glu        | Ile        |   |
| Arg Lys Arg<br>145                                                                                                                                                                                               | Thr Gl         | 1 Thr P<br>150 | he Asn         | Trp        | Leu        | Met<br>155 | Trp        | Gln        | Met        | Gly        | Ser<br>160 |   |
| Ala Pro Phe                                                                                                                                                                                                      | Val Gl<br>16   | 7 Gly G        | Sly Phe        | Gly        | His<br>170 | Phe        | Tyr        | Ala        | Tyr        | Ala<br>175 | Pro        |   |
| Phe Lys Ile                                                                                                                                                                                                      | Glu Ty:<br>180 | Ala I          | le Asp         | Arg<br>185 | Tyr        | Ala        | Met        | Glu        | Thr<br>190 | Lys        | Arg        |   |
| Gln Leu Asp<br>195                                                                                                                                                                                               | Val Le         | ı Asp L        | ys Asn<br>200  | Leu        | Ala        | Asp        | Arg        | Glu<br>205 | Phe        | Met        | Ile        |   |
| Gly Asp Glu<br>210                                                                                                                                                                                               | Ile Th         | r Ile A<br>2   | Ala Asp<br>215 | Phe        | Ala        | Ile        | Phe<br>220 | Pro        | Trp        | Tyr        | Gly        |   |
| Ser Ile Met<br>225                                                                                                                                                                                               | Arg Gl         | 7 Gly T<br>230 | 'yr Asn        | Ala        | Gln        | Glu<br>235 | Phe        | Leu        | Ser        | Thr        | His<br>240 |   |
| Glu Tyr Arg                                                                                                                                                                                                      | Asn Va<br>24   | L Asp A        | Arg Trp        | Val        | Thr<br>250 | Gln        | Leu        | Ser        | Glu        | Arg<br>255 | Thr        |   |
| Gly Val Lys                                                                                                                                                                                                      | Arg Gly<br>260 | / Leu L        | Jeu Val        | Asn<br>265 | Ser        | Ala        | Gly        | Arg        | Pro<br>270 | Gly        | Gly        |   |
| Gly Ile Ala<br>275                                                                                                                                                                                               | Glu Arg        | g His S        | Ser Ala<br>280 | Ala        | Asp        | Leu        | Asp        | Ala<br>285 | Ser        | Ile        | Lys        |   |
| Ala Ala Glu<br>290                                                                                                                                                                                               | Gln Gl         | ı Ala A<br>2   | Ala Lys<br>295 | Thr        | Glu        | Ala        |            |            |            |            |            |   |
| <pre>230 295 &lt;210&gt; SEQ ID NO 23 &lt;211&gt; LENGTH: 975 &lt;212&gt; TYPE: DNA &lt;213&gt; ORGANISM: Artificial Sequence &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: SYK6GSTNu (Recombinant) </pre> |                |                |                |            |            |            |            |            |            |            |            |   |
| atgggacatc a                                                                                                                                                                                                     | ccatca         | ca cca         | itcaccat       | : gca      | ttgg       | gcaa       | gcga       | aaaa       | cct q      | gtati      | ttcag 6    | 0 |
| agcgcgatcg c                                                                                                                                                                                                     | aggaat         | jgc cga        | ictcagat       | c dda      | itcca      | atga       | atca       | agec       | gac ç      | gggtt      | acgtc 12   | 0 |
| ccgccgaaag t                                                                                                                                                                                                     | ttggac         | tg gga         | caaagag        | g aac      | ggcg       | ggtc       | agtt       | cago       | caa t      | tatca      | aacgcc 18  | 0 |
| cctacggctg g                                                                                                                                                                                                     | tgcgcg         | cca gga        | cgtcace        | g cto      | cct        | gtag       | ggga       | agca       | ccc t      | atco       | caatta 24  | 0 |

115

### -continued

| tatagtct                                                             | ccg g                                            | cact                           | ccga                     | aa to         | ggtca        | agaaa          | a gti       | cacta      | atca       | tgtt       | ggaa       | aga a      | actgo      | etgget     |    | 300 |  |
|----------------------------------------------------------------------|--------------------------------------------------|--------------------------------|--------------------------|---------------|--------------|----------------|-------------|------------|------------|------------|------------|------------|------------|------------|----|-----|--|
| gctggctt                                                             | tg a                                             | tgct                           | gagt                     | ta to         | gacgo        | cctgg          | g cto       | catca      | aaaa       | tcta       | acaca      | agg d      | cgago      | caattc     |    | 360 |  |
| ggatctga                                                             | att t                                            | cgto                           | cgcca                    | at ta         | aacco        | ctaat          | : ago       | caaaa      | attc       | cggo       | ctatç      | gat ç      | ggaco      | catggt     | 4  | 120 |  |
| ctcgatco                                                             | ogc c                                            | gcto                           | ccgtt                    | t at          | ttga         | agtct          | c ggt       | tcta       | atgt       | tagt       | ttat       | cct o      | ggeeg      | gaaaag     | 4  | 180 |  |
| tttggcgd                                                             | cat t                                            | ccto                           | cccga                    | ac co         | gaaat        | cccgo          | c aaa       | acgta      | acgg       | aaa        | cctt       | caa d      | ctggo      | ctcatg     | į  | 540 |  |
| tggcagat                                                             | ad d                                             | ttct                           | gct                      | ee tt         | ttgt         | gggt           | ggt         | zgget      | ttg        | gcca       | actto      | cta t      | gegt       | acgcc      | (  | 500 |  |
| ccatttaa                                                             | aaa t                                            | cgaa                           | atato                    | ge ca         | attga        | atcgt          | t ta        | cgcga      | atgg       | aaa        | ccaaç      | geg (      | ccaa       | ctggac     |    | 560 |  |
| gttetgga                                                             | ata a                                            | .aaat                          | ctg                      | ge cé         | gatco        | gtgaa          | a tti       | tatga      | atcg       | gcga       | atgaa      | aat d      | cacca      | atcgca     |    | 720 |  |
| gattttg                                                              | cga t                                            | ttto                           | ccct                     | cg gt         | cacgo        | geteç          | g ati       | catgo      | cgtg       | gcgé       | gttad      | caa d      | gege       | caagaa     |    | 780 |  |
| ttcttgaq                                                             | јса с                                            | tcad                           | cgagt                    | ta co         | gtaa         | acgtt          | : gat       | ccgct      | ggg        | ttad       | cgcaq      | get t      | tctç       | gaacgt     | \$ | 340 |  |
| acgggcgt                                                             | caa a                                            | .gcgt                          | ggt                      | et co         | ttgt         | caat           | t to        | cgcgg      | ggtc       | gcco       | ggga       | agg t      | ggca       | attgcg     | 9  | 900 |  |
| gaacgcca                                                             | ata g                                            | cgcé                           | ggeto                    | ga ti         | taga         | acgco          | g tco       | gatta      | aaag       | cggo       | etgaa      | aca a      | agago      | geegeg     | -  | 960 |  |
| aagaccga                                                             | aag c                                            | ttaa                           | a                        |               |              |                |             |            |            |            |            |            |            |            | -  | 975 |  |
| <210> SH<br><211> LH<br><212> TY<br><213> OH<br><220> FH<br><223> OY | EQ ID<br>ENGTH<br>YPE:<br>RGANI<br>EATUR<br>THER | NO<br>PRT<br>SM:<br>E:<br>INFC | 24<br>24<br>Art:<br>DRMA | ific:<br>FION | ial s<br>SYI | Seque<br>K6GS1 | ence<br>FNu | (Reco      | ombiı      | nant;      |            |            |            |            |    |     |  |
| <400> SH                                                             | EQUEN                                            | ICE :                          | 24                       |               |              |                |             |            |            |            |            |            |            |            |    |     |  |
| Met Gly<br>1                                                         | His                                              | His                            | His<br>5                 | His           | His          | His            | His         | His<br>10  | Ala        | Leu        | Ala        | Ser        | Glu<br>15  | Asn        |    |     |  |
| Leu Tyr                                                              | Phe                                              | Gln<br>20                      | Ser                      | Ala           | Ile          | Ala            | Gly<br>25   | Met        | Ala        | Asp        | Ser        | Asp<br>30  | Pro        | Ser        |    |     |  |
| Met Asn                                                              | Gln<br>35                                        | Pro                            | Thr                      | Gly           | Tyr          | Val<br>40      | Pro         | Pro        | Lys        | Val        | Trp<br>45  | Thr        | Trp        | Asp        |    |     |  |
| Lys Glu<br>50                                                        | Asn                                              | Gly                            | Gly                      | Gln           | Phe<br>55    | Ser            | Asn         | Ile        | Asn        | Ala<br>60  | Pro        | Thr        | Ala        | Gly        |    |     |  |
| Ala Arg<br>65                                                        | Gln                                              | Asp                            | Val                      | Thr<br>70     | Leu          | Pro            | Val         | Gly        | Glu<br>75  | His        | Pro        | Ile        | Gln        | Leu<br>80  |    |     |  |
| Tyr Ser                                                              | Leu                                              | Gly                            | Thr<br>85                | Pro           | Asn          | Gly            | Gln         | Lys<br>90  | Val        | Thr        | Ile        | Met        | Leu<br>95  | Glu        |    |     |  |
| Glu Leu                                                              | Leu                                              | Ala<br>100                     | Ala                      | Gly           | Phe          | Asp            | Ala<br>105  | Glu        | Tyr        | Asp        | Ala        | Trp<br>110 | Leu        | Ile        |    |     |  |
| Lys Ile                                                              | Tyr<br>115                                       | Thr                            | Gly                      | Glu           | Gln          | Phe<br>120     | Gly         | Ser        | Asp        | Phe        | Val<br>125 | Ala        | Ile        | Asn        |    |     |  |
| Pro Asn<br>130                                                       | Ser                                              | Lys                            | Ile                      | Pro           | Ala<br>135   | Met            | Met         | Asp        | His        | Gly<br>140 | Leu        | Asp        | Pro        | Pro        |    |     |  |
| Leu Arg<br>145                                                       | Leu                                              | Phe                            | Glu                      | Ser<br>150    | Gly          | Ser            | Met         | Leu        | Val<br>155 | Tyr        | Leu        | Ala        | Glu        | Lys<br>160 |    |     |  |
| Phe Gly                                                              | Ala                                              | Phe                            | Leu<br>165               | Pro           | Thr          | Glu            | Ile         | Arg<br>170 | Lys        | Arg        | Thr        | Glu        | Thr<br>175 | Phe        |    |     |  |
| Asn Trp                                                              | Leu                                              | Met<br>180                     | Trp                      | Gln           | Met          | Gly            | Ser<br>185  | Ala        | Pro        | Phe        | Val        | Gly<br>190 | Gly        | Gly        |    |     |  |
| Phe Gly                                                              | His<br>195                                       | Phe                            | Tyr                      | Ala           | Tyr          | Ala<br>200     | Pro         | Phe        | Lys        | Ile        | Glu<br>205 | Tyr        | Ala        | Ile        |    |     |  |
| Asp Arg                                                              | Tyr                                              | Ala                            | Met                      | Glu           | Thr<br>215   | Lys            | Arg         | Gln        | Leu        | Asp        | Val        | Leu        | Asp        | Lya        |    |     |  |
| Asn Leu                                                              | Ala                                              | Asp                            | Ara                      | Glu           | Phe          | Met            | Ile         | Glv        | Asp        | Glu        | Ile        | Thr        | Ile        | Ala        |    |     |  |
|                                                                      |                                                  | -~P                            | 9                        |               |              |                |             | z          | P          |            |            |            |            | · **       |    |     |  |

117

### -continued

| 225 230 235 240                                                                                                                      |            |
|--------------------------------------------------------------------------------------------------------------------------------------|------------|
| Asp Phe Ala Ile Phe Pro Trp Tyr Gly Ser Ile Met Arg Gly Gly Tyr<br>245 250 255                                                       |            |
| Asn Ala Gln Glu Phe Leu Ser Thr His Glu Tyr Arg Asn Val Asp Arg                                                                      |            |
| 260 265 270                                                                                                                          |            |
| Trp Val Thr Gln Leu Ser Glu Arg Thr Gly Val Lys Arg Gly Leu Leu<br>275 280 285                                                       |            |
| Val Asn Ser Ala Gly Arg Pro Gly Gly Gly Ile Ala Glu Arg His Ser                                                                      |            |
| 290 295 300                                                                                                                          |            |
| 305       310       315       320                                                                                                    |            |
| Lys Thr Glu Ala                                                                                                                      |            |
| <210> SEQ ID NO 25<br><211> LENGTH: 867<br><212> TYPE: DNA<br><213> ORGANISM: Escherichia coli                                       |            |
| <400> SEQUENCE: 25                                                                                                                   |            |
| atgacagaca atacttatca gcccgcgaaa gtctggacgt gggataaatc cgctggcggc                                                                    | 60         |
| gcgttcgcca atatcaatcg cccggtttct ggtccgacgc atgaaaaaac gctgcccgtt                                                                    | 120        |
| ggcaaacacc cattgcaact ttattcgctg ggaacgccga acggtcagaa agtaacgatt                                                                    | 180        |
| atgettgagg agetgetgge getgggegtt aetggtgeag agtaegaege etggetgatt                                                                    | 240        |
| cgtattggcg atggcgatca attctccagc ggctttgtcg aagtgaaccc aaactcgaag                                                                    | 300        |
| ateceggege tgegegatea taegeataat eegeegatee gegtgtttga atetggtteg                                                                    | 360        |
| ateetgettt atetggegga gaaatttgge taetteetge egeaggattt ggeaaagegt                                                                    | 420        |
| actgaaacga tgaactggct gttctggtta cagggcgcgg caccgtteet eggeggtggt                                                                    | 480        |
| tttggtcact tttaccatta cgcaccggta aagattgagt acgccatcaa ccgctttacc                                                                    | 540        |
| atggaagcca aacgtctgct cgacgtgctg gataagcaac tggcgcagca taagtttgtt                                                                    | 600        |
| gegggegatg agtacaccat tgeggatatg gegatttgge egtggtttgg caaegtggtg                                                                    | 660        |
| ttaggtggtg tgtatgatgc cgctgagttt cttgatgcgg gcagttataa gcatgtacaa                                                                    | 720        |
| egetgggega aagaagtagg egaaegteeg geggtgaaae gtgggegtat tgttaaeege                                                                    | 240<br>240 |
| accaacyyac cyclyaarya ycayrrycar yaycyccary acyccayrya rricyayacy                                                                    | 867        |
| <pre>&lt;210&gt; SEQ ID NO 26<br/>&lt;211&gt; LENGTH: 288<br/>&lt;212&gt; TYPE: PRT<br/>&lt;213&gt; ORGANISM: Escherichia coli</pre> |            |
| <400> SEQUENCE: 26                                                                                                                   |            |
| Met Thr Asp Asn Thr Tyr Gln Pro Ala Lys Val Trp Thr Trp Asp Lys<br>1 5 10 15                                                         |            |
| Ser Ala Gly Gly Ala Phe Ala Asn Ile Asn Arg Pro Val Ser Gly Pro<br>20 25 30                                                          |            |
| Thr His Glu Lys Thr Leu Pro Val Gly Lys His Pro Leu Gln Leu Tyr<br>35 40 45                                                          |            |
| Ser Leu Gly Thr Pro Asn Gly Gln Lys Val Thr Ile Met Leu Glu Glu<br>50 55 60                                                          |            |
| Leu Leu Ala Leu Gly Val Thr Gly Ala Glu Tyr Asn Ala Trn Leu Ile                                                                      |            |

#### -continued

Arg Ile Gly Asp Gly Asp Gln Phe Ser Ser Gly Phe Val Glu Val Asn Pro Asn Ser Lys Ile Pro Ala Leu Arg Asp His Thr His Asn Pro Pro Ile Arg Val Phe Glu Ser Gly Ser Ile Leu Leu Tyr Leu Ala Glu Lys Phe Gly Tyr Phe Leu Pro Gln Asp Leu Ala Lys Arg Thr Glu Thr Met Asn Trp Leu Phe Trp Leu Gln Gly Ala Ala Pro Phe Leu Gly Gly Gly Phe Gly His Phe Tyr His Tyr Ala Pro Val Lys Ile Glu Tyr Ala Ile Asn Arg Phe Thr Met Glu Ala Lys Arg Leu Leu Asp Val Leu Asp Lys Gln Leu Ala Gln His Lys Phe Val Ala Gly Asp Glu Tyr Thr Ile Ala Asp Met Ala Ile Trp Pro Trp Phe Gly Asn Val Val Leu Gly Gly Val Tyr Asp Ala Ala Glu Phe Leu Asp Ala Gly Ser Tyr Lys His Val Gln Arg Trp Ala Lys Glu Val Gly Glu Arg Pro Ala Val Lys Arg Gly Arg Ile Val Asn Arg Thr Asn Gly Pro Leu Asn Glu Gln Leu His Glu Arg His Asp Ala Ser Asp Phe Glu Thr Asn Thr Glu Asp Lys Arg Gln Gly <210> SEQ ID NO 27 <211> LENGTH: 942 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: ecYghU (Recombinant) <400> SEQUENCE: 27 atgggacatc accatcatca ccatcaccat gcattggcaa gcgaaaatct gtattttcag agegegateg caggaatgae agacaataet tateageeeg egaaagtetg gaegtgggat aaatccgctg gcggcgcgtt cgccaatatc aatcgcccgg tttctggtcc gacgcatgaa aaaacgctgc ccgttggcaa acacccattg caactttatt cgctgggaac gccgaacggt cagaaagtaa cgattatgct tgaggagctg ctggcgctgg gcgttactgg tgcagagtac gacgcctggc tgattcgtat tggcgatggc gatcaattct ccagcggctt tgtcgaagtg aacccaaact cgaagateee ggegetgege gateataege ataateegee gateegegtg tttgaatctg gttcgatcct gctttatctg gcggagaaat ttggctactt cctgccgcag gatttggcaa agcgtactga aacgatgaac tggctgttct ggttacaggg cgcggcaccg ttcctcggcg gtggttttgg tcacttttac cattacgcac cggtaaagat tgagtacgcc atcaaccgct ttaccatgga agccaaacgt ctgctcgacg tgctggataa gcaactggcg cagcataagt ttgttgcggg cgatgagtac accattgcgg atatggcgat ttggccgtgg tttggcaacg tggtgttagg tggtgtgtat gatgccgctg agtttcttga tgcgggcagt tataagcatg tacaacgctg ggcgaaagaa gtaggcgaac gtccggcggt gaaacgtggg cgtattgtta accgcaccaa cggaccgctg aatgagcagt tgcatgagcg ccatgacgcc

-continued

agtgatttcg agacgaatac ggaagataag cgtcaggggt aa <210> SEQ ID NO 28 <211> LENGTH: 313 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: ecYghU (Recombinant) <400> SEQUENCE: 28 Met Gly His His His His His His His Ala Leu Ala Ser Glu Asn Leu Tyr Phe Gln Ser Ala Ile Ala Gly Met Thr Asp Asn Thr Tyr Gln Pro Ala Lys Val Trp Thr Trp Asp Lys Ser Ala Gly Gly Ala Phe Ala Asn Ile Asn Arg Pro Val Ser Gly Pro Thr His Glu Lys Thr Leu Pro Val Gly Lys His Pro Leu Gln Leu Tyr Ser Leu Gly Thr Pro Asn Gly Gln Lys Val Thr Ile Met Leu Glu Glu Leu Leu Ala Leu Gly Val Thr Gly Ala Glu Tyr Asp Ala Trp Leu Ile Arg Ile Gly Asp Gly Asp Gln Phe Ser Ser Gly Phe Val Glu Val Asn Pro Asn Ser Lys Ile Pro Ala Leu Arg Asp His Thr His Asn Pro Pro Ile Arg Val Phe Glu Ser Gly Ser Ile Leu Leu Tyr Leu Ala Glu Lys Phe Gly Tyr Phe Leu Pro Gln Asp Leu Ala Lys Arg Thr Glu Thr Met Asn Trp Leu Phe Trp Leu Gln Gly Ala Ala Pro Phe Leu Gly Gly Gly Phe Gly His Phe Tyr His Tyr Ala Pro Val Lys Ile Glu Tyr Ala Ile Asn Arg Phe Thr Met Glu Ala Lys Arg Leu Leu Asp Val Leu Asp Lys Gln Leu Ala Gln His Lys Phe Val Ala Gly Asp Glu Tyr Thr Ile Ala Asp Met Ala Ile Trp Pro Trp Phe Gly Asn Val Val Leu Gly Gly Val Tyr Asp Ala Ala Glu Phe Leu Asp Ala Gly Ser Tyr Lys His Val Gln Arg Trp Ala Lys Glu Val Gly 260 265 270 Glu Arg Pro Ala Val Lys Arg Gly Arg Ile Val Asn Arg Thr Asn Gly Pro Leu Asn Glu Gln Leu His Glu Arg His Asp Ala Ser Asp Phe Glu Thr Asn Thr Glu Asp Lys Arg Gln Gly <210> SEQ ID NO 29 <211> LENGTH: 648

<212> TYPE: DNA
<213> ORGANISM: Escherichia coli

### 124

### -continued

| <400                         | )> SI                            | EQUE                          | NCE :                        | 29               |            |            |            |            |            |            |            |            |            |            |            |   |     |
|------------------------------|----------------------------------|-------------------------------|------------------------------|------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|---|-----|
| atga                         | atcga                            | atc                           | tctat                        | ttc              | ge eo      | ccgao      | cacco      | c aat      | ggto       | caca       | aaat       | tace       | get o      | gttto      | ctcgaa     |   | 60  |
| gaaq                         | gcaga                            | agc                           | tggat                        | tato             | cg ct      | tgat       | taag       | g gta      | agaco      | ctgg       | ggaa       | aaggo      | cgg 1      | tcagt      | ttcgt      | 1 | L20 |
| ccgg                         | yaatt                            | tt                            | tgcgo                        | cattt            | cc go      | cccaa      | acaac      | aaa        | aatto      | ccgg       | caat       | tgtt       | :ga 1      | tcatt      | ctcct      | 1 | L80 |
| gcco                         | gatgo                            | gcg                           | gcgaa                        | accgo            | ct aa      | agcct      | cttt       | gag        | gtcto      | ggtg       | ccat       | tttç       | gtt o      | gtato      | tggct      | 2 | 240 |
| gaga                         | aaad                             | cag                           | gacto                        | ettt             | t ga       | agtca      | atgaa      | a aco      | gcgtg      | gagc       | gcgo       | cegeo      | cac a      | attad      | agtgg      | 3 | 300 |
| ttat                         | tctç                             | ggc                           | aggta                        | aggeg            | gg ad      | ctggg      | ggccg      | g ato      | gette      | gggc       | aaaa       | atcat      | ca 1       | tttta      | aatcac     | 3 | 360 |
| gcag                         | geeed                            | ccc                           | aaaco                        | catto            | cc tt      | acgo       | ctatt      | gaa        | acgtt      | atc        | aggt       | tgaa       | aac 1      | tcago      | gtett      | 4 | 120 |
| taco                         | atgt                             | cac                           | tgaa                         | caago            | cg go      | tgga       | aaaac      | t t co     | geeet      | ggc        | tggg       | gaggo      | ga g       | gaact      | acagc      | 4 | 180 |
| atto                         | gegga                            | ata                           | ttgc                         | ctgct            | g go       | ccgto      | gggtt      | : aat      | geet       | gga        | ctcç       | gccaç      | geg a      | aatto      | gaccta     | 5 | 540 |
| gcaa                         | atgta                            | atc                           | cggca                        | agtca            | aa ga      | aacto      | ggcat      | gag        | gcgga      | atcc       | gtto       | cgcgo      | cc 1       | tgcca      | accggg     | e | 500 |
| cage                         | gcact                            | gc                            | taaa                         | agcad            | ca ao      | ctcg       | gtgat      | gaq        | gcgtt      | cgg        | ataç       | gttaa      | a          |            |            | e | 548 |
| <210<br><211<br><212<br><213 | )> SH<br>_> LH<br>2> TY<br>3> OH | EQ I<br>ENGT<br>(PE :<br>RGAN | D NO<br>H: 2:<br>PRT<br>ISM: | 30<br>15<br>Esci | nerio      | chia       | coli       |            |            |            |            |            |            |            |            |   |     |
| <400                         | )> SH                            | EQUE:                         | NCE:                         | 30               |            |            | _          |            | _          | _          |            |            | _          |            |            |   |     |
| Met<br>1                     | Ile                              | Asp                           | Leu                          | Tyr<br>5         | Phe        | Ala        | Pro        | Thr        | Pro<br>10  | Asn        | Gly        | His        | Lys        | Ile<br>15  | Thr        |   |     |
| Leu                          | Phe                              | Leu                           | Glu<br>20                    | Glu              | Ala        | Glu        | Leu        | Asp<br>25  | Tyr        | Arg        | Leu        | Ile        | Lys<br>30  | Val        | Asp        |   |     |
| Leu                          | Gly                              | Lys<br>35                     | Gly                          | Gly              | Gln        | Phe        | Arg<br>40  | Pro        | Glu        | Phe        | Leu        | Arg<br>45  | Ile        | Ser        | Pro        |   |     |
| Asn                          | Asn<br>50                        | Lys                           | Ile                          | Pro              | Ala        | Ile<br>55  | Val        | Asp        | His        | Ser        | Pro<br>60  | Ala        | Asp        | Gly        | Gly        |   |     |
| Glu<br>65                    | Pro                              | Leu                           | Ser                          | Leu              | Phe<br>70  | Glu        | Ser        | Gly        | Ala        | Ile<br>75  | Leu        | Leu        | Tyr        | Leu        | Ala<br>80  |   |     |
| Glu                          | Lys                              | Thr                           | Gly                          | Leu<br>85        | Phe        | Leu        | Ser        | His        | Glu<br>90  | Thr        | Arg        | Glu        | Arg        | Ala<br>95  | Ala        |   |     |
| Thr                          | Leu                              | Gln                           | Trp<br>100                   | Leu              | Phe        | Trp        | Gln        | Val<br>105 | Gly        | Gly        | Leu        | Gly        | Pro<br>110 | Met        | Leu        |   |     |
| Gly                          | Gln                              | Asn<br>115                    | His                          | His              | Phe        | Asn        | His<br>120 | Ala        | Ala        | Pro        | Gln        | Thr<br>125 | Ile        | Pro        | Tyr        |   |     |
| Ala                          | Ile<br>130                       | Glu                           | Arg                          | Tyr              | Gln        | Val<br>135 | Glu        | Thr        | Gln        | Arg        | Leu<br>140 | Tyr        | His        | Val        | Leu        |   |     |
| Asn<br>145                   | Lys                              | Arg                           | Leu                          | Glu              | Asn<br>150 | Ser        | Pro        | Trp        | Leu        | Gly<br>155 | Gly        | Glu        | Asn        | Tyr        | Ser<br>160 |   |     |
| Ile                          | Ala                              | Asp                           | Ile                          | Ala<br>165       | Cys        | Trp        | Pro        | Trp        | Val<br>170 | Asn        | Ala        | Trp        | Thr        | Arg<br>175 | Gln        |   |     |
| Arg                          | Ile                              | Asp                           | Leu<br>180                   | Ala              | Met        | Tyr        | Pro        | Ala<br>185 | Val        | Lys        | Asn        | Trp        | His<br>190 | Glu        | Arg        |   |     |
| Ile                          | Arg                              | Ser<br>195                    | Arg                          | Pro              | Ala        | Thr        | Gly<br>200 | Gln        | Ala        | Leu        | Leu        | Lys<br>205 | Ala        | Gln        | Leu        |   |     |
| Gly                          | Asp<br>210                       | Glu                           | Arg                          | Ser              | Asp        | Ser<br>215 |            |            |            |            |            |            |            |            |            |   |     |
| -210                         | ) < C1                           | го т <sup>.</sup>             |                              | 31               |            |            |            |            |            |            |            |            |            |            |            |   |     |

<210> SEQ ID NO 31 <211> LENGTH: 789 <212> TYPE: DNA <213> ORGANISM: Streptococcus sanguinis

-continued

| <400                         | )> SB                            | EQUEI                            | NCE :                        | 31               |            |            |            |            |            |            |            |            |            |            |            |     |
|------------------------------|----------------------------------|----------------------------------|------------------------------|------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|-----|
| atga                         | accta                            | atc a                            | aatto                        | geca             | aa aq      | gtct       | ggtct      | c get      | gago       | gaca       | gcga       | accaa      | agg g      | gaaat      | tttca      | 60  |
| ggta                         | atcaa                            | atc a                            | ageet                        | cacto            | gc ag      | ggcgi      | zgegt      | t tt       | gago       | caga       | agct       | tcci       | tgt (      | cggta      | aaagaa     | 120 |
| cctt                         | ttca                             | agc t                            | gtat                         | tca              | ct tç      | ggga       | cacct      | z aat      | ggag       | gtca       | aggt       | gaco       | gat 1      | tatgo      | etggag     | 180 |
| gaad                         | etget                            | ag (                             | cagea                        | aggg             | gt ga      | acaga      | agget      | aco        | ctato      | gacc       | tata       | ataaa      | aat (      | cagca      | attatg     | 240 |
| gaco                         | ggcga                            | acc a                            | agtti                        | gget             | cc aç      | gatti      | tgtg       | g aaa      | aatca      | aatc       | ccaa       | actco      | caa g      | gatto      | ccggcc     | 300 |
| ttgt                         | tgga                             | acc a                            | agtca                        | aggt             | ca ta      | aagco      | cgatt      | c cct      | gtct       | ttg        | aato       | cagea      | aaa 1      | tatco      | ctgctc     | 360 |
| tato                         | tggo                             | cag a                            | agaaq                        | gttt             | gg aa      | aagci      | zgati      | c ccç      | gtcaç      | gatt       | tggo       | ccggt      | tog o      | gacto      | gaggtg     | 420 |
| ctca                         | acto                             | ggc 1                            | cctto                        | ctgg             | ca ga      | acago      | gageo      | a acé      | geeet      | tct        | tggg       | gaggo      | cgg a      | atttç      | ggtcat     | 480 |
| ttct                         | ttaa                             | act a                            | atget                        | ccca             | ga aa      | aagci      | cagaa      | a tat      | cccaa      | atta       | acco       | getti      | tac (      | catgo      | gaagcc     | 540 |
| aago                         | cgaca                            | agc 1                            | zggat                        | tta              | t go       | gacaa      | aagaa      | a ttç      | ggeta      | aaga       | aago       | cttai      | tat a      | agcto      | ggagaa     | 600 |
| gact                         | acag                             | gta 1                            | tget                         | gata             | at to      | gctai      | cctgo      | g tct      | tggt       | atg        | gtca       | agtta      | agt o      | gcago      | gataag     | 660 |
| ctct                         | atco                             | cag q                            | gegea                        | aget             | ga gt      | ttcti      | zggat      | get        | gcat       | cct        | acaa       | aacat      | tet a      | atcto      | gcttgg     | 720 |
| gcgg                         | gagaa                            | aga 1                            | tgca                         | aget             | cg to      | ccggo      | cagto      | c caç      | gcgcó      | ggtt       | tago       | ctgci      | tga g      | gtato      | caggaa     | 780 |
| atca                         | aata                             | aa                               |                              |                  |            |            |            |            |            |            |            |            |            |            |            | 789 |
| <210<br><211<br><212<br><213 | )> SH<br>L> LH<br>2> TY<br>3> OF | EQ II<br>ENGTI<br>(PE :<br>RGAN] | D NO<br>H: 20<br>PRT<br>ISM: | 32<br>52<br>Stre | eptoo      | cocci      | ıs sa      | angu:      | lnis       |            |            |            |            |            |            |     |
| <400                         | )> SH                            | EQUEI                            | NCE :                        | 32               |            |            |            |            |            |            |            |            |            |            |            |     |
| Met<br>1                     | Thr                              | Tyr                              | Gln                          | Leu<br>5         | Pro        | Lys        | Val        | Trp        | Ser<br>10  | Ala        | Ala        | Asp        | Ser        | Asp<br>15  | Gln        |     |
| Gly                          | Lys                              | Phe                              | Ser<br>20                    | Gly              | Ile        | Asn        | Gln        | Pro<br>25  | Thr        | Ala        | Gly        | Val        | Arg<br>30  | Phe        | Glu        |     |
| Gln                          | Lys                              | Leu<br>35                        | Pro                          | Val              | Gly        | ГЛа        | Glu<br>40  | Pro        | Phe        | Gln        | Leu        | Tyr<br>45  | Ser        | Leu        | Gly        |     |
| Thr                          | Pro<br>50                        | Asn                              | Gly                          | Val              | Lys        | Val<br>55  | Thr        | Ile        | Met        | Leu        | Glu<br>60  | Glu        | Leu        | Leu        | Ala        |     |
| Ala<br>65                    | Gly                              | Val                              | Thr                          | Glu              | Ala<br>70  | Thr        | Tyr        | Asp        | Leu        | Tyr<br>75  | Lys        | Ile        | Ser        | Ile        | Met<br>80  |     |
| Asp                          | Gly                              | Asp                              | Gln                          | Phe<br>85        | Gly        | Ser        | Asp        | Phe        | Val<br>90  | Lys        | Ile        | Asn        | Pro        | Asn<br>95  | Ser        |     |
| Lys                          | Ile                              | Pro                              | Ala<br>100                   | Leu              | Leu        | Asp        | Gln        | Ser<br>105 | Gly        | His        | Lys        | Pro        | Ile<br>110 | Pro        | Val        |     |
| Phe                          | Glu                              | Ser<br>115                       | Ala                          | Asn              | Ile        | Leu        | Leu<br>120 | Tyr        | Leu        | Ala        | Glu        | Lys<br>125 | Phe        | Gly        | Lys        |     |
| Leu                          | Ile<br>130                       | Pro                              | Ser                          | Asp              | Leu        | Ala<br>135 | Gly        | Arg        | Thr        | Glu        | Val<br>140 | Leu        | Asn        | Trp        | Leu        |     |
| Phe<br>145                   | Trp                              | Gln                              | Thr                          | Gly              | Ala<br>150 | Ala        | Pro        | Phe        | Leu        | Gly<br>155 | Gly        | Gly        | Phe        | Gly        | His<br>160 |     |
| Phe                          | Phe                              | Asn                              | Tyr                          | Ala<br>165       | Pro        | Glu        | Lys        | Leu        | Glu<br>170 | Tyr        | Pro        | Ile        | Asn        | Arg<br>175 | Phe        |     |
| Thr                          | Met                              | Glu                              | Ala<br>180                   | Гла              | Arg        | Gln        | Leu        | Asp<br>185 | Leu        | Leu        | Asp        | LYa        | Glu<br>190 | Leu        | Ala        |     |
| Lya                          | Lys                              | Ala<br>195                       | Tyr                          | Ile              | Ala        | Gly        | Glu<br>200 | Asp        | Tyr        | Ser        | Ile        | Ala<br>205 | Asp        | Ile        | Ala        |     |
| Ile                          | Trp                              | Ser                              | Trp                          | Tyr              | Gly        | Gln        | Leu        | Val        | Gln        | Asp        | Lys        | Leu        | Tyr        | Pro        | Gly        |     |

127

210 215 220 Ala Ala Glu Phe Leu Asp Ala Ala Ser Tyr Lys His Leu Ser Ala Trp 225 230 235 240 Ala Glu Lys Ile Ala Ala Arg Pro Ala Val Gln Arg Gly Leu Ala Ala 245 250 255 Glu Tyr Gln Glu Ile Lys 260 <210> SEQ ID NO 33 <211> LENGTH: 681 <212> TYPE: DNA <213 > ORGANISM: Novosphingobium sp. MBES04 <400> SEQUENCE: 33 gtgctggaac tgtggacttc ggaaacaccg aatggctgga aaaccaccat catgctcgag 60 gagetggaeg egaactaeac gttgegteeg atetegetga eeaacegega geagaaggaa 120 gactggtatc tcgcccgcaa tccccacggg cgtatcccca cactgatcga ccatgaggtc 180 gatgccggga acggcggttt tgcggtgttc gaatcgggtg cgatcctgat ctaccttgcc 240 gagaagttcg gccgtttcct gccagccgac acgatgggcc gcagccgcgc gatccagtgg 300 gtgatgtggc agatgtcggg cctcggcccc atgatgggac aggcgaccgt cttcaaccgc 360 tacttegage ceaggetgee egaggteate gaeegetaca egegegagag eegeegeete 420 480 ttcqaaqtqa tqqacacqca cctcqccqac aacqaattcc tcqcqqqcqa ctattcqatc geogacateg cetgetteee gtgggtgege gggeatgaet gggeetgeat egacatggag 540 gggetgeece acetgeaacg etggttegag aceateggtg agegeeegge egteeagege 600 ggcctgctct tgcccgaacc gcccaaggcg gacgagatgg ccgagaagac gacccgccag 660 ggcaagaaca tcctggcctg a 681 <210> SEQ ID NO 34 <211> LENGTH: 226 <212> TYPE: PRT <213> ORGANISM: Novosphingobium sp. MBES04 <400> SEOUENCE: 34 Met Leu Glu Leu Trp Thr Ser Glu Thr Pro Asn Gly Trp Lys Thr Thr 1 5 10 15 Ile Met Leu Glu Glu Leu Asp Ala Asn Tyr Thr Leu Arg Pro Ile Ser 20 25 30 Leu Thr Asn Arg Glu Gln Lys Glu Asp Trp Tyr Leu Ala Arg Asn Pro 40 Asn Gly Arg Ile Pro Thr Leu Ile Asp His Glu Val Asp Ala Gly Asn 55 50 60 Gly Gly Phe Ala Val Phe Glu Ser Gly Ala Ile Leu Ile Tyr Leu Ala 65 70 75 80 Glu Lys Phe Gly Arg Phe Leu Pro Ala Asp Thr Met Gly Arg Ser Arg 85 90 95 Ala Ile Gln Trp Val Met Trp Gln Met Ser Gly Leu Gly Pro Met Met 105 100 110 Gly Gln Ala Thr Val Phe Asn Arg Tyr Phe Glu Pro Arg Leu Pro Glu 120 125 115 Val Ile Asp Arg Tyr Thr Arg Glu Ser Arg Arg Leu Phe Glu Val Met 130 135 140 Asp Thr His Leu Ala Asp Asn Glu Phe Leu Ala Gly Asp Tyr Ser Ile

129

### -continued

| 145 150 155 160                                                                                           |     |
|-----------------------------------------------------------------------------------------------------------|-----|
| Ala Asp Ile Ala Cys Phe Pro Trp Val Arg Gly His Asp Trp Ala Cys<br>165 170 175                            |     |
| Ile Asp Met Glu Gly Leu Pro His Leu Gln Arg Trp Phe Glu Thr Ile<br>180 185 190                            |     |
| Gly Glu Arg Pro Ala Val Gln Arg Gly Leu Leu Leu Pro Glu Pro Pro<br>195 200 205                            |     |
| Lys Ala Asp Glu Met Ala Glu Lys Thr Thr Arg Gln Gly Lys Asn Ile<br>210 215 220                            |     |
| Leu Ala<br>225                                                                                            |     |
| <210> SEQ ID NO 35<br><211> LENGTH: 673<br><212> TYPE: DNA<br><213> ORGANISM: Phanerochaete chrysosporium |     |
| <400> SEQUENCE: 35                                                                                        |     |
| atggctacca acaccgacaa gcctgttgtc cactacaccg cacctacgcc caatggatgg                                         | 60  |
| gtgcccgcta tcctcctgga ggagctgaag gctgtttacg gcggtcccga ctacgagact                                         | 120 |
| gttaaaatga gcatcaggga cgcagacatt ggcaaggtcc acaaccaggt caagtcagac                                         | 180 |
| tggtteetea agatttgeee taacggeege atteeegeaa teaegeaega aggetteeee                                         | 240 |
| gttttcgaga cctctgccat cctcctctat cttgcccagc acttcgacaa ggagaacgcc                                         | 300 |
| ttetegegeg acceegteaa ggaceeaaag ggetaeageg aggagetgea gtggetatte                                         | 360 |
| ttcgctcacg gaggtattgg ccccatgcag ggtcaggcca accattttaa cctttacgcg                                         | 420 |
| ccggagaaga teecataege cateaaeege taeeteaaeg agtegaageg tetgtaeege                                         | 480 |
| gteetegaeg acegteteaa gggeegegag tatateetgg geaegtaegg eategeagae                                         | 540 |
| atcaagatct ttggctgggc gcgcattgcg ccccgcactg gccttgacct cgacgagttc                                         | 600 |
| cccaacgtca aggcgtgggt cgagcgcatc gagaagcggc cggctgtcca ggctggcatc                                         | 660 |
| aacagctgca act                                                                                            | 673 |
| <210> SEQ ID NO 36<br><211> LENGTH: 224<br><212> TYPE: PRT<br><213> ORGANISM: Phanerochaete chrysosporium |     |
| <400> SEQUENCE: 36                                                                                        |     |
| Met Ala Thr Asn Thr Asp Lys Pro Val Val His Tyr Thr Ala Pro Thr<br>1 5 10 15                              |     |
| Pro Asn Gly Trp Val Pro Ala Ile Leu Leu Glu Glu Leu Lys Ala Val<br>20 25 30                               |     |
| Tyr Gly Gly Pro Asp Tyr Glu Thr Val Lys Met Ser Ile Arg Asp Ala<br>35 40 45                               |     |
| Asp Ile Gly Lys Val His Asn Gln Val Lys Ser Asp Trp Phe Leu Lys<br>50 55 60                               |     |
| Ile Cys Pro Asn Gly Arg Ile Pro Ala Ile Thr His Glu Gly Phe Pro<br>65 70 75 80                            |     |
| Val Phe Glu Thr Ser Ala Ile Leu Leu Tyr Leu Ala Gln His Phe Asp<br>85 90 95                               |     |
| Lys Glu Asn Ala Phe Ser Arg Asp Pro Val Lys Asp Pro Lys Gly Tyr<br>100 105 110                            |     |
|                                                                                                           |     |

Ser Glu Glu Leu Gln Trp Leu Phe Phe Ala His Gly Gly Ile Gly Pro

131

| 115 120 125                                                                                           |      |
|-------------------------------------------------------------------------------------------------------|------|
| Met Gln Gly Gln Ala Asn His Phe Asn Leu Tyr Ala Pro Glu Lys Ile<br>130 135 140                        |      |
| Pro Tyr Ala Ile Asn Arg Tyr Leu Asn Glu Ser Lys Arg Leu Tyr Arg<br>145 150 155 160                    |      |
| Val Leu Asp Asp Arg Leu Lys Gly Arg Glu Tyr Ile Leu Gly Thr Tyr<br>165 170 175                        |      |
| Gly Ile Ala Asp Ile Lys Ile Phe Gly Trp Ala Arg Ile Ala Pro Arg<br>180 185 190                        |      |
| Thr Gly Leu Asp Leu Asp Glu Phe Pro Asn Val Lys Ala Trp Val Glu                                       |      |
| 195 200 205<br>Arg Ile Glu Lys Arg Pro Ala Val Gln Ala Gly Ile Asn Ser Cys Asn                        |      |
| 210 215 220                                                                                           |      |
| <210> SEQ ID NO 37<br><211> LENGTH: 1377<br><212> TYPE: DNA<br><213> ORGANISM: Allochromatium vinosum |      |
| <400> SEQUENCE: 37                                                                                    |      |
| atgagccagc attttgatct gatcgccatc ggcggcggca gcggcggcct ggcggtcgcc                                     | 60   |
| gagaaagcgg cgcagttcgg ccgtcgcgta gccctgatcg aaggcgccaa actgggcggc                                     | 120  |
| acctgcgtca acgccggctg tgtacccaag aaggtgatgt ggtatgccgc caatctggcg                                     | 180  |
| geggeegteg eggatgegee egactaegge atceaggeee gtteggaegg tetegaetgg                                     | 240  |
| ggcaagetga tegeeggeeg caaceagtae ategeegaea teaaeggeta etgggaegge                                     | 300  |
| tatgeegaae geetgggeet caceeggate gaeggetteg egegttttgt egatgegege                                     | 360  |
| acggtcgcgg tcggcgacca gcactacacc gccgaccaca tcgtcatcgc caccggcggc                                     | 420  |
| cggccgatcg tgccacgaat gccgggcgct gaactgggca tcacttcgga cggcttcttc                                     | 480  |
| gcgctggaag aacagcccaa gcgcgtcgcc atcatcggcg gcggctatat cggcgtggag                                     | 540  |
| ctggcgggcg tgctgagcgc gctcggcacc gagatcacca tcgtggcgct ggaagaccgg                                     | 600  |
| atgetegege tgttegatee gettateage gagaeeetgg eegagaaeat gaegetgeat                                     | 660  |
| ggcatcgaca tgcacctgca attcgaggtc gccgggatcg agcgcgatga acagggactg                                     | 720  |
| gtgetggeeg egegegaegg teagegtetg aceggetteg ateaggteat etgggeegte                                     | 780  |
| gggcgcgcgc ccaacacgcg cgagctgaac ctggaggcgg ccgggatcac ggtcgagcgt                                     | 840  |
| ageggtgtea teeegaeega tgeetggeag aacaeeaetg tteeeggeat etatgeeate                                     | 900  |
| ggcgacatca ccgggcgcga gccgctgact ccggtagcga tcgccgccgg acggcgtctg                                     | 960  |
| geegaaegee tgtteaaega caageeggat teaaageteg actaegagaa egtgeeeaeg                                     | 1020 |
| gtggtgttcg ctcatccgcc gatcggcaag gtcggtctga ccgagcctga ggcgcgcgag                                     | 1080 |
| cgttacggcg acacgeteae catetatgag accagettea egeceatgeg etaegegete                                     | 1140 |
| aacgcacacg gacccaagac cgcgatgaag ctggtctgtg ccggtgagga cgagaaggtg                                     | 1200 |
| gtcggcatcc atctgatcgg cgatggcgtc gacgagatga tgcagggctt cggtgtggcg                                     | 1260 |
| gtgaagatgg gegegaecaa ggeegatete gacaataegg tegeeateea teegtgeage                                     | 1320 |
| gccgaggaac tggtgacgct gaaggtgccg gtgcggcggc cgggtcagtc cggttga                                        | 1377 |
|                                                                                                       |      |

<210> SEQ ID NO 38 <211> LENGTH: 458 <212> TYPE: PRT <213> ORGANISM: Allochromatium vinosum 132

<400> SEQUENCE: 38 Met Ser Gln His Phe Asp Leu Ile Ala Ile Gly Gly Gly Ser Gly Gly Leu Ala Val Ala Glu Lys Ala Ala Gln Phe Gly Arg Arg Val Ala Leu Ile Glu Gly Ala Lys Leu Gly Gly Thr Cys Val Asn Ala Gly Cys Val 35 40 45 Pro Lys Lys Val Met Trp Tyr Ala Ala Asn Leu Ala Ala Ala Val Ala 50 55 60 Asp Ala Pro Asp Tyr Gly Ile Gln Ala Arg Ser Asp Gly Leu Asp Trp 65 70 75 80 Gly Lys Leu Ile Ala Gly Arg Asn Gln Tyr Ile Ala Asp Ile Asn Gly Tyr Trp Asp Gly Tyr Ala Glu Arg Leu Gly Leu Thr Arg Ile Asp Gly 100 105 110 Phe Ala Arg Phe Val Asp Ala Arg Thr Val Ala Val Gly Asp Gln His 115 120 125 Tyr Thr Ala Asp His Ile Val Ile Ala Thr Gly Gly Arg Pro Ile Val Pro Arg Met Pro Gly Ala Glu Leu Gly Ile Thr Ser Asp Gly Phe Phe Ala Leu Glu Glu Gln Pro Lys Arg Val Ala Ile Ile Gly Gly Gly Tyr Ile Gly Val Glu Leu Ala Gly Val Leu Ser Ala Leu Gly Thr Glu Ile Thr Ile Val Ala Leu Glu Asp Arg Met Leu Ala Leu Phe Asp Pro Leu Ile Ser Glu Thr Leu Ala Glu Asn Met Thr Leu His Gly Ile Asp Met His Leu Gln Phe Glu Val Ala Gly Ile Glu Arg Asp Glu Gln Gly Leu Val Leu Ala Ala Arg Asp Gly Gln Arg Leu Thr Gly Phe Asp Gln Val Ile Trp Ala Val Gly Arg Ala Pro Asn Thr Arg Glu Leu Asn Leu Glu Ala Ala Gly Ile Thr Val Glu Arg Ser Gly Val Ile Pro Thr Asp Ala Trp Gln Asn Thr Thr Val Pro Gly Ile Tyr Ala Ile Gly Asp Ile Thr Gly Arg Glu Pro Leu Thr Pro Val Ala Ile Ala Ala Gly Arg Arg Leu Ala Glu Arg Leu Phe Asn Asp Lys Pro Asp Ser Lys Leu Asp Tyr Glu Asn Val Pro Thr Val Val Phe Ala His Pro Pro Ile Gly Lys Val Gly Leu Thr Glu Pro Glu Ala Arg Glu Arg Tyr Gly Asp Thr Leu Thr Ile Tyr Glu Thr Ser Phe Thr Pro Met Arg Tyr Ala Leu Asn Ala His Gly Pro Lys Thr Ala Met Lys Leu Val Cys Ala Gly Glu Asp Glu Lys Val Val Gly Ile His Leu Ile Gly Asp Gly Val Asp Glu Met Met Gln Gly

135

### -continued

| 405 410 415                                                                                               |
|-----------------------------------------------------------------------------------------------------------|
| he Gly Val Ala Val Lys Met Gly Ala Thr Lys Ala Asp Leu Asp Asn<br>420 425 430                             |
| hr Val Ala Ile His Pro Cys Ser Ala Glu Glu Leu Val Thr Leu Lys<br>435 440 445                             |
| al Pro Val Arg Arg Pro Gly Gln Ser Gly<br>450 455                                                         |
| 210> SEQ ID NO 39<br>211> LENGTH: 786<br>212> TYPE: DNA<br>213> ORGANISM: Novosphingobium aromaticivorans |
| 400> SEQUENCE: 39                                                                                         |
| .tgagegege ttetttaeca eggegageee aaeggegegt egeteaeegt tettgeggeg 60                                      |
| ttgeggaaa egggeetega tategagtgt egeegeateg aceteetgge gggegagege 120                                      |
| attegette eeggeategt egateeegte gegetegaee tgteeatega aggegaaggt 180                                      |
| cggtgctgg tgatcgacgg ggaagcaatg accgaatccg tettectege ceaatatetg 240                                      |
| acgaggegg egggeggggt ggggeteeag eegaeegaeg eetatgegeg etgggaaatg 300                                      |
| .tgatgtggt geogecagat caeegagege etetegeeeg eegeggeeet geteggeaat 360                                     |
| tegecaegt egeaaagege categeegee ateceggeeg aggaettege cattetegee 420                                      |
| caeggateg ttteegaega eetgegegag eggtggeagg eeetgaaega egatgeggtg 480                                      |
| acgeegeae aggtegeega cagegaaace aaggtegeeg eegeegtega eegetgegag 540                                      |
| agcagettg gegatggaeg egaatggetg atggggaett tetecatege egatetegte 600                                      |
| .cctactcgt ggcttgccgg gatggagccg ctccgccctg ccgcctttgc cgatgcaccg 660                                     |
| ttgtcaagg cctggcttgc ccgcaccgcc gcgcgccctt gcgtgcaggc ggcacttgcc 720                                      |
| gggccacca tttccgaacc gctccgcgcc tgggcgccgg ggcctgaaat caaccgttgg 780                                      |
| igataa 786                                                                                                |
| 210> SEQ ID NO 40<br>211> LENGTH: 261<br>212> TYPE: PRT<br>213> ORGANISM: Novosphingobium aromaticivorans |
| 400> SEQUENCE: 40                                                                                         |
| et Ser Ala Leu Leu Tyr His Gly Glu Pro Asn Gly Ala Ser Leu Thr<br>5 10 15                                 |
| al Leu Ala Ala Leu Ala Glu Thr Gly Leu Asp Ile Glu Cys Arg Arg<br>20 25 30                                |
| le Asp Leu Leu Ala Gly Glu Arg His Ser Leu Pro Gly Ile Val Asp<br>35 40 45                                |
| ro Val Ala Leu Asp Leu Ser Ile Glu Gly Glu Gly Pro Val Leu Val<br>50 55 60                                |
| le Asp Gly Glu Ala Met Thr Glu Ser Val Phe Leu Ala Gln Tyr Leu<br>5 70 75 80                              |
| sp Glu Ala Ala Gly Gly Val Gly Leu Gln Pro Thr Asp Ala Tyr Ala<br>85 90 95                                |
| ra Tro Clu Mat Mat Mat Tro Cua Ara Clo Ila Thr Clu Ara Lau Sar                                            |
| 100 105 110                                                                                               |

138

| 130 133 140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|
| Ser Asp Asp Leu Arg Glu Arg Trp Gln Ala Leu Asn Asp Asp Ala Val<br>145 150 155 160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                             |
| Asn Ala Ala Gln Val Ala Asp Ser Glu Thr Lys Val Ala Ala Ala Val                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                             |
| Asp Arg Cys Glu Lys Gln Leu Gly Asp Gly Arg Glu Trp Leu Met Gly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                             |
| 180 185 190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                             |
| Thr Phe Ser Ile Ala Asp Leu Val Thr Tyr Ser Trp Leu Ala Giy Met<br>195 200 205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                             |
| Glu Pro Leu Arg Pro Ala Ala Phe Ala Asp Ala Pro Leu Val Lys Ala<br>210 215 220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                             |
| Trp Leu Ala Arg Thr Ala Ala Arg Pro Cys Val Gln Ala Ala Leu Ala<br>225 230 235 240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                             |
| Arg Ala Thr Ile Ser Glu Pro Leu Arg Ala Trp Ala Pro Gly Pro Glu<br>245 250 255                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                             |
| Ile Asn Arg Trp Gly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                             |
| 260                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                             |
| <210> SEQ ID NO 41<br><211> LENGTH: 771                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                             |
| <212> TYPE: DNA<br><213> ORGANISM: Novosphingobium aromaticivorans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                             |
| <400> SEQUENCE: 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                             |
| atggacgagg taagceteta teattgggaa eecaatgeea aetetggeaa geegatgete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 60                                                          |
| gcgttgatgg agaagggcgt gcccttttcc agccattaca tcgacatgct ccagttcgat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 120                                                         |
| cagcacaage eggaataeet tgegateaae eegcaaggea egateeegge gatgaegeae                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 180                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 240                                                         |
| aatggccagg tgctgacgga aagcaccgcg atcatggagt acgtgaacga ccgcttcgac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                             |
| aatggecagg tgetgaegga aageaeegeg ateatggagt aegtgaaega eegettegae<br>gggeeggaee teatgeeege egaegegeag gategetgge gegtgegetg gtggatgaag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 300                                                         |
| aatggeeagg tgetgaegga aageaeegg ateatggagt aegtgaaega eegettegae<br>gggeeggaee teatgeeege egaegegeag gategetgge gegtgegetg gtggatgaag<br>tteatggaee agtggettgg eeeeagtte tegatgateg getggagegt gtttgteggt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 300<br>360                                                  |
| aatggeeagg tgetgaegga aageaeegeg ateatggagt aegtgaaega eegettegae<br>gggeeggaee teatgeeege egaegegeag gategetgge gegtgegetg gtggatgaag<br>tteatggaee agtggettgg eeceagtte tegatgateg getggagegt gtttgteggt<br>eccatggtee geeagegega eeeegeegaa ettgeegeeg egategaeeg tateeettg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 300<br>360<br>420                                           |
| aatggccagg tgctgacgga aagcaccgcg atcatggagt acgtgaacga ccgcttcgac<br>gggccggacc tcatgcccgc cgacgcgcag gatcgctggc gcgtgcgctg gtggatgaag<br>ttcatggacc agtggcttgg ccccagtttc tcgatgatcg gctggagcgt gtttgtcggt<br>cccatggtcc gccagcgcga ccccgccgaa cttgccgccg cgatcgaccg tatccccttg<br>cccgaacgcc gcaccgcgtg gcgcaaggcg atcaacggcg acttctcgga aagcgagatg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 300<br>360<br>420<br>480                                    |
| aatggccagg tgctgacgga aagcaccgcg atcatggagt acgtgaacga ccgcttcgac<br>gggccggacc tcatgcccgc cgacgcgcag gatcgctggc gcgtgcgctg gtggatgaag<br>ttcatggacc agtggcttgg ccccagtttc tcgatgatcg gctggagcgt gtttgtcggt<br>cccatggtcc gccagcgcga ccccgccgaa cttgccgccg cgatcgaccg tatccccttg<br>cccgaacgcc gcaccgcgtg gcgcaaggcg atcaacggcg acttctcgga aagcgagatg<br>gccgaaagcc gccgccgcgt ggggctgggc atcgccaagc tggaagagga actgggcaag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 300<br>360<br>420<br>480<br>540                             |
| aatggccagg tgctgacgga aagcaccgcg atcatggagt acgtgaacga ccgcttcgac<br>gggccggacc tcatgcccgc cgacgcgcag gatcgctggc gcgtgcgctg gtggatgaag<br>ttcatggacc agtggcttgg ccccagtttc tcgatgatcg gctggagcgt gtttgtcggt<br>cccatggtcc gccagcgcga ccccgccgaa cttgccgccg cgatcgaccg tatccccttg<br>cccgaacgcc gcaccgcgtg gcgcaaggcg atcaacggcg acttctcgga aagcgagatg<br>gccgaaagcc gccgccgcgt ggggctgggc atcgccaagc tggaagagga actgggcaag<br>cggccctatg tcggttcgaa ccagtacagc ctggccgaca tcaacatctt caacagcacc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 300<br>360<br>420<br>480<br>540<br>600                      |
| aatggccagg tgctgacgga aagcaccgcg atcatggagt acgtgaacga ccgcttcgac<br>gggccggacc tcatgcccgc cgacgcgcag gatcgctgg gcgggcgt gtggatgaag<br>ttcatggacc agtggcttgg ccccagtttc tcgatgatcg gctggagcgt gtttgtcggt<br>cccatggtcc gccagcgcga ccccgccgaa cttgccgccg cgatcgaccg tatccccttg<br>cccgaacgcc gcaccgcgtg gcgcaaggcg atcaacggcg acttctcgga aagcgagatg<br>gccgaaagcc gccgccgcgt ggggctgggc atcgccaagc tggaagagga actgggcaag<br>cggccctatg tcggttcgaa ccagtacagc ctggccgaca tcaacatctt caacagcacc<br>tattcgctgc ccatttccca gcccgatctg gcgggcaagg acaggacgcc gaacatcatg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 300<br>360<br>420<br>480<br>540<br>600<br>660               |
| aatggccagg tgctgacgga aagcaccgcg atcatggagt acgtgaacga ccgcttcgac<br>gggccggacc tcatgcccgc cgacgcgcag gatcgctgge gcgtgcgctg gtggatgaag<br>ttcatggacc agtggcttgg ccccagtttc tcgatgatcg gctggagcg gtttgtcggt<br>cccatggtcc gccagcgcga ccccgccgaa cttgccgccg cgatcgaccg tatccccttg<br>cccgaacgcc gcaccgcgtg gcgcaaggcg atcaacggcg acttctcgga aagcgagatg<br>gccgaaagcc gccgccgcgt ggggctgggc atcgccaagc tggaagagga actgggcaag<br>cggccctatg tcggttcgaa ccagtacagc ctggccgaca tcaacatctt caacagcacc<br>tattcgctgc ccatttccca gcccgctg gcgggcaagg acggggcaagg acaggacgcc gaacatcatg<br>cgctggctca agcgtgtcta cacccgcgaa gcggtgaaga agacctgggc catgggcaag                                                                                                                                                                                                                                                                                                                                                                                                                           | 300<br>360<br>420<br>480<br>540<br>600<br>660<br>720        |
| aatggecagg tgetgacgga aagcacegeg atcatggagt acgtgaacga cegettegac<br>gggeceggace teatgecege egaegeega gategetge gegtgegetg gtggatgaag<br>tteatggace agtggettgg ecceagette tegatgateg getggageg gttggageg<br>ecceatggtee geeageegga eccegeegaa ettgeegeeg ecgategaeeg aageegagatg<br>geegaaagee geegeeggt ggggetggge ategeeage tegaagaga aetgggeaag<br>eggeeetatg teggttegaa ecagtacage etggeegaag teaaeette eaaeagee<br>tattegetge ecattteeea geeegatetg gegggeaagg aeaggaege gaaeateatg<br>eggegeeta agegtgeta eaeeegaa geggtgaaga agaeetggge eatgggeaag<br>agggaeettg eceatteeea geeegaa geggtgaaga agaeetggge eatggeaag<br>agggeeeta agegtgetea eaeeegaa geggtgaaga agaeetggge eatgggeaag<br>acggaeettg eceattegeta eaeeegaa geggtgaaga agaeetggge a                                                                                                                                                                                                                                                                                                                      | 300<br>360<br>420<br>480<br>540<br>600<br>660<br>720<br>771 |
| aatggccagg tgctgacgga aagcaccgcg atcatggagt acgtgaacga ccgcttcgac<br>gggccggacc tcatgcccgc cgacgcgcag gatcgctggc gcgtgcgctg gtggatgaag<br>ttcatggacc agtggcttgg ccccagtttc tcgatgatcg gctggagcgt gtttgtcggt<br>cccatggtcc gccagcgcga ccccgccgaa cttgccgccg cgatcgaccg tatccccttg<br>cccgaacgcc gcaccgcgtg gcgcaaggcg atcaacggcg acttctcgga aagcgagatg<br>gccgaaagcc gccgccgcgt ggggctgggc atcgccaagc tggaagaga actgggcaag<br>cggccctatg tcggttcgaa ccagtacagc ctggccgaca tcaacatctt caacagcacc<br>tattcgctgc ccatttccca gcccgcaa gcggtgaaga agacctgggc catgggcaag<br>acggaccttg cccatcgcta cggcctcatc atggcggaag agacctgggc catgggcaag<br>acggaccttg cccatcgcta cggcctcatc atggcggaga tcgagggatg a                                                                                                                                                                                                                                                                                                                                                                           | 300<br>360<br>420<br>480<br>540<br>600<br>660<br>720<br>771 |
| aatggccagg tgctgacgga aagcaccgcg atcatggagt acgtgaacga ccgcttcgac<br>gggccggacc tcatgcccgc cgacgcgcag gatcgctggc gcgtgcgctg gtggatgaag<br>ttcatggacc agtggcttgg ccccagtttc tcgatgatcg gctggagcgt gtttgtcggt<br>cccatggtcc gccagcgcga ccccgccgaa cttgccgccg cgatcgaccg tatccccttg<br>cccgaacgcc gccaccgcgtg gcgcaaggcg atcaacggcg acttctcgga aagcgagatg<br>gccgaaagcc gccgccgcgt ggggctgggc atcgccaagc tggaagagga actgggcaag<br>cggccctatg tcggttcgaa ccagtacagc ctggccgaca tcaacatctt caacagcacc<br>tattcgctgc ccatttccca gcccgcaga gcggtgaaga agacctgggc catgggcaag<br>acggaccttg cccatcgcta cggcctatc atggcggaag agacctgggc catgggcaag<br>acggaccttg cccatcgcta cggcctcatc atggcggaag tcgagggatg a                                                                                                                                                                                                                                                                                                                                                                         | 300<br>360<br>420<br>480<br>540<br>600<br>660<br>720<br>771 |
| aatggccagg tgctgacgga aagcaccgcg atcatggagt acgtgaacga ccgcttcgac<br>gggccggacc tcatgcccgc cgacgcgcag gatcgctggc gcgtgcgctg gtggatgaag<br>ttcatggacc agtggcttgg ccccagtttc tcgatgatcg gctggagcgt gtttgtcggt<br>cccatggtcc gccagcgcga ccccgccgaa cttgccgccg cgatcgaccg tatccccttg<br>cccgaacgcc gcaccgcgtg gcgcaaggcg atcaacggcg acttctcgga aagcgagatg<br>gccgaaagcc gccgccgcgt ggggctgggc atcgccaagc tggaagagga actgggcaag<br>cggccctatg tcggttcgaa ccagtacagc ctggccgaca tcaacatctt caacagcacc<br>tattcgctgc ccatttccca gcccgcaga gcggtgaaga agacctgggc catgggcaag<br>acggaccttg cccatcgcta cggcctcatc atggcggaag agacctgggc catgggcaag<br>acggaccttg cccatcgcta cggcctcatc atggcggaga tcgagggtg a<br>c210> SEQ ID NO 42<br><211> LENGTH: 256<br><212> TYPE: PRT<br><213> ORGANISM: Novosphingobium aromaticivorans<br><400> SEQUENCE: 42<br>Met Asp Glu Val Ser Leu Tyr His Trp Glu Pro Asn Ala Asn Ser Gly<br>1 5 10 15                                                                                                                                                   | 300<br>360<br>420<br>480<br>540<br>600<br>660<br>720<br>771 |
| aatggccagg tgetgaegga aageaeegge ateatggagt aegtgaaega eegettegae<br>gggeeeggaee teatgeeege egaeggega gategetgge gegtgegetg gtggatgaag<br>tteatggaee agtggettgg eeeeagtte tegatgateg getggagegt gtttgteggt<br>eeeagaegee geeegeegg gegeaaggeg ateaaeeggeg aettetegga aagegagatg<br>geegaaagee geegeegetg ggggetggge ategeeage tggaagagga aetgggeaag<br>eggeeetatg teggttegaa eeagtaeage etggeegaea teaaeatett eaaeageaee<br>tattegetge eeatteeea geeegatetg gegggeaagg aeaggaegge gaaeateatg<br>eggeeetatg teggttegaa eeagtaeage etggeegaag aeaggaegee gaaeateatg<br>egetggetea agegtgteta eaeeeggaa geggtgaaga agaeetggge eatggeeaag<br>aeggaeettg eeeategeta eggeeteate atggeeggaa tegagggatg a<br>eegtggetea agegtgteta eaeeeggaa geggtgaaga agaeetggge eatggeeaag<br>aeggaeettg eeeategeta eggeeteate atggeeggaa tegagggatg a<br><210> SEQ ID NO 42<br><211> LENGTH: 256<br><212> TYPE: PRT<br><213> ORGANISM: Novosphingobium aromaticivorans<br><400> SEQUENCE: 42<br>Met Asp Glu Val Ser Leu Tyr His Trp Glu Pro Asn Ala Asn Ser Gly<br>1 5 10 15                     | 300<br>360<br>420<br>480<br>540<br>600<br>660<br>720<br>771 |
| aatggecagg tgetgaegga aageaeegeg ateatggagt aegtgaaega eegettegae<br>gggeeggaee teatgeeege egaegegeag gategetgge gegtgegetg gtggatgaag<br>tteatggaee agtggettgg eeceageegaa ettgeegeeg gegtggaegt gtttgteeggt<br>eeceaaegee geeageegga eecegeegaa ettgeegeeg egategaeeg tateeeettg<br>geegaaagee geegeegetg gegeaaggeg ateaaeggeg acteetegga aageegaaag<br>geegaaagee geegeegetg ggggetggge ategeeaage tggaagagga aetgggeaag<br>eggeeetatg teggttegaa eeagtaeage etggeegaea teaaeatett eaaeageaee<br>tattegetge eeatteeea geeegaaegg geggetagga aeaggaegge gaaeateatg<br>eggeegta agegtgeta eaceegegaa geggtgaaga aeaggaegee gaaeateatg<br>egetggetea agegtgeta eaceegegaa geggtgaaga agaeetggge eatggeeaag<br>aeggaeettg eeatteeea eggeeteate atggeggaga tegagggatg a<br><210> SEQ ID NO 42<br><211> LENGTH: 256<br><212> TYPE: PRT<br><213> ORGANISM: Novosphingobium aromaticivorans<br><400> SEQUENCE: 42<br>Met Asp Glu Val Ser Leu Tyr His Trp Glu Pro Asn Ala Asn Ser Gly<br>1 5 10 15<br>Lys Pro Met Leu Ala Leu Met Glu Lys Gly Val Pro Phe Ser Ser His<br>20 25 30 | 300<br>360<br>420<br>480<br>540<br>600<br>660<br>720<br>771 |

Ile Asn Pro Gln Gly Thr Ile Pro Ala Met Thr His Asn Gly Gln Val

|                              | 50                               |                                 |                             |                  |            | 55         |            |            |            |            | 60         |            |            |            |            |
|------------------------------|----------------------------------|---------------------------------|-----------------------------|------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Leu<br>65                    | Thr                              | Glu                             | Ser                         | Thr              | Ala<br>70  | Ile        | Met        | Glu        | Tyr        | Val<br>75  | Asn        | Asp        | Arg        | Phe        | Asp<br>80  |
| Gly                          | Pro                              | Asp                             | Leu                         | Met<br>85        | Pro        | Ala        | Asp        | Ala        | Gln<br>90  | Asp        | Arg        | Trp        | Arg        | Val<br>95  | Arg        |
| Trp                          | Trp                              | Met                             | Lys<br>100                  | Phe              | Met        | Asp        | Gln        | Trp<br>105 | Leu        | Gly        | Pro        | Ser        | Phe<br>110 | Ser        | Met        |
| Ile                          | Gly                              | Trp<br>115                      | Ser                         | Val              | Phe        | Val        | Gly<br>120 | Pro        | Met        | Val        | Arg        | Gln<br>125 | Arg        | Asp        | Pro        |
| Ala                          | Glu<br>130                       | Leu                             | Ala                         | Ala              | Ala        | Ile<br>135 | Asp        | Arg        | Ile        | Pro        | Leu<br>140 | Pro        | Glu        | Arg        | Arg        |
| Thr<br>145                   | Ala                              | Trp                             | Arg                         | Lys              | Ala<br>150 | Ile        | Asn        | Gly        | Asp        | Phe<br>155 | Ser        | Glu        | Ser        | Glu        | Met<br>160 |
| Ala                          | Glu                              | Ser                             | Arg                         | Arg<br>165       | Arg        | Val        | Gly        | Leu        | Gly<br>170 | Ile        | Ala        | Lys        | Leu        | Glu<br>175 | Glu        |
| Glu                          | Leu                              | Gly                             | Lys<br>180                  | Arg              | Pro        | Tyr        | Val        | Gly<br>185 | Ser        | Asn        | Gln        | Tyr        | Ser<br>190 | Leu        | Ala        |
| Asp                          | Ile                              | Asn<br>195                      | Ile                         | Phe              | Asn        | Ser        | Thr<br>200 | Tyr        | Ser        | Leu        | Pro        | Ile<br>205 | Ser        | Gln        | Pro        |
| Aap                          | Leu<br>210                       | Ala                             | Gly                         | Lys              | Asp        | Arg<br>215 | Thr        | Pro        | Asn        | Ile        | Met<br>220 | Arg        | Trp        | Leu        | Lys        |
| Arg<br>225                   | Val                              | Tyr                             | Thr                         | Arg              | Glu<br>230 | Ala        | Val        | Lys        | Lys        | Thr<br>235 | Trp        | Ala        | Met        | Gly        | Lys<br>240 |
| Thr                          | Asp                              | Leu                             | Ala                         | His<br>245       | Arg        | Tyr        | Gly        | Leu        | Ile<br>250 | Met        | Ala        | Glu        | Ile        | Glu<br>255 | Gly        |
| <210<br><211<br><212<br><213 | )> SE<br>_> LE<br>2> TY<br>3> OF | EQ II<br>ENGTH<br>PE :<br>RGANI | ) NO<br>I: 29<br>PRT<br>SM: | 43<br>58<br>Novo | osphi      | ingoł      | oium       | aron       | natio      | civoi      | rans       |            |            |            |            |
| <400                         | )> SE                            | QUEN                            | ICE :                       | 43               |            |            |            |            |            |            |            |            |            |            |            |
| Met<br>1                     | Ala                              | Leu                             | Lys                         | Tyr<br>5         | Tyr        | His        | Ala        | Glu        | Pro<br>10  | Leu        | Ala        | Asn        | Ser        | Leu<br>15  | Lys        |
| Ser                          | Met                              | Val                             | Pro<br>20                   | Leu              | Lys        | Glu        | Lys        | Gly<br>25  | Leu        | Ala        | Tyr        | Glu        | Ser<br>30  | Ile        | Tyr        |
| Val                          | Asp                              | Leu<br>35                       | His                         | Lys              | Phe        | Glu        | Gln<br>40  | His        | Gln        | Pro        | Trp        | Phe<br>45  | Thr        | Ala        | Ile        |
| Asn                          | Pro<br>50                        | Glu                             | Gly                         | Gln              | Val        | Pro<br>55  | Val        | Leu        | Asp        | His        | Asp<br>60  | Gly        | Thr        | Ile        | Ile        |
| Thr<br>65                    | His                              | Thr                             | Thr                         | Val              | Ile<br>70  | Asn        | Glu        | Tyr        | Leu        | Glu<br>75  | Asp        | Ala        | Phe        | Pro        | Asp<br>80  |
| Ala                          | Gln                              | Pro                             | Ala                         | Asp<br>85        | Ala        | Pro        | Leu        | Arg        | Pro<br>90  | Arg        | Asp        | Pro        | Val        | Gly<br>95  | Ala        |
| Ala                          | Arg                              | Met                             | Arg<br>100                  | Tyr              | Trp        | Asn        | Lys        | Phe<br>105 | Ile        | Asp        | Glu        | His        | Val<br>110 | Met        | Asn        |
| Tyr                          | Val                              | Ser<br>115                      | Met                         | His              | Gly        | Trp        | His<br>120 | Arg        | Met        | Val        | Gly        | Val<br>125 | Ile        | Ala        | Arg        |
| Asn                          | Ile<br>130                       | Ala                             | Ser                         | Gly              | Aap        | Phe<br>135 | Glu        | Lys        | Leu        | Leu        | Glu<br>140 | Ser        | Ile        | Pro        | Leu        |
| Pro<br>145                   | Asp                              | Gln                             | Arg                         | Lys              | Lys<br>150 | Trp        | Ala        | Thr        | Ala        | Arg<br>155 | Ser        | Gly        | Phe        | Ser        | Glu<br>160 |
| Ala                          | Asp                              | Leu                             | Ala                         | Asn<br>165       | Ala        | Thr        | Ala        | Lys        | Ile<br>170 | Glu        | Tyr        | Ala        | Leu        | Asp<br>175 | Lys        |

### -continued

142

| Val                          | Glu                              | Гла                              | Gln<br>180                   | Leu              | Gly        | Glu        | Thr        | Lys<br>185 | Trp        | Leu        | Ala        | Gly        | Asp<br>190 | Thr        | Tyr        |
|------------------------------|----------------------------------|----------------------------------|------------------------------|------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Thr                          | Leu                              | Ala<br>195                       | Asp                          | Ile              | Asn        | Phe        | Tyr<br>200 | Ser        | His        | Сүз        | Gly        | Ala<br>205 | Met        | Val        | Glu        |
| Arg                          | Met<br>210                       | Phe                              | Pro                          | Glu              | Met        | Glu<br>215 | Val        | Ala        | Arg        | Arg        | Ala<br>220 | Pro        | Arg        | Leu        | Суз        |
| Glu<br>225                   | Trp                              | Arg                              | Asp                          | Arg              | Val<br>230 | Ala        | Ala        | Arg        | Pro        | Ala<br>235 | Val        | Ala        | Glu        | Ala        | Leu<br>240 |
| Lys                          | Ser                              | Glu                              | Asp                          | Arg<br>245       | Thr        | Ala        | Pro        | Gly        | Leu<br>250 | Arg        | Val        | Trp        | Ser        | Gly<br>255 | Glu        |
| Val                          | Arg                              |                                  |                              |                  |            |            |            |            |            |            |            |            |            |            |            |
| <210<br><211<br><212<br><213 | 0> SH<br>L> LH<br>2> TY<br>3> OH | EQ II<br>ENGTH<br>ZPE :<br>RGANI | D NO<br>H: 2!<br>PRT<br>[SM: | 44<br>57<br>Nove | oabr:      | ingol      | bium       | aro        | natio      | civo:      | rans       |            |            |            |            |
| <400                         | )> SH                            | EQUEI                            | ICE :                        | 44               | <b>a</b> 1 | <b>a</b> 1 | 7          |            | <b>m</b> 1 |            |            | Ţ          | T          | <b>T</b> . | -          |
| Met<br>1                     | val                              | шe                               | Pro                          | Leu<br>5         | стλ        | GIU        | Asp        | Asn        | 10         | цте        | Met        | Leu        | гла        | Leu<br>15  | TYr        |
| Ser                          | Phe                              | Gly                              | Pro<br>20                    | Ala              | Ala        | Asn        | Ser        | Met<br>25  | Lys        | Pro        | Leu        | Leu        | Thr<br>30  | Val        | Phe        |
| Glu                          | Lys                              | Gly<br>35                        | Leu                          | Asp              | Val        | Glu        | Lys<br>40  | His        | Arg        | Leu        | Aap        | Pro<br>45  | Ala        | Lys        | Phe        |
| Glu                          | His<br>50                        | His                              | Thr                          | Asp              | Trp        | Phe<br>55  | Lys        | Ala        | Ile        | Asn        | Pro<br>60  | Arg        | Gly        | Gln        | Val        |
| Pro<br>65                    | Ala                              | Leu                              | Val                          | Asp              | Gly<br>70  | Asp        | Lys        | Val        | Val        | Thr<br>75  | Glu        | Ser        | Thr        | Val        | Ile<br>80  |
| Суз                          | Glu                              | Tyr                              | Leu                          | Glu<br>85        | Asp        | Glu        | Tyr        | Pro        | Thr<br>90  | Glu        | Val        | Ala        | Leu        | Arg<br>95  | Pro        |
| Ala                          | Asp                              | Ser                              | Phe<br>100                   | Gly              | Lys        | Ala        | Gln        | Met<br>105 | Arg        | Ile        | Trp        | Thr        | Lys<br>110 | Trp        | Val        |
| Asp                          | Glu                              | Tyr<br>115                       | Phe                          | Суз              | Trp        | Суз        | Val<br>120 | Ser        | Thr        | Ile        | Gly        | Trp<br>125 | His        | Arg        | Tyr        |
| Val                          | Gly<br>130                       | Asn                              | Met                          | Val              | Lys        | Ser<br>135 | Leu        | Ser        | Asp        | Ala        | Glu<br>140 | Phe        | Glu        | Glu        | Lys        |
| Val<br>145                   | Lys                              | Ala                              | Ile                          | Pro              | Val<br>150 | Ile        | Glu        | Gln        | Gln        | Val<br>155 | ГЛа        | Trp        | Arg        | Arg        | Ala<br>160 |
| Arg                          | Glu                              | Gly                              | Phe                          | Pro<br>165       | Gln        | Asp        | Met        | Leu        | Asp<br>170 | Glu        | Glu        | Met        | Arg        | Lys<br>175 | Ile        |
| Ala                          | Tyr                              | Ser                              | Val                          | Arg              | Lys        | Leu        | Asp        | Asp<br>185 | His        | Leu        | Ala        | Asp        | His        | Glu        | Trp        |
| Leu                          | Val                              | Pro                              | Gly                          | Gln              | Tyr        | Thr        | Leu        | Ala        | Asp        | Ile        | Суз        | Asn        | Phe        | Ala        | Ile        |
| Ala                          | Asn                              | Gly                              | Met                          | Gln              | Phe        | Gly        | 200<br>Phe | Ala        | Glu        | Leu        | Val        | 205<br>Asn | Lys        | Gln        | Asp        |
| Thr                          | 210<br>Pro                       | His                              | Leu                          | Val              | Arg        | 215<br>Trp | Ile        | Glu        | Gln        | Ile        | 220<br>Asn | Glu        | Arg        | Pro        | Ala        |
| 225                          |                                  | <u>a</u> ,                       |                              |                  | 230        | -1         |            |            |            | 235        |            | - 4        | - J        |            | 240        |
| Val                          | гла                              | GIn                              | Met                          | Phe<br>245       | Ala        | Gln        | Val        | Glu        | Leu<br>250 | Glu        | гла        | Leu        | GΙΥ        | Pro<br>255 | Arg        |

Glu

<210> SEQ ID NO 45 <211> LENGTH: 257 <212> TYPE: PRT

```
-continued
```

| <213         | 3 > OI         | RGANI          | ISM:          | Sphingobium  |            |            | sp.        | SYK        | - 6        |            |            |            |            |            |            |
|--------------|----------------|----------------|---------------|--------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| <400         | )> SI          | EQUEI          | ICE :         | 45           |            |            |            |            |            |            |            |            |            |            |            |
| Met<br>1     | Thr            | Leu            | Lys           | Leu<br>5     | Tyr        | Ser        | Phe        | Gly        | Pro<br>10  | Gly        | Ala        | Asn        | Ser        | Leu<br>15  | Lys        |
| Pro          | Leu            | Ala            | Thr<br>20     | Leu          | Tyr        | Glu        | Lys        | Gly<br>25  | Leu        | Glu        | Phe        | Glu        | Gln<br>30  | Val        | Phe        |
| Val          | Asp            | Pro<br>35      | Ser           | Lys          | Phe        | Glu        | Gln<br>40  | His        | Ser        | Asp        | Trp        | Phe<br>45  | Lys        | Lys        | Ile        |
| Asn          | Pro<br>50      | Arg            | Gly           | Gln          | Val        | Pro<br>55  | Ala        | Leu        | Trp        | His        | Asp<br>60  | Gly        | Lys        | Val        | Val        |
| Thr<br>65    | Glu            | Ser            | Thr           | Val          | Ile<br>70  | СЛа        | Glu        | Tyr        | Leu        | Glu<br>75  | Asp        | Val        | Phe        | Pro        | Glu<br>80  |
| Ser          | Gly            | Asn            | Ser           | Leu<br>85    | Arg        | Pro        | Ala        | Asp        | Pro<br>90  | Phe        | ГЛа        | Arg        | Ala        | Glu<br>95  | Met        |
| Arg          | Val            | Trp            | Thr<br>100    | Lys          | Trp        | Val        | Asp        | Glu<br>105 | Tyr        | Phe        | Сув        | Trp        | Cys<br>110 | Val        | Ser        |
| Thr          | Ile            | Gly<br>115     | Trp           | Ala          | Phe        | Gly        | Ile<br>120 | Lys        | Ala        | Ile        | Ala        | Gln<br>125 | Lys        | Met        | Ser        |
| Asp          | Glu<br>130     | Glu            | Phe           | Glu          | Glu        | His<br>135 | Ile        | Asn        | Lys        | Asn        | Val<br>140 | Pro        | Ile        | Pro        | Glu        |
| Gln<br>145   | Gln            | Leu            | Lys           | Trp          | Arg<br>150 | Arg        | Ala        | Arg        | Asn        | Gly<br>155 | Phe        | Pro        | Gln        | Glu        | Met<br>160 |
| Leu          | Asp            | Glu            | Glu           | Phe<br>165   | Arg        | Lys        | Val        | Gly        | Val<br>170 | Ser        | Val        | Ala        | Arg        | Leu<br>175 | Glu        |
| Glu          | Thr            | Leu            | Ser<br>180    | Lys          | Gln        | Asp        | Tyr        | Leu<br>185 | Val        | Asp        | Thr        | Gly        | Tyr<br>190 | Ser        | Leu        |
| Ala          | Asp            | Ile<br>195     | Сүз           | Asn          | Phe        | Ala        | Ile<br>200 | Ala        | Asn        | Gly        | Leu        | Gln<br>205 | Arg        | Pro        | Gly        |
| Gly          | Phe<br>210     | Phe            | Gly           | Asp          | Tyr        | Val<br>215 | Asn        | Gln        | Glu        | Lys        | Thr<br>220 | Pro        | Gly        | Leu        | Сүз        |
| Ala<br>225   | Trp            | Leu            | Asp           | Arg          | Ile<br>230 | Asn        | Ala        | Arg        | Pro        | Ala<br>235 | Ile        | Lys        | Glu        | Met        | Phe<br>240 |
| Glu          | Lys            | Ser            | ГЛа           | Arg<br>245   | Glu        | Asp        | Leu        | Leu        | Lys<br>250 | Arg        | Gln        | Asn        | Glu        | Lys<br>255 | Val        |
| Ala          |                |                |               |              |            |            |            |            |            |            |            |            |            |            |            |
| <210<br><211 | )> SH<br>L> LH | EQ II<br>ENGTH | ) NO<br>1: 2! | 46<br>50     |            |            |            |            |            |            |            |            |            |            |            |
| <212         | 3 > 01         | RGAN           | ISM:          | Novosphingob |            |            | oium       | sp.        | PP1        | PP1Y       |            |            |            |            |            |
| <400         | )> SI          | EQUEI          | ICE :         | 46           |            |            |            |            |            |            |            |            |            |            |            |
| Met<br>1     | Leu            | Thr            | Leu           | Tyr<br>5     | Ser        | Phe        | Gly        | Pro        | Gly<br>10  | Ala        | Asn        | Ser        | Leu        | Lys<br>15  | Pro        |
| Leu          | Leu            | Ala            | Leu<br>20     | Tyr          | Glu        | Lys        | Gly        | Leu<br>25  | Glu        | Phe        | Thr        | Pro        | Arg<br>30  | Phe        | Val        |
| Asp          | Pro            | Thr<br>35      | Arg           | Phe          | Glu        | His        | His<br>40  | Glu        | Glu        | Trp        | Phe        | Lys<br>45  | Lys        | Ile        | Asn        |
| Pro          | Arg<br>50      | Gly            | Gln           | Val          | Pro        | Ala<br>55  | Leu        | Asp        | His        | Asp        | Gly<br>60  | His        | Ile        | Ile        | Thr        |
| Glu<br>65    | Ser            | Thr            | Val           | Ile          | Cys<br>70  | Glu        | Tyr        | Leu        | Glu        | Asp<br>75  | Ala        | Phe        | Pro        | Glu        | Ala<br>80  |
| Pro          | Arg            | Leu            | Arg           | Pro<br>85    | Val        | Asp        | Pro        | Val        | Met<br>90  | Ile        | Ala        | Glu        | Met        | Arg<br>95  | Val        |
-continued

Trp Thr Lys Trp Val Asp Glu Tyr Phe Cys Trp Cys Val Ser Thr Ile Gly Trp Glu Arg Met Ile Gly Pro Met Ala Arg Ala Leu Ser Asp Glu Glu Phe Glu Ala Lys Val Ala Arg Ile Pro Val Pro Glu Gln Arg Thr Lys Trp Arg Thr Ala Arg Thr Gly Phe Pro Lys Glu Val Leu Asp Glu Glu Met Arg Lys Ile Gly Val Ser Val Asn Arg Leu Glu Thr Arg Leu Ala Glu Ser Pro Trp Leu Ala Gly Glu Asn Phe Ser Leu Ala Asp Val Cys Asn Phe Ala Ile Ala Asn Gly Met Gln Asn Gly Phe Ser Asp Ile Val Asn Arg Glu Ala Thr Pro His Leu Val Ala Trp Ile Glu Lys Ile Asn Asp Arg Pro Ala Cys Lys Ala Met Phe Ala Asn Ser Lys Ser Glu Phe Ala Asp Arg Gly Gln Lys Val Thr Ala 245 250 <210> SEQ ID NO 47 <211> LENGTH: 256 <212> TYPE: PRT <213> ORGANISM: Novosphingobium sp. MBES04 <400> SEQUENCE: 47 Met Leu Thr Leu Tyr Ser Phe Gly Pro Gly Ala Asn Ser Leu Lys Pro Leu Leu Ala Leu Tyr Glu Lys Gly Leu Glu Phe Thr Pro Arg Phe Val Asp Pro Thr Lys Phe Glu His His Glu Glu Trp Phe Lys Lys Ile Asn Pro Arg Gly Gln Val Pro Ala Leu Asp His Asp Gly Asn Val Ile Thr Glu Ser Thr Val Ile Cys Glu Tyr Leu Glu Asp Ala Phe Pro Asp Ala Pro Arg Leu Arg Pro Thr Asp Pro Val Gln Ile Ala Glu Met Arg Val Trp Thr Lys Trp Val Asp Glu Tyr Phe Cys Trp Cys Val Ser Thr Ile Gly Trp Glu Arg Gly Ile Gly Pro Met Ala Arg Ala Leu Ser Asp Glu Glu Phe Glu Glu Lys Val Lys Arg Ile Pro Ile Pro Glu Gln Gln Ala Lys Trp Arg Ser Ala Arg Ala Gly Phe Pro Lys Glu Val Leu Asp Glu Glu Met Arg Lys Ile Arg Val Ser Ile Asp Arg Leu Glu Lys Arg Leu Ser Glu Ser Thr Trp Leu Ala Gly Glu Asp Tyr Thr Leu Ala Asp Ile Cys Asn Phe Ala Ile Ala Asn Gly Met Glu Lys Gly Phe Asp Asp Ile Val Asn Thr Ala Ala Thr Pro Asn Leu Val Ala Trp Ile Glu Arg Ile

147

#### -continued

|                                                                                                                                                                                                                    |                                      | concinac               | a            |   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|------------------------|--------------|---|
| 210                                                                                                                                                                                                                | 215                                  | 220                    |              |   |
| Asn Ala Arg Pro Ala Cys<br>225 230                                                                                                                                                                                 | s Ile Glu Met Phe Al<br>) 23         | a Lys Ser Lys Se<br>5  | r Glu<br>240 |   |
| Phe Ala Ala Arg Lys Pro<br>245                                                                                                                                                                                     | o Phe Ala Lys Ser Gl<br>250          | u Glu Gln Ala Gl<br>25 | n Ala<br>5   |   |
| <pre>&lt;210&gt; SEQ ID NO 48 &lt;211&gt; LENGTH: 22 &lt;212&gt; TYPE: DNA &lt;213&gt; ORGANISM: Artific &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION</pre>                                                  | tial Sequence<br>N: Saro_0141 (rpoZ) | Primer                 |              |   |
| <400> SEQUENCE: 48                                                                                                                                                                                                 |                                      |                        |              |   |
| gagatcgcgg aagaaaccgt g                                                                                                                                                                                            | 3c                                   |                        | 2            | 2 |
| <pre>&lt;210&gt; SEQ ID NO 49 &lt;211&gt; LENGTH: 24 &lt;212&gt; TYPE: DNA &lt;213&gt; ORGANISM: Artific &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION</pre>                                                  | rial Sequence<br>N: Saro_0141 (rpoZ) | Primer 2               |              |   |
| <400> SEQUENCE: 49                                                                                                                                                                                                 |                                      |                        |              |   |
| gatttcatcc acctcgtcgt c                                                                                                                                                                                            | egte                                 |                        | 2            | 4 |
| <210> SEQ ID NO 50<br><211> LENGTH: 26<br><212> TYPE: DNA<br><213> ORGANISM: Artific<br><220> FEATURE:<br><223> OTHER INFORMATION                                                                                  | tial Sequence<br>N: Saro_0205 (ligD) | Primer 1               |              |   |
| <400> SEQUENCE: 50                                                                                                                                                                                                 |                                      |                        |              |   |
| caacatcaag tcgaacatcg c                                                                                                                                                                                            | cggaag                               |                        | 2            | 6 |
| <pre>&lt;210&gt; SEQ ID NO 51 &lt;211&gt; LENGTH: 22 &lt;212&gt; TYPE: DNA &lt;213&gt; ORGANISM: Artific &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION</pre>                                                  | tial Sequence<br>N: Saro_0205 (ligD) | Primer 2               |              |   |
| <400> SEQUENCE: 51                                                                                                                                                                                                 |                                      |                        |              |   |
| ctggtggatc gaatgcagcg a                                                                                                                                                                                            | ag                                   |                        | 2            | 2 |
| <pre>&lt;210&gt; SEQ ID NO 52<br/>&lt;211&gt; LENGTH: 27<br/>&lt;212&gt; TYPE: DNA<br/>&lt;213&gt; ORGANISM: Artific<br/>&lt;220&gt; FEATURE:<br/>&lt;223&gt; OTHER INFORMATION<br/>&lt;400&gt; SEQUENCE: 52</pre> | rial Sequence<br>N: Saro_0793 (ligO) | Primer 1               |              |   |
|                                                                                                                                                                                                                    | agaata                               |                        | <u>_</u>     | 7 |
| yategaggaa tetteetaeg a                                                                                                                                                                                            | acyacty                              |                        | 2            | / |
| <210> SEQ ID NO 53<br><211> LENGTH: 24<br><212> TYPE: DNA<br><213> ORGANISM: Artific<br><220> FEATURE:<br><223> OTHER INFORMATION                                                                                  | rial Sequence<br>N: Saro_0793 (ligO) | Primer 2               |              |   |
| <400> SEQUENCE: 53                                                                                                                                                                                                 |                                      |                        |              |   |
| gtttaccacg ccgtggaggt t                                                                                                                                                                                            | cac                                  |                        | 2            | 4 |

150

149

-continued

| <210> SEQ ID NO 54<br><211> LENGTH: 26<br><212> TYPE: DNA                                                                                                                                                |    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| <213> ORGANISM: Artificial Sequence<br><220> FEATURE:                                                                                                                                                    |    |
| <223> OTHER INFORMATION: Saro_0794 (ligN) Primer 1                                                                                                                                                       |    |
| <400> SEQUENCE: 54                                                                                                                                                                                       | 26 |
| Calalogici geaclycic galgic                                                                                                                                                                              | 20 |
| <210> SEQ ID NO 55<br><211> LENGTH: 22<br><212> TYPE: DNA<br><213> ORGANISM: Artificial Sequence                                                                                                         |    |
| <pre>&lt;220&gt; FEATURE:<br/>&lt;223&gt; OTHER INFORMATION: Saro_0794 (ligN) Primer 2</pre>                                                                                                             |    |
| <400> SEQUENCE: 55                                                                                                                                                                                       |    |
| gcagaatgcc gagcagatca cg                                                                                                                                                                                 | 22 |
| <pre>&lt;210&gt; SEQ ID NO 56 &lt;211&gt; LENGTH: 22 &lt;212&gt; TYPE: DNA &lt;213&gt; ORGANISM: Artificial Sequence &lt;220&gt; FEATURE: &lt;220&gt; CHURD INFORMATION form 1075 (ligt) Primer 1</pre>  |    |
| <223> OTHER INFORMATION: Saro_18/5 (ligL) Frimer 1                                                                                                                                                       |    |
| ccatatogte acacegeat cg                                                                                                                                                                                  | 22 |
| 2010, CEO ID NO EZ                                                                                                                                                                                       | 22 |
| <pre><li><li><li><li><li><li><li><li><li><li< td=""><td></td></li<></li></li></li></li></li></li></li></li></li></pre>                                                                                   |    |
| <pre>&lt;400&gt; SEQUENCE: 57</pre>                                                                                                                                                                      |    |
| catgtteteg gteaggttea geae                                                                                                                                                                               | 24 |
| <210> SEQ ID NO 58<br><211> LENGTH: 22<br><212> TYPE: DNA<br><213> ORGANISM: Artificial Sequence<br><220> FEATURE:                                                                                       |    |
| <pre>&lt;223&gt; OTHER INFORMATION: Saro_2091 (ligF) Primer 1 400</pre>                                                                                                                                  |    |
| <400> SEQUENCE: 58                                                                                                                                                                                       | 22 |
| gelgergaty gegeregaga ag                                                                                                                                                                                 | 22 |
| <pre>&lt;210&gt; SEQ ID NO 59 &lt;211&gt; LENGTH: 24 &lt;212&gt; TYPE: DNA &lt;213&gt; ORGANISM: Artificial Sequence &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: Saro 2091 (ligE) Primer 2</pre> |    |
| <pre>&lt;400&gt; SEOUENCE: 59</pre>                                                                                                                                                                      |    |
| -<br>cttgaaccag tcggtgtgat gctc                                                                                                                                                                          | 24 |
| <210> SEQ ID NO 60<br><211> LENGTH: 29<br><212> TYPE: DNA<br><213> ORGANISM: Artificial Sequence<br><220> FEATURE:                                                                                       |    |

-continued

| <223> OTHER INFORMATION: Saro_2405 (ligP) Primer 1                                                                                                                                      |    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| <400> SEQUENCE: 60                                                                                                                                                                      |    |
| catcgtcgaa tacctcgatg ccaagtatc                                                                                                                                                         | 29 |
| <210> SEQ ID NO 61<br><211> LENGTH: 25<br><212> TYPE: DNA<br><213> ORGANISM: Artificial Sequence<br><220> FEATURE:<br><223> OTHER INFORMATION: Saro_2405 (ligP) Primer 2                |    |
| <400> SEQUENCE: 61                                                                                                                                                                      |    |
| gtcctggcag aagcagaaca tccac                                                                                                                                                             | 25 |
| <210> SEQ ID NO 62<br><211> LENGTH: 26<br><212> TYPE: DNA<br><213> ORGANISM: Artificial Sequence<br><220> FEATURE:<br><223> OTHER INFORMATION: Saro_2595 Primer 1                       |    |
| <400> SEQUENCE: 62                                                                                                                                                                      |    |
| ccacgatcat gctggaagaa ctgctc                                                                                                                                                            | 26 |
| <210> SEQ ID NO 63<br><211> LENGTH: 25<br><212> TYPE: DNA<br><213> ORGANISM: Artificial Sequence<br><220> FEATURE:<br><223> OTHER INFORMATION: Saro_2595 Primer 2<br><400> SEQUENCE: 63 |    |
| gattegaaga egeggaaegg tteag                                                                                                                                                             | 25 |
| <210> SEQ ID NO 64<br><211> LENGTH: 23<br><212> TYPE: DNA<br><213> ORGANISM: Artificial Sequence<br><220> FEATURE:<br><223> OTHER INFORMATION: Primer pK18msB AseI ampl F               |    |
| <400> SEQUENCE: 64                                                                                                                                                                      |    |
| ctgtcgtgcc agctgcatta atg                                                                                                                                                               | 23 |
| <210> SEQ ID NO 65<br><211> LENGTH: 29<br><212> TYPE: DNA<br><213> ORGANISM: Artificial Sequence<br><220> FEATURE:<br><223> OTHER INFORMATION: Primer pK18msB -MCS XbaI R               |    |
| <400> SEQUENCE: 65                                                                                                                                                                      |    |
| gaacatctag aaagccagtc cgcagaaac                                                                                                                                                         | 29 |
| <210> SEQ ID NO 66<br><211> LENGTH: 30<br><212> TYPE: DNA<br><213> ORGANISM: Artificial Sequence<br><220> FEATURE:<br><223> OTHER INFORMATION: Primer Saro1879 lvnsucr ampl F AseI      |    |
| <400> SEQUENCE: 66                                                                                                                                                                      |    |
| cccgaattaa tcgtgacggt atcaacctcc                                                                                                                                                        | 30 |

<223> OTHER INFORMATION: Primer Saro\_2595 del for

#### -continued

154

<210> SEQ ID NO 67 <211> LENGTH: 30 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer Saro1879 lvnsucr ampl R XbaI <400> SEQUENCE: 67 gtttcggtct agatcgagct gaccgaaatc 30 <210> SEQ ID NO 68 <211> LENGTH: 29 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer Saro\_2595 amp AseI for <400> SEQUENCE: 68 gtcgattaat agtccgagat cgaggctgc 29 <210> SEQ ID NO 69 <211> LENGTH: 28 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer Saro\_2595 amp XbaI rev <400> SEOUENCE: 69 28 cgactctaga cagagcctga acgaagtc <210> SEQ ID NO 70 <211> LENGTH: 32 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer Saro1879 lvnsucr del REV <400> SEQUENCE: 70 ccgactttct tgaaacagat ttggcttaag ac 32 <210> SEQ ID NO 71 <211> LENGTH: 26 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer Saro1879 lvnsucr del FOR <400> SEQUENCE: 71 gttcatgctt aacttcgatg gcgagc 26 <210> SEQ ID NO 72 <211> LENGTH: 29 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer Saro\_2595 del rev <400> SEQUENCE: 72 29 cctgctcctt ggggatattg ttagtgttg <210> SEQ ID NO 73 <211> LENGTH: 25 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE:

| <br> |
|------|
| ~~   |
|      |

-continued

156

| <400> SEQUENCE: 73                                                                                                                                                         |    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| ggaatcgttg caagcgatcg tcaag                                                                                                                                                | 25 |
| <210> SEQ ID NO 74<br><211> LENGTH: 41<br><212> TYPE: DNA<br><213> ORGANISM: Artificial Sequence<br><220> FEATURE:<br><223> OTHER INFORMATION: Primer D2595pK18-ecYghU F   |    |
| <400> SEQUENCE: 74                                                                                                                                                         |    |
| ggagcaggcg atgacagaca atacttatca gcccgcgaaa g                                                                                                                              | 41 |
| <210> SEQ ID NO 75<br><211> LENGTH: 41<br><212> TYPE: DNA<br><213> ORGANISM: Artificial Sequence<br><220> FEATURE:<br><223> OTHER INFORMATION: Primer D2595pK18-ecYghU R   |    |
| <400> SEQUENCE: 75                                                                                                                                                         |    |
| cgaggcgggt ttacccctga cgcttatctt ccgtattcgt c                                                                                                                              | 41 |
| <210> SEQ ID NO 76<br><211> LENGTH: 32<br><212> TYPE: DNA<br><213> ORGANISM: Artificial Sequence<br><220> FEATURE:<br><223> OTHER INFORMATION: Primer ecYghU-D2595pK18 F   |    |
| <400> SEQUENCE: 76                                                                                                                                                         |    |
| tcaggggtaa acccgcctcg agaccggcga ac                                                                                                                                        | 32 |
| <210> SEQ ID NO 77<br><211> LENGTH: 38<br><212> TYPE: DNA<br><213> ORGANISM: Artificial Sequence<br><220> FEATURE:<br><223> OTHER INFORMATION: Primer ecYghU-D2595pK18 R   |    |
| <400> SEQUENCE: 77                                                                                                                                                         |    |
| tgtetgteat egeetgetee ttggggatat tgttagtg                                                                                                                                  | 38 |
| <210> SEQ ID NO 78<br><211> LENGTH: 27<br><212> TYPE: DNA<br><213> ORGANISM: Artificial Sequence<br><220> FEATURE:<br><223> OTHER INFORMATION: Primer Saro2595 Ctag PciI F |    |
| <400> SEQUENCE: 78                                                                                                                                                         |    |
| gcaggacatg teeteagagt acgttee                                                                                                                                              | 27 |
| <210> SEQ ID NO 79<br><211> LENGTH: 35<br><212> TYPE: DNA<br><213> ORGANISM: Artificial Sequence<br><220> FEATURE:<br><223> OTHER INFORMATION: Primer Saro2595 Ctag BsaI R |    |
| <400> SEQUENCE: 79                                                                                                                                                         | 25 |
| yrrareryey agaecaegat egertgeaae gatte                                                                                                                                     | 30 |

<210> SEQ ID NO 80 <211> LENGTH: 28

| 1 | 57 |  |
|---|----|--|
| - |    |  |

-continued

| <pre>&lt;12&gt; TYPE: DNA &lt;213&gt; ORGANISM: Artificial Sequence &lt;220&gt; FEATURE:</pre>                                                                                                                                    |    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| <223> OTHER INFORMATION: Primer pVP302K Ctag BsaI F                                                                                                                                                                               |    |
| <400> SEQUENCE: 80                                                                                                                                                                                                                |    |
| ctgcggtctc gcagatggta aaattctg                                                                                                                                                                                                    | 28 |
| <210> SEQ ID NO 81<br><211> LENGTH: 35<br><212> TYPE: DNA<br><213> ORGANISM: Artificial Sequence<br><220> FEATURE:<br><223> OTHER INFORMATION: GGTGATGTCCCATGGTTAATTCTCCTCTTTAATG                                                 |    |
| <400> SEQUENCE: 81                                                                                                                                                                                                                |    |
| ggtgatgtcc catggttaat ttctcctctt taatg                                                                                                                                                                                            | 35 |
| <210> SEQ ID NO 82<br><211> LENGTH: 33<br><212> TYPE: DNA<br><213> ORGANISM: Artificial Sequence<br><220> FEATURE:<br><223> OTHER INFORMATION: Primer Ctag 2595-pVP add Stop R                                                    |    |
| <400> SEQUENCE: 82                                                                                                                                                                                                                |    |
| tcagaageee ttgaegateg ettgeaaega tte                                                                                                                                                                                              | 33 |
| <210> SEQ ID NO 83<br><211> LENGTH: 35<br><212> TYPE: DNA<br><213> ORGANISM: Artificial Sequence<br><220> FEATURE:<br><223> OTHER INFORMATION: Primer pVP302K Ntag HindIII F                                                      |    |
| <400> SEQUENCE: 83                                                                                                                                                                                                                |    |
| cattaaaagc ttaaacgaat tcggactcgg tacgc                                                                                                                                                                                            | 35 |
| <210> SEQ ID NO 84<br><211> LENGTH: 58<br><212> TYPE: DNA<br><213> ORGANISM: Artificial Sequence<br><220> FEATURE:<br><223> OTHER INFORMATION: Primer 2595-pVP C to Ntag F                                                        |    |
| caaddaaaa totatattti cadaddacaa todcaddaat dtootoadad taodtoo                                                                                                                                                                     | 58 |
| <pre>&lt;210&gt; SEQ ID NO 85 &lt;211&gt; LENGTH: 59 &lt;212&gt; TYPE: DNA &lt;213&gt; ORGANISM: Artificial Sequence &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: Primer pVP302 C to Ntag R &lt;400&gt; SEQUENCE: 85</pre> |    |
| <400> SEQUENCE: 85                                                                                                                                                                                                                |    |
| ccaatgcatg gtgatggtga tgatggtgat gtcccatggt taatttctcc tctttaatg                                                                                                                                                                  | 59 |
| <210> SEQ ID NO 86<br><211> LENGTH: 41<br><212> TYPE: DNA<br><213> ORGANISM: Artificial Sequence<br><220> FEATURE:<br><223> OTHER INFORMATION: Primer pVP302K-ecYghU F                                                            |    |
| <400> SEQUENCE: 86                                                                                                                                                                                                                |    |

| US 10,029,743 DZ | US | 10,829,745 | B2 |
|------------------|----|------------|----|
|------------------|----|------------|----|

| 1 | 50 |
|---|----|
|   | 37 |

-continued

| gatcgcagga atgacagaca atacttatca gcccgcgaaa g                            | 41 |
|--------------------------------------------------------------------------|----|
|                                                                          |    |
| <210> SEQ ID NO 87                                                       |    |
| <211> LENGTH: 41                                                         |    |
| <212> TYPE: DNA<br><213> ORGANISM: Artificial Sequence                   |    |
| <220> FEATURE:                                                           |    |
| <223> OTHER INFORMATION: Primer pVP302K-ecYghU R                         |    |
| <400> SEQUENCE: 87                                                       |    |
| cqqctttctq ttacccctqa cqcttatctt ccqtattcqt c                            | 41 |
|                                                                          |    |
| <210> SEO ID NO 88                                                       |    |
| <211> LENGTH: 45                                                         |    |
| <212> TYPE: DNA                                                          |    |
| <220> FEATURE:                                                           |    |
| <223> OTHER INFORMATION: Primer ecYghU-pVP302K F                         |    |
| <400> SEQUENCE: 88                                                       |    |
|                                                                          |    |
| tcaggggtaa cagaaagccg aaaataacaa agttagcctg agctg                        | 45 |
| -210. CEO TO NO 00                                                       |    |
| <210> SEQ 1D NO 89<br><211> LENGTH: 44                                   |    |
| <212> TYPE: DNA                                                          |    |
| <213> ORGANISM: Artificial Sequence                                      |    |
| <2223> OTHER INFORMATION: Primer ecYghU-pVP302K R                        |    |
| ADDS SECTIENCE: 89                                                       |    |
| (100) DEVOLUCE. 0)                                                       |    |
| tgtctgtcat tcctgcgatc gcgctctgaa aatacagatt ttcg                         | 44 |
|                                                                          |    |
| <210> SEQ ID NO 90<br><211> LENGTH: 34                                   |    |
| <212> TYPE: DNA                                                          |    |
| <213> ORGANISM: Artificial Sequence                                      |    |
| <2223> OTHER INFORMATION: Primer pVP302K-HiFi-ATW-R                      |    |
| <400> SEQUENCE: 90                                                       |    |
|                                                                          |    |
| teetgegate gegetetgaa aatacagatt tteg                                    | 34 |
| -210- SEO TO NO 01                                                       |    |
| <211> LENGTH: 35                                                         |    |
| <212> TYPE: DNA                                                          |    |
| <213> ORGANISM: Artificial Sequence<br><220> FEATURE:                    |    |
| <223> OTHER INFORMATION: Primer pVP302K-HiFi-ATW-F                       |    |
| <400> SEOUENCE: 91                                                       |    |
| ~                                                                        |    |
| cagaaagccg aaaataacaa agttagcctg agctg                                   | 35 |
| -210- STO TO NO 02                                                       |    |
| <210> SEQ ID NO 92<br><211> LENGTH: 53                                   |    |
| <212> TYPE: DNA                                                          |    |
| <213> ORGANISM: Artificial Sequence                                      |    |
| <220> FEATURE:<br><223> OTHER INFORMATION: Primer ecYfcG-bVP-Ntag-HiFi-F |    |
|                                                                          |    |
| <400> SEQUENCE: 92                                                       |    |
| gtattttcag agegegateg caggaatgat egatetetat ttegeeeega cae               | 53 |
|                                                                          |    |
| <210> SEQ ID NO 93                                                       |    |
| <211> LENGTH: 56                                                         |    |
| <212> TYPE: DNA                                                          |    |

<213> ORGANISM: Artificial Sequence

| 1 | ^ | 1  |  |
|---|---|----|--|
|   | n |    |  |
| ж | v | ж. |  |

-continued

162

| -concinded                                                                                                                                                                                      |     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|                                                                                                                                                                                                 |     |
| <400> SEQUENCE: 93                                                                                                                                                                              |     |
| ctaactttgt tattttcggc tttctgttaa ctatccgaac gctcatcacc gagttg                                                                                                                                   | 56  |
| <210> SEQ ID NO 94<br><211> LENGTH: 35<br><212> TYPE: DNA<br><213> ORGANISM: Artificial Sequence<br><220> FEATURE:<br><223> OTHER INFORMATION: Primer SYK6 yghU pVP fix R                       |     |
| <400> SEQUENCE: 94                                                                                                                                                                              |     |
| gttattttcg gctttctgtt aagcttcggt cttcg                                                                                                                                                          | 35  |
| <210> SEQ ID NO 95<br><211> LENGTH: 37<br><212> TYPE: DNA<br><213> ORGANISM: Artificial Sequence<br><220> FEATURE:<br><223> OTHER INFORMATION: Primer SYK6 yghU pVP fix F<br><400> SEQUENCE: 95 |     |
| cttaacadaa agocgaaaat aacaaadtta gootgag                                                                                                                                                        | 37  |
| <210> SEQ ID NO 96<br><211> LENGTH: 951<br><212> TYPE: DNA<br><213> ORGANISM: Artificial Sequence<br><220> FEATURE:<br><223> OTHER INFORMATION: Codon-optimized SLG_04120 gene fragment         |     |
| <400> SEQUENCE: 96                                                                                                                                                                              |     |
| gtattttcag agegegateg caggaatgge egaeteagat ceateeatga ateageegae                                                                                                                               | 60  |
| gggttacgtc ccgccgaaag tttggacctg ggacaaagag aacggcggtc agttcagcaa                                                                                                                               | 120 |
| tatcaacgee eetaeggetg gtgegegeea ggaegteaeg eteeetgtag gggageaeee                                                                                                                               | 180 |
| tatecaatta tatagteteg geacteegaa tggteagaaa gttaetatea tgttggaaga                                                                                                                               | 240 |
| actgetgget getggetttg atgetgagta tgaegeetgg eteateaaaa tetaeaeagg                                                                                                                               | 300 |
| cgagcaatte ggatetgatt tegtegeeat taaceetaat agcaaaatte eggetatgat                                                                                                                               | 360 |
| ggaccatggt ctcgatccgc cgctccgttt atttgagtct ggttctatgt tagtttatct                                                                                                                               | 420 |
| ggeegaaaag tttggegeat teeteeegae egaaateege aaaegtaegg aaaeetttaa                                                                                                                               | 480 |
| ctggctcatg tggcagatgg gttctgctcc ttttgtgggt ggtggctttg gccacttcta                                                                                                                               | 540 |
| tgcgtacgcc ccatttaaaa tcgaatatgc cattgatcgt tacgcgatgg aaaccaagcg                                                                                                                               | 600 |
| ccaactggac gttctggata aaaatctggc cgatcgtgaa tttatgatcg gcgatgaaat                                                                                                                               | 660 |
| caccategea gattttgega tttteeettg gtaeggeteg attatgegtg geggttaeaa                                                                                                                               | 720 |
| cgcgcaagaa ttettgagea eteaeggagta eegtaaegtt gategetggg ttaegeaget                                                                                                                              | 780 |
| ttetgaaegt aegggegtaa agegtggtet eettgteaat teegegggte geeegggagg                                                                                                                               | 840 |
| tggcattgcg gaacgccata gcgcggctga tttagacgcg tcgattaaag cggctgaaca                                                                                                                               | 900 |
| agaggccgcg aagaccgaag cttaacagaa agccgaaaat aacaaagtta g                                                                                                                                        | 951 |
|                                                                                                                                                                                                 |     |

<210> SEQ ID NO 97 <211> LENGTH: 58 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE:

### 163

#### -continued

| <223> OTHER INFORMATION: Primer pK18-ligE OvExt F                                                                                                                             |    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| <400> SEQUENCE: 97                                                                                                                                                            |    |
| gtttetgegg actggettte tagatgttee agtgetetae aaccagtegt accacatg                                                                                                               | 58 |
| <210> SEQ ID NO 98<br><211> LENGTH: 56<br><212> TYPE: DNA<br><213> ORGANISM: Artificial Sequence<br><220> FEATURE:<br><223> OTHER INFORMATION: Primer pK18-ligE OvExt R       |    |
| <400> SEQUENCE: 98                                                                                                                                                            |    |
| cgattcatta atgcagctgg cacgacagcg agttgaacga aacctcctcg ttcatg                                                                                                                 | 56 |
| <210> SEQ ID NO 99<br><211> LENGTH: 29<br><212> TYPE: DNA<br><213> ORGANISM: Artificial Sequence<br><220> FEATURE:<br><223> OTHER INFORMATION: Primer Saro2405 ligE del F     |    |
| <400> SEQUENCE: 99                                                                                                                                                            |    |
| gcatcaccga aggcatgaag aagtaaacg                                                                                                                                               | 29 |
| <210> SEQ ID NO 100<br><211> LENGTH: 29<br><212> TYPE: DNA<br><213> ORGANISM: Artificial Sequence<br><220> FEATURE:<br><223> OTHER INFORMATION: Primer Saro2405 ligE del R    |    |
| <400> SEQUENCE: 100                                                                                                                                                           |    |
| gtgactcaat tgccgtcacc ctgaacttg                                                                                                                                               | 29 |
| <210> SEQ ID NO 101<br><211> LENGTH: 30<br><212> TYPE: DNA<br><213> ORGANISM: Artificial Sequence<br><220> FEATURE:<br><223> OTHER INFORMATION: Primer Saro_2872 ampl AseI F2 |    |
| <400> SEQUENCE: 101                                                                                                                                                           |    |
| catcattaat tcgacctggc cataggactg                                                                                                                                              | 30 |
| <210> SEQ ID NO 102<br><211> LENGTH: 29<br><212> TYPE: DNA<br><213> ORGANISM: Artificial Sequence<br><220> FEATURE:<br><223> OTHER INFORMATION: Primer Saro_2872 ampl XbaI R  |    |
| <400> SEQUENCE: 102                                                                                                                                                           |    |
| tagttetaga ecatetttte egetggage                                                                                                                                               | 29 |
| <210> SEQ ID NO 103<br><211> LENGTH: 21<br><212> TYPE: DNA<br><213> ORGANISM: Artificial Sequence<br><220> FEATURE:<br><223> OTHER INFORMATION: Primer Saro_2872 del R        |    |
| <400> SEQUENCE: 103                                                                                                                                                           |    |
| gcttgtcaag gcctggcttg c                                                                                                                                                       | 21 |

-continued

| <210> SEQ ID NO 104                                                          |     |
|------------------------------------------------------------------------------|-----|
| <211> LENGIH: 27<br><212> TYPE: DNA                                          |     |
| <213> ORGANISM: Artificial Sequence<br><220> FEATURE:                        |     |
| <223> OTHER INFORMATION: Primer Saro_2872 del F                              |     |
| <400> SEQUENCE: 104                                                          |     |
| ttateceteg ateteegeea tgatgag                                                | 27  |
| <210> SEO ID NO 105                                                          |     |
| <211> LENGTH: 57                                                             |     |
| <212> TYPE: DNA<br><213> ORGANISM: Artificial Sequence                       |     |
| <220> FEATURE:<br><223> OTHER INFORMATION: Primer Saro 2873-pk18 hifi ampl R |     |
| <pre>////////////////////////////////////</pre>                              |     |
|                                                                              | F 7 |
| gtttetgegg actggettte tagatgttee etacaaggga gggeagtgaa atgaage               | 57  |
| <210> SEQ ID NO 106                                                          |     |
| <211> LENGTH: 33<br><212> TYPE: DNA                                          |     |
| <213> ORGANISM: Artificial Sequence                                          |     |
| <2203 FLATORE:<br><223> OTHER INFORMATION: Primer Saro_2873 hifi del F       |     |
| <400> SEQUENCE: 106                                                          |     |
| catecetega tetegteeat eegetgeeea tee                                         | 33  |
|                                                                              |     |
| <210> SEQ ID NO 107                                                          |     |
| <211> LENGIH: 56<br><212> TYPE: DNA                                          |     |
| <213> ORGANISM: Artificial Sequence                                          |     |
| <223> OTHER INFORMATION: Primer Saro_2873-pk18 hifi ampl F                   |     |
| <400> SEQUENCE: 107                                                          |     |
| cgattcatta atgcagctgg cacgacaggg acgaatgata gaccagccac ttcagg                | 56  |
|                                                                              |     |
| <210> SEQ 1D NO 108<br><211> LENGTH: 37                                      |     |
| <212> TYPE: DNA                                                              |     |
| <220> FEATURE:                                                               |     |
| <223> OTHER INFORMATION: Primer Saro_2873 hifi del R                         |     |
| <400> SEQUENCE: 108                                                          |     |
| gatggacgag atcgagggat gagcgcgctt ctttacc                                     | 37  |
| <210> SEO ID NO 109                                                          |     |
| <211> LENGTH: 35                                                             |     |
| <212> TYPE: DNA<br><213> ORGANISM: Artificial Sequence                       |     |
| <220> FEATURE:                                                               |     |
| <223> OTHER INFORMATION: Primer Saro2872 Ctag BsaI F                         |     |
| <400> SEQUENCE: 109                                                          |     |
| ggcatctgcg agacctcccc aacggttgat ttcag                                       | 35  |
| -210, CEO ID NO 110                                                          |     |
| <210> SEQ ID NO ILO<br><211> LENGTH: 28                                      |     |
| <212> TYPE: DNA                                                              |     |
| <213> ORGANISM: Artificial Sequence<br><220> FEATURE:                        |     |
| <223> OTHER INFORMATION: Primer Saro2872 Ctag BspHI R                        |     |

| -1 |     |  |
|----|-----|--|
|    | n / |  |
| _  |     |  |

, , - -

168

| -continued                                                                                                                                                                                     |    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| <400> SEQUENCE: 110                                                                                                                                                                            |    |
| cgagtcatga gcgcgcttct ttaccacg                                                                                                                                                                 | 28 |
| <210> SEQ ID NO 111<br><211> LENGTH: 28<br><212> TYPE: DNA<br><213> ORGANISM: Artificial Sequence<br><220> FEATURE:<br><223> OTHER INFORMATION: Primer Ctag 2872-pVP add Stop R                |    |
| <400> SEQUENCE: 111                                                                                                                                                                            |    |
| cgagttatcc ccaacggttg atttcagg                                                                                                                                                                 | 28 |
| <210> SEQ ID NO 112<br><211> LENGTH: 60<br><212> TYPE: DNA<br><213> ORGANISM: Artificial Sequence<br><220> FEATURE:<br><223> OTHER INFORMATION: Primer 2872-pVP C to Ntag F                    |    |
| <400> SEQUENCE: 112                                                                                                                                                                            |    |
| caagcgaaaa tetgtatttt cagagegega tegeaggaat gagegegett etttaceaeg                                                                                                                              | 60 |
| <210> SEQ ID NO 113<br><211> LENGTH: 58<br><212> TYPE: DNA<br><213> ORGANISM: Artificial Sequence<br><220> FEATURE:<br><223> OTHER INFORMATION: Primer Saro2872 gNtag R                        |    |
| <400> SEQUENCE: 113                                                                                                                                                                            |    |
| caagcgaaaa tetgtatttt cagagegega tegeaggaag egegettett taccaegg                                                                                                                                | 58 |
| <210> SEQ ID NO 114<br><211> LENGTH: 58<br><212> TYPE: DNA<br><213> ORGANISM: Artificial Sequence<br><220> FEATURE:<br><223> OTHER INFORMATION: Primer Saro2872 gNtag F<br><400> SEQUENCE: 114 |    |
| ccaatgcatg gtgatggtga tgatggtgat gtatcatccc tcgatctccg ccatgatg                                                                                                                                | 58 |
| <210> SEQ ID NO 115<br><211> LENGTH: 50<br><212> TYPE: DNA<br><213> ORGANISM: Artificial Sequence<br><220> FEATURE:<br><223> OTHER INFORMATION: Primer 2872-3_pVP_HiFi_F                       |    |
| <400> SEQUENCE: 115                                                                                                                                                                            |    |
| ctaactttgt tattttcggc tttctgttat ccccaacggt tgatttcagg                                                                                                                                         | 50 |
| <210> SEQ ID NO 116<br><211> LENGTH: 54<br><212> TYPE: DNA<br><213> ORGANISM: Artificial Sequence<br><220> FEATURE:<br><223> OTHER INFORMATION: Primer Saro2872-3NOTAG_pVP_HiFi_R              |    |
| <400> SEQUENCE: 116                                                                                                                                                                            |    |
| gaattcatta aagaggagaa attaaccatg gacgaggtaa gcctctatca ttgg                                                                                                                                    | 54 |
| <210> SEO ID NO 117                                                                                                                                                                            |    |

<210> SEQ ID NO II <211> LENGTH: 39

| -  | 1 | Λ. |
|----|---|----|
|    | h | U. |
| л. | v |    |

continued

170

\_

| concinaca                                                                  |    |
|----------------------------------------------------------------------------|----|
| <pre>&lt;212&gt; TYPE: DNA &lt;213&gt; OPGINISM: Artificial Sequence</pre> |    |
| <213 CREATINE: ACTICIAL Sequence                                           |    |
| <223> OTHER INFORMATION: Primer pVP302K-HiFi-noTag-R                       |    |
| <400> SEQUENCE: 117                                                        |    |
| ggttaattto toototttaa tgaattotgt gtgaaattg                                 | 39 |
| <210> SEQ ID NO 118                                                        |    |
| <211> LENGTH: 52<br><212> TYPE: DNA                                        |    |
| <pre>&lt;213&gt; ORGANISM: Artificial Sequence &lt;220&gt; FEATURE:</pre>  |    |
| <223> OTHER INFORMATION: Primer Saro2872-3Ntag_pVP_HiFi_R                  |    |
| <400> SEQUENCE: 118                                                        |    |
| gtattttcag agegegateg caggaatgga egaggtaage etetateatt gg                  | 52 |
| <210> SEQ ID NO 119                                                        |    |
| <211> LENGTH: 21<br><212> TYPE: DNA                                        |    |
| <213> ORGANISM: Artificial Sequence                                        |    |
| <223> OTHER INFORMATION: Primer Saro2872-S14A_R                            |    |
| <400> SEQUENCE: 119                                                        |    |
| cgcggcgctc accgttcttg c                                                    | 21 |
| <210> SEQ ID NO 120                                                        |    |
| <211> LENGTH: 26<br><212> TYPE: DNA                                        |    |
| <213> ORGANISM: Artificial Sequence                                        |    |
| <2205 FEATORE:<br><2235 OTHER INFORMATION: Primer Saro2872-S14A_F          |    |
| <400> SEQUENCE: 120                                                        |    |
| ccgttgggct cgccgtggta aagaag                                               | 26 |
| <210> SEQ ID NO 121                                                        |    |
| <211> LENGTH: 23<br><212> TYPE: DNA                                        |    |
| <213> ORGANISM: Artificial Sequence                                        |    |
| <220> FEATURE:<br><223> OTHER INFORMATION: Primer Saro2873-S15A_R          |    |
| <400> SEQUENCE: 121                                                        |    |
| gcaageegat getegegttg atg                                                  | 23 |
| <210> SEQ ID NO 122                                                        |    |
| <211> LENGTH: 31<br><212> TYPE: DNA                                        |    |
| <213> ORGANISM: Artificial Sequence                                        |    |
| <220> FEATORE:<br><223> OTHER INFORMATION: Primer Saro2873-S15A_F          |    |
| <400> SEQUENCE: 122                                                        |    |
| cagogttggo attgggttoo caatgataga g                                         | 31 |
| <210> SEQ ID NO 123                                                        |    |
| <211> LENGTH: 31                                                           |    |
| <212> 11FE: DNA<br><213> ORGANISM: Artificial Sequence                     |    |
| <220> FEATURE:<br><223> OTHER INFORMATION: Primer Saro2873-N144 F          |    |
| ADD. CONTRACT 100                                                          |    |
| <400> SEQUENCE: 123                                                        |    |

| - |    |
|---|----|
|   | 71 |
|   |    |
|   |    |

-continued

172

| cagaggcggc attgggttcc caatgataga g                          | 31  |  |
|-------------------------------------------------------------|-----|--|
|                                                             |     |  |
| <210> SEO ID NO 124                                         |     |  |
| <211> LENGTH: 28                                            |     |  |
| <212> TYPE: DNA                                             |     |  |
| <213> ORGANISM: Artificial Sequence                         |     |  |
| <220> FEATURE:                                              |     |  |
| <223> OTHER INFORMATION: Primer pEU-HiFi-ATW-R              |     |  |
| <400> SEQUENCE: 124                                         |     |  |
| gtgatgatga tgatgatgtc ccattaac                              | 28  |  |
| 114 CEO ID NO 145                                           |     |  |
| <210> SEQ 1D NO 125                                         |     |  |
| <2117 DENGIR: 24<br><2125 TYPE: DNA                         |     |  |
| <213> ORGANISM: Artificial Sequence                         |     |  |
| <220> FEATURE:                                              |     |  |
| <223> OTHER INFORMATION: Primer pEU-HiFi-ATW-F              |     |  |
| <400> SEQUENCE: 125                                         |     |  |
|                                                             | 0.4 |  |
| tagtttaaac gaattogago togg                                  | 24  |  |
| -210- STO ID NO 126                                         |     |  |
| <2105 SEQ 1D NO 128                                         |     |  |
| <212> TYPE: DNA                                             |     |  |
| <213> ORGANISM: Artificial Sequence                         |     |  |
| <220> FEATURE:                                              |     |  |
| <223> OTHER INFORMATION: Primer Saro2872-pEU2394-HiFi-F     |     |  |
| <400> SEQUENCE: 126                                         |     |  |
| ggacateate ateateatea egeattggea agegaaaate tgtattttea g    | 51  |  |
| ggacacoaco accacoacoa ogoacoggoa agogaaaaco ogoacocoa g     | 51  |  |
|                                                             |     |  |
| <210> SEQ 1D NO 127                                         |     |  |
| <211> LENGIH: 52                                            |     |  |
| <212> ORGANISM: Artificial Sequence                         |     |  |
| <220> FEATURE:                                              |     |  |
| <223> OTHER INFORMATION: Primer Saro2872-pEU2394-HiFi-R     |     |  |
| <400> SEQUENCE: 127                                         |     |  |
|                                                             | 50  |  |
| eegagetega attegtttaa aetaegagtt ateeeeaaeg gitgattea gg    | 52  |  |
| <210> SEO ID NO 128                                         |     |  |
| <211> LENGTH: 54                                            |     |  |
| <212> TYPE: DNA                                             |     |  |
| <213> ORGANISM: Artificial Sequence                         |     |  |
| <220> FEATURE:                                              |     |  |
| <223> OTHER INFORMATION: Primer pEU-2872-fix-R              |     |  |
| <400> SEQUENCE: 128                                         |     |  |
| cattaactaa ctagtgtagt tgtagaatgt aaaatgtaat gttgttgttg tttg | 54  |  |
|                                                             |     |  |
| <210> SEQ ID NO 129                                         |     |  |
| <211> LENGTH: 28                                            |     |  |
| <212> TYPE: DNA                                             |     |  |
| <213> ORGANISM: Artificial Sequence                         |     |  |
| <220> FEATURE:                                              |     |  |
| <223> OTHER INFORMATION: Primer pEU-2872-fix-F              |     |  |
| <400> SEQUENCE: 129                                         |     |  |
| ggacatcatc atcatcatca cgcattgg                              | 28  |  |
|                                                             |     |  |
| 2105 SEC ID NO 130                                          |     |  |
| <2115 LENGTH · 46                                           |     |  |
| <212> TYPE: DNA                                             |     |  |
|                                                             |     |  |

<213> ORGANISM: Artificial Sequence

| 1/3                                                                                                                                                                                                | 1/4    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| -con                                                                                                                                                                                               | tinued |
| <220> FEATURE:<br><223> OTHER INFORMATION: Primer Saro_2873-pEU_HiFi-F                                                                                                                             | 7      |
| <400> SEQUENCE: 130                                                                                                                                                                                |        |
| caactacact agttagttaa tggacgaggt aagcctctat cattgg                                                                                                                                                 | 46     |
| <210> SEQ ID NO 131<br><211> LENGTH: 46<br><212> TYPE: DNA<br><213> ORGANISM: Artificial Sequence<br><220> FEATURE:<br><223> OTHER INFORMATION: Primer Saro_2873-pEU_HiFi-F<br><400> SEQUENCE: 131 | 2      |
| cgagetegaa ttegtttaaa etaeteatee etegatetee geeatg                                                                                                                                                 | 46     |
| <210> SEQ ID NO 132<br><211> LENGTH: 29<br><212> TYPE: DNA<br><213> ORGANISM: Artificial Sequence<br><220> FEATURE:<br><223> OTHER INFORMATION: Primer pEU2394 F<br><400> SEQUENCE: 132            |        |

We claim:

gtagtttaaa cgaattcgag ctcggtacc

30 1. A method of processing lignin, comprising contacting lignin comprising  $\beta$ -O-4 ether linkages in vitro with:

- a dehydrogenase comprising at least one of LigD, LigO, LigN, and LigL;
- a  $\beta$ -etherase comprising at least one of LigE, LigF, LigP, and an enzyme comprising a first polypeptide having an 35 amino acid sequence of SEQ ID NO:40 or an amino acid sequence at least about 95% identical thereto and a second polypeptide having an amino acid sequence of SEQ ID NO:42 or an amino acid sequence at least about 95% identical thereto; and 40
- non-stereospecific glutathione lyase comprising an а amino acid sequence at least about 80% identical to any of:
  - SEQ ID NO:18 (NaGST<sub>Nu</sub>);
  - residues 21-313 of SEQ ID NO:20 (recombinant NaG- $ST_{Nu}$ ;
  - SEQ ID NO:22 (SYK6GST<sub>Nu</sub>);</sub>
  - residues 21-324 of SEQ ID NO:24 (recombinant SYK6GST<sub>Nu</sub>);
  - SEQ ID NO:26 (ecYghU);
  - residues 21-313 of SEQ ID NO:28 (recombinant ecY- 50 ghU); and
  - SEQ ID NO:32 (ssYghU),
- wherein the non-stereospecific glutathione lyase comprises at least four of:
  - threonine or a conservative variant of threonine at a 55 position corresponding to position 51 of SEQ ID NO:18 (NaGST<sub>Nu</sub>);
  - asparagine or a conservative variant of asparagine at a position corresponding to position 53 of SEQ ID NO:18 (NaGST<sub>Nu</sub>); 60
  - glutamine or a conservative variant of glutamine at a position corresponding to position 86 of SEQ ID NO:18 (NaGST<sub>Nu</sub>);</sub>
  - lysine, a conservative variant of lysine, arginine, or a conservative variant of arginine at a position corre-65 sponding to position 99 of SEQ ID NO:18 (NaG- $ST_{Nu}$ ;

isoleucine or a conservative variant of isoleucine at a position corresponding to position 100 of SEQ ID NO:18 (NaGST<sub>Nu</sub>);

174

- glutamate or a conservative variant of glutamate at a position corresponding to position 116 of SEQ ID NO:18 (NaGST<sub>Nu</sub>);
- serine, threonine, a conservative variant of serine, or a conservative variant of threonine at a position corresponding to position 117 of SEQ ID NO:18 (NaG- $ST_{Nu}$ ; and
  - arginine or a conservative variant of arginine at a position corresponding to position 177 of SEQ ID NO:18 (NaGST<sub>Nu</sub>).

2. The method of claim 1, wherein the non-stereospecific glutathione lyase comprises an amino acid sequence at least 45 about 85% identical to any of:

SEQ ID NO:18 (NaGST<sub>Nu</sub>);

29

- residues 21-313 of SEQ ID NO:20 (recombinant NaG- $ST_{N\nu}$ ;
- SEQ ID NO:22 (SYK6GST<sub>Nu</sub>);
- residues 21-324 of SEQ ID NO:24 (recombinant SYK6GST<sub>Nu</sub>);
- SEQ ID NO:26 (ecYghU);
- residues 21-313 of SEQ ID NO:28 (recombinant ecYghU); and
- SEQ ID NO:32 (ssYghU).

3. The method of claim 1, wherein the non-stereospecific glutathione lyase comprises an amino acid sequence at least about 90% identical to any of:

- SEQ ID NO:18 (NaGST<sub>Nu</sub>);
- residues 21-313 of SEQ ID NO:20 (recombinant NaG- $ST_{Nu});$
- SEQ ID NO:22 (SYK6GST<sub>Nu</sub>);
- residues 21-324 of SEQ ID NO:24 (recombinant SYK6GST<sub>Nu</sub>);
- SEQ ID NO:26 (ecYghU); and
- residues 21-313 of SEQ ID NO:28 (recombinant ecYghU).

35

**4**. The method of claim **1**, wherein the non-stereospecific glutathione lyase comprises an amino acid sequence at least about 95% identical to any of:

- SEQ ID NO:18 (NaGST<sub>Nu</sub>);</sub>
- residues 21-313 of SEQ ID NO:20 (recombinant NaG- 5  $ST_{Nu}$ );
- SEQ ID NO:22 (SYK6GST<sub>Nu</sub>);
- residues 21-324 of SEQ ID NO:24 (recombinant SYK6GST<sub>Nu</sub>);
- SEQ ID NO:26 (ecYghU); and
- residues 21-313 of SEQ ID NO:28 (recombinant ecY-ghU).

**5**. The method of claim **1**, wherein the non-stereospecific glutathione lyase comprises at least seven of:

- asparagine or a conservative variant of asparagine at a 15 position corresponding to position 25 of SEQ ID NO:18 (NaGST<sub>Nu</sub>);
- threonine or a conservative variant of threonine at a position corresponding to position 51 of SEQ ID NO:18 (NaGST<sub>Nu</sub>);
- asparagine or a conservative variant of asparagine at a position corresponding to position 53 of SEQ ID NO:18 (NaGST<sub>Nu</sub>);
- glutamine or a conservative variant of glutamine at a position corresponding to position 86 of SEQ ID 25 NO:18 (NaGST<sub>Nu</sub>);
- lysine, a conservative variant of lysine, arginine, or a conservative variant of arginine at a position corresponding to position 99 of SEQ ID NO:18 (NaGST<sub>Nu</sub>);
- isoleucine or a conservative variant of isoleucine at a 30 position corresponding to position 100 of SEQ ID NO:18 (NaGST<sub>Nu</sub>);
- glutamate or a conservative variant of glutamate at a position corresponding to position 116 of SEQ ID NO:18 (NaGST<sub>Nu</sub>);
- serine, threenine, a conservative variant of serine, or a conservative variant of threenine at a position corresponding to position 117 of SEQ ID NO:18 (NaG- $ST_{Nu}$ );
- tyrosine or a conservative variant of tyrosine at a position 40 corresponding to position 166 of SEQ ID NO:18 (NaG- $ST_{Nu}$ );
- arginine or a conservative variant of arginine at a position corresponding to position 177 of SEQ ID NO:18 (NaG- $ST_{N\nu}$ ); and 45
- tyrosine or a conservative variant of tyrosine at a position corresponding to position 224 of SEQ ID NO:18 (NaG- $ST_{Nu}$ ).

**6**. The method of claim **1**, wherein the contacting occurs in the presence of a glutathione (GSH) reductase that <sup>50</sup> catalyzes reduction of glutathione disulfide (GSSG).

7. The method of claim 6, wherein the GSH reductase comprises an amino acid sequence at least about 95% identical to SEQ ID NO:38 (AvGR).

**8**. The method of claim **1**, wherein the contacting releases 55 at least one of a monomeric phenylpropanoid unit and a monomeric flavone.

#### 176

**9**. The method of claim **1**, wherein the contacting releases at least one of a monomeric guaiacyl phenylpropanoid unit, a monomeric syringyl phenylpropanoid unit, a monomeric p-hydroxyphenyl phenylpropanoid unit, and a monomeric tricin unit.

10. The method of claim 1, wherein the lignin comprises an average molecular weight (MW) of from about 600 to about 20,000.

**11**. The method of claim **1**, wherein the dehydrogenase comprises at least one of LigD and LigO and at least one of LigL and LigN.

**12**. The method of claim **1**, wherein the dehydrogenase comprises LigD and LigN.

13. The method of claim 1, wherein the β-etherase comprises LigF and at least one of LigE, LigP, and the enzyme comprising the first polypeptide having the amino acid sequence of SEQ ID NO:40 or the amino acid sequence at least about 95% identical thereto and the second polypeptide 20 having the amino acid sequence of SEQ ID NO:42 or the

amino acid sequence at least about 95% identical thereto. 14. The method of claim 1, wherein the  $\beta$ -etherase comprises LigF and LigE.

15. The method of claim 1, wherein the non-stereospecific glutathione lyase comprises an amino acid sequence at least about 95% identical to SEQ ID NO:18 (NaGST<sub>Nu</sub>).

16. The method of claim 1, wherein:

- the dehydrogenase comprises at least one of LigD and LigO and at least one of LigL and LigN;
- the  $\beta$ -etherase comprises LigF and at least one of LigE, LigP, and the enzyme comprising the first polypeptide having the amino acid sequence of SEQ ID NO:40 or the amino acid sequence at least about 95% identical thereto and the second polypeptide having the amino acid sequence of SEQ ID NO:42 or the amino acid sequence at least about 95% identical thereto;
- the non-stereospecific glutathione lyase comprises an amino acid sequence at least about 95% identical to SEQ ID NO:18 (NaGST<sub>Nu</sub>); and
- the contacting occurs in the presence of a glutathione (GSH) reductase that catalyzes reduction of glutathione disulfide (GSSG) and comprises an amino acid sequence at least about 95% identical to SEQ ID NO:38 (AvGR).

17. The method of claim 1, wherein:

the dehydrogenase comprises LigD and LigN;

the  $\beta$ -etherase comprises LigF and LigE;

- the non-stereospecific glutathione lyase comprises an amino acid sequence at least about 95% identical to SEQ ID NO:18 (NaGST<sub>Nu</sub>); and
- the contacting occurs in the presence of a glutathione (GSH) reductase that catalyzes reduction of glutathione disulfide (GSSG) and comprises an amino acid sequence at least about 95% identical to SEQ ID NO:38 (AvGR).

\* \* \* \* \*