
I 1111111111111111 1111111111 1111111111 11111 11111 11111 11111 111111111111111111
USO 10282899B2

c12) United States Patent
Mitchell et al.

(IO) Patent No.:
(45) Date of Patent:

US 10,282,899 B2
May 7, 2019

(54) SYSTEMS, METHODS AND, MEDIA FOR
SIMULATING DEFORMATIONS OF
NONLINEAR ELASTIC BODIES

(56) References Cited

(71)

(72)

(73)

(*)

(21)

(22)

(65)

(51)

(52)

(58)

Applicant: Wisconsin Alumni Research
Foundation, Madison, WI (US)

Inventors: Nathan M. Mitchell, Madison, WI
(US); Eftychios D. Sifakis, Verona, WI
(US); Michael S. Doescher, Madison,
WI (US)

Assignee: Wisconsin Alumni Research
Foundation, Madison, WI (US)

Notice: Subject to any disclaimer, the term ofthis
patent is extended or adjusted under 35
U.S.C. 154(b) by O days.

Appl. No.: 15/645,770

Filed: Jul. 10, 2017

Prior Publication Data

US 2019/0012831 Al

Int. Cl.
G06T 15100
G06T 17120
G06T 19120
U.S. Cl.

Jan. 10, 2019

(2011.01)
(2006.01)
(2011.01)

CPC G06T 171205 (2013.01); G06T 151005
(2013.01); G06T 19120 (2013.01); G06T

2215/16 (2013.01); G06T 2219/2021 (2013.01)
Field of Classification Search
CPC . G06T 2219/2021; G06T 15/00; G06T 17/00;

G06T 17/20; G06T 19/00; G06F 17/5018
See application file for complete search history.

PUBLICATIONS

Terzopoulos et al., Elastically Deformable Models, Computer Graph
ics, vol. 21, No. 4, Jul. 1987, pp. 205-214.*
Hauptmann et al., A Systematic Development of 'Solid-Shell'
Element Formulations for Linear and Non-Linear Analyses Employ
ing Only Displacement Degrees of Freedom, International Journal
for Numerical Methods in Engineering, 42, 1998, pp. 49-69.*

(Continued)

Primary Examiner - Haixia Du
(74) Attorney, Agent, or Firm -Quarles & Brady LLP

(57) ABSTRACT

In accordance with some embodiments, systems, methods
and media for simulating deformation of an elastic body are
provided. In some embodiments, a method comprises: deter
mining for each macroblock, a stiffness matrix K, of a
portion of a model of a non-linear elastic solid partitioned
into cells; converting K, into block form to include a
submatrix KI/; for nodes between internal cells of a first
macroblock; determining at least a portion ofKI/;-1; receiv
ing input corresponding to force applied to cells of the
model; determining displacements of exterior nodes of the
first macroblock using the input and the portion of KI/;- 1

;

determining displacements of interior nodes of the first
macroblock using the input and the displacements of exte
rior nodes; determining updated positions of the cells based
on the displacements of the exterior nodes; and, causing the
model to be presented using the updated positions.

24 Claims, 4 Drawing Sheets

PARTITION MODEL INFORMATION INTO CELLS

GROUP CEU ... S •NTO MACROBLOCKS OF EQUAL SIZE (E.G 16x8x8)

DETERMINE STIFFNESS MATRIX, K., FOR EACH MACRO BLOCK

CONVERT STIFFNESS I..IATRtx TO BLOCK FORM SEPARATING INTERIOR
AND INTERFACE NODES

DETERMINE, FOR EACH MACROBLOCK. AT LEAST PART OF THE
INVERSE OF PORTION Of STIFFNESS MATRIX THAT INCLUDES ONLY
INFORMATION ON THE RELATIONSHIPS BETWEEN INTERIOR NODES

RECEIVE •NPUT INDICATING FORCES APPLIED TO ONE CR MORE CELLS
OF THE MODEL

SOLVE ;c'QR INTERFACE.SPECIFIC PORTION ITERATIVELY FOR EACH
MACR08LOCK BASED ON I Ni"UT FORCES

SOLVE FOR •NTERIOR-SPECIFIC PORTION USING RESULT OF ITERATIVE
SOLUTiON FOR THE INTERFACE-SPECIFIC PORTION

UPDATE POSITION OF MODEL USING THE INTERIOR-SPECIFIC AND
EXTERIOR-SPECIF!C PORTIONS OF THE SOLUTION FOR EACH

MACROBLOCK

316

318

US 10,282,899 B2
Page 2

(56) References Cited

PUBLICATIONS

Irving et al. "Invertible Finite Elements for Robust Simulation of
Large Deformation," SCA 2004, 131-140, Eurographics Associa
tion.
Bouaziz et al., Projective dynamics: Fusing constraint projections
for fast simulation, ACM Trans. Graph., Jul. 2014, 154:1-154:11,
vol. 33, United States.
Dick et al., A hexahedral multigrid approach for simulating cuts in
deformable objects, IEEE Transactions on Visualization and Com
puter Graphics, 2011, 1663-1675, vol. 17, IEEE, United States.
Ferstl et al., Large-scale liquid simulation on adaptive hexahedral
grids, IEEE Trans. Visualization and Computer Graphics, Oct.2014,
1405-1417, vol. 20, IEEE, United States.
Gao et al., Steklov-Poincare skinning, Eurographics ACM SIG
GRAPH Symposium on Computer Animation, 2014, Eurographics
Association.
Georgii et al., Corotated finite elements made fast and stable,
VRIPHYS, 2008, Eurographics Association.
Hecht et al., Updated sparse Cholesky factors for corotational
elastodynamics, ACM Trans. On Graph., 2012, vol. 31, United
States.
Joshi et al., Harmonic coordinates for character articulation, ACM
Trans. Graph, Jul. 2007, vol. 26, United States.
James et al., ArtDefo: accurate real time deformable objects, In
Proceedings ofISGGRAPH, 1999, p. 65-72, vol. 99, United States.
Kavan et al., Geometric skinning with approximate dual quantemion
blending, ACM Trans. Graph., Nov. 2008, 105: 1-105:23, vol. 27,
United States.
Mitchell et al., GRIDiron: An interactive authoring and cognitive
training foundation for reconstructive plastic procedures, ACM
Trans. Graph, 2015, United States.
Muller et al., Position based dynamics, Journal of Visual Commu
nication and Image Representation, 2007, 109-118, vol. 18, United
States.

Muller et al., Physically-based simulation of objects represented by
surface meshes, CGI, 2004, 156-165, United States.
McAdams et al., Efficient elasticity for character skinning with
contact collisions, ACM Trans. Graph., Jul. 2011, 37:1-37:12, vol.
30, United States.
Nesme et aL, Animating shapes at arbitrary resolution with non
uniform stiffness, VRIPHYS, 2006, Eurographics.
O'Brien et al., Graphical modeling and animation of brittle fracture,
In Proc. of SIGGRAPH, 1999, 137-146, United States.
Patterson et al., Simulation of complex nonlinear elastic bodies
using lattice deformers, ACM Trans. Graph., Nov. 2012, 197:1-
197:10, vol. 31, United States.
Quarteroni et al., Domain decomposition methods for partial dif
ferential equations, 1000, vol. 10, Clarendon Press 1999 Front
Cover and Table of Contents, 5 pages.
Rivers et al., FastLSM: Fast lattice shape matching for robust
real-time deformation, ACM Trans. On Graphics, 2007, vol. 26,
SIGGRAPH Proc., United States.
Sifakis et al., FEM simulation of 3D deformable solids: A practi
tioner's guide to theory, discretization and model reduction, ACM
SIG. 2012 Courses, 2012, 20:1-20:50, SIGGRAPH, United States.
Sin et al., Vega: Non-linear fern deformable object simulator,
Comput. Graph. Forum, 2013, 36-48, vol. 32, United States.
Teran et al., Finite volume methods for the simulation of skeletal
muscle, SGA, 2003, 68-74, United States.
Terzopoulos et al., Elastically deformable models, SIGGRAPH
Comput. Graph, Aug. 1987, 205-214, vol. 21, United States.
Villant et al., Implicit skinning: Real-time skin deformation with
contact modeling, ACM Trans. Grapph., Jul. 2013, 125:1-125:12,
vol. 32., United States.
Wang et al., A Chebyshev semi-iterative approach for accelerating
projective and position-based dynamics, ACM Trans. Graph., Oct.
2015, 246:1-246:9, vol. 34, United States.
Zhu et al., An efficient multigrid method for the simulation of
high-resolution elastic solids, ACM Trans. Graph., Apr. 2010,
16:1-16:18, vol. 29, United States.

* cited by examiner

U.S. Patent May 7, 2019 Sheet 1 of 4

~I

.----------------....,
I
I
I
I
16:
I 0

I
I

(i

r-- - -
,
~

I
I
I

~ , _______________ ! ,~
.,...

I
0 ~...__,

I
[sa:>1Jiew io ias 6u1>1JoMJ a1.pe:> nd8 I

(I co
0 _ _,

::J ~ a..
0

(
c.o
0

~ ill«:
0 0~ ~

2 Oo -
UJ 2
2 (

(\J
0

(
....

'\
0
..-

US 10,282,899 B2

>-:s
0..
(/)

i5

(!)
u..

U.S. Patent

<.O
0
N

'<:j-
0
N

N
0
N

May 7, 2019 Sheet 2 of 4 US 10,282,899 B2

N
0

/'<:j-

U.S. Patent May 7, 2019 Sheet 3 of 4 US 10,282,899 B2

302

PARTITION MODEL INFORMATION INTO CELLS
.__ _________ __,.------------'304

GROUP CELLS INTO MACRO BLOCKS OF EQUAL SIZE (E.G., 16x8x8)

306

r, ___ D_E_TE_R_M_1_N_E_s_T_1F_F_N_E_ss_M_A_TR--,-1x_, _K;_, F_o_R_EA_c_H_M_A_c_R_o_B_Lo_c_K_~

+ 308

CONVERT STIFFNESS MATRIX TO BLOCK FORM SEPARATING INTERIOR
AND INTERFACE NODES

DETERMINE, FOR EACH MACROBLOCK, AT LEAST PART OF THE
INVERSE OF PORTION OF STIFFNESS MATRIX THAT INCLUDES ONLY
INFORMATION ON THE RELATIONSHIPS BETWEEN INTERIOR NODES

310

J

i 312

RECEIVE INPUT INDICATING FORCES APPLIED TO ONE OR MORE CELLS J
OF THE MODEL

SOLVE FOR INTERFACE-SPECIFIC PORTION ITERATIVELY FOR EACH
MACRO BLOCK BASED ON INPUT FORCES

314

J

! 316

SOL VE FOR INTERIOR-SPECIFIC PORTION USING RESULT OF !TERA TIVE J
SOLUTION FOR THE INTERFACE-SPECIFIC PORTION

UPDATE POSITION OF MODEL USING THE INTERIOR-SPECIFIC AND
EXTERIOR-SPECIFIC PORTIONS OF THE SOLUTION FOR EACH

MACRO BLOCK

I

FIG.3

318

J

U.S. Patent May 7, 2019 Sheet 4 of 4 US 10,282,899 B2

.J{
·-----------------------·-'*· ~\J /i
: A J··
I A '

·-;:
::::

~.,. . :;:::

.-.-. :::::

A. I :;i" >'· :,:::·,,,,;:! :;::.

A"
4 i 11

.~ : "' ':!_~~\~ ,

4
/ it = :' r

(:::! j

•• f ; ? » :

A : .. :·=· .=;=:: :

4 ,-~ t
~ 1 ··=· i :~-::. ~ -4? l ::;~ i

{~ Lf :::: : :~- :~ 4 ~ 'r

. .-,f .. i~ ----- / '. ----- ,,,::·:: -. ___ ji:

*!~)

;,i
!~"'!

~-
:!1
._ . .,~

._-.z,.

:::{)
,-,: :

.?"k1
,,?' ~~ gr, ;:

,., ~
S55\1

I!
!!'

I
i ~ ti

co
tn

(.9

LL

<C
tn

<.9
LL

US 10,282,899 B2
1

SYSTEMS, METHODS AND, MEDIA FOR
SIMULATING DEFORMATIONS OF

NONLINEAR ELASTIC BODIES

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH

This invention was made with government support under
IIS1253598 and IIS1407282 awarded by the National Sci
ence Foundation. The government has certain rights in the
invention.

NIA

CROSS-REFERENCE TO RELATED
APPLICATIONS

BACKGROUND

Simulating the behavior of systems that include elastic
materials undergoing relatively large deformations (e.g., due
to a collision with a rigid body) often involves complex
matrix algebra or iterative schemes that often do not effi
ciently provide an accurate solution within a time frame that
would allow for interactive simulations.

For example, the Newton method, and various variations,
are often used for simulating nonlinear elastic bodies, such
as nonlinear multigrid cycles, projective and position-based
dynamics, and shape matching. In a typical Newton scheme,
once a linear approximation to the governing equations is
computed, the solution to the resulting system is determined
using either a direct method or a technique selected from a
spectrum of iterative methods.

2
By contrast, using iterative solving techniques, an

approximate solution to the linearized problem can be
sought with the understanding that with each Newton itera
tion the problem itself will often change. For example, such

5 iterative solving techniques can include Krylov methods
such as Conjugate Gradient (CG), Multigrid, and fixed-point
iterations such as Jacobi, Gauss-Seidel (GS), and successive
over-relaxation (SOR). The primary benefit of such iterative
techniques is that often each individual iteration can be

10 performed relatively quickly, which can allow a user the
option to either iterate as much as they can afford in a given
time, or alternatively truncate the iterative process when the
approximate solution is acceptable (e.g., each iteration is
producing a solution that changes less than a threshold

15 amount from the previous iteration). Additionally, many
iterative solving techniques are assembly-free, alleviating
the need to construct or store a stiffness matrix. In fact, some
of the most efficient techniques go to great lengths to
minimize memory footprint while leveraging single instruc-

20 tion, multiple data (SIMD) and multithreading techniques.
However, iterative solving techniques often have different

challenges. For example, local techniques such as Jacobi,
GS, and SOR are slow to capture global effects, as they
propagate information at a limited speed across the mesh of

25 a model. As another example, many Krylov methods priori
tize the most important modes that contribute to a high
residual. In a more particular example, considering a system
with a few tangled elements that create large local forces,
elements suffering from small errors will be relatively

30 neglected by a technique such as Conjugate Gradients, while
the solver focuses computational resources on the highly
tangled elements before resolving the bigger picture. While
multigrid often has performance advantages, it can be rela
tively difficult to configure to work robustly, and might be

35 less appropriate for certain types of objects such as thin
elastic objects (e.g., a thin flesh layer on a simulated face).
Preconditioning can accelerate the convergence of iterative
solvers, but-in contrast to certain fluids simulation sce
narios-the accelerated convergence may not justify the

Direct solvers are typically a fairly straightforward way to
solve the system that results from the linearization of the
governing equations using a Newton scheme, and can be
practical for relatively small problems when direct algebra is
not very computational and/or memory intensive. Such
direct solvers are often relatively resilient to the condition
ing of the underlying problem. Additionally, techniques for
directly solving such systems of equations for even rela
tively large models are available, such as high quality
parallel implementations using the Intel MKL PARDISO
library. However, such direct solvers typically exhibit super
linear increases in computational complexity as the com
plexity of the model and/or deformation increases. Even
with the benefit of parallelism, such direct solving tech
niques typically take more time than several iterative
schemes, especially if relatively few number of iterations are
required to be performed to approximate the solution. Direct
solving are also typically limited by the time it takes to
access memory to store and retrieve the data used. For
example, at the core of many direct solvers are forward and
backward substitution routines that carry out a very small
number of arithmetic operations for each memory access
that is required. This often results in grossly memory-bound
execution profiles on modern hardware in which the limiting
factor is the time it takes to read to, and write from, memory
rather than the time it takes to perform the calculations. This 60

is exacerbated for large models that camiot be fit in cache
memory of the processor. Further, each iteration of the
Newton method is inherently inexact, providing only a step
towards a converged solution. That is, using direct solving
techniques often results in perfectly solving an inaccurate 65

linearized approximation of the ultimate solution that is
sought.

40 increased per-iteration cost. Preconditioners based on
incomplete factorizations are typically memory bound as
they require matrix assembly, and generally require an
expensive re-factorization at each Newton iteration. Further,
the same factorization overhead is incurred in each Newton

45 iteration regardless of how closely the Newton method is to
convergence. For example, in a case where the Newton
method is nearly converged such that just a handful of
iterations would suffice to solve the linearized equations, the
same factorization overhead is incurred which can contrib-

50 ute a relatively large portion of the total time to solve the
linearized equations. Multigrid-based preconditioners can
achieve more competitive performance in some circum
stances, and have been primarily explored in the area of fluid
simulation rather than in the simulation of nonlinear deform-

55 able solids.
When fidelity and realism of the simulation is a goal,

physics-based methods are often employed, such as the
Finite Element Method, which has been used to animate a
diverse spectrum of behaviors. Grid-based, embedded elas
tic models have also been used frequently due to their
potential for performance optimizations, and can also be
used with shape-matching approaches. Such grid-based
models form the foundation for a class of relatively efficient,
multigrid-based numerical solution techniques. Various
techniques to accelerate simulation performance have been
proposed. For example, using optimized direct solvers,
delayed updates to factorization approaches, leveraging the

US 10,282,899 B2
3 4

Boundary Element Method to approach real-time deforma
tion, and similar formulations that abstract away interior
degrees of freedom to accelerate collision processing. How
ever, while the techniques described above may improve
performance, they may suffer from significant disadvan- 5

tages, such as being limited by memory access, superlinear
increases in complexity with model size, delays in capturing
global effects, etc.

displacements of nodes that are on the exterior of the
macroblocks; and cause the model to be presented on the
display device using the updated positions.

In accordance with some embodiments of the disclosed
subject matter, a non-transitory computer readable medium
containing computer executable instructions that, when
executed by a processor, cause the processor to perform a
method for simulating deformation of an elastic body is
provided, the method comprising: determining for each of a Accordingly, new systems, methods and, media for simu

lating deformations of nonlinear elastic bodies are desirable. 10 plurality of macro blocks, a stiffness matrix K, corresponding
to at least a portion of a model of a non-linear elastic solid
that is partitioned into a plurality of cells, wherein entries in
the stiffness matrix correspond to nodes between cells;

SUMMARY

In accordance with some embodiments of the disclosed
subject matter, systems, methods, and media for simulating 15

deformations of nonlinear elastic bodies.

converting, for a first macroblock of the plurality of mac
ro blocks, the stiffness matrix K, into block form to include
a submatrix KI/; corresponding to nodes between internal
cells of the macroblock; determining, for the first macrob
lock, at least a portion of inverse matrix KI1 - 1 of the

In accordance with some embodiments of the disclosed
subject matter, method for simulating deformation of an
elastic body is provided, the method comprising: determin
ing, using a hardware processor, for each of a plurality of
macroblocks, a stiffness matrix K, corresponding to at least
a portion of a model of a non-linear elastic solid that is
partitioned into a plurality of cells, wherein entries in the
stiffness matrix correspond to nodes between cells; convert
ing, for a first macro block of the plurality of macro blocks,
the stiffness matrix K, into block form to include a submatrix
KI/; corresponding to nodes between internal cells of the
macro block; determining, for the first macroblock, at least a
port)o1_1 o~ inverse matrix KI;f;-

1 of the submatrix KI;i
rece1vmg mput data correspondmg to force applied to one or
more nodes of the plurality of cells; determining, for the first
macroblock, displacements of nodes that are on the exterior
of the macro block based at least in part on the input data and
the portion of the matrix KI;I;-1; determining, for the first
macro block, displacements of nodes that are interior to the
macroblock based at least in part on the input data and the
displacements of nodes that are on the exterior of the
macroblock; determining updated positions of the cells of
the model based at least in part on the displacements of
nodes that are on the exterior of the macroblocks; and
causing the model to be presented on a display device using
the updated positions.

In accordance with some embodiments of the disclosed
subject matter, a system for simulating deformation of an
elastic body is provided, the system comprising: memory
storing a model of a non-linear elastic solid; a display
device; a hardware processor that is coupled to the memory
and the display device, and is programmed to; determine,
using a hardware processor, for each of a plurality of
macroblocks, a stiffness matrix K, corresponding to at least

20 submatrix KI!i receiving input data correspondidg to force
applied to one or more nodes of the plurality of cells;
determining, for the first macroblock, displacements of
nodes that are on the exterior of the macroblock based at
least in part on the input data and the portion of the matrix

25 KI/;- 1
; determining, for the first macroblock, displacements

of nodes that are interior to the macro block based at least in
part on the input data and the displacements of nodes that are
on the exterior of the macroblock; determining updated
positions of the cells of the model based at least in part on

30 the displacements of nodes that are on the exterior of the
macroblocks; and causing the model to be presented on a
display device using the updated positions.

In some embodiments, each of the plurality of macrob
locks are 16x8x8 grid cells and comprise 15x7x7 internal

35 cells, wherein submatrix KI;l; only includes entries for nodes
between two internal cells. '

In some embodiments, determining at least the portion of
the inverse matrix Ku- 1 further comprises: partitioning the
15x7x7 internal celli 'into sixteen 3x3x3 subdomains and

40 five interface layers, wherein a first interface layer represents
a lx7x7 layer of cells that separates the 15x7x7 internal
cells into a first 7x7x7 subdomain and a second 7x7x7
subdo~ain; generating a_ block f~rm of the submatrix KI/; by
reordenng the submatnx KI/; mto a first submatrix Ku

45 corresponding to entries representing nodes between cells in
the first subdomain, a second submatrix K22 corresponding
to entries representing nodes between cells in the second
subdomain, a third submatrix Kee corresponding to entries
representing nodes between cells in the first interface layer,

50 and a plurality of submatrices K 1e, K2 e, Kc1, and Ke2

corresponding to entries representing nodes between the first
subdomain, the second domain and the first interface layer;
generating at least a portion of the inverse of the block form
of the s~bmatrix KI/; by converting the block form of the

55 submatnx KI/; to a block-LDL form:

a portion of the model that is partitioned into a plurality of
cells, wherein entries in the stiffness matrix correspond to
nodes between cells; convert, for a first macro block of the
plurality of macro blocks, the stiffness matrix K into block
form to)nclude a submatrix KI/; correspondidg to nodes
between mternal cells of the macroblock; determining, for
the first macroblock, at least a portion of inverse matrix
~I;I;-I of the sub~atrix KI;i receive input data correspond
mg to force applied to one or more nodes of the plurality of
cells; determine, for the first macroblock, displacements of 60

nodes that are on the exterior of the macroblock based at
least in part on the input data and the portion of the matrix
KI/;- 1

; determine, for the first macroblock, displacements of
nodes that are interior to the macroblock based at least in
part on the input data and the displacements of nodes that are 65

on the exterior of the macro block; determine updated posi
tions of the cells of the model based at least in part on the

where C=Kee -Kc1 Ku -i K 1e -Ke2 K22 -i K2 e, and is the Shur
complement of Kee; determining, for each 3x3x3 subdo
main, an inverse K11-

1 of a submatrix K corresponding to
. p

entnes representing nodes between cells in that 3x3x3
subdomain; determining Ku -l based on each inverse K

11
-I

US 10,282,899 B2
5

that corresponds to a 3x3x3 subdomain included within the
first subdomain; determining K22 -

1 based on each inverse
K11- 1 that corresponds to a 3x3x3 subdomain included
within the second subdomain; and storing at least the portion
of the KI/;- 1 in cache memory of the hardware processor.

In some embodiments, inverting the submatrix K11 further
comprises: determining Cholesky factors for the submatrix
K11; and determining the inverse K11- 1 using the Cholesky
factors and forward and backward substitution.

In some embodiments, the method further comprises
inverting the submatrices K11 corresponding to the sixteen
3x3x3 subdomains in parallel.

In some embodiments, the method further comprises
determining at least the portion of the inverse matrix KI/;- 1

corresponding to each of the plurality of macroblocks,
including the portion of the matrix KI/;- 1 corresponding the
first macroblock, in parallel.

In some embodiments, determining displacements of
nodes that on the exterior of the first macroblock based at
least in part on the input data and at least the portion of the
matrix KI/;- 1 further comprises using a Conjugate Gradient
based iterative solver.

In some embodiments, the method further comprises:
determining, for each of a second plurality of macro blocks
that each overlap a boundary of the model, a stiffness matrix
K, corresponding to at least a portion of the model of a
non-linear elastic solid, wherein each macroblock of the
second plurality of macroblocks includes less cells of the
model than the size of the macroblocks of the plurality of
macroblocks; and setting, for each of the second plurality of
macroblocks, entries in the stiffness matrix K, that corre
spond to nodes in the macroblock that are exterior to the
model to a zero-Dirichlet condition.

BRIEF DESCRIPTION OF THE DRAWINGS

Various objects, features, and advantages of the disclosed
subject matter can be more fully appreciated with reference
to the following detailed description of the disclosed subject
matter when considered in connection with the following
drawings, in which like reference numerals identify like
elements.

FIG. 1 shows an example of a system for simulating
deformations of nonlinear elastic bodies in accordance with
some embodiments of the disclosed subject matter.

FIG. 2 shows an example of a model in accordance with
some embodiments of the disclosed subject matter.

FIG. 3 shows an example of a process for simulating
deformations of a nonlinear elastic body in accordance with
some embodiments of the disclosed subject matter.

FIGS. 4A-4F show examples of subdividing a macrob
lock into smaller sets of nodes in accordance with some
embodiments of the disclosed subject matter.

6
etc.). In some embodiments, the mechanisms described
herein can use a hybrid technique that balances certain
advantages of both direct and iterative solving schemes. In
some embodiments, such a hybrid technique may facilitate

5 a compromise between memory load and compute load,
while significantly reducing iteration count. For example, by
reducing the memory footprint required to simulate a par
ticular interaction using the mechanisms described herein.

In some embodiments, a model can be subdivided into
10 cells (e.g., cubes) that each has one or more properties

describing how the cell behaves in connection with neigh
boring cells. The properties of the cell can, for example,
reflect the material being simulated by the model at the
location of the cell. In a more particular example, different

15 cells can simulate muscle, skin, bone, etc. As another
example, properties of a cell can reflect multiple materials
being simulated by the model that fall within the cell (e.g.,
by combining stiffness matrices corresponding to each mate
rial to determine a combined stiffness matrix for the cell). In

20 some embodiments, the properties of each cell can be
metadata associated with the model, or can be calculated
from the data representing the model itself. In some embodi
ments, the mechanisms described herein can use a grid
based discretization, and aggregate rectangular clusters of

25 cells into "macro blocks." For example, a macroblock can be
a cluster of up to 16x8x8 neighboring cells (note that a
macroblock can have less cells where it includes a void or
other empty space). In some embodiments, macro blocks can
essentially act as composite elements in a similar way that

30 a hexahedral element can be considered a black box that
takes displacements as inputs and produces nodal forces as
output. However, the composite elements described herein
take in displacements on the nodes of their periphery and
return forces on those same boundary nodes. In some

35 embodiments, using macroblocks can facilitate representing
the nonlinear elastic model using an equivalent linear system
with degrees of freedom only on boundaries of the macro
block.

In some embodiments, the mechanisms described herein
40 can be used in connection with a Newton-type scheme for

solving a nonlinear system of governing equations.
Although the mechanisms described herein are disclosed as
being used in connection with grid-based discretizations of
elasticity, the mechanisms can be used with other simulation

45 paradigms (e.g., multigrid, projective dynamics).
The governing equations describing the deformation of an

elastic nonlinear solid typically depend on the time integra
tion scheme employed. For example, quasistatic simulation
can involve solving the nonlinear equilibrium equation f(x;

50 t)=0 at any time instance t. Using an initial guess xCk) of the
solution, Newton's method is used to compute a correction
1\x=xCk+ll_xCk) by solving the linearized system:

FIGS. SA-SB show a sparsity pattern that can be gener
ated by subdividing the macroblock as described in connec- 55

tion with FIG. 4.
-a f I ax lxc,1 ·ox= f(xcxi),

K(x(k))

(1)

DETAILED DESCRIPTION

In accordance with various embodiments, mechanisms
(which can, for example, include systems, methods, and
media) for simulating deformations of nonlinear elastic
bodies are provided.

In some embodiments, if an implicit Backward Euler
60 scheme is used, a system with similar structure forms a

portion of Newton's method:

In some embodiments, the mechanisms described herein
can facilitate simulation of a collision between a non-linear 65

elastic body (e.g., one or more portions of a human figure,

(2)

a thin volumetric sheet, a model of a complex character,

US 10,282,899 B2
7

where Mis the mass matrix, y is the Rayleigh coefficient, vP
is the velocities at the previous time step, and f now includes
both elastic and damping forces. Despite the semantic dif
ferences, the linear systems in Equations (1) and (2) are
similar algebraically, in that: (i) their coefficient matrices are 5

both symmetric positive definite; (ii) their coefficient matri
ces have the same sparsity pattern; and (iii) in a grid-based
discretization, their coefficient matrices can be assembled
from the contributions of individual grid cells. Note that, in
order for the last property to hold, the mechanisms described 10

herein assume that the elastic model does not have any
interactions between remote parts of its domain, such as
penalty forces used to enforce self-collision. However, pen
alty forces used to enforce collisions with external kinematic
bodies are not excluded, since their point of application on 15

the elastic body can be embedded in a single grid cell. The
simplified notation Kx=f is used herein to represent any
linear system that shares properties (i)-(iii) above, without
individual emphasis on whether the system originated from
a quasistatic, or a dynamic implicit scheme as in Equations 20

(1) and (2), respectively.
FIG. 1 shows an example 100 of a system for simulating

deformations of nonlinear elastic bodies in accordance with
some embodiments of the disclosed subject matter. As
shown in FIG. 1, model data 102 representing an elastic 25

solid can be stored using memory 104, which can be volatile
memory (e.g., RAM) and/or non-volatile storage, such as a
hard drive, a solid state drive, flash, etc., with sufficient
capacity to store model data 102. In some embodiments,
model data 102 can include any suitable data that can be 30

used to render a model of an elastic solid and/or simulate a

8
example, positions of the various portions of the model can
be calculated by CPU 106, and passed to GPU 112. Display
116 can be any suitable type of display or combination of
displays. For example, display 116 can be a touchscreen, a
flat panel display (e.g., a television, a computer monitor,
etc.), a projector, etc. As another example, display 116 can
be one or more presentation devices (e.g., an LCD display,
an OLED display, anAMOLED display, etc.) integrated into
a head mounted display (HMD) (or other wearable display
device) that can provide a virtual reality and/or augmented
reality experience to a user

In some embodiments, GPU 112 can output image data to
display 116 over a connection 118. In some embodiments,
connection 118 can be any suitable connection that can
communicate image data from GPU 112 to display 116. For
example, connection 118 can be an internal bus connecting
GPU 112 to an internal display (e.g., where display 116 is
part of a head mounted display, smartphone, tablet com
puter, etc.). As another example, connection 118 can be a
connection to an external display using a cable (e.g., HDMI,
Display Port, DVI, etc.), a wireless link, etc. Additionally or
alternatively, CPU 106 can output image data to display 116
over a connection 120. In some embodiments, connection
120 can be any suitable connection that can communicate
image data from CPU 106 to display 116. For example,
connection 120 can be an internal bus connecting CPU 106
to an internal display (e.g., where display 116 is part of a
head mounted display, smartphone, tablet computer, etc.).
As another example, connection 120 can be a connection to
an external display using a cable (e.g., HDMI, Display Port,
DVI, etc.), a wireless link, etc.

FIG. 2 shows an example of a model in accordance with
some embodiments of the disclosed subject matter. As
shown in FIG. 2, a wire mesh 202 representation of a model

reaction of the elastic solid to a deformation (e.g., caused by
a collision with a kinematic solid). In some embodiments,
such model data can represent any suitable elastic solid, such
as a model of a human, a model of a thin volumetric sheet,
etc. In some embodiments, the model data can include data
related to the material properties associated with various
portions of the model, metadata related to the model, color
and/or texture data that can be used when rendering the
model, etc. Additionally, in some embodiments, the model
data can include a constitutive relation that approximates
how displacement of the material(s) of the model is related
to forces generated in that material(s). In some embodi
ments, the model data can include information subdividing
the model into cells. For example, the model can include
information associating cells to particular portions of the
model data, and properties of the cells (e.g., a stiffness value
in connection with each of three nodal degrees of freedom
for each of six nodes corresponding to the cell, for a cubical
cell).

35 of a human posed quasistically by a skeleton with soft spring
constants, which can be represented by 256 thousand cells
aggregated into macroblocks as shown in a macroblock
representation 204. By aggregating the cells into macrob
locks, the system can be evaluated using degrees of freedom

In some embodiments, system 100 can include a central
processing unit (CPU) 106 with cache memory 108. In some
embodiments, CPU 106 can access information in cache
memory 108 without using a bus 110 over which CPU 106
communicates with other hardware, such as memory 104, a
GPU 112, etc. In some embodiments, CPU 106 can coor
dinate operation of at least a portion of system 100, such as
by executing an operating system, accessing memory 104,
calculating positions of one or more portions of a model, etc.
Note that CPU 106 can include any suitable hardware
processor or combination of processors,

In some embodiments, system 100 can include a graphics
processing unit (GPU) 112 that can be configured to render
graphics to be presented by a display 116. For example, GPU
112 can receive at least a portion of model data 102, and can
use the model data to render the elastic solid represented by
the model for presentation using display 116. In such an

40 along the macroblock interfaces as shown in 206.
FIG. 3 shows an example 300 of a process for simulating

deformations of a nonlinear elastic body in accordance with
some embodiments of the disclosed subject matter. As
shown in FIG. 3, process 300 can start at 302 by partitioning

45 model information into cells using any suitable technique or
combination of techniques. In some embodiments, each cell
can represent a discrete portion of the model, and can be
associated with properties that can represent how deforma
tions to various degrees of freedom of the cell react to an

50 applied force and/or force generated by deformation to
generate forces at those degrees of freedom. For example,
each face of a cell can be associated with one or more
properties that can indicate the resistance of that face of the
cell to deformation (i.e., the stiffness of the cell). Addition-

55 ally or alternatively, in some embodiments, each node
between cells can be associated with one or more properties
that can indicate how the interface between the cells (i.e., the
node) reacts to an applied force and/or force generated by
deformation. Each node, for example, can be associated with

60 three displacement degrees of freedom, and the properties
can represent how the node reacts to displacements along
each of the displacement degrees of freedom of the node. In
some embodiments, the one or more properties of a face,
node, etc., can indicate what forces are generated at a

65 particular degree of freedom in response to displacement,
applied forces, etc., to that degree of freedom. In some
embodiments, the model data (e.g., model data 102) as

US 10,282,899 B2
9

stored in memory (e.g., prior to being accessed by CPU 106)
can be partitioned into cells and/or can be associated with
metadata describing cells into which the model can be
partitioned.

10
of interior nodes I, while approximately 28% of grid nodes
are expected to be within the collection of interface nodes r,
for the macroblock size of 16x8x8. In some embodiments,
the model data (e.g., model data 102) as stored in memory

In some embodiments, the cells can be partitioned using
a hexahedral finite element discretization of corotated linear
elasticity, with standard adjustments for robust simulation in
the presence of inverted elements (e.g., as described in
Irving et al. "Invertible Finite Elements for Robust Simula
tion of Large Deformation," SCA 2004, The Eurographics
Association, which is hereby incorporated by reference
herein in its entirety.) As a direct solver is used at the
macroblock level (as described below), in some embodi
ments, the strain energy in the model can be incorporated
using the eight Gauss quadrature points for each hexahedron
(e.g., as opposed to the one-point quadrature scheme that is
often used). In such embodiments, the more accurate
quadrature scheme may not require explicit stabilization,
and does not add extra computing resources other than a
modest increase in the matrix construction cost.

5 (e.g., prior to being accessed by CPU 106) can be aggregated
into macroblocks and/or can be associated with metadata
describing macroblocks into which the model data.

At 306, process 300 can calculate a stiffness matrices (K,)
for each of the various macro blocks, which can be combined

10 to form a stiffness matrix (K) that can represent the entire
model. In some embodiments, the stiffness matrix (or matri
ces) can be calculated using any suitable technique or
combination of techniques. This stiffness matrix can be used

15
in a representation of the linear system Kx=f, which can be
replaced with an equivalent system which only includes the
interface nodes in r as unknowns. As described below, the
equivalent system can potentially be solved more efficiently
than the original linear system (e.g., through a combination

At 304, process 300 can group the cells into equal sized
blocks (i.e., macroblocks) of any suitable size. In some
embodiments, process 300 can aggregate the active grid
cells of the model into macro blocks, which can each repre
sent a grid-aligned rectangular cluster of a predetermined
size (e.g., as described below in connection with FIG. 4)
from the model. In some embodiments, process 300 can
group the cells starting from any suitable starting point (e.g.,

20 of a direct solver and an iterative solver). Note that, K, can
represent the stiffness matrix for a particular Newton itera
tion, and may change in a next Newton iteration based on
solutions determined by the current Newton iteration. Addi
tionally, in some embodiments, for a first Newton iteration

25 an undeformed or rest configuration can be used with no
displacement.

a midpoint of the model), and each macroblock can include
any suitable number of cells. In some embodiments, mac
roblocks with dimensions of 16x8x8 grid cells can be used,
although the mechanisms described herein in connection
with Equations (3)-(7) are generally independent of the
macroblock size.

30

In some embodiments, each macro block B, of the model 35

can include up to 16x8x8=1024 grid cells C,
1

, C,
2

, ••• , C,M.
Note that in some cases the maximum number of constituent
cells may not be reached. For example, if the macroblock
overlaps with the boundary of the modeled elastic object, or
if "gaps" or voids empty of grid cells are present within the 40

modeled elastic object's extent. Macroblocks of maximum
size 16x8x8 can correspond to up to 17x9x9 nodal degrees
of freedom within or on the boundary of the region repre
sented by macroblock B,. As many as 15x7x7 of these nodal
degrees of freedom are entirely within the interior of mac- 45

rob lock B, and do not touch any other macro block, while the
remaining nodes on the boundary ofB, are potentially shared
by neighboring macroblocks. Note that, in some embodi
ments, "empty" cells that fall outside of the model, but
within a macroblock can be considered to have interior 50

nodes with each other and with other cells of the same
macroblock, and exterior nodes that are potentially shared
with cells of a neighboring block (which may also be
"empty," or may correspond to a cell within the model). A
node between two cells included in macroblock B, set is 55

sometimes referred to herein as an interior node, and the set
of interior nodes of macro block B, can be represented as I,.
A node that is potentially shared with a cell in another
macroblock is sometimes referred to herein as an interface
node (as these reside at the interface between macroblocks), 60

and the set of interface nodes of macroblock B, can be
represented as r,. Across the entire model, all sets I, are
disjoint, and the union of these sets can be referred to as
I=UI,. By contrast, the interface sets r, do overlap with one
another to an extent, and the union of these interface sets can 65

be referred to as r=r,. For large enough models, around
72% of grid nodes are expected to lie within the collection

At 308, process 300 can replace the linear system Kx=f
with an equivalent system by rewriting K in block form, by
separating interior and interface variables as follows:

(
K11 K1r)(x1) = (Ji),
Kr1 Krr xr fr

where KII represents a stiffness matrix corresponding to
nodes between interior nodes, Kir represents a stiffness
matrix corresponding to nodes between interior nodes and
interface nodes, Kn represents a stiffness matrix corre
sponding to the nodes between interface nodes and interior
nodes (and is a transpose of Kn), and Krr represents a
stiffness matrix corresponding to nodes between interface
nodes, xI and Xr representing (generally unknown) displace
ment vectors of the interior nodes I and the exterior nodes r,
and fiand fr representing forces applied at the interior nodes
I and the exterior nodes r. Using block Gauss elimination,
this system can be converted to the following equivalent
block-triangular form

(3)

At 310, process 300 can calculate the inversion of KII for
each macroblock to determine KII- 1 using any suitable
technique or combination of techniques. Due to the fact that
there is no direct coupling (in K) between interior variables
of neighboring macro blocks, KII is a block diagonal matrix
that includes decoupled diagonal components for each set of
interior variables of each macroblock. Accordingly, multi
threading can be used to invert the interior of each macro
block in a parallel and independent fashion. For example,
within each macroblock, an aggressive SIMD-optimized
direct solver described below in connection with FIG. 4 can
be used to perform the inversion exactly and relatively
efficiently as compared to other commonplace techniques

US 10,282,899 B2
11

for finding the inverse of KII. Techniques for calculating
KII- 1 relatively efficiently are described below in connection
with FIG. 4.

At 312, process 300 can receive input indicating forces (f)
that are being applied to one or more cells of the model,
which can be used to determine the displacement of the cells
in the model caused by the forces. In some embodiments, the
input forces can correspond to any suitable action, such as
a collision with one or more a kinematic objects. As
described below in connection with 318, at least a portion of
the input can be represented as a vector Pr·

In some embodiments, an implicit representation for
colliding bodies can be used to facilitate fast detection of
collision events between a kinematic object and embedded
collision proxies on the surface of the model. In some
embodiments, when such an event occurs, a zero rest length
penalty spring constraint can be instantiated connecting the
offending point on the embedded surface to the nearest point
on the surface of the collision object (e.g., a kinematic
sphere).

At 314, process 300 can solve for the interface-specific
portion of Equation (3) iteratively for each macroblock. For
example, using Equation (3), the system Kx=f can be solved
to calculate the displacement x by computing an interface
specific right hand side, from the bottom block of the right
hand side of the system in Equation (3):

(4)

An interface-specific system Kxr=f r can then be solved to
compute the values Xr of all interface nodes. In some
embodiments, initial values of x for a first iteration at 314
can be the position/displacement values determined by a
previous Newton iteration. Additionally, in some embodi
ments, during a first Newton iteration, initial values ofx for

12
system (e.g., by reducing the memory footprint of the
inverse KII- 1

), which can result in a significant net perfor
mance gain.

Note that the most performance-sensitive components of
5 the solutions to solve for the values Xr and xI are the

inversion of KII and multiplication with the inverse KII- 1 of
the matrix block corresponding to variables interior to
macroblocks. By contrast, multiplication with Krr, Kn (e.g.,
in Equations (4) and (6)) is relatively inexpensive as the

10 off-diagonal blocks Krr and Kn are relatively small and
sparse sub-blocks of K (e.g., compared to KII- 1

). Addition
ally, Krr and Kn are used in only two matrix-vector mul
tiplications for an entire Newton iteration in Equations (4)
and (6). Accordingly, Krr and Kn can be stored in sparse

15 format, and multiplication of these matrices with vectors can
be parallelized (e.g., via SIMD within macroblocks and
multithreading across blocks).

At 318, process 300 can calculate updated positions (i.e.,
displacements) of the model being simulated that caused by

20 the input forces based on the interface-specific portion
determined at 314 and the interior-specific portion deter
mined at 316. In some embodiments, the Conjugate Gradi
ents method can be performed without constructing K. The
interface matrix K, being a Schur complement, is signifi-

25 cantly denser than the original block form of matrix K (prior
to the block Gauss elimination). For example, any two nodal
variables on the interface of the same macroblock are
coupled together. However, the Conjugate Gradients method
does not need this matrix to be explicitly constructed.

30 Instead, the Conjugate Gradients method can compute
matrix-vector products of the form:

a first iteration at 314 can be the rest positions determined 35

from the model data. Note that the matrix of the system

for any given input vector Pn which may, for example,
correspond to forces applied to interface nodes of the model.
Further, such products can be calculated on a per-macrob-

(5)
lock basis. For example, by first computing the restriction of
Pr to the boundary r, of each macroblock B,, which can be
denoted by Pr, a partial contribution to the matrix-vector

40 product can b~ calculated as
is the Schur complement of the symmetric positive definite
matrix Krr in the original block form of matrix K (prior to
the block Gauss elimination), and is therefore symmetric
and positive definite in its own right. This interface-specific
system Kxr=f r, which only involves interface degrees of
freedom (e.g., rather than the degrees of freedom of all
nodes in the model), can be solved for Xr using Conjugate 45

Gradients.
At 316, process 300 can solve for the interior-specific

portions using the iterative solution for the interface-specific
portion. The values xI can then be found by solving for the
interior nodal variables from the top block of the system of 50

Equation (3) as:

(6)

(7)

As described below in connection with FIGS. 4, SA and 5B,
the expression in Equation (7) can be efficiently evaluated
by, for example, reordering the matrix based on subdivisions
of the macro block. The contributions of all macroblocks Sr
can be computed in parallel (e.g., via multithreading), and
can be reduced together in a final summation to produce
global result Sr.

Note that the macroblock-local Schur complement K,,
represented in Equation (7), in a similar fashion in which an
elemental stiffness matrix maps nodal displacements to
nodal force differentials for a tetrahedral or hexahedral
element of a model (e.g., a cell of the model), the macrob-

55 lock stiffness matrix K, can directly map displacements on
the boundary of a macroblock to forces on the same bound
ary nodes of the macro block, under the assumption that all
interior nodes are functionally constrained to their exact

In order to reproduce the exact solution of Kx=f, the
interface problem Kxr=f r would need to be solved exactly.
However, given that this solution is used as part of an
iterative Newton-method update, the Conjugate Gradients
solver can generally be stopped for the interface system
short of full convergence without adverse consequences.
Note that the solving this interface problem typically 60

requires significantly fewer Conjugate Gradient iterations to
produce relatively high quality results (e.g., a result rela
tively close to the fully converged solution) than an a similar
Krylov method applied to the original linear system Kx=f.
Further, the per-iteration cost of CG on the interface problem
can be made comparable to the per-iteration cost of per
forming an similar CG iteration in solving the original linear

solution subject to the boundary displacement values.
In some embodiments, a model that is being simulated can

be deformed as a result of specific lattice nodes animated as
kinematic Dirichlet boundary conditions. In order to incor
porate Dirichlet boundary conditions in the interior of a
macroblock, the equation associated with any such node can

65 be replaced with an explicit Dirichlet condition ox,=O. In
such embodiments, the value can be set to zero without loss
of generality, as Equation (1) is solved for position correc-

US 10,282,899 B2
13 14

face layers 406. As shown in FIG. 4C, those 3x7x7 regions
can be split into two 3x3x7 parts, separated by 3xlx7
interface 408. As shown in FIG. 4D, a last subdivision
results in two 3x3x3 subdomains, on either side of a 3x3xl

tions, which are zero for constraint nodes that have been
already moved to their target locations. Symmetry of the
overall matrix can be maintained by zeroing out entries
involving the Dirichlet node in the stencil of the elasticity
operator of any neighboring node. This can be set to zero
safely, as the Dirichlet value is zero for the correction ox,.
Similarly, any nodes in a macro block that are exterior to the
simulated model can be treated as zero-Dirichlet conditions,
to maintain a constant matrix structure for all macroblocks.

5 interface layer 410. The resulting 3x3x3 blocks are some
times referred to herein as subdomains, and the interface
layers (sometimes referred to as connecting) regions in
FIGS. 4A-4D as Level-I through Level-4 interfaces. In
some embodiments, a minimum-degree reordering for one

10 of the 16 resulting 3x3x3 subdomains can be computed, and
the reordering can be mirrored across the hierarchical inter
faces to enumerate the nodes of all remaining subdomains.
In some embodiments, mirroring can create a repetitive
pattern in the Cholesky factors, which can facilitate parallel

FIGS. 4A-4F show an example of subdividing a macro
block into smaller sets of nodes in accordance with some
embodiments of the disclosed subject matter. As described
above in connection with FIG. 3, inverting KI/; for each
macroblock is a costly (e.g., in computing resources and/or
memory accesses). However, in some embodiments, the
mechanisms described herein can reduce the memory foot
print used to calculate the inverse of KI/;' for example, by
aggressively leveraging instruction-level (e.g., SIMD) par
allelism. For example, the data in KI/; can be manipulated to
put the data into a particular numerical data structure that 20

includes appropriate metadata and computational routines to
compute the matrix-vector product Sr of Equation (7), given
the boundary values Pr as input. In' such an example, the
data structure stores matrices Kr;r;, Kr/;' and KI;r; explicitly

15 processing (e.g., using SIMD instructions). The final overall
reordering can be formed by assembling a tree of this
hierarchical subdivision (with interfaces on parent nodes,
and the regions they separate as their children), and com-
puting a reverse breadth-first tree traversal.

FIGS. SA and SB show a sparsity pattern that can be
generated by subdividing the macroblock as described in
connection with FIG. 4. The matrix shown in FIG. S includes
entries that filled-in during the Cholesky process. However,
forward and backward substitution on the matrix of FIG. SA

25 is a memory-bound operation (e.g., memory read and write
operations limit are a limiting factor). As described below,
an alternative to forward and backward substitution can be
used to substantially reduce the amount of the matrix entries

in a compressed sparse format (although slight modifications
may be necessary to facilitate SIMD parallelism, as
described below), as these matrices are relatively compact
and inexpensive to multiply with. Additionally, the data
structure includes enough information to be able to multiply
the interior inverse KI/;- 1 with input vectors, without storing 30

this matrix explicitly. That is, values that are not used in the
multiplication can be left out of the data structure to reduce
the memory footprint. Note that the description of FIGS.
4A-4F and FIGS. SA and SB focus on a single macroblock
B,, and the macroblock index i is not used for the sake of 35

simplicity, using the symbols I and r to denote the indi
vidual macroblocks interior and interface nodes.

shown in FIG. SA that are needed. Rather, the number of
coefficients corresponding to the entries shown in FIG. SB
can be stored. In some embodiments, metadata for calculat-
ing the inverse matrix KII- 1 can be determined from the
Cholesky factorization.

In some embodiments, the first hierarchical subdivision
(described above in connection with FIG. 4A), separated the
15x7x7 block of interior nodes into two 7x7x7 subregions,
which are referred to below using I, and 12 , along with a
7x7xl connective region referred to below using Ic The
matrix KII can be reordered to expose this partitioning,

40 which results in the following block form:

Given the sparsity and definiteness of Km techniques for
solving for the inverse exactly, such as through the use of
Cholesky factorization, under a variable reordering that
makes the data sparser. Such a Cholesky factorization can
take place once per Newton iteration, while forward and
backward substitution passes can be used to apply the
inverse in every subsequent CG iteration based on Equation
(7). Note that, in some embodiments, the Cholesky factor- 45

ization of KII can proceed after calculation of entries in the
stiffness matrix K for the current Newton iteration, which
can be performed in parallel for multiple macroblocks (e.g.,
each K, can be calculated in parallel), and after the stiffness
matrix is organized in block form (e.g., prior to the block
Gauss elimination). Additionally, in some embodiments, a
reordered Cholesky factorization can be computed using a
hierarchical alternative (derived from the coefficients of the
computed factorization) to forward/backward substitution
that can achieve the same result in less time by reducing the
required memory footprint.

In some embodiments, the 15x7x7 interior nodes of each
16x8x8 macroblock 402 can be reordered to increase the
sparsity of Cholesky factorization and create repetitive regu
lar patterns that can facilitate parallel calculation (e.g., using
matched SIMD calculations). In some embodiments, the
reordering can be described as a hierarchical subdivision, as
illustrated in FIGS. 4A-4F. As shown in FIG. 4A, the
15x7x7 interior region can be divided into two 7x7x7
sub-regions, separated by a lx7x7 interface layer 404. As
shown in FIG. 4B, each of the two sub-regions can be further
subdivided into two 3x7x7 parts, separated by lx7x7 inter-

50

55

The inverse of this block form matrix can be written in the
following Block-LDL form:

[!

0 -K,,KT 0

l}K,,'
0

~l -K2i K2, 0 K-1
22

0 I 0 0 -Kc2Klf

Where C=Kcc-Kc1K11 -
1K1c-Kc2K22-

1K2 c is the Shur
complement ofKcc Using this formulation, solving a prob
lem KIIxI=fI is equivalent to multiplying with the factorized

60 version ofKII- 1 the equation above. Other than the inverses
K11 -l and K22 -l, the factorization above does not incur any
fill-in. Factors such as K1c, etc. have the original sparsity
found in sub-blocks of KII. The lower-triangular Cholesky
factor of the Schur complement C is the bottom-rightmost

65 (dense) diagonal block of the matrix shown in FIG. SB.
Accordingly, multiplication with c-1 can be performed via
forward and backward substitution. The inverses of the two

US 10,282,899 B2
15

subregions, K11 -l and K22 -l can be applied recursively
using the same decomposition and block-LDL factorization
described here, by splitting each 7x7x7 into two 7x7x3
subregions and a 7x7xl connector as before. The recurrence
can be unfolded until each of the (sixteen) 3x3x3 subdo- 5

mains shown in FIGS. 4E and 4F. The Cholesky factors of
those sixteen blocks are the top-sixteen (sparse) diagonal
blocks on the top-left of the Cholesky factorization in FIG.
SB, which can be readily inverted without recursion.

16
node set with the boundary of the macroblock, as the
multiplication with matrices Krr, Kr 1 and KIT described in
connection with FIGS. 3 and 4A-4F, 'can be'~ectorized by
splitting up such matrices in parts that correspond to the
sixteen 3x3x3 macroblocks at the interior of the macroblock
boundary. In some embodiments, about 96% of the requisite
computations can accommodate 16-wide SIMD parallelism,
and the majority of the remaining operations can potentially
be performed using at least 8-wide SIMD parallelism. In
some embodiments, vectorization can take advantage of
AVX compiler intrinsics to potentially perform the compu
tations described herein more efficiently.

Macroblocks of dimension 16x8x8 are generally

The Cholesky factors of the Schur complement matrices 10

(C) that appear in deeper levels of this hierarchical solution
scheme can be similarly determined from the (dense) diago
nal blocks of the overall Cholesky factorization (shown
within box 502). At the final level, the inverses of the matrix
blocks corresponding to the sixteen 3x3x3 subdomains
themselves can be calculated. For those blocks, the sparse
Cholesky factorization, as seen in the top-sixteen diagonal
blocks in FIG. SB can be used to solve for the inversions
using standard forward and backward substitution.

described herein, which in some embodiments can facilitate
15 using at least 16-way SIMD-based parallelism. The working

set size associated with macroblocks of that size is approxi

mately 800 KB, such that the entire macroblock solver (for

at least a single macroblock) can fit entirely in cache, even
20 if all cores of a typical modern Xeon processor are process-Although the recursive solution described in connection

with FIGS. 4A-4F, SA and SB involves additional compu
tation, the stock Cholesky forward and backward substitu
tion are memory-bound by a wide margin and the recursive
solution described in connection with FIGS. 4A-4F, SA and
SB can afford to execute a significantly larger amount of
arithmetic operations, while still being (barely, this time)
bound by the time required to stream the requisite matrix
coefficients from memory into cache. In some embodiments,
the entire working set of the recursive solver can be less than
800 KB per macroblock, which can allow all subsequent
memory accesses to occur exclusively in cache for every
CPU core handling an individual macroblock. Note that,
although the original reordered Cholesky factorization pro
duces additional fill-in on the matrix entries that are repre
sented in FIG. SA, but not in FIG. SB, the recursive 35

substitution techniques described above uses a significantly
sparser subset of entries (i.e., the entries represented in FIG.
SB), requiring about 27% of the entries and 15% of the
storage footprint of the full, filled-in Cholesky (accounting
for row/colunm indices of structurally sparse blocks).

In some embodiments, the sparse matrix data represented
in FIG. SB includes a significant amount of regular and
repetitive sparsity patterns that can facilitate computation
using SIMD instructions. For example, the entries corre
sponding to the sixteen sparse Cholesky factors correspond
ing to the interiors of the 3x3x3 subdomains, which are
represented as being above box 502 in FIG. SB, dense
Cholesky factors of Schur complements at deeper levels
running diagonally from the factors corresponding to the
sixteen 3x3x3 subdomains (including 15 densely populated
triangular regions), and sparse submatrices on the block
lower-triangular part of the matrix, corresponding to entries
of the original stiffness matrix that correspond to an interface
layer at a given level of the hierarchy and nodes on the two
subregions that the interface layer separates.

In some embodiments, the regularity of the data can be
used to facilitate vectorization of the data. For example,
sparse forward and backward substitution on all sixteen
3x3x3 subdomains can be done in tandem, with 16-way
SIMD parallelism (e.g., using two 8-wide Advanced Vector
Extensions (AVX) instructions). Repetitive sparsity patterns
in the lower-triangular part of the matrix of FIG. SB can be
used in vectorized matrix-vector multiplication operations.
The dense nature of the blocks along the lower part of the
block-diagonal can facilitate fine-grain vectorization using
any suitable technique or combination of techniques. Fur
thermore, matrix operations that connect the 15x7x7 interior

ing independent macroblocks, in parallel. Although macro

blocks of dimension 16x8x8 are generally described herein,

macroblocks with other dimensions can be used. For

25 example, a larger macroblock size of 16x16x8 would allow
the dimensionality of the interface to be further reduced, but

the increment in the working set would be relatively large,

due to the size of the next-level interface layer (which would

30 be 15xlx7) which may yield an unattractively large dense

Schur complement matrix for that interface layer.
Table 1 shows runtime details for individual solver com

ponents as described above in connection with, for example,

FIGS. 3 to SB. The first two colunms correspond to a human

model (e.g., as depicted in FIG. 2) and a model of anthro

pomorphic armadillo, and have been processed using a
macroblock solver as described above in connection with

FIGS. 3 to SB. In addition, simulation of the human model
40

using a highly optimized and parallelized matrix-free imple-

mentation of unpreconditioned Conjugate Gradients across

two discretization alternatives: (a) a one-point quadrature

scheme, with explicit stabilization, represented by the third
45 column and (b) an 8-point quadrature scheme (e.g., as used

in the macroblock solver), represented by the fourth colunm.

Note that, as described above, the quadrature scheme may
not significantly affect the time to compute a solution using

50 techniques described herein after the matrix has been con-

structed. In the particular example implementation used to

generate the results in Table 1 the construction cost is

included in the Newton iteration runtimes, and was less than

55 10% of the overall runtime. Note that, in spite of the up-front

factorization cost of techniques described herein, it typically

stays within a factor of2-3x the cost of the single quadrature

point CG scheme, for the same number of iterations. How-

60 ever, the effect of as few as ten iterations using techniques

described herein can determine a solution commensurate
with 5-10 times more iterations of a stock CG method. Note

that if the more accurate quadrature scheme is employed

65
(Colunm 4 of Table 1), a solved using techniques described

herein can outperform the CG method even on a per

iteration basis.

us 10,282,899 B2
17 18

TABLE 1

Human model Armadillo model Human model Human model

Solver Macro block Macroblock
Active Cells 286K 24K
Macroblocks 642 95
Interface- 27.6 ms 4.36 ms
Multiply (17 GBls) (16 GBls)
CG Iteration 33.3 ms 5.22 ms
Factorization 291 ms 88.0 ms
Newton Iteration

10 CG 791 ms 166 ms
20 CG 1.29 s 244 ms
50 CG 2.79 s 479 ms

CG
286K
NIA
NIA

18.8 ms
NIA

269 ms
462 ms
1.07 s

CG
286K
NIA
NIA

88.3 ms
NIA

958 ms
1.84 s
4.47 s

15

ment analyses, static analysis of engineering structures,
grid-based discretizations of elliptic Partial Differential
Equations, among others.

In some embodiments, any suitable computer readable

As another example, an alternative to the techniques
described in connection with FIGS. 4A-4F, a stock Cholesky
factorization can be used to directly computed and applied
per macroblock. Using the PARDISO library to use such a

20
factorization yielded a factorization cost of748 ms (291 ms
using techniques described in connection with FIGS. 4A-4F)
and a solve time of 93 ms via forward/backward substitution
(20.9 ms using techniques described in connection with
FIGS. 4A-4F, which is included in the Interface-Multiply
cost in Table 1). Reduced memory demands resulted in at
least a portion of the difference in solve times. Faster
factorization time is due at least in part to intrinsic knowl
edge about the constant sparsity pattern of each block, which
can facilitate vectoriziation over multiple blocks without
duplicating the data that captures their sparsity patterns.

media can be used for storing instructions for performing the
functions and/or processes described herein. For example, in
some embodiments, computer readable media can be tran
sitory or non-transitory. For example, non-transitory com
puter readable media can include media such as magnetic

25 media (such as hard disks, floppy disks, etc.), optical media
(such as compact discs, digital video discs, Blu-ray discs,
etc.), semiconductor media (such as RAM, Flash memory,
electrically programmable read only memory (EPROM),
electrically erasable programmable read only memory (EE-

30 PROM), etc.), any suitable media that is not fleeting or
devoid of any semblance of permanence during transmis
sion, and/or any suitable tangible media. As another
example, transitory computer readable media can include
signals on networks, in wires, conductors, optical fibers,

As yet another example, using a direct (complete)
Cholesky solve at each Newton step, via PARDISO, the
resulting Newton iteration cost was 31.8 s (more than three
times the cost using techniques described herein), which
would require for 250 CG iterations (9.36 s) and near-perfect
convergence.

35 circuits, or any suitable media that is fleeting and devoid of
any semblance of permanence during transmission, and/or
any suitable intangible media.

As still another example, using Incomplete Cholesky
Preconditioned Conjugate Gradient (ICPCG), may require
less CG iterations for comparable convergence. However,
ICPCG being a serial algorithm, the total time required to
simulate a collision is significantly higher. ICPCG required
7.23 s to factorize the preconditioner (291 ms using tech
niques described in connection with FIGS. 4A-4F) and 422
ms (33.3 ms using techniques described herein) for each CG
iteration.

It should be noted that, as used herein, the term mecha
nism can encompass hardware, software, firmware, or any

40 suitable combination thereof.

As a further example, using Block Jacobi PCG, an alter
native to ICPCG that can be executed in parallel to compute

It should be understood that the above described steps of
the processes described in connection with FIGS. 3, 4A-4F,
and SA-5B can be executed or performed in any order or
sequence not limited to the order and sequence shown and

45 described in connection with the figures. Also, some of the
above steps of the processes of FIGS. 3, 4A-4F, and SA-5B
can be executed or performed substantially simultaneously
where appropriate or in parallel to reduce latency and

a Block Jacobi Preconditioner, with block sizes comparable 50

to the macroblocks described herein, matrix entries that
straddle blocks were discarded, and a standard Cholesky
factorization of the resulting block-diagonal matrix com
puted via PARDISO. Convergence of Block Jacobi PCG
was generally comparable to the techniques described 55

herein, but required 1.24 s for factorization (291 ms using
techniques described in connection with FIGS. 4A-4F) and
yielded a CG iteration cost of 183 ms (33.3 ms using
techniques described herein).

Note that, although the mechanisms described herein are 60

described in connection with simulating behavior of a
model, the techniques described herein can be used in
connection with other applications. For example, the mecha
nisms described herein can be used in connection with
modeling the behavior of heterogeneous elastic materials 65

intended for additive manufacture (e.g., 3D printing), ana
lyzing the macroscopic behavior of a structure, finite ele-

processing times.
Although the invention has been described and illustrated

in the foregoing illustrative embodiments, it is understood
that the present disclosure has been made only by way of
example, and that numerous changes in the details of imple-
mentation of the invention can be made without departing
from the spirit and scope of the invention, which is limited
only by the claims that follow. Features of the disclosed
embodiments can be combined and rearranged in various
ways.

What is claimed is:
1. A method for simulating deformation of an elastic body,

the method comprising:
determining, using a hardware processor, for each of a

plurality of macroblocks B,, including a first macrob
lock B1 , a stiffness matrix K, corresponding to at least
a portion of a model of a non-linear elastic solid that is
partitioned into a plurality of cells, wherein entries in

US 10,282,899 B2
19

the stiffness matrix K, correspond to nodes associated
with cells of the macroblock B,;

converting, for the first macroblock B1 , the stiffness
matrix K1 into block form to include a submatrix KI

1
I

1
,

where the subscript 1111 indicates that the submatrix 5

KI
1
I

1
includes entries in which both nodes associated

with the entry are between cells of the first macroblock
B1;

determining, for the first macro block Bi, at least a portion
1 10 of an inverse matrix KI

1
I

1
- of the submatrix KI

1
I

1
;

receiving input data corresponding to force applied to one
or more nodes of the plurality of cells of the model;

determining, for the first macro block Bi, displacements of
nodes that are on the exterior of the first macroblock B1 15
based at least in part on the input data and the portion
of the inverse matrix KI

1
I

1
-1;

determining, for the first macro block Bi, displacements of
nodes that are interior to the first macroblock B1 based
at least in part on the input data and the displacements 20

of nodes that are on the exterior of the first macroblock
B1;

determining updated positions of the cells of the model
based at least in part on the displacements of nodes that
are on the exterior of the macroblocks; and 25

causing the model to be presented on a display device
using the updated positions.

2. The method of claim 1, wherein each of the plurality of
macro blocks B, has 16x8x8 grid cells and comprise 15x7x7
internal nodes, wherein each macroblock is associated with 30

a submatrix KI/; that only includes entries for nodes between
two cells of macroblock B,.

3. The method of claim 2, wherein determining at least the
portion of the inverse matrix KI

1
I

1
-

1 further comprises:
partitioning the 15x7x7 internal nodes of the first mac- 35

roblock B1 into sixteen 3x3x3 subdomains and five
interface layers, wherein a first interface layer repre
sents a lx7x7 layer of nodes that separates the 15x7x7
internal nodes into a first 7x7x7 subdomain and a
second 7x7x7 subdomain; 40

generating a block form of the submatrix KI
1
I

1
by reor

dering the submatrix KI
1
I

1
into a first submatrix Ku

corresponding to entries representing nodes in the first
7x7x7 subdomain, a second submatrix K22 correspond
ing to entries representing nodes in the second 7x7x7 45

subdomain, a third submatrix Kee corresponding to
entries representing nodes in the first interface layer, a
submatrix K1e corresponding to entries representing
nodes in the first 7x7x7 subdomain and the first inter
face layer, a submatrix K2e corresponding to entries 50

between nodes in the second 7x7x7 subdomain and the
first interface layer, a submatrix Kc1 corresponding to
entries between nodes in the first interface layer and the
first 7x7x7 subdomain, and a submatrix Ke2 corre
sponding to entries between nodes in the first interface 55

layer and the second 7x7x7 subdomain;
generating at least a portion of the inverse of the block

form of the submatrix KI
1
I

1
by converting the block

form of the submatrix KI
1
I

1
to a block-LDL form:

60

65

20
where C in the block-LDL form represents the Shur comple
ment of Kee and is equal to Kee-Kc1Ku- 1Kle-Ke2K22- 1K2e;

determining, for each of the sixteen 3x3x3 subdomains,
an inverse K11-

1 of a submatrix K11 corresponding to
entries within that 3x3x3 subdomain, where subscript
j represents which of the sixteen 3x3x3 subdomains the
submatrix represents;

determining Ku -l based on each inverse K
11

-I that cor
responds to a 3x3x3 subdomain included within the
first subdomain;

determining K22-
1 based on each inverse K

11
- 1 that cor

responds to a 3x3x3 subdomain included within the
second subdomain; and

storing at least the portion of the inverse matrix KI
1
I

1
-

1 in
cache memory of the hardware processor.

4. The method of claim 3, wherein inverting each sub
matrix K11 further comprises:

determining Cholesky factors for the submatrix K11; and
determining the inverse K11 -I using the Cholesky factors

and forward and backward substitution.
5. The method of claim 3, further comprising inverting the

submatrices K11 corresponding to the sixteen 3x3x3 subdo
mains in parallel.

6. The method of claim 1, further comprising determining
at least the portion of an inverse matrix KI/;- 1 corresponding
to each of the plurality of macroblocks B,, including the
portion of the inverse matrix KI

1
I

1
-

1 corresponding the first
macroblock B1 , in parallel.

7. The method of claim 1, wherein determining displace
ments of nodes that are on the exterior of the first macro b
lock B 1 based at least in part on the input data and at least
the portion of the inverse matrix KI

1
I

1
-

1 further comprises
using a Conjugate Gradient-based iterative solver.

8. The method of claim 1, further comprising:
determining, for each of a second plurality of macrob

locks B, that each overlap a boundary of the model, a
stiffness matrix K, corresponding to at least a portion of
the model, wherein each macroblock of the second
plurality of macroblocks includes at least one empty
cell; and

setting, for each of the second plurality of macro blocks,
entries in the stiffness matrix K, that correspond to
nodes in the macroblock that are exterior to the model
to a zero-Dirichlet condition.

9. A system for simulating deformation of an elastic body,
the system comprising:

memory storing a model of a non-linear elastic solid;
a display device;
a hardware processor that is coupled to the memory and

the display device, and is programmed to;
determine, using a hardware processor, for each of a

plurality of macro blocks B,, including a first macro
block B1 , a stiffness matrix K, corresponding to at
least a portion of the model that is partitioned into a
plurality of cells, wherein entries in the stiffness
matrix correspond to nodes associated with cells of
the macroblock B,;

convert, for for first macro block B1 , the stiffness matrix
K1 into block form to include a submatrix KI

1
I

1
,

where the subscript 1111 indicates that the submatrix
KI

1
I

1
includes entries in which both nodes associated

with the entry are between cells of the first macro
block B1 ;

determining, for the first macroblock Bi, at least a
portion of an inverse matrix KI

1
I

1
-

1 of the submatrix

KI1I1;

US 10,282,899 B2
21

receive input data corresponding to force applied to one
or more nodes of the plurality of cells of the model;

determine, for the first macroblock B1 , displacements
of nodes that are on the exterior of the first macro
block B1 based at least in part on the input data and 5

the portion of the inverse matrix KI
1
I

1
-1;

determine, for the first macroblock B1 , displacements
of nodes that are interior to the first macroblock B1

based at least in part on the input data and the
displacements of nodes that are on the exterior of the 10

first macroblock B1 ;

22
determine K22- 1 based on each inverse K11-

1 that corre
sponds to a 3x3x3 subdomain included within the
second subdomain; and

store at least the portion of the inverse matrix KI
1
I

1
-

1 in
cache memory of the hardware processor.

12. The system of claim 11, wherein the hardware pro
cessor is further programmed to:

determine, for each submatrix K1i' Cholesky factors for
the submatrix K11; and

determine, for each submatrix K11, the inverse K11-
1 using

the Cholesky factors and forward and backward sub
stitution. determine updated positions of the cells of the model

based at least in part on the displacements of nodes
that are on the exterior of the macro blocks; and

cause the model to be presented on the display device
using the updated positions.

13. The system of claim 11, wherein the hardware pro-
15 cessor is further programmed to invert the submatrices K11

corresponding to the sixteen 3x3x3 subdomains in parallel
using single instruction, multiple data instructions.

10. The system of claim 9, wherein each of the plurality
of macroblocks B, has 16x8x8 grid cells and comprise
15x7x7 internal nodes, wherein each macroblock is associ- 20
ated with a submatrix KI/; that only includes entries for
nodes between two cells of macroblock B,.

11. The system of claim 10, wherein the hardware pro
cessor is associated with cache memory, and is further
programmed to:

partition the 15x7x7 internal nodes of the first macrob
lock B1 into sixteen 3x3x3 subdomains and five inter
face layers, wherein a first interface layer represents a

25

1 x7x7 layer of nodes that separates the 15x7x7 internal
nodes into a first 7x7x7 subdomain and a second 7x7x7 30
subdomain;

generate a block form of the submatrix KI
1
I

1
by reordering

the submatrix KI
1
I

1
into a first submatrix Ku corre

sponding to entries representing nodes in the first
7x7x7 subdomain, a second submatrix K22 correspond- 35
ing to entries representing nodes in the second 7x7x7
subdomain, a third submatrix Kee corresponding to
entries representing nodes in the first interface layer, a
submatrix K1e corresponding to entries representing
nodes in the first 7x7x7 subdomain and the first inter- 40
face layer, a submatrix K2e corresponding to entries
between nodes in the second 7x7x7 subdomain and the
first interface layer, a submatrix Kc1 corresponding to
entries between nodes in the first interface layer and the
first 7x7x7 subdomain, and a submatrix Ke2 corre- 45
sponding to entries between nodes in the first interface
layer and the second 7x7x7 subdomain;

generate at least a portion of the inverse of the block form
of the submatrix KI

1
I

1
by converting the block form of

the submatrix KI
1
I

1
to a block-LDL form:

where C in the block-LDL form represents the Shur comple
ment of Kee and is equal to Kee-Kc1Ku-1K1e-Ke2K22-1K2e;

50

55

determine, for each of the sixteen 3x3x3 subdomains, an 60

inverse K
11

- 1 of a submatrix K
11

corresponding to entries
within that 3x3x3 subdomain, where subscript j repre
sents which of the sixteen 3x3x3 subdomains the
submatrix represents;

determine Ku- 1 based on each inverse K11-
1 that corre- 65

sponds to a 3x3x3 subdomain included within the first
subdomain;

14. The system of claim 9, wherein the hardware proces
sor is further programmed to determine at least the portion
of an inverse matrix KI/;- 1 corresponding to each of the
plurality of macroblocks B,, including the portion of the
inverse matrix KI

1
I

1
-

1 corresponding the first macro block B1 ,

in parallel using single instruction, multiple data instruc
tions.

15. The system of claim 9, wherein the hardware proces-
sor is further configured to use a Conjugate Gradient-based
iterative solver to determine displacements of nodes that are
on the exterior of the first macro block B1 .

16. The system of claim 9, wherein the hardware proces
sor is further programmed to:

determine, for each of a second plurality of macro blocks
B, that each overlap a boundary of the model, a stiffness
matrix K, corresponding to at least a portion of the
model, wherein each macro block of the second plural
ity ofmacroblocks includes at least one empty cell; and

set, for each of the second plurality of macroblocks,
entries in the stiffness matrix K, that correspond to
nodes in the macroblock that are exterior to the model
to a zero-Dirichlet condition.

17. A non-transitory computer readable medium contain
ing computer executable instructions that, when executed by
a processor, cause the processor to perform a method for
simulating deformation of an elastic body, the method
comprising:

determining for each of a plurality of macroblocks B,,
including a first macroblock Bi, a stiffness matrix K,
corresponding to at least a portion of a model of a
non-linear elastic solid that is partitioned into a plural
ity of cells, wherein entries in the stiffness matrix K,
correspond to nodes associated with cells of the mac
ro block B,;

converting, for the first macroblock B1 , the stiffness
matrix K1 into block form to include a submatrix KI

1
I

1
,

where the subscript 1111 indicates that the submatrix
KI

1
I

1
includes entries in which both nodes associated

with the entry are between cells of the first macroblock
B1;

determining, for the first macro block Bi, at least a portion
of an inverse matrix KI

1
I

1
-I of the submatrix KI

1
I

1
;

receiving input data corresponding to force applied to one
or more nodes of the plurality of cells of the model;

determining, for the first macro block Bi, displacements of
nodes that are on the exterior of the first macro block B1

based at least in part on the input data and the portion
of the inverse matrix KI

1
I

1
-1;

determining, for the first macro block Bi, displacements of
nodes that are interior to the first macroblock based B1

US 10,282,899 B2
23

at least in part on the input data and the displacements
of nodes that are on the exterior of the first macroblock
B1;

determining updated positions of the cells of the model
based at least in part on the displacements of nodes that 5

are on the exterior of the macroblocks; and
causing the model to be presented on a display device

using the updated positions.
18. The non-transitory computer readable medium of

claim 17, wherein each of the plurality of macroblocks B, 10

has 16x8x8 grid cells and comprise 15x7x7 internal nodes,
wherein each macro block is associated with a submatrix KI/;

that only includes entries for nodes between two cells of
macroblock B,.

19. The non-transitory computer readable medium of 15

claim 18, wherein determining at least the portion of the
inverse matrix KI

1
I

1
-

1 further comprises:
partitioning the 15x7x7 internal nodes of the first mac

roblock B1 into sixteen 3x3x3 subdomains and five
interface layers, wherein a first interface layer repre- 20

sents a lx7x7 layer of nodes is that separates the
15x7x7 internal nodes into a first 7x7x7 subdomain
and a second 7x7x7 sub domain;

24
where C in the block-LDL form represents the Shur comple
ment of Kee and is equal to Kee-Kc1Ku- 1Kle-Ke2K22- 1K2e;

determining, for each of the sixteen 3x3x3 subdomains,
an inverse K

11
- 1 of a submatrix K

11
corresponding _to

entries within that 3x3x3 subdomam, where subscnpt
j represents which of the sixteen 3x3x3 subdomains the
submatrix represents;

determining Ku -l based on each inverse K
11

-I that cor
responds to a 3x3x3 subdomain included within the
first subdomain;

determining K22-
1 based on each inverse K11-

1 that cor
responds to a 3x3x3 subdomain included within the
second subdomain; and

storing at least the portion of the inverse matrix KI
1
I

1
-

1 in
cache memory of the hardware processor.

20. The non-transitory computer readable medium of
claim 19, wherein inverting each submatrix K11 further
comprises:

determining Cholesky factors for the submatrix K11; and
determining the inverse K11 -I using the Cholesky factors

and forward and backward substitution.
21. The non-transitory computer readable medium of

claim 19, wherein the method further comprises inverting
the submatrices K11 corresponding to the sixteen 3x3x3
subdomains in parallel.

22. The non-transitory computer readable medium of
claim 17, wherein the method further comprises determining
at least the portion of an inverse matrix KI/;-I corresponding
to each of the plurality of macroblocks B,, including the
portion of the inverse matrix KI

1
I

1
-

1 corresponding the first
macroblock B1 , in parallel.

generating a block form of the submatrix KI
1
I

1
by reor

dering the submatrix KI
1
I

1
into a first submatrix Ku 25

corresponding to entries representing nodes in the first
7x7x7 subdomain, a second submatrix K22 correspond
ing to entries representing nodes in the second 7x7x7
subdomain, a third submatrix Kee corresponding to
entries representing nodes in the first interface layer, a 30

submatrix K1e corresponding to entries representing
nodes in the first 7x7x7 subdomain and the first inter
face layer, a submatrix K2e corresponding to entries
between nodes in the second 7x7x7 subdomain and the
first interface layer, a submatrix Kc1 corresponding to
entries between nodes in the first interface layer and the
first 7x7x7 subdomain, and a submatrix Ke2 corre
sponding to entries between nodes in the first interface
layer and the second 7x7x7 subdomain;

23. The non-transitory computer readable medium of
claim 17, wherein determining displacements of nodes that
are on the exterior of the first macroblock B1 based at least
in part on the input data and at least the portion of the inverse

35 matrix KI
1
I

1
-

1 further comprises using a Conjugate Gradient
based iterative solver.

generating at least a portion of the inverse of the block 40

form of the submatrix KI
1
I

1
by converting the block

form of the submatrix KI
1
I

1
to a block-LDL form:

45

24. The non-transitory computer readable medium of
claim 17, wherein the method further comprises:

determining, for each of a second plurality of macrob
locks B, that each overlap a boundary of the model, a
stiffness matrix K, corresponding to at least a portion of
the model, wherein each macroblock of the second
plurality of macroblocks includes at least one empty
cell; and

setting, for each of the second plurality of macro blocks,
entries in the stiffness matrix K, that correspond to
nodes in the macroblock that are exterior to the model
to a zero-Dirichlet condition.

* * * * *

