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(57) ABSTRACT 

In accordance with some embodiments, methods, systems, 
and media for detecting the presence of are provided. In 
some embodiments, a method of detecting an analyte is 
provided, the method comprising: capturing an image of 
liquid crystals; determining one or more features based on 
the brightness of the pixels in the image; providing the one 
or more features to a trained support vector machine, 
wherein the support vector machine was trained using 
images captured of other liquid crystals when exposed to a 
first analyte and the other liquid crystals exposed to a second 
analyte; and receiving an indication from the support vector 
machine indicating whether the liquid crystals have been 
exposed to the first analyte. 
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METHODS, SYSTEMS, AND MEDIA FOR 
DETECTING THE PRESENCE OF AN 

ANALYTE 

CROSS-REFERENCE TO RELATED 
APPLICATIONS 

2 
In some embodiments, the method further comprises: 

converting the RGB image to a grayscale image; calculating 
a plurality of oriented gradients using the grayscale image; 
and calculating a histogram of the plurality of oriented 

5 gradients, wherein the one or more features comprises 
values from the histogram of the plurality of oriented 
gradients. 

This application is based on, claims the benefit of, and 
claims priority to U.S. Provisional Application No. 62/569, 
187, filed Oct. 6, 2017, which is hereby incorporated herein 10 

by reference in its entirety for all purposes. 

In some embodiments, the RGB image has a lower 
resolution than the image of the liquid crystals. 

In some embodiments, the first analyte is a gas phase 
analyte and the second analyte is a non-targeted gas phase 
molecule. 

STATEMENT REGARDING FEDERALLY 
SPONSORED RESEARCH 

This invention was made with govermnent support under 
DE-SC0014114 awarded by the US Department of Energy 
and DMR1435195 awarded by the National Science Foun
dation. The government has certain rights in the invention. 

BACKGROUND 

Reliably detecting the presence of many chemicals ( e.g., 

15 

In some embodiments, the first analyte is DMMP and the 
second analyte is water vapor. 

In some embodiments, the analyte to be detected is sarin. 
In some embodiments, the first analyte is a liquid phase 

analyte and the second analyte is a non-targeted liquid phase 
analyte. 

In some embodiments, the first analyte is a biological 
20 analyte. 

In some embodiments, the liquid crystals are disposed 
within a micro-well. 

in air, ground water, etc.) at relatively low concentrations 
often requires expensive lab equipment, and takes consid- 25 

erable amounts of time. For example, the U.S. Department 

In some embodiments, the liquid crystals are in contact 
with self-assembling monomers. 

In some embodiments, the liquid crystals are in contact 
with a polymerized target of a bioagent. 

of Energy Savannah River National Lab processes tens of 
thousands of manually collected groundwater samples at a 
cost of millions of dollars per year ( e.g., on the order of $100 
to $1,000 per sample). Each of these samples must be 
collected and transported to the lab for analysis, which can 
increase the amount of time between collection and analysis, 
and can increase the chances of the integrity of the analysis 
is compromised during collection, transport, storage and/or 
analysis. 

Accordingly, chemical sensing technologies that can be 
used in-situ and with limited equipment and human inter
vention are desirable. 

SUMMARY 

In accordance with some embodiments of the disclosed 
subject matter, methods, systems, and media for detecting 
the presence of an analyte are provided. 

In some embodiments, the liquid crystals form at least one 
droplet suspended in an aqueous phase. 

In some embodiments, the liquid crystals are disposed 
30 within a holding compartment of a substrate over which an 

aqueous solution is being passed. 
In some embodiments, the liquid crystals are doped with 

a chiral molecule. 
In some embodiments of the disclosed subject matter, a 

35 system for detecting the presence of an analyte is provided, 
the system comprising: an image sensor; and a processor 
that is programmed to: cause the image sensor to capture an 
image of liquid crystals; convert the image to grayscale; 
determine one or more features based on the brightness of 

40 the pixels in the grayscale image; provide the one or more 
features to a trained support vector machine, wherein the 
support vector machine was trained using images captured 
of other liquid crystals when exposed to a first analyte and 

In accordance with some embodiments of the disclosed 45 
the other liquid crystals exposed to a second analyte; and 
receive an indication from the support vector machine 
indicating whether the liquid crystals have been exposed to 
the first analyte. 

subject matter, a method for detecting the presence of an 
analyte is provided, the method comprising: capturing an 
image of liquid crystals; determining one or more features 
based on the brightness of the pixels in the image; providing 
the one or more features to a trained support vector machine, 
wherein the support vector machine was trained using 
images captured of other liquid crystals when exposed to a 
first analyte and the other liquid crystals exposed to a second 
analyte; and receiving an indication from the support vector 
machine indicating whether the liquid crystals have been 
exposed to the first analyte. 

In some embodiments, the method further comprises 
determining one or more additional features based on the 
image of the liquid crystals, wherein the one or more 
additional features comprises outputs of a hidden layer of a 
trained object detection deep learning convolution neural 
network that was provided with values of the pixels in the 
image as an input. 

In some embodiments of the disclosed subject matter, a 
non-transitory computer readable medium containing com-

50 puter executable instructions that, when executed by a 
processor, cause the processor to perform a method for 
detecting the presence of an analyte is provided, the method 
comprising: capturing an image of liquid crystals; convert
ing the image to grayscale; determining one or more features 

55 based on the brightness of the pixels in the grayscale image; 
providing the one or more features to a trained support 
vector machine, wherein the support vector machine was 
trained using images captured of other liquid crystals when 
exposed to a first analyte and the other liquid crystals 

60 exposed to a second analyte; and receiving an indication 
from the support vector machine indicating whether the 
liquid crystals have been exposed to the first analyte. 

In some embodiments, the one or more additional features 
are based on a color image of the liquid crystals, and wherein 65 

the one or more features are based on a grayscale image of 
the liquid crystals. 

BRIEF DESCRIPTION OF THE DRAWINGS 

Various objects, features, and advantages of the disclosed 
subject matter can be more fully appreciated with reference 
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to the following detailed description of the disclosed subject 
matter when considered in connection with the following 
drawings, in which like reference numerals identify like 
elements. 

FIG. 1 shows an example ofliquid crystal sensors that can 5 

be used to detect the presence of an analyte in accordance 
with some embodiments of the disclosed subject matter. 

4 
used to characterize complex space-time patterns observable 
in the response of the liquid crystal sensors. In a more 
particular example, various features, such as average bright-
ness, oriented brightness gradients, and features generated 
by a deep neural network, can be combined to identify such 
patterns. In some embodiments, combining multiple sources 
of feature information can facilitate more accurate classifi
cation. Additionally, in some embodiments, different com
binations of features can be used as there is generally a 

FIG. 2 shows an example of a system for detecting the 
presence of an analyte in accordance with some embodi
ments of the disclosed subject matter. 10 tradeoff between the amount of feature information and the 

FIG. 3 shows an example of hardware that can be used to 
implement the system depicted in FIG. 2 and a computing 
device in accordance with some embodiments of the dis
closed subject matter. 

FIG. 4 shows an example of a process for training a 15 

classification model to classify images of liquid crystal 
sensors to determine whether the image indicates the pres
ence of a particular chemical in accordance with some 
embodiments of the disclosed subject matter. 

FIG. 5 shows an example of a process for detecting the 20 

presence of an analyte using a trained classification model in 
accordance with some embodiments of the disclosed subject 
matter. 

FIG. 6 shows an example of a process of normalizing two 
different images of micro-wells for feature extraction in 25 

accordance with some embodiments of the disclosed subject 
matter. 

FIG. 7A shows an example of oriented gradients calcu
lated at various points in an image of a micro-well in 
accordance with some embodiments of the disclosed subject 30 

matter. 
FIG. 7B shows examples of images of individual microw

ells after exposure to either N2 -water or DMMP. 
FIG. 7C shows examples of the evolution of the visual 

appearance of particular microwells over time after either 35 

N2 -water or DMMP. 

number of training samples used to generate a model, and 
the computational complexity of the resulting classification 
models. 

In some embodiments, machine learning techniques can 
be used to automatically extract information from liquid 
crystal responses to improve specificity and speed of liquid 
crystal sensors. Additionally, in some embodiments, 
machine learning techniques can facilitate sensing with 
limited human intervention, which can reduce on-site hard-
ware needs. For example, classification models can be 
pre-trained (which can be analogous to calibration of more 
conventional tools) using many experimental samples, and 
new samples can be classified using the pre-trained model in 
real-time. In some embodiments, machine learning tech
niques can facilitate quantification of the impact of liquid 
crystal design characteristics on the information content of 
the response signals and on the sensor accuracy, which can 
reduce the amount of effort required when designing new 
liquid crystal sensors. 

In some embodiments, machine learning technique can 
generally be characterized as included various computa
tional tasks, such as feature extraction, model training, and 
model testing. In some embodiments, feature extraction can 
be used to extract information that can be used by a 
classification model from raw data. For example, raw data in 
the context of liquid crystal responses can be one or more 
images (e.g., time sequences of images) that depict the 
response of the liquid crystals after a particular sample is 
introduced. In general, the quality (e.g., informational con-

FIG. 8 shows an example network topology of a convo
lution neural network that can be used to generate features 
for use in accordance with some embodiments of the dis
closed subject matter. 

FIGS. 9 to 17 show example results achieved by systems 
implemented in accordance with some embodiments of the 
disclosed subject matter. 

40 tent) and number of the extracted features can impact the 
classification accuracy of a classification model. For 
example, if only non-informative features are used, the 
classification model is unlikely to be able to distinguish 

FIG. 18 shows an example experimental setup that can be 
used to generate image data for training and/or testing of 45 

mechanisms for detecting the presence of an analyte. 
FIG. 19 shows examples of average intensity on various 

color charmels over time in images of liquid crystal sensors 
exposed to DMMP and N2-water over time. 

FIG. 20 shows examples of average classification accu- 50 

racy on a "test" set of images over time for various strate
gies. 

FIG. 21 shows a symbolic example of compression of the 
number of samples into clusters that can be used to create a 
sparse preconditioner for training a support vector machine 55 

using Schur decomposition. 

DETAILED DESCRIPTION 

among different liquid crystal responses. In a more particular 
example, classification is unlikely to be accurate if only 
aggregate metrics (e.g., average brightness of an image of 
the liquid crystal sensor) were used as features characteriz
ing an image (e.g., because different images can have the 
same average brightness value). While experimental 
researchers often have strong physical insights on which 
features can best describe a liquid crystal response, they 
often lack the ability to quantify the quality of such features. 
Additionally, information can remain hidden to even expe
rienced observers due to pattern complexity and large 
amounts of data that are generated. Accordingly, measuring 
the information content of liquid crystal responses can 
facilitate identification of features that are more predictive 
that may have otherwise gone urmoticed. 

In some embodiments, computer vision features, such as 
The present disclosure provides mechanisms which can, 

for example, include methods, systems, and/or media, for 
detecting the presence of an analyte. 

In some embodiments of the disclosed subject matter, 
chemically responsive liquid crystals can be used in con
nection with machine learning techniques to improve selec
tivity and speed of such liquid crystal sensors. For example, 
in some embodiments, feature extraction techniques can be 

60 histogram of oriented gradients (HOG) and features gener
ated by deep neural networks (e.g., Alexnet) can be used to 
train and/or use a classification model to detect the presence 
of chemicals (and/or other analytes) using liquid crystal 
sensors. In some embodiments, HOG features, which are 

65 indicative of the gradient orientations in localized portions 
of an image, can be used to detect persistent spatial patterns 
(e.g., as shown in FIG. 7A). In some embodiments, features 
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generated by a deep neural network, such as Alexnet which 
is a classification model (implemented as a convolutional 
neural network) that has been pre-trained using millions of 
different images found on the internet, can be used to train 
and/or use a classification model. For example, neurons of 5 

Alexnet, which implicitly seek to classify a new image based 
on previous knowledge of other images (even if these are not 
necessarily related to the application at hand), can be used 

6 
tropic (perpendicular) orientations on surfaces decorated 
with different kinds of metal salts ( e.g., as described above 
in connection with micro-well 104) dependent on the 
strength of coordination interactions between functional 
groups (e.g., nitrile groups, pyridine groups, etc.) and the 
metal cations. In a more particular example, in some 
embodiments, specific chemical species that diffuse into the 
liquid crystals and bind more strongly to the metal cations 
than to the liquid crystal functional groups can trigger a as image features for another type of classification model 

(e.g., a support vector machine, as described below). 
Note that although the mechanisms described herein are 

generally described in connection with support vector 
machines, this is merely an example, and the techniques can 

10 transition of the liquid crystal orientation from homeotropic 
to planar (e.g., as shown in FIG. 1). In some embodiments, 
the selectivity and response characteristics (e.g., dynamics) 
of the liquid crystals can be adjusted by tuning the binding 

be used in connection with other types of classification 
models, such as logistic regression models, and deep neural 15 

networks. 
FIG. 1 shows an example ofliquid crystal sensors that can 

be used to detect the presence of an analyte in accordance 
with some embodiments of the disclosed subject matter. As 
shown in FIG. 1, an image 102 of a group of micro-wells 20 

into which liquid crystals have been deposited. The liquid 
crystal is in an initial state in the absence of a chemical that 
cause an ordering transition of the liquid crystal. As shown 
in a representation 104 of a micro-well into which liquid 
crystals 106 have been deposited, the orientation of liquid 25 

crystals 106 are generally perpendicular to the bottom 
surface of the micro-well, which causes the micro-well to 
appear dark when image 102 was captured between crossed 
polarizers, as liquid crystals 106 do not change the polar
ization of transmitted light in the orientation shown in 104. 30 

In some embodiments, a material, such as aluminum per
chlorate can be deposited at the bottom of micro-well 104 to 
encourage the perpendicular orientation shown in 104 in the 
absence of an interfering chemical (e.g., as described 
below.) In some embodiments, micro-wells shown in image 35 

102 can be created using any suitable technique or combi
nation of techniques, and any suitable type(s) of liquid 
crystal. Additionally, any suitable coating can be used to 
encourage a particular orientation of liquid crystals in the 
absence of the chemical to be detected. For example, poly- 40 

meric micro-wells, such as micro-well 104, can be formed in 
a polymeric material deposited on a glass surface using 
photolithography, and 50 microliters (µL) of 10 millimolar 
(mM, i.e., 10-3 mol/L) aluminum perchlorate salts in etha
nolic solution can be deposited within the micro-wells by 45 

spin-coating (e.g., at about 3,000 rpm for 30 seconds) onto 
glass surfaces at the bottom of the polymeric micro-wells. In 
such an example, 2 µL of 5CB (i.e., 4-Cyano-4'-pentylbi
phenyl) can be deposited into the formed polymeric micro
wells with a depth of about 5 microns (µm) using a micropi- 50 

pette, and excess liquid crystal can be removed from the 
array by wicking into a microcapillary. 

When particular chemicals are introduced into a micro
well (e.g., micro-well 104) that includes liquid crystal, the 
liquid crystal can undergo surface-driven ordering transition 55 

such that the liquid crystals that were arranged in the 
configuration perpendicular to the bottom surface of the 
micro-well transition to a configuration where the crystals 
are parallel to the bottom surface of the micro-well. For 
example, in response to the presence of chemical species 60 

such as organophosphonates, chlorine, ammonia, or hydro
gen sulfide (H2 S) the liquid crystal can make such an 
ordering transition. In some embodiments, the optical and/or 
other characteristics (features) of the liquid crystal transi
tions can be tailored and exploited to design chemical 65 

sensors that can be used to detect particular types of chemi
cals. For example, the liquid crystals can assume homeo-

energies of the liquid crystal functional groups. For 
example, the chemical can bind to the metal cations, dis
placing the previously bound liquid crystals, which can 
trigger orientation transitions of the liquid crystals. In a more 
particular example, such orientation transitions can be 
caused using liquid crystals fabricated using 4-cyano-4'
penthylbiphenil (5CB) and surfaces presenting aluminum 
perchlorate salts. 

As shown in FIG. 1, when such an anchoring transition 
occurs the micro-wells transmit significantly more light, 
which can be observed as a visual indicator of the presence 
of the chemical. Image 110 shows the micro-wells of image 
102 after dimethyl-methyl-phosphonate (DMMP) nitrogen 
vapor (with a concentration of 10 parts per million DMMP) 
has been introduced, while image 112 shows the micro-wells 
of image 102 after nitrogen-water vapor with a relative 
humidity of about 30% has been introduced. As demon
strated by images 110 and 112, commonly occurring chemi-
cals (e.g., water) can cause an anchoring transition that 
results in a similar micro-well appearance to what is caused 
when the chemical of interest is present ( e.g., DMMP in the 
example of FIG. 1). As shown in FIG. 1, the appearance of 
the micro-well cannot be easily distinguished among differ-
ent substances, and a human observer or a simple machine 
vision application ( e.g., that simply detects changes in 
brightness) cannot confidently determine whether it is 
DMMP that has caused the anchoring transition or water 
vapor, and this is problematic for other liquid crystals as 
well. The example shown in FIG. 1 with DMMP and water 
vapors is a particular illustration of the implications of such 
potential confusion, as DMMP is an organophosphate that is 
often used as a sarin gas-simulant for the calibration of 
chemical sensors, and because water (which is prevalent in 
many environments in which such sensors may be used) can 
interfere with sensing activity. One approach to overcoming 
an inability to distinguish similar liquid crystal responses 
would be through selection of particular surface chemistry, 
liquid crystal chemistry, and/or other parameters. However, 
this process would necessarily involve extensive and labo
rious experimentation to determine which chemistries, etc., 
cause the liquid crystal responses to be sufficiently distinct 
( especially without the ability to quantify how such changes 
impact the difference in appearance). Additionally, even if 
such a sensor were constructed, the initial state of the liquid 
crystal and of the surface generally exhibits variations from 
sample to sample, which can induce variations in the liquid 
crystal response ( e.g., which can introduce sensor noise). 

FIG. 2 shows an example 200 of a system for detecting the 
presence of an analyte in accordance with some embodi
ments of the disclosed subject matter. As shown, system 200 
can include a light source 202; an image sensor 204; optics 
206; a processor 208 for controlling operations of system 
200 which can include any suitable hardware processor 
(which can be a microprocessor, digital signal processor, a 
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microcontroller, a GPU, etc.) or combination of hardware 
processors; an input device 210 (such as a shutter button, a 
menu button, a microphone, a touchscreen, a motion sensor, 
a etc., or any suitable combination thereof) for accepting 
input from a user and/or from the environment; memory 
212; and a communication system or systems 214 for 
allowing communication between processor 208 and other 
devices, such as a smartphone, a wearable computer, a tablet 
computer, a laptop computer, a personal computer, a server, 
etc., via a communication link. In some embodiments, 
memory 212 can store images of one or more liquid crystal 
sensors 220 (e.g., one or more micro-wells as described 
above in connection with FIG. 1), one or more normalized 
images, one or more features generated from the images, etc. 
Memory 212 can include a storage device (e.g., a hard disk, 

8 
another example, a single pixel sensor can be raster scanned 
in relation to the liquid crystal sensor to generate a two 
dimensional image of the liquid crystal sensor. In some 
embodiments, image sensor 204 can capture image data in 

5 the visible portion of the electromagnetic spectrum and/or in 
other portions of the electromagnetic spectrum ( e.g., near
infrared, infrared, ultraviolet, etc.). Although the mecha
nisms described herein are generally described in connection 
with visible light images ( e.g., color, grayscale, mono-

10 chrome, etc.), this is merely an example, and images of 
liquid crystal sensors representing one or more other por
tions of the electromagnetic spectrum can be used to detect 
the presence of an analyte. 

In some embodiments, optics 206 can be any combination 
15 of optics that facilitates image capture of liquid crystal 

sensors 220 by image sensor 204, such as one or more 
lenses, one or more filters ( e.g., IR cut filters, a high pass 
filter, a low pass filter, a bandpass filter, a polarizing filter, 

a Blu-ray disc, a Digital Video Disk, RAM, ROM, 
EEPROM, etc.) for storing a computer program for control
ling processor 208. In some embodiments, memory 212 can 
include instructions for causing processor 208 to execute 
processes associated with the mechanisms described herein, 20 

such as processes described below in connection with FIGS. 

etc.). 
In some embodiments, system 200 can communicate with 

a remote device over a network using communication sys
tem( s) 214 and a communication link. Additionally or alter
natively, system 200 can be included as part of another 
device, such as a smartphone, a tablet computer, a laptop 

4 and 5. In some embodiments, light source 202 can be any 
suitable light source that produces light that is reflected or 
transmitted by planar liquid crystals. Accordingly, although 
light source 202 is shown as being disposed on the same side 
of liquid crystal sensors 220 as image sensor 204, this is 
merely an example, and light source 202 can be disposed on 

25 computer, etc. Parts of system 200 can be shared with a 
device within which system 200 is integrated. For example, 
if system 200 is integrated with a smartphone, processor 208 
can be a processor of the smartphone and can be used to a different side of liquid crystal sensors 220 (e.g., on the 

opposite side of liquid crystal sensors 220 such that light 
emitted by light source 202 must be transmitted through 30 

liquid crystal sensors 220 before being received at image 
sensor 204). For example, light source 202 can be one or 
more LEDs, a white light source (e.g., a halogen bulb), etc. 
Note that, in some embodiments, light source 202 can be 
omitted where liquid crystal sensors 202 are illuminated by 
another light source ( e.g., one or more ambient light 
sources). In some embodiments, the light source is polar
ized, and in other embodiments the transmitted or reflected 
light is passed through a second polarizer. 

control operation of system 200. 
In some embodiments, system 200 can communicate with 

any other suitable device, where the other device can be one 
of a general purpose device such as a computer or a special 
purpose device such as a client, a server, etc. Any of these 
general or special purpose devices can include any suitable 

35 components such as a hardware processor (which can be a 
microprocessor, digital signal processor, a controller, etc.), 
memory, communication interfaces, display controllers, 
input devices, etc. For example, another device can be 
configured to receive image data captured by system 200, 

In some embodiments, image sensor 204 can be any 
suitable image sensor that can generate an image of liquid 
crystal sensors 220 with sufficient resolution and focus to 
facilitate classification using machine learning techniques. 
In some embodiments, image sensor 204 can be a color 
sensor, a monochrome sensor, etc. Additionally, in some 
embodiments, image sensor 204 can be any suitable type of 
image sensor, such as a CCD, a CMOS image sensor, etc. 
Additionally, in some embodiments, image sensor 204 can 
implemented as an array sensor (e.g., a two-dimensional 
distribution of pixels), a line sensor (e.g., having a one
dimensional distribution of pixels), a single pixel sensor, 
and/or using any other arrangement of light sensitive ele
ments suitable to generate an image of one or more of liquid 
crystal sensors 220. In some embodiments, an image can be 
captured by scanning the liquid crystal sensor with image 
sensor 204 (e.g., by moving image sensor 204 and/or liquid 
crystal sensors 220). For example, an array sensor can be 
scanned in one or more direction relative to liquid crystal 
sensors 220 to capture images of different portions of liquid 
crystal sensors 220. As another example, a line sensor can be 
scanned in one or more direction relative to liquid crystal 
sensors 220 to capture images of different portions of liquid 
crystal sensors 220. In a more particular example, a line 
sensor can capture an image of a linear portion of liquid 
crystal sensors 220 as liquid crystal sensors moves through 
a field of view of the line sensor ( e.g., by moving the line 
sensor and/or by moving liquid crystal sensors 220). As yet 

40 and can use the image data to determine whether a particular 
chemical is present at liquid crystal sensors 220 based on the 
image data. 

Communications by communication system 214 via a 
communication link can be carried out using any suitable 

45 computer network, or any suitable combination of networks, 
including the Internet, an intranet, a wide-area network 
(WAN), a local-area network (LAN), a wireless network, a 
digital subscriber line (DSL) network, a frame relay net
work, an asynchronous transfer mode (ATM) network, a 

50 virtual private network (VPN). The communications link 
can include any communication links suitable for commu
nicating data between system 200 and another device, such 
as a network link, a dial-up link, a wireless link, a hard-wired 
link, any other suitable communication link, or any suitable 

55 combination of such links. System 200 and/or another 
device (e.g., a server, a personal computer, a smartphone, 
etc.) can enable more reliable detection of particular chemi
cals at liquid crystal sensors 220. 

It should also be noted that data received through the 
60 communication link or any other communication link( s) can 

be received from any suitable source. In some embodiments, 
processor 208 can send and receive data through the com
munication link or any other communication link(s) using, 
for example, a transmitter, receiver, transmitter/receiver, 

65 transceiver, or any other suitable communication device. 
In a particular example, the optical appearance of liquid 

crystal sensors can be characterized using an Olympus 
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BX-60 polarizing light microscope in transmission mode 
(available from Olympus Corporation, headquartered in 
Tokyo, Japan). Images of the liquid crystal sensors can be 
captured using conoscopic imaging techniques, including 
inserting a Bertrand lens into the optical path of the polar- 5 

ized-light microscope. As described below in connection 
with FIGS. 4 and 5, image data captured using such an 
imaging device can be used to analyze the homeotropic 
orientation of the liquid crystals. 

FIG. 3 shows an example 300 of hardware that can be 10 

used to implement system 200 and a computing device 320 

10 
system 800), etc. Memory 320 can include any suitable 
volatile memory, non-volatile memory, storage, or any suit
able combination thereof. For example, memory 320 can 
include RAM, ROM, EEPROM, one or more flash drives, 
one or more hard disks, one or more solid state drives, one 
or more optical drives, etc. In some embodiments, memory 
320 can have encoded thereon a program for controlling 
operation of computing device 320. In such embodiments, 
processor 312 can execute at least a portion of the program 
to receive information (e.g., image data) from one or more 
imaging devices (e.g., system 200), train a classification 
model to classify images of a liquid crystal sensor as 
showing the presence of a particular chemical, determine 
from an image of a liquid crystal sensor whether a particular 

15 chemical is present, receive instructions from one or more 
devices ( e.g., a personal computer, a laptop computer, a 
tablet computer, a smartphone, etc.), etc. In some embodi
ments, computing device 320 can be any type of computing 
device, such as a personal computer, a laptop computer, a 

in accordance with some embodiments of the disclosed 
subject matter. As shown in FIG. 3, in some embodiments, 
system 200 can include processor 208, a display 304, one or 
more inputs 210, one or more communication systems 214, 
and/or memory 214. In some embodiments, display 304 can 
include any suitable display devices, such as a computer 
monitor, a touchscreen, a television, etc. In some embodi
ments, communication system(s) 214 can communicate with 
computing device 320 (and/or any other suitable computing 
device(s)) over a communication network 306. In some 
embodiments, communication network 306 can be any 
suitable communication network or combination of commu
nication networks. For example, communication network 
306 can include a Wi-Fi network (which can include one or 
more wireless routers, one or more switches, etc.), a peer
to-peer network (e.g., a Bluetooth network), a cellular 
network (e.g., a 3G network, a 4G network, etc., complying 
with any suitable standard, such as CDMA, GSM, LTE, LTE 
Advanced, WiMAX, etc.), a wired network, etc. In some 30 

embodiments, communication network 306 can be a local 
area network, a wide area network, a public network ( e.g., 
the Internet), a private or semi-private network (e.g., a 
corporate or university intranet), any other suitable type of 
network, or any suitable combination of networks. Commu
nications links shown in FIG. 3 can each be any suitable 
communications link or combination of communications 
links, such as wired links, fiber optic links, Wi-Fi links, 
Bluetooth links, cellular links, etc. 

In some embodiments, computing device 320 can include 
a processor 312, a display 314, one or more inputs 316, one 
or more communications systems 318, and/or memory 320. 
In some embodiments, processor 312 can be any suitable 
hardware processor or combination of processors, such as a 
central processing unit, a graphics processing unit, etc. In 
some embodiments, display 314 can include any suitable 
display devices, such as a computer monitor, a touchscreen, 
a television, etc. In some embodiments, inputs 316 can 
include any suitable input devices and/or sensors that can be 
used to receive user input, such as a keyboard, a mouse, a 
touchscreen, a microphone, etc. 

20 tablet computer, a smartphone, a server, etc. 
FIG. 4 shows an example 400 of a process for training a 

classification model to classify images of liquid crystal 
sensors to determine whether the image indicates the pres
ence of a particular chemical in accordance with some 

25 embodiments of the disclosed subject matter. As shown in 
FIG. 4, process 400 can start at 402 by introducing a known 
chemical (e.g., in a known quantity and/or concentration) 
into the presence of one or more liquid crystal sensors ( e.g., 
liquid crystal sensors 220). 

At 404, process 400 can capture one or more images of the 
liquid crystal sensors in the presence of the known chemical 
to generate images that can be used as training samples and 
test samples to train a classification model to recognize the 
presence of the known chemical. In some embodiments, the 

35 images can be captured using any suitable image capture 
device, at any suitable regular or irregular intervals ( or only 
a single image can be captured), and can be captured using 
any technique or combination of techniques. For example, in 
some embodiments, process 400 can capture video of the 

40 liquid crystal sensors, and can extract individual still images 
from the video at any suitable regular or irregular intervals. 
Note that an image can be any representation of a spatial 
distribution of optical information corresponding to light 
received by an image sensor that has passed through and/or 

45 been reflected from the liquid crystal sensor(s). 
At 406, process 400 can generate normalized images of 

particular sensors using any suitable technique or combina
tion of techniques. For example, in some embodiments, 
images of individual sensors can be extracted from the 

50 images, and each image of a sensor can be processed such 
that the images have a common format ( e.g., as described 
below in connection with FIG. 6). In some embodiments, communications systems 318 can 

include any suitable hardware, firmware, and/or software for 
communicating information over communication network 
306 and/or any other suitable communication networks. For 55 

example, communications systems 318 can include one or 
more transceivers, one or more communication chips and/or 
chip sets, etc. In a more particular example, communications 
systems 318 can include hardware, firmware and/or software 
that can be used to establish a Wi-Fi connection, a Bluetooth 60 

connection, a cellular connection, an Ethernet connection, 

At 408, process 400 can generate one or more features to 
be used to train the classification model. In some embodi
ments, process 400 can generate any suitable feature or 
combination of features, which may vary based on what type 
of classification model is being trained. In some embodi
ments, any suitable features can be generated from the image 
data to be used to train the classification model ( and, as 
described below in connection with FIG. 5, to use the trained 
classification model to detect the presence of an analyte). 

etc. 
In some embodiments, memory 320 can include any 

suitable storage device or devices that can be used to store 
instructions, values, etc., that can be used, for example, by 
processor 312 to present content using display 314, to 
communicate with one or more computing devices (e.g., 

For example, the mean intensity of the image can be 
calculated and used as a feature. As another example, 
multiple oriented gradients can be calculated at different 

65 points in the image, and a histogram of the oriented gradi
ents (HOG) can be used as a feature. Such HOG features can 
be calculated using any suitable technique or combination of 
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techniques. In a more particular example, the Matlab func
tion extractHOGfeatures can be used with a cell size [10, 10] 

12 
where 1 A (Z) can denote the indicator function of set A (i.e., 
IA (Z)=l if ZEA and lA(Z)=0 if Zt/cA). The model param
eters to be learned from the training set are the weight vector 
for the features wElR n and bElR . The learning process can 

to extract HOG features. With a 60x60 grayscale image (as 
described below in connection with FIG. 6), this can result 
in 900 individual features per image. 5 include solving the following optimization problem: 

As yet another example, output from one or more layers 
of a deep learning neural network can be used as features for 
training a classification model. In a more particular example, 
an RGB image of the micro-well can be used as input to a 
well-trained object classification convolution neural net- 10 

work, and the values generated by the last hidden layer can 
be used as features for training the classification model. In 
one particular example, the image can be submitted to 
alexnet, which was trained for object detection/classification 
in images using a portion of the ImageNet database. An 15 

example showing the general topology of alexnet is shown 
in FIG. 8. As a particular example, this can generate 4096 
features from a 60x60 RGB image. 

" 2 
2mllwll, 

(2) 

The first term of the objective function can measure the 
accuracy of the hypothesis on the training set and the second 
term is a regularization term that can prevent over-fitting. 
The hyperparameter AElR + is a regularization parameter 
that can determine the balance between how well the 
hypothesis fits the training set, and how well the hypothesis 
generalizes to other data. A large value of A may cause 
under-fitting of the model, whereas a small value of A may 
cause overfitting. This hyperparameter can be determined by 
a model selection process described below. The hypothesis 

As still another example, the image can be converted from 
RGB to a 60x60 grayscale image, and the pixel values (i.e., 20 

brightness values) of the grayscale image can be used as 
features, which can generate 3,600 features. Note that the 
RGB values can be used as features, but this triples the 
number of features to 10,800, which may lead overfitting of 
the model. 25 function of a logistic regression model is convex, so any 

optimal parameter selection provides a global minimizer. 
However, the parameter values may be non-unique. 

At 410, process 400 can reserve a portion of the images 
as testing samples using any suitable technique or combi
nation of techniques. For example, if the images captured at 
404 each include multiple micro-wells, and successive 
images depict the same micro-wells at different times as the 
chemical was introduced, the micro-wells can be partitioned 
with a portion of the micro-wells assigned as test samples, 
and a portion of the micro-wells assigned as training 
samples. As another example, the entire corpus of images of 
micro-wells can be randomly partitioned, which may result 35 

in images of the same micro-well at different times being in 
both the training set and the test set. 

In some embodiments, a support vector machine (SVM)
based model can be trained that uses the same hypothesis 

30 function as logistic regression. However, SVM models solve 
the following optimization problem to learn w and b: 

At 412, process 400 can train the classifier using the 
features corresponding to the training samples, and the 
known classification of the images. In some embodiments, 40 

images of the micro-wells during exposure to different 
chemicals can be used during the training ( e.g., images of 
the micro-wells exposed to DMMP, and images of the 
micro-wells exposed to water vapor). In some embodiments, 
process 400 can train any suitable type of classification 45 

model, such as a logistic regression model, a support vector 
machine-based model, or a neural network. 

Distinguishing among liquid crystal responses to two 
different substances ( e.g., I or II) can be characterized as a 
binary classification problem. One approach is to find a 50 

model or hypothesis f:lR n--;,]R that maps an input vector 
x,ElR n to predict output variables y,E{ 0, 1}. The input 
vector x, is also sometimes referred to as a feature vector 
(where features characterize the liquid crystal response) 
while y, are sometimes referred to as labels (e.g., indicating 55 

the presence of substance I or II). For example, label y,=1 
can represent the presence of DMMP (e.g., in N2 vapor 
solution and y,=0 can represent the presence of water ( e.g., 
in N2 vapor solution). A pair (x,, y,) can represent a sample 
for i=l, ... , m. In some embodiments, a database of m 60 

samples { (xi, y 1), ... , (xm, y m)} that can be used as a 
training set to learn a classifier model. 

In some embodiments, a logistic regression model can be 
trained that uses a hypothesis function of the following 

m 

minC ~ [y; rnax(O, 1 - wT x; - b) + 
w,b i=l 

(3) 

where CElR + is a hyperparameter that can be used to 
prevent over- or under-fitting (e.g., as described above in 
connection with A in the logistic regression model). In some 
embodiments, SVM can introduce nonlinear relations that 
map the original feature vector x,ElR n to a new vector of 
features [K(x,, x 1), ... , K(x,, xm)JElR m, where K(•) is a 
kernel function, which can amplify the effect of the features 
on the outputs. In some embodiments, the kernel function 
can be a Gaussian kernel such that K(x1, x,)=exp(-yllxrx,112

, 

which can be viewed as the similarity between features x1 
and x,. In some embodiments, the resulting new transformed 
features can be input to a linear SVM to generate a hypoth
esis model. For nonlinear SVM, the value of both C and the 
kernel function parameters (e.g., y) can be selected in the 
model selection process described below. 

In general, an SVM can be trained to find a multi
dimensional hyperplane that effectively separates the train
ing samples (which are described in terms of their features) 
into two or more classes. For simplicity, only techniques for 
generating hyperplanes for two classes (binary classifica
tion) are described herein. The hyperplane can be described 
by a weighted function of the features. In some embodi
ments, an SVM can be trained by solving an optimization 
problem to find the feature weights that achieve a maximum 

form: 

(1) 

65 separation among the training samples. Such a classification 
problem can be represented using the following mathemati
cal form: 
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(4) 

14 
the same dimension as the number of features), This can 
limit the use of SVM to classification problems with few 
thousands of features or less, The use of dense linear algebra 

s,t, Ys, (wT \O(xs)-y) 2 1-l;s, s ES 

/;s 2 0 s ES 

operations can also be an obstacle that prevents scalability of 
(5) 

5 dual algorithms that operate on the sample (kernel) space, In 
(6) 

where, sES is the index of the sample in the training set S 
(e.g., containing S samples), xs is the vector of features of 
sample s with associated classification label Ys ( e,g,, Ys =1 if 
a sample contains N2-DMMP andy

5
=-l if a sample contains 

N2 -Water), Ss is the classification error, w is the weight 
vector, y is the hyperplane offset, A is a regularization 
parameter that prevents overfitting (e.g., when many fea
tures are used), and cp(•) is the feature mapping function 
(e.g., cp(xJ=xs for linear classification), A solution of the 
SVM problem can be used to specify model parameters w*, 

some embodiments, scalability bottlenecks of Schur decom
position can be overcome by IPCluster using adaptive 
clustering techniques, which can identify data redundancies 
in the training samples and exploit these redundancies to 

10 compress the number of samples into a smaller set of 
clusters C={ c i, , , , , c J, In some embodiments, the 
compressed set of samples can then used to create a sparse 
preconditioner that can be used in connection with EQ, (8), 

15 
and which can be represented as: 

y* that can define a trained classification model, 
20 

In general, the computational complexity of the SVM 
problem described by EQS, (4) to (6) is high, and related to 
both the number of training samples and the number of 
features used (e.g., the dimension of vector x,, which can be 
thousands using features described herein), Various tech- 25 
niques can be used to tackle such computational complexity, 
For example, a scalable and flexible approach includes using 
interior-point algorithms, These algorithms can achieve rela
tively high accuracies, and can exploit underlying math
ematical structure at the linear algebra level, In such an 30 
example, effective structure exploitation strategies can be 
used to leverage high-performance (parallel) computing 
capabilities, In a more particular example, different solvers, 
such as IPCluster and PIPS-NLP, can be used to solve 
large-scale structured optimization problems that have the 35 
same mathematical structure of SVM problems, In particu
lar, such solvers can exploit the following arrowhead struc
ture of the linear algebra system that can be represented as: 

1 
-Kc 
S2 2 

1 
~Kee 

BT 
'C 

Bc1 

Bc2 

B,c 

Ko 

(9) 

q'I r'I 

q,2 r,2 

q,c r,c 

qo ro 

where Ksq, =r
5
-Bj0 , with sES, Numerical experiments have 

shown that the size of the compressed sample set is typically 
less than about 10% of the size of the original sample space, 
In some embodiments, by utilizing such clustering tech
niques the amount of dense linear algebra operations to be 
performed can be reduced ( or eliminated), which can avoid 
scalability issues in the number of features, Additionally, in 
some embodiments, such clustering techniques can be 
executed in parallel, which can facilitate linear scaling in the 
number of training samples, The clustering techniques 
described herein share some characteristics of hierarchical 
multi-grid preconditioners used in the solution of partial 

Ks Bs qs 

Bf BI ,, · BI Ko qo 

rs 

ro 

(7) 
40 differential equations, and can be generalized to perform 

hierarchical clustering, Note that, as described herein, 
sample compression can be performed at the linear algebra 
level, but the original SVM problem (containing all the 
training samples) is actually solved, In some embodiments, 

45 the clusters can be constructed by minimizing the distortion 

As used herein, g0 can be a search step associated to the 
feature weights and offset and q, can be the search step for 
the dual variables of the classification constraints and for the 50 

metric ~sE~iECks ,IIYrY s11, where y s are the features of 
samples, Note that the quality of the preconditioner ( e.g., the 
preconditioner's spectral properties) is generally tightly 
related to the distortion metric, which implies that strong 
data redundancies can yield efficient preconditioners, 

classification errors in sample sES, The diagonal blocks Ks 
can be sparse matrices that are associated to each training 
sample (e.g., in stochastic programming these can be ran
dom scenarios), This arrowhead system can be solved in 
parallel computers using a Schur complement decomposi
tion that can be represented as: 

In some embodiments, an artificial neural network (ANN) 
( e.g., a convolution neural network as represented in FIG, 8) 
that includes an input layer, one or more hidden layers, and 
an output layer can be trained to classify images, In such a 

55 neural network, each layer includes several basic unit func
tions, which are sometimes referred to as neurons, In some 
embodiments, the input layer can be features x,, and the 
output layer has one neuron representing the predicted 

(Ko - I, BIKs1 Bs)qo = ro - I, BIKs1 rs, Ksqs = rs - Bsqo, s Es 
(SJ probability of y,=L The total number of layers can be 

60 denoted as L, and the number of neurons in a particular layer 
f can be represented as se, and the value of j-th neuron of 
the at f -th layer as af,j,, which can be represented as part 
of a vector ae :=[ ac,1, ... , ae,s,]. The information oflayer 

sES sES 

z 

In some embodiments, using this technique can parallelize 
operations associated with each individual block K,, but 65 

scalability can be limited by operations with the Schur 
complement matrix Z (which is generally a dense matrix of 

f -1 can be provided to a j-th neuron in layer f using the 

mapping Uf,j,=B1 (wJae_ 1 +be,J), where Be can be an acti
vation function of layer f . In some embodiments, the 
activation function can be the logistic function (e.g., as used 
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in logistic regression). In some embodiments, parameters 
Wt, ht and ap can be represented as Wt:=[ we.1 , ... , 

We,s 1 ], ht:=[be,1 , ... , ht,sr], and ap=Be(wJat-1+bt), 
respectively. During the training process, parameters 
Wt and ht can be learned for all .f! =l, ... , L. Assuming 
that the last layer (i.e., ./! =L) uses the logistic function as the 
activation function, the training process can solves the 
following optimization problem: 

l m A L (10) 
min- - ~ [y; log(aL_;) + (1 - y;) log(! - aL_;)] + - ~ llwll2 

wr,hr m i=l 2m L=2 

where AEIR + can be a regularization parameter (e.g., as 
described above in connection with EQ. (2). After param
eters Wt and ht are learned, y, (i.e., the likelihood that an 
input belongs to class i) given any new input x, using 
forward propagation as follows: 

a 1~g1(w1Tx,+b1), . . . ,a1~g1(w1Tx,+b1), and 
.YFl[os,1i(cf). 

In some embodiments, given a particular type of classi
fication model to be trained, a portion of the images captured 
at 404 can be randomly assigned into a training set, and a 
second portion can be assigned to a test set ( e.g., 80% of the 
samples can be selected for training, and the remaining 20% 
can be used for testing). The training set can be used to 
determine parameters for the hypothesis model, while the 
test set (sometimes referred to as a hold-out set) can be used 
to assess how well the learned hypothesis model generalizes 
to unknown samples ( e.g., samples that were not explicitly 
used for training). For example, a predicted label y1=f (x,) 
can be computed for a sample input x,, and can be compared 
with a known classification y, of the input sample. Note that 
the accuracy of the test set may depend on the initial 
partition of the training set and test set, and thus the process 
can be repeated multiple times to enhance predictability. 

In some embodiments, the training process can be used to 
determine values for hyperparameters of the model being 
used (e.g., A for logistic classification, C for linear SVM, C 
and y for nonlinear SVM, A and network layout for ANN). 
This procedure is sometimes referred to as model selection. 
Any suitable model selection technique(s) can be used. For 
example, k-fold cross validation can be used, in which the 
whole training set is split into k equal folders. For each 
specific choice of hyperparameters, the model is trained 
using k-1 folders, and evaluated with the remaining folder 
as a validation set. This process can be repeated by cycling 
through the training set. Accordingly, for each specific 
choice ofhyperparameters, k models are built and evaluated. 
The performance the specific choice of the hyperparameters 
can evaluated by averaging the accuracy of these k models, 
and the optimal hyperparameters ( of those calculated) can be 
selected by looping over different hyperparameter choices. 

At 414, process 400 can test the trained classifier using at 
least a portion of the features corresponding to images from 
the test samples with known classifications. For example, as 
described above, a particular model can be trained and 
validated using a training dataset, and process 400 can use 
the test dataset to determine the accuracy of the model on 
images that were not used in determining the hyperparam
eters of the model. 

At 416, process 400 can determine the accuracy of the 
trained model over the test samples, and can determine 
whether to discontinue training ( e.g., because a particular 
level of accuracy has been reached, because the accuracy has 

16 
not improved by a particular amount over a particular 
number of epochs, because the hyperparameters are diverg
ing rather than converging etc.). 

If process 400 determines that training is to be discon-
5 tinued ("YES" at 418), process 400 can end at 420. Other

wise, if process 400 determines that training is to be con
tinued ("NO" at 418), process 400 can return to 412 and 
continue to train the classification model ( e.g., using a 
different partitioning of training and validation samples from 

10 the training set). 
FIG. 5 shows an example 500 of a process for detecting 

the presence of an analyte using a trained classification 
model in accordance with some embodiments of the dis
closed subject matter. At 502, process 500 can capture ( or 

15 receive) an image of one or more liquid crystal sensors that 
are configured to change orientation in the presence of a 
particular chemical. 

At 504, process 500 can normalize the image(s) using 
similar techniques to what was used to normalize the images 

20 during training of the classification model. 
At 506, process 500 can generate features based on the 

normalized image(s ). For example, process 500 can generate 
features corresponding to the features used to train the 
classification model. For example, one or more of the 

25 features described above in connection with 408 of FIG. 4. 
At 508, process 500 can provide the features to the 

classification model as input using any suitable technique or 
combination of techniques. For example, process 500 can 
format the features as a vector, and can provide the vector to 

30 the classification model. In some embodiments, the trained 
classification model can use the trained parameters of the 
classification model (e.g., w* and y*) to predict the classi
fication label y s given a feature vector xs of a new test sample 
(i.e., a sample not included in the training set). This task 

35 involves relatively minor computing operations ( extract 
features using the data of the given sample and predict the 
category of the sample). Such operations can be performed 
on the cloud (remotely) and in real-time to keep in situ 
hardware requirements at a minimum. The sensor accuracy 

40 is measured in terms of the number of correct predictions 
and, in the case of binary classification, we are also often 
interested in the proportion of false positives and negatives. 

At 510, process 500 can receive an indication from the 
trained classification model of the likelihood that a particular 

45 chemical is present. For example, the output of the classi
fication model can provide one value indicating the likeli
hood that a first chemical (e.g., DMMP) is present, and 
another likelihood indicating the likelihood that a second 
chemical (e.g., water) is present. Based on the individual 

50 likelihoods, process 500 can determine whether the chemi
cal of interest (e.g., DMMP, sarin gas, etc.). 

FIG. 6 shows an example of a process of normalizing two 
different images of micro-wells for feature extraction in 
accordance with some embodiments of the disclosed subject 

55 matter. As shown in FIG. 6, color images received can be 
converted to 60x60 pixel RGB images ( e.g., having 60 
columns, 60 rows, and 3 colors pixel) of individual micro
wells. Note that, in some embodiments, conversion to an 
RGB image can include a color space conversion. For 

60 example, if the received image has a format that represents 
color information using different colors and/or different 
information, such as YCbCr (where Y is a luminance com
ponent, and Cb and Cr are chrominance components), or a 
color space based on cyan, magenta, and yellow, or any 

65 other suitable color space, In some embodiments, this can 
involve reducing the resolution when the image of a par
ticular micro-well is at a higher resolution. In some embodi-
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ments, the RGB images can be used to generate grayscale 
images (e.g., 60x60 grayscale images). Note that, in some 
embodiments, the image can be received as a grayscale 
image ( e.g., when a monochromatic image is generated by 
the image sensor, when the image has already been con
verted to grayscale, etc.). In some embodiments, the gray
scale image can be used to generate one or more features 
( e.g., a HOG, a vector or matrix of pixel brightness values, 
mean intensity, etc.). Additionally, RGB image can be used 
to generate one or more additional features (e.g., mean 
intensity of the image, mean intensity of each color channel, 
features received from an object detection deep learning 
neural network, etc.). In some embodiments, channels other 
than RGB can be used, in addition to or in lieu of red, green, 
and blue channels. For example, YCbCr images can be used 
to generate one or more additional features. 

FIG. 7A shows an example of oriented gradients calcu
lated at various points in an image of a micro-well in 
accordance with some embodiments of the disclosed subject 
matter. As described above, a histogram of such oriented 
gradient values can be used as features for a classification 
model. 

FIG. 7B shows examples of images of individual microw
ells after exposure to either N2 -water or DMMP. As shown, 
some visual differences may be apparent to human observ
ers, but other images look very similar ( e.g., the top right 
well that was exposed to water looks very similar to the 
wells at the middle left and bottom right that were exposed 
to DMMP). 

FIG. 7C shows examples of the evolution of the visual 
appearance of particular microwells over time after either 
N2 -water or DMMP. As shown, the wells exposed to DMMP 
appear to change more rapidly in response to exposure than 
the wells exposed to water. 

FIG. 8 shows an example network topology of a convo
lution neural network that can be used to generate features 
for use in accordance with some embodiments of the dis
closed subject matter. An example of a particular network 
with a topology represented in FIG. 8 is described in more 
detail in Krizhevsky et al., "ImageNet Classification with 
Deep Convolution Neural Networks," Advances in Neural 
Information Processing Systems 25, 2012, which is hereby 
incorporated herein in its entirety. 

FIGS. 9-17 show example results achieved by systems 
implemented in accordance with some embodiments of the 
disclosed subject matter. Six videos were created that show 
the response of liquid crystal sensors DMMP-N2, and six 
other videos were created that show the response of the 
liquid crystal sensors to water-N2. Each group of six videos 
includes the evolution of 391 micro-wells, and still images 
were extracted from the videos every 3.3 seconds. Several 
different images were generated from each frame, with each 
of those images including information of a single micro-well 
at a specific point in time. Each image of an individual 
micro-well was converted to a 60x60 image, with the total 
number of images generated from the twelve videos gener
ated (the total image population) is 75,081. 

The liquid crystal filled micro-wells were exposed to a 
stream of dry N2 including DMMP at 10 ppmv within a flow 
cell with glass windows that permitted characterization of 
the optical appearance of the LC using a polarized optical 
microscope. The gas containing DMMPwas delivered to the 
flow cell at 300 mL/min using a rotameter (Aalborg Instru
ments and Control, Orangeburg, N.Y.). Nitrogen gas includ
ing water vapor at 30% relative humidity was delivered to 
the flow cell at 300 mL/min with the same rotameter. The 
optical appearance of the liquid crystal micro-wells were 

18 
recorded using an Olympus C2040Zoom camera (obtained 
from Olympus Corporation, Melville, N.Y.) and WinTV 
software (Hauppauge, N.Y.). 

Classification models were trained using functions avail-
5 able in Matlab (version 9.5.0.197613). A key factor that 

affected the classification accuracy of the classification 
models was the selection of the training set. With a popu
lation of 75,081 training images available (which capture 
responses for different micro-wells and at different times), 

10 selection of the training set is tightly connected to the way 
data is collected from experimental equipment to train the 
classifier. For example, it is desirable to be able to use the 
trained classifier to classify a similarly configured micro
well that was not used to train the classifier ( e.g., a micro-

15 well produced by another manufacturer, or at a different 
time). To evaluate the effect of data collection procedures, 
two partitioning strategies of the available images were 
compared. The first strategy included selecting images at 
random over the entire image population (i.e., including the 

20 entire set of micro-wells), while in the second strategy 
included selecting micro-wells at random (i.e., using all of 
images associated with a particular micro-well as training 
images if the micro-well is selected for inclusion in the 
training sample) to create the training set. In general, the 

25 second approach would be expected to have more redundant 
data, as images of a given micro-well would be expected to 
have more correlation. The second selection strategy, how
ever, corresponds to a realistic scenario in which data 
availability is constrained. Additionally, the performance of 

30 the classifiers using different combinations of features was 
evaluated, with different sizes of training sets, and different 
machine learning techniques (i.e., different types of models). 
Additionally, the classifier was trained using different types 
( and combinations) of feature information, with feature 

35 extraction tasks performed using existing capabilities in 
Matlab (version R2015a). Classification tasks were per
formed using tools available in Matlab and advanced opti
mization solvers such as Ipopt, PIPS-NLP, and IPCluster. 
For example, a linear SVM classifier (with an initial hyper-

40 parameter C=l) was trained using various features, includ
ing (I) average intensity of RGB channels, (II) HOG fea
tures, (III) deep learning features ( e.g., outputs of the last 
hidden layer of Alexnet when a 60x60 image of the micro
well was provided to the input layer), and (IV) individual 

45 grayscale intensity values. The total number of features 
extracted for the four types of features (I-IV) at each point 
in time was 8,599. Spatial patterns of the RGB channels 
were not captured, as this would raise the number of features 
by nearly a factor of three. However, the HOG (II) and 

50 grayscale pixel features (IV) capture at least a portion of any 
spatial patterns. In one example, 80% of the total image 
population were selected as the training set, the remaining 
20% were used as the test set. The random selection process 
was repeated five times to ensure reproducibility and per-

55 formance is summarized in FIG. 9. As seen in FIG. 9, the 
overall classification accuracy (denoted as Test Accuracy) 
was as high as 99.95%. DMMP Accuracy denotes the correct 
classification of DMMP presence, while Water Accuracy 
denotes the correct classification of water presence. Note 

60 that 1-DMMP Accuracy is sometimes referred to as a type 
II error (i.e., a false negative), while I-Water Accuracy is 
sometimes referred to as a type I error (i.e., a false positive). 
Note that the training accuracy is 100%, which indicates that 
the features used provide enough information to make a 

65 perfect classification of the images. FIG. 10 shows an 
example of DMMP accuracy of the trained SVM in classi
fying the test set, with the results correlated with the time 
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sification accuracies above 99%. However, such an 
approach also require more time-consuming data collection. 

when each image appears in the videos. For example, the 
accuracy result at 3.3 seconds corresponds to the accuracy of 
the SVM in classifying the presence of DMMP across all 
images of micro-wells 3.3 seconds after the chemical was 
introduced. As shown in FIG. 10, the accuracy is nearly 5 

100% at the first frame (i.e., 3.3 seconds after the flow was 
started). This can have important practical implications, as it 
suggests that classification can be achieved nearly instanta
neously (i.e., without the need of running a lengthy experi
ment to record the response of the liquid crystal sensor). 

In some embodiments, using one or more static strategies 
can overcome certain limitations of dynamic counterpart 
strategies (described below in connection with FIG. 15) by 
classifying liquid crystal responses based on instantaneous 
time snapshots (e.g., rather than using a time series). For 15 

example, such static strategies can operated based on dif
ferences in spatial patterns that are sufficient to identify the 
presence of DMMP or N2-water (examples showing such 
differences are described above in connection with FIG. 7B), 
although such differences are generally difficult for a human 20 

observer to detect (particularly early in the responses). In 
some embodiments, such static strategies can be more time 
(and cost) efficient due to the ability to classify the sample 
using a single sample image, rather than capturing a series 

Note that the training classification is relatively high (i.e., 
99.46%), providing additional evidence that features I, II, 
and III are highly informative. The predicted classification 
accuracy, however, only reached 95% for images at t=200 
seconds and accuracy reached levels of only 91 % for images 
at t=3.3 seconds (as shown in FIG. 12). The decreased 
accuracy may be the result of using more correlated ( and 

10 thus less informative) data. This can facilitate quantification 
of the effects of using lower quality training data in the 
learning (training) process. 

of images (e.g., over a time period of minutes) which can 25 

accelerate sensing (and can more efficiently utilize comput
ing resources by analyzing multiple samples during the time 
it would take to analyze a single sample using a dynamic 
strategy). Additionally, such static strategies do not accu
mulate feature information over time ( e.g., if all sources of 30 

feature information described herein are used, only 8,599 
features are produced per sample). Two training set selection 
cases were evaluated to determine how quality of training 
data may affect sensor accuracy. In one particular example 
( sometimes referred to herein as "static (a)"), the entire 35 

image population was partitioned at random to create a 
training set and a testing set. In another particular example 
(referred to herein as "static (b )"), the entire image popula
tion was partitioned by micro-wells. In such an example, 
data from a subset of micro-wells was used for training, and 40 

data from an independent set of micro-wells was used for 
testing. Note that the static (b) selection strategy can be 
expected to have more spatially correlated data ( e.g., 
because it contains more redundancy and less information) 
compared to the static (a) counterpart. This comparison can 45 

facilitate efforts to quantify impacts of quality of the training 
data. 
An experiment using a dynamic strategy produced accura
cies of 78% after just 3.3 seconds, which may indicate that 
there is a non-trivial amount of information embedded in the 50 

FIG. 13 shows the effect of using various numbers of 
samples for training with selection by micro-well. As shown 
in FIG. 13, an accuracy of 95% was achieved if 80% of the 
data (i.e., 312 micro-wells or 60,064 images) were used as 
training samples, whereas, if only 20% of the data (i.e., 79 
micro-wells or 15,017 images) were used as training 
samples, the accuracy dropped to 87.47%. 

FIG. 14 shows the effect of using various different 
machine learning classification techniques. As shown in 
FIG. 14, linear SVM (described above) was compared with 
logistic classification, nonlinear SVM, and a neural network 
ANN. The images were partitioned by micro-wells, and 80% 
of the micro-wells were used for training. For nonlinear 
SVM, a Gaussian kernel was used. For the neural network, 
the input layer used the RGB (true color) image, and the 
hidden layers were a sequence of convolution2dLayer, 
maxPooling2dLayer, fullyConnectedLayer, reluLayer, and 
softmaxLayer. The time to solve the optimization problems 
using the various techniques varied significantly. For 
example, logistic classification required about 10 minutes 
for training the classifier, whereas linear SVM required 
about 30 minutes, nonlinear SVM required about 2 hours, 
and the neural network required about 2 days. In addition, in 
the model selection phase, a sequence of classification 
problems were solved, where the number of classification 
problems in each round equaled k (with five used in this 
example) times the number of combinations ofhyperparam
eters. Four different values for C were tested in linear SVM, 
four different values of A were tested in logistic classifica
tion, three different values of C and three different value of 
y were tested for nonlinear SVM, and two different values of 
A for the neural network. For the neural network, the process 
was performed only once (k-1) because the solution time 
per classification problem was very long. 

As shown in FIG. 14, linear SVM was the superior 
technique, achieving classification accuracies above 95%. 
The performance of nonlinear SVM was relatively close to 
that oflinear SVM, but took significantly more time to train. 
Logistic regression only achieved accuracies of about 92%, 
while the neural network only achieved 83% accuracy. Note 
that it may be possible to achieve better accuracy with a 

early response of a liquid crystal sensor that can be used to 
classify the samples more quickly. This is reinforced when 
using static classification strategies (e.g., as shown in FIGS. 
10 and 12, which show relatively high classification accu
racy at a first image captured 3.3 seconds after exposure of 
the liquid crystal sensor to a chemical to be detected. 

In another example, 80% of the micro-wells were ran
domly selected as training wells, and the rest of the wells 
were used as test wells. The random selection process was 
repeated five times and the results are summarized in FIG. 
11. As shown, the overall classification accuracy decreases 
to 95%, which suggests that the use of more correlated (i.e., 
less informative) data in the learning process may result in 
lower accuracy. FIG. 12 shows that the accuracy at 3.3 
seconds is above 91 % but significant volatility is observed 
at different times. Using more micro-wells to train the 
classifier may increase accuracy, and ultimately reach clas-

55 neural network by better tuning the network layout, but this 
would require a substantial time investment to investigate 
various layouts given the extended training time. 

FIG. 15 shows examples of classification accuracy using 
color channel information and a dynamic strategy. An RGB 

60 image (micrograph) collected at a given time instance has 
three channels: red (R), green (G), and blue (B). The 
brightness field in each channel can be represented as a 
matrix in which each element corresponds to one pixel, and 
this matrix can capture spatial patterns. The spatial field was 

65 averaged for each channel to obtain a feature for each 
channel (that we call the average RGB intensities), which 
generated three features at each point in time (i.e., every 3.3. 
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seconds). The average of the three average intensities were 
also calculated to obtain the average total intensity. 

In some embodiments, a dynamic strategy can classify a 
response based on average RGB feature information (I) that 
is accumulated during the evolution of the liquid crystal 5 

sensor response after exposure to a chemical. This dynamic 
strategy can utilize a difference in response speed by the 
liquid crystal sensors to N2 -water, which tends to be slower, 
and to DMMP, which tends to be faster. For example, as 
shown in FIG. 7C, when exposed to DMMP, the depicted 10 

liquid crystal sensors took around 100 to 150 seconds to 
change in appearance from a ring to a full moon appearance, 
whereas a similar transition in response to N2-water took 
over 250 seconds. In light of these differences, the evolution 
of average intensity is different in response to DMMP and 15 

water, which is depicted in FIG. 19 showing that the 
evolution of the average RGB channels in response to 
N2 -water are smoother than the responses to DMMP. 
Accordingly, it can be expected that the shape of the 
dynamic profiles of the RGB channels can provide valuable 20 

information to perform classification. However, from the 
nature of the dynamic responses it is apparent that the 
DMMP responses exhibit relatively high variability from 
sample to sample, which can be attributed to differences in 
the initial conditions of the liquid crystal when the DMMP 25 

was introduced and to variations in the sample and surface, 
which are difficult to control experimentally (as seen in the 
initial states of the RGB channels shown in FIG. 19). It is 
also apparent that, for a given sample, the differences in the 
evolution of the average RGB intensities are not as marked 30 

suggesting that significant redundancy in these features 
exists. Note that the accuracy of the dynamic classification 
strategy is tied to the slow dynamics of the LC response, and 
the dynamic strategy can accumulate many more features 
than were used in the static strategy described above. For 35 

example, if all feature information described herein ( e.g., 
mean RGB channel brightness, HOG features, deep learning 
features, and grayscale pixel brightness) were accumulated 
during the entire response, each training sample would be 
associated with 524,539 features, which may cause any 40 

classification models to be intractable and which may also 
lead to overfitting ( overparameterization). 

In some embodiments, each training sample for the 
dynamic strategy can capture cumulative feature informa
tion of one micro-well up to a given time t. In one particular 45 

example, data from 391 samples (micro-wells) was used to 
train a dynamic classifier, of which 80% were randomly 
selected as the training set with the remaining 20% used as 
the test set. This random selection was repeated five times 
(i.e., to produce five different training sets, and five different 50 

test sets, each of which can be used to train a classification 
model). For each micro-well, the features used to generate 
the results shown in FIG. 15 were the average RGB inten
sities of multiple images recorded up to time t. For example, 
for a response lasting 200 seconds, feature information from 55 

61 images (collected every 3.3. seconds) was used with each 
image being associated with three average RGB intensities. 
Accordingly, the total number of features used for a response 
up to time t=3.3 seconds is 3, for t=l00 seconds is 91, and 
for t=200 seconds is 183. A linear SVM classifier was 60 

22 
FIG. 20 shows that the testing classification accuracy 

achieved after t=3.3 seconds for the dynamic strategy that 
was tested is only 78%, and after t=200 seconds it reached 
97%. Note that the training accuracy was 100% for t=200 
seconds (as shown in FIG. 15), which indicates that RGB 
feature information may be sufficient to perfectly categorize 
the images. However, as shown in FIG. 15, there is vari
ability in the testing classification accuracy when using 
different training sets (e.g., ranging from 95% to 100%), 
which is likely due to significant variability in the dynamic 
responses of liquid crystal exposed to DMMP from sample 
to sample, which can increase the important of training set 
selection to insure that it is representative of such variability. 

FIG. 16 shows examples of the effect of feature informa
tion on classification accuracy. As shown in FIG. 16, using 
different combinations of features can produce classification 
models with varying degrees of accuracy. Although not 
shown, it was also determined that combining all of features 
I-IV did not improve this performance, and that the use of 
average total RGB intensity alone provided very low accu
racies (of around 60%). Note that average brightness has 
been widely used by experimental researchers to classify 
liquid crystal responses, and these results indicate that is 
likely an inferior feature to use alone. The HOG feature 
information (II) likely contribute to increased accuracy due 
to such features capturing spatial patterns that develop 
relatively early in the liquid crystal response. Such patterns, 
however, are not sufficient to achieve high accuracies. 
Features generated by AlexNet (III) likely contribute to 
increased accuracy due to highly evolved features generated 
by such a system, such as texture, edges, and blobs. Note 
that it is difficult ( or impossible) to ascribe direct physical 
interpretations to such evolved features generated by a deep 
neural network. 

FIG. 17 shows examples of computational performance 
related to the use of different optimization solvers for 
training a support vector machine instance. As shown in 
FIG. 17, computational performance is compared for differ
ent optimization solvers for a large linear SVM classification 
instance that comprises 37,540 training samples and 4,997 
features. These experiments were run on a multi-core com-
puting server with 32 cores. As shown, the off-the-shelf 
interior-point solver Ipopt was not able to solve the problem 
because it ran out of memory as the linear algebra system 
became too large to be handled all-at-once. The parallel 
Schur decomposition strategy implemented in PIPS-NLP 
bypassed the memory obstacle, but required more than 
twelve hours to solve the problem to a tolerance of lxl0-5 

due to dense linear algebra operations that are involved. The 
clustering-based preconditioner used in IPCluster reduced 
the solution time to 4.8 minutes and achieved the same 
tolerance of lxl0-5

• Notably, the preconditioner only used 
1 % of the training samples, indicating that high redundancy 
exists in the feature information. Another surprising result is 
that the SMO technique (tailored to SVM problems) only 
reached a tolerance of lx10- 1 after an hour. These results 
suggest that drastic reductions in computing time and accu
racy can be achieved with advanced optimization solvers. 

FIG. 18 shows an example experimental setup that can be 
used to generate image data for training and/or testing of 
mechanisms for detecting the presence of an analyte. As 
shown in FIG. 18, the experimental setup includes a light 
source that directs light through a liquid crystal sensor 
toward an image sensor (detector) while an N2-DMMP 

trained using this data, without using other feature informa
tion (HOG, deep learning, and grayscale pixels) due to the 
extremely large number of features that would be produced. 
However, using only average RGB channel brightness, the 
results show the dynamic response of the liquid crystal 
sensor contains valuable information that can be used to 
conduct classification. 

65 mixture or 30% relative humidity sample of air was passed 
over the liquid crystal sensor. Six videos were recorded that 
depict the response ofliquid crystal sensors to N2 -DMMP at 
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was deposited by spin-coating (at 3000 rpm for 30 seconds) 
onto the glass surfaces at the bottom of the polymeric 
microwells. Next, the microwells were filled with liquid 
crystal by depositing 2 µL of liquid crystal onto each array 

10 ppm (these videos varied in length from 4 to 13 minutes) 
and six videos were recorded that depict the response of the 
liquid crystal sensors to N2 -water (these videos varied in 
length from 7 to 30 minutes). Each video tracked the 
dynamic evolution of multiple independent micro-wells (the 
total number of micro-wells recorded was 391). A frame 
(micrograph) was captured from each video every 3.3 sec
onds, and each frame was subdivided into several images, 
each depicting the entirety of a single micro-well at a 
specific time. The total number of micro-well images gen
erated was 75,081 and each image was resized to 60x60 
pixels (e.g., several such images are depicted in FIGS. 7B 
and 7C). 

5 of microwells using a micropipette. Excess liquid crystal 
was removed from the array by wicking into a microcapil
lary. 

The experimental procedure followed to obtain liquid 
crystal response data involved various components and 
procedures. For example, 5CB was purchased from HCCH 
(Jiangsu Hecheng Display Technology Co., LTD). The 
developers SU-8 2050 and SU-8 were purchased from 
MicroChem (Westborough, Mass.). Absolute ethanol (anhy
drous, 200 proof) and aluminum(III) perchlorate salt in its 20 

highest available purity form were purchased from Sigma
Aldrich. (Tridecafluoro-1, 1,2,2-tetrahydrooctyl)-trichlorosi
lane was purchased from Pfaltz & Bauer (Waterbury, 
Conn.). DMMP in nitrogen at a concentration of 10 ppmv 
was obtained from Airgas (Radnor, Pa.) and used as 25 

received. Fischer's finest glass slides were purchased from 
Fischer Scientific (Hampton, N.H.). All chemicals and sol
vents were of analytical reagent grade and were used as 
received without any further purification. All deionized 
water used in the study possessed a resistivity of at least 18.2 30 

MQcm. 

As still another example, the LC-filled microwells were 
exposed to a stream of dry N2 containing DMMP (at 10 

10 ppmv) within a flow cell with glass windows that permitted 
characterization of the optical appearance of the liquid 
crystal using a polarized optical microscope. The gas con
taining DMMP was delivered to the flow cell at 300 mL/min 

15 
using a rotameter (Aalborg Instruments and Control, 
Orangeburg, N.Y.). For experiments performed to evaluate 
the response of the liquid crystals to water vapor, nitrogen 
containing 30% relative humidity (RH) was delivered to the 
flow cell at 300 mL/min with the same rotameter. The RH of 
the air was controlled using a portable dew point (T DP) 
generator (LI-610, LI-COR Biosciences, Lincoln, Nebr.). To 
generate 30% RH gas stream, the temperature of the gas fed 
to the generator was controlled at 25° C. and the dew point 
was set as 6.2° C. The optical appearance of the liquid 
crystal film was recorded using an Olympus camera (Olym
pus C2040Zoom, Melville, N.Y.) and WinTV software 
(Hauppauge, N.Y.). 

In a further example, the optical appearance of the liquid 
crystal was characterized using an Olympus BX-60 polar
izing light microscope in transmission mode (Olympus, 
Japan). Conoscopic imaging of the liquid crystal films was 
performed by inserting a Bertran lens into the optical path of 
a polarized-light microscope to distinguish between homeo
tropic and isotropic films. 

FIG. 19 shows examples of average intensity on various 
color charmels over time in images of liquid crystal sensors 
exposed to DMMP andN2 -waterovertime.As shown, in the 
presence of the DMMP the average intensity on each chan
nel relatively rapidly increased after a relatively short period 

As another example, polymeric wells with diameters of 
200 µm were fabricated by photolithography to create liquid 
crystal films supported on metal salt surfaces. SU-8 2005, 
which contains 45 wt % bisphenol A novolac epoxy, was 35 

made by adding cyclopentanone to SU-8 2050, which con
tains 71.65 wt % bisphenol A novolac epoxy, to decrease the 
viscosity of the photoresist. Then, a thin film of SU-8 2005 
was deposited on a cleaned glass surface by spin-coating at 
500 rpm for 10 seconds followed by 3,000 rpm for 30 
seconds. The polymer-coated surface was subsequently pre
baked on a hot plate at 95° C. for 5 minutes and then cooled 

40 of time (e.g., within one to two minutes), whereas in the 
presence of the N2-water the average intensity increased 
much more gradually. 

to room temperature for 10 minutes. After prebaking, a 
photomask with 200 µm-diameter dark circular patterns was 
placed on the polymer coated surface and exposed to UV for 
70 seconds (X, =254 nm, UV crosslinker, Spectronics, 
Westbury, N.Y.). After UV exposure, the sample was post
baked for 7 minutes at 95° C. The SU-8 film was exposed 
to an oxygen plasma (250 Watt RF power, 50 cm3 /min 
oxygen) and subsequently placed into a desiccator to which 
25 liters of (tridecafluoro-1,1,2,2-tetrahydrooctyl)-trichlo
rosilane was added (adjacent to the SU-8 film). A vacuum 
was then pulled in the desiccator for 20 minutes, during 
which time the organosilane formed a vapor and reacted 
with the surface of the SU-8 film. After the surface treat
ment, the sample was placed in a SU-8 developer 
(1-methoxy-2-propyl acetate) and sonicated for 15 seconds 

FIG. 20 shows examples of average classification accu
racy on a "test" set of images over time for various strate-

45 gies. The results depict how classification accuracy changes 
as a model receives input data from successive images of the 
same well over the 200 second period. For example, the 
"static (a)" model predicted to which of the two classes an 
image of a microwell belongs with nearly 100% accuracy 

50 regardless of the length of time between exposure to the 
chemical and capture of the image. As shown, the most 
accurate model was trained using the "static(a)" strategy, 
which involved randomly dividing microwells into test and 
training sets, whereas the "static(b )" strategy involved ran-

55 domly dividing the set of all images of mi crow ells into test 
and training sets. By contrast, as described above, the 
dynamic strategy involved training a model using average 
RGB channel intensities over time, rather than instantaneous to dissolve the regions of the SU-8 film that were not 

exposed to UV light. The sample was then washed with a 
copious amount of isopropanol and dried under a gaseous 60 

flow of nitrogen. The depth of the polymeric microwells 
fabricated using the aforementioned procedure was deter
mined to be 5 µm by surface profilometry. 

intensity patterns within a single image of the microwell. 
FIG. 21 shows a symbolic example of compression of the 

number of samples into clusters that can be used to create a 
sparse preconditioner for training a support vector machine 
using Schur decomposition. As shown, samples can be 
grouped based on similarity, and representative samples As yet another example, films of liquid crystal supported 

on metal-salt decorated surfaces were deposited within the 
wells. Aluminum perchlorate salts were dissolved into dry 
ethanol to form 10 mM solution, and then 50 µL of solution 

65 from each group can be used to generate a preconditioner for 
finding a solution to the support vector machine optimiza
tion problem. 
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change color ( e.g., to a blue or green appearance). In such an 
example, images of the sensors when exposed to different 
chemicals that cause similar reactions in the sensors can be 
used to train a classification model ( e.g., as described above 

Note that although micro-well sensors were described 
herein, various other types of configurations of liquid crys
tals can be used to sense various different types of chemi
cals, and similar techniques can be used to classify the 
responses of those sensors. For example, as described in 
Abbott et al. U.S. Pat. No. 6,284,197 (which is hereby 
incorporated herein by reference in its entirety), a sensor can 
be formed using liquid crystals in contact with self-assem
bling monomers (SAMs) where the liquid crystals change 
orientation in the presence of certain chemicals. In such an 
example, images of the sensors when exposed to different 
chemicals that cause similar reactions in the sensors can be 
used to train a classification model ( e.g., as described above 

5 in connection with FIGS. 1-8) to classify which chemical the 
sensor was exposed to. Note that although this disclosure 
mostly describes mechanisms for detecting the presence of 
a particular chemical, sensors using liquid crystals can be 
configured to change appearance with a dose response which 

10 can be used to distinguish the amount of exposure to a 
particular chemical ( e.g., over a period of minutes, hours, 
days, etc.), and similar techniques can be used to distinguish 
the amount of chemical that has been absorbed from the 
environment, which may otherwise be difficult for a human 
to do. Additionally, although the disclosure generally 
describes detecting the presence of a chemical this should 
not be construed as limiting the disclosure to the detection 
of molecules ( or atoms) that are typically characterized as 
"chemicals." Rather, liquid crystal sensors can be configured 

in connection with FIGS. 1-8) to classify which chemical the 
sensor was exposed to. Abbott et al. U.S. Pat. No. 7,135,143 15 

(which is hereby incorporated herein by reference in its 
entirety), describes other techniques using sensor that can be 
formed using liquid crystals in contact with self-assembling 
monomers (SAMs) where the liquid crystals change orien
tation in the presence of certain chemicals. 20 to detect the presence of many types of analytes, such as 

biological substances (e.g., including enzymes), biological 
organisms, and/or other substances which may not typically 
be described as being a chemical. 

As another example, as described in Abbott et al. U.S. Pat. 
No. 7,910,382 (which is hereby incorporated herein by 
reference in its entirety), a sensor can be formed using liquid 
crystals that interface with an aqueous phase at a membrane 
containing a polymerized target of a bioagent, where the 25 

orientation of the liquid crystals at the aqueous phase change 
when the bioagent is present in the aqueous phase. In such 
an example, images of the sensors when exposed to different 
chemicals that cause similar reactions in the sensors can be 
used to train a classification model ( e.g., as described above 30 

in connection with FIGS. 1-8) to classify which chemical the 
sensor was exposed to. 

As yet another example, as described in Abbott et al. U.S. 
Pat. No. 7,990,488 (which is hereby incorporated herein by 
reference in its entirety), sensors can be formed using liquid 35 

crystal in a holding compartment of a substrate over which 
an aqueous solution can be passed. Such sensors can detect 
interactions at biomimetic interfaces with liquid crystals, 
which can cause the appearance of the sensor to change. 
Such sensors can, in a particular example, facilitate detec- 40 

tion of binding of proteins and/or other biological molecules 
(and their assemblies) to liquid crystal-aqueous interfaces. 
As another particular example, such sensors can facilitate 
detection of other molecular transformations effected by 
biological molecules ( e.g., catalytic transformations that 45 

involve the formation or breaking of a covalent bond). 
As still another example, as described in Abbott et al. U.S. 

Pat. No. 9,080,973 (which is hereby incorporated herein by 
reference in its entirety), sensors can be formed using 
droplets of liquid crystals suspended in an aqueous phase 50 

that are ordinarily in a bipolar phase, but switch to a radial 
phase in the presence of certain chemicals, which can lead 
to a visual change in appearance of the droplets. In such an 
example, images of the sensors when exposed to different 
chemicals that cause similar reactions in the sensors can be 55 

used to train a classification model ( e.g., as described above 
in connection with FIGS. 1-8) to classify which chemical the 
sensor was exposed to. 

As a further example, as described in Abbott et al. U.S. 
Patent Application Publication No. 2016/0178588 (which is 60 

hereby incorporated herein by reference in its entirety), 
sensors can be formed using liquid crystals that are doped 
with a chiral molecule which can induce a helical distortion 
into the liquid crystal. In the presence of certain chemicals 
the chiral doped liquid crystal can self-assemble into a cubic 65 

lattice, dramatically changing its appearance, and in some 
cases diffracting visible light to cause the lattice to appear to 

In some embodiments, any suitable computer readable 
media can be used for storing instructions for performing the 
functions and/or processes described herein. For example, in 
some aspects, computer readable media can be transitory or 
non-transitory. For example, non-transitory computer read
able media can include media such as magnetic media (such 
as hard disks, floppy disks, etc.), optical media (such as 
compact discs, digital video discs, Blu-ray discs, etc.), 
semiconductor media (such as RAM, Flash memory, elec
trically progranimable read only memory (EPROM), elec
trically erasable programmable read only memory (EE
PROM), etc.), any suitable media that is not fleeting or 
devoid of any semblance of permanence during transmis-
sion, and/or any suitable tangible media. As another 
example, transitory computer readable media can include 
signals on networks, in wires, conductors, optical fibers, 
circuits, or any suitable media that is fleeting and devoid of 
any semblance of permanence during transmission, and/or 
any suitable intangible media. 

It should be noted that, as used herein, the term mecha
nism can encompass hardware, software, firmware, or any 
suitable combination thereof. 

It should be understood that the above described steps of 
the processes of FIGS. 4 to 6 can be executed or performed 
in any order or sequence not limited to the order and 
sequence shown and described in the figures. Also, some of 
the above steps of the processes of FIGS. 4 to 6 can be 
executed or performed substantially simultaneously where 
appropriate or in parallel to reduce latency and processing 
times. 

Although the invention has been described and illustrated 
in the foregoing illustrative aspects, it is understood that the 
present disclosure has been made only by way of example, 
and that numerous changes in the details of implementation 
of the invention can be made without departing from the 
spirit and scope of the invention, which is limited only by the 
claims that follow. Features of the disclosed embodiments 
can be combined and rearranged in various ways. 

What is claimed is: 
1. A method for detecting the presence of an analyte, the 

method comprising: 
capturing an image of liquid crystals; 
determining a first set of one or more features based on the 

brightness of pixels in the image; 
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determining a second set of features based on the image 
of the liquid crystals, 
wherein the second set of features comprises a plurality 

of outputs of a hidden layer of a trained object 
detection deep learning convolution neural network 5 

that was provided with values based on the pixels in 
the image as an input; 

concurrently providing at least the first set of one or more 
features and the second set of features to a trained 
support vector machine, 
wherein the support vector machine was trained using 

features based on images captured of other liquid 
crystals when exposed to a first analyte and the other 
liquid crystals when exposed to a second analyte; 
and 

receiving an indication from the support vector machine 
indicating whether the liquid crystals have been 
exposed to the first analyte. 

10 

15 

2. The method of claim 1, wherein the second set of 
features are based on a color image of the liquid crystals, and 20 

wherein the first set of one or more features are based on a 
grayscale image of the liquid crystals. 

3. The method of claim 1, further comprising: 
generating a normalized RGB image from the first image 

of the liquid crystals; 
converting the normalized RGB image to a grayscale 

image; 
calculating a plurality of oriented gradients using the 

grayscale image; and 

25 

28 
14. The method of claim 1, wherein the liquid crystals are 

disposed within a holding compartment of a substrate over 
which an aqueous solution is being passed. 

15. The method of claim 1, wherein the liquid crystals are 
doped with a chiral molecule. 

16. A system for detecting the presence of an analyte, the 
system comprising: 

an image sensor; and 
a processor that is programmed to: 

cause the image sensor to capture an image of liquid 
crystals; 

conve~ the image of the liquid crystals to grayscale; 
determme a first set of one or more features based on 

the brightness of pixels in the grayscale image; 
determine a second set of features based on the image 

of the liquid crystals, 
wherein the second set of features comprises a 

plurality of outputs of a hidden layer of a trained 
object detection deep learning convolution neural 
network that was provided with values based on 
the pixels in the image as an input; 

concurrently provide at least the first set of one or more 
features and the second set of features to a trained 
support vector machine, 
wherein the support vector machine was trained 

using features based on images captured of other 
liquid crystals when exposed to a first analyte and 
the other liquid crystals when exposed to a second 
analyte; and 

receive an indication from the support vector machine 
indicating whether the liquid crystals have been 
exposed to the first analyte. 

calculating a histogram of the plurality of oriented gra- 30 

dients, wherein the one or more features comprises 
values from the histogram of the plurality of oriented 
gradients. 17. A non-transitory computer readable medium contain

ing computer executable instructions that, when executed by 
35 a processor, cause the processor to perform a method for 

4. The method of claim 3, wherein the normalized RGB 
image is generated from a portion of the image of the liquid 
crystals, wherein the normalized RGB image has a lower 
resolution than the image of the liquid crystals. 

5. The method of claim 1, wherein the first analyte is a gas 
phase analyte and the second analyte is a non-targeted gas 
phase molecule. 

6. The method of claim 5, wherein the first analyte is 
DMMP and the second analyte is water vapor. 

7. The method of claim 6, wherein the analyte to be 
detected is sarin. 
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8. The method of claim 1, wherein the first analyte is a 45 

liquid phase analyte and the second analyte is a non-targeted 
liquid phase analyte. 

9. The method of claim 8, wherein the first analyte is a 
biological analyte. 

10. The method of claim 1, wherein the liquid crystals are 50 

disposed within a micro-well. 
11. The method of claim 1, wherein the liquid crystals are 

in contact with self-assembling monomers. 
12. The method of claim 1, wherein the liquid crystals are 

in contact with a polymerized target of a bioagent. 
13. The method of claim 1, wherein the liquid crystals 

form at least one droplet suspended in an aqueous phase. 

55 

detecting the presence of an analyte, the method comprising: 
capturing an image of liquid crystals; 
converting the image of the liquid crystals to grayscale; 
determining a first set of one or more features based on the 

brightness of pixels in the grayscale image; 
determining a second set of features based on the image 

of the liquid crystals, 
wherein the second set of features comprises a plurality 

of outputs of a hidden layer of a trained object 
detection deep learning convolution neural network 
that was provided with values based on the pixels in 
the image as an input; 

concurrently providing the one or more features to a 
trained support vector machine, 
w~erein the support vector machine was trained using 

images captured of other liquid crystals when 
exposed to a first analyte and the other liquid crystals 
when exposed to a second analyte; and 

receiving an indication from the support vector machine 
indicating whether the liquid crystals have been 
exposed to the first analyte. 

* * * * * 


