

US010934563B2

(12) United States Patent

Pfleger et al.

(54) BIOCONVERSION OF LEVULINIC ACID IN GENETICALLY ENGINEERED HOSTS

- (71) Applicant: Wisconsin Alumni Research Foundation, Madison, WI (US)
- Inventors: Brian Frederick Pfleger, Madison, WI (US); Jacqueline Marie Rand, Madison, WI (US); Christopher Robert Mehrer, Madison, WI (US); Matthew Ryan Incha, Berkeley, CA (US)
- (73) Assignee: Wisconsin Alumni Research Foundation, Madison, WI (US)
- (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 15 days.
- (21) Appl. No.: 16/135,123
- (22) Filed: Sep. 19, 2018

(65) **Prior Publication Data**

US 2019/0085362 A1 Mar. 21, 2019

Related U.S. Application Data

- (60) Provisional application No. 62/560,247, filed on Sep. 19, 2017.
- (51) Int. Cl.

C12P 7/16	(2006.01)
C12N 15/62	(2006.01)
C12N 15/52	(2006.01)
C12N 15/64	(2006.01)
C12N 15/66	(2006.01)
C12N 9/10	(2006.01)
C12N 9/18	(2006.01)
C12N 15/69	(2006.01)
C12N 15/63	(2006.01)
C12P 7/26	(2006.01)

- (58) Field of Classification Search None
 See application file for complete search history.

(56) **References Cited**

PUBLICATIONS

Alonso, D. M. et al., Gamma-valerolactone, a sustainable platform molecule derived from lignocellulosic biomass. *Green Chem.* 15, 584 (2013).

(10) Patent No.: US 10,934,563 B2 (45) Date of Patent: Mar. 2, 2021

Altschul et al., "Basic local alignment search tool," Journal of Molecular Biology. 215(3):403-410 (1990).

Ausubel, et al., Short Protocols in Molecular Biology, 5th ed., Wiley & Sons, (2002).

Barrios, H. et al., Compilation and analysis of sigma(54)-dependent promoter sequences. *Nucleic Acids Res.* 27, 4305-4313 (1999).

Berezina, N. et al., Improvement of the poly(3-hydroxybutyrateco-3-hydroxyvalerate) (PHBV) production by dual feeding with levulinic acid and sodium propionate in *Cupriavidus necator*. *N. Biotechnol.* 33, 231-236 (2016).

Carlier, A. et al.,. The assimilation of gamma-butyrolactone in Agrobacterium tumefaciens C58 interferes with the accumulation of the N-acyl-homoserine lactone signal. *Mol. Plant. Microbe. Interact.* 17, 951-7 (2004).

Chatterjee, A. eet al., PsrA, the Pseudomonas sigma regulator, controls regulators of epiphytic fitness, quorum-sensing signals, and plant interactions in *Pseudomonas syringae* pv. tomato strain DC3000. *Appl. Environ. Microbiol.* 73, 3684-3694 (2007).

Chow, J. Y. et al. Directed evolution of a thermostable quorumquenching lactonase from the amidohydrolase superfamily *J. Biol. Chem.* 285, 40911-20 (2010).

Chung, S. H. et al., Effect of Levulinic Acid on the Production of Poly (3-hydroxybutyrate-co-3-hydroxyvalerate) by *Ralstonia eutropha* KHB-8862. *Society* 39, 79-82 (2001).

Cock, P. J. A. et al. Biopython: freely available Python tools for computational molecular biology and bioinformatics. *Bioinformatics* 25, 1422-3 (2009).

Dijkman, W. P. et al., Discovery and characterization of a 5-hydroxymethylfurfural oxidase from *Methylovorus* sp. strain MP688. *Appl. Environ. Microbiol.* 80, 1082-1090 (2014).

Edgar, RC "MUSCLE: a multiple sequence alignment method with reduced time and space complexity," *BMC Bioinformatics*, 5:113 (2004).

Espah Borujeni, A., et al., Translation rate is controlled by coupled trade-offs between site accessibility, selective RNA unfolding and sliding at upstream standby sites. *Nucleic Acids Res.* 42, 2646-2659 (2014).

Fox, J. D. et al., Maltodextrin-binding proteins from diverse bacteria and archaea are potent solubility enhancers. *FEBS Lett.* 537, 53-57 (2003).

Gibson et al., Enzymatic assembly of DNA molecules up to several hundred kilobases, *Nat. Methods* 6,343-5 (2009).

Graf, N. et al., Development of a method for markerless gene deletion in Pseudomonas putida. *Appl. Environ. Microbiol.* 77, 5549-52 (2011).

(Continued)

Primary Examiner — Kagnew H Gebreyesus

(74) Attorney, Agent, or Firm — Joseph T. Leone, Esq.; DeWitt LLP

(57) **ABSTRACT**

Described is a recombinant expression vector that enables a cell transformed to contain and express the vector to use levulinic acid as a carbon source, thereby converting levulnic acid into 2-butanne. Also described are genetically modified cells transformed to contain and express the vector and methods of using the cells to produce 2-butanone from a medium containing levulinic acid.

10 Claims, 19 Drawing Sheets

Specification includes a Sequence Listing.

(56) **References Cited**

PUBLICATIONS

Green, M.R. and Sambrook, J., *Molecular Cloning: A Laboratory Manual (Fourth Edition)*, Cold Spring Harbor Laboratory Press, 2012, ISBN-10:1936113422.

Habe, H. et al. Bacterial production of short-chain organic acids and trehalose from levulinic acid: A potential cellulose-derived building block as a feedstock for microbial production. *Bioresour. Technol.* 177, 381-386 (2015).

Harris, S. R. et al. Metabolism of levulinate in perfused rat livers and live rats: Conversion to the drug of abuse 4-hydroxypentanoate. *J. Biol. Chem.* 286, 5895-5904 (2011).

Hiblot, J. et al., Structural and enzymatic characterization of the lactonase SisLac from Sulfolobus islandicus. *PLoS One* 7, e47028 (2012).

Jang, J. H. et al., Effect of levulinic acid on cell growth and poly-beta-hydroxyalkanoate production by *Alcaligenes* sp SH-69. *J. Chem. Inf. Model.* 18, 219-224 (1996).

Jaremko, M. et al., The initial metabolic conversion of levulinic acid in *Cupriavidus necator. J. Biotechnol.* 155, 293-298 (2011).

Jenkins, L. S. et al., Genetic and molecular characterization of the genes involved in short-chain fatty acid degradation in *Escherichia coli*: the ato system. *J Bacteriol* 169, 42-52 (1987).

Jiang, W. et al., RNA-guided editing of bacterial genomes using CRISPR-Cas systems. *Nat Biotechnol* 31, 233-239 (2013).

Jiang, Y. et al. Multigene editing in the *Escherichia coli* genome via the CRISPR-Cas9 system. *Appl. Environ. Microbiol.* 81, 2506-2514 (2015).

Katoh, M. et al., "MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform," *Nucleic Acids Res.* 30:3059-3066 (2002).

Kittle et al., Insertion Sequence IS10 Anti-sense Pairing Initiates by an Interaction Between the 5' End of the Target RNA and a Loop in the Anti-sense RNA, *J Mol. Biol.* 210 (3):561-72 (1989).

Kohler, C. et al., Extracytoplasmic function (ECF) sigma factor σF is involved in Caulobacter crescentus response to heavy metal stress. *BMC Microbiol.* 12, 210 (2012).

Korz et al. "Simple fed-batch technique for high cell density cultivation of *Escherichia coli.*," *J. Biotechnol.* 39,59-65 (1995). Li, Y. et al. Metabolic engineering of *Escherichia coli* using CRISPR-Cas9 meditated genome editing. *Metab. Eng.* 31, 13-21 (2015).

Luterbacher, J. S. et al. Nonenzymatic Sugar Production from Biomass Using Biomass-Derived gamma-Valerolactone. *Science* (80-.). 343, 277-281 (2014).

Luterbacher, J. S. et al. Lignin monomer production integrated into the γ -valerolactone sugar platform. *Energy Environ. Sci.* 8, 2657-2663 (2015).

Man, W. J. et al., The Binding of Propionyl-Coa and Carboxymethyl-Coa to *Escherichia-coli* Citrate Synthase. *Biochim. Biophys. Acta* 1250, 69-75 (1995).

Martin, C. H. et al., High-titer production of monomeric hydroxyvalerates from levulinic acid in *Pseudomonas putida*. J. Biotechnol. 139, 61-67 (2009).

Martin, C. H. et al., Integrated bioprocessing for the pH-dependent production of 4-valerolactone from levulinate in pseudomonas putida KT2440. *Appl. Environ. Microbiol.* 76, 417-424 (2010).

Martínez-García, E. et al., pBAM1: an all-synthetic genetic tool for analysis and construction of complex bacterial phenotypes. *BMC Microbiol.* 11, 38 (2011).

Min, K. et al. Conversion of levulinic acid to 2-butanone by acetoacetate decarboxylase from Clostridium acetobutylicum. *Appl. Microbiol. Biotechnol.* 97, 5627-5634 (2013).

Mutalik et al., Rationally designed families of orthoganl RNA regulators of translation, *Nature Chem. Biol.* 447-454 (2012).

Neidhardt, F. C. et al., Culture medium for enterobacteria. J. Bacteriol. 119, 736-747 (1974).

Ng, F. S. W. et al., Characterization of a phosphotriesterase-like lactonase from Sulfolobus solfataricus and its immobilization for disruption of quorum sensing. *Appl. Environ. Microbiol.* 77, 1181-1186 (2011).

Notredame C. et al., "T-Coffee: A novel method for fast and accurate multiple sequence alignment," *J Mol Biol* 302(1):205-217 (Sep. 8, 2000).

Onakunle, O., et al., The formation and substrate specificity of bacterial lactonases capable of enantioselective resolution of racemic lactones. *Enzyme Microb. Technol.* 21, 245-251 (1997).

Pearson, J. P. et al., A second N-acylhomoserine lactone signal produced by Pseudomonas aeruginosa. *Proc. Natl. Acad. Sci. U. S. A.* 92, 1490-1494 (1995).

Pedelacq JD et al., Engineering and characterization of a superfolder green fluorescent protein, *Nat Biotechnol*. 24(1):79-88 (2006).

Pinto, F. L. et al., Analysis of current and alternative phenol based RNA extraction methodologies for cyanobacteria. *BMC Mol. Biol.* 10, 79 (2009).

Politz, M. C. Transcription Activator-Like Effectors as Tools for Prokaryotic Synthetic Biology. (University of Wisconsin-Madison, 2016).

Qi, L. S. et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. *Cell* 152, 1173-1183 (2013).

Quan, J. et al., Circular polymerase extension cloning for highthroughput cloning of complex and combinatorial DNA libraries, *J. Nat. Protoc.* 6, 242-251; (2011).

Riesenberg et al., "High cell density cultivation of *Escherichia coli* at controlled specific growth rate," *J. Biotechnol.* 20,17-27 (1991). Salis, H. M. M. et al., Automated design of synthetic ribosome binding sites to control protein expression. *Nat. Biotechnol.* 27, 946-50 (2009).

Schäfer, A. et al. Small mobilizable multi-purpose cloning vectors derived from the *Escherichia coli* plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. *Gene* 145, 69-73 (1994).

Schramm, G. et al., A simple and reliable 5' -RACE approach. *Nucleic Acids Res* 28, E96 (2000).

Serrano-Ruiz, J. C. et al., Catalytic Conversion of Renewable Biomass Resources to Fuels and Chemicals. *Annu. Rev. Chem. Biomol. Eng.* 1, 79-100 (2010).

Shetty et al., Engineering BioBrick vectors from BioBrick parts, J. Biol. Eng. 2, 5 (2008).

Striebel, F. et al. Bacterial ubiquitin-like modifier Pup is deamidated and conjugated to substrates by distinct but homologous enzymes. *Nat. Struct. Mol. Biol.* 16, 647-651 (2009).

Uroz, S. et al., Quorum sensing and quorum quenching: The Yin and Yang of bacterial communication. *ChemBioChem* 10, 205-216 (2009).

Valentin, H. E. et al., Identification of 5-hydroxyhexanoic acid, 4-hydroxyheptanoic acid and 4-hydroxyoctanoic acid as new constituents of bacterial polyhydroxyalkanoic acids. *Appl. Microbiol. Biotechnol.* 46, 261-267 (1996).

Wargo, M. J. et al., Identification of genes required for Pseudomonas aeruginosa carnitine catabolism. *Microbiology* 155, 2411-2419 (2009). Wetmore, K. M. M. et al. Rapid Quantification of Mutant Fitness in Diverse Bacteria by Sequencing Randomly Bar-Coded Transposons. *MBio* 6, 1-15 (2015).

Yamamoto, S. et al., . FliT acts as an anti-F1hD2C2 factor in the transcriptional control of the flagellar regulon in *Salmonella enterica* serovar typhimurium. *J. Bacteriol.* 188, 6703-8 (2006).

Yeon, Y. J. et al., Enzymatic reduction of levulinic acid by engineering the substrate specificity of 3-hydroxybutyrate dehydrogenase. *Bioresour. Technol.* 134, 377-380 (2013).

Yoneda, H. et al., Biological production of 2-butanone in *Escherichia* coli. ChemSusChem 7, 92-95 (2014).

Zhang, G. F. et al. Catabolism of 4-hydroxyacids and 4-hydroxynonenal via 4-hydroxy-4-phosphoacyl-CoAs. *J. Biol. Chem.* 284, 33521-33534 (2009).

U.S. Patent

Mar. 2, 2021

Sheet 1 of 19

FIG. 6B

FIG. 6D

FIG. 7B

FIG. 8

U.S. Patent

Mar. 2, 2021

U.S.

Patent

15

BIOCONVERSION OF LEVULINIC ACID IN GENETICALLY ENGINEERED HOSTS

CROSS-REFERENCE TO RELATED APPLICATIONS

Priority is hereby claimed to provisional application Ser. No. 62/560,247, filed Sep. 19, 2017, which is incorporated herein by reference.

FEDERAL FUNDING STATEMENT

This invention was made with government support under CBET1149678 awarded by the National Science Foundation. The government has certain rights in the invention.

BACKGROUND

Levulinic acid (LA) is a five carbon γ -keto acid that can be readily obtained from biomass through non-enzymatic, 20 acid hydrolysis of a wide range of feedstocks. LA was named one of the US Department of Energy's "Top 12 value-added chemicals from biomass" because it can be used as a renewable feedstock for generating a variety of molecules, such as fuel additives, flavors, fragrances and 25 polymers, through chemical catalysis. In addition, microbes can use LA as a sole carbon source and have been shown to convert LA into polyhydroxyalkanoates, short chain organic acids, and trehalose. (Chung, S. H., Choi, G. G., Kim, H. W. & Rhee, Y. H. Effect of Levulinic Acid on the Production of 30 Poly (3-hydroxybutyrate-co-3-hydroxyvalerate) by Ralstonia eutropha KHB-8862. Society 39, 79-82 (2001). Berezina, N. & Yada, B. Improvement of the poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) production by dual feeding with levulinic acid and sodium propionate in 35 Cupriavidus necator. N. Biotechnol. 33, 231-236 (2016). Valentin, H. E., Schonebaum, A. & Steinbüchel, A. Identification of 5-hydroxyhexanoic acid, 4-hydroxyheptanoic acid and 4-hydroxyoctanoic acid as new constituents of bacterial polyhydroxyalkanoic acids. Appl. Microbiol. Bio- 40 technol. 46, 261-267 (1996). Jang, J. H. & Rogers, P. L. Effect of levulinic acid on cell growth and poly-beta-hydroxyalkanoate production by Alcaligenes sp SH-69. J. Chem. Inf. Model. 18, 219-224 (1996). Habe, H. et al. Bacterial production of short-chain organic acids and treha- 45 lose from levulinic acid: A potential cellulose-derived building block as a feedstock for microbial production. Bioresour. Technol. 177, 381-386 (2015). Martin, C. H., Wu, D., Prather, K. L. J. & Jones Prather, K. L. Integrated bioprocessing for the pH-dependent production of 4-valerolactone 50 from levulinate in Pseudomonas putida KT2440. Appl. Environ. Microbiol. 76, 417-424 (2010). Yeon, Y. J., Park, H. Y. & Yoo, Y. J. Enzymatic reduction of levulinic acid by engineering the substrate specificity of 3-hydroxybutyrate dehydrogenase. Bioresour. Technol. 134, 377-380 (2013).) 55 All of these bioconversion studies were conducted with natural bacterial isolates because the enzymes comprising a LA assimilation pathway were unknown. See Habe et al., supra. This knowledge gap limits metabolic engineering and the potential of creating novel LA bioconversions.

While the enzymes responsible for LA assimilation were unknown at the time of these bioconversion demonstrations, other studies identified putative intermediates and suggested pathways for LA catabolism. In a study where crude cell lysates of Cupriavidus necator were fed LA, the concentra- 65 tion of LA and free CoA decreased over time while acetyl-CoA and propionyl-CoA concentrations increased, suggest2

ing that LA is catabolized via CoA thioesters like other short-chain organic acids. Jaremko, M. & Yu, J. The initial metabolic conversion of levulinic acid in Cupriavidus necator. J. Biotechnol. 155, 293-298 (2011). In a second study, cultures of Pseudomonas putida KT2440 expressing a heterologous TesB thioesterase were fed LA. Here, 4-hydroxyvalerate (4HV) and 3-hydroxyvalerate (3HV) transiently accumulated extracellularly before ultimately disappearing. Martin, C. H. & Prather, K. L. J. High-titer production of 10 monomeric hydroxyvalerates from levulinic acid in Pseudomonas putida. J. Biotechnol. 139, 61-67 (2009). This observation strongly suggested that 4HV and 3HV (or their CoA thioesters) were pathway intermediates. Lastly, a metabolomic study of rat livers suggested that LA is catabolized to acetyl-CoA and propionyl-CoA via a unique phosphorylated acyl-CoA. (Zhang, G. F. et al. Catabolism of 4-hydroxyacids and 4-hydroxynonenal via 4-hydroxy-4phosphoacyl-CoAs. J. Biol. Chem. 284, 33521-33534 (2009) and Harris, S. R. et al. Metabolism of levulinate in perfused rat livers and live rats: Conversion to the drug of abuse 4-hydroxypentanoate. J. Biol. Chem. 286, 5895-5904 (2011).) In sum, these observations suggest a relatively direct route from LA to beta-oxidation intermediates, but the enzymes comprising such a pathway remain unknown.

SUMMARY

To utilize LA as a substrate for microbial growth or bioconversion, a detailed understanding of the metabolic pathway and enzymes involved is necessary. As disclosed herein, the genetic and biochemical factors that allow P. putida KT2440 to catabolize LA were elucidated. Using a loss of function screen of a transposon library, a putative LA utilization operon was identified, isolated, incorporated into an unnatural expression vector. The expression vector was used to transform heterologous hosts which the expressed the genes necessary for the transformed hosts to utilize LA as a carbon source. The operon consists of seven genes: two homologs for membrane transporters and five enzymatic proteins. The pathway was reconstituted in vitro. It was determined that all five enzymatic proteins are required for complete conversion of LA into 3HV-CoA, an intermediate in the β-oxidation of odd-chain fatty acids. A closer inspection of the CoA ligase encoded in the operon revealed a broad substrate promiscuity including C4 to C6 organic acids. A putative regulator proximal to the operon activated transcription of the LA catabolic genes in the presence of LA or 4HV. The induction tests revealed that while the CoA ligase might have nonspecific activity towards similar chain length acids, the promoter is only responsive when cells were provided LA or 4HV. The catabolism of LA to acetyl-CoA and propionyl-CoA requires at least 2 ATP that likely come from respiration and the tricarboxylic acid cycle.

Thus, a first version of the invention is a recombinant expression vector comprising at least one promoter operably linked to at least three of, at least four of, or all five of lvaA, lvaB, lvaC, lvaD, and lvaE. The promoter may be inducible or constitutively active. The expression vector may optionally comprise a nucleotide sequence encoding an 60 acetoacetyl-CoA transferase, a short-chain thioesterase and/ or a succinyl-CoA transferase, operably linked to a promoter. The recombinant expression vector might also optionally comprise a nucleotide sequence encoding an acetoacetate decarboxylase operably linked to a promoter. The recombinant expression may optionally further comprise a nucleotide sequence encoding FadB and/or FadJ, operably linked to a promoter.

Also disclosed herein is a genetically modified host cell transformed to contain and express a heterologous recombinant expression vector as described herein. The genetically modified host cell may optionally be FadE negative and/or atoC negative. Optionally, the genetically modified 5 host cell may also be fadA, fadI or atoB negative. Optionally, the genetically modified host cell may also be FadR negative. In another version of the modified host, the host cell may optionally comprise an increased copy number of nucleotide sequences encoding FadB and/or FadJ as com- 10 pared to the wild-type of the host cell.

The host cell may be selected from the group consisting of an archaeal cell, a bacterial cell, and a eukaryotic cell. Bacteria and eukaryotic single-cell organisms are preferred host cells. In some instances, the host cell may endog-15 enously encode activities catalyzed by LvaAB, LvaC, LvaD, and/or LvaE in its genome. In these instances, the invention may rely on natively encoded activities rather than heterologous activities conferred by the vector expressing lvaA, lvaB, lvaC, lvaD, and lvaE. 20

The genetically modified host cell may optionally constitutively expresses acetoacetyl-CoA transferase.

Also disclosed herein is a method of catabolizing levulinic acid. That is, a method of enabling a host cell to use levulinic acid as a carbon source. The method comprises 25 culturing a genetically modified host cell as disclosed herein in a medium containing levulinic acid, under conditions and for a time wherein at least a portion of the levulinic acid is catabolized by action of the genetically modified host cell.

Yet another method disclosed herein is a method of 30 making 2-butanone. The method comprises culturing a genetically modified host cell as disclosed herein, in a medium containing levulinic acid, under conditions and for a time wherein at least a portion of the levulinic acid is catabolized by action of the host cell into 2-butanone. 35

Also disclosed herein is a method of inducing a host cell to make 2-butanone from levulinic acid. The method comprises introducing into the host cell a heterologous operon encoding genes whose encoded proteins enable the host cell to catabolize levulinic acid into 3-hydroxyvaleryl-CoA 40 (3HV-CoA); upregulating expression of 3-hydroxyacyl-CoA dehydrogenase in the host cell to drive oxidation of at least a portion of 3HV-CoA to 3-ketovaleryl-CoA (3 KV-CoA); and wherein the host cell expresses a nucleotide sequence encoding acetoacetyl-CoA transferase (atoDA) to 45 drive conversion of at least a portion of the 3 KV-CoA into 3-ketovalerate; and also wherein the host cell expresses a nucleotide sequence encoding acetoacetate decarboxylase (adc) to drive conversion of at least a portion of the 2-ketovalerate into butanone. Optionally, the host cell is 50 acetyl-CoA synthetase (Acs)-negative, phosphotransacetylase (Pta)-negative, and/or acetate kinase (Ack)-negative.

The heterologous genes described herein for catabolizing LA and producing 2-butanone may be introduced into the host cell on a single vector containing all the necessary 55 genes and promoters. Alternatively, the heterologous genes may be introduced into the host cell on several separate vectors and under the control of separate promoters. Thus, also disclosed herein is a combination of recombinant expression vectors, the combination comprising one or more 60 expression vectors, each vector having one or more promoters operably linked to one or more genes selected from the group consisting of lvaA, lvaB, lvaC, lvaD, and lvaE. The combination may optionally include a nucleotide sequence encoding an acetoacetyl-CoA transferase, a short-chain thio-65 esterase, and/or a succinyl-CoA transferase, operably linked to a promoter. These gene(s) and promoter(s) may be found

4

in at least one of the vectors along with one or more of the other genes, or may be present in one or more additional vectors. Optionally, at least one of the vectors, or an additional vector, comprises a nucleotide sequence encoding an acetoacetate decarboxylase and which is operably linked to a promoter. Also optionally, at least one of the vectors, or one or more additional vectors, comprises a nucleotide sequence encoding FadB and/or FadJ, both of which nucleotide sequences are operably linked to one or more corresponding promoters.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 depicts *P. putida* lva operon genetic characterization. Panel A: Organization of the lvaRABCDEFG (9,323 bp) operon. Panel B: Reverse Transcriptase (RT) PCR demonstrates that each gene is expressed in cells grown on LA. Samples were compared with the negative control (-RT) where reverse transcriptase was omitted from the reaction. Panel C: RT-PCR of cDNA created with primer JMR237 demonstrates that the operon is polycistronic. Note that a product spanning each intergenic region was observed. Panel D: The transcription start sites (TSS) of regulator lvaR and lvaA were identified by 5'-RACE. Underlined sequence indicates ATG start codon. Triangle highlights experimentally determined TSS. Boxed sequence indicates previously annotated translation start site for lvaA.

FIG. **2**A is schematic of transcriptional GFP fusion used to test induction of the lva operon. lvaR was cloned onto a plasmid containing its native constitutive promoter and the native promoter region for lvaA. The fluorescent protein sfGFP was cloned in place of lvaA.

FIG. 2B depicts the results of a lva operon induction 35 assay. GFP fluorescence was measured from LB-cultures supplemented with various organic acids (20 mM) (n=3). Error bars represent standard deviation.

FIG. **3** depicts the proposed pathway for LA metabolism. LA, levulinic acid; 4HV, 4-hydroxyvalerate; 3HV, 3-hydroxyvalerate; LA-CoA, levulinyl-CoA; 4HV-CoA, 4-hydroxyvaleryl-CoA; CoA, coenzyme-A; ATP, adenosine triphosphate; 4PV-CoA, 4-phosphovaleryl-CoA; 3 KV-CoA, 3-ketovaleryl-CoA; NAD(P)H, Nicotinamide adenine dinucleotide (phosphate) reduced.

FIG. **4**A is a schematic of CoA-ligase activity assay. Using the Enzchek®-brand Pyrophosphatase Assay kit, the amount of pyrophosphate released during the CoA ligase reaction was measured as an increase of absorbance at 360 nm.

FIG. **4**B depicts the results of the LvaE CoA-Ligase activity towards a variety of short and medium chain acids (n=3). Baseline subtraction was performed on all samples with a control reaction containing no substrate, indicated by Δ absorbance. Error bars represent standard deviation.

FIG. **5**A and FIG. **5**B depict CoA species abundance in LC/MS analysis of in vitro enzyme combinations. FIG. **5**A is a histogram depicting the abundance of CoA species created after 30 min of incubating LA, ATP, NAD(P)H with varying enzyme combinations (n=3). ABDE-C indicates that the LvaABDE reaction was performed first, metabolites were separated from LvaABDE, and the resulting solutions were supplemented with LvaC solely. The reaction confirms that LvaC is capable of converting 4PV-CoA to 3HV-CoA. FIG. **5**B is a plot depicting the abundance of CoA species over a 60 minute time course for a mixture of LvaABCDE, LA, ATP, and NAD(P)H (n=3). Error bars represent standard deviation.

FIGS. 6A, 6B, 6C, and 6D are comparisons of 4HV-CoA and 4PV-CoA MS/MS spectra. FIG. 6A: MS/MS spectra for 4HV-CoA. FIG. 6B: Assignment of selected fragments from 4HV-CoA. FIG. 6C: MS/MS spectra for 4PV-CoA. FIG. 6D: Assignments of selected fragments from 4PV-CoA. The 5 masses between the selected fragments of 4PV-CoA and 4HV-CoA differ by the mass of PO_3H^- (79.967), indicating 4PV-CoA contains a phosphate group not found in 4HV-COA. Bold values indicate the mass of the parent ion. Peaks identified with the symbol (*) are fragments resulting from 10 lvaB coenzyme A.

FIG. 7A is a representation of lva operon enzymatic genes. FIG. 7B is a comparison of LA degradation gene clusters found in other organisms.

FIG. 8 is a graph showing E. coli MG1655 growth with 15 propionate using minimal media supplemented with propionate or propionate and acetate.

FIG. 9 is a growth curve of LS5218 strains on LA.

FIG. 10 depicts the production pathway for 2-butanone.

FIG. 11 is a histogram showing Acetone and butanone 20 production from eMEK1 containing lvaABCDE and adc. Media consists of LB supplemented with LA, acetate or LA and acetate. (n=1).

FIG. 12 shows the optimized 2-butanone production with competing thiolase pathways deleted (strain eMEK4).

FIG. 13A shows acetone and butanone production from eMEK4 containing lvaABCDE and adc. FIG. 13B shows butanone yield from LA consumed. Media consisted of LB supplemented with acetate or LA and acetate.

FIG. 14 depicts growth coupling of acetate utilization and 30 MEK production.

FIGS. 15A, 15B, 15C, and 15D depict predicted phase planes from metabolic modeling for MEK production. FIG. 15A shows growth on LA. FIG. 15B shows growth on LA and acedate. FIG. 15C shows growth on LA for Δ atoB, and 35 FIG. 15D shows growth of $\Delta acs \Delta ackApta$ on LA and acetate.

FIG. 16 depicts the proposed pathway for GVL degradation through ring opening via lactonase activity. 4HV, 4-hydroxyvalerate; GVL, y-valerolactone.

OPERON SEQUENCES

1vaA nt:

atgagcagttcaccaacgatttcccccggccagcgatacgttcgcggccat gactgacgatcaccgcctggccgagttcatccgcgagcaggcctcggcaa cgcgggtggtcatccaggcgcgcaagcgcctgagcggcggcgctatccag gaaaactggctgctggacctgctgatcgaaggcggcccgtgggccggtgt ccggcgttgggtactgcgcagcgatgcgctttcagcgctacccgccagcc ttgaccgtgaacaggagttcgccgtgctgcaggtggtttaccaggccggc gtgaaagtgccacgcccgctctggctgtgccgcgatgtgcgcgtgcatgg gcgggtgttcttcctgatggagtatgtgccgggtagcgctgccggcgg cgctcagcaccggcgccggtcctcagggccgggcgcaactggcgacgcag gctgtgcttcctgtccgttccggacagctcgccggccctggcgaccatcg acgectaccgccgctacctcgacaccctcgccgatgcctatccggtgctg gaatggggcctgcgctggtgcgagctgcatgcgccgcgcagcagcaccct gtgcctgttgcaccgtgactaccgcaccggcaactacctggccagcgaag aagggctggaggccgtgctcgactgggagttcaccggctggggagatccttgcgaggacctcggctggttcaccgcccgttgctggcgttttacccgtcc agacctcgaagccggcggcattggccagctggaggattttctgcgtggtt atcacgaggtgtcttcgctgtgcatcgagcgcagtcggctccactactgg caagtcatggccaccctgcgctgggcggtgattgccttgcagcaagggca gcgccatctgtccggtgaagaaccgtcgctcgagctagcactgacagccc ggetgttgeeggagetegaactegacateetgeacatgaeeggageegaa gcgccatga (SEQ. ID. NO: 1)

aa:

MSSSPTISPASDTFAAMTDDHRLAEFIREQASATRVVIQARKRLSGGAIQ ENWLLDLLIEGGPWAGVRRWVLRSDALSALPASLDREQEFAVLQVVYQAG

-continued

OPERON SEQUENCES

VKVPRPLWLCRDVRVHGRVFFLMEYVPGSAAGRALSTGAGPOGRAOLATO LGANLARLHOVRPPCATLCFLSVPDSSPALATIDAYRRYLDTLADAYPVL EWGLRWCELHAPRSSTLCLLHRDYRTGNYLASEEGLEAVLDWEFTGWGDP CEDLGWFTARCWRFTRPDLEAGGIGQLEDFLRGYHEVSSLCIERSRLHYW QVMATLRWAVIALQQGQRHLSGEEPSLELALTARLLPELELDILHMTGAE AP* (SEQ. ID. NO: 2)

nt :

atgacccaacccaacgcccacgaattgctcgagatcgcccgcgcgacgca ctggagcagctgctgccagcgctgcccggcgagagcgttacccggccctg atgategecaacgecatggecattgeggecegegaaaacegeagggeget caggccgaggatcaggagcaggcgcgtctggccgccaggtcgatgacgcg ccgtcgacattgcccgacctgcgccgccaactggctcgcgccaacgccag ggcagccatgacgccccgcaaacccggcgcaccctggtcgagacattacg ccagatcaccgagcccgattggcgatcagcaaccccaaggccttgccctg a (SEQ. ID. NO: 3)

aa :

 ${\tt MTQPNAHELLEIARATLLEQLLPALPGELRYPALMIANAMAIAARENRLG}$ AQAEDQEQARLAALVDDAPSTLPDLRRQLARAIRQGSHDAPQTRRTLVET LRQITVARLAISNPKALP* (SEQ. ID. NO: 4)

lvaC

nt :

25

atqaacttcactctcccqqacqaactqctcqccaqcaqqccaaqactcqa gacttcattgccgaacaggtcatcccattcgagaacgacccccgccagaa caqccacqqccccaqcqacqcactqcqccaqqacctqqtqctctqcqccc gcgccgctggcttgctgacgcctcacgccagccgcgaaatgggcggtctg gaactgagccatgtggccaaggcgatcgtcacgaagaagccggctactcg ccgctgggcccggtagcgctgaatatccatgcgccggacgaaggcaatat ccacctgatggacgtggtcgccaccgaagcgcagaaggaccgctggagcg $\verb+cccgctggtccagggccatgcccgacgtgcttcgccatgacggagcctgc+$ ${\tt tccgggctccggacggatccgtcgatgctgcgcaccactgccacccgcga$ ${\tt tggcgacgactacctgatcaatggtcgcaagtggctgatcaccggggccg}$ aaggcgcggacttcggcatcatcatggcgcgcatggaggacggcaccgcgaccatgacctgaccgacatgaagcgcgacggcatcatccatgaacgtcag ${\tt ctggactcgctggacagctgattaccggcggtcacgggcagctgcgatcg}$ $a \verb|caacctgcgtattccggcgagcgatgtcctcggcgagatcggcaagggc$ accggtatgcccaggtgcgcctggcgcctgcacgcttgactcattgcatgcgctggctcggtgccgcgcgcgcgccacgacatcgcctgcgactatgc gcgcacccgggacgccatggcaagccgctgggcgagcaccagggcgtggg atcatgctggccgacaacatgatggacctgcacgtggtgcgtctggcggt ctggcactgcgcctgggtgctcgaccagggccggcgcgccaatgtcgatt cgagcatggccaaggtgatcagcgccgaggcgctgtggcgggtggtcgatcgagcgtccaggtattgggtggacgcgggggtgaccgggggacaccgtggtg gageggateacegegaeattegeeegaeegeatetatgaeggeeegageg aagtgcaccgcatgagcctggcgaagaagctgctcgaccagcgcctggag gcccactga (SEQ. ID. NO: 5)

45

40

MNFTLPDELLALQAKTRDFIAEQVIPFENDPRQNSHGPSDALRQDLVLCA RAAGLLTPHASREMGGLELSHVAKAIVFEEAGYSPLGPVALNIHAPDEGN IHLMDVVATEAQKDRWLRPLVQGHARSCFAMTEPAPGSGSDPSMLRTTAT RDGDDYLINGRKWLITGAEGADFGIIMARMEDGTATMFLTDMKRDGIIHE RQLDSLDSCFTGGHGQLRFDNLRIPASDVLGEIGKGFRYAQVRLAPARLT HCMRWLGAARRAHDIACDYARTRDAFGKPLGEHQGVGFMLADNMMDLHVV RLAVWHCAWVLDQGRRANVDSSMAKVISAEALWRVVDRCVQVLGGRGVTGDTVVERIFRDIRPFRIYDGPSEVHRMSLAKKLLDQRLEAH* (SEQ. ID. NO: 6)

lvaD

nt:

- atgcagccgaaccttgcccgactgttcgccctcgacgggcgtcgcgccct 55 ggtgaccggggcctccagcggcctgggccgtcacttcgccatgaccctgg ccgccgcaggcgccgaggtggtggtgaccgccagacgccaggcgccgctg caggcgttggtggaggccatcgaggtggccggagggcggggcgcaggcctt tgccctcgatgtgacgagccgtgaggacatctgccgggtgctcgatgccg ccggcccgctggatgttctggtcaacaatgcgggggtgagcgacagccag 60 $\tt cctttgctagcctgcgatgatcaaacctgggaccacgtgctcgacaccaa$ cctcaagggcgcctgggccgtggcccaggaaagcgcccggcgcatggtgg tggcggggaagggggggggcagcctgatcaatgtcacctcgatcctcgccagc $\verb|ccacctgacccgcgccatggcgctggagttggcgcgccatggtatccggg||$ tgaacgccctggcgcccggctacgtgatgactgatttgaacgaggccttc 65
 - ctggccagcgaggccggtgacaagttgcgctcgcggatccccagccgccg cttcagcgtgccgtcggacctggacggcgccttgctgctgctcgccagcg

10

40

45

55

-continued

OPERON SEQUENCES

atgccqqqcqqcqatqaqcqqcqctqaqatcqtqqtcqatqqcqqccac ctgtgcagcagcctgtaa (SEQ. ID. NO: 7)

 ${\tt MQPNLARLFALDGRRALVTGASSGLGRHFAMTLAAAGAEVVVTARRQAPL}$ QALVEAIEVAGGRAQAFALDVTSREDICRVLDAAGPLDVLVNNAGVSDSQ PLLACDDQTWDHVLDTNLKGAWAVAQESARRMVVAGKGGSLINVTSILAS RVAGAVGPYLAAKAGLAHLTRAMALELARHGIRVNALAPGYVMTDLNEAF LASEAGDKLRSRIPSRRFSVPSDLDGALLLLASDAGRAMSGAEIVVDGGH LCSSL* (SEO. ID. NO: 8)

lvaE

nt: atgatggttccaaccctcgaacacgagcttgctcccaacgaagccaacca tgtcccgctgtcgccgctgtcgttcctcaagcgtgccgcgcaggtgtacc cgcagcgcgatgcggtgatctatggcgcaaggcgctacagctaccgtcag ttgcacgagcgcagccgcgccctggccagtgccttggagcgggtcggtgt tcagccgggcgagcgggtggcgatattggcgccgaacatcccggaaatgc tcgaggcccactatggcgtgcccggtgccggggcggtgctggtgtgcatc aacatccqcctqqaqqqqqqqqaqattqccttcatcctqcqtcactqcqc ggccaaggtattgatctgcgatcgtgagttcggtgccgtggccaatcagg cgctggccatgctcgatgcgccgcccttgctggtgggcatcgacgatgat caqqccqaqcqcqccqatttqqcccacqacctqqactacqaaqcqttctt ggcccagggcgaccccgcgcggccgttgagtgcgccacagaacgaatggc agtegategecateaactacaceteeggeaceaegggggaceeeaaggge qtqqtqctqcatcaccqcqqcqcctacctcaacqcctqcqccqqqqcqct gatettecagttggggccgcgcgcgcgtctacttgtggacettgccgatgt tccactqcaacqqctqqaqccatacctqqqcqqtqacqttqtccqqtqqc acccacgtgtgtctgcgcaaggtccagcctgatgcgatcaacgccgccatcgccgagcatgccgtgactcacctgagcgccgccccagtggtgatgtcga tgctgatccacgccgagcatgccagcgcccctccggtgccggtttcggtg atcactggcggtgccgccccgcccagtgcggtcatcgcggcgatggaggc gcgtggcttcaacatcacccatgcctatggcatgaccgaaagctacggtc $\verb|ccagcacattgtgcctgtggcagccgggtgtcgacgagttgccgctggag||$ gcccgggcccagttcatgagccgccagggcgtcgcccacccgctgctcga ggaggccacggtgctggataccgacaccggccgcccggtcccggccgacg gccttaccctcggcgagctggtggtgcggggcaacactgtgatgaaaggc gcacacgggcgacctggccgtgctgcacctggacggctatgtggaaatcaaggaccgagccaaggacatcatcatttctggcggcgagaacatcagttcg ctggagatagaagaagtgctctaccagcaccccgaggtggtcgaggctgc ggtggtggcgcgtccggattcgcgctggggcgagacacctcacgctttcg tcacgctgcgcgctgatgcactggccagcggggacgacctggtccgctgg tgccgtgagcgtctggcgcacttcaaggcgccgcgccatgtgtcgctcgt ggacctgcccaagaccgccactggaaaaatacagaagttcgtcctgcgtg agtgggcccggcaacaggaggcgcagatcgccgacgccgagcattga (SEQ. ID. NO: 9)

MMVPTLEHELAPNEANHVPLSPLSFLKRAAQVYPQRDAVIYGARRYSYRQ LHERSRALASALERVGVQPGERVAI LAPNI PEMLEAHYGVPGAGAVLVCI NIRLEGRSIAFILRHCAAKVLICDREFGAVANQALAMLDAPPLLVGIDDD QAERADLAHDLDYEAFLAQGDPARPLSAPQNEWQSIAINYTSGTTGDPKG VVLHHRGAYLNACAGALIFQLGPRSVYLWTLPMFHCNGWSHTWAVTLSGG THVCLRKVOPDAINAAIAEHAVTHLSAAPVVMSMLIHAEHASAPPVPVSV ITGGAAPPSAVIAAMEARGFNITHAYGMTESYGPSTLCLWQPGVDELPLE ARAOFMSROGVAHPLLEEATVLDTDTGRPVPADGLTLGELVVRGNTVMKG YLHNPEATRAALANGWLHTGDLAVLHLDGYVEIKDRAKDIIISGGENISS LEIEEVLYQHPEVVEAAVVARPDSRWGETPHAFVTLRADALASGDDLVRW CRERLAHFKAPRHVSLVDLPKTATGKIQKFVLREWARQQEAQIADAEH* (SEO. ID. NO: 10)

DETAILED DESCRIPTION

Abbreviations and Definitions

ATP=adenosine triphosphate. CoA=coenzyme-A. 60 3HV=3-hydroxyvalerate. 4HV=4-hydroxyvalerate. 4HV-CoA=4-hydroxyvaleryl-CoA. 3 KV-CoA=3-ketovaleryl-CoA. LA=levulinic acid. LA-CoA=levulinyl-CoA. MOPS=3-(N-morpholino)propanesulfonic acid. NAD(P) H=Nicotinamide adenine dinucleotide (phosphate) reduced. 65 4PV-CoA=4-phosphovaleryl-CoA. 5'-RACE=Rapid Amplification of cDNA Ends. sfGFP=super-folder green fluores-

cent protein (see Pédelacq J D, Cabantous S, Tran T, Terwilliger T C, Waldo G S, Nat Biotechnol. 2006 January; 24(1):79-88). TSS=transcription start site.

The terms "polynucleotide" and "nucleic acid," used interchangeably herein, refer to a polymeric form of nucleotides of any length, either ribonucleotides or deoxyribonucleotides. Thus, this term includes, but is not limited to, single-, double-, or multi-stranded DNA or RNA, genomic DNA, cDNA, DNA-RNA hybrids, or a polymer comprising

- purine and pyrimidine bases or other natural, chemically or biochemically modified, non-natural, or derivatized nucleotide bases. "Oligonucleotide" generally refers to polynucleotides of between about 5 and about 100 nucleotides of
- single- or double-stranded DNA. However, for the purposes of this disclosure, there is no upper limit to the length of an oligonucleotide. Oligonucleotides are also known as "oligomers" or "oligos" and may be isolated from genes, or chemically synthesized by methods known in the art. The terms "polynucleotide" and "nucleic acid" should be understood to include, as applicable to the embodiments being described, single-stranded (such as sense or antisense) and double-stranded polynucleotides.

A DNA sequence that "encodes" a particular RNA is a ²⁵ DNA nucleic acid sequence that is transcribed into RNA. A DNA polynucleotide may encode an RNA (mRNA) that is translated into protein, or a DNA polynucleotide may encode an RNA that is not translated into protein (also called "non-coding" RNA or "ncRNA"; e.g. tRNA, rRNA, a 30 ribozyme, etc.).

A "protein coding sequence" or "coding region" is a sequence that encodes a particular protein or polypeptide. A "protein coding sequence" or "coding region" is a nucleic acid sequence that is transcribed into mRNA (in the case of 35 DNA) and is translated (in the case of mRNA) into a polypeptide in vitro or in vivo when placed under the control of appropriate regulatory sequences. The boundaries of the coding sequence are determined by a start codon at the 5' terminus (N-terminus) and a translation stop nonsense codon at the 3' terminus (C-terminus). A coding sequence can include, but is not limited to, cDNA from prokaryotic, viral, or eukaryotic mRNA, genomic DNA sequences from prokaryotic, viral, or eukaryotic DNA, and synthetic nucleic acids. A transcription termination sequence will usually be located 3' to the coding region.

The terms "peptide," "polypeptide," and "protein" are used interchangeably herein, and refer to a polymeric form of amino acids of any length, which can include coded and 50 non-coded amino acids, chemically or biochemically modified or derivatized amino acids, and polypeptides having modified peptide backbones.

The term "conservative amino acid substitution" refers to the interchangeability in proteins of amino acid residues having similar side chains. For example, a group of amino acids having aliphatic side chains consists of glycine, alanine, valine, leucine, and isoleucine; a group of amino acids having aliphatic-hydroxyl side chains consists of serine and threonine; a group of amino acids having amide containing side chains consisting of asparagine and glutamine; a group of amino acids having aromatic side chains consists of phenylalanine, tyrosine, and tryptophan; a group of amino acids having basic side chains consists of lysine, arginine, and histidine; a group of amino acids having acidic side chains consists of glutamate and aspartate; and a group of amino acids having sulfur containing side chains consists of cysteine and methionine. Exemplary conservative amino

acid substitution groups are: valine-leucine-isoleucine, phenylalanine-tyrosine, lysine-arginine, alanine-valine, and asparagine-glutamine.

A polynucleotide or polypeptide has a certain percent "sequence identity" to another polynucleotide or polypeptide, meaning that, when aligned, that percentage of bases or amino acids are the same, and in the same relative position, when comparing the two sequences. Sequence identity can be determined in a number of different manners. To determine sequence identity, sequences can be aligned using 10 various methods and computer programs (e.g., BLAST, T-COFFEE, MUSCLE, MAFFT, etc.), all of which are well known in the art. "BLAST"=Basic Local Alignment Search Tool; available online from the U.S. National Library of Medicine see Altschul, Gish, Miller, Myers, and Lipman, 15 (1990) "Basic local alignment search tool," Journal of Molecular Biology. 215(3):403-410. "T-COFFEE"=Treebased Consistency Objective Function for Alignment Evaluation; see Notredame C, Higgins D G, Heringa J (2000 Sep. 8) "T-Coffee: A novel method for fast and accurate multiple 20 sequence alignment," J Mol Biol 302(1):205-217; available online at http://tcoffee.org/. "MUSCLE"=Multiple Sequence Comparison by Log-Expectation; available online from the European Bioinformatics Institute (EMBL-EBI) see Edgar, R C (2004) "MUSCLE: a multiple sequence alignment 25 method with reduced time and space complexity," BMC Bioinformatics, 5:113. "MAFFT"=Multiple Alignment using Fast Fourier Transform; available online see Katoh, Misawa, Kuma, Miyata (2002) "MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier 30 transform," Nucleic Acids Res. 30:3059-3066.

The term "binding", as used herein refers to a noncovalent interaction between macromolecules (e.g., between a protein and a nucleic acid). While in a state of noncovalent interaction, the macromolecules are said to be 35 "associated" or "interacting" or "binding" (e.g., when a molecule X is said to interact with a molecule Y, it is meant the molecule X binds to molecule Y in a non-covalent manner). Not all components of a binding interaction need be sequence-specific (e.g., contacts with phosphate residues 40 in a DNA backbone), but some portions of a binding interaction may be sequence-specific.

Binding interactions are generally characterized by a dissociation constant (Kd) of less than 10^{-6} M, less than 10^{-7} M, less than 10^{-8} M, less than 10^{-9} M, less than 10^{-10} M, 45 less than 10^{-11} M, less than 10^{-12} M, less than 10^{-13} M, less than 10^{-14} M, or less than 10^{-15} M. "Affinity" refers to the strength of binding, increased binding affinity being correlated with a lower Kd.

A "promoter sequence" is a DNA regulatory region 50 capable of binding RNA polymerase and initiating transcription of a downstream (3' direction) coding or non-coding sequence. For purposes of defining the present disclosure, the promoter sequence is bounded at its 3' terminus by the transcription initiation site and extends upstream (5' direc- 55 tion) to include the minimum number of bases or elements necessary to initiate transcription at levels detectable above background. Within the promoter sequence will be found a transcription initiation site, as well as protein binding domains responsible for the binding of RNA polymerase. 60 Eukaryotic promoters will often, but not always, contain "TATA" boxes and "CAT" boxes. Various prokaryotic and eukaryotic promoters, including inducible promoters, may be used in the various recombinant expression vectors of the present disclosure. The promoter may be a constitutively 65 active promoter, i.e. a promoter that is active in the absence externally applied agents, or it may be an inducible promoter

(e.g., T7 RNA polymerase promoter, T3 RNA polymerase promoter, Isopropyl-beta-D-thiogalactopyranoside (IPTG)-regulated promoter, heat shock promoter, anhydro tetracycline-regulated promoter, arabinose-inducible promoter, CRISPRi-regulated promoter, TAL-Effector-regulated promoter, phosphate-starvation-regulated promoter, steroidregulated promoter, metal-regulated promoter, methionineinducible promoter; a galactose-inducible promoter, and the like). As used herein, an inducible promoter is a promoter whose activity is regulated upon the application of an agent to the cell, (e.g. doxycycline) or the induced presence of a particular RNA polymerase (e.g., T7 RNA polymerase).

Agents that induce any given inducible promoter are known in art. For example, tetracycline-regulatable promoters can be regulated by tetracycline or doxycycline; carbohydrates can be used to induce a carbohydrate-inducible promoter (e.g., galactose for a galactose-inducible promoter); methionine can be used to induce a methionineinducible promoter; metals can be used to induce a metallothionein promoter, etc.).

The terms "control element," and "regulatory element," used interchangeably herein, refer to transcriptional, translational, and degradation control sequences that are transcribed as part of the RNA molecule whose activity that they regulate. Such regulatory elements can control a wide variety of processes (activities) including but not limited to transcription (e.g., initiation, elongation, and/or termination), translation (initiation, elongation, and/or termination), RNA stability, etc. Regulatory elements include but are not limited to recognition sequences for antisense RNAs, leader sequences, riboswitches, a 5' methyl cap, a 3' poly-A tail, sequences recognized by ribozymes, sequences recognized by ribosomes (e.g., a ribosome binding site (RBS), e.g., Shine-Delgarno Sequence), self-cleaving ribozymes, leadersequences, sequences bound by RNA binding proteins, sequences targeted by a guide-strand-bound RISC complex, etc.

Some regulatory elements are operably linked to a promoter, but reciprocally regulate transcription (e.g., via early termination of RNA polymerase elongation) such that the promoter affects transcription of the regulatory element and the regulatory element also affects transcription of its own transcript. Some regulatory elements (e.g., IS10 wt, IS10-9, and others known in the art: the RNA-IN/OUT translation control system) can function as part of an antisense RNAmediated translation control system (Mutalik et al. Nature Chem. Biol. 2012 (8) May: 447-454; Kittle et al. J Mol. Biol. 1989 Dec. 5; 210 (3):561-72: Insertion sequence IS10 antisense pairing initiates by an interaction between the 5' end of the target RNA and a loop in the anti-sense RNA). Other exemplary regulatory elements that find use in the expression vectors, compositions, methods, and kits of this disclosure include but are not limited to PT181 wt and its orthologs, IS10 wt and its orthologs, Bujard RBS, B0030 RBS, Weiss RBS, Anderson RBS, lacZp1 UTR, serB UTR, chiAUTR, lacYUTR, sodAUTR, ompRp3UTR, trpRUTR, glpAUTR, rhoLUTR, CRISPRIUTR, fixAUTR, lldPUTR, and the like.

The term "naturally-occurring" or "unmodified" as used herein as applied to a nucleic acid, a polypeptide, a cell, or an organism that is found in nature.

"Recombinant" means that a particular nucleic acid (DNA or RNA) is the product of various combinations of cloning, restriction, polymerase chain reaction (PCR) and/or ligation steps resulting in a construct having a structural coding or non-coding sequence distinguishable from endogenous nucleic acids found in natural systems. DNA sequences encoding polypeptides can be assembled from cDNA fragments or from a series of synthetic oligonucleotides, to provide a synthetic nucleic acid which is capable of being expressed from a recombinant transcriptional unit contained in a cell or in a cell-free transcription and translation system. 5 Genomic DNA comprising the relevant sequences can also be used in the formation of a recombinant gene or transcriptional unit. Sequences of non-translated DNA may be present 5' or 3' from the open reading frame and may indeed act to modulate production of a desired product by various 10 mechanisms (see "regulatory element", above). Alternatively, DNA sequences encoding RNA that is not translated may also be considered recombinant. Thus, e.g., the term "recombinant" polynucleotide or "recombinant" nucleic acid refers to one which is not naturally occurring, e.g., is 15 made by the artificial combination of two otherwise separated segments of sequence through human intervention. This artificial combination is often accomplished by either chemical synthesis means, or by the artificial manipulation of isolated segments of nucleic acids, e.g., by genetic 20 engineering techniques. Such is usually done to replace a codon with a codon encoding the same amino acid, a conservative amino acid, or a non-conservative amino acid. Alternatively, it is performed to join together nucleic acid segments of desired functions to generate a desired combi- 25 nation of functions. This artificial combination is often accomplished by either chemical synthesis means, or by the artificial manipulation of isolated segments of nucleic acids, e.g., by genetic engineering techniques.

Similarly, the term "recombinant" polypeptide refers to a 30 polypeptide which is not naturally occurring, e.g., is made by the artificial combination of two otherwise separated segments of amino sequence through human intervention.

A "vector" or "expression vector" is a replicon, such as plasmid, phage, virus, or cosmid, to which another DNA 35 segment (an "insert") may be attached so as to bring about the replication of the attached segment in a cell. An "expression cassette" comprises a DNA coding sequence operably linked to a promoter.

The term "operably linked" refers to a physical juxtapo-40 sition of nucleic acids in a polynucleotide wherein the components so described are in a relationship permitting them to function in their intended manner. For instance, a coding sequence is operably linked to a promoter (or the promoter can be said to be operably linked to the coding 45 sequence) if the promoter affects the transcription or expression of the coding sequence. If a regulatory element is transcribed and the promoter affects the transcription of the regulatory element. Nucleotides that are operably linked to an often are not) directly linked to each other.

The terms "recombinant expression vector," or "DNA construct" are used interchangeably herein to refer to a DNA molecule comprising a vector and at least one insert. Recombinant expression vectors are usually generated for the 55 purpose of expressing and/or propagating the insert(s), or for the construction of other recombinant nucleotide sequences. The insert(s) may or may not be operably linked to a promoter sequence.

A recombinant expression vector may also contain an 60 insertion site for the insertion of a sequence of interest. An "insertion site" is any nucleotide sequence intentionally positioned within the vector that allows for convenient insertion and/or excision of additional nucleic acid sequences. The term "insertion site" encompasses sequences 65 that facilitate any convenient cloning methodology (e.g., standard restriction enzyme/ligation based methods, inte-

grase based methods, T4 DNA Polymerase based methods, BioBrick cloning, Circular Polymerase Extension Cloning (CPEC) cloning, etc.) (Quan, J. & Tian, *J. Nat. Protoc.* 6, 242-251 (2011); Shetty et al. *J. Biol. Eng.* 2, 5 (2008)). An example of one possible type of standard insertion site is a multiple cloning site (or polylinker), which is a stretch of sequences that contains multiple restriction enzyme sites that together facilitate convenient restriction enzyme/ligation based cloning methods.

A cell has been "genetically modified" or "transformed" or "transfected" by exogenous DNA, e.g. a recombinant expression vector, when such DNA has been introduced inside the cell. The presence of the exogenous DNA results in permanent or transient genetic change. The transforming DNA may or may not be integrated (covalently linked) into the genome of the cell. In prokaryotes, yeast, and mammalian cells for example, the transforming DNA may be maintained on an episomal element such as a plasmid. With respect to eukaryotic cells, a stably transformed cell is one in which the transforming DNA has become integrated into a chromosome so that it is inherited by daughter cells through chromosome replication. This stability is demonstrated by the ability of the eukaryotic cell to establish cell lines or clones that comprise a population of daughter cells containing the transforming DNA. A "clone" is a population of cells derived from a single cell or common ancestor by mitosis. A "cell line" is a clone of a primary cell that is capable of stable growth in vitro for many generations.

Suitable methods of genetic modification (also referred to as "transformation") include viral infection, transfection, conjugation, protoplast fusion, electroporation, particle gun technology, calcium phosphate precipitation, direct micro injection, and the like. The choice of method is generally dependent on the type of cell being transformed and the circumstances under which the transformation is taking place (in vitro, ex vivo, or in vivo). A general discussion of these methods can be found in Ausubel, et al., Short Protocols in Molecular Biology, 5th ed., Wiley & Sons, 2002.

Disclosed herein are a series of isolated genes and their corresponding encoded proteins. The genes have been assigned the names lvaA, lvaB, lvaC, lvaD, and lvaE. The corresponding proteins encoded by the genes have been assigned the names LvaA, LvaB, LvaC, LvaD, and LvaE. The genes and the proteins encoded thereby are explicitly defined herein as follows:

lvaA is defined as a gene encoding a phosphotransferase that phosphorylates the 4-hydroxy position on 4-hydroxyvaleryl-CoA (4HV-CoA) to form 4-phosphovaleryl-CoA (4PV-CoA). The gene has at least 80% sequence identity and more preferably at least 90% sequence identity to PP_2791 from Psuedomonas putida. lvaB is defined as a gene encoding a small protein associated with LvaA that is essential for the phosphorylation of 4HV-CoA by LvaA. The gene has at least 80% sequence identity and more preferably at least 90% sequence identity to PP 2792 from Psuedomonas putida. In some cases, a single protein contains sequence homology to both LvaA and LvaB. (That is, LvaA and LvaB appear as a type of fusion protein.) lvaC is defined as a gene encoding an acyl-CoA dehydrogenase family protein that hydrates either 2-pentenoyl-CoA or 3-pentenoyl-CoA to form 3-hydroxyvaleryl-CoA (3HV-CoA). The gene has at least 80% sequence identity and more preferably at least 90% sequence identity to PP 2793 from Psuedomonas putida.

lvaD is defined as a gene encoding a reductase that reduces 4-ketovaleryl-CoA to 4HV-CoA. The gene has at least 80% sequence identity and more preferably at least 90% sequence identity to PP_2794 from *Psuedomonas putida*.

lvaE is defined as a gene encoding a protein that acts as a acyl-CoA synthetase on levulinic acid to form levulinyl-5 CoA (4-ketovaleryl-CoA). The gene has at least 80% sequence identity and more preferably at least 90% sequence identity to PP_2795 from *Psuedomonas putida*.

Numerical ranges as used herein are intended to include every number and subset of numbers contained within that 10 range, whether specifically disclosed or not. Further, these numerical ranges should be construed as providing support for a claim directed to any number or subset of numbers in that range. For example, a disclosure of from 1 to 10 should be construed as supporting a range of from 2 to 8, from 3 to 15 7, from 1 to 9, from 3.6 to 4.6, from 3.5 to 9.9, and so forth.

All references to singular characteristics or limitations of the present invention shall include the corresponding plural characteristic or limitation, and vice-versa, unless otherwise specified or clearly implied to the contrary by the context in 20 which the reference is made. The singular indefinite articles "a" and "an" mean "one or more," unless specifically defined otherwise.

All combinations of method or process steps as used herein can be performed in any order, unless otherwise 25 specified or clearly implied to the contrary by the context in which the referenced combination is made.

The methods and genetic constructs of the present invention can comprise, consist of, or consist essentially of the essential elements and limitations as described herein, as 30 well as any additional or optional ingredients, components, or limitations described herein or otherwise useful in recombinant genetics.

Identification of Genes Involved in Levulinic Acid Metabolism

P. putida KT2440 is known to metabolize LA as a sole carbon source and demonstrates diauxic growth in the presence of glucose and LA. Therefore, a genetic study was initiated to identify genes involved in LA catabolism. A mutant library was constructed with a Tn5 mini transposase 40 (Martinéz-Garcia, E., Calles, B., Arévalo-Rodriguez, M. & de Lorenzo, V. pBAM1: an all-synthetic genetic tool for analysis and construction of complex bacterial phenotypes. BMC Microbiol. 11, 38 (2011)) and screened for P. putida mutants lacking the ability to grow on LA as the sole carbon 45 source. Thirteen out of 7,000 colonies screened demonstrated LA growth deficiencies. The location of each transposon insertion was determined by sequencing PCR products created with a primer nested in the transposon paired with a degenerate random primer. Table 1 shows the ten 50 unique isolates from these thirteen hits and the putative function of the disrupted genes. Two mutants had disruptions in genes involved in propionate metabolism, supporting the hypothesis that LA is catabolized to the central metabolites, acetyl-CoA and propionyl-CoA. Three transpo- 55 son mutants had disruptions in a putative operon that had not been previously characterized (disrupting genes PP_2791, PP_2793, and PP_2794). Other mutants had disruptions in genes with no obvious connection to LA catabolism (bioH, gcvP, a hypothetical zinc protease, mrdA, and fpvA). To 60 confirm that a sufficient number of clones had been screened, a random bar code transposon-site sequencing (RB-TnSeq) was performed for cultures enriched by growth on LA and 4HV relative to growth on glucose. RB-TnSeq is an efficient method for determining gene essentiality under 65 different conditions with high genomic coverage. Wetmore, K. M. M. et al. Rapid Quantification of Mutant Fitness in

Diverse Bacteria by Sequencing Randomly Bar-Coded Transposons. *MBio* 6, 1-15 (2015). This analysis identified additional genes involved in LA metabolism including an acetoacetyl-CoA transferase important for growth on LA, genes functioning in β -oxidation and propionyl-CoA metabolism, and 14 transcriptional regulators potentially involved in LA metabolism. The RB-TnSeq dataset also revealed that 3-hydroxybutyryl-CoA dehydrogenase and (3-ketothiolase are also necessary for growth on LA and 4HV, supporting our hypothesis that LA metabolism terminates through β -oxidation. For a more complete summary and analysis of the fitness data, see the Examples.

TABLE 1

	P. putida Levulinic Acid Transposon Insertion Sites		
Locus	Insertion Point*	Gene Name	Description/Homology
PP_0364	442685	bioH	pimeloyl-ACP methyl ester esterase
PP_0988	1128706	gcvP-1	glycine dehydrogenase
PP_2332	2660666	Ň/A	ATP-dependent zinc protease family
PP_2336	2666405	acnA-II	aconitate hydratase
PP_2337	2666944	prpF	aconitate isomerase
PP_2791	3181098	N/A	Phosphotransferase family
PP_2793	3182533	N/A	acyl-CoA dehydrogenase family protein
PP_2794	3183601	N/A	short chain dehydrogenase/reductase
			family
PP_3741	4271628	mrdA-I	transpeptidase
PP_4217	4765953	fpvA	TonB-dependent outer membrane ferripyoverdine receptor

*Insertion point based on location from P. putida KT2440 origin

Operon Characterization and Induction

Given the propensity of bacteria to cluster related genes into operons, the putative seven-gene operon, PP 2791-35 PP_2797 was examined, which contained three of the transposon hits (PP_2791, PP_2793 and PP_2794). The sequence homology of the seven genes in the operon was analyzed using the basic local alignment search tool (BLAST; Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403-10 (1990)) and assigned predicted functions, which are listed in Table 2, below. There are no known published studies about these genes beyond the automated sequence annotations. Therefore, the expression and function of these genes was investigated to determine if they are involved in LA catabolism. First, RNA from wild type P. putida grown in minimal media with LA as the carbon source was isolated. All seven genes were then located by PCR amplification of cDNA created with a reverse primer specific to PP_2797. See FIG. 1, panels A, B, and C. The transcription start site (TSS) of the operon was isolated by 5'-RACE (see FIG. 1, panel D) and implicated a different start codon for PP_2791.72 bp downstream of the one originally reported. Schramm, G., Bruchhaus, I. & Roeder, T. A simple and reliable 5'-RACE approach. Nucleic Acids Res 28, E96 (2000). Espah Borujeni, A., Channarasappa, A. S. S. & Salis, H. M. M. Translation rate is controlled by coupled trade-offs between site accessibility, selective RNA unfolding and sliding at upstream standby sites. Nucleic Acids Res. 42, 2646-2659 (2014). Salis, H. M. M., Mirsky, E. A. A. & Voigt, C. A. A. Automated design of synthetic ribosome binding sites to control protein expression. Nat. Biotechnol. 27, 946-50 (2009). A σ^{54} promoter sequence located upstream of PP 2791 was identified by comparing upstream of the new TSS with published σ^{54} promoter consensus sequences. Barrios, H., Valderrama, B. & Morett, E. Compilation and analysis of sigma(54)-dependent promoter

sequences. *Nucleic Acids Res.* 27, 4305-4313 (1999). The data presented below suggests the proteins encoded by this operon are important in LA catabolism. The polycistronic genes are designated herein as lvaABCDEFG.

Upstream of lvaABCDEFG, a gene oriented divergently from the operon (PP_2790) was identified and predicted to encode a transcription factor with a σ^{54} interaction domain and homology to the propionate metabolism activator, prpR. The genomic organization strongly suggested that the gene 10 encoded a regulator for the lva operon. Consequently, PP 2790 was deleted and growth of P. putida strains was evaluated on both LA and a likely intermediate, 4HV. The ΔPP 2790 mutant was unable to grow on LA and 4HV suggesting that it acts as an activator for the operon. Expres-15 sion of PP_2790 on a plasmid restored growth of the deletion strain on LA and 4HV. To identify compounds that activate lvaABCDEFG expression, a transcriptional reporter system was built that linked sfGFP to the σ^{54} promoter sequence located upstream of lvaA. The reporter cassette 20 was cloned onto a broad host range vector (shown schematically in FIG. 2A) and the resulting construct was transformed into wild type P. putida. A variety of short and medium chain length acids were tested by adding them to rich media and evaluating the corresponding sfGFP expression levels. Strong sfGFP fluorescence was observed only when LA or 4HV were added to the system. See FIG. 2B. Without being limited to any underlying mechanism, it is thought that PP_2790 encodes a transcriptional regulator 30 responsive to the LA pathway. It is designated herein as lvaR.

Genetic and Biochemical Studies of lvaABCDEFG Operon

To confirm the involvement of the lva operon in LA catabolism, a deletion mutant was created for each lva gene predicted to encode an enzymatic protein and a corresponding complementation plasmid using the P_{araBAD} promoter. The ability of the resulting strains to grow on LA and 4HV was tested. See Table 2, below. In addition, we purified the $_{40}$ five enzymes from cultures of E. coli BL21 (DE3), reconstituted the enzymatic reactions in vitro, and used liquid chromatography/mass spectrometry (LC/MS) to identify reaction products. Selective ion scanning was used to monitor the masses for likely intermediates based on prior 45 studies. Jaremko, M. & Yu, J. The initial metabolic conversion of levulinic acid in Cupriavidus necator. J. Biotechnol. 155, 293-298 (2011). Martin, C. H. & Prather, K. L. J. High-titer production of monomeric hydroxyvalerates from 50 levulinic acid in Pseudomonas putida. J. Biotechnol. 139, 61-67 (2009). Zhang, G. F. et al. Catabolism of 4-hydroxyacids and 4-hydroxynonenal via 4-hydroxy-4-phosphoacyl-CoAs. J. Biol. Chem. 284, 33521-33534 (2009). Harris, S. R. et al. Metabolism of levulinate in perfused rat livers and live rats: Conversion to the drug of abuse 4-hydroxypentanoate. J. Biol. Chem. 286, 5895-5904 (2011). The proposed pathway is shown in FIG. 3. First, LA is activated as a coenzyme A-thioester, levulinyl-CoA (LA-CoA). Second, LA-CoA is reduced to 4-hydroxyvaleryl-CoA (4HV-CoA). Third, 4HV-60 CoA is phosphorylated at the y-position to yield 4-phosphovaleryl-CoA (4PV-CoA). Fourth, 4PV-CoA is dephosphorylated to yield a pentenoyl-CoA species (likely 3-pentenoyl-CoA). Last, pentenoyl-CoA is hydrated to yield 3-hydroxyvaleryl-CoA (3HV-CoA) which can be further 65 oxidized via β-oxidation to yield acetyl-CoA and propionyl-CoA or incorporate 3HV-CoA into PHA polymers.

16	
TABLE	2

Р.	putida LA Operon Kno	ockou	t and Complen	nenta	tion
		Gı	rowth on LA	Gro	owth on 4HV
Genotype	Predicted Function	EV	Complement	EV	Complement
WT		++	N/A	++	N/A
ΔlvaR	0 ⁵⁴ dependent	-	++	-	++
(PP_2790) ΔlvaA (PP_2791)	sensory box protein Phosphotransferase family	-	++	-	++
$\Delta lvaB$	Hypothetical protein	-	++	-	++
ΔlvaC (PP_2793)	acyl-CoA dehydrogenase family protein	-	++	+	++
∆lvaD (PP_2794)	short chain dehydrogenase/ reductase family	-	++	++	++
∆lvaE (PP_2795)	Acyl-CoA synthetase	++	++	-	+

(EV) empty vector plasmid;

(N/A) not applicable;

(-) No growth;(+) Visible growth;

(++) Robust growth

25 **lva**E

The presence of an enzyme (encoded by lvaE) with homology to an acyl-CoA synthetase (including a putative CoA binding region and an AMP binding site) suggested that the degradation pathway acts on CoA thioesters and begins with the activation of acids to acyl-CoA's. The Δ lvaE strain grew on LA but not on 4HV, indicating that LA may also be activated by other CoA-synthetases in P. putida. The activity of purified LvaE (6x-His N-terminal fusion) was quantified on a variety of organic acid substrates using the EnzChek®brand Pyrophosphate Assay Kit (Molecular Probes, Eugene, Oreg.) which detects pyrophosphate released in the first half reaction to creating the acyl-AMP intermediate. See FIG. 4A for a schematic. LvaE demonstrated activity on C4-C6 carboxylic acids, including LA and 4HV (see FIG. 4B), but showed minimal activity on other organic acids (pyruvate, acetate, propionate, octanoate). Using LC/MS to detect reaction products, it was demonstrated that LvaE was necessary and sufficient to catalyze the ligation of CoA to LA, generating levulinyl-CoA (LA-CoA). See FIGS. 5A and 5B. None of the other enzymes from the operon catalyzed this or any other reaction using LA as a substrate (data not shown). confirming that the pathway proceeds via acyl-CoA intermediates.

lvaD The second step in the proposed pathway is the reduction of LA-CoA to 4HV-CoA which is predicted to be catalyzed by lvaD. lvaD is annotated as an oxidoreductase containing an NADH binding domain and was found to be required for growth on LA but not necessary for growth on 4HV. See Table 2. LvaD was purified in a similar manner to LvaE but used an N-terminal maltose binding protein (MBP) tag to increase the solubility of the enzyme. Fox, J. D., Routzahn, K. M., Bucher, M. H. & Waugh, D. S. Maltodextrin-binding proteins from diverse bacteria and archaea are potent solubility enhancers. FEBS Lett. 537, 53-57 (2003). The in vitro reaction containing LvaD and LvaE verified that LvaD is involved in the production of 4HV-CoA. See FIG. 5A. Furthermore, LvaDE was the only enzyme combination capable of generating 4HV-CoA in vitro (data not shown). LvaD can catalyze the reduction of LA-CoA with either NADH or NADPH (data not shown).

It was hypothesized that the third intermediate would be 4-phospho-valeryl-CoA (4PV-CoA) based off its observation in LA degradation in rat livers. (Zhang et al. and Harris et al., supra.) The first gene in the operon, lvaA, has putative 5 homology regions, including an ATP binding site that associated it with the kinase superfamily and phosphotransferase family of enzymes. The second protein in the operon (LvaB) has no listed function and is predicted to be only 12 kDa in size. Orthologous sequence alignments of lvaB reveal that in 10 all other organisms this hypothetical protein is located immediately downstream of an lvaA ortholog. Therefore, a pull down experiment was used to determine if the two proteins interact. Striebel, F. et al. Bacterial ubiquitin-like modifier Pup is deamidated and conjugated to substrates by distinct but homologous enzymes. Nat. Struct. Mol. Biol. 16, 647-651 (2009). Yamamoto, S. & Kutsukake, K. FliT acts as an anti-FlhD2C2 factor in the transcriptional control of the flagellar regulon in Salmonella enterica serovar typhimurium. J. Bacteriol. 188, 6703-8 (2006).

LvaA was N-terminally tagged with MBP and cloned into a pET expression vector. LvaB was cloned directly downstream of LvaA as it is found in *P. putida*'s native genome sequence. The recombinant proteins were expressed in *E. coli* BL21 (DE3) and purified using the MBP tag. A SDS- 25 page gel of the eluent contained two bands at 85 kDa and 12 kDa, closely matching the predicted sizes of MBP-LvaA and untagged LvaB respectively. Liquid chromatography tandem mass spectrometry was done on a trypsin digest of the 12 kDa band and identified the protein sequence to be LvaB 30 (data not shown).

Growth studies of deletion mutants revealed that lvaA and lvaB are both required for growth on either LA or 4-HV. This supports the hypothesis that they are involved in a reaction after the conversion of LA-CoA to 4HV-CoA. To confirm 35 that the association between LvaA and LvaB is important for enzymatic activity, the following enzymatic combinations were tested: i) LvaA, LvaD and LvaE, ii) LvaB, LvaD, and LvaE, iii) LvaAB, LvaD and LvaE. A decrease of 4HV-CoA and an increase of the predicted 4PV-CoA intermediate was 40 seen only when all four of the enzymes were present. See FIG. **5**A.

Tandem mass spectrometry was used to verify the identity of 4PV-CoA. See FIGS. 6A, 6B, 6C, and 6D. We compared the MS/MS spectrum of 4HV-CoA (FIG. 6A; assignment of 45 selected fragments shown in FIG. 6B) and the MS/MS spectrum of 4PV-CoA (FIG. 6C; assignment of selected fragments shown in FIG. 6D) and detected major ion fragments at m/z 786.191, 537.106 and 519.095 (4HV-CoA) and 866.158, 617.072 and 599.061 (4PV-CoA). For each com- 50 pound, these fragments can be assigned to the cleavage of a P-O bond, an O-C bond and the dehydration of O-C cleaved product, respectively (FIGS. 6B and 6D). Both compounds are fragmenting at the same bonds, but the resulting m/z values for the daughter ions differ by 79.967. 55 This mass corresponds to the m/z of PO₃H⁻, supporting the existence of the phosphorylated 4HV-CoA species, 4PV-CoA.

lvaC

The final step in the hypothesized pathway is the forma- 60 tion of 3HV-CoA. Given that the combination of LvaABDE was responsible for generating 4PV-CoA and no 3HV-CoA was detected in these reactions, it was postulated that LvaC was responsible for the final conversion steps. LvaC has homology to the dehydrogenase family of enzymes and 30% 65 amino acid sequence identity to the *E. coli* acyl-CoA dehydrogenase protein. The Δ lvaC strain was unable to grow on

LA, but grew weakly on 4HV. LvaC was purified as an MBP fusion and the resulting protein pellet displayed a yellow hue. This is often indicative of a co-purified flavin and an absorbance scan of the protein revealed absorbance maxima that are consistent with a flavin co-factor (data not shown). When the LvaC sample was treated with trichloroacetic acid and centrifuged, a white protein pellet and a yellow hued supernatant were observed (data not shown). This indicates that the co-factor was not covalently bound to LvaC. Dijkman, W. P. & Fraaije, M. W. Discovery and characterization of a 5-hydroxymethylfurfural oxidase from Methylovorus sp. strain MP688. *Appl. Environ. Microbiol.* 80, 1082-1090 (2014).

When LvaC was added to the in vitro reaction mixture, the concentrations of reaction intermediates (LA-CoA, 4HV-CoA, 4PV-CoA) were reduced while the abundance of 3HV-CoA and a pentenoyl-CoA species increased. See FIG. 5A. This species is likely either 2-pentenoyl-CoA and/or 3-pentenoyl-CoA, which could not be resolved with the 20 methods used. Both compounds eluted at the same retention time with the same molecular mass. To test if LvaC is solely responsible for the conversion of 4PV-CoA to 3HV-CoA, a two-step reaction was used. First, we performed the LvaABDE reaction with LA, CoA, ATP, NAD(P)H and separated the CoA products from the enzymes. To the enzyme-free mixture, we added LvaC without additional co-factors. After 30 min, we observed signals for both pentenoyl-CoA and 3HV-CoA. This indicated that the putative oxidoreductase, LvaC, is responsible for both the removal of the phosphate group to produce the enoyl-CoA and the hydration of the enoyl to the 3-hydroxyl compound.

To reconstitute the entire pathway, a time course reaction with all five Lva enzymes and LA as the starting substrate was performed. Over time, a rapid increase in pentenoyl-CoA was observed followed by a slow disappearance that mirrored the increase in the 3HV-CoA signal. See FIG. **5**B. This suggests that the hydration reaction may be the limiting step in the overall pathway.

lvaFG

Based on homology alignments, lvaG is predicted to encode a protein with 95% amino acid sequence identity to a *Pseudomonas aeruginosa* cation acetate symporter and lvaF shares 33% amino acid sequence identity with the *E. coli* inner membrane protein Yhjb (BLAST). Sequence alignments of lvaF orthologs indicate that lvaF and lvaG are found with the same spatial relationship to each other in many organisms (data not shown). These proteins are likely involved in organic acid transport but are unlikely to be involved in the catabolism of LA given that they were not necessary for the enzymatic conversion of LA to 3HV-CoA in vitro.

Conferring Growth on Levulinic Acid to E. coli LS5218

To demonstrate the ability of the lvaABCDE to enable LA catabolism, we transformed *Escherichia coli* LS5128 [fadR601, atoC(Con)], a common strain used in studies of organic acid catabolism, with a plasmid linking LvaABCDE expression to an anhydrotetracycline inducible promoter (pJMR5). See Jenkins, L. S. & Nunn, W. D. Genetic and molecular characterization of the genes involved in short-chain fatty acid degradation in *Escherichia coli*: the ato system. *J Bacteriol* 169, 42-52 (1987). This strain failed to grow when cultured in minimal LA media. Adaptive evolution of this strain yielded two mutants that grew robustly on media with LA as the sole carbons source. The two mutants had three common mutations 1.) an altered RBS controlling LvaA translation, 2.) a disruption in fadE, and 3.) a disruption in atoC. See Table 8 in the Examples. Freshly

lvaAB

created deletion mutants harboring pJMR32 (a variant of pJMR5 with a putative strong RBS) demonstrated that the fadE deletion and the atoC deletion were both beneficial. These deletions likely prevent side reactions catalyzed by FadE and AtoDA (activated by AtoC) that compete with the 5 desired catabolic flux to central metabolism.

Thus described herein is an operon responsible for assimilating LA into the (3-oxidation pathway of P. putida. Through an integrated genetic and in vitro biochemistry study, it has been demonstrated herein that the genes 10 lvaABCDE are upregulated in the presence of LA and are sufficient for the conversion of LA to 3HV-CoA, an intermediate of native β -oxidation. Removing any enzyme from the reaction mixture abolished 3HV-CoA production, indicating all five genes are necessary for this pathway. The 15 biochemical assays confirmed the presence of 4PV-CoA, an intermediate previously observed in the metabolism of LA in rat livers. In sum, the pathway consumes at least two (2) ATP and one reducing equivalent to produce 3HV-CoA. See the pathway in FIG. 3. β-oxidation of 3HV-CoA to acetyl-CoA 20 and propionyl-CoA would recover the reducing equivalent. Given the energy demands of the pathway, growth on LA should be performed aerobically or in the presence of an alternative electron acceptor to enable ATP synthesis via respiration. 25

Like many catabolic pathways, expression of the lva operon is regulated by the presence of the pathway substrates. Using a transcriptional reporter assay, we demonstrated that the lva operon is upregulated by a transcriptional activator encoded by the divergent lvaR gene. Additionally, 30 we suspect that the lva operon is also regulated by Crc, a global carbon catabolite repressor. Crc is an mRNA binding protein that prevents protein translation when bound to a specific mRNA sequence in P. putida, AAnAAnAA. This sequence pattern is found immediately upstream of lvaE 35 (data not shown), which encodes an acyl-CoA synthetase that initiates the pathway. The presence of the Crc target sequence suggests that the operon is also subject to P. putida's carbon catabolite repression system which may explain the diauxic growth curves observed for mixtures of 40 glucose and LA.

The lva operon is highly conserved among the various *Pseudomonas* species (data not shown). Gene clusters comprised of the main enzymatic proteins can also be found in a variety of alpha-, beta- and gamma-proteobacteria, graphi-45 cally represented in FIGS. 7A and 7B. The alpha-proteobacteria species (*Azospirillum, Bradyrhizobium, Rho-dopseudomonas, Sphingobium*) are primarily isolated from soil environments, similar to *Pseudomonas putida*. The beta-proteobacteria species (*Azoarcus, Limnobacter*) and the 50 gamma-proteobacteria species (*Azoarcus, Limnobacter, Marinobacter*) are isolated from both soil and ocean environments. *Cupriavidus nector* contains a gene cluster comprised of potential LvaACE homologs, and additionally possesses in that same cluster a small hypothetical protein which could 55 be a functional homolog of LvaB.

Interestingly, the isomerization of 4HV-CoA to 3HV-CoA in *P. putida* proceeds through a phosphorylated intermediate, 4PV-CoA, a compound also observed in a study of LA metabolism in rat livers. Harris et al., supra. This study 60 suggested the 3HV-CoA was generated via a pathway comprised of complex phosphorylated intermediates. We did not detect MS peaks corresponding to any of these compounds in our in vitro reaction mixtures. Without being limited to any underlying mechanism, and based on changes we 65 observed in total ion abundance over time, we propose that 4PV-CoA is dephosphorylated to an enoyl-CoA and subse-

quently rehydrated to 3HV-CoA. We suspect that the phosphorylation of 4HV-CoA by LvaAB generates a better leaving group and makes the subsequent dehydration more thermodynamically favorable. However, the mechanism for these last steps remains unclear.

The time course measurements that we collected for the full reaction indicate that the formation of the pentenoyl-CoA happens fairly quickly, but the transition from the pentenoyl-CoA to the 3HV-CoA is a much slower reaction. See FIG. **5**B. Our tests indicate that LvaC is capable of converting 4PV-CoA to 3HV-CoA, but those reactions still contain a higher abundance of pentenoyl-CoA compared to 3HV-CoA. A more detailed mechanistic study of the final steps may clarify the specific role of lvaC.

Understanding how LA metabolism works is important because LA is a common byproduct of biomass hydrolysis and is often present in the final feedstock. High concentrations of LA in the feedstock can lead to microbial inhibition and represents an underused source of carbon in traditional sugar fermentations. By discovering the catabolic pathway, the present method is useful to engineer microbes capable of detoxifying the media and/or utilizing LA as a source of carbon, thereby maximizing the overall carbon conversion from biomass into high value products. Additionally, identifying the structure of LA metabolism will improve metabolic models and enable pathway design for novel LA-based bioconversions.

Converting LA to 2-Butanone

Converting LA catalytically to the solvent 2-butanone (methyl ethyl ketone, MEK) has been reported as feasible, but the approach suffers from energy intensive process conditions and low yields. Serrano-Ruiz, J. C., West, R. M. & Dumesic, J. A. Catalytic Conversion of Renewable Biomass Resources to Fuels and Chemicals. Annu. Rev. Chem. Biomol. Eng. 1, 79-100 (2010). 2-butanone has been produced biologically through the dehydration of 2,3 butanediol with a vitamin B12 dependent diol dehydratase. Yoneda, H., Tantillo, D. J. & Atsumi, S. Biological production of 2-butanone in Escherichia coli. ChemSusChem 7, 92-95 (2014). The direct decarboxylation of LA (a five carbon γ -ketoacid) into 2-butanone has been demonstrated using acetoacetate decarboxylase (adc) from Clostridium acetobutylicum as a biocatalyst, but the enzyme is susceptible to substrate inhibition, limiting its overall productivity. Min, K. et al. Conversion of levulinic acid to 2-butanone by acetoacetate decarboxylase from *Clostridium acetobutylicum*. Appl. Microbiol. Biotechnol. 97, 5627-5634 (2013).

Using the pathway for LA catabolism, lvaABCDE, in P. putida and the expression of short chain fatty degradation pathways, we evolved two strains of E. coli for utilization of LA as a carbon substrate. The evolved strains were derived from E. coli LS5218, which contains specific mutations for overexpression of β -oxidation (fadR601) and short chain fatty acid degradation genes [atoC(Con)]. The draft LS5218 genome assembly is GCA_002007165.1. We sequenced the genome of the mutants and isolated two key functional deletions required for LA growth. Reconstitution of the isolated mutations in wild type LS5218 revealed one, fadE, to be beneficial. Another mutation (in atoC) also conferred a beneficial growth phenotype. Neither mutation is necessary for growth on LA. Using these strains as a basis, we engineered production of butanone by expressing an acetoacetyl-CoA transferase (AtoDA) and an acetoacetate decarboxylase (ADC) in conjunction with LvaABCDE. Our first-generation engineered strains produced 140 mg/L of butanone from LA.

Evolving E. coli for Growth on LA

LA is a five carbon acid that degrades into equal moles of acetyl-CoA and propionyl-CoA, and while E. coli contains the necessary genes for propionyl-CoA metabolism, increased propionyl-CoA concentrations are known to be 5 inhibitory. Man, W. J., Li, Y., O'Connor, C. D. & Wilton, D. C. The Binding of Propionyl-Coa and Carboxymethyl-Coa to Escherichia-Coli Citrate Synthase. Biochim. Biophys. Acta 1250, 69-75 (1995). Therefore, we performed a growth study on wild type E. coli MG1655 to evaluate its capability 10 towards propionate catabolism and investigated the growth of E. coli on various concentrations of propionate, with and without acetate as a secondary carbon source. The maximum allowable concentration that stimulated growth was 20 mM propionate, both in the presence and absence of acetate, 15 before growth inhibition was observed. See FIG. 8. Using this information, we designed all LA growth experiments to contain maximum concentration of 20 mM LA to minimize false negative growth phenotypes resulting from propionate toxicity. 20

Five biosynthetic enzymes are required for catabolizing LA into a common (3-oxidation intermediate, encoded by the lva operon from Pseudomonas putida, and lvaABCDE were expressed as an operon in E. coli LS5218 from the plasmid pJMR5. We hypothesized that this combination of 25 expressed enzymes would confer LA catabolism in E. coli, however, initial tests on LA as a sole carbon source did not produce a positive growth phenotype. We then performed a sub-culturing experiment to evolve a strain capable of LA catabolism. The first rounds were conducted with both LA 30 and acetate as available carbon to stimulate growth and allow cells to adapt to the presence of LA. We observed an increase in final cell density with the both carbon sources present compared with the acetate only control, and subsequent culturing was done with LA as the sole carbon source. 35 After 14 rounds of sub-culturing on LA, we isolated two mutant strains, M141 and M142, capable of LA catabolism.

We purified the plasmid, pJMR5, and sequenced it to determine if evolutionary changes were due to plasmid mutations. A mutation in the ribosome binding sequence 40 (RBS) for the lvaABCDE operon was discovered (Table 8), and corresponded to an increase in the predicted strength compared with original sequence. We retransformed the isolated plasmid, designated p2, into wild type LS5218 and the resulting strain did not have the LA growth phenotype, 45 indicating genomic mutations were also necessary (data not shown). To isolate the essential genomic mutations, we submitted strains M141 and M142 for whole genome sequencing after curing out the plasmid. The sequencing results highlighted four mutations in M141 and three muta- 50 tions in M142 when compared with the genome sequence assembled for wild type E. coli LS5218, with only two common mutations between both strains (Table 8). The common mutations were a point mutation in fadE that resulted in a premature stop codon causing a functional 55 deletion and the insertion of transposons into atoC that also resulted in a premature stop codon and a functional deletion. Developing Engineered Strain of E. coli that Catabolizes LA

We verified the functional deletion mutations by generating clean knockouts of fadE and atoC as single knockouts ⁶⁰ and a combined knockout strain using CRISPR-Cas9 mediated genome engineering. We transformed each strain with the plasmid pJMR32, a redesigned pJMR5 with increased RBS strength for LvaA. We examined growth on LA as a sole carbon source for each strain. Wild type LS5218 and ⁶⁵ LS5218 Δ atoC were unable to grow on LA where as LS5218 Δ fadE and LS5218 Δ atoC Δ fadE grew using LA as the sole

carbon source and strain M142 with pJMR32 was used as a positive control. We generated growth curves on LA for strains LS5218 Δ fadE, LS5218 Δ atoC Δ fadE and M142 and found that LS5218 Δ fadE has a significantly longer lag period then LS5218 Δ atoC Δ fadE and M142. See FIG. 9.

In a follow up experiment, the host cell was an *E. coli* strain in which the lva operon (under aTc induction) and the *E. coli* fadBA (under IPTG induction) were overexpressed in the host cell. This cell was able to grow on LA without deleting fadE. (Data not shown.) This result indicates that fadBA overexpression is beneficial for *E. coli* growth on LA. To induce fadBA overexpression in *E. coli*, fadR is deleted to deregulate those genes (which also deregulates fadE). Therefore, in the preferred host cells, if fadR is deleted, then fadE should also be deleted to minimize competing side reactions. If fadR is not deleted, then overexpression of fadBA is preferred because it maximizes butanone production.

Establishing Butanone Production

Unlike the previously reported schemes for the production of 2-butanone, we proposed that 2-butanone could be produced through a similar pathway as acetone production. In Clostridium acetobutylicum, acetone is produced through the condensation of two acetyl-CoA molecules to acetoacetyl-CoA (a \beta-ketoacyl-CoA), which can be liberated to acetoacetate by a CoA transferase and then decarboxylated to acetone by acetoacetate decarboxylase. Our strategy for producing 2-butanone is depicted in FIG. 10. First, LA is catabolized to 3-hydroxyvaleryl-CoA (3HV-CoA) through P. putida enzymes encoded by lvaABCDE. Then a 3-hydroxyacyl-CoA dehydrogenase (encoded by fadB) oxidizes 3HV-CoA to 3-ketovaleryl-CoA (3 KV-CoA) followed by the transfer of CoA from 3 KV-CoA to acetate to form of 3-ketovalerate through an acetoacetyl-CoA transferase (encoded by atoDA). This conversion can also be accomplished using a short-chain thioesterase or a succinyl-CoA transferase. Finally, acetoacetate decarboxylase (encoded by adc from C. acetobutylicum) converts 3-ketovalerate into butanone and CO2. The lvaABCDE and adc genes were co-expressed from the plasmids pJMR32 and pJMR95, respectively. The plasmid pJMR95 is a medium copy plasmid containing the P_{trc} promoter and an origin compatible with pJMR32. Chromosomal overexpression of atoDA genes resulted from the atoC(Con) mutation in host strain E. coli LS5218. To verify the validity of the proposed butanone production pathway, we tested butanone production in the non-optimized strains, eMEK1 (LS5218 Δ fadE) and eMEK12 (LS5218 AfadE AatoC), containing plasmids pJMR32 and pJMR95. For our experiment, we grew the strains in rich media (LB), added 20 mM of acetate, LA, or both carbons and examined the supernatant for acetone and butanone after 24 hours. We found that eMEK12 was incapable of producing either ketone species, and eMEK1 could produce butanone only in the presence of LA. See FIG. 11. eMEK1 produced up to 140 mg/L of butanone when both LA and acetate were supplied.

To increase flux of LA towards butanone production and to reduce the formation of acetone, we deleted the competing degradation pathways. We removed the thiolase enzymes encoded by fadA, fadI and atoB to delete the competing degradation pathways for LA catabolism and increase LA flux towards butanone production. See FIG. **12**. We tested butanone and acetone production in a more optimized strain, eMEK4 (LS5218 Δ fadEAIJ Δ atoB), using pJMR95 (adc from *C. acetobutylicum*) and pJMR32-Cm (lvaABCDE with chloramphenicol resistance). This strain did not show an appreciable amount of acetone production

and was capable of producing 500 mg/L butanone when both LA and acetate were supplied. See FIGS. **13**A and **13**B. We also calculated the yield of butanone from LA and determined a 74% measurable yield, indicating we are very close to the theoretical maximum.

Discussion and Future Directions

The catabolic pathway for LA in P. putida indicated that the last steps in the pathway were undertaken by enzymes involved in β -oxidation. We hypothesized that expression of lvaABCDE in E. coli LS5218, which carries mutations for 10 β -oxidation overexpression, would directly confer E. coli growth on LA. That assumption was proven incorrect. The deletion of fadE is beneficial to allow LS5218 a growth phenotype on LA. FadE is an acyl-CoA dehydrogenase enzyme that catalyzes the formation of the a trans-2-enoyl- 15 CoA from an acyl-CoA compound. Because the LA catabolic pathway terminates at the formation of 3HV-CoA, the final steps to be completed by the E. coli (3-oxidation pathway would only involve fadBA, so it remains unclear as to why a fadE is beneficial. We hypothesize that FadE may 20 be active towards LA-CoA, adding a double bond at the 2 position of the γ-ketovaleryl-CoA species and sequestering the molecule from further degradation, however, this is hypothesis is speculative. FadE is an inner membrane protein, thereby complicating efforts to purify an active enzyme 25 and making it hard to ascertain the true nature behind the cellular activity of fadE. Detailed metabolite analysis of LS5218 with lvaABCDE grown in the presence of acetate and LA may reveal insight to the mode of inhibition caused by FadE expression.

The deletion of atoC was not a necessary mutation, but did confer a growth benefit. This mutation was isolated during through the directed evolution process because we were screening for mutants with reduced lag phases, thereby enriching our mutant population with strains containing the 35 early termination sequence. Constitutive activation of the ato regulon by the atoC(Con) mutation in LS5218 causes an overexpression of an acetoacetyl-CoA transferase (encoded by atoDA), an acetyl-CoA acetyltransferase (encoded by atoB) and a short chain fatty acid transporter (encoded by 40 atoE). We propose that the 3-ketovaleryl-CoA intermediate was diverted from the final cleavage step into central metabolites by AtoDA, releasing 3-ketovalerate. The sequestering of LA as 3-ketovalerate reduces overall carbon flow to central metabolites, stunting growth of the E. coli 45 strains until they can adapt for the utilization of 3-ketovalerate. Reducing expression of AtoDA through the deletion of atoC would prevent the formation of the secondary pathway, allowing direct flux of LA to central metabolites. Additionally, AtoE is a short chain fatty acid transporter and over- 50 expression could be causing an increase in the intracellular concentration of LA above a threshold LS5218 is capable of tolerating, causing an extended lag phase. Monitoring intracellular metabolites during the extended lag phase could be useful in isolating the exact cause when compared with the 55 ∆atoC strains.

We have demonstrated herein that butanone can be produced from our novel pathway at a final concentration of at least 500 mg/L, which is on par with the previously reported bioconversion processes. Because atoDA encode for a CoA 60 transferase instead of a thioesterase, a short chain acid, such as acetate, is required as a substrate along with 3 KV-CoA to produce 3-ketovalerate and acetyl-CoA. In order to optimize the utilization of acetate for the direct formation of 2-butanone, we propose to couple the uptake of acetate with 65 the CoA transferase reaction. Deleting the CoA forming acetyl-CoA synthetase (Acs) and the Pta (phosphotrans-

acetylase) and Ack (acetate kinase) should limit the routes for acetate uptake and couple acetate uptake with 3-ketovalerate production. See FIG. **14**.

By adding the LA catabolism pathway to the iJO1366 model of E. coli metabolism with a maximum uptake rate of 10 mmol gDW^{-1} hr⁻¹, we were able to model the growth of E. coli using LA as its sole carbon source with a predicted growth rate of 0.71 hr⁻¹. By adding reactions for the acetoacetyl-CoA transferase (acting on 3 KV-CoA) and acetoacetate decarboxylase (acting on 3-ketovalerate), we saw a nearly direct trade-off between 2-butanone production and biomass production, with no butanone production at the limit of maximum growth rate (0.71 hr^{-1}) and no growth at the limit of maximum butanone production (9.4 mmol gDW^{-1} hr⁻¹). See FIG. 15A. Adding externally supplied acetate increases the maximum predicted butanone production rate to 10 mmol $gDW^{-1} hr^{-1}$ (complete conversion) by allowing E. coli to grow on acetate and convert all LA to butanone. See FIG. 15B.

To prevent LA from being used as a carbon source, we knocked-out the reaction corresponding to AtoB, which decreased the maximum predicted growth rate to 0.24 hr^{-1} while maintaining the maximum predicted 2-butanone production rate to 10 mmol gDW⁻¹ hr⁻¹. See FIG. 15C. It is important to note that, because the iJO1366 model does not include reactions for odd-chain β -oxidation, the in silico deletion of β -oxidation-related reactions was not necessary. We then extended this to a growth-coupled strategy for which E. coli is required to produce butanone to grow. By knocking out acetate fermentation (reactions ACKr and PTAr) and acetyl-CoA synthesis from acetate (reaction ACS), the only way for E. coli to make acetyl-CoA is by transferring a CoA from 3HV-CoA to exogenously supplied acetate. In this case, a maximum predicted 2-butanone production rate of 10 mmol gDW⁻¹ hr⁻¹ is achieved (complete bioconversion) simultaneously with the maximum predicted growth rate of 0.21 hr⁻¹. See FIG. 15D. This demonstrates the possibility of a growth-coupled direct bioconversion of LA to butanone.

GVL is a derivative of LA that can be produced from a hydrogenation and a dehydration reaction and has been shown to be an effective green solvent in the dissolution of lignocellulosic biomass. See Alonso, D. M., Wettstein, S. G. & Dumesic, J. A. Gamma-valerolactone, a sustainable platform molecule derived from lignocellulosic biomass. Green Chem. 15, 584 (2013); Luterbacher, J. S. et al. Nonenzymatic Sugar Production from Biomass Using Biomass-Derived gamma-Valerolactone. Science (80-.). 343, 277-281 (2014); and Luterbacher, J. S. et al. Lignin monomer production integrated into the γ -valerolactone sugar platform. Energy Environ. Sci. 8, 2657-2663 (2015). As a lactone species, GVL is susceptible to ring opening under basic conditions where it forms 4-hydroxyvalerate, an intermediate in the levulinic acid catabolic pathway. See FIG. 16. Though most bacteria do not thrive under basic pH conditions, some bacteria contain enzymes called lactonases that enzymatically open lactone rings into the corresponding acid. See Ng, F. S. W., Wright, D. M. & Seah, S. Y. K. Characterization of a phosphotriesterase-like lactonase from Sulfolobus solfataricus and its immobilization for disruption of quorum sensing. Appl. Environ. Microbiol. 77, 1181-1186 (2011); Onakunle, O. a., Knowles, C. J. & Bunch, a. W. The formation and substrate specificity of bacterial lactonases capable of enantioselective resolution of racemic lactones. Enzyme Microb. Technol. 21, 245-251 (1997); and Carlier, A., Chevrot, R., Dessaux, Y. & Faure, D. The assimilation of gamma-butyrolactone in Agrobacterium tumefaciens C58

interferes with the accumulation of the N-acyl-homoserine lactone signal. *Mol. Plant. Microbe. Interact.* 17, 951-7 (2004). We hypothesize that *P. putida* can be engineered for GVL catabolism if a lactonase with activity towards γ -lactones is heterologously expressed.

Lactones often exist in nature as N-acyl homoserine lactones, a common component of bacterial quorum sensing systems, and as a defense mechanism many bacteria have evolved lactonases to cleave the lactone structure, which can work towards quench the sensing signal. See Uroz, S., 10 Dessaux, Y. & Oger, P. Quorum sensing and quorum quenching: The Yin and Yang of bacterial communication. ChemBioChem 10, 205-216 (2009); Chow, J. Y. et al. Directed evolution of a thermostable quorum-quenching lactonase from the amidohydrolase superfamily. J. Biol. Chem. 285, 40911-20 (2010); and Hiblot, J., Gotthard, G., Chabriere, E. & Elias, M. Structural and enzymatic characterization of the lactonase SisLac from Sulfolobus islandicus. PLoS One 7, e47028 (2012). Due to quorum sensing responses often being linked with pathogenicity, the func- 20 tion of various classes of lactonase have been studied extensively. (Id.) We have compiled a list of five lactonases with reported activity towards y-lactones, or GVL specifically: Bacillus thuringiensis (protein AiiA), Rhodococcus ervthropolis (protein QsdA), Sulfolobus islandicus (protein 25 SisLac), Deinococcus radiodurans (protein DrPLL), and Geobacillus kaustophilus HTA426 (protein GKL).

Preliminary experiments have shown that three of the selected lactonases (DrPLL, GKL, and QsdA) have activity towards degrading GVL and when heterologously expressed 30 in *P. putida* can confer growth on GVL as a sole carbon source. GVL is capable of supporting *P. putida* growth, but this growth is severely hindered by an extended lag phase when compared with the related carbon sources of LA and 4HV (data not shown). Directed evolution on GVL media 35 could produce a faster metabolic strain and genomic sequencing could isolate key mutations.

We anticipate that integration of the LA catabolic pathway in a heterologous host can expand the possibilities for biological upgrading of a renewable carbon source. Our 40 proposed approaches presented here represent direct bioconversions, where all LA flux is routed through our production pathways. LA can also be used as an alternative source of intracellular propionyl-CoA, which is a starting molecule for odd chain fatty acids and select secondary metabolites. As a 45 common product produced through the chemical hydrolysis of biomass, catabolizing LA can promote production of a variety of chemicals that normally require an exogenous feedstock and help move us towards environmental sustainability. 50

Directed Evolution of E. coli LS5218

See Examples section for cells types and chemicals. E. coli was grown at 37° C., unless otherwise stated. Subculturing experiments were done with a volume of 5 ml in glass test tubes (20×150 mm, Fisher Scientific) with 250 rpm 55 agitation in a 126 shaker (New Brunswick Scientific). Starting media contained 20 mM LA and 40 mM acetate or 40 mM acetate only for negative control. Cultures were grown for 72 hours and optical density (OD) measurements taken with a Spectronic 20 (Milton Roy Company), then culture 60 were diluted 1:100 into fresh media. Once the OD in the LA and acetate cultures exceeded the OD of the acetate only cultures, further growth media was 20 mM LA only. These cultures were incubated until turbidity was observed visually, then diluted 1:100 into fresh media. This occurred for 65 a total of 14 dilutions steps in LA media, spanning two weeks.

Plasmids were prepped (QIAprep® Miniprep Kits, Qiagen) and sequenced (Functional Biosciences) to find mutations. Plasmids were cured out of mutate strains through serial culturing in rich media (LB broth) and patch plated on LB and LB_{kan50} .

Genome Engineering with CRISPR-Cas9

CRISPR/Cas recombineering was performed following the outlined protocol in Mark Politz's Thesis (Appendix C). See Politz, M. C. Transcription Activator-Like Effectors as Tools for Prokaryotic Synthetic Biology. (University Of Wisconsin-Madison, 2016). This involves the use of the plasmid pMP11, which contains constitutive expression of S. pyogenes cas9, arabinose-inducible λ Red genes, aTc inducible guide RNA (gRNA) targeted to pBR322 ori, temperature sensitive SC101 ori and Amp®. The plasmid containing the gRNA sequence was designated pgRNA and derived from pgRNA-bacteria. Qi, L. S. et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152, 1173-1183 (2013). E. coli strains containing pMP11 were at 30° C. (due to the temperature sensitive origin) overnight in LB and diluted into fresh SOB media (Green & Sambrook) with arabinose in the morning. Cultures were grown to an OD of 0.4-0.6 and then cells were made electrocompetent. Competent cells were transformed with the pgRNA plasmid and a linear DNA repair template and selected for on LB containing kanamycin and ampicillin. Following colony PCR, correct strains were cured of the pgRNA plasmid by growing overnight in LB_{Amp} and induced with aTc. pMP11 was cured out of strains by growing overnight at 42° C.

Butanone Production

Butanone production was tested in strains containing pJMR32 (lvaABCDE) and pJMR95 (adc). Media was comprised of LB broth supplemented with 20 mM LA or 33 mM acetate, accordingly. Production runs were performed for 24 hours with 5 ml in glass test tubes (20×150 mm, Fisher Scientific) with 250 rpm agitation in a 126 shaker (New Brunswick Scientific). Supernatant was filter sterilized and run on Restek Stabilwax-DA column (60 m, 0.53 mm ID) with a GC-FID (Shimadzu). Protocol for GC-FID: 40° C. (hold for 4 min) to 250° C. at 5° C./min, H₂ constant flow, linear velocity 40 cm/sec. Injection and detector temperature was 250° C. Minimal media was prepared according to the batch medium recipe by Korz et al. (Korz et al (1995) "Simple fed-batch technique for high cell density cultivation of Escherichia coli., " J. Biotechnol. 39, 59-65. Riesenberg et al (1991) "High cell density cultivation of Escherichia coli at controlled specific growth rate," J. Biotechnol. 20, 17-27. doi:10.1016/0168-1656(91)90032-Q.) Ferric ammonium citrate was substituted for Fe(III) citrate. Hereafter this media is referred to as Riesenberg-Korz (RK) media. Kanamycin was used at final concentration of 50 µg/mL and carbenicillin was used at a final concentration of 100 µg/mL. Plasmid construction was completed using Phusion® High Fidelity DNA Polymerase (NEB) for PCR reactions and Gibson assembly. (Gibson et al. (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases," Nat. Methods 6, 343-5.) Gibson reaction mixtures (2 µL) were transformed into chemically competent E. coli DH5 α and cells were plated on LB media with the appropriate antibiotics. Plasmids were verified by sequencing of the cloning junctions.

10

EXAMPLES

Chemicals, Strains, and Media

All chemicals were obtained from Sigma-Aldrich or Fisher Scientific. Bacterial strains and plasmids used in this study are summarized in Table 3. Strains and plasmids are listed in Table 3. *E. coli* strains were grown at 37° C. and *P. putida* strains were grown at 30° C. unless otherwise noted. Kanamycin was used at final concentration of 50 µg/ml. 5-Fluorouracil was used at a final concentration of 20 µg/mL.

4-hydroxyvalerate was made through the saponification of γ -valerolactone (GVL). See Martin, C. H. & Prather, K. L. J. High-titer production of monomeric hydroxyvalerates ¹⁵ from levulinic acid in *Pseudomonas putida. J. Biotechnol.* ¹³⁹, 61-67 (2009). The pH of 2M GVL was increased to a pH of 12, using 10 M sodium hydroxide (NaOH), and incubated for 1 hour. For use in bacterial growth conditions, 4HV stocks were adjusted to a pH of 8 using 5 M HCl. Plasmid construction was completed using Phusion®-brand

High Fidelity DNA Polymerase (New England Biolabs Inc., Ipswich, Mass.) for the PCR reactions and Gibson assembly. See Gibson, D. G. et al. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods 6, 343-5 (2009). P. putida genomic DNA sequences retrieved from NCBI database, with the following designations: PP_2791, lvaA; PP_2792, lvaB; PP_2793, lvaC; PP_2794, lvaD; PP_2795, lvaE; PP_2790, lvaR. 2 µL of the Gibson reaction mixture was transformed into chemically competent E. coli DH5a cells and plated on appropriate media. Minimal media was prepared from the following references: M9 minimal media was made according to Green and Sambrook and MOPS minimal media was made according to Neidhardt et al. Kanamycin was used at final concentration of 50 µg/ml. 5-Fluorouracil was used at a final concentration of 20 µg/mL. See Green, M. R. and Sambrook, J., Molecular Cloning: A Laboratory Manual (Fourth Edition), Cold Spring Harbor Laboratory Press, 2012, ISBN-10: 1936113422 and Neidhardt, F. C., Bloch, P. L. & Smith, D. F. Culture medium for enterobacteria. J. Bacteriol. 119, 736-747 (1974).

TABLE 3

	Strains and Plasmid List			
Strain/Plasmid	Relevant genotype/property	Source or Reference		
Strains Pseudomonas putida	_			
KT2440 KTU	Wild Type Δupp	ATCC 47054 Altenbuchner et al., <i>Appl. Environ.</i> <i>Microbiol.</i> 77, 5549-52 (2011)		
AlvaR AlvaA AlvaB AlvaC AlvaD AlvaD Escherichia coli	Δupp ΔPP_2970 Δupp ΔPP_2971 Δupp ΔPP_2972 Δupp ΔPP_2973 ΔPP_2974 Δupp ΔPP_2975	This work This work This work This work This work This work		
CC118λpir	Δ (ara-leu), araD, Δ lacX174, galE, galK, phoA, thi1, rpsE, rpoB, argE (Am), recA1, lysogenic Δ pir	de Lorenzo et al., BMC Microbiol. 11, 38 (2011). Invitogan		
MG1655	F δ volacZAM15 A(acZTA-argr) 0169 recA1 endA1 hsdR17 (r_k , m_k^+) phoA supE44 thi-1 gyrA96 relA1 λ^- F ⁻ λ^- ilvG ⁻ rfb-50 rph-1	(Waltham, MA, USA) Coli Genetic Stock Center ("CGSC"), Yale University, 266 Whitney Avenue, New Hayen, CT, USA		
LS5218 M141 M142 AfadE AfadE AatoC Plasmids	F ⁺ λ ⁺ fadR601 atoC512(Const) LS5218 mutant evolved on LA LS5218 mutant evolved on LA LS5218 ΔfadE LS5218 ΔfadE ΔatoC	CGSC This work This work This work This work		
pBAM1 pJOE6261.2 pJOE-lvaR	tnpA, Amp ^R , Kan ^R , oriR6K upp (from <i>P. putida</i>), Kan ^R , ColE1 origin pJOE6261.2 with up- and downstream regions of lyaP	de Lorenzo et al. Altenbuchner et al. This work		
pJOE-lvaA	pJOE6261.2 with up- and downstream regions of IvaA	This work		
pJOE-lvaB	pJOE6261.2 with up- and downstream regions of IvaB pJOE6261.2 with up, and downstream	This work		
pJOE-IvaE	pJOE6261.2 with up- and downstream pJOE6261.2 with up- and downstream regions of lvaE	This work		

TABLE 3-continued

	Strains and Plasmid List			
Strain/Plasmid	Relevant genotype/property	Source or Reference		
pBAD35	P_{BAD} promoter, Kan ^R , pBBR1 origin	Lennen et al., <i>Biotechnol. Bioeng.</i> 106, 193-202 (2010)		
pBAD-lvaA	pBAD35 carrying lvaA	This work		
pBAD-lvaB	pBAD35 carrying lvaB	This work		
pBAD-lvaC	pBAD35 carrying lvaC	This work		
pBAD-lvaD	pBAD35 carrying lvaD	This work		
pBAD-lvaE	pBAD35 carrying lvaE	This work		
pK18mobsacB	sacB, Kan ^R , pMB1 origin	Schafer et al., Gene 145, 69-73 (1994).		
pK18-lvaD	pK18mobsacB containing up- and downstream regions of lvaD	This work		
pJMR74	pBAD35 with P_{BAD} promoter and araC replaced with IvaA promoter and IvaR (<i>P. putida</i>) carrying sfGFP	This work		
pBbS2k-mCherry	Kan ^R , SC101 ori, P _{Tet} promoter, mCherry	Addgene, 75 Sidney St. #550A, Cambridge, MA, USA)		
pJMR5	pBbS2k carrying lva operon in front of mCherry	This work		
p2	pJMR5 mutant evolved on LA	This work		
pJMR32	pJMR5 with increased RBS for lva operon, mCherry removed	This work		

Transposon Library and Screening

The transposon library was created following a protocol 30^{-30} adapted from Martinez-Garcia et al. Martínez-Garcia, E., Calles, B., Arévalo-Rodriguez, M. & de Lorenzo, V. pBAM1: an all-synthetic genetic tool for analysis and construction of complex bacterial phenotypes. BMC Microbiol. 11, 38 (2011). Suicide vector delivery was achieved through 35 bi-parental mating. Overnights of P. putida KT2440 and E. coli CC118kpir with pBAM1 were grown with appropriate antibiotics. From overnight cultures, 1 mL of cells was pelleted by centrifugation, washed with 10 mM MgSO₄, and resuspended in 1 mL of 10 mM MgSO₄. Cells were mixed 40 in a 1:1 ratio into a final volume of 1 mL 10 mM MgSO₄, with the final concentration of each strain at an OD_{600} of 0.03 (3×10⁷ cells). The mixture was concentrated down to 30 µL and plated on 0.22 µm filter paper. The filter paper was incubated for 16 hrs on LB agar plates at 30° C. After 45 incubation, the filter paper was removed from the plate and transferred into a 1.5 mL microfuge tube with 1 mL of 10 mM MgSO₄. The cells were resuspended through vortexing and plated onto kanamycin selective M9 citrate plates, to isolate P. putida cells with transposon insertions. P. putida 50 transposon library was screened by replica plating colonies from the M9 citrate plates onto LB, M9 glucose and M9 LA plates supplemented with kanamycin. Positive hits were identified as colonies that exhibited growth on LB and glucose plates but not on LA plates. **RNA** Extraction

Wild type *P. putida* KT2440 cells were grown in MOPS minimal media supplemented with 20 mM LA to OD_{600} 0.8. 10 OD-mL were collected by centrifugation at 5000×g for 10 minutes at 4° C. in Beckman Coulter Allegra X-15R. The 60 supernatant was decanted and the pellet frozen at -80° C. for 24 hrs. The RNA extraction protocol is adapted from Pinto et al. Pinto, F. L., Thapper, A., Sontheim, W. & Lindblad, P. Analysis of current and alternative phenol based RNA extraction methodologies for cyanobacteria. *BMC Mol. Biol.* 65 10, 79 (2009). The frozen pellet was thawed, resuspended in 1.5 mL Trizol and transferred to a 2.0 mL microfuge tube.

The suspension was incubated for 5 minutes at 95° C. and then for 5 minutes on ice. After the incubation, 300 μ L chloroform was added and the tube shaken vigorously for 15 seconds. The Trizol-chloroform mixture was incubated at room temperature for 15 minutes and then centrifuged for 15 minutes at 12000×g and 4° C. The upper phase was transferred to a fresh tube and an equal volume of isopropanol was added. This mixture was incubated for 10 minutes at 12000×g and 4° C. The supernatant was discarded and the pellet resuspended in 1 mL of 75% ethanol. This was centrifuged for 5 minutes at 8000×g and 4° C. The supernatant was discarded, the pellet air dried for 3 minutes and then resuspended in 100 uL RNase-free water and stored at -80° C.

Transcription Start Site Isolation

The transcription start site for genes lvaR and lvaA were isolated using an adapted 5' Race protocol from Schramm et al. Schramm, G., Bruchhaus, I. & Roeder, T. A simple and reliable 5'-RACE approach. Nucleic Acids Res 28, E96 (2000). The RNA isolated from P. putida KT2440 was treated with the TURBO DNA-Free™ Kit from Invitrogen, catalog no. AM1907 (a subsidiary of ThermoFisher Scientific, Waltham, Mass.) to remove any contaminating DNA. The Promega GoScript-brand RT PCR kit was used to 55 generate cDNA using 1 µL of a 10 µM gene specific oligo (JMR2 for lvaR and JMR287 for lvaA) instead of the random oligo mixture. (Promega Corporation, Madison, Wis.) Following the inactivation of the reverse transcriptase, the cDNA was purified using Qiagen PCR Purification kit. (Qiagen Inc., Germantown, Md.) Tailing of the cDNA was achieved using the terminal deoxynucleotidyl transferase (TdT) enzyme from ThermoFisher Scientific. The final reaction mixture contained 1× reaction buffer, 1 pmol cDNA fragments, 60 pmol dGTP or dCTP and 30 U TdT. The reaction was incubated at 37° C. for 15 minutes and then quenched by heating to 70° C. for 10 minutes and the tailed

cDNA fragments cleaned up using a Qiagen PCR Purification kit. The tailed cDNA was amplified using GoTaq®brand Green Master Mix (Promega) with an annealing temperature of 55° C. and an extension time of 30 seconds. Primer GG318 was used for dGTP tailing and ALM244 was used for dCTP tailing. The reverse primer for lvaR was JMR150 and for lvaA was JMR296. The resulting PCR product was submitted for sequencing. 32

Polycistronic Verification

Using the DNAse treated RNA isolated from LA grown *P. putida* KT2440, cDNA for the operon was generated with the Promega GoScript-brand RT PCR kit using 1 μ L of a 10 μ M gene specific oligo (JMR237). The cDNA was then used as the template for PCR reactions using GoTaq Green Master Mix with an annealing temperature of 55° C. and an extension time of 0:30 seconds. Primers used for each gene are given in Table 4.

TABLE 4

	Primer Li	st
Primer Name	Sequence	Function
	5' Race prim	ners
JMR2	AACCTGGACGGTGAAGAGCG (SEQ. ID. NO: 11)	Reverse primer for lvaR cDNA
JMR287	GAACGGACAGGAAGCACAG (SEQ. ID. NO: 12)	Reverse primer for lvaA cDNA
GG318	GGCCACGCGTCGACTAGTACCCCCC CCCCCCC (SEQ. ID. NO: 13)	Amplification primer for dGTP tailing reactions
ALM244	GGCCACGCGTCGACTAGTACGGGH HGGGHHGGGHHG (SEQ. ID. NO: 14)	Amplification primer for dCTP tailing reactions
JMR150	CCAATGCCCGTAGCAGGTCGC (SEQ. ID. NO: 15)	Reverse primer for lvaR
JMR296	GAACTCCTGTTCACGGTCAAG (SEQ. ID. NO: 16)	Reverse primer for lvaA
	Operon cDNA Reverse Trar	scription Primer
JMR237	TCAATGATCGACGGCACCG (SEQ. ID. NO: 17)	Reverse primer for operon cDNA
	Operon-individu	al genes
JMR3	ACGCTGTGCTTCCTGTCCGTT (SEQ. ID. NO: 18)	lvaA Forward
JMR325	GTTCTTCACCGGACAGATGG (SEQ. ID. NO: 19)	lvaA Reverse
JMR576	CCCACGAATTGCTCGAGATC (SEQ. ID. NO: 20)	lvaB Forward
JMR577	GCAGGTCGGGCAATGTCG (SEQ. ID. NO: 21)	lvaB Reverse
JMR290	CATGCCCGTTCGTGCTTC (SEQ. ID. NO: 22)	lvaC Forward
JMR572	CAGGTCCATCATGTTGTCGGC (SEQ. ID. NO: 23)	lvaC Reverse
JMR330	ACGAGCCGTGAGGACATCT (SEQ. ID. NO: 24)	lvaD Forward
JMR293	CGAGCGCAACTTGTCACC (SEQ. ID. NO: 25)	lvaD Reverse
JMR294	GCTGGTGTGCATCAACATCC (SEQ. ID. NO: 26)	lvaE Forward
JMR571	GCAGTGGAACATCGGCAAGG (SEQ. ID. NO: 27)	lvaE Reverse
JMR573	TGTTATACGCGCGTGTTCG (SEQ. ID. NO: 28)	lvaF Forward
JMR574	GGTACACGTAGAACGCCGAC (SEQ. ID. NO: 29)	lvaF Reverse

TABLE 4-continued

	Primer	List	
Primer Name	Sequence	Function	
JMR575	CATGGTGTTCGTGCTGTTCACC (SEQ. ID. NO: 30)	lvaG Forward	
JMR579	GCCGAACAGCAACCTGATCA (SEQ. ID. NO: 31)	lvaG Reverse	
	Operon-indiv	idual genes	
JMR3	ACGCTGTGCTTCCTGTCCGTT (SEQ. ID. NO: 32)	lvaA Forward	
JMR289	CAGGTCGGGCAATGTCG (SEQ. ID. NO: 33)	lvaB Reverse	
JMR576	CCCACGAATTGCTCGAGATC (SEQ. ID. NO: 34)	lvaB Forward	
JMR578	GAAGCACGAACGGGCATGG (SEQ. ID. NO: 35)	lvaC Reverse	
JMR301	GCCGACAACATGATGGACCTG (SEQ. ID. NO: 36)	lvaC Forward	
JMR299	CGTGGTCCCAGGTTTGATCATC (SEQ. ID. NO: 37)	lvaD Reverse	
JMR292	GCTCGACACCAACCTCAAGG (SEQ. ID. NO: 38)	lvaD Forward	
JMR333	GCCAAGAACGCTTCGTAGTC (SEQ. ID. NO: 39)	lvaE Reverse	
JMR11	CAC GGT GCT GGA TAC CGA CA (SEQ. ID. NO: 40)	lvaE Forward	
JMR574	GGTACACGTAGAACGCCGAC (SEQ. ID. NO: 41)	lvaF Reverse	
JMR573	TGTTATACGCGCGTGTTCG (SEQ. ID. NO: 42)	lvaF Forward	
JMR579	GCCGAACAGCAACCTGATCA (SEQ. ID. NO: 43)	lvaG Reverse	

P. putida Knockouts

The genetic knockout of lvaD was performed following 45 the protocol from Schafer et al. Schafer, A. et al. Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corvnebacterium glutamicum. Gene 145, 69-73 (1994). Knockouts of the 50 remaining genes in P. putida were performed following the protocol from Graf et al. Graf, N. & Altenbuchner, J. Development of a method for markerless gene deletion in Pseudomonas putida. Appl. Environ. Microbiol. 77, 5549-52 (2011). Knockout constructs were designed with 500 bp of homology up and down stream of the deletion site. This region was cloned into the pJOE vector backbone. This suicide vector was transformed into P. putida KT2440 Δupp (P. putida KTU) through electroporation and colonies that successfully integrated the plasmid into the chromosome were selected on LB_{kan} plates. A colony was then grown in LB media overnight to cure the counter-selection cassette. Various dilutions of the overnight culture were plated on LB5-FU plates to isolate colonies that had successfully 65 excised the plasmid insertion. Colonies were then screened by colony PCR to isolate deletion strains.

Transcriptional Reporter Assay

P. putida KT2440 was transformed with pJMR74 through electroporation. pJMR74 is a broad host range plasmid containing a kan resistance marker and the predicted regulator for the lva operon, lvaR. Expressed divergent of lvaR is sfGFP cloned under the native promoter for lvaA. P. putida KT2440 containing empty vector pBAD35 was used as the no fluorescence control. Overnights of P. putida+ pJMR74 or pBAD35 were inoculated at an OD600 of 0.05 in LB+kan50+20 mM of the appropriate carboxylic acid (acetate, propionate, butyrate, valerate, LA, 4HV, or hexanoate). Final time points were taken at 24 hours in a Tecan infinite m1000, with OD600 absorbance measured at 600 nm and fluorescence measured with an excitation of 485 nm and emission of 510 nm. Standard deviation error propagation was performed for the normalization of fluorescence and optical density measurements.

Protein Production and Purification

Vectors were constructed using the pET28b backbone and individually cloned genes from the *P. putida* genome. The plasmid containing lvaAB was constructed using the pET28b backbone and the lvaAB genes cloned as an operon directly out of *P. putida*'s genome. *E. coli* BL21 (DE3) strains with sequenced verified plasmids were grown at 37°

C. in LB. Cultures were induced with 1 mM isopropyl- β -D-thiogalactopyranoside (IPTG) at an OD₆₀₀ of 0.4. The cultures were then chilled on ice for 10 minutes before incubation at 16° C. for 18 hours in New Brunswick Incubator 1-26. Then the cultures were centrifuged for 20 minutes at 5000×g in a Beckman Coulter Avanti J-E centrifuge. The supernatant was decanted and the cells resuspended in 30 mL of LB before another centrifugation at 5000×g for 20 minutes. The supernatant was removed and pellets stored at -80° C. for at least 24 hours.

Purification of His6-(lvaE) and Maltose Binding Protein (MBP)-Tagged Proteins (lvaABCD)

Frozen cell pellets were thawed on ice and resuspended in His6-lysis buffer (50 mM Na_2HPO_4 , 300 mM NaCl, 10 mM ¹⁵ imidazole, 2 mM DTT, pH 8.0) supplemented with 2 μ L of benzonase or MBP-lysis buffer (20 mM Tris-HCl, 200 mM NaCl, 1 mM EDTA, 1 mM DTT, pH 7.4) supplemented with 2 μ L of benzonase. Cell suspensions were sonicated 3 times using the program: 1.5 second pulse, 1.5 second pause, 40% ²⁰ duty, for a total of 30 second. Between each sonication cycle, the solution was stored on ice for 5 minutes. Lysed cells were centrifuged at 25,000×g at 4° C. for 30 min and the supernatant filtered through a 0.45 μ m filter.

For the purification of His₆-tagged proteins, a GE Äkta 25 Start System with a 1 mL HisTrap HP column and a constant flow rate of 1 mL/minute was used. 5 column volume (CV) of wash buffer (50 mM Na₂HPO₄, 300 mM NaCl, 40 mM imidazole, 2 mM DTT, pH 8.0) was used to equilibrate the column. (GE Healthcare Life Sciences, Pittsburgh, Pa.) The 30 sample was loaded and washed with 15 CV wash buffer. The protein was eluted with 5 CV elution buffer (50 mM Na₂HPO₄, 300 mM NaCl, 250 mM imidazole, 2 mM DTT, pH 7.8). 1 mL fractions of eluted protein were collected. A GE PD-10 desalting column was used to buffer exchange the 35 protein into the desalting buffer (100 mM Tris, 4.1 M glycerol and 2 mM DTT). An Amicon®-brand Ultra 4 mL Centrifugal Filter with a 10 kDa cut-off size was used to concentrate the protein. (MilliporeSigma, Billerica, Mass.) Each protein was stored at -80° C. until use. 40

For the purification of MBP-tagged proteins, a GE Åkta Start System with a 1 mL MBPTrap HP column and a constant flow rate of 1 mL/minute was used. 5 column volume (CV) of wash buffer was used to equilibrate the column. The sample was loaded and washed with 15 CV 45 wash buffer. The protein was eluted with 5 CV elution buffer (20 mM Tris-HCl, 200 mM NaCl, 1 mM EDTA, 1 mM DTT, 10 mM maltose, pH 7.4). 1 mL fractions of eluted protein were collected. A GE PD-10 desalting column was used to buffer exchange the protein into the desalting buffer (100 50 mM Tris, 4.1 M glycerol and 2 mM DTT). An Amicon® Ultra 4 mL Centrifugal Filter with a 10 kDa cut-off size was used to concentrate the protein. The protein was stored at -80° C. until use.

LvaAB Pulldown Experiment

All proteins for the pulldown experiment were purified on a 1 mL MBPTrap HP column, as previously described, regardless of the protein tag. LvaA was tagged with an N-terminal MBP tag. LvaAB was designed with LvaA tagged with an N-terminal MBP tag and LvaB untagged. 60 Both proteins were expressed from the same construct as they appear in a native operon. For controls, LvaA contained an N-terminal His tag and was expressed with the native LvaB and the last control was an N-terminal MBP tagged LvaA containing a frameshift stop codon expressed with 65 native LvaB. The purified proteins were analyzed on a 15% SDS-page gel to determine the major protein products.

Enzyme Assays and Metabolite Purification

All in vitro enzyme assays were performed in a 30° C. water bath at a pH of 6.5 and contained 50 mM Tris-HCL, 1 mM MgCl₂, and 2 mM DTT. Final reaction concentrations included the following components, depending on enzymes added: 0.5 mM LA, 0.55 mM CoA, 0.55 mM ATP (1.05 mM ATP when lvaAB were present), 0 mM NAD(P)H (0.55 mM NAD(P)H when lvaD was present). Final protein concentrations were: LvaA (0.2 µM), LvaB (0.8 µM), LvaAB (0.4 μ M), LvaC (0.4 μ M), LvaD (0.2 μ M), and LvaE (0.2 μ M) (data not shown). The in vitro enzyme assays were incubated for 30 minutes, excluding the time course which was incubated for various intervals up to 60 minutes. Reaction metabolites were purified following a modified protocol from Zhang, G. F. et al. Catabolism of 4-hydroxyacids and 4-hydroxynonenal via 4-hydroxy-4-phosphoacyl-CoAs. J. Biol. Chem. 284, 33521-33534 (2009). Reactions were quenched by adding methanol/water 1:1 containing 5% acetic acid in a 1:1 volume ratio (extraction buffer). Quenched reactions were run on a 1 mL ion exchange column prepacked with 100 mg 2-2(pyridyl)ethyl silica gel from MilliporeSigma. The column had been preconditioned with 1 mL methanol followed by 1 mL of extraction buffer. Metabolites load on the column were washed with 750 µL extraction buffer before being eluted with 1 mL of 4:1 methanol/250 mM ammonium formate, pH 6.3 and 1 mL methanol. Samples were dried using Thermo Scientific Savant SC250EXP Speedvac Concentrator and stored at -80° C. until LC/MS analysis. Samples for LC/MS analysis were resuspended in 100 uL 50 mM ammonium formate. Liquid Chromatography Mass Spectrometry (LC/MS, LC/MS/MS)

Samples were analyzed using an HPLC-MS/MS system consisting of a Vanquish™ UHPLC system (Thermo Scientific) coupled by electrospray ionization (ESI; negative polarity) to a hybrid quadrupole-high-resolution mass spectrometer (Q Exactive orbitrap, Thermo Scientific) operated in full scan mode for detection of targeted compounds based on their accurate masses. Properties of Full MS-SIM included resolution of 140,000, AGC target of 1E6, maximum IT of 40 ms, and scan range from 70-1000 m/z. Liquid chromatography (LC) separation was achieved using an ACQUITY UPLC® BEH C18 (2.1×100 mm column, 1.7 µm particle size; Part No. 186002352; Serial No. 02623521115711; Waters, Milford, Mass.). Solvent A was 97:3 water: methanol with 10 mM tributylamine (TBA) adjusted to pH 8.1-8.2 with 9 mM acetic acid. Solvent B was 100% methanol. Total run time was 25 min with the following gradient was: 0 min, 5% B; 2.5 min, 5% B; 5 min, 20% B; 7.5 min, 20% B; 13 min, 55% B; 15.5 min, 95% B; 18.5 min, 95% B; 19 min, 5% B; 25 min, 5% B. Flow rate was 200 µL/min. The autosampler and the column temperatures were 4° C. and 25° C., respectively. Fragmentation of CoA, 4HV-CoA, and phosphorylated 4HV-CoA was achieved using parameters indicated in Table 5.

TABLE 5

Other parameters for targeted MS/MS		
Resolution AGC target Maximum IT Isolation width Fixed first mass (N)CE/stepped (N)CE Default charge	70,000 1E6 40 ms 1.4 (m/z) 70 m/z 15, 30, 45	
Polarity	negative	

Enzymatic "In Gel" Digestion

"In gel" digestion and mass spectrometric analysis was done at the Mass Spectrometry Facility [Biotechnology Center, University of Wisconsin-Madison]. The digestion was performed as outlined on the website: http://www.bio- 5 tech.wisc.edu/ServicesResearch/MassSpec/ingel.htm. In short, Coomassie Blue R-250 stained gel pieces were destained twice for 5 min in MeOH/H₂O/NH₄HCO₃ [50%: 50%:100 mM], dehydrated for 5 min in ACN/H2O/ NH_4HCO_3 [50%:50%:25 mM] then once more for 1 min. in 10 100% ACN, dried in a Speed-Vac for 2 min., reduced in 25 mM DTT [dithiotreitol in 25 mM NH₄HCO₃] for 30 min. at 56° C., alkylated with 55 mM IAA [iodoacetamide in 25 mM NH₄HCO₃] in darkness at room temperature for 30 min., washed twice in H₂O for 30 sec., equilibrated in 25 mM NH₄HCO₃ for 1 min., dehydrated for 5 min. in ACN/H₂O/ NH₄HCO₃ [50%:50%:25 mM] then once more for 30 sec in 100% ACN, dried again and rehydrated with 20 µl of trypsin solution [10 ng/µl trypsin Gold (Promega) in 25 mM NH₄HCO₃/0.01% ProteaseMAX w/v (Promega)]. Addi- 20 tional 30 µl of digestion solution [25 mM NH₄HCO₃/0.01% ProteaseMAX w/v] was added to facilitate complete rehydration and excess overlay needed for peptide extraction. The digestion was conducted for 3 hrs at 42° C. Peptides generated from digestion were transferred to a new tube and 25 acidified with 2.5% TFA [trifluoroacetic acid] to 0.3% final. Degraded ProteaseMAX was removed via centrifugation [max speed, 10 minutes] and the peptides solid phase extracted (ZipTip® C18 pipette tips Millipore, Billerica, Mass.). 30

NanoLC-MS/MS

Peptides were analyzed by nanoLC-MS/MS using the Agilent 1100 nanoflow system (Agilent) connected to a new generation hybrid linear ion trap-orbitrap mass spectrometer (LTQ-Orbitrap Elite[™], Thermo Fisher Scientific) equipped 35 with an EASY-Spray[™] electrospray source. Chromatography of peptides prior to mass spectral analysis was accomplished using capillary emitter column (PepMap® C18, 3 μM, 100 Å, 150×0.075 mm, Thermo Fisher Scientific) onto which 2 µl of extracted peptides was automatically loaded. 40 NanoHPLC system delivered solvents A: 0.1% (v/v) formic acid, and B: 99.9% (v/v) acetonitrile, 0.1% (v/v) formic acid at 0.50 µL/min to load the peptides (over a 30 minute period) and 0.3 µl/min to elute peptides directly into the nanoelectrospray with gradual gradient from 3% (v/v) B to 30% (v/v) B over 77 minutes and concluded with 5 minute fast gradient from 30% (v/v) B to 50% (v/v) B at which time a 5 minute flash-out from 50-95% (v/v) B took place. As peptides eluted from the HPLC-column/electrospray source survey MS scans were acquired in the Orbitrap with a resolution of 120,000 followed by MS2 fragmentation of 20 most intense peptides detected in the MS1 scan from 300 to 2000 m/z; redundancy was limited by dynamic exclusion. Data Analysis

Raw MS/MS data were converted to mgf file format using MSConvert (ProteoWizard: Open Source Software for Rapid Proteomics Tools Development. Mascot generic format (mgf) is a standard format for MS/MS searches in proteomics and is commonly used for small molecule MS/MS searching. It was developed by Matrix Science Inc., Boston, Mass., which also makes and sells software for generating and manipulating mgf files.) Resulting mgf files were used to search against *Pseudomonas putida* amino acid sequence database containing a list of common contaminants (5,388 total entries) using in-house Mascot search engine 2.2.07 (Matrix Science) with variable methionine oxidation with asparagine and glutamine deamidation plus

fixed cysteine carbamidomethylation. Peptide mass tolerance was set at 15 ppm and fragment mass at 0.6 Da.

Identification of Organisms with Potential Homologous LA Catabolism Pathways

Possible LvaABCD homologs were identified by performing a BLAST search of each protein sequence against the NCBI non-redundant protein sequence database using the BioPython library. Cock, P. J. A. et al. Biopython: freely available Python tools for computational molecular biology and bioinformatics. *Bioinformatics* 25, 1422-3 (2009). From the search results, the organism name was extracted from the sequence title and added to a set for each protein. The list of organisms containing the full set of LvaABCD enzymes was found by determining the intersection of the four sets of organism names from the BLAST results from each protein. A similar list was found for those organisms containing only LvaACD homologs. These lists were then used to query the original search results and find the lists of proteins that have homology to the proteins in the Lva pathway

RB-TnSeq

To further investigate genes involved in LA metabolism, random bar code transposon-site sequencing (RB-TnSeq) was performed for the growth of *Pseudomonas Putida* on LA and 4HV. RB-TnSeq is an efficient method for determining gene importance under different conditions with high genomic coverage. Wetmore, K. M. M. et al. Rapid Quantification of Mutant Fitness in Diverse Bacteria by Sequencing Randomly Bar-Coded Transposons. *MBio* 6, 1-15 (2015). A mixture of P1 oligos with variable length N space regions (2-5 nt) was used to "phase" the BarSeq PCR products for sequencing on an Illumina HiSeq4000. See Table 6. A summary of genes identified as interesting is shown in Table 7 including fitness scores for growth on minimal media with LA or 4HV relative to minimal media with glucose or the initial inoculum grown in LB.

TABLE 6

	Modified Oligonucleotides used for BarSeq				
45	Oligo Name	Sequence			
	Barseq_	AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTA			
	P1	CACGACGCTCTTCCGATCTNNNNGTCGACCTGCAGCGT			
50		ACG (SEQ. ID. NO: 44)			
	Barseq_	AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTA			
	P1_4N	CACGACGCTCTTCCGATCTNNNNGTCGACCTGCAGCGTA			
55		CG (SEQ. ID. NO: 45)			
	Barseq_	AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTA			
	P1_3N	CACGACGCTCTTCCGATCTNNNGTCGACCTGCAGCGTAC			
		G (SEQ. ID. NO: 46)			
50					
	Barseq_	AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTA			
	P1_2N	CACGACGCTCTTCCGATCTNNGTCGACCTGCAGCGTACG			
		(SEQ. ID. NO: 47)			
c =					

TABLE 7

		Genes Identified as Interesting		
Locus	Name	Annotation	LA/Gluc	4HV/Gluc
		Genes Identified as Interesting		
PP_0364 PP_0988 PP_2332 PP_2336	bioH gcvP-1 	pimeloyl-ACP methyl ester esterase glycine dehydrogenase ATP-dependent zinc protease family econitate hydrotee	0.3 -0.02 -0.1	0.02 -0.003 0.2
PP_2337 PP_2790 PP_2791 PP_2792 PP_2792	prpF lvaR lvaA lvaB	aconitate isomerase Sigma-54 dependent sensory box protein Aminoglycoside phosphotransferase Hypothetical protein	-4.4 -3.9 -5.2 NA	-3.8 -5.0 -4.2 NA
PP_2793 PP_2794 PP_2795 PP_2796 PP_2797 PP_3741 PP_4217	lvaC lvaE lvaF lvaG mrdA-I fpvA	Oxidoreductase, short chain dehydrogenase/reductase family Oxidoreductase, short chain dehydrogenase/reductase family Acyl-CoA synthetase conserved protein of unknown function acetate permease transpeptidase TonB-dependent outer membrane ferripyoverdine receptor Important for Fitness in LA and 4HV	-6.5 0.4 0.2 0.1 0.0 0.3	-5.3 -4.6 0.7 1.7 -0.06 0.02
PP_2217 PP_2334 PP_2335 PP_3286 PP_3753 PP_3754 PP_3755		enoyl-CoA hydratase 2-methylisocitrate lyase methylcitrate synthase DNA-binding transcriptional repressor PaaX(phenylacetyl-CoA) Transcriptional regulator, AraC family Beta-ketothiolase BktB 3-hydroxybutyryl-CoA dehydrogenase Important for Fitness in LA but not 4HV	-2.0 -4.9 -5.1 -4.3 -4.8 -5.8 -2.9	-2.2 -3.3 -4.7 -4.1 -2.6 -3.2 -3.1
PP_1291 PP_2333 PP_3121 PP_3122 PP_3123 PP_3925 PP_4515 PP_4628		PhoH family protein GntR family transcriptional regulator transcriptional regulator, LysR family acetoacetyl CoA-transferase (subunit A) acetoacetyl CoA-transferase (subunit B) conserved protein of unknown function Transcriptional regulator, MarR family conserved protein of unknown function Important for Fitness in 4HV but not LA	-2.5 -4.5 -4.1 -2.3 -3.1 -2.1 -2.2 -3.6	$\begin{array}{c} 0.3 \\ -0.7 \\ -0.3 \\ -0.1 \\ -0.02 \\ -0.9 \\ 0.03 \\ -1.3 \end{array}$
PP_0951 PP_0955 PP_1328 PP_1764 PP_1778 PP_1779 PP_1968 PP_2082 PP_2436 PP_2436 PP_4342 PP_4571 PP_4762		Ribosome hibernation promoting factor Putative sigma factor regulator Protein MraZ Phosphoglycolate phosphatase 2 Lipopolysaccharide ABC export system, permease protein Lipopolysaccharide ABC export system, ATP-binding protein TetR family transcriptional regulator phosphoenolpyruvate synthetase Transcriptional regulator, LysR family flagellar synthesis regulator, putative ATPase cysteine synthase A Acyl-CoA thioesterase II	$\begin{array}{c} 0.2 \\ -0.5 \\ -0.5 \\ -1.3 \\ 0.2 \\ 0.003 \\ -0.8 \\ -0.2 \\ -0.3 \\ -1.4 \\ -0.1 \\ 0.3 \end{array}$	-2.4 -2.6 -4.2 -2.7 -4.8 -4.0 -2.1 -2.7 -2.4 -2.0 -3.5 -4.3

Methods

P. putida Library Preparation

We generated a DNA-barcoded transposon mutant library of P. putida KT2440 using previously described methods and resources. (Wetmore et al., supra.) Briefly, we conjugated wild-type P. putida KT2440 with an E. coli strain (WM3064) carrying the transposon vector library pKMW3. 55 pKMW3 is a mariner class transposon vector library containing a kanamycin resistance marker and millions of random 20 mer DNA barcodes. Conjugations were performed at 1:1 donor:recipient ratio on LB+diaminopimelic acid (DAP) plates for 6 hours and finally plated on LB plates 60 supplemented with 100 ug/mL kanamycin. The E. coli conjugation strain WM3064 is auxotrophic for DAP and does not grow on media that is not supplemented with this compound. We combined thousands of kanamycin-resistant P. putida colonies into a single tube, made multiple aliquots, 65 and stored these samples at -80° C. for future use. We also extracted genomic DNA and mapped the transposon inser-

tion locations and their associated DNA barcodes via a TnSeq-like Illumina sequencing protocol, as previously described by Wetmore et al. (supra). We named the final, sequenced mapped transposon mutant library *Putida_ML5*. LA and 4HV Growth Experiments

An aliquot of the *P. Putida* RB-TnSeq library (*Putida_ML5*) was grown for 5 hours in a shake flask containing 25 mL of LB media with 50 ug/mL Kanamycin Sulfate to late log phase (30° C., 250 RPM). 1 OD₆₀₀*mL of cells were pelleted, decanted, and frozen at -20° C. for barcode sequencing as the time zero inoculum control. 1 OD₆₀₀*mL of cells per treatment were washed with three volumes of minimal media with no carbon source and then resuspended in 2× minimal media with no carbon source for a new OD₆₀₀ measurement. These cells were diluted into 2× minimal media to an OD₆₀₀ of 0.04. This culture was then diluted in half with 2× solutions of each carbon source of interest to a final volume of 10 mL in a culture tube for 4HV and 1.2 mL total volume in the well of a 24-well microplate

40

45

for LA. The carbon sources tested were 40 mM 4HV (pH adjusted to 7 with NaOH), 40 mM LA (pH adjusted to 7 with NaOH), 20 mM potassium acetate, and 40 mM glucose, each with two replicates. The 4HV and acetate experiments were performed one day and the LA experiments were performed on a different day, each day with its own 40 mM Glucose control. The culture tubes were placed in a shaker incubator $(30^{\circ} \text{ C}., 250 \text{ RPM})$ until they achieved and OD_{600} of ~3 for 40 mM Glucose (~20 hours), ~0.25 for 20 mM potassium acetate (~44 hours), or ~0.3-0.5 for 40 mM 4HV (~68 hours). For LA, the samples were grown in a 24-well microplate in a Multitron shaker set to 30° C. and 700 rpm. We monitored the OD of the microplate in a Tecan M1000 microplate reader. A 1 mL sample from each culture tube 15 was pelleted and frozen at -20° C. for barcode sequencing. BarSeq

A DNA barcode sequencing (BarSeq) was performed as described in Wetmore et al. (supra), with a slight variation in the common P1 oligo design. In this study, a mixture of P1 20 oligos with variable length N space regions (2-5 nt) was used to "phase" the BarSeq PCR products for sequencing on the Illumina HiSeq4000.

Data Analysis

Both the TnSeq data and the BarSeq data were processed 25 using analysis scripts as described in Wetmore et al. (supra). Briefly, the fitness of a strain in the normalized \log_2 ratio of barcode reads in the experimental sample to barcode reads in the time zero sample. The fitness of a gene is the weighted average of the strain fitness for insertions in the central 10-90% of the gene. The gene fitness values are normalized so that the typical gene has a fitness of zero. The primary statistic t-value is of the form of fitness divided by the estimated variance across different mutants of the same gene. All experiments described herein pass the quality metrics described in Wetmore et al. unless noted otherwise. Identifying Genes of Interest

The fitness values reported in Table 7 are the average of 2 replicates. Fitness scores for LA and 4HV relative to glucose were calculated using the following equation:

$$\operatorname{Fitness}\left(\frac{LA}{\operatorname{Glucose}}\right) = \operatorname{Fitness}(LA) - \operatorname{Fitness}(\operatorname{Glucose})$$

Annotations in Table 7 and discussed in the text below were adapted from Dehal, P. S. et al. MicrobesOnline: An integrated portal for comparative and functional genomics. Nucleic Acids Res. 38, 396-400 (2009).

RB-TnSeq Results are Consistent with the Other Evidence 50 All genes mentioned above are shown with their fitness scores for growth on LA and 4HV in Table 6. Genes that were identified as transposon library hits have their gene loci highlighted in red italics.

RB-TnSeq analysis suggests the genes identified as con- 55 stituting the LA metabolism operon lvaABCDEFG as well as the proposed regulator lvaR were important for growth on both LA and 4HV with a few exceptions described as follows. lvaB was excluded from the data summary for growth on LA and 4HV due to insufficient barcode insertions 60 in this small gene and lvaE (shown to not be essential for growth on LA in the main text) shows no phenotype on LA.

RB-TnSeq analysis suggests lvaF and lvaG are not important for growth on LA or 4HV, suggesting they are not required for transport of these metabolites at the concentra- 65 tions used in the experiments. The positive fitness scores of these genes for growth on 4HV suggest that the 4HV

42

concentrations used in this experiment had negative effects on fitness, an effect that would be alleviated by elimination of import system (See section below: Potential Induction of Quorum-Sensing Systems by y-Valerolactone). None of the remaining transposon library hits noted herein exhibited interesting phenotypes in the RB-TnSeq experiment, suggesting they may have been dependent upon the transposon library experiment.

In addition to genes identified in above, genes of interest shown in Table 6 were identified using the following criteria: Important for Fitness in LA and 4HV: Fitness scores lower than -2 for both LA and 4HV.

Important for Fitness in LA but not 4HV: Fitness score for LA lower than -2 and fitness score for 4HV greater than -2.

Important for Fitness in 4HV but not LA: Fitness score for 4HV lower than -2 and fitness score for LA greater than -2.

Enhanced Fitness in 4HV: Fitness score greater than 2 for 4HV.

This list of genes of interest was further refined by eliminating genes that shared a phenotype with growth on acetate as these results were considered not relevant to the scope of this work.

β-Oxidation of 3-Hydroxyvaleryl-CoA to Propionyl-CoA and Acetyl-CoA by Genes Important for Growth on LA and 4HV

As proposed above, the 3-hydroxyvaleryl-CoA metabolite produced in LA metabolism could be utilized through β-Oxidation to form Propionyl-CoA and Acetyl-CoA. RB-TnSeq analysis helped to identify potential candidate genes for this pathway:

PP_3755 is annotated as a 3-hydroxybutyryl-CoA dehydrogenase, suggesting that this enzyme catalyzes the conversion of 3-hydroxyvaleryl-CoA to 3-ketovaleryl-CoA. 35 PP_3754 is annotated as a β -ketothiolase, suggesting that this enzyme catalyzes the conversion of 3-ketovaleryl-CoA to propionyl-CoA and Acetyl-CoA.

PP_3753 is annotated as a transcriptional regulator and its location directly upstream of the two previous genes suggests a role in the regulation of these two (3-oxidation genes. Propionyl-CoA Metabolism by Genes Important for Growth on LA and 4HV

After propionyl-CoA is formed through the mechanism proposed in the previous section, it could be further metabolized to form succinate and pyruvate through the 2-methylcitrate cycle. PP_2337 is annotated as a methylaconitate isomerase (prpF), suggesting that the pathway utilized is the 2-methylcitrate cycle II that passes through a trans-2methyl-aconitate intermediate. RB-TnSeq analysis helped to identify potential candidate genes for this pathway:

PP_2335 is annotated as a methylcitrate synthase, suggesting that this enzyme catalyzes the reaction of propionyl-CoA with oxaloacetate to form 2-methylcitrate.

PP_2336 is annotated as an aconitate hydratase. PP_2339, an additional gene in close chromosomal proximity but with insufficient BarSeq data for analysis is also annotated as an aconitate hydratase. These results suggest that some combination of these two enzymes catalyze both the conversion of 2-methylcitrate to trans-2-methylaconitate and the downstream conversion of cis-2-methylaconitate to 2-methylisocitrate.

PP_2337 is annotated as a methylaconitate isomerase, suggesting that this enzyme catalyzes the conversion of trans-2-methylaconitate to cis-2-methylaconitate.

PP_2334 is annotated as a 2-methylisocitrate lyase, suggesting that this enzyme catalyzes the conversion of 2-methylisocitrate to succinate and pyruvate.

PP_2333 is annotated as a transcriptional regulator and its location directly upstream of the PP_2334-2339 genes suggests a role in the regulation of these propionyl-CoA metabolism genes.

Potential LA CoA Transferase

lvaE was shown to catalyze the conversion of LA to levulinyl-CoA as well as the conversion of 4HV to 4-hydroxyvalerly-CoA. lvaE is essential for growth on 4HV but not essential for growth on LA, suggesting that there is another enzyme capable of catalyzing the conversion of LA 10 to levulinyl-CoA. PP 3122 and PP 3123 are annotated as acetoacetyl CoA-transferase subunits A and B respectively and are both important for growth on LA but not 4HV, suggesting they could fill the role of the additional catalyst for levulinyl-CoA formation. PP_3121 is also important for 15 growth on LA but not 4HV and is annotated as a transcriptional regulator. Its genomic context suggests it regulates the expression of PP_3122 and PP_3123. This set of genes is analogous to the dhcAB operon involved in catabolism of carnitine in Pseudomonas aeruginosa. PP_3121 shares 72% 20 sequence identity across 95% of its sequence with dhcR (PA1998) and PP_3122 and PP_3123 share 86% and 90% identity across their entire sequences with dhcA (PA1999) and dhcB (PA2000), respectively. dhcR regulates expression of the dhcAB operon encoding a predicted 3-ketoacid CoA- 25 transferase with evidence of activity on 3-dehydrocarnitine. Wargo, M. J. & Hogan, D. A. Identification of genes required for Pseudomonas aeruginosa carnitine catabolism. Microbiology 155, 2411-2419 (2009). PP_3121-PP_3123 could serve a similar role in catabolism of LA.

Transcriptional Regulators Control Both Beneficial and Detrimental Systems for Fitness Under LA and 4HV Metabolism

PP_3286 and PP_3753 are annotated as transcriptional regulators and RB-TnSeq analysis suggests they are impor-35 tant for growth on LA and 4HV. The annotation for PP_3286 suggests involvement in the regulation of phenylacetic acid metabolism. As previously stated, genomic context suggests the involvement of PP_3753 in the regulation of the probable β -oxidation genes PP_3754-3755. 40

PP_3121 and PP_4515 are annotated as transcriptional regulators and RB-TnSeq analysis suggests they are important for growth on LA but not important for growth on 4HV. As previously stated, genomic context suggests PP_3121 regulates expression of the potential acetoacetyl-CoA trans- 45 ferase subunits PP_3122-3123. The regulatory role of PP_4515 is unclear.

Conversely, PP_0995, PP_1328, PP_1968, PP_2333, and PP_2436 are annotated as transcriptional regulators and RB-TnSeq analysis suggests they are important for growth 50 on 4HV, but not important for growth on LA. PP_0995 shares 41% homology across its entire sequence with a gene in Caulobacter crescentus (CC3252) thought to be involved in sigma factor regulation for heavy metal stress, although its regulatory role in Pseudomonas putida is unclear. Kohler, 55 C., Lourenço, R. F., Avelar, G. M. & Gomes, S. L. Extracytoplasmic function (ECF) sigma factor σF is involved in Caulobacter crescentus response to heavy metal stress. BMC Microbiol. 12, 210 (2012). As previously stated, genomic context suggests the involvement of PP_2333 in 60 the regulation of the probable propionyl-CoA metabolism genes PP_2333-2339. The regulatory functions of PP_1328, PP_1968, and PP_2436 are unclear.

PP_0191, PP_1236, PP_2144, PP_3603, and PP_4734 are annotated as transcriptional regulators and RB-TnSeq analysis suggests their deletions are beneficial for growth on 4HV. PP_0191 is annotated as a regulator of alginate bioaccumu-

lation, suggesting a role in biofilm formation. PP_1236 is annotated as a regulator of a glycine cleavage system and a close homolog in *Pseudomonas aeruginosa* (PA1009) is involved in the regulation of host colonization. Koh, A. Y. et al. Utility of in vivo transcription profiling for identifying *Pseudomonas aeruginosa* genes needed for gastrointestinal colonization and dissemination. PLoS One 5, 1-14 (2010). PP_2144 has a close homolog in *Pseudomonas syringae* (psrA) that is involved in the regulation of epiphytic fitness, quorum-sensing, and plant host interactions. Chatterjee, A., Cui, Y., Hasegawa, H. & Chatterjee, A. K. PsrA, the *Pseudomonas* sigma regulator, controls regulators of epiphytic fitness, quorum-sensing signals, and plant interactions in *Pseudomonas syringae* pv. tomato strain DC3000. *Appl. Environ. Microbiol.* 73, 3684-3694 (2007).

PP_3603 and PP_4734 are annotated as fatty acid responsive transcriptional regulators with unknown regulatory roles.

Potential Induction of Quorum-Sensing Systems by γ -Vale-rolactone

4HV used in the RB-TnSeq experiments was synthesized from y-valerolactone as described in the methods section of the main text. As a result, residual $\gamma\text{-valerolactone}$ was likely present in the experiments for growth on 4HV. Several molecules in the lactone family are known to be used as quorum sensing signals in Pseudomonads. Pearson, J. P., Passador, L., Iglewski, B. H. & Greenberg, E. P. A second N-acylhomoserine lactone signal produced by Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. U.S.A 92, 1490-1494 (1995). Quorum sensing responses would likely cause physiological responses towards the formation of a biofilm in the culture vessel. Cells with disruptions in these regulatory systems would replicate themselves to a higher degree resulting in a perceived increase in fitness as is the case with the transcriptional regulators PP_0191, PP_1236, and PP_2144 discussed above. As y-Valerolactone is being investigated as a promising solvent for nonenzymatic sugar production from biomass (see Luterbacher, J. S. et al. Nonenzymatic Sugar Production from Biomass Using Bio-40 mass-Derived gamma-Valerolactone. Science (80-.). 343, 277-281 (2014)), its effect on the quorum sensing systems of potential platform host organisms for bioprocessing should be further investigated.

Conferring Growth on Levulinic Acid to E. coli LS5218

E. coli strain LS5218 is commonly studied for the production of polyhydroxyalkanoates (PHAs) and carries two known mutations: a mutation in fadR, which deregulates the genes encoding the β -oxidation enzymes and allows for constitutive expression of the fad genes, and an atoC(Con) mutation that causes constitutive upregulation of the ato operon, an operon responsible for the metabolism of short-chain fatty acids. The mutations in *E. coli* LS5218 allow for increased uptake and utilization of a wider array of fatty acid chain lengths, and make it especially adapted for the engineering of short chain length-co-medium chain length (SCL-co-MCL) copolymers and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)].

LA is catabolized into equal moles of acetyl-CoA and propionyl-CoA. While *E. coli* contains the necessary genes for propionyl-CoA metabolism, elevated propionyl-CoA concentrations are known to be inhibitory. Therefore, we performed a growth study to evaluate growth of *E. coli* on various concentrations of propionate, with and without acetate as a secondary carbon source. The maximum allowable concentration that stimulated growth was 20 mM propionate, both in the presence and absence of acetate (data not shown). Using this information, we designed all LA

growth experiments to contain the maximum concentration of 20 mM LA to minimize false negative growth phenotypes resulting from propionate toxicity.

The five biosynthetic enzymes required for catabolizing LA into a common β -oxidation intermediate (lvaABCDE) were expressed as an operon in E. coli LS5218 from the plasmid pJMR5 (SC101 origin, Ptet, kanR). We hypothesized that this combination of expressed enzymes would confer LA catabolism in E. coli. However, in initial trials E. *coli* LS5128 pJMR5 failed to grow on LA as a sole carbon 10 source (data not shown). Therefore, we performed adaptive evolution, sub-culturing cells into fresh media daily, to evolve a strain capable of LA catabolism. The first three rounds were conducted with both LA and acetate as available carbon to stimulate growth and allow cells to adapt to 15 the presence of LA. In these experiments, we observed an increase in final cell density when both carbon sources were present relative to cultures that were fed only acetate. Subsequent rounds of evolution were conducted with LA as the sole carbon source. After 14 rounds of sub-culturing on $_{20}$ LA, we isolated two mutant strains, M141 and M142, capable of robust LA catabolism.

We purified the lvaABCDE expression plasmid from the mutant strains and sequenced it to determine if evolutionary changes were due to plasmid-borne mutations. A mutation in the ribosome binding sequence (RBS) for the lvaABCDE operon was discovered. See Table 8. RBS Calculators predicted an increased translation initiation rate relative to the original sequence. We retransformed the isolated plasmid, designated p2, back into wild type LS5218 and the resulting strain did not have the LA growth phenotype, indicating genomic mutations were also necessary (data not shown). To isolate the essential genomic mutations, we submitted strains M141 and M142 for whole genome sequencing after curing out the plasmid. The sequencing results highlighted five mutations in M141 and four mutations in M142 when 35 compared with the genome sequence assembled for wild type E. coli LS5218 (GCA_002007165.1), with only two common mutations between both strains (Table 8). The common mutations were a point mutation in fadE that resulted in a premature stop codon causing a functional $_{40}$ deletion and the insertion of transposons into atoC that also resulted in a premature stop codon and a functional deletion.

TABLE 8

	iot of matacit			-
Position	Gene	Mutation	Change	_
		Genomic mutations		_
Common				
243014	fadE	$C \rightarrow T$	Trp → stop codon	
2323064	atoC (M141)	Transposable element	Early stop codon	
2322858	atoC	Transposable element	Early stop codon	
M141	(M142)	insertion		
205559	dnaE	G →A	Arg →His	
261153	proB	$C \rightarrow T$	His →Tyr	
3390059 M142	aaeĸ	A→C	Lys →Asn	
111-12				
2395921	nuoI	C →T	$\text{Ser} \rightarrow \text{Asn}$	
4161154	fabR	A →C Plasmid mutations	Thr → Pro	_
pJMR5	RBS	$G \rightarrow T$	Increased RBS strength	

To verify the importance of the common mutations we generated clean knockouts of fadE and/or atoC using CRISPR-Cas9 mediated genome engineering. Jiang, W., Bikard, D., Cox, D., Zhang, F. & Marraffini, L. a. RNAguided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol 31, 233-239 (2013). Jiang, Y. et al. Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system. Appl. Environ. Microbiol. 81, 2506-2514 (2015). Li, Y. et al. Metabolic engineering of Escherichia coli using CRISPR-Cas9 meditated genome editing. Metab. Eng. 31, 13-21 (2015). We transformed each strain with the plasmid pJMR32, a redesigned pJMR5 with predicted increased RBS strength for LvaA. We examined growth on LA as a sole carbon source for each strain. Wild type LS5218 and LS5218 AatoC were unable to grow on LA whereas LS5218 AfadE and LS5218 AatoC AfadE grew robustly (equivalent to the positive control-E. coli M142 with pJMR32) on LA as the sole carbon source. See Table 9. These experiments demonstrated that the fadE deletion was necessary for growth, but the role of the atoC deletion remained unclear. We generated growth curves on LA for strains LS5218 AfadE, LS5218 AatoC AfadE and M142 and found that LS5218 AfadE has a significantly longer lag period compared with LS5218 AatoC AfadE and M142 (data not shown). This indicates that in E. coli LS5218, a fadE deletion and an atoC deletion are beneficial.

TABLE 9

30	LS5218 Grow	th on LA.	
	LS5218 Strains ^a	Growth on LA	
	Wild Type		
	ΔfadE	++	
25	ΔatoC		
55	$\Delta fadE \Delta atoC$	++	
	M142	++	

^aAll strains carrying pJMR32;

--, no growth:

++, robust growth

FadE is an acyl-CoA dehydrogenase enzyme that catalyzes the formation of a trans-2-enoyl-CoA from an acyl-CoA compound. Because the LA catabolic pathway terminates at the formation of 3HV-CoA, the final steps to be 5 completed by the E. coli (3-oxidation pathway would only involve fadBA, so it remains unclear as to why a fadE deletion is beneficial for growth. We hypothesize that FadE may be active towards LA-CoA, adding a double bond at the 2 position of the γ-ketovaleryl-CoA species and sequestering to the molecule from further degradation. FadE is an inner membrane protein that has not been purified for in vitro characterization. Díaz-Mejía, J. J., Babu, M. & Emili, A. Computational and experimental approaches to chart the Escherichia coli cell-envelope-associated proteome and 5 interactome. FEMS Microbiol. Rev. 33, 66-97 (2009).

The deletion of atoC was not a necessary mutation, but did confer a growth benefit. This mutation was isolated during through the directed evolution process because we were screening for mutants with reduced lag phases, thereby o enriching our mutant population with strains containing the early termination sequence. Constitutive activation of the ato regulon by the atoC(Con) mutation in LS5218 causes an overexpression of an acetoacetyl-CoA transferase (encoded by atoDA), an acetyl-CoA acetyltransferase (encoded by 5 atoB) and a short chain fatty acid transporter (encoded by atoE). We propose that the 3-ketovaleryl-CoA intermediate was diverted from the final cleavage step into central

metabolites by AtoDA, releasing 3-ketovalerate. The sequestering of LA as 3-ketovalerate reduces overall carbon flow to central metabolites, stunting growth of the *E. coli* strains until they can adapt for the utilization of 3-ketovalerate. Reducing expression of AtoDA through the deletion of 5 atoC would prevent the formation of the secondary pathway, allowing direct flux of LA to central metabolites. Additionally, AtoE is a short chain fatty acid transporter and over-expression could be causing an increase in the intracellular concentration of LA above a threshold LS5218 is capable of 10 tolerating, causing an extended lag phase. Monitoring intracellular metabolites during the extended lag phase could be useful in isolating the exact cause when compared with the Δ atoC strains.

Directed Evolution of E. coli LS5218

E. coli was grown at 37° C., unless otherwise stated. Sub-culturing experiments were done with a volume of 5 ml in glass test tubes (20×150 mm, Fisher Scientific) with 250 rpm agitation in a 126 shaker (New Brunswick Scientific, Edison, N.J.). Starting media contained 20 mM LA and 40 20 mM acetate or 40 mM acetate only for negative control. Cultures were grown for 72 hours and optical density (OD) measurements taken with a Spectronic 20 (Milton Roy Company, Warminster, Pa.), then culture were diluted 1:100 into fresh media. Once the OD in the LA and acetate cultures 25 exceeded the OD of the acetate only cultures, further growth media was 20 mM LA only. These cultures were incubated until turbidity was observed visually, then diluted 1:100 into fresh media. This occurred for a total of 14 dilutions steps in LA media, spanning two weeks. 30

Plasmids were prepped (QIAprep[®] Miniprep Kits, Qiagen) and sequenced (Functional Biosciences) to find mutations. Plasmids were cured out of mutate strains through serial culturing in rich media (LB broth) and patch plated on LB and LB_{kan50}.

Developing a Growth-Coupled Strain

To further increase the yield of 2-butanone from LA, three strategies were computationally evaluated for producing 3-ketovalerate (3 KV) from 3-ketovaleryl-CoA (3 KV-CoA). The first method uses a thioesterase to hydrolyze 3 KV-CoA 40 to 3 KV, which results in a strain incapable of growth without another carbon source but is theoretically capable of complete conversion of LA to butanone. The other two strategies couple butanone production to energy generation and/or cell growth. For example, the CoA moiety from 3 45 KV-CoA can be transferred to succinate, thereby generating 3 KV, via a succinyl-CoA transferase encoded by PcaIJ in *Pseudomonas putida*. With the addition of an equimolar feed of succinate and deletion of all reactions forming succinyl-CoA (SUCOAS, AKGDH, 3OXCOAT, PPCSCT) other than **48**

the PcaIJ reaction, it was determined that the maximum growth rate (0.48 hr^{-1}) required production of butanone at a rate of 0.25 mmol gDW^{-1} hr⁻¹ (data not shown). While promising, this approach required a large number of deletions and maximum growth occurred with a relatively low amount of butanone production. Alternatively, it was found that butanone production could be coupled to acetate assimilation via E. coli's native acetyl-CoA transferase, AtoDA. By knocking out acetate fermentation (reactions ACKr and PTAr) and acetyl-CoA synthesis from acetate (reaction ACS), the only way for E. coli to make acetyl-CoA was through the transfer of CoA from 3HV-CoA to exogenous acetate. In this case, a maximum predicted 2-butanone production rate of 10 mmol gDW⁻¹ hr^{-1} was achieved (i.e. complete bioconversion) with a maximum predicted growth rate of 0.21 hr⁻¹. This approach predicted the possibility of a strongly growth-coupled bioconversion of LA to butanone. This growth-coupled strain, eMEK8, was constructed by deleting ackApta and acs in strain eMEK4.

In a separate evolution experiment using *E. coli* K12 MG1655, a variant of the pJMR032 plasmid was discovered with a single nucleotide mutation causing a V111F variant on the Rep101 protein that improved catabolism of LA. The V111F mutation was the re-introduced into the Rep101 gene into pJMR032 creating plasmid pJMR032QC. This mutation significantly increased the growth rate of eMEK8 when compared to eMEK8 containing the plasmid without the V11F mutation (data not shown). Because a mutation in the origin is likely to affect the copy number of the plasmid, qPCR determined that the mutant plasmid had a copy number threefold higher than the original plasmid (data not shown).

To experimentally test the growth coupling strategy, cultures of eMEK8 with plasmids pJMR032QC and pJMR095 were grown in minimal media using LA and/or acetate at the carbon source. These data (not shown) revealed no growth of eMEK8 on LA or acetate alone but significant growth when both substrates are supplied, indicating that growth of eMEK8 is successfully coupled to LA metabolism. The effect of different ratios of LA and acetate on the production of 2-butanone was then examined. Importantly, in the case where LA was supplied at half the molar ratio as acetate (1:0.5), the LA was consumed in its entirety while acetate remained in the media. When supplied in equimolar ratios, the acetate and LA consumption are nearly identical (~15 mM) and the measured yield of 2-butanone on LA is 76% (855 mg/L or 11.9 mM). The results from these experiments with the growth-coupled strain stand in stark contrast to the data from the non-growth-coupled strain, where all the supplied acetate was consumed in every case.

SEQUENCE LISTING

<160> NUMBER OF SEQ ID NOS: 48 <210> SEQ ID NO 1 <211> LENGTH: 1059 <212> TYPE: DNA <213> ORGANISM: Pseudomonas putida <220> FEATURE: <221> NAME/KEY: CDS <222> LOCATION: (1)..(1059) <400> SEQUENCE: 1 atg agc agt tca cca acg att tcc ccg gcc agc gat acg ttc gcg gcc Met Ser Ser Ser Pro Thr Ile Ser Pro Ala Ser Asp Thr Phe Ala Ala 1 5 10 15

-continued

atg Met	act Thr	gac Asp	gat Asp 20	cac His	cgc Arg	ctg Leu	gcc Ala	gag Glu 25	ttc Phe	atc Ile	cgc Arg	gag Glu	cag Gln 30	gcc Ala	tcg Ser	96
gca Ala	acg Thr	cgg Arg 35	gtg Val	gtc Val	atc Ile	cag Gln	gcg Ala 40	cgc Arg	aag Lys	cgc Arg	ctg Leu	agc Ser 45	ggc Gly	ggc Gly	gct Ala	144
atc Ile	cag Gln 50	gaa Glu	aac Asn	tgg Trp	ctg Leu	ctg Leu 55	gac Asp	ctg Leu	ctg Leu	atc Ile	gaa Glu 60	ggc Gly	ggc Gly	ccg Pro	tgg Trp	192
gcc Ala 65	ggt Gly	gtc Val	cgg Arg	cgt Arg	tgg Trp 70	gta Val	ctg Leu	cgc Arg	agc Ser	gat Asp 75	gcg Ala	ctt Leu	tca Ser	gcg Ala	cta Leu 80	240
ccc Pro	gcc Ala	agc Ser	ctt Leu	gac Asp 85	cgt Arg	gaa Glu	cag Gln	gag Glu	ttc Phe 90	gcc Ala	gtg Val	ctg Leu	cag Gln	gtg Val 95	gtt Val	288
tac Tyr	cag Gln	gcc Ala	ggc Gly 100	gtg Val	aaa Lys	gtg Val	cca Pro	cgc Arg 105	ccg Pro	ctc Leu	tgg Trp	ctg Leu	tgc Cys 110	cgc Arg	gat Asp	336
gtg Val	cgc Arg	gtg Val 115	cat His	glà aaa	cgg Arg	gtg Val	ttc Phe 120	ttc Phe	ctg Leu	atg Met	gag Glu	tat Tyr 125	gtg Val	ccg Pro	ggt Gly	384
agc Ser	gct Ala 130	gcc Ala	ggc Gly	cgc Arg	gcg Ala	ctc Leu 135	agc Ser	acc Thr	ggc Gly	gcc Ala	ggt Gly 140	cct Pro	cag Gln	ggc Gly	cgg Arg	432
gcg Ala 145	caa Gln	ctg Leu	gcg Ala	acg Thr	cag Gln 150	ctt Leu	ggc Gly	gcc Ala	aac Asn	ctg Leu 155	gcg Ala	cgt Arg	ctg Leu	cat His	cag Gln 160	480
gtc Val	cgc Arg	ccg Pro	ccg Pro	tgc Cys 165	gcc Ala	acg Thr	ctg Leu	tgc Cys	ttc Phe 170	ctg Leu	tcc Ser	gtt Val	ccg Pro	gac Asp 175	agc Ser	528
tcg Ser	ccg Pro	gcc Ala	ctg Leu 180	gcg Ala	acc Thr	atc Ile	gac Asp	gcc Ala 185	tac Tyr	cgc Arg	cgc Arg	tac Tyr	ctc Leu 190	gac Asp	acc Thr	576
ctc Leu	gcc Ala	gat Asp 195	gcc Ala	tat Tyr	ccg Pro	gtg Val	ctg Leu 200	gaa Glu	tgg Trp	ggc Gly	ctg Leu	cgc Arg 205	tgg Trp	tgc Cys	gag Glu	624
ctg Leu	cat His 210	gcg Ala	ccg Pro	cgc Arg	agc Ser	agc Ser 215	acc Thr	ctg Leu	tgc Cys	ctg Leu	ttg Leu 220	cac His	cgt Arg	gac Asp	tac Tyr	672
cgc Arg 225	acc Thr	ggc Gly	aac Asn	tac Tyr	ctg Leu 230	gcc Ala	agc Ser	gaa Glu	gaa Glu	999 Gly 235	ctg Leu	gag Glu	gcc Ala	gtg Val	ctc Leu 240	720
gac Asp	tgg Trp	gag Glu	ttc Phe	acc Thr 245	ggc Gly	tgg Trp	gga Gly	gat Asp	cct Pro 250	tgc Cys	gag Glu	gac Asp	ctc Leu	ggc Gly 255	tgg Trp	768
ttc Phe	acc Thr	gcc Ala	cgt Arg 260	tgc Cys	tgg Trp	cgt Arg	ttt Phe	acc Thr 265	cgt Arg	cca Pro	gac Asp	ctc Leu	gaa Glu 270	gcc Ala	ggc Gly	816
ggc Gly	att Ile	ggc Gly 275	cag Gln	ctg Leu	gag Glu	gat Asp	ttt Phe 280	ctg Leu	cgt Arg	ggt Gly	tat Tyr	cac His 285	gag Glu	gtg Val	tct Ser	864
tcg Ser	ctg Leu 290	tgc Cys	atc Ile	gag Glu	cgc Arg	agt Ser 295	cgg Arg	ctc Leu	cac His	tac Tyr	tgg Trp 300	caa Gln	gtc Val	atg Met	gcc Ala	912
acc Thr 305	ctg Leu	cgc Arg	tgg Trp	gcg Ala	gtg Val 310	att Ile	gcc Ala	ttg Leu	cag Gln	caa Gln 315	д1 <u>у</u> ааа	cag Gln	cgc Arg	cat His	ctg Leu 320	960
tcc Ser	ggt Gly	gaa Glu	gaa Glu	ccg Pro	tcg Ser	ctc Leu	gag Glu	cta Leu	gca Ala	ctg Leu	aca Thr	gcc Ala	cgg Arg	ctg Leu	ttg Leu	1008

				325					330					335		
CCC	gag	ctc	gaa Cl.	ctc	gac	atc	ctg	cac Hic	atg Mot	acc Thr	gga Cltr	gcc 1-	gaa Clu	gcg ∆1 -	cca Pro	1056
ΓIC	, GIU	Jeu	340	Jeu	чар	116	Jeu	345	net	1111	этү	чта	350	лта		
tga	ı															1059
-	. ·	-		~												
<21 <21	.0> S .1> L	EQ I ENGT	D NO H: 3	2 52												
<21 <21	.2> T .3> 0	YPE : RGAN	PRT ISM:	Pse	udom	onas	put	ida								
<40	0> S	EOUE	NCE :	2			_									
Met	Ser	Ser	Ser	Pro	Thr	TIP	Ser	Pro	Ala	Ser	Asp	Thr	Phe	Ala	Ala	
1		001	001	5		110	501	110	10	501	1101			15		
Met	Thr	Asp	Asp	His	Arg	Leu	Ala	Glu	Phe	Ile	Arg	Glu	Gln	Ala	Ser	
	m]	7	20		T] -	a 1		25	T	3	T	a	30	a 1		
Ala	i Thr	Arg 35	val	val	⊥le	GIN	A1a 40	Arg	гла	Arg	Leu	Ser 45	сту	GТХ	ALA	
Ile	Gln	Glu	Asn	Trp	Leu	Leu	Asp	Leu	Leu	Ile	Glu	Gly	Gly	Pro	Trp	
	50					55					60					
Ala 65	Gly	Val	Arg	Arg	Trp 70	Val	Leu	Arg	Ser	Asp 75	Ala	Leu	Ser	Ala	Leu 80	
Pro		Ser	ر الح	Acr	Ara	Glu	Glr	Glu	Phe	⊿1∍	Val	Len	Glr	Vel	Vel	
LTC	, YTG	ser	ьeu	азр 85	чтД	σıu	GTU	σıu	90 90	чта	var	ьeu	9111	95	val	
Туз	Gln	Ala	Gly	Val	Lys	Val	Pro	Arg	Pro	Leu	Trp	Leu	Cys	Arg	Asp	
			100					105					110			
Val	. Arg	Val 115	His	Gly	Arg	Val	Phe 120	Phe	Leu	Met	Glu	Tyr 125	Val	Pro	Gly	
Ser	Ala	Ala	Glv	Ara	Alə	Leu	Ser	Thr	Glv	Alə	Glv	Pro	Gln	Glv	Ara	
1	130		1	9		135			. – 1		140				- 5	
Ala	Gln	Leu	Ala	Thr	Gln	Leu	Gly	Ala	Asn	Leu	Ala	Arg	Leu	His	Gln	
145		_	_	-	150		_	_		155			_	_	T00	
Val	. Arg	Pro	Pro	Cys 165	Ala	Thr	Leu	Суз	Phe 170	Leu	Ser	Val	Pro	Asp 175	Ser	
Sei	Pro	Ala	Leu	Ala	Thr	Ile	Asp	Ala	Tyr	Arg	Arg	Tyr	Leu	Asp	Thr	
			180				-	185	-	5	5	-	190	-		
Leu	ı Ala	Asp	Ala	Tyr	Pro	Val	Leu	Glu	Trp	Gly	Leu	Arg	Trp	Cys	Glu	
		7.2.2 7.3.2	-		a	a	200		~			205			-	
Leu	l His 210	Ala	Pro	Arg	Ser	Ser 215	Thr	Leu	Суз	Leu	Leu 220	His	Arg	Asp	Tyr	
Arc	g Thr	Gly	Asn	Tyr	Leu	Ala	Ser	Glu	Glu	Gly	Leu	Glu	Ala	Val	Leu	
225		1		-	230					235					240	
Yak	o Trp	Glu	Phe	Thr	Gly	Trp	Gly	Asp	Pro	Суз	Glu	Asp	Leu	Gly	Trp	
	m 1	~ 7	-	245	m.		F 1	m 1	250			Ŧ	~	205	a.	
Phe	e Thr	Ala	Arg 260	Сүз	Trp	Arg	Phe	Thr 265	Arg	Pro	Asb	Leu	Glu 270	Ala	GIУ	
Glv	, Ile	Glv	Gln	Leu	Glu	Asp	Phe	Leu	Ara	Glv	Tvr	His	Glu	Val	Ser	
1		275			- 4	T	280	- 4	- 5	-1		285				
Sei	Leu	Суз	Ile	Glu	Arg	Ser	Arg	Leu	His	Tyr	Trp	Gln	Val	Met	Ala	
	290					295					300					
Thi	Leu	Arg	Trp	Ala	Val 310	Ile	Ala	Leu	Gln	Gln 31F	Gly	Gln	Arg	His	Leu 320	
505	, 			_	510					513			_	-	- 20	
Sei	GIY	GLU	GIU	Pro 325	Ser	Leu	GLU	Leu	ALA 330	Leu	Thr	Ala	Arg	Leu 335	Leu	

-continued

Pro	Glu	Leu	Glu 340	Leu	Asp	Ile	Leu	His 345	Met	Thr	Gly	Ala	Glu 350	Ala	Pro	
<210 <211 <212 <213 <220 <221 <222	> SI > LI > TY > OF > FI > NZ > LO	EQ II ENGTH (PE: RGAN] EATUF AME/H DCAT]) NO H: 35 DNA ISM: RE: RE: KEY: ION:	3 57 Pset CDS (1)	1domo	onas 57)	puti	ida								
<400	> SI	EQUEI	ICE :	3												
atg Met 1	acc Thr	caa Gln	ccc Pro	aac Asn 5	gcc Ala	cac His	gaa Glu	ttg Leu	ctc Leu 10	gag Glu	atc Ile	gcc Ala	cgc Arg	gcg Ala 15	acg Thr	48
ctt Leu	ctg Leu	gag Glu	cag Gln 20	ctg Leu	ctg Leu	cca Pro	gcg Ala	ctg Leu 25	ccc Pro	ggc Gly	gag Glu	ttg Leu	cgt Arg 30	tac Tyr	ccg Pro	96
gcc Ala	ctg Leu	atg Met 35	atc Ile	gcc Ala	aac Asn	gcc Ala	atg Met 40	gcc Ala	att Ile	gcg Ala	gcc Ala	cgc Arg 45	gaa Glu	aac Asn	cgc Arg	144
ttg Leu	ggc Gly 50	gct Ala	cag Gln	gcc Ala	gag Glu	gat Asp 55	cag Gln	gag Glu	cag Gln	gcg Ala	cgt Arg 60	ctg Leu	gcc Ala	gcc Ala	ttg Leu	192
gtc Val 65	gat Asp	gac Asp	gcg Ala	ccg Pro	tcg Ser 70	aca Thr	ttg Leu	ccc Pro	gac Asp	ctg Leu 75	cgc Arg	cgc Arg	caa Gln	ctg Leu	gct Ala 80	240
cgc Arg	gcc Ala	att Ile	cgc Arg	cag Gln 85	ggc Gly	agc Ser	cat His	gac Asp	gcc Ala 90	ccg Pro	caa Gln	acc Thr	cgg Arg	cgc Arg 95	acc Thr	288
ctg Leu	gtc Val	gag Glu	aca Thr 100	tta Leu	cgc Arg	cag Gln	atc Ile	acc Thr 105	gtt Val	gcc Ala	cga Arg	ttg Leu	gcg Ala 110	atc Ile	agc Ser	336
aac Asn	ccc Pro	aag Lys 115	gcc Ala	ttg Leu	ccc Pro	tga										357
<210 <211 <212 <213	> SH > LH > TY > OF	EQ II ENGTH (PE : RGAN]) NO H: 11 PRT ISM:	4 L8 Psei	udomo	onas	puti	ida								
<400	> SH	EQUEI	ICE :	4												
Met 1	Thr	Gln	Pro	Asn 5	Ala	His	Glu	Leu	Leu 10	Glu	Ile	Ala	Arg	Ala 15	Thr	
Leu	Leu	Glu	Gln 20	Leu	Leu	Pro	Ala	Leu 25	Pro	Gly	Glu	Leu	Arg 30	Tyr	Pro	
Ala	Leu	Met 35	Ile	Ala	Asn	Ala	Met 40	Ala	Ile	Ala	Ala	Arg 45	Glu	Asn	Arg	
Leu	Gly 50	Ala	Gln	Ala	Glu	Asp 55	Gln	Glu	Gln	Ala	Arg 60	Leu	Ala	Ala	Leu	
Val 65	Asp	Asp	Ala	Pro	Ser 70	Thr	Leu	Pro	Asp	Leu 75	Arg	Arg	Gln	Leu	Ala 80	
Arg	Ala	Ile	Arg	Gln 85	Gly	Ser	His	Asp	Ala 90	Pro	Gln	Thr	Arg	Arg 95	Thr	
Leu	Val	Glu	Thr 100	Leu	Arg	Gln	Ile	Thr 105	Val	Ala	Arg	Leu	Ala 110	Ile	Ser	
Asn	Pro	Lys	Ala	Leu	Pro											

US 10,934,563 B2

-continued

<210 <211 <212 <212 <213 <220 <221	0> SH L> LH 2> TY 3> OH 0> FH L> NA	EQ II ENGTH ZPE: RGANI EATUH AME/H	D NO H: 1: DNA ISM: RE: RE: KEY:	5 L73 Pset CDS	udomo	onas	put:	ida									
<400)> 51	EQUEL	ICE :	5		1,3,											
atg Met 1	aac Asn	ttc Phe	act Thr	ctc Leu 5	ccg Pro	gac Asp	gaa Glu	ctg Leu	ctc Leu 10	gcc Ala	ttg Leu	cag Gln	gcc Ala	aag Lys 15	act Thr		48
cga Arg	gac Asp	ttc Phe	att Ile 20	gcc Ala	gaa Glu	cag Gln	gtc Val	atc Ile 25	cca Pro	ttc Phe	gag Glu	aac Asn	gac Asp 30	ccc Pro	cgc Arg		96
cag Gln	aac Asn	agc Ser 35	cac His	ggc Gly	ccc Pro	agc Ser	gac Asp 40	gca Ala	ctg Leu	cgc Arg	cag Gln	gac Asp 45	ctg Leu	gtg Val	ctc Leu	1	44
tgc Cys	gcc Ala 50	cgc Arg	gcc Ala	gct Ala	ggc Gly	ttg Leu 55	ctg Leu	acg Thr	cct Pro	cac His	gcc Ala 60	agc Ser	cgc Arg	gaa Glu	atg Met	1	92
ggc Gly 65	ggt Gly	ctg Leu	gaa Glu	ctg Leu	agc Ser 70	cat His	gtg Val	gcc Ala	aag Lys	gcg Ala 75	atc Ile	gtc Val	ttc Phe	gaa Glu	gaa Glu 80	2	40
gcc Ala	ggc Gly	tac Tyr	tcg Ser	ccg Pro 85	ctg Leu	ggc Gly	ccg Pro	gta Val	gcg Ala 90	ctg Leu	aat Asn	atc Ile	cat His	gcg Ala 95	ccg Pro	2	88
gac Asp	gaa Glu	ggc Gly	aat Asn 100	atc Ile	cac His	ctg Leu	atg Met	gac Asp 105	gtg Val	gtc Val	gcc Ala	acc Thr	gaa Glu 110	gcg Ala	cag Gln	3	36
aag Lys	gac Asp	cgc Arg 115	tgg Trp	ttg Leu	cgc Arg	ccg Pro	ctg Leu 120	gtc Val	cag Gln	ggc Gly	cat His	gcc Ala 125	cgt Arg	tcg Ser	tgc Cys	3	84
ttc Phe	gcc Ala 130	atg Met	acg Thr	gag Glu	cct Pro	gct Ala 135	ccg Pro	ggc Gly	tcc Ser	ggt Gly	tcg Ser 140	gat Asp	ccg Pro	tcg Ser	atg Met	4	32
ctg Leu 145	cgc Arg	acc Thr	act Thr	gcc Ala	acc Thr 150	cgc Arg	gat Asp	ggc Gly	gac Asp	gac Asp 155	tac Tyr	ctg Leu	atc Ile	aat Asn	ggt Gly 160	4	80
cgc Arg	aag Lys	tgg Trp	ctg Leu	atc Ile 165	acc Thr	glà aaa	gcc Ala	gaa Glu	ggc Gly 170	gcg Ala	gac Asp	ttc Phe	ggc Gly	atc Ile 175	atc Ile	5	28
atg Met	gcg Ala	cgc Arg	atg Met 180	gag Glu	gac Asp	ggc Gly	acc Thr	gcg Ala 185	acc Thr	atg Met	ttc Phe	ctg Leu	acc Thr 190	gac Asp	atg Met	5	76
aag Lys	cgc Arg	gac Asp 195	ggc Gly	atc Ile	atc Ile	cat His	gaa Glu 200	cgt Arg	cag Gln	ctg Leu	gac Asp	tcg Ser 205	ctg Leu	gac Asp	agc Ser	6	24
tgt Cys	ttt Phe 210	acc Thr	ggc Gly	ggt Gly	cac His	999 Gly 215	cag Gln	ctg Leu	cgt Arg	ttc Phe	gac Asp 220	aac Asn	ctg Leu	cgt Arg	att Ile	6	72
ccg Pro 225	gcg Ala	agc Ser	gat Asp	gtc Val	ctc Leu 230	ggc Gly	gag Glu	atc Ile	ggc Gly	aag Lys 235	ggc Gly	ttc Phe	cgg Arg	tat Tyr	gcc Ala 240	7	20
cag Gln	gtg Val	cgc Arg	ctg Leu	gcg Ala 245	cct Pro	gca Ala	cgc Arg	ttg Leu	act Thr 250	cat His	tgc Cys	atg Met	cgc Arg	tgg Trp 255	ctc Leu	7	68
ggt Gly	gcc Ala	gcg Ala	cgc Arg 260	cgc Arg	gcc Ala	cac His	gac Asp	atc Ile 265	gcc Ala	tgc Cys	gac Asp	tat Tyr	gcg Ala 270	cgc Arg	acc Thr	8	16
cgg	gac	gcc	ttt	ggc	aag	ccg	ctg	ggc	gag	cac	cag	ggc	gtg	ggt	ttc	8	64

Arg	Asp	Ala 275	Phe	Gly	Lys	Pro	Leu	Gly	Glu	His	Gln	Gly	Val	Gly	Phe		
atq	cta	acc	gac	aac	atq	atq	aac	cta	cac	ata	ata	205	cta	aca	atc	912	
Met	Leu 290	Ala	Asp	Asn	Met	Met 295	Asp	Leu	His	Val	Val 300	Arg	Leu	Ala	Val		
tgg Trp 305	cac His	tgc Cys	gcc Ala	tgg Trp	gtg Val 310	ctc Leu	gac Asp	cag Gln	ggc Gly	cgg Arg 315	cgc Arg	gcc Ala	aat Asn	gtc Val	gat Asp 320	960	
tcg Ser	agc Ser	atg Met	gcc Ala	aag Lys 325	gtg Val	atc Ile	agc Ser	gcc Ala	gag Glu 330	gcg Ala	ctg Leu	tgg Trp	cgg Arg	gtg Val 335	gtc Val	1008	
gat Asp	cgt Arg	tgc Cys	gtc Val 340	cag Gln	gta Val	ttg Leu	ggt Gly	gga Gly 345	cgc Arg	д1У ааа	gtg Val	acc Thr	999 Gly 350	gac Asp	acc Thr	1056	
gtg Val	gtg Val	gag Glu 355	cgg Arg	atc Ile	ttc Phe	cgc Arg	gac Asp 360	att Ile	cgc Arg	ccg Pro	ttc Phe	cgc Arg 365	atc Ile	tat Tyr	gac Asp	1104	
ggc Gly	ccg Pro 370	agc Ser	gaa Glu	gtg Val	cac His	cgc Arg 375	atg Met	agc Ser	ctg Leu	gcg Ala	aag Lys 380	aag Lys	ctg Leu	ctc Leu	gac Asp	1152	
cag Gln 385	cgc Arg	ctg Leu	gag Glu	gcc Ala	cac His 390	tga										1173	
<21)> SH	EQ II	о мо	6													
<21 <21	1> LH 2> TY	ENGTI (PE :	H: 3: PRT	90													
<21	3> 01	RGAN.	ISM:	Psei	udom	onas	put:	Lda									
Met	Asn	Phe	Thr	Leu	Pro	Asp	Glu	Leu	Leu	Ala	Leu	Gln	Ala	Lvs	Thr		
1				5		-			10					15			
Arg	Asp	Phe	Ile 20	Ala	Glu	Gln	Val	Ile 25	Pro	Phe	Glu	Asn	30 30	Pro	Arg		
Gln	Asn	Ser 35	His	Gly	Pro	Ser	Asp 40	Ala	Leu	Arg	Gln	Asp 45	Leu	Val	Leu		
Сүз	Ala 50	Arg	Ala	Ala	Gly	Leu 55	Leu	Thr	Pro	His	Ala 60	Ser	Arg	Glu	Met		
Gly 65	Gly	Leu	Glu	Leu	Ser 70	His	Val	Ala	Lys	Ala 75	Ile	Val	Phe	Glu	Glu 80		
Ala	Gly	Tyr	Ser	Pro 85	Leu	Gly	Pro	Val	Ala 90	Leu	Asn	Ile	His	Ala 95	Pro		
Asp	Glu	Gly	Asn 100	Ile	His	Leu	Met	Asp 105	Val	Val	Ala	Thr	Glu 110	Ala	Gln		
Lys	Asp	Arg 115	Trp	Leu	Arg	Pro	Leu 120	Val	Gln	Gly	His	Ala 125	Arg	Ser	Сүз		
Phe	Ala 130	Met	Thr	Glu	Pro	Ala 135	Pro	Gly	Ser	Gly	Ser 140	Asp	Pro	Ser	Met		
Leu 145	Arg	Thr	Thr	Ala	Thr 150	Arg	Asp	Gly	Asp	Asp 155	Tyr	Leu	Ile	Asn	Gly 160		
Arg	Lys	Trp	Leu	Ile 165	Thr	Gly	Ala	Glu	Gly 170	Ala	Asp	Phe	Gly	Ile 175	Ile		
Met	Ala	Arg	Met 180	Glu	Asp	Gly	Thr	Ala 185	Thr	Met	Phe	Leu	Thr 190	Asp	Met		
Lys	Arg	Asp 195	Gly	Ile	Ile	His	Glu 200	Arg	Gln	Leu	Asp	Ser 205	Leu	Asp	Ser		

											COII	ιm	uea			
21	0				215					220						
Pro Al 225	a Ser	Asp	Val	Leu 230	Gly	Glu	Ile	Gly	Lys 235	Gly	Phe	Arg	Tyr	Ala 240		
Gln Va	l Arg	Leu	Ala 245	Pro	Ala	Arg	Leu	Thr 250	His	Суз	Met	Arg	Trp 255	Leu		
Gly Al	a Ala	Arg 260	Arg	Ala	His	Asp	Ile 265	Ala	Суз	Asp	Tyr	Ala 270	Arg	Thr		
Arg As	p Ala 275	Phe	Gly	Lys	Pro	Leu 280	Gly	Glu	His	Gln	Gly 285	Val	Gly	Phe		
Met Le 29	u Ala 0	Asp	Asn	Met	Met 295	Asp	Leu	His	Val	Val 300	Arg	Leu	Ala	Val		
Trp Hi 305	в Сув	Ala	Trp	Val 310	Leu	Asp	Gln	Gly	Arg 315	Arg	Ala	Asn	Val	Asp 320		
Ser Se	r Met	Ala	Lys 325	Val	Ile	Ser	Ala	Glu 330	Ala	Leu	Trp	Arg	Val 335	Val		
Asp Ar	g Cys	Val 340	Gln	Val	Leu	Gly	Gly 345	Arg	Gly	Val	Thr	Gly 350	Asp	Thr		
Val Va	l Glu 355	Arg	Ile	Phe	Arg	Asp 360	Ile	Arg	Pro	Phe	Arg 365	Ile	Tyr	Asp		
Gly Pr 37	o Ser 0	Glu	Val	His	Arg 375	Met	Ser	Leu	Ala	Lys 380	ГЛа	Leu	Leu	Asp		
Gln Ar 385	g Leu	Glu	Ala	His 390												
<210> <211> <212> <213> <220> <221> <222>	SEQ I LENGT TYPE: ORGAN FEATU NAME/ LOCAT	D NO H: 7 DNA ISM: RE: KEY: ION:	7 68 Psei CDS (1)	udomo (70	onas 68)	put:	ida									
<400>	SEQUE	NCE :	7													
atg ca Met Gl 1	g ccg n Pro	aac Asn	ctt Leu 5	gcc Ala	cga Arg	ctg Leu	ttc Phe	gcc Ala 10	ctc Leu	gac Asp	ggg Gly	cgt Arg	cgc Arg 15	gcc Ala	48	
ctg gt Leu Va	g acc l Thr	ааа С1у 20	gcc Ala	tcc Ser	agc Ser	ggc Gly	ctg Leu 25	ggc Gly	cgt Arg	cac His	ttc Phe	gcc Ala 30	atg Met	acc Thr	96	
ctg gc Leu Al	c gcc a Ala 35	gca Ala	ggc Gly	gcc Ala	gag Glu	gtg Val 40	gtg Val	gtg Val	acc Thr	gcc Ala	aga Arg 45	cgc Arg	cag Gln	gcg Ala	144	
ccg ct Pro Le 50	g cag u Gln	gcg Ala	ttg Leu	gtg Val	gag Glu 55	gcc Ala	atc Ile	gag Glu	gtg Val	gcc Ala 60	gga Gly	ддд ддд	cgg Arg	gcg Ala	192	
cag gc Gln Al 65	c ttt a Phe	gcc Ala	ctc Leu	gat Asp 70	gtg Val	acg Thr	agc Ser	cgt Arg	gag Glu 75	gac Asp	atc Ile	tgc Cys	cgg Arg	gtg Val 80	240	
ctc ga Leu As	t gcc p Ala	gcc Ala	ggc Gly 85	ccg Pro	ctg Leu	gat Asp	gtt Val	ctg Leu 90	gtc Val	aac Asn	aat Asn	gcg Ala	999 Gly 95	gtg Val	288	
agc ga Ser As	c agc p Ser	cag Gln 100	cct Pro	ttg Leu	cta Leu	gcc Ala	tgc Cys 105	gat Asp	gat Asp	caa Gln	acc Thr	tgg Trp 110	gac Asp	cac His	336	
gtg ct Val Le	c gac u Asp 115	acc Thr	aac Asn	ctc Leu	aag Lys	ggc Gly 120	gcc Ala	tgg Trp	gcc Ala	gtg Val	gcc Ala 125	cag Gln	gaa Glu	agc Ser	384	

gcc cgg cgc atg gtg gtg gcg ggg aag ggg ggc agc ctg atc aat gtc

432

-continued

Ala	Arg 130	Arg	Met	Val	Val	Ala 135	Gly	Lys	Gly	Gly	Ser 140	Leu	Ile	Asn	Val		
acc Thr 145	tcg Ser	atc Ile	ctc Leu	gcc Ala	agc Ser 150	cgt Arg	gtg Val	gcc Ala	ggc Gly	gcc Ala 155	gtc Val	ggc Gly	cct Pro	tac Tyr	ctg Leu 160	480	
gcg Ala	gcc Ala	aag Lys	gcc Ala	ggc Gly 165	ctg Leu	gcc Ala	cac His	ctg Leu	acc Thr 170	cgc Arg	gcc Ala	atg Met	gcg Ala	ctg Leu 175	gag Glu	528	
ttg Leu	gcg Ala	cgc Arg	cat His 180	ggt Gly	atc Ile	cgg Arg	gtg Val	aac Asn 185	gcc Ala	ctg Leu	gcg Ala	ccc Pro	ggc Gly 190	tac Tyr	gtg Val	576	
atg Met	act Thr	gat Asp 195	ttg Leu	aac Asn	gag Glu	gcc Ala	ttc Phe 200	ctg Leu	gcc Ala	agc Ser	gag Glu	gcc Ala 205	ggt Gly	gac Asp	aag Lys	624	
ttg Leu	cgc Arg 210	tcg Ser	cgg Arg	atc Ile	ccc Pro	agc Ser 215	cgc Arg	cgc Arg	ttc Phe	agc Ser	gtg Val 220	ccg Pro	tcg Ser	gac Asp	ctg Leu	672	
gac Asp 225	ggc Gly	gcc Ala	ttg Leu	ctg Leu	ctg Leu 230	ctc Leu	gcc Ala	agc Ser	gat Asp	gcc Ala 235	999 Gly	cgg Arg	gcg Ala	atg Met	agc Ser 240	720	
ggc Gly	gct Ala	gag Glu	atc Ile	gtg Val 245	gtc Val	gat Asp	ggc Gly	ggc Gly	cac His 250	ctg Leu	tgc Cys	agc Ser	agc Ser	ctg Leu 255	taa	768	
<210 <211 <212 <212	0> SI L> LI 2> TY 3> OF	EQ II ENGTH (PE : RGANI) NO 1: 2! PRT [SM:	8 55 Psei	udomo	onas	put:	ida									
<400)> SI	EQUEI	ICE :	8													
Met 1	Gln	Pro	Asn	Leu 5	Ala	Arg	Leu	Phe	Ala 10	Leu	Asp	Gly	Arg	Arg 15	Ala		
Leu	Val	Thr	Gly 20	Ala	Ser	Ser	Gly	Leu 25	Gly	Arg	His	Phe	Ala 30	Met	Thr		
Leu	Ala	Ala 35	Ala	Gly	Ala	Glu	Val 40	Val	Val	Thr	Ala	Arg 45	Arg	Gln	Ala		
Pro	Leu 50	Gln	Ala	Leu	Val	Glu 55	Ala	Ile	Glu	Val	Ala 60	Gly	Gly	Arg	Ala		
Gln 65	Ala	Phe	Ala	Leu	Asp 70	Val	Thr	Ser	Arg	Glu 75	Asp	Ile	Cys	Arg	Val 80		
Leu	Asp	Ala	Ala	Gly 85	Pro	Leu	Asp	Val	Leu 90	Val	Asn	Asn	Ala	Gly 95	Val		
Ser	Asp	Ser	Gln 100	Pro	Leu	Leu	Ala	Cys 105	Asp	Asp	Gln	Thr	Trp 110	Asp	His		
Val	Leu	Asp 115	Thr	Asn	Leu	Lys	Gly 120	Ala	Trp	Ala	Val	Ala 125	Gln	Glu	Ser		
Ala	Arg 130	Arg	Met	Val	Val	Ala 135	Gly	Lys	Gly	Gly	Ser 140	Leu	Ile	Asn	Val		
Thr 145	Ser	Ile	Leu	Ala	Ser 150	Arg	Val	Ala	Gly	Ala 155	Val	Gly	Pro	Tyr	Leu 160		
Ala	Ala	Lys	Ala	Gly 165	Leu	Ala	His	Leu	Thr 170	Arg	Ala	Met	Ala	Leu 175	Glu		
Leu	Ala	Arg	His 180	Gly	Ile	Arg	Val	Asn 185	Ala	Leu	Ala	Pro	Gly 190	Tyr	Val		
Met	Thr	Asp 195	Leu	Asn	Glu	Ala	Phe 200	Leu	Ala	Ser	Glu	Ala 205	Gly	Asp	Lya		
Lou	Ara	Ser	Ara	Tle	Pro	Ser	Ara	Ara	Phe	Ser	Val	Pro	Ser	Asp	Leu		

US 10,934,563 B2

63

-continued

	210					215					220					
	210					213					220					
Asp 225	Gly	Ala	Leu	Leu	Leu 230	Leu	Ala	Ser	Asp	Ala 235	Gly	Arg	Ala	Met	Ser 240	
Gly	Ala	Glu	Ile	Val 245	Val	Asp	Gly	Gly	His 250	Leu	СЛа	Ser	Ser	Leu 255		
<21 <21 <21 <22 <22 <22 <22	0 > SI 1 > LI 2 > T' 3 > OI 0 > FI 1 > NI 2 > LO	EQ II ENGTI YPE: RGAN EATUI AME/I DCAT	D NO H: 1 DNA ISM: RE: KEY: ION:	9 647 Pse CDS (1)	udom(onas 647)	put:	ida								
<40	0> SI	EQUEI	NCE :	9												
atg Met 1	atg Met	gtt Val	cca Pro	acc Thr 5	ctc Leu	gaa Glu	cac His	gag Glu	ctt Leu 10	gct Ala	ccc Pro	aac Asn	gaa Glu	gcc Ala 15	aac Asn	48
cat His	gtc Val	ccg Pro	ctg Leu 20	tcg Ser	ccg Pro	ctg Leu	tcg Ser	ttc Phe 25	ctc Leu	aag Lys	cgt Arg	gcc Ala	gcg Ala 30	cag Gln	gtg Val	96
tac Tyr	ccg Pro	cag Gln 35	cgc Arg	gat Asp	gcg Ala	gtg Val	atc Ile 40	tat Tyr	ggc Gly	gca Ala	agg Arg	cgc Arg 45	tac Tyr	agc Ser	tac Tyr	144
cgt Arg	cag Gln 50	ttg Leu	cac His	gag Glu	cgc Arg	agc Ser 55	cgc Arg	gcc Ala	ctg Leu	gcc Ala	agt Ser 60	gcc Ala	ttg Leu	gag Glu	cgg Arg	192
gtc Val 65	ggt Gly	gtt Val	cag Gln	ccg Pro	ggc Gly 70	gag Glu	cgg Arg	gtg Val	gcg Ala	ata Ile 75	ttg Leu	gcg Ala	ccg Pro	aac Asn	atc Ile 80	240
ccg Pro	gaa Glu	atg Met	ctc Leu	gag Glu 85	gcc Ala	cac His	tat Tyr	ggc Gly	gtg Val 90	ccc Pro	ggt Gly	gcc Ala	ggg gly	gcg Ala 95	gtg Val	288
ctg Leu	gtg Val	tgc Cys	atc Ile 100	aac Asn	atc Ile	cgc Arg	ctg Leu	gag Glu 105	gga gga	cgc Arg	agc Ser	att Ile	gcc Ala 110	ttc Phe	atc Ile	336
ctg Leu	cgt Arg	cac His 115	tgc Cys	gcg Ala	gcc Ala	aag Lys	gta Val 120	ttg Leu	atc Ile	tgc Cys	gat Asp	cgt Arg 125	gag Glu	ttc Phe	ggt Gly	384
gcc Ala	gtg Val 130	gcc Ala	aat Asn	cag Gln	gcg Ala	ctg Leu 135	gcc Ala	atg Met	ctc Leu	gat Asp	gcg Ala 140	ccg Pro	ccc Pro	ttg Leu	ctg Leu	432
gtg Val 145	ggc Gly	atc Ile	gac Asp	gat Asp	gat Asp 150	cag Gln	gcc Ala	gag Glu	cgc Arg	gcc Ala 155	gat Asp	ttg Leu	gcc Ala	cac His	gac Asp 160	480
ctg Leu	gac Asp	tac Tyr	gaa Glu	gcg Ala 165	ttc Phe	ttg Leu	gcc Ala	cag Gln	ggc Gly 170	gac Asp	ccc Pro	gcg Ala	cgg Arg	ccg Pro 175	ttg Leu	528
agt Ser	gcg Ala	cca Pro	cag Gln 180	aac Asn	gaa Glu	tgg Trp	cag Gln	tcg Ser 185	atc Ile	gcc Ala	atc Ile	aac Asn	tac Tyr 190	acc Thr	tcc Ser	576
ggc Gly	acc Thr	acg Thr 195	elà aaa	gac Asp	ccc Pro	aag Lys	ggc Gly 200	gtg Val	gtg Val	ctg Leu	cat His	cac His 205	cgc Arg	ggc Gly	gcc Ala	624
tac Tyr	ctc Leu 210	aac Asn	gcc Ala	tgc Cys	gcc Ala	999 Gly 215	gcg Ala	ctg Leu	atc Ile	ttc Phe	cag Gln 220	ttg Leu	GJÀ aaa	ccg Pro	cgc Arg	672
agc Ser 225	gtc Val	tac Tyr	ttg Leu	tgg Trp	acc Thr 230	ttg Leu	ccg Pro	atg Met	ttc Phe	cac His 235	tgc Cys	aac Asn	ggc Gly	tgg Trp	agc Ser 240	720

-continued

cat His	acc Thr	tgg Trp	gcg Ala	gtg Val 245	acg Thr	ttg Leu	tcc Ser	ggt Gly	ggc Gly 250	acc Thr	cac His	gtg Val	tgt Cys	ctg Leu 255	cgc Arg	768		
aag Lys	gtc Val	cag Gln	cct Pro 260	gat Asp	gcg Ala	atc Ile	aac Asn	gcc Ala 265	gcc Ala	atc Ile	gcc Ala	gag Glu	cat His 270	gcc Ala	gtg Val	816		
act Thr	cac His	ctg Leu 275	agc Ser	gcc Ala	gcc Ala	cca Pro	gtg Val 280	gtg Val	atg Met	tcg Ser	atg Met	ctg Leu 285	atc Ile	cac His	gcc Ala	864		
gag Glu	cat His 290	gcc Ala	agc Ser	gcc Ala	cct Pro	ccg Pro 295	gtg Val	ccg Pro	gtt Val	tcg Ser	gtg Val 300	atc Ile	act Thr	ggc Gly	ggt Gly	912		
gcc Ala 305	gcc Ala	ccg Pro	ccc Pro	agt Ser	gcg Ala 310	gtc Val	atc Ile	gcg Ala	gcg Ala	atg Met 315	gag Glu	gcg Ala	cgt Arg	ggc Gly	ttc Phe 320	960		
aac Asn	atc Ile	acc Thr	cat His	gcc Ala 325	tat Tyr	ggc Gly	atg Met	acc Thr	gaa Glu 330	agc Ser	tac Tyr	ggt Gly	ccc Pro	agc Ser 335	aca Thr	1008		
ttg Leu	tgc Cys	ctg Leu	tgg Trp 340	cag Gln	ccg Pro	ggt Gly	gtc Val	gac Asp 345	gag Glu	ttg Leu	ccg Pro	ctg Leu	gag Glu 350	gcc Ala	cgg Arg	1056		
gcc Ala	cag Gln	ttc Phe 355	atg Met	agc Ser	cgc Arg	cag Gln	ggc Gly 360	gtc Val	gcc Ala	cac His	ccg Pro	ctg Leu 365	ctc Leu	gag Glu	gag Glu	1104		
gcc Ala	acg Thr 370	gtg Val	ctg Leu	gat Asp	acc Thr	gac Asp 375	acc Thr	ggc Gly	cgc Arg	ccg Pro	gtc Val 380	ccg Pro	gcc Ala	gac Asp	ggc Gly	1152		
ctt Leu 385	acc Thr	ctc Leu	ggc Gly	gag Glu	ctg Leu 390	gtg Val	gtg Val	cgg Arg	ggc Gly	aac Asn 395	act Thr	gtg Val	atg Met	aaa Lys	ggc Gly 400	1200		
tac Tyr	ctg Leu	cac His	aac Asn	cca Pro 405	gag Glu	gct Ala	acc Thr	cgt Arg	gcc Ala 410	gcg Ala	ttg Leu	gcc Ala	aac Asn	ggc Gly 415	tgg Trp	1248		
ctg Leu	cac His	acg Thr	ggc Gly 420	gac Asp	ctg Leu	gcc Ala	gtg Val	ctg Leu 425	cac His	ctg Leu	gac Asp	ggc Gly	tat Tyr 430	gtg Val	gaa Glu	1296		
atc Ile	aag Lys	gac Asp 435	cga Arg	gcc Ala	aag Lys	gac Asp	atc Ile 440	atc Ile	att Ile	tct Ser	ggc Gly	ggc Gly 445	gag Glu	aac Asn	atc Ile	1344		
agt Ser	tcg Ser 450	ctg Leu	gag Glu	ata Ile	gaa Glu	gaa Glu 455	gtg Val	ctc Leu	tac Tyr	cag Gln	cac His 460	ccc Pro	gag Glu	gtg Val	gtc Val	1392		
gag Glu 465	gct Ala	gcg Ala	gtg Val	gtg Val	gcg Ala 470	cgt Arg	ccg Pro	gat Asp	tcg Ser	cgc Arg 475	tgg Trp	ggc Gly	gag Glu	aca Thr	cct Pro 480	1440		
cac His	gct Ala	ttc Phe	gtc Val	acg Thr 485	ctg Leu	cgc Arg	gct Ala	gat Asp	gca Ala 490	ctg Leu	gcc Ala	agc Ser	glà aaa	gac Asp 495	gac Asp	1488		
ctg Leu	gtc Val	cgc Arg	tgg Trp 500	tgc Cys	cgt Arg	gag Glu	cgt Arg	ctg Leu 505	gcg Ala	cac His	ttc Phe	aag Lys	gcg Ala 510	ccg Pro	cgc Arg	1536		
cat His	gtg Val	tcg Ser 515	ctc Leu	gtg Val	gac Asp	ctg Leu	ccc Pro 520	aag Lys	acc Thr	gcc Ala	act Thr	gga Gly 525	aaa Lys	ata Ile	cag Gln	1584		
aag Lys	ttc Phe 530	gtc Val	ctg Leu	cgt Arg	gag Glu	tgg Trp 535	gcc Ala	cgg Arg	caa Gln	cag Gln	gag Glu 540	gcg Ala	cag Gln	atc Ile	gcc Ala	1632		
gac Asp 545	gcc Ala	gag Glu	cat His	tga												1647		

US 10,934,563 B2

67

-continued

<210 <211)> SH L> LH	EQ II ENGTH) NO H: 54	10 18											
<212 <213	2> TY 3> OF	(PE : RGANI	PRT ISM:	Pseu	ıdomo	onas	put	ida							
<400)> SI	EQUEI	NCE :	10											
Met 1	Met	Val	Pro	Thr 5	Leu	Glu	His	Glu	Leu 10	Ala	Pro	Asn	Glu	Ala 15	Asn
His	Val	Pro	Leu 20	Ser	Pro	Leu	Ser	Phe 25	Leu	Lys	Arg	Ala	Ala 30	Gln	Val
Tyr	Pro	Gln 35	Arg	Asp	Ala	Val	Ile 40	Tyr	Gly	Ala	Arg	Arg 45	Tyr	Ser	Tyr
Arg	Gln 50	Leu	His	Glu	Arg	Ser 55	Arg	Ala	Leu	Ala	Ser 60	Ala	Leu	Glu	Arg
Val 65	Gly	Val	Gln	Pro	Gly 70	Glu	Arg	Val	Ala	Ile 75	Leu	Ala	Pro	Asn	Ile 80
Pro	Glu	Met	Leu	Glu 85	Ala	His	Tyr	Gly	Val 90	Pro	Gly	Ala	Gly	Ala 95	Val
Leu	Val	Сүз	Ile 100	Asn	Ile	Arg	Leu	Glu 105	Gly	Arg	Ser	Ile	Ala 110	Phe	Ile
Leu	Arg	His 115	Суз	Ala	Ala	LYa	Val 120	Leu	Ile	Сүз	Asp	Arg 125	Glu	Phe	Gly
Ala	Val 130	Ala	Asn	Gln	Ala	Leu 135	Ala	Met	Leu	Asp	Ala 140	Pro	Pro	Leu	Leu
Val 145	Gly	Ile	Asp	Asp	Asp 150	Gln	Ala	Glu	Arg	Ala 155	Asp	Leu	Ala	His	Asp 160
Leu	Asp	Tyr	Glu	Ala 165	Phe	Leu	Ala	Gln	Gly 170	Asp	Pro	Ala	Arg	Pro 175	Leu
Ser	Ala	Pro	Gln 180	Asn	Glu	Trp	Gln	Ser 185	Ile	Ala	Ile	Asn	Tyr 190	Thr	Ser
Gly	Thr	Thr 195	Gly	Asp	Pro	ГЛЗ	Gly 200	Val	Val	Leu	His	His 205	Arg	Gly	Ala
Tyr	Leu 210	Asn	Ala	Суз	Ala	Gly 215	Ala	Leu	Ile	Phe	Gln 220	Leu	Gly	Pro	Arg
Ser 225	Val	Tyr	Leu	Trp	Thr 230	Leu	Pro	Met	Phe	His 235	Суз	Asn	Gly	Trp	Ser 240
His	Thr	Trp	Ala	Val 245	Thr	Leu	Ser	Gly	Gly 250	Thr	His	Val	Суз	Leu 255	Arg
Lys	Val	Gln	Pro 260	Asp	Ala	Ile	Asn	Ala 265	Ala	Ile	Ala	Glu	His 270	Ala	Val
Thr	His	Leu 275	Ser	Ala	Ala	Pro	Val 280	Val	Met	Ser	Met	Leu 285	Ile	His	Ala
Glu	His 290	Ala	Ser	Ala	Pro	Pro 295	Val	Pro	Val	Ser	Val 300	Ile	Thr	Gly	Gly
Ala 305	Ala	Pro	Pro	Ser	Ala 310	Val	Ile	Ala	Ala	Met 315	Glu	Ala	Arg	Gly	Phe 320
Asn	Ile	Thr	His	Ala 325	Tyr	Gly	Met	Thr	Glu 330	Ser	Tyr	Gly	Pro	Ser 335	Thr
Leu	Сув	Leu	Trp 340	Gln	Pro	Gly	Val	Asp 345	Glu	Leu	Pro	Leu	Glu 350	Ala	Arg
Ala	Gln	Phe 355	Met	Ser	Arg	Gln	Gly 360	Val	Ala	His	Pro	Leu 365	Leu	Glu	Glu
Ala	Thr	Val	Leu	Asp	Thr	Asp	Thr	Gly	Arg	Pro	Val	Pro	Ala	Asp	Gly

370	375	380	
Leu Thr Leu Gly Glu Leu	Val Val Arg Gly Asn	Thr Val Met Lys Gly	
385 390	395	400	
Tyr Leu His Asn Pro Glu	Ala Thr Arg Ala Ala	Leu Ala Asn Gly Trp	
405	410	415	
Leu His Thr Gly Asp Leu	Ala Val Leu His Leu	Asp Gly Tyr Val Glu	
420	425	430	
Ile Lys Asp Arg Ala Lys	Asp Ile Ile Ile Ser	Gly Gly Glu Asn Ile	
435	440	445	
Ser Ser Leu Glu Ile Glu	Glu Val Leu Tyr Gln	His Pro Glu Val Val	
450	455	460	
Glu Ala Ala Val Val Ala	Arg Pro Asp Ser Arg	Trp Gly Glu Thr Pro	
465 470	475	480	
His Ala Phe Val Thr Leu	Arg Ala Asp Ala Leu	Ala Ser Gly Asp Asp	
485	490	495	
Leu Val Arg Trp Cys Arg	Glu Arg Leu Ala His	Phe Lys Ala Pro Arg	
500	505	510	
His Val Ser Leu Val Asp	Leu Pro Lys Thr Ala	Thr Gly Lys Ile Gln	
515	520	525	
Lys Phe Val Leu Arg Glu	1 Trp Ala Arg Gln Gln	Glu Ala Gln Ile Ala	
530	535	540	
Asp Ala Glu His 545			
<pre><210> SEQ ID NO 11 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artific <220> FEATURE: <223> OTHER INFORMATION <400> SEQUENCE: 11</pre>	tial Sequence I: PCR Primer		
aacctggacg gtgaagagcg			20
<pre><210> SEQ ID NO 12 <211> LENGTH: 19 <212> TYPE: DNA <213> ORGANISM: Artific <220> FEATURE: <223> OTHER INFORMATION <400> SEQUENCE: 12</pre>	ial Sequence I: PCR Primer		
gaacggacag gaagcacag			19
<pre><210> SEQ ID NO 13 <211> LENGTH: 32 <212> TYPE: DNA <213> ORGANISM: Artific <220> FEATURE: <223> OTHER INFORMATION</pre>	rial Sequence I: PCR Primer		
<400> SEQUENCE: 13			
ggeeaegegt egaetagtae e	cccccccc cc		32
<pre><210> SEQ ID NO 14 <211> LENGTH: 36 <212> TYPE: DNA <213> ORGANISM: Artific <220> FEATURE:</pre>	ial Sequence		

<223> OTHER INFORMATION: PCR Primer

_	-
· / /	

-continued

72

<400> SEQUENCE: 14	
ggccacgcgt cgactagtac ggghhggghh ggghl	hg 36
<210> SEQ ID NO 15 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: PCR Primer	
<400> SEQUENCE: 15	
ccaatgcccg tagcaggtcg c	21
<210> SEQ ID NO 16 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: PCR Primer	
<400> SEQUENCE: 16	
gaacteetgt teaeggteaa g	21
<210> SEQ ID NO 17 <211> LENGTH: 19 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: PCR Primer	
<400> SEQUENCE: 17	
tcaatgatcg acggcaccg	19
<pre><210> SEQ ID NO 18 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: PCR Primer <400> SEQUENCE: 18</pre>	
acactatact tectatecat t	21
<210> SEQ ID NO 19 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: PCR Primer	
<400> SEQUENCE: 19	
gttcttcacc ggacagatgg	20
<210> SEQ ID NO 20 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: PCR Primer <400> SEQUENCE: 20	
cccacgaatt gctcgagatc	20
<210> SEO ID NO 21	

<210> SEQ 1D NO 21 <211> LENGTH: 18

7	2
- 1	•
	~

-continued

74

-cont	Linued	
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE:		
<223> OTHER INFORMATION: PCR Primer		
<400> SEQUENCE: 21		
gcaggtcggg caatgtcg	18	
<210> SEQ ID NO 22 <211> LENGTH: 18 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: PCR Primer		
<400> SEQUENCE: 22		
catgecegtt egtgette	18	
<210> SEQ ID NO 23 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: PCR Primer		
<400> SEQUENCE: 23		
caggtccatc atgttgtcgg c	21	
<210> SEQ ID NO 24 <211> LENGTH: 19 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: PCR Primer <400> SEQUENCE: 24		
acgagccgtg aggacatct	19	
<210> SEQ ID NO 25 <211> LENGTH: 18 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: PCR Primer <400> SEQUENCE: 25		
cgagcgcaac ttgtcacc	18	
<210> SEQ ID NO 26 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: PCR Primer		
<400> SEQUENCE: 26		
gctggtgtgc atcaacatcc	20	
<210> SEQ ID NO 27 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: PCR Primer		

<400> SEQUENCE: 27

US 10,934,563 B2

75

continued

76

	-concinued
gcagtggaac atcggcaagg	20
<210> SEQ ID NO 28 <211> LENGTH: 19 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: PCR Primer	
<400> SEQUENCE: 28	
tgttatacgc gcgtgttcg	19
<210> SEQ ID NO 29 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: PCR Primer	
<400> SEQUENCE: 29	
ggtacacgta gaacgccgac	20
<pre><210> SEQ ID NO 30 <211> LENGTH: 22 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: PCR Primer</pre>	
<400> SEQUENCE: 30	
catggtgttc gtgctgttca cc	22
<210> SEQ ID NO 31 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: PCR Primer	
<400> SEQUENCE: 31	
gccgaacagc aacctgatca	20
<210> SEQ ID NO 32 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: PCR Primer	
<400> SEQUENCE: 32	
acgctgtgct tcctgtccgt t	21
<210> SEQ ID NO 33 <211> LENGTH: 17 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: PCR Primer <400> SEQUENCE: 33	
caggtcgggc aatgtcg	17
<210> SEQ ID NO 34 <211> LENGTH: 20 <212> TYPE: DNA	

<213> ORGANISM: Artificial Sequence

US 10,934,563 B2

78

-continued		
<pre><220> FEATURE: <223> OTHER INFORMATION: PCR Primer</pre>		
<400> SEQUENCE: 34		
cccacgaatt gctcgagatc	20	
<210> SEQ ID NO 35 <211> LENGTH: 19 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: PCR Primer		
<400> SEQUENCE: 35		
gaagcacgaa cgggcatgg	19	
<pre><210> SEQ ID NO 36 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: PCR Primer <400> SEQUENCE: 36</pre>		
accases tatagent a	21	
<210> SEQ ID NO 37 <211> LENGTH: 22 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: PCR Primer		
<400> SEQUENCE: 37		
cgtggtccca ggtttgatca tc	22	
<210> SEQ ID NO 38 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: PCR Primer		
<400> SEQUENCE: 38		
gctcgacacc aacctcaagg	20	
<210> SEQ ID NO 39 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: PCR Primer		
<400> SEQUENCE: 39		
gccaagaacg cttcgtagtc	20	
<210> SEQ ID NO 40 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: PCR Primer		
<400> SEQUENCE: 40		

77

cacggtgctg gataccgaca

-continued

<210> SEQ ID NO 41	
<211> LENGIH: 20 <212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: PCR Primer	
<400> SEOUENCE: 41	
\sim	
ggtacacgta gaacgccgac	20
<210> SEQ ID NO 42	
<211> LENGTH: 19	
<212> TYPE: DNA	
<213> ORGANISM: AICHICIAI Sequence <220> FEATURE:	
<223> OTHER INFORMATION: PCR Primer	
<400> SEQUENCE: 42	
tgttatacgc gcgtgttcg	19
<210> SEO ID NO 43	
<211> LENGTH: 20	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEALORE: <223> OTHER INFORMATION: PCR Primer	
<400> SEQUENCE: 43	
qccqaacaqc aacctgatca	20
<210> SEQ ID NO 44 <211> LENGTH: 81	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: BarSeq Oligo	
<220> FEATURE:	
<pre><221> NAME/KEY: misc_leature <222> LOCATION: (59) (63)</pre>	
<222 DOCATION: (35) (35)	
<400> SEQUENCE: 44	
aatgatacgg cgaccaccga gatctacact ctttccctac acgacgctct tccgatctnn	60
nnngtcgacc tgcagcgtac g	81
<210> SEQ ID NO 45	
<211> DENGIR: 80 <212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: BarSeq Oligo	
<220> FEALUKE: <221> NAME/KEY: misc feature	
<222> LOCATION: (59)(62)	
<223> OTHER INFORMATION: n is a, c, g, or t	
ADDS SECTIENCE, AE	
CION DEQUEMCE. IS	
aatgatacgg cgaccaccga gatctacact ctttccctac acgacgctct tccgatctnn	60
	0.0
myccyacce ycaycycacy	00
<210> SEQ ID NO 46	
<211> LENGTH: 79	
<212> IIFE: DNA <213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: BarSeq Oligo	

US 10,934,563 B2

IJ	ъ
ñ	L
	ŏ

-continued

<220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (59)(61) <223> OTHER INFORMATION: n is a, c, g, or t	
<400> SEQUENCE: 46	
aatgatacgg cgaccaccga gatctacact ctttccctac acgacgctct tccgatctnn	60
ngtcgacctg cagcgtacg	79
<pre><210> SEQ ID NO 47 <211> LENGTH: 78 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: BarSeq Oligo <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (59)(60) <223> OTHER INFORMATION: n is a, c, g, or t <400> SEQUENCE: 47</pre>	
aatgatacgg cgaccaccga gatctacact ctttccctac acgacgctct tccgatctnn	60
gtcgacctgc agcgtacg	78
<210> SEQ ID NO 48 <211> LENGTH: 242 <212> TYPE: DNA <213> ORGANISM: Pseudomonas putida <400> SEQUENCE: 48	
ggcaagagca tccatcacgg ggcctgttca tgtttgaaat gtttcgataa tgaatcaata	60
gcttgcaaat atgcaacaag cagcctgact ttcgctcggc ggtgaggcgt cagaacccag	120
gctgtatgcg gcctgtggct gacttagagt tggcccaggc cttgctcttg ggcttgtgcc	180
aacccagaaa ccaaaggcag ggcctacaga accatgagca gttcaccaac gatttccccg	240
gc	242

What is claimed is:

1. A recombinant expression vector comprising: a nonnaturally occurring polynucleotide comprising at least one first promoter operably linked to at least three nucleotide sequences selected from the group consisting of a nucleotide sequence having at least 90% sequence identity to SEQ ID NO: 1 (IvaA), a nucleotide sequence having at least 90% sequence identity to SEQ ID NO: 3 (IvaB), a nucleotide sequence having at least 90% sequence identity to SEQ ID NO: 5 (IvaC), a nucleotide sequence having at least 90% sequence identity to SEQ ID NO: (IvaD), and a nucleotide sequence having at least 90% sequence identity to SEQ ID NO: 9 (IvaE).

2. The recombinant expression vector of claim **1**, wherein the first promoter is inducible.

3. The recombinant expression vector of claim **1**, wherein the first promoter is constitutively active.

4. The recombinant expression vector of claim **1**, further 60 comprising a nucleotide sequence encoding an acetoacetyl-CoA transferase, a short-chain thioesterase and/or a succi-nyl-CoA transferase, operably linked to the first promoter.

5. The recombinant expression vector of claim **1**, further comprising a nucleotide sequence encoding an acetoacetate ⁶⁵ decarboxylase and which is operably linked to the first promoter.

6. The recombinant expression vector of claim **1**, further comprising a nucleotide sequence encoding an acetoacetyl-CoA transferase and a nucleotide sequence encoding an acetoacetate decarboxylase, both of which nucleotide sequences are operably linked to the first promoter.

7. The recombinant expression vector of claim 1, further comprising a nucleotide sequence encoding FadB and/or FadJ, operably linked to the first promoter or a second promoter.

 The recombinant expression vector of claim 1, wherein the first promoter is operably linked to at least four nucleotide sequences selected from the group consisting of lvaA, 55 lvaB, lvaC, lvaD, and lvaE.

9. The recombinant expression vector of claim **1**, wherein the first promoter is operably linked to nucleotide sequences lvaA, lvaB, lvaC, lvaD, and lvaE.

10. A genetically modified host cell transformed to contain and express a heterologous recombinant expression vector comprising at least one first promoter operably linked to at least three nucleotide sequences selected from the group consisting of a nucleotide sequence having at least 90% sequence identity to SEQ ID NO: 1 (IvaA), a nucleotide sequence having at least 90% sequence identity to SEQ ID NO: 3 (IvaB), a nucleotide sequence having at least 90% sequence identity to SEQ ID NO: 5 (IvaC), a nucleotide

sequence having at least 90% sequence identity to SEQ ID NO: (IvaD), and a nucleotide sequence having at least 90% sequence identity to SEQ ID NO: 9 (IvaE).

* * * * *