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(57) ABSTRACT 

A high-bandwidth adaptive cache reduces unnecessary 
cache accesses by providing a laundry counter indicating 
whether a given adaptive cache region has any dirty frames 
to allow write-back without a preparatory adaptive cache 
read. An optional laundry list allows the preparatory adap­
tive cache read to also be avoided if the tags of the data being 
written back match all tags of the data in the adaptive cache 
that is dirty. 
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ADAPTIVE COMPUTER CACHE 
ARCHITECTURE 

STATEMENT REGARDING FEDERALLY 
SPONSORED RESEARCH OR DEVELOPMENT 

This invention was made with government support under 
1533885 and 1617824 awarded by the National Science 
Foundation. The government has certain rights in the inven­
tion. 

BACKGROUND OF THE INVENTION 

The present invention relates to computer architectures 
and in particular to an adaptive cache suitable for use with 
high-bandwidth memory in a computer cache system. 

The processing speed of modem computers is constrained 
by the time it takes for data to be transferred between 
computer memory and the computer processor, e.g. 
"latency". Such latency can be reduced through the use of 
cache memories which provide small, fast data storage 
structures close to the processor. When data is required by 
the processor, it looks first at the cache memories to see if 
the necessary data has been previously loaded from a larger 
but slower main memory. If data is found in the cache 
memory, the need to access the slower main memory can be 
avoided. 

The success of this strategy relies on the ability to 
anticipate what data will be required by the processors in the 
future so that this data may be preloaded into cache memory. 
Such predictions usually rely on the principle of "locality of 
reference" meaning that data likely to be used by the 
processor in the future will be local to the data currently used 

2 
portions of the adaptive cache. In certain cases, this tracking 
allows writing to the adaptive cache without a time-con­
suming "pre-reading" of the adaptive cache to identify 
"dirty" cache frames that need to be handled before the 

5 writing. By eliminating this auxiliary access of the adaptive 
cache before a writing to the adaptive cache, the effective 
latency of the adaptive cache, and hence of the HBM 
memory, is substantially reduced. 

More specifically, one embodiment of the invention pro-
10 vides a cache architecture having an adaptive cache with 

regions holding cache frames storing data blocks cached 
from a main memory for use by one or more processors. 
Each cache frame is associated with a dirty bit that is set 
when the cache frame holds data that has been changed by 

15 a processor but has not been updated in the main memory 
and that is reset otherwise. The cache architecture also 
includes a laundry counter associated with each region 
storing a count value. A cache controller operates to: (a) 
update the laundry counters during operation of the cache 

20 architecture to indicate whether an associated region has any 
set dirty bits; (b) write data to a given cache frame in the 
region in a first mode without first reading the dirty bit of the 
cache frame when the associated laundry counter indicates 
no dirty frames in the region; and ( c) write data to a given 

25 cache frame in a second mode when the associated laundry 
counter indicates at least one dirty frame in the region after 
first reading the dirty bit of the given cache frame to ensure 
that the given cache frame dirty bit is not set. 

It is thus a feature of at least one embodiment of the 
30 invention to eliminate the need to read the adaptive cache 

before writing to the adaptive cache when a portion of the 
adaptive cache written to is "clean," that is, having no dirty 
frames, thereby reducing the practical latency of the HBM 
cache. by the processor. Implementing the strategy requires simply 

loading blocks of data into the cache around the data 35 

currently being used by the processor. 
The laundry counter may indicate a number of dirty bits 

in the region and may be incremented when new cache 
frames having dirty bits are added to the cache and decre­
mented when old cache frames having dirty bits are removed 
from the cache. 

Often the cache memories are constructed of static ran­
dom-access memory (SRAM) which is generally faster than 
the dynamic random-access memory (DRAM) used for the 
larger main memory. Also, typically the cache is relatively 40 

small to provide for fast access and as an accommodation to 
the larger memory cell size of SRAM memory. 

High-performance scientific computing (HPC) requires 
high memory bandwidths particularly when executed on 
highly parallel architectures like those found in graphic 45 

processing units or multi-core processors. Bandwidth refers 

It is thus a feature of at least one embodiment of the 
invention to allow the laundry counter to track the number 
of dirty frames as this number increases and decreases 
during cache use to readily determine when the cache 
portion is clean without the need for special cache interro­
gation circuitry. 

The cache controller may operate in the second mode to 
write-back data of the given cache frame to the main 
memory before writing data to the cache frame when the 
reading of the dirty bit of a given cache frame indicates that 
the dirty bit is set and a data block of the given cache frame 
does not match a data block of data being written back to the 
given cache frame. 

It is thus a feature of at least one embodiment of the 

to the amount of data transmitted per unit time and is distinct 
from latency which indicates how fast a given piece of data 
may be accessed. High memory bandwidths may be pro­
moted using special caches constructed of high-bandwidth 50 

memory technologies (HBM) using DRAM and new tech­
nologies of three-dimensional die stacking in which semi­
conductor dies holding the memory circuitry are stacked 
vertically with vertical interconnections through-silicon 
vias. These HBM memories have sufficient storage capacity 

invention to allow the cache architecture to revert to stan-
55 dard cache protocols in cases where the cache portion is not 

clean. to implement high-bandwidth caching but invoke a latency 
penalty because of the use of DRAM rather than SRAM 
memory. 

SUMMARY OF THE INVENTION 

The present inventors have recognized that the latency 
penalty of an HBM memory cache can be mitigated by 
implementing the HBM memory as an adaptive cache which 
eliminates ancillary cache accesses needed under normal 
caching protocols. Generally, the adaptive cache uses a 
separate high-speed memory to track dirty blocks within 

The laundry counter may be held in a separate memory 
from a memory holding the cache, the separate memory 
providing faster access by the processor than the memory 

60 holding the cache. In one example, the laundry counter may 
be held in a static random-access memory (SRAM) and the 
adaptive cache may be held in a dynamic random-access 
memory (DRAM). In some embodiments, the DRAM may 
employ a three-dimensional, die-stacking integrated circuit 

65 architecture. 
It is thus a feature of at least one embodiment of the 

invention to permit the laundry counter to be accessed with 
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less time penalty than the adaptive cache, thereby providing 
a speed advantage in reading the laundry counter over 
reading the adaptive cache prior to a writing to the adaptive 
cache. It is another feature of at least one embodiment of the 
invention to permit the use of DRAM for high-capacity, 5 

high-bandwidth caches while reducing the latency penalty 
associated with such memory types. 

These particular objects and advantages may apply to 
only some embodiments falling within the claims and thus 
do not define the scope of the invention. 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1 is a simplified block diagram of a computer system 
The cache frames of the cache may be further associated 

with tags corresponding to addresses in main memory of the 
data held in the cache frames, and the cache architecture 10 

may further include a laundry list indicating a tag of a cache 
frame associated with a set dirty bit. The cache controller 
may further operate to write data having a given tag to a 
given cache frame in a third mode without first reading the 
dirty bit of the cache frame when tag of the given cache 15 

frame is in the laundry list. 

providing multiple cores having associated lower-level 
caches communicating with a main memory through an 
adaptive cache system, and further showing logical struc­
tures of lower-level caches and the adaptive cache system, 
the latter including the adaptive cache, a laundry count, and 
a laundry list associated with super-frames of the adaptive 
cache; 

FIG. 2 is a logical diagram showing a laundry list cache 
structure holding the laundry lists; 

It is thus a feature of at least one embodiment of the 
invention to permit fast writing to a portion of the adaptive 
cache without a pre-reading of data of the adaptive cache 
even when the portion of the adaptive cache is not clean, 
when the dirty bits are linked to the same memory block as 
the data being written. 

FIG. 3 is a simplified flowchart showing operation of the 
cache controllers of the lower-level caches and the adaptive 
cache system in handling a write-back from the lower-level 

20 caches to the adaptive cache system according to the present 
invention; 

The laundry list may be held in separate memory from a 
memory holding the cache, the separate memory providing 
faster access by the processor than the memory holding the 25 

cache. 

FIGS. 4-8 are logical representations of a super-frame of 
the adaptive cache and its associated laundry count and 
laundry list under different write-back circumstances from 
the lower-level caches to the adaptive cache; 

FIG. 9 is a table showing a more complete representation 
of the operation of the cache controller of the adaptive 
cache; and 

It is thus a feature of at least one embodiment of the 
invention to permit the laundry list to be accessed with less 
time penalty than the adaptive cache, thereby providing a 
speed advantage in reading the laundry list over reading the 
adaptive cache prior to a writing to the adaptive cache. 

The laundry list may be held in a laundry list cache 
providing fewer laundry list entries than regions of the 
cache. 

FIG. 10 is a flowchart showing a background write-back 
30 of dirty cache regions per one embodiment of the present 

invention. 

DETAILED DESCRIPTION OF THE 
PREFERRED EMBODIMENT 

It is thus a feature of at least one embodiment of the 35 

invention to substantially reduce the storage burden for the 
laundry list allowing it to be stored in small SRAM memory. 
This small cache may be implemented without access pen­
alties associated with normal cache misses because there is 
no correctness penalty for the missing laundry list; the cache 
simply reverts to normal protocol operation. 

The cache controller may schedule a write-back of data 
written into the adaptive cache to main memory at the time 
of writing of data to the adaptive cache. 

It is thus a feature of at least one embodiment of the 
invention to minimize dirty frames in the adaptive cache to 
promote operation of the adaptive cache in the first or third 
modes having lower effective cache latency. 

The schedule of the write-back of dirty cache frames may 

Referring now to FIG. 1, a computer system 10 employ­
ing the present invention may provide for multiple process­
ing cores 12, for example, each providing a general-purpose 
processor for execution of arithmetic and logical instructions 

40 and optionally including architectural features such as out­
of-order processing, speculative execution, and the like. 

Each of the cores 12 may be associated with one or more 
core-level caches 14 (for example, an Ll and L2 cache) as 
is generally understood in the art. The core-level caches 14 

45 may be associated with cache controllers 15 which handle 
cache protocols and cache coordination as is generally 
understood in the art. 

be based on a measurement of a flow of data between the 50 

The core-level caches 14 for each core 12 may include a 
last level cache 14' which may communicate directly with a 
main memory 16 through one or more channels to exchange 
data therewith. The main memory 16, for example, will main memory and the one or more processors. 

It is thus a feature of at least one embodiment to prevent 
the opportunistic write-backs of dirty frames from interfer­
ing with primary memory traffic. 

The cache controller may further operate to write-back 
dirty cache frames to the main memory on a predetermined 
schedule independently of writing to the cache from the 
processor. 

It is thus a feature of at least one embodiment of the 
invention to provide background writes back to again mini­
mize dirty cache frames for optimal performance. 

The predetermined schedule may be coordinated with a 
refresh of dynamic adaptive cache memory. 

It is thus a feature of at least one embodiment of the 
invention to piggyback the writes back with the required 
refresh of DRAM memory that may be used in the adaptive 
cache. 

typically include a variety of memory types arranged in a 
hierarchical form including, for example, random access 
memory 20 and mass storage memory 22 such as provided 

55 by disk drives or the like. Logically, the main memory holds 
data 24 linked to physical addresses 25 uniquely identifying 
that data 24. 

The core-level caches 14 for each core 12 may also 
communicate with the adaptive cache system 18, the latter 

60 of which also may communicate with main memory 16. As 
will be discussed below, blocks 27 of data 24 from of 
multiple physical addresses 25 may be cached by various of 
the core-level caches 14 and the adaptive cache system 18. 
In this regard, the main memory 16 will be shared by the 

65 cores 12 and the adaptive cache system 18 and will provide 
substantially more storage for data and instructions than 
available in the core-level caches 14 and adaptive cache 
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system 18. Similarly, the adaptive cache system 18 will 
provide greater storage capacity than the caches 14. 

Core-level caches 14 and particularly the last level cache 
14' may provide for a set of cache frames 23 each holding 
data 24 and an address tag 26 identifying the data. The 5 

address tag 26 will be related to the physical address 25 in 
the main memory 16 holding data corresponding to the data 
24 of which data 24 is a cached copy. The address tag 26 can 
be computed from the physical address 25 and the physical 
address 25 can be computed from the address tag 26 and the 10 

cache index. Each cache frame 23 may also be associated 
with a clean-evict bit 28, a modified bit 30, and a dirty bit 
32 ( or equivalent state data). The clean-evict bit 28 indicates 
whether the data 24 of the cache frame 23 is also stored in 
the adaptive cache system 18. This bit is set when the data 15 

is loaded from the adaptive cache system 18. The modified 
bit 30 indicates whether the data 24 of the cache frame 23 
has been modified by the core 12 while it has been in the last 
level cache 14' (or any of the caches 14). Finally, the dirty 
bit 32 indicates whether the data 24 of the cache frame 23 20 

has been modified after it was copied from memory 16 and 
thus needs to be ultimately written back to memory 16. The 
use of these bits will be discussed below. 

The adaptive cache system 18 provides multiple data 
storage areas including an adaptive cache 34, a laundry list 25 

cache 36, and a laundry count storage array 38. In one 
embodiment, the adaptive cache 34 may be implemented 
using a high-bandwidth memory structure 31 such as 3-D 
die-stacked dynamic random-access memory (3-D DRAM). 
The laundry count storage array 38 and laundry list cache 30 

36, in contrast, may be implemented in a static random­
access memory (SRAM). Both of these data storage areas 
are controlled by a cache controller 40 whose operation will 
be discussed below. Generally, such 3-D DRAMs may 
provide multiple channels in contrast to the single channel 35 

shown and discussed with respect to FIG. 1. The invention 
contemplates that multiple channels may be accommodated 

6 
counter 48 may be rapidly accessed through the high-speed 
SRAM memory 39 indexed directly by the number of the 
super-frame 46. 

Similarly, the laundry lists 50 may be stored in SRAM 
memory 39 but in a separate structure from the laundry 
counters 48 and, in one embodiment, in a laundry list cache 
36. Referring now to FIG. 2, generally the laundry list cache 
36 will have fewer entries 58 than there are super-frames 46 
to greatly conserve space in the SRAM 39. The ability to 
store only a subset of the laundry list 50 is possible because 
correctness of operation does not require a laundry list 50 as 
will be noted below. 

Each entry 58 of the laundry list cache 36 will include a 
valid bit 60 (indicating whether the remainder of the entry is 
valid), a super-frame tag 62, and a physical tag 42. The 
laundry list cache 36 may be accessed using the address 25 
of data being written from the last level cache 14' to the 
adaptive cache system 18. This address 25 is also used in 
identifying a cache frame 29 in the adaptive cache 34 to 
receive the write-back data. 

In accessing the laundry list cache 36, the cache controller 
40 identifies a super-frame number 65 in an incoming 
address 25 associated with the write-back that identifies the 
super-frame 46. The lower ordered bits of the super-frame 
number 65 are then used to index the laundry list cache 36, 
and the higher ordered bits are used to compare to the tag 62 
in the indexed entry 58 to confirm the necessary super frame 
is present in the laundry list cache 36. In addition, the 
physical tag 42 of the indexed entry 58 is compared to higher 
ordered address bits 68 of the incoming address 25 as is also 
required to confirm the necessary data (related to the same 
super-frame 46) is present in the laundry list cache 36 
associated with the address 25. If the super-frame tag 62 
does not match or the valid bit 60 is not set, the system 
operates as if there were no laundry list 54 for that super­
frame 46, as will be discussed below. If the super-frame tag 
62 does match and the valid bit 60 is set, the value of the 
laundry list 50 may be used, as will be discussed below. 

Referring now to FIGS. 1 and 3, the cache controller 40 
by reproducing the structure of the "laundry count" and 
"laundry list", as will be described below, for each of the 
channels. 

The adaptive cache 34, like the core-level caches 14 may 
provide for a set of cache frames 29 each holding data 24' 
(being a cached copy of data in memory 16), and a tag 42 
reflecting the address of that data 24' in memory 16. Each 
cache frame 29 may be associated with a dirty bit 35 or 
equivalent state data indicating whether the data 24' of the 
adaptive cache 34 differs from its copy in main memory 16. 

40 of the adaptive cache system 18 operates in conjunction with 
the cache controllers 15 of the cores 12 to efficiently manage 
the writing of data from the last level cache 14' to the 
adaptive cache 34 while reducing the number of accesses to 
the adaptive cache 34 and hence the time taken for the 

The cache frames 29 of the adaptive cache 34 may be 
grouped into multiple super-frames 46 each holding multiple 
cache frames 29. Each super-frame 46 is associated with a 
laundry counter 48 that indicates the number of dirty cache 
frames 29 associated with dirty bits 35 in the adaptive cache 
34. Each super-frame 46 may also be associated with a 
laundry list 50 holding tag fields 62 and 42 and having a set 
of dirty bits 35 marking some of the cache frames 29 of the 
super-frame 46 which are dirty. These dirty bits 35 match the 
dirty bits 35 but are stored in a different memory structure 
which has significance with respect to access speed. For 
example, a super-frame 46 may include sixteen cache frames 

45 transfer. In this regard, the last level cache 14' may operate 
according to programs 70a executed on cache controllers 15, 
and the adaptive cache system 18 may operate according the 
program 70b executed by cache controller 40. These pro­
grams will typically be implemented directly in gate logic 

50 for high-speed execution. 
When the last level cache 14' needs to evict a cache frame 

23, for example, because of space constraints in the last level 
cache 14', as indicated by process block 72, the last level 
cache 14' will review the clean-evict bit 28 and modified bit 

55 30 of the cache frame 23 selected for eviction. This cache 
frame 23 is selected according to an eviction policy of the 
type generally understood in the art, for example, the oldest 
on accessed data. 

29 in which case the laundry list 50 will hold sixteen bits that 60 

may be individually set to indicate particular dirty cache 
frames 29. The laundry list 50 provides a way of speeding 
cache writes back even if the caches not completely clean as 
will be discussed below. 

If the clean-evict bit 28 is set or the modified bit 30 is set, 
as determined at decision block 74, a write-back of the data 
of this evicted cache frame 23 will be performed to the 
adaptive cache system 18 per process block 77. Otherwise, 
the write-back is "elided," at process block 76 meaning that 
the evicted cache frame 23 is overwritten in the last level 

Storage space may be allocated in the laundry count 65 cache 14' without a write-back of its data. This elision is 
storage array 38 for each laundry counter 48 associated with possible because in this situation the data was not modified 
each super-frame 46. In this way, the values of the laundry in the caches 14 (since the modified bit was set) and the data 
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was previously written back to the adaptive cache system 18 
( since the clean evict bit is not set). Thus the data 24 in cache 

8 
accordingly the laundry counter 48 must be incremented (in 
this case from O to 1) at process block 81. At process block 
81 the laundry list 50 also receives the value of tag 42 of the 
data being written back (in this case "A") indicating that 

14 is the same as the data 24' stored in the adaptive cache 
system 18 ( or main memory 20, if cache frame 29 has been 
evicted from adaptive cache system 18). 

Referring now to FIGS. 3 and 4, consider a super-frame 
46 in the adaptive cache 34 having four cache frames 29 
indexed 0-3 and each holding a single data 24'(zzz, xxx, 
www, and uuu) being a memory block 27, the data 24' 
having tags 42 A, B, A, and A respectively. The dirty bits 35 
for each of the data 24' are reset indicating that the entire 
super-frame 46 is "clean" and thus all valid cache frames 29 
contain the same data 24' as in main memory 20. 

5 although the cache 34 is not clean ( e.g., all cache frames 29 
are not associated with reset dirty bits 35) nevertheless all 
the dirty cache frames 29 relate to a single memory block 27 
of main memory 16 (i.e. A). The dirty bit 35 for the laundry 
list 50 indicating the index of the memory block 27 holding 

10 the data 24 "sss" is also set to one (shown as the second bit 
of a bit vector being set) and at process block 82 the data is 
written to a cache frame 29 and the dirty bit 35 is set. 

Referring now to FIG. 7, a next cache frame 23 to be 
evicted from the last level cache 14' may also have a set At this point, the laundry counter 48 will equal zero and 

then there will be no entry in the laundry list 50 consistent 
with the lack of dirty frames 29 indicated by all the dirty bits 
35 being reset and as enforced by the program 70b. In this 
example each frame 29 uniquely identifies a memory block 
27 by means of an address 25 formed of a combination of a 
tag 42 (e.g. A) in combination with the super-frame number 
65 (e.g. S, not shown in this example for simplicity) and the 
index value 31 within the superframe (e.g. 0). 

15 modified bit 30, a tag 42 of A and index 31 of 0, and block 
data 24 of "ttt". In this case, at decision block 78, laundry 
counter 48 is no longer zero so it cannot be assumed that all 
of the cache frames 29 are clean. Nevertheless, an efficient 
write-back can still be conducted through the use of the 

20 laundry list 50 as will now be discussed. From decision 
block 78, the program 70b moves to decision block 84 to 
check to see if there is a super-frame 46 matching the 
address 25 such as indicates whether a laundry list 50 exists. 
This is done using the cache access process discussed above 

Referring now to FIGS. 3 and 5, a write-back of cache 
frame 23 having data 24 (vvv) may be requested by the last 
level cache 14' where this data was not modified or dirty in 
the last level cache 14' but is a clean-evict requiring it to be 
written to the cache 34. Upon this request, the cache 
controller 40 reads the laundry counter 48 from laundry 
count storage array 38 of the SRAM 39 for the given 
super-frame 46. Because the laundry counter 48 in this case 30 

is equal to zero, as determined by decision block 78, there 

25 with respect to FIG. 2 by checking for matching of the 
super-frame tag to identify a value of the laundry list 50. If 
a non-null value of laundry list 50 is obtained, then at 
decision block 86, this value is checked to see if it matches 

is no need to read the adaptive cache system 18 to determine 

the tag 42 of the incoming write-back cache frame 23. 
If so, again there is no need to read the adaptive cache 34 

before writing data even though the super-frame 46 is not 
clean. This is because the incoming data either overwrites a 
clean cache frame 29 ( e.g., line 3 in the cache 34 of FIG. 7 
either of the same or a different block/tag) or updates a dirty 

if the write-back will write over a dirty cache frame 29. 
Normally it is important to know if the cache frame 29 to be 
overwritten is dirty because in that case existing data would 
need to be written back to main memory 16 before the 
overwriting. 

While it may be unlikely that the entire adaptive cache 34 
will be clean, by partitioning the adaptive cache system 18 
into super-frames 46 of the proper size, the likelihood of this 
state of the laundry count equal to zero (all cache blocks 
clean) becomes increasingly likely along with the ability to 
avoid an unnecessary reading of the adaptive cache 34. 

35 cache frame 29 related to the same block 27 (e.g., line 2 of 
FIG. 7) not yet written back to main memory 16. Signifi­
cantly, the incoming data 24 carmot overwrite a dirty cache 
frame 29 associated with a different block (e.g., tag B) 
because the presence of only the value A in the laundry list 

40 50 implies that only blocks with valid tags A can be dirty. 

After determination that the super-frame 46 is clean, 
program 70b proceeds to decision block 80 to determine if 45 

the data from the evicted cache frame 23 was modified in the 
last level cache 14' (as indicated by the modified bit 30 in the 
last level cache 14). In this example, where the modified bit 
30 is not set, the data 24 of the evicted cache frame 23 may 
be simply written to the adaptive cache 34 per process block 50 

82 (together with tag data D) avoiding a time-consuming 
read of adaptive cache 34 to check to see if the overwritten 
frame 29 was dirty in the adaptive cache 34. 

When the adaptive cache 34 receives new writeback data 
from the last level cache 14', the cache controller 40 may 55 

schedule a writeback of this data to memory 16 even before 
there is any need to evict cache frames 29 in the adaptive 
cache 34. This scheduling may accommodate a measure­
ment of the traffic to and from the main memory 16 so as not 
to preempt more urgent data transfers required by the 60 

executions of the cores 12. By actively writing back data to 
memory 16, the super-frames 46 may be cleaned improving 
their performance under the present invention. 

Consider now the example of FIG. 6 providing the 
write-back of a cache frame 23 having a set modified bit 30, 65 

a tag 42 of A and index 31 of 2, and data 24 of "sss". In this 
case, at decision block 80, the modified bit 30 is set, and 

In this situation, the program 70b then proceeds to process 
block 87 to see if the dirty bit 35 of the laundry list 50 for 
that index value 31 of the address 25 is set. If the bit is set, 
the program 70b proceeds directly to process block 82 
without incrementing the laundry counter 48 because the 
data was implicitly modified in the lower level cache 14'. 
Otherwise, and as is the case here, at process block 87, if the 
dirty bit 35 is not set, the program 70b proceeds to decision 
block 88 to check whether the data was modified in the 
lower level cache 14'. If not, the program 70b may proceed 
directly to process block 82 again without incrementing the 
laundry counter 48 (because the incoming data 24 is clean 
and implicitly overwrites a clean cache frame 29. If, how­
ever, as is the case here, the incoming cache frame 23 is 
modified, the program 70b proceeds to process block 90, to 
set the appropriate dirty bit 35 in the laundry list 50 (shown 
logically by the number 0) and to increment the laundry 
counter 48. 

Referring now to FIG. 8, a next cache frame 23 to be 
evicted from the last level cache 14' may have a set modified 
bit 30, and the tag 42 of B and index 31 of 1, and hold data 
24 of "ooo." In this case, at decision block 86, the laundry 
list 50 doesn't match the tag 42 of the incoming cache frame 
23, and accordingly program 70b proceeds to decision block 
95 to check to see if the dirty bit is set in the laundry list 50 
to make sure the cache frame 29 to be overwritten isn't dirty. 
In this case, the dirty bit 35 is not enrolled in the laundry list 
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Column 206 indicates evaluation of the laundry list dirty bits 
35, for example, at decision blocks 87 and 95. Column 207 
refers to evaluation of a tag match between an incoming 
cache frame 23 with a tag 42 in a cache frame 29 in the 

50. Accordingly, the program 70b may proceed to decision 
block 96 to determine whether the data from the LLC 14' 
was modified. If so, the program 70b proceeds to process 
block 97 and the laundry list 50 is invalidated and the 
laundry counter 48 incremented. The laundry list 50 is 
invalidated (for example, setting the valid bit 60 to 0) 
because it can no longer be relied upon to ensure that data 
from only a single block 27 of main memory 16 is dirty in 
the laundry list cache 36. Alternatively, if at decision block 

5 adaptive cache 34 (shown in FIG. 1), for example, as 
evaluated at decision blocks 103. Column 208 refers to 
inspection of a dirty bit 35 in a cache frame 29 in the 
adaptive cache 34 (shown in FIG. 1), for example, as 
evaluated at decision blocks 120 and 121. 

96 the data from the LLC 14' was not modified, the program 10 

can proceed directly to process block 82 to write tag in data 
into the adaptive cache 34. 

Referring again to FIG. 3, when at decision block 95 the 
dirty bit is set, the adaptive cache 34 must be read at process 
block 99 in a more conventional cache access scenario and 15 

data in the adaptive cache 34 must be written back to the 
main memory 16. After this writeback, it is determined 
whether the data from the lower level cache 14' was modi­
fied at decision block 100. If so, the program 70b proceeds 
to process block 101 to invalidate the laundry list 50 before 20 

proceeding to write the data to the adaptive cache at process 
block 82. If at decision block 96 the data was not modified 

Column 210 represents the status of the modified bit 30 in 
the cache frame 23, for example, evaluated at decision 
blocks 80, 88, 100, 96, 104 and 110. 

Column 214 represents the reading process of process 
blocks 94 and 99. Column 215 represents the write-back of 
the adaptive cache frame of process block 99 and 107 and 
column 216 represents the creation of a new laundry list item 
per process block 81. Column 217 represents setting of a 
dirty bit 35 in the laundry list item, for example, at process 
block 81 and 90. Column 218 represents invalidation of the 
laundry list, for example, at process blocks 97 and 101. 
Column 219 represents a decrementing of the laundry coun­
ter 48, for example, at process blocks 102 and 106 whereas 
column 220 represents an incrementing of the laundry 
counter 48, for example, at process blocks 81, 90, 112, and 

in the lower level cache 14', the program 70b may proceed 
directly to process block 102 decrementing the laundry 
counter 48 and then to process block 82 to write to the 
adaptive cache 34. 

25 122. When a row in the table calls for both decrementing and 
incrementing the laundry counter, as for example in rows 10 
and 20, the net effect is to leave the laundry counter 49 
unchanged. Finally, column 221 represents a write back from 
the lower level cache of process block 82. 

Referring again to FIG. 3, in the case where the super­
frame 46 does not match at decision block 84, it is also 
necessary to perform a more conventional pre-reading of the 
adaptive cache 34 as indicated by process block 94. After 30 

this reading, the program 70b proceeds to decision block 103 
to determine whether the tag 42 of the incoming cache frame 
23 matches the tag 42 of cache frame 29 of the adaptive 
cache 34. If so, the program proceeds to decision block 120 
to decide the cache frame 29 is dirty by looking at its dirty 35 

bit 35. If so, the program proceeds to process block 82 to 
write to the adaptive cache 34. If not, the program proceeds 
to process block 122 to increment the laundry counter 48, 
then proceeds to process block 82. 

If at decision block 103 the tag of incoming cache frame 40 

23 did not match the tag of a cache frame 29 in the adaptive 
cache 34 then the program proceeds to decision block 121 to 
determine whether the frame 29 in the adaptive cache 34 was 
dirty by examining dirty bit 35. If so, the program proceeds 
to process block 107 to writeback the value from the 45 

adaptive cache 34. The program then proceeds to decision 
block 104 to determine whether the data from the last level 
cache 14' was modified. If so, the program proceeds directly 
to process block 82 to write the new data to the adaptive 
cache 34. If not, at process block 106 the laundry counter 48 50 

is decremented and then the program proceeds to process 
block 82. 

If at decision block 121 the program determines that the 
cache frame 29 is not dirty, the program proceeds to decision 
block 110, where it is determined whether the data from the 55 

lower level cache 14' was modified. If yes, the program 
proceeds to process block 112 to increment the laundry 
counter 48 and then proceeds to process block 82 to perform 
the writeback. If at decision block 110, the data from the 
lower level cache 14' was not modified, the program 70b 60 

proceeds directly to process block 82. 
Referring now to FIG. 9, a more complete statement of the 

operation of the program 70b is in table form including error 
conditions not represented in FIG. 3. In this table, column 
202 indicates the evaluation of the laundry counter 48 per 65 

decision block 78. Columns 204 and 205 refer to the cached 
laundry list 50 evaluated at decision blocks 84 and 86. 

The following Table I provides notes keyed to FIG. 9. 

A 

B 

C 

D 

TABLE I 

There are no dirty blocks in the super-frame so it is 
always safe to write without first reading the DRAM 
cache 
There are some dirty blocks in the super-frame, and we 
know they all share the same physical tag with the 
request. Thus, it is safe to write. 
There are some dirty blocks in the super-frame, and they 
all share the same physical tag, which is different from 
this request's. Thus, we must consult the dirty bit in the 
laundry list item to determine if it is safe to write. 
There are some dirty blocks in the super-frame, and they 
may have different physical tags. We have no 
information about the dirty bits in the super-frame, so all 
accesses are unsafe. 

The program of FIG. 3 observes the following invariants: 
1. The Laundry Count is Always Equal to the Number of 

Dirty Frames in the Super-Frame 
Action 1 
Whenever a dirty block is victimized from the adaptive 

cache, decrement the laundry counter 
Action 2 
Whenever a modified block overwrites a clean block 

(including victimized dirty blocks) in the adaptive cache, 
increment the laundry counter 

2. If there is a Laundry List Item for a Super-Frame and 
the Physical Tag is Valid, then the Super-Frame in the 
Adaptive Cache Only Contains Dirty Data that Matches the 
Physical Tag. 

Action 1 
If the physical tag matches in the laundry list item, no 

need to read the adaptive cache before writing, it's always 
safe 

Action 2 
If a modified block is being written to the adaptive cache 

that doesn't match the physical tag in the laundry list item, 
invalidate the laundry list item 
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3. When there is a Valid Laundry List Item, the Laundry 
List Item Contains the Same Dirty Bits as the Adaptive 
Cache Super-Frame (and the Super-Fame Tag Must Match) 

Action 1 

12 
wise specified, can include one or more processor-readable 
and accessible memory elements and/or components that 
can be internal to the processor-controlled device, external 
to the processor-controlled device, and can be accessed via 

On a dirty LLC-writeback, if there is a valid laundry list 
item only increment the laundry counter if the cache frame 
in the adaptive cache is not dirty. 

5 a wired or wireless network. 

Referring now to FIG. 10, the cache controller 40 may 
also execute a program 70c generally asynchronous with 
respect to program 70b to scan through the cache frames 29 10 

of the adaptive cache 34 per process block 321 to identify 
per decision block 322 any cache frames 29 that are dirty as 
indicated by dirty bit 35. The data 24' of those cache frames 

The term program is used herein represents operation of 
the computer architecture typically implemented in discrete 
logic and firmware. This operation may be distinguished 
from software that may be loaded onto a general-purpose 
computer without the architectural features described above. 

It is specifically intended that the present invention not be 
limited to the embodiments and illustrations contained 
herein and the claims should be understood to include 

29 is written back to the main memory 16 per process block 
324. When writing back dirty data, the corresponding entry 

modified forms of those embodiments including portions of 
15 the embodiments and combinations of elements of different 

in the laundry list 50 must be invalidated (if it exists, i.e., the 
super-frame tag matches). By ensuring that the adaptive 
cache 34 is mostly clean, the highest performance is 
obtained. The scarming process of process block 321 may 
monitor the bandwidth between the main memory 16 and the 20 

core-level caches 14 and adaptive cache system 18 to 
schedule the scarming processor so as not interfere with 
other data accesses involving the main memory 16. The 
scanning process may be part of the DRAM refresh logic 
used to refresh the memory of the adaptive cache 34. 25 

Certain terminology is used herein for purposes of refer­
ence only, and thus is not intended to be limiting. For 
example, terms such as "upper", "lower", "above", and 
"below" refer to directions in the drawings to which refer­
ence is made. Terms such as "front", "back", "rear", "bot- 30 

tom" and "side", describe the orientation of portions of the 
component within a consistent but arbitrary frame of refer­
ence which is made clear by reference to the text and the 
associated drawings describing the component under dis­
cussion. Such terminology may include the words specifi- 35 

cally mentioned above, derivatives thereof, and words of 
similar import. Similarly, the terms "first", "second" and 
other such numerical terms referring to structures do not 
imply a sequence or order unless clearly indicated by the 
context. 40 

embodiments as come within the scope of the following 
claims. All of the publications described herein, including 
patents and non-patent publications, are hereby incorporated 
herein by reference in their entireties. 

What we claim is: 
1. A cache architecture comprising: 
an adaptive cache having regions holding cache frames 

storing data blocks cached from a main memory for use 
by one or more processors, each cache frame associated 
with a dirty bit that is set when the cache frame holds 
data that has been changed by a processor but has not 
been updated in the main memory and that is reset 
otherwise; 

a laundry counter associated with each region storing a 
count value; and 

a cache controller operating to: 
(a) update the laundry counters during operation of the 

cache architecture to indicate whether an associated 
region has any set dirty bits; 

(b) write data to a given cache frame in the region in a first 
mode without first reading the dirty bit of the cache 
frame based on a determination that the associated 
laundry counter indicates no dirty frames in the region; 
and 

( c) write data to a given cache frame in a second mode 
based on a determination that the associated laundry 
counter indicates at least one dirty frame in the region 
after first reading the dirty bit of the given cache frame 
to ensure that the given cache frame dirty bit is not set. 

2. The cache architecture of claim 1 wherein the laundry 
counter indicates a number of dirty bits in the region and is 
incremented based on a determination that a cache frame in 
the region has a dirty bit changed from reset to set and 
decremented based on a determination that a cache frame in 

When introducing elements or features of the present 
disclosure and the exemplary embodiments, the articles "a", 
"an", "the" and "said" are intended to mean that there are 
one or more of such elements or features. The terms "com­
prising", "including" and "having" are intended to be inclu- 45 

sive and mean that there may be additional elements or 
features other than those specifically noted. It is further to be 
understood that the method steps, processes, and operations 
described herein are not to be construed as necessarily 
requiring their performance in the particular order discussed 50 the region has a dirty bit changed from set to reset. 
or illustrated, unless specifically identified as an order of 
performance. It is also to be understood that additional or 
alternative steps may be employed. 

In the above description and should be understood that the 
terms "set" and "reset" may be arbitrarily mapped to Boo!- 55 

ean states and voltage levels and accordingly these terms 
should be denoted as designating a logical setting and 
resetting rather than a particular mapping. 

References to "a core" and "a processor" or "the micro­
processor" and "the processor," can be understood to include 60 

one or more microprocessors that can communicate in a 
stand-alone and/or a distributed environment(s), and can 
thus be configured to communicate via wired or wireless 
communications with other processors, where such one or 
more processor can be configured to operate on one or more 65 

processor-controlled devices that can be similar or different 
devices. Furthermore, references to memory, unless other-

3. The cache architecture of claim 1 wherein the cache 
controller operates in the second mode to write-back data of 
the given cache frame to the main memory before writing 
data to the cache frame based on a determination that the 
reading of the dirty bit of a given cache frame indicates that 
the dirty bit is set and a data block of the given cache frame 
does not match a data block of data being written back to the 
given cache frame. 

4. The cache architecture of claim 1 wherein the laundry 
counter is held in a separate memory from a memory holding 
the adaptive cache, the separate memory providing faster 
access by the processor and the memory holding the adap­
tive cache. 

5. The cache architecture of claim 4 wherein the laundry 
counter is held in a static random-access memory (SRAM) 
and the adaptive cache is held in a dynamic random-access 
memory (DRAM). 
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6. The cache architecture of claim 5 wherein the DRAM 
employs a three-dimensional die stacking integrated circuit 
architecture. 

7. The cache architecture of claim 1 wherein the cache 
frames of the adaptive cache are further associated with tags 5 

corresponding to addresses in main memory of the data held 
in the cache frames and wherein the cache architecture 
further comprises: 

a laundry list associated with each region indicating a tag 
of a cache frame associated with a set dirty bit; and 10 

wherein the cache controller further operates to: 
write data having a given tag to a given cache frame in a 

third mode without first reading the dirty bit of the 
given cache frame based on a determination that the 
given tag is in the laundry list. 

8. The cache architecture of claim 7 wherein the laundry 
list further includes laundry list dirty bits corresponding to 
dirty bits associated with the cache frames in the corre­
sponding region. 

15 

9. The cache architecture of claim 8 wherein the cache 20 

controller reviews the laundry list dirty bits and determines 
whether to update the laundry list counter based on the 
laundry list dirty bits. 

10. The cache architecture of claim 8 wherein the laundry 
counter is incremented based on a determination that the 25 

laundry list dirty bits associated with the given cache frame 
are not set. 

11. The cache architecture of claim 7 wherein the laundry 
list is held separate memory from a memory holding the 
adaptive cache, the separate memory providing faster access 30 

by the processor and the memory holding the adaptive 
cache. 

12. The cache architecture of claim 7 wherein the laundry 
list held in a laundry list cache provides fewer laundry list 
entries than regions of the adaptive cache. 

13. The cache architecture of claim 1 wherein the cache 
controller schedules a write-back of data written into the 
adaptive cache to main memory at a time of writing of data 
to the adaptive cache. 

35 

14 
17. A computer architecture comprising: 

multiple processing cores executing arithmetic and logi­
cal instructions each associated with one or more lower 
level caches including a last lower-level cache (LLC) 
having corresponding lower-level cache controllers; 

a main memory exchanging data with the multiple pro­
cessing cores; 

an adaptive cache positioned between the lower level 
caches and the main memory and including: 

(a) a cache having regions of cache frames storing data 
cached from a main memory for use by a processor, 
each cache frame associated with a dirty bit that is set 
based on a determination that the cache frame holds 
data that has been changed by the processor but has not 
been updated in the main memory and that is reset 
otherwise; 

(b) a laundry counter associated with each region storing 
a count value; and 

(c) a cache controller operating to: 

(i) update the laundry counters during access of the 
adaptive cache to indicate whether an associated 
region has any set dirty bits: 

(i) write data to a given cache frame in the region in a 
first mode without first reading the dirty bit of the 
cache frame based on a determination that the asso­
ciated laundry counter indicates no dirty frames in 
the region; and 

(i) write data to a given cache frame in a second mode 
based on a determination that the associated laundry 
counter indicates at least one dirty frame in the 
region after first reading the dirty bit of the given 
cache frame to ensure that the given cache frame 
dirty bit is not set. 

18. The computer of claim 17 wherein entries of the LLC 
include LLC data, a clean-evict bit set to indicate that the 
LLC data is not in the adaptive cache, a modified bit set to 
indicate that the processor modified the LLC data in the LLC 

14. The cache architecture of claim 12 wherein the 
schedule of the write-back of dirty cache frames is based on 
a measurement of a flow of data between the main memory 
and the one or more processors. 

40 and wherein the lower-level cache controllers elide a write­
back of data evicted from the LLC based on a determination 

15. The cache architecture of claim 1 wherein the cache 
controller further operates to write-back dirty cache frames 
to main memory on a predetermined schedule independently 
of writing to the adaptive cache from the processor. 

16. The cache architecture of claim 13 wherein the 
write-back of dirty cache frames is coordinated with a 
refresh of dynamic adaptive cache memory. 

that neither the clean-evict bit nor the modified data is set. 

19. The computer of claim 17 wherein entries of the LLC 

45 
further include a modified bit set to indicate that the LLC 
data has been modified by a processor and wherein the 
laundry counter value is incremented based on a determi­
nation that data written to a given cache frame is associated 
with a set modified bit. 

* * * * * 


