
c12) United States Patent
Lowe-Power et al.

(54) ADAPTIVE COMPUTER CACHE
ARCHITECTURE

(71) Applicant: Wisconsin Alumni Research
Foundation, Madison, WI (US)

(72) Inventors: Jason Lowe-Power, Madison, WI (US);
David A. Wood, Madison, WI (US);
Mark D. Hill, Madison, WI (US)

(73) Assignee: WISCONSIN ALUMNI RESEARCH
FOUNDATION, Madison, WI (US)

(*) Notice: Subject to any disclaimer, the term ofthis
patent is extended or adjusted under 35
U.S.C. 154(b) by 137 days.

(21) Appl. No.: 15/894,164

(22) Filed:

(65)

Feb. 12, 2018

Prior Publication Data

US 2019/0251026 Al

(51) Int. Cl.
G06F 1210804

(52) U.S. Cl.

Aug. 15, 2019

(2016.01)

CPC .. G06F 1210804 (2013.01); G06F 2212/1021
(2013.01); G06F 2212/1032 (2013.01)

18 34
14

12

14

12

12

I 36
14~ \..

I 1111111111111111 1111111111 1111111111 11111 111111111111111 lll111111111111111
USO 10713165B2

(IO) Patent No.:
(45) Date of Patent:

US 10,713,165 B2
Jul. 14, 2020

(58) Field of Classification Search
None
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

8,543,766 B2 * 9/2013 Grayson G06F 12/0804
711/135

2017/0277636 Al* 9/2017 Lee G06F 12/126

* cited by examiner

Primary Examiner - Michael Alsip
(74) Attorney, Agent, or Firm - Boyle Fredrickson, S.C.

(57) ABSTRACT

A high-bandwidth adaptive cache reduces unnecessary
cache accesses by providing a laundry counter indicating
whether a given adaptive cache region has any dirty frames
to allow write-back without a preparatory adaptive cache
read. An optional laundry list allows the preparatory adap­
tive cache read to also be avoided if the tags of the data being
written back match all tags of the data in the adaptive cache
that is dirty.

19 Claims, 7 Drawing Sheets

16 22

' '

16

25) 24

' J:;:=:::t:=::1

46

14

12

12

14

12

I
14~ '

141

141

18

I
I 36

\..

(F ~----i

23] 32

28 30

34

e
•
00
•

31
16 22

' ' ' ' 25 24 ' 20 '

' ~

' \

I'.

' ·,
' . ' L_ __ __;:,,~--....1,

·,
. '. 1---1------1

=

}27
:-'
.i;...
~

N
0
N
0

rJJ
=-('D
('D
0
-....J

46

FIG. 1

U.S. Patent Jul. 14, 2020 Sheet 2 of 7 US 10,713,165 B2

25~ 68 65 _____ __,/\..__ _____
I \

PHYS. SF HIGH SF LOW
60 62 42

----t--+-+-+-+--+-+-+--+-+-t 3,, 58

_35

FIG. 2

U.S. Patent Jul. 14, 2020

LLC EVICTION . I

I
!
I
I

i
I
l-]6 l

,..,.,..........~........._. l

ELIDE i
i

- - - - - - - - - - - - - - _l

A'\
l;J,.).

NO

FAST

CREATE LLC
1~---1 SET DIRTY BIT

CD IN".,- LLC

81

88

•· WRITE -82 FIG. 3
TO AC

Sheet 3 of 7 US 10,713,165 B2

,-40

70b 120
103 ~. "

w

CK
7

. • 1.1. · YES

U.S. Patent

14' ~

C M D
1 0 0 D3

30 25
28 32

14' ~

C M D
0 1 0 A2

30 25
28 32

Jul. 14, 2020 Sheet 4 of 7 US 10,713,165 B2

r23

24

24

r23

24

24

LAUNDRY LAUNDRY ADAPTIVE ,.,..-34
LIST COUNT CACHE ,

D TAG DATA lolololol I ~

35 _j (' 48 ~ }46
50 42 2

3

31_/ (((29

0 A zzz
0 B XXX I\
0 A WWW
0 A uuu 1

FIG. 4

LAUNDRY LAUNDRY
LIST COUNT

101010101
(T

50 48

FIG. 5

LAUNDRY LAUNDRY
LIST COUNT

~ 10101110IAI
(T

50 48

FIG. 6

36 42 24'

D
0 0
1 0
2 0
3 0

D
0 0
1 0
2 1
3 0

ADAPTIVE ,-34
CACHE
TAG DATA
A zzz
B XXX
A WWW

D WV

ADAPTIVE ,-34
CACHE
TAG DATA
A zzz
B XXX
A 555
D vw

U.S. Patent Jul. 14, 2020 Sheet 5 of 7

14' ,,--23 ~
LAUNDRY LAUNDRY

C M D 24 LIST COUNT
0 1 1 AO ttt I1I0I1I0IAI T (

30 25 24 50 48
28 32

FIG. 7

14' ,,--23 ~
LAUNDRY LAUNDRY

24 LIST COUNT
I 1 I 1 I 1 I o I

(T
30 25 24 50 48

28 32

FIG. 8

D
0 1
1 0
2 1
3 0

D
0 1
1 1
2 1
3 0

US 10,713,165 B2

ADAPTIVE ,--34
CACHE
TAG DATA
A ttt
B XXX
A sss
D WV

ADAPTIVE ,--34
CACHE
TAG DATA
A ttt
B 000
A sss
D WV

U.S. Patent Jul. 14, 2020 Sheet 6 of 7 US 10,713,165 B2

204 206 208 214 216 218 220

202 205 207 210 215 217 219 221

1 YES - - - - - YES ✓ ✓ ✓ ✓ A
2 YES - - - - - NO ✓
3 NO YES YES YES - - YES ✓
4 NO YES YES YES - - NO ERROR / INVALID
5 NO YES YES NO - - YES ✓ ✓ ✓

B
6 NO YES YES NO - - NO ✓
7 NO YES NO YES YES YES YES ERROR / INVALID
8 NO YES NO YES YES YES NO ERROR / INVALID
9 NO YES NO YES YES NO - ERROR / INVALID

10 NO YES NO YES NO YES YES ✓ ✓ ✓ ✓ ✓ ✓
11 NO YES NO YES NO YES NO ✓ ✓ ✓ ✓ C
12 NO YES NO YES NO NO YES ERROR / INVALID
13 NO YES NO YES NO NO NO ERROR / INVALID
14 NO YES NO NO - - YES ✓ ✓ ✓

✓
✓

15 NO YES NO NO - - NO
16 NO NO - - YES YES YES ✓
17 NO NO - - YES YES NO ✓
18 NO NO - - YES NO YES ✓
19 NO NO - - YES NO NO ✓
20 NO NO - - NO YES YES ✓ ✓
21 NO NO - - NO YES NO ✓ ✓
22 NO NO - - NO NO YES ✓
23 NO NO - - NO NO NO ✓

FIG. 9

ERROR / INVALID
✓ ✓

ERROR / INVALID
✓ ✓ ✓
✓ ✓

✓ ✓
✓

D

U.S. Patent Jul. 14, 2020

40~

70c

Sheet 7 of 7

321
SCAN ADAPTIVE CACHE

324

NO

WRITE BACK DIRTY ENTRY
AND RESET DIRTY BIT

FIG. 10

US 10,713,165 B2

US 10,713,165 B2
1

ADAPTIVE COMPUTER CACHE
ARCHITECTURE

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT

This invention was made with government support under
1533885 and 1617824 awarded by the National Science
Foundation. The government has certain rights in the inven­
tion.

BACKGROUND OF THE INVENTION

The present invention relates to computer architectures
and in particular to an adaptive cache suitable for use with
high-bandwidth memory in a computer cache system.

The processing speed of modem computers is constrained
by the time it takes for data to be transferred between
computer memory and the computer processor, e.g.
"latency". Such latency can be reduced through the use of
cache memories which provide small, fast data storage
structures close to the processor. When data is required by
the processor, it looks first at the cache memories to see if
the necessary data has been previously loaded from a larger
but slower main memory. If data is found in the cache
memory, the need to access the slower main memory can be
avoided.

The success of this strategy relies on the ability to
anticipate what data will be required by the processors in the
future so that this data may be preloaded into cache memory.
Such predictions usually rely on the principle of "locality of
reference" meaning that data likely to be used by the
processor in the future will be local to the data currently used

2
portions of the adaptive cache. In certain cases, this tracking
allows writing to the adaptive cache without a time-con­
suming "pre-reading" of the adaptive cache to identify
"dirty" cache frames that need to be handled before the

5 writing. By eliminating this auxiliary access of the adaptive
cache before a writing to the adaptive cache, the effective
latency of the adaptive cache, and hence of the HBM
memory, is substantially reduced.

More specifically, one embodiment of the invention pro-
10 vides a cache architecture having an adaptive cache with

regions holding cache frames storing data blocks cached
from a main memory for use by one or more processors.
Each cache frame is associated with a dirty bit that is set
when the cache frame holds data that has been changed by

15 a processor but has not been updated in the main memory
and that is reset otherwise. The cache architecture also
includes a laundry counter associated with each region
storing a count value. A cache controller operates to: (a)
update the laundry counters during operation of the cache

20 architecture to indicate whether an associated region has any
set dirty bits; (b) write data to a given cache frame in the
region in a first mode without first reading the dirty bit of the
cache frame when the associated laundry counter indicates
no dirty frames in the region; and (c) write data to a given

25 cache frame in a second mode when the associated laundry
counter indicates at least one dirty frame in the region after
first reading the dirty bit of the given cache frame to ensure
that the given cache frame dirty bit is not set.

It is thus a feature of at least one embodiment of the
30 invention to eliminate the need to read the adaptive cache

before writing to the adaptive cache when a portion of the
adaptive cache written to is "clean," that is, having no dirty
frames, thereby reducing the practical latency of the HBM
cache. by the processor. Implementing the strategy requires simply

loading blocks of data into the cache around the data 35

currently being used by the processor.
The laundry counter may indicate a number of dirty bits

in the region and may be incremented when new cache
frames having dirty bits are added to the cache and decre­
mented when old cache frames having dirty bits are removed
from the cache.

Often the cache memories are constructed of static ran­
dom-access memory (SRAM) which is generally faster than
the dynamic random-access memory (DRAM) used for the
larger main memory. Also, typically the cache is relatively 40

small to provide for fast access and as an accommodation to
the larger memory cell size of SRAM memory.

High-performance scientific computing (HPC) requires
high memory bandwidths particularly when executed on
highly parallel architectures like those found in graphic 45

processing units or multi-core processors. Bandwidth refers

It is thus a feature of at least one embodiment of the
invention to allow the laundry counter to track the number
of dirty frames as this number increases and decreases
during cache use to readily determine when the cache
portion is clean without the need for special cache interro­
gation circuitry.

The cache controller may operate in the second mode to
write-back data of the given cache frame to the main
memory before writing data to the cache frame when the
reading of the dirty bit of a given cache frame indicates that
the dirty bit is set and a data block of the given cache frame
does not match a data block of data being written back to the
given cache frame.

It is thus a feature of at least one embodiment of the

to the amount of data transmitted per unit time and is distinct
from latency which indicates how fast a given piece of data
may be accessed. High memory bandwidths may be pro­
moted using special caches constructed of high-bandwidth 50

memory technologies (HBM) using DRAM and new tech­
nologies of three-dimensional die stacking in which semi­
conductor dies holding the memory circuitry are stacked
vertically with vertical interconnections through-silicon
vias. These HBM memories have sufficient storage capacity

invention to allow the cache architecture to revert to stan-
55 dard cache protocols in cases where the cache portion is not

clean. to implement high-bandwidth caching but invoke a latency
penalty because of the use of DRAM rather than SRAM
memory.

SUMMARY OF THE INVENTION

The present inventors have recognized that the latency
penalty of an HBM memory cache can be mitigated by
implementing the HBM memory as an adaptive cache which
eliminates ancillary cache accesses needed under normal
caching protocols. Generally, the adaptive cache uses a
separate high-speed memory to track dirty blocks within

The laundry counter may be held in a separate memory
from a memory holding the cache, the separate memory
providing faster access by the processor than the memory

60 holding the cache. In one example, the laundry counter may
be held in a static random-access memory (SRAM) and the
adaptive cache may be held in a dynamic random-access
memory (DRAM). In some embodiments, the DRAM may
employ a three-dimensional, die-stacking integrated circuit

65 architecture.
It is thus a feature of at least one embodiment of the

invention to permit the laundry counter to be accessed with

US 10,713,165 B2
3 4

less time penalty than the adaptive cache, thereby providing
a speed advantage in reading the laundry counter over
reading the adaptive cache prior to a writing to the adaptive
cache. It is another feature of at least one embodiment of the
invention to permit the use of DRAM for high-capacity, 5

high-bandwidth caches while reducing the latency penalty
associated with such memory types.

These particular objects and advantages may apply to
only some embodiments falling within the claims and thus
do not define the scope of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a simplified block diagram of a computer system
The cache frames of the cache may be further associated

with tags corresponding to addresses in main memory of the
data held in the cache frames, and the cache architecture 10

may further include a laundry list indicating a tag of a cache
frame associated with a set dirty bit. The cache controller
may further operate to write data having a given tag to a
given cache frame in a third mode without first reading the
dirty bit of the cache frame when tag of the given cache 15

frame is in the laundry list.

providing multiple cores having associated lower-level
caches communicating with a main memory through an
adaptive cache system, and further showing logical struc­
tures of lower-level caches and the adaptive cache system,
the latter including the adaptive cache, a laundry count, and
a laundry list associated with super-frames of the adaptive
cache;

FIG. 2 is a logical diagram showing a laundry list cache
structure holding the laundry lists;

It is thus a feature of at least one embodiment of the
invention to permit fast writing to a portion of the adaptive
cache without a pre-reading of data of the adaptive cache
even when the portion of the adaptive cache is not clean,
when the dirty bits are linked to the same memory block as
the data being written.

FIG. 3 is a simplified flowchart showing operation of the
cache controllers of the lower-level caches and the adaptive
cache system in handling a write-back from the lower-level

20 caches to the adaptive cache system according to the present
invention;

The laundry list may be held in separate memory from a
memory holding the cache, the separate memory providing
faster access by the processor than the memory holding the 25

cache.

FIGS. 4-8 are logical representations of a super-frame of
the adaptive cache and its associated laundry count and
laundry list under different write-back circumstances from
the lower-level caches to the adaptive cache;

FIG. 9 is a table showing a more complete representation
of the operation of the cache controller of the adaptive
cache; and

It is thus a feature of at least one embodiment of the
invention to permit the laundry list to be accessed with less
time penalty than the adaptive cache, thereby providing a
speed advantage in reading the laundry list over reading the
adaptive cache prior to a writing to the adaptive cache.

The laundry list may be held in a laundry list cache
providing fewer laundry list entries than regions of the
cache.

FIG. 10 is a flowchart showing a background write-back
30 of dirty cache regions per one embodiment of the present

invention.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

It is thus a feature of at least one embodiment of the 35

invention to substantially reduce the storage burden for the
laundry list allowing it to be stored in small SRAM memory.
This small cache may be implemented without access pen­
alties associated with normal cache misses because there is
no correctness penalty for the missing laundry list; the cache
simply reverts to normal protocol operation.

The cache controller may schedule a write-back of data
written into the adaptive cache to main memory at the time
of writing of data to the adaptive cache.

It is thus a feature of at least one embodiment of the
invention to minimize dirty frames in the adaptive cache to
promote operation of the adaptive cache in the first or third
modes having lower effective cache latency.

The schedule of the write-back of dirty cache frames may

Referring now to FIG. 1, a computer system 10 employ­
ing the present invention may provide for multiple process­
ing cores 12, for example, each providing a general-purpose
processor for execution of arithmetic and logical instructions

40 and optionally including architectural features such as out­
of-order processing, speculative execution, and the like.

Each of the cores 12 may be associated with one or more
core-level caches 14 (for example, an Ll and L2 cache) as
is generally understood in the art. The core-level caches 14

45 may be associated with cache controllers 15 which handle
cache protocols and cache coordination as is generally
understood in the art.

be based on a measurement of a flow of data between the 50

The core-level caches 14 for each core 12 may include a
last level cache 14' which may communicate directly with a
main memory 16 through one or more channels to exchange
data therewith. The main memory 16, for example, will main memory and the one or more processors.

It is thus a feature of at least one embodiment to prevent
the opportunistic write-backs of dirty frames from interfer­
ing with primary memory traffic.

The cache controller may further operate to write-back
dirty cache frames to the main memory on a predetermined
schedule independently of writing to the cache from the
processor.

It is thus a feature of at least one embodiment of the
invention to provide background writes back to again mini­
mize dirty cache frames for optimal performance.

The predetermined schedule may be coordinated with a
refresh of dynamic adaptive cache memory.

It is thus a feature of at least one embodiment of the
invention to piggyback the writes back with the required
refresh of DRAM memory that may be used in the adaptive
cache.

typically include a variety of memory types arranged in a
hierarchical form including, for example, random access
memory 20 and mass storage memory 22 such as provided

55 by disk drives or the like. Logically, the main memory holds
data 24 linked to physical addresses 25 uniquely identifying
that data 24.

The core-level caches 14 for each core 12 may also
communicate with the adaptive cache system 18, the latter

60 of which also may communicate with main memory 16. As
will be discussed below, blocks 27 of data 24 from of
multiple physical addresses 25 may be cached by various of
the core-level caches 14 and the adaptive cache system 18.
In this regard, the main memory 16 will be shared by the

65 cores 12 and the adaptive cache system 18 and will provide
substantially more storage for data and instructions than
available in the core-level caches 14 and adaptive cache

US 10,713,165 B2
5

system 18. Similarly, the adaptive cache system 18 will
provide greater storage capacity than the caches 14.

Core-level caches 14 and particularly the last level cache
14' may provide for a set of cache frames 23 each holding
data 24 and an address tag 26 identifying the data. The 5

address tag 26 will be related to the physical address 25 in
the main memory 16 holding data corresponding to the data
24 of which data 24 is a cached copy. The address tag 26 can
be computed from the physical address 25 and the physical
address 25 can be computed from the address tag 26 and the 10

cache index. Each cache frame 23 may also be associated
with a clean-evict bit 28, a modified bit 30, and a dirty bit
32 (or equivalent state data). The clean-evict bit 28 indicates
whether the data 24 of the cache frame 23 is also stored in
the adaptive cache system 18. This bit is set when the data 15

is loaded from the adaptive cache system 18. The modified
bit 30 indicates whether the data 24 of the cache frame 23
has been modified by the core 12 while it has been in the last
level cache 14' (or any of the caches 14). Finally, the dirty
bit 32 indicates whether the data 24 of the cache frame 23 20

has been modified after it was copied from memory 16 and
thus needs to be ultimately written back to memory 16. The
use of these bits will be discussed below.

The adaptive cache system 18 provides multiple data
storage areas including an adaptive cache 34, a laundry list 25

cache 36, and a laundry count storage array 38. In one
embodiment, the adaptive cache 34 may be implemented
using a high-bandwidth memory structure 31 such as 3-D
die-stacked dynamic random-access memory (3-D DRAM).
The laundry count storage array 38 and laundry list cache 30

36, in contrast, may be implemented in a static random­
access memory (SRAM). Both of these data storage areas
are controlled by a cache controller 40 whose operation will
be discussed below. Generally, such 3-D DRAMs may
provide multiple channels in contrast to the single channel 35

shown and discussed with respect to FIG. 1. The invention
contemplates that multiple channels may be accommodated

6
counter 48 may be rapidly accessed through the high-speed
SRAM memory 39 indexed directly by the number of the
super-frame 46.

Similarly, the laundry lists 50 may be stored in SRAM
memory 39 but in a separate structure from the laundry
counters 48 and, in one embodiment, in a laundry list cache
36. Referring now to FIG. 2, generally the laundry list cache
36 will have fewer entries 58 than there are super-frames 46
to greatly conserve space in the SRAM 39. The ability to
store only a subset of the laundry list 50 is possible because
correctness of operation does not require a laundry list 50 as
will be noted below.

Each entry 58 of the laundry list cache 36 will include a
valid bit 60 (indicating whether the remainder of the entry is
valid), a super-frame tag 62, and a physical tag 42. The
laundry list cache 36 may be accessed using the address 25
of data being written from the last level cache 14' to the
adaptive cache system 18. This address 25 is also used in
identifying a cache frame 29 in the adaptive cache 34 to
receive the write-back data.

In accessing the laundry list cache 36, the cache controller
40 identifies a super-frame number 65 in an incoming
address 25 associated with the write-back that identifies the
super-frame 46. The lower ordered bits of the super-frame
number 65 are then used to index the laundry list cache 36,
and the higher ordered bits are used to compare to the tag 62
in the indexed entry 58 to confirm the necessary super frame
is present in the laundry list cache 36. In addition, the
physical tag 42 of the indexed entry 58 is compared to higher
ordered address bits 68 of the incoming address 25 as is also
required to confirm the necessary data (related to the same
super-frame 46) is present in the laundry list cache 36
associated with the address 25. If the super-frame tag 62
does not match or the valid bit 60 is not set, the system
operates as if there were no laundry list 54 for that super­
frame 46, as will be discussed below. If the super-frame tag
62 does match and the valid bit 60 is set, the value of the
laundry list 50 may be used, as will be discussed below.

Referring now to FIGS. 1 and 3, the cache controller 40
by reproducing the structure of the "laundry count" and
"laundry list", as will be described below, for each of the
channels.

The adaptive cache 34, like the core-level caches 14 may
provide for a set of cache frames 29 each holding data 24'
(being a cached copy of data in memory 16), and a tag 42
reflecting the address of that data 24' in memory 16. Each
cache frame 29 may be associated with a dirty bit 35 or
equivalent state data indicating whether the data 24' of the
adaptive cache 34 differs from its copy in main memory 16.

40 of the adaptive cache system 18 operates in conjunction with
the cache controllers 15 of the cores 12 to efficiently manage
the writing of data from the last level cache 14' to the
adaptive cache 34 while reducing the number of accesses to
the adaptive cache 34 and hence the time taken for the

The cache frames 29 of the adaptive cache 34 may be
grouped into multiple super-frames 46 each holding multiple
cache frames 29. Each super-frame 46 is associated with a
laundry counter 48 that indicates the number of dirty cache
frames 29 associated with dirty bits 35 in the adaptive cache
34. Each super-frame 46 may also be associated with a
laundry list 50 holding tag fields 62 and 42 and having a set
of dirty bits 35 marking some of the cache frames 29 of the
super-frame 46 which are dirty. These dirty bits 35 match the
dirty bits 35 but are stored in a different memory structure
which has significance with respect to access speed. For
example, a super-frame 46 may include sixteen cache frames

45 transfer. In this regard, the last level cache 14' may operate
according to programs 70a executed on cache controllers 15,
and the adaptive cache system 18 may operate according the
program 70b executed by cache controller 40. These pro­
grams will typically be implemented directly in gate logic

50 for high-speed execution.
When the last level cache 14' needs to evict a cache frame

23, for example, because of space constraints in the last level
cache 14', as indicated by process block 72, the last level
cache 14' will review the clean-evict bit 28 and modified bit

55 30 of the cache frame 23 selected for eviction. This cache
frame 23 is selected according to an eviction policy of the
type generally understood in the art, for example, the oldest
on accessed data.

29 in which case the laundry list 50 will hold sixteen bits that 60

may be individually set to indicate particular dirty cache
frames 29. The laundry list 50 provides a way of speeding
cache writes back even if the caches not completely clean as
will be discussed below.

If the clean-evict bit 28 is set or the modified bit 30 is set,
as determined at decision block 74, a write-back of the data
of this evicted cache frame 23 will be performed to the
adaptive cache system 18 per process block 77. Otherwise,
the write-back is "elided," at process block 76 meaning that
the evicted cache frame 23 is overwritten in the last level

Storage space may be allocated in the laundry count 65 cache 14' without a write-back of its data. This elision is
storage array 38 for each laundry counter 48 associated with possible because in this situation the data was not modified
each super-frame 46. In this way, the values of the laundry in the caches 14 (since the modified bit was set) and the data

US 10,713,165 B2
7

was previously written back to the adaptive cache system 18
(since the clean evict bit is not set). Thus the data 24 in cache

8
accordingly the laundry counter 48 must be incremented (in
this case from O to 1) at process block 81. At process block
81 the laundry list 50 also receives the value of tag 42 of the
data being written back (in this case "A") indicating that

14 is the same as the data 24' stored in the adaptive cache
system 18 (or main memory 20, if cache frame 29 has been
evicted from adaptive cache system 18).

Referring now to FIGS. 3 and 4, consider a super-frame
46 in the adaptive cache 34 having four cache frames 29
indexed 0-3 and each holding a single data 24'(zzz, xxx,
www, and uuu) being a memory block 27, the data 24'
having tags 42 A, B, A, and A respectively. The dirty bits 35
for each of the data 24' are reset indicating that the entire
super-frame 46 is "clean" and thus all valid cache frames 29
contain the same data 24' as in main memory 20.

5 although the cache 34 is not clean (e.g., all cache frames 29
are not associated with reset dirty bits 35) nevertheless all
the dirty cache frames 29 relate to a single memory block 27
of main memory 16 (i.e. A). The dirty bit 35 for the laundry
list 50 indicating the index of the memory block 27 holding

10 the data 24 "sss" is also set to one (shown as the second bit
of a bit vector being set) and at process block 82 the data is
written to a cache frame 29 and the dirty bit 35 is set.

Referring now to FIG. 7, a next cache frame 23 to be
evicted from the last level cache 14' may also have a set At this point, the laundry counter 48 will equal zero and

then there will be no entry in the laundry list 50 consistent
with the lack of dirty frames 29 indicated by all the dirty bits
35 being reset and as enforced by the program 70b. In this
example each frame 29 uniquely identifies a memory block
27 by means of an address 25 formed of a combination of a
tag 42 (e.g. A) in combination with the super-frame number
65 (e.g. S, not shown in this example for simplicity) and the
index value 31 within the superframe (e.g. 0).

15 modified bit 30, a tag 42 of A and index 31 of 0, and block
data 24 of "ttt". In this case, at decision block 78, laundry
counter 48 is no longer zero so it cannot be assumed that all
of the cache frames 29 are clean. Nevertheless, an efficient
write-back can still be conducted through the use of the

20 laundry list 50 as will now be discussed. From decision
block 78, the program 70b moves to decision block 84 to
check to see if there is a super-frame 46 matching the
address 25 such as indicates whether a laundry list 50 exists.
This is done using the cache access process discussed above

Referring now to FIGS. 3 and 5, a write-back of cache
frame 23 having data 24 (vvv) may be requested by the last
level cache 14' where this data was not modified or dirty in
the last level cache 14' but is a clean-evict requiring it to be
written to the cache 34. Upon this request, the cache
controller 40 reads the laundry counter 48 from laundry
count storage array 38 of the SRAM 39 for the given
super-frame 46. Because the laundry counter 48 in this case 30

is equal to zero, as determined by decision block 78, there

25 with respect to FIG. 2 by checking for matching of the
super-frame tag to identify a value of the laundry list 50. If
a non-null value of laundry list 50 is obtained, then at
decision block 86, this value is checked to see if it matches

is no need to read the adaptive cache system 18 to determine

the tag 42 of the incoming write-back cache frame 23.
If so, again there is no need to read the adaptive cache 34

before writing data even though the super-frame 46 is not
clean. This is because the incoming data either overwrites a
clean cache frame 29 (e.g., line 3 in the cache 34 of FIG. 7
either of the same or a different block/tag) or updates a dirty

if the write-back will write over a dirty cache frame 29.
Normally it is important to know if the cache frame 29 to be
overwritten is dirty because in that case existing data would
need to be written back to main memory 16 before the
overwriting.

While it may be unlikely that the entire adaptive cache 34
will be clean, by partitioning the adaptive cache system 18
into super-frames 46 of the proper size, the likelihood of this
state of the laundry count equal to zero (all cache blocks
clean) becomes increasingly likely along with the ability to
avoid an unnecessary reading of the adaptive cache 34.

35 cache frame 29 related to the same block 27 (e.g., line 2 of
FIG. 7) not yet written back to main memory 16. Signifi­
cantly, the incoming data 24 carmot overwrite a dirty cache
frame 29 associated with a different block (e.g., tag B)
because the presence of only the value A in the laundry list

40 50 implies that only blocks with valid tags A can be dirty.

After determination that the super-frame 46 is clean,
program 70b proceeds to decision block 80 to determine if 45

the data from the evicted cache frame 23 was modified in the
last level cache 14' (as indicated by the modified bit 30 in the
last level cache 14). In this example, where the modified bit
30 is not set, the data 24 of the evicted cache frame 23 may
be simply written to the adaptive cache 34 per process block 50

82 (together with tag data D) avoiding a time-consuming
read of adaptive cache 34 to check to see if the overwritten
frame 29 was dirty in the adaptive cache 34.

When the adaptive cache 34 receives new writeback data
from the last level cache 14', the cache controller 40 may 55

schedule a writeback of this data to memory 16 even before
there is any need to evict cache frames 29 in the adaptive
cache 34. This scheduling may accommodate a measure­
ment of the traffic to and from the main memory 16 so as not
to preempt more urgent data transfers required by the 60

executions of the cores 12. By actively writing back data to
memory 16, the super-frames 46 may be cleaned improving
their performance under the present invention.

Consider now the example of FIG. 6 providing the
write-back of a cache frame 23 having a set modified bit 30, 65

a tag 42 of A and index 31 of 2, and data 24 of "sss". In this
case, at decision block 80, the modified bit 30 is set, and

In this situation, the program 70b then proceeds to process
block 87 to see if the dirty bit 35 of the laundry list 50 for
that index value 31 of the address 25 is set. If the bit is set,
the program 70b proceeds directly to process block 82
without incrementing the laundry counter 48 because the
data was implicitly modified in the lower level cache 14'.
Otherwise, and as is the case here, at process block 87, if the
dirty bit 35 is not set, the program 70b proceeds to decision
block 88 to check whether the data was modified in the
lower level cache 14'. If not, the program 70b may proceed
directly to process block 82 again without incrementing the
laundry counter 48 (because the incoming data 24 is clean
and implicitly overwrites a clean cache frame 29. If, how­
ever, as is the case here, the incoming cache frame 23 is
modified, the program 70b proceeds to process block 90, to
set the appropriate dirty bit 35 in the laundry list 50 (shown
logically by the number 0) and to increment the laundry
counter 48.

Referring now to FIG. 8, a next cache frame 23 to be
evicted from the last level cache 14' may have a set modified
bit 30, and the tag 42 of B and index 31 of 1, and hold data
24 of "ooo." In this case, at decision block 86, the laundry
list 50 doesn't match the tag 42 of the incoming cache frame
23, and accordingly program 70b proceeds to decision block
95 to check to see if the dirty bit is set in the laundry list 50
to make sure the cache frame 29 to be overwritten isn't dirty.
In this case, the dirty bit 35 is not enrolled in the laundry list

US 10,713,165 B2
9 10

Column 206 indicates evaluation of the laundry list dirty bits
35, for example, at decision blocks 87 and 95. Column 207
refers to evaluation of a tag match between an incoming
cache frame 23 with a tag 42 in a cache frame 29 in the

50. Accordingly, the program 70b may proceed to decision
block 96 to determine whether the data from the LLC 14'
was modified. If so, the program 70b proceeds to process
block 97 and the laundry list 50 is invalidated and the
laundry counter 48 incremented. The laundry list 50 is
invalidated (for example, setting the valid bit 60 to 0)
because it can no longer be relied upon to ensure that data
from only a single block 27 of main memory 16 is dirty in
the laundry list cache 36. Alternatively, if at decision block

5 adaptive cache 34 (shown in FIG. 1), for example, as
evaluated at decision blocks 103. Column 208 refers to
inspection of a dirty bit 35 in a cache frame 29 in the
adaptive cache 34 (shown in FIG. 1), for example, as
evaluated at decision blocks 120 and 121.

96 the data from the LLC 14' was not modified, the program 10

can proceed directly to process block 82 to write tag in data
into the adaptive cache 34.

Referring again to FIG. 3, when at decision block 95 the
dirty bit is set, the adaptive cache 34 must be read at process
block 99 in a more conventional cache access scenario and 15

data in the adaptive cache 34 must be written back to the
main memory 16. After this writeback, it is determined
whether the data from the lower level cache 14' was modi­
fied at decision block 100. If so, the program 70b proceeds
to process block 101 to invalidate the laundry list 50 before 20

proceeding to write the data to the adaptive cache at process
block 82. If at decision block 96 the data was not modified

Column 210 represents the status of the modified bit 30 in
the cache frame 23, for example, evaluated at decision
blocks 80, 88, 100, 96, 104 and 110.

Column 214 represents the reading process of process
blocks 94 and 99. Column 215 represents the write-back of
the adaptive cache frame of process block 99 and 107 and
column 216 represents the creation of a new laundry list item
per process block 81. Column 217 represents setting of a
dirty bit 35 in the laundry list item, for example, at process
block 81 and 90. Column 218 represents invalidation of the
laundry list, for example, at process blocks 97 and 101.
Column 219 represents a decrementing of the laundry coun­
ter 48, for example, at process blocks 102 and 106 whereas
column 220 represents an incrementing of the laundry
counter 48, for example, at process blocks 81, 90, 112, and

in the lower level cache 14', the program 70b may proceed
directly to process block 102 decrementing the laundry
counter 48 and then to process block 82 to write to the
adaptive cache 34.

25 122. When a row in the table calls for both decrementing and
incrementing the laundry counter, as for example in rows 10
and 20, the net effect is to leave the laundry counter 49
unchanged. Finally, column 221 represents a write back from
the lower level cache of process block 82.

Referring again to FIG. 3, in the case where the super­
frame 46 does not match at decision block 84, it is also
necessary to perform a more conventional pre-reading of the
adaptive cache 34 as indicated by process block 94. After 30

this reading, the program 70b proceeds to decision block 103
to determine whether the tag 42 of the incoming cache frame
23 matches the tag 42 of cache frame 29 of the adaptive
cache 34. If so, the program proceeds to decision block 120
to decide the cache frame 29 is dirty by looking at its dirty 35

bit 35. If so, the program proceeds to process block 82 to
write to the adaptive cache 34. If not, the program proceeds
to process block 122 to increment the laundry counter 48,
then proceeds to process block 82.

If at decision block 103 the tag of incoming cache frame 40

23 did not match the tag of a cache frame 29 in the adaptive
cache 34 then the program proceeds to decision block 121 to
determine whether the frame 29 in the adaptive cache 34 was
dirty by examining dirty bit 35. If so, the program proceeds
to process block 107 to writeback the value from the 45

adaptive cache 34. The program then proceeds to decision
block 104 to determine whether the data from the last level
cache 14' was modified. If so, the program proceeds directly
to process block 82 to write the new data to the adaptive
cache 34. If not, at process block 106 the laundry counter 48 50

is decremented and then the program proceeds to process
block 82.

If at decision block 121 the program determines that the
cache frame 29 is not dirty, the program proceeds to decision
block 110, where it is determined whether the data from the 55

lower level cache 14' was modified. If yes, the program
proceeds to process block 112 to increment the laundry
counter 48 and then proceeds to process block 82 to perform
the writeback. If at decision block 110, the data from the
lower level cache 14' was not modified, the program 70b 60

proceeds directly to process block 82.
Referring now to FIG. 9, a more complete statement of the

operation of the program 70b is in table form including error
conditions not represented in FIG. 3. In this table, column
202 indicates the evaluation of the laundry counter 48 per 65

decision block 78. Columns 204 and 205 refer to the cached
laundry list 50 evaluated at decision blocks 84 and 86.

The following Table I provides notes keyed to FIG. 9.

A

B

C

D

TABLE I

There are no dirty blocks in the super-frame so it is
always safe to write without first reading the DRAM
cache
There are some dirty blocks in the super-frame, and we
know they all share the same physical tag with the
request. Thus, it is safe to write.
There are some dirty blocks in the super-frame, and they
all share the same physical tag, which is different from
this request's. Thus, we must consult the dirty bit in the
laundry list item to determine if it is safe to write.
There are some dirty blocks in the super-frame, and they
may have different physical tags. We have no
information about the dirty bits in the super-frame, so all
accesses are unsafe.

The program of FIG. 3 observes the following invariants:
1. The Laundry Count is Always Equal to the Number of

Dirty Frames in the Super-Frame
Action 1
Whenever a dirty block is victimized from the adaptive

cache, decrement the laundry counter
Action 2
Whenever a modified block overwrites a clean block

(including victimized dirty blocks) in the adaptive cache,
increment the laundry counter

2. If there is a Laundry List Item for a Super-Frame and
the Physical Tag is Valid, then the Super-Frame in the
Adaptive Cache Only Contains Dirty Data that Matches the
Physical Tag.

Action 1
If the physical tag matches in the laundry list item, no

need to read the adaptive cache before writing, it's always
safe

Action 2
If a modified block is being written to the adaptive cache

that doesn't match the physical tag in the laundry list item,
invalidate the laundry list item

US 10,713,165 B2
11

3. When there is a Valid Laundry List Item, the Laundry
List Item Contains the Same Dirty Bits as the Adaptive
Cache Super-Frame (and the Super-Fame Tag Must Match)

Action 1

12
wise specified, can include one or more processor-readable
and accessible memory elements and/or components that
can be internal to the processor-controlled device, external
to the processor-controlled device, and can be accessed via

On a dirty LLC-writeback, if there is a valid laundry list
item only increment the laundry counter if the cache frame
in the adaptive cache is not dirty.

5 a wired or wireless network.

Referring now to FIG. 10, the cache controller 40 may
also execute a program 70c generally asynchronous with
respect to program 70b to scan through the cache frames 29 10

of the adaptive cache 34 per process block 321 to identify
per decision block 322 any cache frames 29 that are dirty as
indicated by dirty bit 35. The data 24' of those cache frames

The term program is used herein represents operation of
the computer architecture typically implemented in discrete
logic and firmware. This operation may be distinguished
from software that may be loaded onto a general-purpose
computer without the architectural features described above.

It is specifically intended that the present invention not be
limited to the embodiments and illustrations contained
herein and the claims should be understood to include

29 is written back to the main memory 16 per process block
324. When writing back dirty data, the corresponding entry

modified forms of those embodiments including portions of
15 the embodiments and combinations of elements of different

in the laundry list 50 must be invalidated (if it exists, i.e., the
super-frame tag matches). By ensuring that the adaptive
cache 34 is mostly clean, the highest performance is
obtained. The scarming process of process block 321 may
monitor the bandwidth between the main memory 16 and the 20

core-level caches 14 and adaptive cache system 18 to
schedule the scarming processor so as not interfere with
other data accesses involving the main memory 16. The
scanning process may be part of the DRAM refresh logic
used to refresh the memory of the adaptive cache 34. 25

Certain terminology is used herein for purposes of refer­
ence only, and thus is not intended to be limiting. For
example, terms such as "upper", "lower", "above", and
"below" refer to directions in the drawings to which refer­
ence is made. Terms such as "front", "back", "rear", "bot- 30

tom" and "side", describe the orientation of portions of the
component within a consistent but arbitrary frame of refer­
ence which is made clear by reference to the text and the
associated drawings describing the component under dis­
cussion. Such terminology may include the words specifi- 35

cally mentioned above, derivatives thereof, and words of
similar import. Similarly, the terms "first", "second" and
other such numerical terms referring to structures do not
imply a sequence or order unless clearly indicated by the
context. 40

embodiments as come within the scope of the following
claims. All of the publications described herein, including
patents and non-patent publications, are hereby incorporated
herein by reference in their entireties.

What we claim is:
1. A cache architecture comprising:
an adaptive cache having regions holding cache frames

storing data blocks cached from a main memory for use
by one or more processors, each cache frame associated
with a dirty bit that is set when the cache frame holds
data that has been changed by a processor but has not
been updated in the main memory and that is reset
otherwise;

a laundry counter associated with each region storing a
count value; and

a cache controller operating to:
(a) update the laundry counters during operation of the

cache architecture to indicate whether an associated
region has any set dirty bits;

(b) write data to a given cache frame in the region in a first
mode without first reading the dirty bit of the cache
frame based on a determination that the associated
laundry counter indicates no dirty frames in the region;
and

(c) write data to a given cache frame in a second mode
based on a determination that the associated laundry
counter indicates at least one dirty frame in the region
after first reading the dirty bit of the given cache frame
to ensure that the given cache frame dirty bit is not set.

2. The cache architecture of claim 1 wherein the laundry
counter indicates a number of dirty bits in the region and is
incremented based on a determination that a cache frame in
the region has a dirty bit changed from reset to set and
decremented based on a determination that a cache frame in

When introducing elements or features of the present
disclosure and the exemplary embodiments, the articles "a",
"an", "the" and "said" are intended to mean that there are
one or more of such elements or features. The terms "com­
prising", "including" and "having" are intended to be inclu- 45

sive and mean that there may be additional elements or
features other than those specifically noted. It is further to be
understood that the method steps, processes, and operations
described herein are not to be construed as necessarily
requiring their performance in the particular order discussed 50 the region has a dirty bit changed from set to reset.
or illustrated, unless specifically identified as an order of
performance. It is also to be understood that additional or
alternative steps may be employed.

In the above description and should be understood that the
terms "set" and "reset" may be arbitrarily mapped to Boo!- 55

ean states and voltage levels and accordingly these terms
should be denoted as designating a logical setting and
resetting rather than a particular mapping.

References to "a core" and "a processor" or "the micro­
processor" and "the processor," can be understood to include 60

one or more microprocessors that can communicate in a
stand-alone and/or a distributed environment(s), and can
thus be configured to communicate via wired or wireless
communications with other processors, where such one or
more processor can be configured to operate on one or more 65

processor-controlled devices that can be similar or different
devices. Furthermore, references to memory, unless other-

3. The cache architecture of claim 1 wherein the cache
controller operates in the second mode to write-back data of
the given cache frame to the main memory before writing
data to the cache frame based on a determination that the
reading of the dirty bit of a given cache frame indicates that
the dirty bit is set and a data block of the given cache frame
does not match a data block of data being written back to the
given cache frame.

4. The cache architecture of claim 1 wherein the laundry
counter is held in a separate memory from a memory holding
the adaptive cache, the separate memory providing faster
access by the processor and the memory holding the adap­
tive cache.

5. The cache architecture of claim 4 wherein the laundry
counter is held in a static random-access memory (SRAM)
and the adaptive cache is held in a dynamic random-access
memory (DRAM).

US 10,713,165 B2
13

6. The cache architecture of claim 5 wherein the DRAM
employs a three-dimensional die stacking integrated circuit
architecture.

7. The cache architecture of claim 1 wherein the cache
frames of the adaptive cache are further associated with tags 5

corresponding to addresses in main memory of the data held
in the cache frames and wherein the cache architecture
further comprises:

a laundry list associated with each region indicating a tag
of a cache frame associated with a set dirty bit; and 10

wherein the cache controller further operates to:
write data having a given tag to a given cache frame in a

third mode without first reading the dirty bit of the
given cache frame based on a determination that the
given tag is in the laundry list.

8. The cache architecture of claim 7 wherein the laundry
list further includes laundry list dirty bits corresponding to
dirty bits associated with the cache frames in the corre­
sponding region.

15

9. The cache architecture of claim 8 wherein the cache 20

controller reviews the laundry list dirty bits and determines
whether to update the laundry list counter based on the
laundry list dirty bits.

10. The cache architecture of claim 8 wherein the laundry
counter is incremented based on a determination that the 25

laundry list dirty bits associated with the given cache frame
are not set.

11. The cache architecture of claim 7 wherein the laundry
list is held separate memory from a memory holding the
adaptive cache, the separate memory providing faster access 30

by the processor and the memory holding the adaptive
cache.

12. The cache architecture of claim 7 wherein the laundry
list held in a laundry list cache provides fewer laundry list
entries than regions of the adaptive cache.

13. The cache architecture of claim 1 wherein the cache
controller schedules a write-back of data written into the
adaptive cache to main memory at a time of writing of data
to the adaptive cache.

35

14
17. A computer architecture comprising:

multiple processing cores executing arithmetic and logi­
cal instructions each associated with one or more lower
level caches including a last lower-level cache (LLC)
having corresponding lower-level cache controllers;

a main memory exchanging data with the multiple pro­
cessing cores;

an adaptive cache positioned between the lower level
caches and the main memory and including:

(a) a cache having regions of cache frames storing data
cached from a main memory for use by a processor,
each cache frame associated with a dirty bit that is set
based on a determination that the cache frame holds
data that has been changed by the processor but has not
been updated in the main memory and that is reset
otherwise;

(b) a laundry counter associated with each region storing
a count value; and

(c) a cache controller operating to:

(i) update the laundry counters during access of the
adaptive cache to indicate whether an associated
region has any set dirty bits:

(i) write data to a given cache frame in the region in a
first mode without first reading the dirty bit of the
cache frame based on a determination that the asso­
ciated laundry counter indicates no dirty frames in
the region; and

(i) write data to a given cache frame in a second mode
based on a determination that the associated laundry
counter indicates at least one dirty frame in the
region after first reading the dirty bit of the given
cache frame to ensure that the given cache frame
dirty bit is not set.

18. The computer of claim 17 wherein entries of the LLC
include LLC data, a clean-evict bit set to indicate that the
LLC data is not in the adaptive cache, a modified bit set to
indicate that the processor modified the LLC data in the LLC

14. The cache architecture of claim 12 wherein the
schedule of the write-back of dirty cache frames is based on
a measurement of a flow of data between the main memory
and the one or more processors.

40 and wherein the lower-level cache controllers elide a write­
back of data evicted from the LLC based on a determination

15. The cache architecture of claim 1 wherein the cache
controller further operates to write-back dirty cache frames
to main memory on a predetermined schedule independently
of writing to the adaptive cache from the processor.

16. The cache architecture of claim 13 wherein the
write-back of dirty cache frames is coordinated with a
refresh of dynamic adaptive cache memory.

that neither the clean-evict bit nor the modified data is set.

19. The computer of claim 17 wherein entries of the LLC

45
further include a modified bit set to indicate that the LLC
data has been modified by a processor and wherein the
laundry counter value is incremented based on a determi­
nation that data written to a given cache frame is associated
with a set modified bit.

* * * * *

