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COMPUTER ARCHITECTURE WITH FIXED 
PROGRAM DATAFLOW ELEMENTS AND 

STREAM PROCESSOR 

STATEMENT REGARDING FEDERALLY 
SPONSORED RESEARCH OR DEVELOPMENT 

This invention was made with govermnent support under 
CNS1218432 awarded by the National Science Foundation. 
The government has certain rights in the invention. 

CROSS REFERENCE TO RELATED 
APPLICATION 

BACKGROUND OF THE INVENTION 

The present invention relates to electronic computer 
architectures and in particular to a high-speed computer 
accelerator having a limited functionality but improved 
applicability. 

Computer accelerators provide special-purpose circuitry 
that can be teamed with a general-purpose central processing 
unit (CPU) to provide improved performance in some com­
putational applications. 

Early computer accelerators expanded the hardware 
instruction set of the general-purpose processor with off­
chip circuitry providing pre-progranimed functions, that is, 
functions receiving data to execute a predetermined function 
on that data. These accelerators will henceforth be termed 
"fixed function" accelerators referring to the fact that they 
execute one or more fixed functions. One example of such 
fixed-function accelerators was the so called "math copro­
cessor" providing specialized circuitry to execute predeter­
mined floating-point and trigonometric function calcula­
tions. Such fixed-function accelerators are easily integrated 
into programming to the extent that their features can be 
invoked with a single program instruction requiring little 
more than the transfer of the necessary argument data and 
return of the calculated value. 

2 
well-established problems or that do not have a sufficiently 
large demand to justify the time and expense of complex 
designs, changes to application programs, and changes to 
tool chains needed to use these accelerators. 

SUMMARY OF THE INVENTION 

The present invention provides a fixed-function accelera­
tor that can substantially increase computational speeds for 

10 tasks that don't justify the design and manufacture of 
computer architecture accelerators. Speed advantages in 
executing the fixed functions is provided by using a high­
speed dataflow architecture and by using a special-purpose 

15 
stream processor to handle memory accesses, allowing long 
runs of data to be processed without involvement by the 
general-purpose processor. Proper selection of the individual 
functions implemented can give the accelerator broader 
applicability to a range of programs. Implementing different 

20 fixed functions can reuse substantial portions of the archi­
tecture and the fixed functions are relatively simple to 
invoke from programs. 

Specifically then, in one embodiment, the invention pro­
vides computer accelerator architecture having (1) a lower 

25 complexity processor adapted to receive stream instructions 
from a higher complexity general-purpose processor, the 
stream instructions describing a logical stream of multiple 
data elements to be exchanged with a memory; (2) a fixed 
program functional element to sequentially process succes-

30 sive input data elements of a logical stream, as initiated by 
availability of each input data element, to provide resultant 
output data elements of a logical stream; and (3) a stream 
processor receiving the stream instructions from the lower 
complexity general-purpose processor to autonomously read 

35 the input data elements of a logical stream from the memory 
according to the stream instructions and to autonomously 
write resultant output data elements of a logical stream to 
memory according to stream instructions. A pair consisting 
of only a single stream processor and only a single func-

40 tional element operates to intercommunicate data elements 
of a given logical stream. 

As the power and speed of general-purpose processors 
increased, many fixed-function accelerators were rendered 
obsolete to the extent that their limited performance gains 
were outweighed by the cost of the second integrated circuit 45 

and the computational burden of transferring data and con­
trol between the general-purpose processor and the accel­
erator. 

It is thus a feature of at least one embodiment of the 
invention to provide an accelerator that offers the versatility 
and wide applicability of a fixed-function accelerator, while 
still providing substantial speed advantages over execution 
of the same functions on sophisticated general-purpose 
processors. 

The fixed program functional element may not include a 
program counter. Possibly for this reason, current accelerator technology 

has largely focused on accelerators that operate as indepen- 50 

dently functioning special-purpose computers executing 
large blocks of instructions independent of the general 
processor. One example of a computer architecture accel­
erator is a graphic processor unit (GPU) which provides an 
array of special-purpose computer cores adapted to the 55 

specific time-consuming tasks associated with rendering 
graphics. Similar accelerators of this type of accelerator 
include application-specific accelerators such as the 
Microsoft Catapult FPGA accelerator, for use in data cen­
ters, and Google's Tensor processing unit for distributed 60 

machine learning. These accelerators are effectively special­
purpose computers which, when combined with a general­
purpose, high-performance von Neumann processor, for 
example, can greatly increase processing speed for these 
specific applications. 65 

The design of computer architecture accelerators may not 
be practical for applications that are not associated with 

It is thus a feature of at least one embodiment of the 
invention to employ dataflow architecture to provide sub­
stantial speed gains in function execution. 

The fixed program functional element may provide a 
multiply add-reduction function having at least one output 
that is a first sum of a pair of second sums, each second sum 
being a sum of a pair of products, the products being 
products of a pair of input arguments. 

It is thus a feature of at least one embodiment of the 
invention to provide a fixed-function accelerator implement­
ing the common map-reduce function. 

Alternatively, or in addition, the fixed program functional 
element may be a multiply accumulate function having at 
least one output that is a running total of a product of a pair 
of input arguments. 

It is thus a feature of at least one embodiment of the 
invention to provide a fixed-function accelerator implement­
ing the common map-unit function. 
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Alternatively, or in addition, the fixed program functional 
element may be a nonlinear transformation function having 
an output that is a base value summed to an interpolated 
value, where the base value is obtained from a first lookup 
table from the most significant bits of an input argument and 5 

the interpolated value is a slope value obtained from a 
second lookup table from the most significant bits of the 
input argument times the least significant bits of the input 
argument. 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1 is a simplified block diagram of the accelerator of 
the present invention providing a bank of accelerators usable 
with a general-purpose processor; 

FIG. 2 is a detailed block diagram of a single accelerator 
showing the combination of a lower complexity general­
purpose processor, a fixed program functional element, 
scratchpad memory and a stream processor; 

The computer accelerator may include multiple functional 10 

elements and a switch assigning a single functional element 
FIG. 3 is a detailed block diagram of the stream processor 

showing constituent stream dispatcher and stream engine 
elements; at a time to the stream processor. Alternatively, or in 

addition, the computer accelerator may include multiple 
stream processors and multiple functional elements and a 
switch assigning a single functional element to a single 15 

FIG. 4 is a figure similar to that of FIG. 2 showing the 
provision of a pool of fixed program functional elements that 
may be individually paired with a given stream processor; 

FIG. 5 is a figure similar to that of FIG. 4 showing a 
pooling of both stream processors and program functional 
elements for one-to-one pairing using a switch network; 

FIG. 6 is a logical block diagram of a functional element 

stream processor. 
It is thus a feature of at least one embodiment of the 

invention to increase the flexibility of the computer accel­
erator by allowing a selection among various functions that 
may be used for acceleration. 

The functional elements provide for processing at least 
thirty-two bit arguments and may process in parallel sepa­
rate data words having a length smaller than an argument 
length of the functional element by concatenating the sepa­
rate data words together and processing them as an argu­
ment. 

It is thus a feature of at least one embodiment of the 
invention to permit, single instruction, multiple data type 
parallel processing. 

The stream processor may simultaneously exchange mul­
tiple streams with a given fixed program functional element. 

It is thus a feature of at least one embodiment of the 
invention provide multiple streams to the functional ele­
ments for maximum throughput and utilization of the 
memory bandwidth. 

20 of FIG. 2 showing associated vector buffers and dataflow 
coordination; 

FIG. 7 is a figure similar to that of FIG. 6 showing a map 
reduce functional element; 

FIG. 8 is a figure similar to that of FIGS. 6 and 7 showing 
25 a map unit functional element; 

FIG. 9 is a figure similar to that of FIGS. 6, 7, and 8 
showing a nonlinear transformation functional element; and 

FIG. 10 is a diagranimatic representation of computer 
memory showing definable memory access patterns for 

30 autonomous access by the stream processor. 

DETAILED DESCRIPTION 

Referring now to FIG. 1, a computer architecture 10 
35 constructed according to the present invention may provide 

for a higher complexity general-purpose processor 12. The 
higher complexity general-purpose processor 12, for 
example, may implement a sophisticated von Neumann 

The stream instructions from the lower complexity gen­
eral-purpose processor to the stream processor may be 
received asynchronously with respect to the operation of the 
functional element and provide for autonomous reading of 
multiple input values stored in memory or an autonomous 40 

writing of multiple output values from the accelerator 
according to different predefined memory access patterns. 

architecture including out-of-order execution and specula­
tive execution using a rich instruction set of arithmetic and 
logical instructions sequenced with a program counter. 
Examples of such processors 12 include those manufactured 
by the Intel Corporation under the trade name of "i7" as well 
as similar devices manufactured by Advanced Micro 

It is thus a feature of at least one embodiment of the 
invention to permit parallel execution of memory access 
instructions and calculations for improved acceleration. 

The lower complexity general-purpose processor may be 
adapted to receive instructions and data from the higher 
complexity, general-purpose processor to execute logical 
and arithmetic instructions and return the results to the 
higher complexity, general-purpose processor. 

It is thus a feature of at least one embodiment of the 
invention to permit the functional element to be incorporated 
into more complex accelerator functions implemented by the 
lower complexity, general-purpose processor or to allow the 
lower complexity, general-purpose processor to accept off­
loaded functions directly. 

The stream processor may provide pre-defined memory 
access patterns including a linear access pattern of contigu­
ous addresses between two memory addresses and a strided 
access pattern of regularly spaced discontiguous addresses 
between two memory addresses. 

It is thus a feature of at least one embodiment of the 
invention to provide memory access patterns commonly 
used in multiple data instructions suitable for acceleration. 

These particular objects and advantages may apply to 
only some embodiments falling within the claims and thus 
do not define the scope of the invention. 

45 Devices, Inc., and ARM Ltd. As used herein, "general­
purpose" refers to a general-purpose instruction set and 
architecture sufficient to execute a wide range of programs, 
for example, such as could be executed at least by an Intel 

50 

8080 or subsequent processor in this family. 
The higher complexity general-purpose processor 12 may 

communicate through an Ll cache 14 with a memory system 
16 using address and data lines 23. The memory system 16 
provides a standard memory hierarchy including but not 
limited to additional levels of cache 18 coupled with one or 

55 more layers of increasingly larger scale memory 20, for 
example, composed of random access memory (RAM), disk 
memory and the like. 

The memory system 16 may hold a program 22 for 
execution by the computer architecture 10 such as may 

60 benefit from hardware acceleration, for example, including 
image processing, machine learning, graph processing or the 
like. 

The higher complexity general-purpose processor 12 may 
also communicate with a bank 21 of computer accelerators 

65 24 by means of control lines 26 sending data that describe 
a pattern of memory access for obtaining argument data for 
the function of the computer accelerator 24 and a similar 
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pattern for wntmg values back from the fixed-function 
accelerators 24. The control lines 26 may also send timing 
information initiating operation of the fixed-function accel­
erators 24. Control lines 26, as well as defining the memory 
access pattern and timing signals may provide for some 5 

limited configuration data, for example, selecting among 
different fixed-function circuits available in the computer 
accelerator 24. 

around the fixed-function element 32. One or more indirect 
transfer vector buffers 51 may also be present of comparable 
size. 

Referring now to FIG. 6, the fixed-function elements 32 
provide a set of interconnected function primitives 33, for 
example, but not limited to, those providing addition, mul­
tiplication, accumulation, and lookup tables. Each of these 
function primitives 33 may receive data from a correspond­
ing input vector buffer 44 and provide results to correspond-As will be discussed in greater detail below, during 

operation, the fixed-function accelerators 24, using the 
memory data pattern provided by the higher complexity 
general-purpose processor 12, may independently access the 
memory system 16 at the L2 cache using similar address and 
data lines 23 without further assistance of the higher com­
plexity general-purpose processor 12. This access may be 
moderated by a load-balancing circuit to eliminate deadlock 
by ensuring each computer accelerator 24 obtains sufficient 
access to memory system 16, for example, using conven­
tional deadlock elimination techniques. During operation of 
the fixed-function accelerators 24, the higher complexity 
general-purpose processor 12 may shut down or be used for 
other tasks during that calculation. 

Referring now to FIG. 2, each computer accelerator 24 
includes a lower complexity general-purpose processor 30, 
a fixed-function element 32, a memory interface 34, scratch­
pad memory 36 and a stream processor 38, the latter 
including a stream dispatcher 40 and a stream engine 42. 

Lightweight Processor 

During operation, the lower complexity general-purpose 
processor 30 communicates with the higher complexity 
general-purpose processor 12 to receive instructions there­
from and issue stream instructions to the stream processor 
38. The stream processor 38 in tum will control the memory 
interface 34 to obtain information necessary for calculation 
by the fixed-function element 32 (either directly or through 
the scratchpad memory 36) and to return information after 
that calculation to the memory interface 34 for storage 
(again either directly or through the scratchpad memory 36). 

In this regard lower complexity, general-purpose proces­
sor 30 may be less complicated and/or slower than the higher 
complexity general-purpose processor 12 as is sufficient to 
provide coordination of the other components of the com­
puter accelerator 24. For example, the lower complexity 
general-purpose processor 30 may be a von Neumann, 
single-issue, in-order core without speculative execution 
executing basic arithmetic and logical functions. In this 
regard, the lower complexity general-purpose processor 30 
will require much less integrated circuit area than the higher 
complexity general-purpose processor 12 and will use much 
less power. In some embodiments, the lower complexity 
general-purpose processor 30 may be implemented with 
discrete circuitry and a fixed program and thus may not 
necessarily employ programmable computer architecture. 
The lower complexity general-purpose processor 30 and 
memory interface 34 may share the same memory access or, 
as depicted, may provide for separate memory access chan­
nels. 

Fixed-Function Unit 

The fixed-function element 32 may include multiple input 
vector buffers 44, output vector buffers 46, and transfer 
vector buffers 48 for communicating arguments to and 
values from the fixed-function element 32 or in a loop 

10 ing output vector buffers 46 with possible movement of data 
through transfer vector buffer 48 in multiple cycles. Gener­
ally, the architecture of the fixed-function elements 32 will 
be that of a dataflow architecture meaning that they begin 
execution upon the availability of data in the input vector 

15 buffers 44 using, for example, a circuit identifying whether 
corresponding data is present at inputs of each of the 
function primitives 33. 

Data flows through the function primitives 33 in a deter­
ministic manner according to stages 66 eliminating race 

20 conditions which may be enforced either by a clocking 
mechanism or by providing similar delays (for example, 
enforced through no operation function primitives which 
perform no operation but delay) along each data path 68 
between the function primitives 33. By operating without a 

25 program counter, extremely high-speed performance can be 
obtained providing calculations as fast as data is delivered to 
the input vector buffers 44. In addition, it will be understood, 
that the dataflow pathway between the function primitives 
33 forms an effective pipeline so that early stages 66 of the 

30 fixed-function element 32 may be receiving new data from 
the input vector buffers 44 as data is being processed in the 
later stages 66. 

Generally, function primitives 33 will provide for predi­
cation, limiting the need for urmecessary control steps and 

35 may operate in parallel on multiple data words concatenated 
together to form a single argument passing through the 
function primitives 33. Thus, for example, a function primi­
tive 33 having an argument width of 32 bits may simulta­
neously process four 8-bit arguments concatenated together, 

40 for example, by performing saturation arithmetic in which 
carries and overflows are handled, for example, by suppress­
ing the carry or overflow and setting the result to the highest 
permissible value. A similar technique can be used with 
underflows and borrows that setting the result to the lowest 

45 permissible value. 
Referring now to FIG. 7, an important fixed-function 

element 32 may provide for a map reduce or multiply 
add-reduction function. In such a function, arguments at 
pairs of input vector buffers 44 may be multiplied in a first 

50 stage 66a by multiply function primitives 33 providing the 
mapping. Output products from the multiply function primi­
tives 33 are then added pairwise together at a second stage 
66b providing a first part of the reduction by additional adder 
function primitives 33. Outputs from this second set of adder 

55 function primitive 33 are then summed at a third stage 66c 
by an additional adder primitive 33 which provides its 
output to output vector buffer 46 completing the reduction. 
It will generally be understood that the map-reduce function 
may implement a variety of different mapping procedures 

60 including, for example, multiplication, absolute difference, 
and the like, and may provide a variety of different reduction 
functions including, for example, addition, maximum, and 
minimum functions, and the like. 

Alternatively, or in addition, as shown in FIG. 8, fixed-
65 function element 32 may provide for a map unit or multiply­

and-accumulate function. In such a function, arguments at 
pairs of input vector buffers 44 may be summed at a first 



US 11,151,077 B2 
7 

stage 66a by adder function primitives 33a. Outputs of these 
adder function primitives 33a are provided to accumulator 
function primitives 33b at a second stage 66b which sums 
each current output to a running total of previous outputs for 

8 
predefined pattern. In this regard, the stream processor 38 
may provide for three separate circuits, one for memory, one 
for scratchpad, and one for controlling re-cycling of data 

a predetermined number of arguments. The accumulator 5 

function primitives 33b then provide outputs to output 
vector buffers 46. 

from output port to input port and also the generation of 
constant values. These three circuits may operate indepen­
dently (but for synchronization through the memory inter-
face 34) for high-speed operation. 

Alternatively, or in addition, as shown in FIG. 9, the 
fixed-function element 32 may provide for a nonlinear 
transformation or piecewise linear approximation. At a first 
stage 66a values from input vector buffers 44 are split into 
high-order bits 69 used to determine base values and low­
order bits 71 used for interpolation. The high-order bits 69 
are received by a base lookup table 72 which converts the 
high-order bits 69 to a base value 73 of the transformation 
according to a transformation function embedded in the 
lookup table 72, for example, at the time of manufacture or 
configuration. The high-order bits 69 are also sent to second 
lookup table 74 producing a slope value 75 for the trans­
formation function. The slope value 75 is multiplied by 
low-order bits 71 at a next stage 66b and the resulting 
interpolated value 77 is then summed to the base value at a 
succeeding stage 66c to provide an output to output vector 
buffer 46. 

Generally, the fixed-function element 32 does not provide 
a program counter and may or may not require control-flow 
instructions. For example, control-flow may be implicit in 
the interconnection 68 of the function primitives 33. Alter­
natively, or in addition, control-flow may be provided by the 
fixed-function elements 32, for example, internally imple­
menting branch instructions and selecting among physical 
interconnections. Calculations occur as soon as operands are 
available within the constraint of the regular sequencing 
through the fixed-function elements 32 which may occur at 
high speed. The fixed-function elements 32 may receive 
data, for example, configuring the lookup table 74 but do not 
receive instructions providing an ordered set of execution 
steps according to instruction type. 

Stream Processor 

Referring to FIGS. 2 and 6, each of the input vector 
buffers 44 and output vector buffers 46 of the fixed-function 
element 32 provide first-in, first-out buffers that may be 
filled asynchronously or emptied asynchronously to the 
processing performed by the fixed-function element 32 
under the control of the stream processor 38. The vector 
buffers thus provide for independent but parallel data acqui­
sition and data processing. In one embodiment, each buffer 
may provide eight, sixty-four bit words, thus being 8x64 
wide, and have an arbitrary depth, for example, greater than 
10 and optionally 100. Additional similar indirect transfer 
vector buffers 51 of similar construction and independent of 
input vector buffers 44 and output vector buffers 46 may be 
used for storing streaming addresses for indirect loads and 
stores if required. 

Referring now to FIG. 3, more specifically, the stream 
processor 38 may include a stream dispatcher 40 and stream 

10 engine 42. The stream dispatcher 40 receives a set of stream 
instructions at a stream queue 50 from the lower complexity 
general-purpose processor 30, these instructions defining a 
pattern of access of the memory system 16 to obtain data 
elements to be processed by the fixed-function element 32 

15 (shown in FIG. 2). These queued stream instructions will 
ultimately be sent to one of a set of stream engines 52 in the 
stream engine 42 for concurrent execution. 

Each stream engine 42 may handle the necessary protocol 
for communicating (reading or writing data) with the 

20 memory system 16 and provides the ability to calculate a set 
of addresses to obtain a stream of such data according to the 
stream instructions for processing by the fixed-function 
element 32. To the extent that the accelerator 24 may 
communicate directly with an L2 cache 18 (as shown in FIG. 

25 1) the stream engine 42 may handle memory coherence 
problems, for example, by sending a tag invalidation to the 
lower complexity general-purpose processor 30 whenever a 
stream crosses a page boundary. The Ll cache 14 and L2 
cache 18 may be assumed to be using virtual addresses when 

30 virtualization is employed. Necessary address translation 
using a translate lookaside buffer of an MMU is accom­
plished according to techniques understood in the art. 

Stream instructions from the stream queue 50 will only be 
dispatched to the stream engines 52 by a dispatcher 55 when 

35 the necessary resources needed for the stream are available 
and according to the program order of program 22. The 
critical resources needed for a stream include availability of 
the input vector buffer 44 and output vector buffer 46 or of 

40 

the scratchpad memory 36. 
The dispatcher 55 determines availabilities of resources 

using a scoreboard 54 which provides a state of each stream 
resource as either "taken" "free," or "all requests in flight" 
which may be updated by the dispatcher 55, A critical 
resource moves from "free" to "taken" when the stream 

45 instructions are enrolled in the stream engines 52. The given 
stream of those instructions then logically owns the resource 
while in flight. When the stream is finished, the associated 
stream engine 52 in the stream engine 42 notifies the stream 
dispatcher 40 to update the scoreboard 54 to show the 

50 resource is in the free state. The "all requests in flight state" 
indicates that all requests for the memory stream are com­
pletely sent to the memory system 16 but have not arrived. 
This state allows scheduling of another conflicting stream 
enabling two stream engines 52 to use the same critical 

55 resources in overlapping configuration for additional efli-
ciency. 

In essence, the stream processor 38 provides a state 
machine that can move data autonomously between the 
memory system 16 and another storage location once it 
receives program instructions from the lower complexity 60 

general-purpose processor 30. Generally, the stream proces­
sor 38 will move input data from the memory system 16 to 
either the scratchpad memory 36 or from the scratchpad 
memory 36 to the input vector buffers 44, or may move 
output data from the scratchpad memory 36 to the memory 65 

system 16, or from output vector buffers 46 to the scratchpad 
memory 36 or the memory system 16 according to a 

The stream processor 38 may also control the forwarding 
of streams to the stream engines 52 according to barrier 
instructions that may be issued by the lower complexity 
general-purpose processor 30. Barrier instructions prevent 
the issuance of new stream instructions to the stream pro­
cessors until a given stream identified by the barrier instruc­
tion is complete. Thus, barrier instructions provide a method 
of ensuring proper execution order of the calculations per­
formed by the fixed-function elements 32. 

Generally, then, stream instructions will include: stream 
instructions for providing a stream of data to or from the 
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fixed-function element 32 without involvement of the lower 
complexity general-purpose processor 30 or the higher com­
plexity general-purpose processor 12; and barrier instruc­
tions used to enforce some degree of serialization of access 
of data by the stream processor 38 as will be discussed 
below. Examples of these stream instructions (shown in 
Table I) provided by the lower complexity general-purpose 
processor 30 to the stream processor 38 generally identify a 
source of data, destination data, and the data pattern as 
follows: 

TABLE I 

Example Stream Instructions 

Command Name Parameters Description 

SD_Mem_Scr Source Memory Read from memory system 
Address, Access Size, 16 to the scratchpad 
Stride Length, memory 36 using the 
Number of Strides, indicated access pattern 
Destination Scratchpad 
Address 

SD _Scr_Port Source Scratchpad Read from scratchpad 
Address, Access Size, memory 36 to the 
Stride Length, Number designated input vector 
of Strides, Input buffer 44 using to the 
Port Number indicated pattern 

SD_Mem_Port Source Memory Read from memory system 
Address, Access Size, 16 to the designated input 
Stride Length, Number vector buffer 44 using the 
of Strides, Input indicated pattern 
Port Number 

SD_ Const_Port Constant Value, Send a series of constant 
Number of Elements, values to the designated 
Destination Port input vector buffer 44 
Number 

SD_Chuck_Port Number of Elements, Eject a defined series of 
Source Port Number values from a queue 50 of 

the designated transfer 
vector buffer 48 

SD _Port_Port Source Port Nwnber, Recirculate a defined series 
Number of Elements, of values from the 
Destination Port designated transfer vector 
Number buffer 48 to the designated 

input vector buffer 44. 
SD _Port_Scr Source Port Nwnber, Write a defined series of 

Number of elements, values from the designated 
Destination Scratchpad transfer vector buffer 48 to 
Address. scratchpad memory 36 

SD_Port_Mem Source Port Nwnber, Write from the designated 
Access Size, Stride transfer vector buffer 48 to 
Length, Number of memory system 16 using 
Strides, Destination the indicated pattern 
Memory Address. 

SD _IndPort_Port Indirect Port Number, Indirect load from memory 
Offset Address, system 16 based on address 
Destination Port data in designated indirect 
Number transfer vector buffer 51 for 

storage in designated 
destination port 

SD _IndPort_Mem Indirect Port Number, Indirect store to memory 
Offset Address, system 16 based on address 
Destination Port in indirect port from 
Number designated output port 

These instructions transfer data between storage locations 
autonomously using a designated pattern as will be dis­
cussed below. 

Indirect addressing of data by the stream engine 52 is 
possible using stored data (for example, in an indirect 
transfer vector buffer 51) as an address value. In indirect 
addressing, data, for example, from the streaming pattern, is 
used as the address to obtain further data that is operated on 
by the fixed-function element 32. This indirect addressing 
effects pointers, useful, for example, when accessing the 
rows of a sparse matrix. The stream processor 38 may 

10 
provide capability to facilitate indirect access by chaining 
two streams together, the first stream for accessing a con­
tiguous or strided pattern of pointers, and subsequent 
streams to load those pointers' values from the memory 

5 system 16 and deliver them to the reconfigurable faxed­
function element 32. Additional instructions are provided to 
generate constant values (rather than loading these from 
memory) and to discard unused output values (as opposed to 
loading them into nonfunctional memory areas). 

10 Generally, each of these instructions may be optionally 

15 

20 

25 

30 

35 

40 

45 

50 

55 

issued directly by the higher complexity general-purpose 
processor 12 as part of the instruction set architecture of the 
accelerator and the data in these instructions used with 
minimal processing by the lower complexity general-pur­
pose processor 30 to control other components of the 
accelerator. 

Referring now to FIG. 10, using data from the above 
instructions, the stream processor 38 provides a state 
machine for autonomous loading or writing data between 
storage locations using predefined patterns of memory 
access. The simplest pattern is a linear pattern 80 that reads 
( or writes) sequentially every memory address between a 
starting address 82 and ending address 84 designated by the 
instruction. This pattern is indicated by setting the stride 
length equal to zero. The starting address is designated in the 
above instructions as the source address for reads and the 
destination address for writes while the ending address is 
indicated either by providing an actual ending address or the 
necessary data to calculate an ending address for example 
the number of elements when the source is a port or a 
product of the access size times the stride length times the 
number of strides added to the starting address when the 
source is the memory or scratchpad. 

Alternatively, the stream processor 38 may be pro­
grammed to use a strided pattern 85 by setting the stride 
length equal to a nonzero value which describes a gap or 
stride 86 in addresses between access portions 87 defined by 
the access size. 

Similarly, an overlapped axis pattern 88 may be invoked 
by setting the access size to greater than the stride size which 
signals an overlapping pattern. A repeated pattern 89 is 
easily obtained by setting the stride length to zero with the 
repetition being provided by the number of strides. 

As used herein, predefined memory access pattern means 
a limited number of patterns that may be defined by a 
discrete set of pattern instructions providing a pattern type 
and delimiter values where the pattern may be defined prior 
to the calculation for which the memory access is required 
to be performed as opposed to memory access patterns that 
are a function of calculations made on the data being 
accessed. Autonomous as is used herein means without 
necessary further guidance by the processors 12 or 30. 

As noted above, the lower complexity general-purpose 
processor 30 may also provide for barrier instructions to the 
stream processor 38, such instructions which block the 
issuance of new memory access instructions until certain 
previous instructions associated with a data storage resource 
are complete. For example, a barrier instruction (shown in 

60 Table II above) associated with a writing to the scratchpad 
memory 36 will block subsequent writing to the scratchpad 
memory 36 until all writings to the scratchpad memory 36 
before the barrier instruction are completed. Barriers can 
also be used to signal completion of the calculation to the 

65 lower complexity general-purpose processor 30 to the extent 
that they indicate completion of a previous stream upon 
satisfaction. 
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TABLE II 

Example Barrier Instructions 

12 
plexity. The term "fixed program functional element" refers 
to functional elements receiving numeric values to execute 
a function on those values to produce a numeric result where 
the function is not altered by the general-purpose processor 

Command Name Parameters Description 
5 associated with the accelerator. 

SD Bar_Scr_Rd 

SD Bar_Scr_ Wr 

SD Bar_All 

Barrier for Scratchpad 
Reads 
Barrier for Scratchpad 
Writes 

When introducing elements or features of the present 
disclosure and the exemplary embodiments, the articles "a", 
"an", "the" and "said" are intended to mean that there are 
one or more of such elements or features. The terms "com-Barrier to wait for all 

commands completion 

It will be appreciated that in the absence of barrier 
instructions all streams would be allowed to execute con­
currently. Therefore, if two streams command read and write 
of the same scratchpad or memory address, the semantics of 
that operation would be undefined. Barrier instructions 
allow enforcement of the memory dependencies and can be 
implemented by the compiler and provided in the stream 
instructions. This is independent of resource contention. 

10 prising", "including" and "having" are intended to be inclu­
sive and mean that there may be additional elements or 
features other than those specifically noted. It is further to be 
understood that the method steps, processes, and operations 
described herein are not to be construed as necessarily 

15 requiring their performance in the particular order discussed 
or illustrated, unless specifically identified as an order of 
performance. It is also to be understood that additional or 
alternative steps may be employed. 

References to microcontroller should be understood to 

The lower complexity general-purpose processor 30 may 
also expose hardware parameters of the computer accelera­
tor 24 including a number and type of fixed-function ele­
ments 32 and a depth of stream queue 50 for use by a 
compiler as is generally understood in the art. 

20 include any circuit capable of executing the functions 
described herein including but not necessarily limited to 
VonNeuman architectures. 

It is specifically intended that the present invention not be 
limited to the embodiments and illustrations contained 

25 herein and the claims should be understood to include 
Referring now to FIG. 4, in this architecture, a fixed­

function element 32 will be associated with a single stream 
processor 38 and vice versa; however, the invention con­
templates that the accelerator 24 may be configured to select 
among different fixed-function elements 32 in a configura- 30 

tion step using a configuration multiplexer 56 and demulti­
plexer 58, for example, set at time of manufacture or in a 
configurations step, for example, by a system driver, to 
select one of the fixed-function elements 32 and leave the 
others idle or to be used by other stream processors. In other 35 

respects, this embodiment operates identically to that 
described with respect to FIG. 2. 

This principle can be extended, as shown in FIG. 5, by 
pooling the fixed-function elements 32 in a separate pool 60 
that may be connected, for example, so that any fixed- 40 

function element 32 in the pool 60 may be connected by a 
crossbar switch 62 to any of the different accelerators 24 
which do not include internal fixed-function elements 32. In 
this way, improved utilization of a variety of different 
functional units may be had by allocating them freely among 45 

accelerators 24. Again, this configuration may be accom­
plished at the factory or during a configuration of the 
accelerators 24 prior to use and after the configuration 
operates essentially as the architecture of FIG. 2. 

Certain terminology is used herein for purposes of refer- 50 

ence only, and thus is not intended to be limiting. For 
example, terms such as "upper", "lower", "above", and 
"below" refer to directions in the drawings to which refer­
ence is made. Terms such as "front", "back", "rear", "bot­
tom" and "side", describe the orientation of portions of the 55 

component within a consistent but arbitrary frame of refer­
ence which is made clear by reference to the text and the 
associated drawings describing the component under dis­
cussion. Such terminology may include the words specifi­
cally mentioned above, derivatives thereof, and words of 60 

similar import. Similarly, the terms "first", "second" and 
other such numerical terms referring to structures do not 
imply a sequence or order unless clearly indicated by the 
context. 

The terms "lower complexity" and "higher complexity" 65 

refer only to relative complexity of the lower complexity 
and higher complexity processors and not absolute com-

modified forms of those embodiments including portions of 
the embodiments and combinations of elements of different 
embodiments as come within the scope of the following 
claims. All of the publications described herein, including 
patents and non-patent publications, are hereby incorporated 
herein by reference in their entireties. 

What we claim is: 
1. A computer accelerator architecture comprising: 
(1) a first von Neumann processor adapted to receive 

stream instructions from a second von Neumann pro­
cessor, the stream instructions describing a logical 
stream of multiple data elements to be exchanged with 
a memory as input data elements and resultant output 
data elements; 

(2) a fixed program functional element, distinct from the 
first von Neumann processor, to process successive of 
the input data elements of the logical stream, as initi­
ated by availability of each of the input data elements, 
to provide the resultant output data elements of the 
logical stream, the fixed program functional element 
having fixed-function primitives interconnected in a 
predetermined fixed topology to provide a predeter­
mined fixed program for processing of the input data 
elements to produce the resultant output data elements; 
and 

(3) a stream processor, distinct from the first von Neu­
mann processor and the fixed program functional ele­
ment, receiving the stream instructions from the first 
von Neumann processor to autonomously read the 
input data elements of the logical stream from the 
memory according to the stream instructions and to 
autonomously write the resultant output data elements 
of the logical stream to the memory according to the 
stream instructions; and 

wherein a pair consisting of only the stream processor and 
only the fixed program functional element operates to 
intercommunicate the input and the resultant output 
data elements of the logical stream; 

wherein the second von Neumann processor has at least 
one of greater integrated circuit area and greater power 
consumption than the first von Neumann processor. 
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2. The computer accelerator architecture of claim 1 
wherein the fixed program functional element does not 
include a program counter. 

3. The computer accelerator architecture of claim 1 hav­
ing multiple fixed program functional elements including the 5 

fixed program functional element and a switch assigning a 
single of the multiple fixed program functional elements at 
a time to the stream processor. 

4. The computer accelerator architecture of claim 3 fur­
ther including multiple stream processors including the 10 

stream processor and a switch switchably assigning a single 
of the fixed program functional elements to a single stream 
processor of the multiple stream processors. 

5. The computer accelerator architecture of claim 1 
wherein the fixed program functional element provides for 15 

processing at least thirty-two bit arguments. 

14 
tion primitives interconnected in a predetermined fixed 
topology to provide a predetermined fixed program for 
processing of the input data elements to produce the 
resultant output data elements; 

( 4) a plurality of stream processors, distinct from each 
other and from the second von Neumann processor and 
the fixed program functional elements, receiving the 
stream instructions from the second von Neumann 
processor to autonomously read the input data elements 
of the logical stream from the memory according to the 
stream instructions and to autonomously write the 
resultant output data elements of the logical stream to 
the memory according to the stream instructions; and 

(5) an electronically controlled switch pairing a single 
stream processor with only a single functional element, 
the pair operating to intercommunicate at least some of 
the data elements of the logical stream. 

6. The computer accelerator architecture of claim 5 
wherein the fixed program functional element can process in 
parallel separate data words having a length smaller than an 
argument length of the fixed program functional element by 
concatenating the separate data words together and process­
ing the separate data words as concatenated as an argument. 

12. The computer architecture of claim 11 wherein the 
20 fixed program functional elements do not include program 

7. The computer accelerator architecture of claim 1 
wherein the stream processor simultaneously exchanges 
multiple streams with the fixed program functional element. 25 

8. The computer accelerator architecture of claim 7 
wherein the first von Neumann processor is further adapted 

counters. 
13. The computer architecture of claim 12 wherein the 

plurality of fixed program functional elements provide mul­
tiply add-reduction functions having at least one output that 
is a first sum of a pair of second sums, each second sum 
being a sum of a pair of products, the products being 
products of a pair of input arguments. 

to receive instructions and data from the second von Neu­
mann processor to execute logical and arithmetic instruc­
tions in response to the instructions and data to return data 
to the second von Neumann processor without involvement 
of the stream processor and the fixed program functional 
element. 

9. The computer accelerator architecture of claim 1 
wherein the stream instructions received from the first von 
Neumann processor by the stream processor may be 
received asynchronously with respect to an operation of the 
fixed program functional element and provide for autono­
mous reading of the input data elements stored in the 
memory or an autonomous writing of the resultant output 
data elements from the computer accelerator architecture 
according to different predefined memory access patterns. 

14. The computer architecture of claim 12 wherein the 
plurality of fixed program functional elements provide a 

30 multiply accumulate function having at least one output that 
is a running total of a product of a pair of input arguments. 

15. The computer architecture of claim 12 wherein the 
plurality of fixed program functional elements provide a 
nonlinear transformation function having an output that is a 

35 base value summed to an interpolated value, where the base 
value is obtained from a first lookup table from most 
significant bits of an input argument and the interpolated 
value is a slope value obtained from a second lookup table 
from the most significant bits of the input argument times 

40 least significant bits of the input argument. 

10. The computer accelerator architecture of claim 1 
wherein the stream processor provides pre-defined memory 
access patterns including a linear access pattern of contigu- 45 

ous addresses between two memory addresses and a strided 
access pattern of regularly spaced discontiguous addresses 
between two memory addresses. 

11. A computer architecture comprising the following 
distinct elements: 

(1) a first von Neumann processor communicating with a 
memory for receiving instructions and reading and 
writing data; 

50 

(2) a second von Neumann processor being distinct from 
and having a different design than the first von Neu- 55 

mann processor and adapted to receive stream instruc­
tions from the first von Neumann processor, the stream 
instructions describing a logical stream of multiple data 
elements to be exchanged with the memory as input 
data elements and resultant output data elements; 60 

(3) a plurality of fixed program functional elements, 
distinct from the second von Neumann processor, each 
to sequentially process successive input data elements 
of the logical stream, as initiated by availability of each 
successive input data element, to provide the resultant 65 

output data elements of the logical stream, each of the 
fixed program functional elements having fixed-func-

16. A computer accelerator architecture comprising: 
(1) a first von Neumann processor adapted to receive 

stream instructions from a second von Neumann pro­
cessor, the stream instructions describing a logical 
stream of multiple data elements to be exchanged with 
a memory as input data elements and resultant output 
data elements; 

(2) a fixed program functional element, distinct from the 
first von Neumann processor, to process successive of 
the input data elements of the logical stream, as initi­
ated by availability of each of the input data elements, 
to provide the resultant output data elements of the 
logical stream, the fixed program functional element 
having fixed-function primitives interconnected in a 
predetermined fixed topology to provide a predeter­
mined fixed program for processing of the input data 
elements to produce the resultant output data elements; 
and 

(3) a stream processor, distinct from the first von Neu­
mann processor and the fixed program functional ele­
ment, receiving the stream instructions from the first 
von Neumann processor to autonomously read the 
input data elements of the logical stream from the 
memory according to the stream instructions and to 
autonomously write the resultant output data elements 
of the logical stream to the memory according to the 
stream instructions; and 
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wherein a pair consisting of only the stream processor and 
only the fixed program functional element operates to 
intercommunicate the input and resultant output data 
elements of the logical stream; 

wherein the second von Neumann processor has greater 5 

power consumption than the first von Neumann pro­
cessor. 

17. The computer accelerator architecture of claim 16 
wherein the second von Neumann processor has greater 
integrated circuit area than the first von Neumann processor. 10 

* * * * * 

16 


