
c12) United States Patent
Sankaralingam et al.

(54) COMPUTER ARCHITECTURE WITH FIXED
PROGRAM DATAFLOW ELEMENTS AND
STREAM PROCESSOR

(71) Applicant: Wisconsin Alumni Research
Foundation, Madison, WI (US)

(72) Inventors: Karthikeyan Sankaralingam, Madison,
WI (US); Anthony Nowatzki, Madison,
WI (US); Vinay Gangadhar, Madison,
WI (US)

(73) Assignee: Wisconsin Alumni Research
Foundation, Madison, WI (US)

(*) Notice: Subject to any disclaimer, the term ofthis
patent is extended or adjusted under 35
U.S.C. 154(b) by 127 days.

(21) Appl. No.: 15/635,864

(22) Filed:

(65)

Jun. 28, 2017

Prior Publication Data

US 2019/0004995 Al Jan. 3, 2019

(51) Int. Cl.
G06F 15182
G06F 9/38

(52) U.S. Cl.

(2006.01)
(2018.01)

CPC G06F 151825 (2013.01); G06F 9/3851
(2013.01); G06F 9/3877 (2013.01)

(58) Field of Classification Search
CPC G06F 9/3877; G06F 9/3879; G06F 9/3881
See application file for complete search history.

24

34

I 1111111111111111 1111111111 11111 11111 1111111111 1111111111111111 IIII IIII IIII
US011151077B2

(IO) Patent No.:
(45) Date of Patent:

US 11,151,077 B2
Oct. 19, 2021

(56) References Cited

U.S. PATENT DOCUMENTS

5,933,650 A *

8,447,957 Bl*

2001/0045988 Al *

2003/00287 51 Al *

2006/0251092 Al
2008/0244238 Al
2009/0217266 Al
2009/0300337 Al
2012/0011349 Al
2012/0303932 Al
2015/0261528 Al
2015/0268963 Al
2017/0024167 Al

8/1999 van Hook G06F 5/00
712/2

5/2013 Carrillo G06F 9/3455
712/14

11/2001 Yamauchi G06T 1/60
348/273

2/2003 McDonald G06F 15/7864

11/2006 Matterne et al.
10/2008 Mitu
8/2009 Krishnamurthy et al.

12/2009 Wang et al.
1/2012 Khailany et al.

11/2012 Farabet et al.
9/2015 Ho et al.
9/2015 Etsion et al.
1/2017 Lavasani

712/34

OTHER PUBLICATIONS

Tony Nowatzki, Vinay Gangadhar, and Karthikeyan Sankaralingam.
2015. Exploring the potential of heterogeneous von neumann/
dataflow execution models. SIGARCH Comput. Archit. News 43, 3
(Jun. 2015), 298-310. (Year: 2015).*

(Continued)

Primary Examiner - Keith E Vicary
(74) Attorney, Agent, or Firm - Boyle Fredrickson, S.C.

(57) ABSTRACT
A hardware accelerator for computers combines a stand­
alone, high-speed, fixed program dataflow functional ele­
ment with a stream processor, the latter of which may
autonomously access memory in predefined access patterns
after receiving simple stream instructions and provide them
to the dataflow functional element. The result is a compact,
high-speed processor that may exploit fixed program data­
flow functional elements.

17 Claims, 6 Drawing Sheets

23

ACCELERATOR 36

23 MEMORY INTERFACE MEMORY -----,

26
PROCESSOR

30

46

QSl DISPATCHER STREAM
ENGINE

40 42
I ...__....,.. __ _._..,.... __.

48 ~------ I
- - - - - - -■

I
I
I
I
I
I
I
I
I ..

38

US 11,151,077 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

T. Nowatzki, V. Gangadhan, K. Sankaralingam and G. Wright,
"Pushing the limits of accelerator efficiency while retaining pro­
grannnability," 2016 IEEE International Symposium on High Per­

formance Computer Architecture (HPCA), Barcelona, Mar. 2016,
pp. 27-39. (Year: 2016).*
Gangadhar et al. (Gangadhar) (An Efficient Architectural Realiza­
tion of a Specialization Engine for Neural Networks With General­
Purpose Progrannnability); 21 pages (Year: 2015).*
International Search Report dated Sep. 27, 2018; 16 pages.
Venkatesh et al. "Conservation cores: reducing the energy of mature
computations," In ACM SIGARCH Computer Architecture News,
vol. 38, No. 1, pp. 205-218. ACM, 2010. US.
Fan et al. "Increasing hardware efficiency with multifunction loop
accelerators." In Hardware/Software Codesign and System Synthe­
sis, 2006. CODES+ ISSS '06. Proceedings of the 4th International
Conference, pp. 276-281. IEEE, 2006. US.
Cilviu Ciricescu et al.; "The reconfigurable streaming vector pro­
cessor (RSVPTM)." In Proceedings of the 36th annual IEEE/ACM
International Symposium on Microarchitecture, pp. 1-10; IEEE
Computer Society, 2003. US.
Angshuman Parashar et al.; "Triggered instructions: A control
paradigm for spatially-progrannned architectures." In ACM SIGARCH
Computer Architecture News, vol. 41, No. 3, pp. 142-153. ACM,
2013. us.

Brucek Khailany et al.; "Imagine: Media processing with streams."
IEEE micro 21, No. 2 (2001): pp. 35-46. US.
N. Clark et al.; "Optimode: Progrannnable accelerator engines
through retargetable customization," in Hot Chips 16; pp. 1-19;
Aug. 2004; Michigan.
J. B. Dennis et al.; "A preliminary architecture for a basic-flow
processor," in Proceedings of the 2Nd Annual Symposium on
Computer Architecture, ser. ISCA '75. New York, NY, USA: ACM,
1975, pp. 126-132.
V. Govindaraju et al.; "Dynamically specialized datapaths for energy
efficient computing," in High Performance Computer Architecture
(HPCA), 2011 IEEE 17th International Symposium on, 2011, pp.
503-514; Madison, WI.
A. Lukefahr et al.; "Composite cores: Pushing heterngeneity into a
core," in Proceedings of the 2012 45th Annual IEEE/ ACM Inter­
national Symposium on Microarchitecture, ser. MICRO '12. Wash­
ington, DC, USA: IEEE Computer Society, 2012, pp. 317-328.
A. Parashar et al.; "Triggered instructions: A control paradigm for
spatially-progrannned architectures," in Proceedings of the 40th
Annual International Symposium on Computer Architecture, ser.
ISCA'l3. New York, NY, USA: ACM, 2013, pp. 142-153.
K. Sankaralingam et al.; "Exploiting ILP, TLP and DLP with the
Polymorphous TRIPS Architecture," in ISCA '03: Proceedings of
the 30th Annual International Symposium on Computer Architec­
ture, Jun. 2003, pp. 422-433; Austin, TX.
J.E. Smith; "Decoupled access/execute computer architectures," in
Proceedings of the 9th Annual Symposium on Computer
Architecture,ser. ISCA '82. Los Alamitos, CA, USA: IEEE Com­
puter Society Press, 1982, pp. 112-119.

* cited by examiner

U.S. Patent Oct. 19, 2021 Sheet 1 of 6 US 11,151,077 B2

24

10~---------------------------------------7

! 12 14 r}-6~----- -~~-------,
! r------r-'"-...., 23

18 MEMORY

I
'

23 ! 26!:::::=::::'.:'T--
21 ~- - -- -- ----- CACHE

'
1

ACCELERATOR -. ---

PROGRAM
22

ACCELERATOR----
. ACCELERATOR...,_·--~ 24
! ACCELERATOR _ 1

L _ - -- -- -- -- -- -- -- -- -- _I
L..---...J

FIG. 1

23

34 ACCELERATOR 36
23 MEMORY INTERFACE MEMORY -----,

44

26
PROCESSOR

30

BUFFER

46

FIG. 2

------------.

QSl DISPATCHER STREAM
ENGINE

40 42
I ---------48 I '-------

- - - - - - - - - - - - - - - -■

I
I
I
I
I
I
I
I
I ..

38

U.S. Patent

PROCESSOR

Oct. 19, 2021 Sheet 2 of 6 US 11,151,077 B2

40

DISPATCHER
SCOREBOARD

\.._ 50 54

DISPATCHER
55

1 38

42

STREAM PROCESSOR

STREAM PROCESSOR

STREAM PROCESSOR

STREAM PROCESSOR

MEMORY
SYSTEM

BUFFERS

30 16

FIG. 3

23 34
24

ACCELERATOR MEMORY INTERFACE MEMORY

c36
56 MULTIPLEXER

I I 26 I l - ... DISPATCHER STREAM
SIMPLE I I ENGINE

® ® PROCESSOR 40 42
30

38_)
I

r -

58 I

DEMULTIPLEXER

FIG. 4

U.S. Patent Oct. 19, 2021 Sheet 3 of 6 US 11,151,077 B2

r·--~
'
I

21 ! 24 ACCELERATOR !INTERFACE! ,IMEMORY!
~ 1301.-34_J __ 3_6_------.

STREAM STREAM
PROCESSOR PROCESSOR

38

24 ACCELERATOR !INTERFACE! (1MEMORY!

1
3a

1
_3_4J_~3_6 __ ~

STREAM STREAM
PROCESSOR PROCESSOR

38

24 ACCELERATOR !INTERFACE! (1MEMORY!
~ 34J 36
@J -ST-R-EA-M~-ST-RE-AM-

'
I

32~
'
I
'

68

PROCESSOR PROCESSOR
38

44 FIG. 5

62

CROSSBAR
SWITCH

.::::::::::::::::::::i I

POOL OF
FIXED-FUNCTION

ELEMENTS

___ :::::::==::::::_. ~ ________ j
FIG. 6

46

U.S. Patent Oct. 19, 2021 Sheet 4 of 6

---------------------------1
ro

c..o
c..o

..c
c..o
c..o

CV)
CV)

u
c..o
c..o

c..o
s::;1-

~,-------------------------
N
CV)

US 11,151,077 B2

U.S. Patent Oct. 19, 2021 Sheet 5 of 6 US 11,151,077 B2

44

33a 66a

33b
66b

I I ------------- --------------------------
46

FIG. 8

~2---.......__ ___ _
44

71

66c
68 .--J

46
---~

FIG. 9

U.S. Patent Oct. 19, 2021 Sheet 6 of 6

,,.,-16
_ .. _ __, L __, .. ,__ __,

8 g--

t
-

89
84
80
82

-

,..

'
~

.......

,.,,.,-··--

, __

,.... -

"' -
'

85
I
\
'I,,. ---- -------------

-

'
}-

85

--- 85 ·- ...,

'

FIG. 10

86

US 11,151,077 B2

US 11,151,077 B2
1

COMPUTER ARCHITECTURE WITH FIXED
PROGRAM DATAFLOW ELEMENTS AND

STREAM PROCESSOR

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT

This invention was made with govermnent support under
CNS1218432 awarded by the National Science Foundation.
The government has certain rights in the invention.

CROSS REFERENCE TO RELATED
APPLICATION

BACKGROUND OF THE INVENTION

The present invention relates to electronic computer
architectures and in particular to a high-speed computer
accelerator having a limited functionality but improved
applicability.

Computer accelerators provide special-purpose circuitry
that can be teamed with a general-purpose central processing
unit (CPU) to provide improved performance in some com­
putational applications.

Early computer accelerators expanded the hardware
instruction set of the general-purpose processor with off­
chip circuitry providing pre-progranimed functions, that is,
functions receiving data to execute a predetermined function
on that data. These accelerators will henceforth be termed
"fixed function" accelerators referring to the fact that they
execute one or more fixed functions. One example of such
fixed-function accelerators was the so called "math copro­
cessor" providing specialized circuitry to execute predeter­
mined floating-point and trigonometric function calcula­
tions. Such fixed-function accelerators are easily integrated
into programming to the extent that their features can be
invoked with a single program instruction requiring little
more than the transfer of the necessary argument data and
return of the calculated value.

2
well-established problems or that do not have a sufficiently
large demand to justify the time and expense of complex
designs, changes to application programs, and changes to
tool chains needed to use these accelerators.

SUMMARY OF THE INVENTION

The present invention provides a fixed-function accelera­
tor that can substantially increase computational speeds for

10 tasks that don't justify the design and manufacture of
computer architecture accelerators. Speed advantages in
executing the fixed functions is provided by using a high­
speed dataflow architecture and by using a special-purpose

15
stream processor to handle memory accesses, allowing long
runs of data to be processed without involvement by the
general-purpose processor. Proper selection of the individual
functions implemented can give the accelerator broader
applicability to a range of programs. Implementing different

20 fixed functions can reuse substantial portions of the archi­
tecture and the fixed functions are relatively simple to
invoke from programs.

Specifically then, in one embodiment, the invention pro­
vides computer accelerator architecture having (1) a lower

25 complexity processor adapted to receive stream instructions
from a higher complexity general-purpose processor, the
stream instructions describing a logical stream of multiple
data elements to be exchanged with a memory; (2) a fixed
program functional element to sequentially process succes-

30 sive input data elements of a logical stream, as initiated by
availability of each input data element, to provide resultant
output data elements of a logical stream; and (3) a stream
processor receiving the stream instructions from the lower
complexity general-purpose processor to autonomously read

35 the input data elements of a logical stream from the memory
according to the stream instructions and to autonomously
write resultant output data elements of a logical stream to
memory according to stream instructions. A pair consisting
of only a single stream processor and only a single func-

40 tional element operates to intercommunicate data elements
of a given logical stream.

As the power and speed of general-purpose processors
increased, many fixed-function accelerators were rendered
obsolete to the extent that their limited performance gains
were outweighed by the cost of the second integrated circuit 45

and the computational burden of transferring data and con­
trol between the general-purpose processor and the accel­
erator.

It is thus a feature of at least one embodiment of the
invention to provide an accelerator that offers the versatility
and wide applicability of a fixed-function accelerator, while
still providing substantial speed advantages over execution
of the same functions on sophisticated general-purpose
processors.

The fixed program functional element may not include a
program counter. Possibly for this reason, current accelerator technology

has largely focused on accelerators that operate as indepen- 50

dently functioning special-purpose computers executing
large blocks of instructions independent of the general
processor. One example of a computer architecture accel­
erator is a graphic processor unit (GPU) which provides an
array of special-purpose computer cores adapted to the 55

specific time-consuming tasks associated with rendering
graphics. Similar accelerators of this type of accelerator
include application-specific accelerators such as the
Microsoft Catapult FPGA accelerator, for use in data cen­
ters, and Google's Tensor processing unit for distributed 60

machine learning. These accelerators are effectively special­
purpose computers which, when combined with a general­
purpose, high-performance von Neumann processor, for
example, can greatly increase processing speed for these
specific applications. 65

The design of computer architecture accelerators may not
be practical for applications that are not associated with

It is thus a feature of at least one embodiment of the
invention to employ dataflow architecture to provide sub­
stantial speed gains in function execution.

The fixed program functional element may provide a
multiply add-reduction function having at least one output
that is a first sum of a pair of second sums, each second sum
being a sum of a pair of products, the products being
products of a pair of input arguments.

It is thus a feature of at least one embodiment of the
invention to provide a fixed-function accelerator implement­
ing the common map-reduce function.

Alternatively, or in addition, the fixed program functional
element may be a multiply accumulate function having at
least one output that is a running total of a product of a pair
of input arguments.

It is thus a feature of at least one embodiment of the
invention to provide a fixed-function accelerator implement­
ing the common map-unit function.

US 11,151,077 B2
3 4

Alternatively, or in addition, the fixed program functional
element may be a nonlinear transformation function having
an output that is a base value summed to an interpolated
value, where the base value is obtained from a first lookup
table from the most significant bits of an input argument and 5

the interpolated value is a slope value obtained from a
second lookup table from the most significant bits of the
input argument times the least significant bits of the input
argument.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a simplified block diagram of the accelerator of
the present invention providing a bank of accelerators usable
with a general-purpose processor;

FIG. 2 is a detailed block diagram of a single accelerator
showing the combination of a lower complexity general­
purpose processor, a fixed program functional element,
scratchpad memory and a stream processor;

The computer accelerator may include multiple functional 10

elements and a switch assigning a single functional element
FIG. 3 is a detailed block diagram of the stream processor

showing constituent stream dispatcher and stream engine
elements; at a time to the stream processor. Alternatively, or in

addition, the computer accelerator may include multiple
stream processors and multiple functional elements and a
switch assigning a single functional element to a single 15

FIG. 4 is a figure similar to that of FIG. 2 showing the
provision of a pool of fixed program functional elements that
may be individually paired with a given stream processor;

FIG. 5 is a figure similar to that of FIG. 4 showing a
pooling of both stream processors and program functional
elements for one-to-one pairing using a switch network;

FIG. 6 is a logical block diagram of a functional element

stream processor.
It is thus a feature of at least one embodiment of the

invention to increase the flexibility of the computer accel­
erator by allowing a selection among various functions that
may be used for acceleration.

The functional elements provide for processing at least
thirty-two bit arguments and may process in parallel sepa­
rate data words having a length smaller than an argument
length of the functional element by concatenating the sepa­
rate data words together and processing them as an argu­
ment.

It is thus a feature of at least one embodiment of the
invention to permit, single instruction, multiple data type
parallel processing.

The stream processor may simultaneously exchange mul­
tiple streams with a given fixed program functional element.

It is thus a feature of at least one embodiment of the
invention provide multiple streams to the functional ele­
ments for maximum throughput and utilization of the
memory bandwidth.

20 of FIG. 2 showing associated vector buffers and dataflow
coordination;

FIG. 7 is a figure similar to that of FIG. 6 showing a map
reduce functional element;

FIG. 8 is a figure similar to that of FIGS. 6 and 7 showing
25 a map unit functional element;

FIG. 9 is a figure similar to that of FIGS. 6, 7, and 8
showing a nonlinear transformation functional element; and

FIG. 10 is a diagranimatic representation of computer
memory showing definable memory access patterns for

30 autonomous access by the stream processor.

DETAILED DESCRIPTION

Referring now to FIG. 1, a computer architecture 10
35 constructed according to the present invention may provide

for a higher complexity general-purpose processor 12. The
higher complexity general-purpose processor 12, for
example, may implement a sophisticated von Neumann

The stream instructions from the lower complexity gen­
eral-purpose processor to the stream processor may be
received asynchronously with respect to the operation of the
functional element and provide for autonomous reading of
multiple input values stored in memory or an autonomous 40

writing of multiple output values from the accelerator
according to different predefined memory access patterns.

architecture including out-of-order execution and specula­
tive execution using a rich instruction set of arithmetic and
logical instructions sequenced with a program counter.
Examples of such processors 12 include those manufactured
by the Intel Corporation under the trade name of "i7" as well
as similar devices manufactured by Advanced Micro

It is thus a feature of at least one embodiment of the
invention to permit parallel execution of memory access
instructions and calculations for improved acceleration.

The lower complexity general-purpose processor may be
adapted to receive instructions and data from the higher
complexity, general-purpose processor to execute logical
and arithmetic instructions and return the results to the
higher complexity, general-purpose processor.

It is thus a feature of at least one embodiment of the
invention to permit the functional element to be incorporated
into more complex accelerator functions implemented by the
lower complexity, general-purpose processor or to allow the
lower complexity, general-purpose processor to accept off­
loaded functions directly.

The stream processor may provide pre-defined memory
access patterns including a linear access pattern of contigu­
ous addresses between two memory addresses and a strided
access pattern of regularly spaced discontiguous addresses
between two memory addresses.

It is thus a feature of at least one embodiment of the
invention to provide memory access patterns commonly
used in multiple data instructions suitable for acceleration.

These particular objects and advantages may apply to
only some embodiments falling within the claims and thus
do not define the scope of the invention.

45 Devices, Inc., and ARM Ltd. As used herein, "general­
purpose" refers to a general-purpose instruction set and
architecture sufficient to execute a wide range of programs,
for example, such as could be executed at least by an Intel

50

8080 or subsequent processor in this family.
The higher complexity general-purpose processor 12 may

communicate through an Ll cache 14 with a memory system
16 using address and data lines 23. The memory system 16
provides a standard memory hierarchy including but not
limited to additional levels of cache 18 coupled with one or

55 more layers of increasingly larger scale memory 20, for
example, composed of random access memory (RAM), disk
memory and the like.

The memory system 16 may hold a program 22 for
execution by the computer architecture 10 such as may

60 benefit from hardware acceleration, for example, including
image processing, machine learning, graph processing or the
like.

The higher complexity general-purpose processor 12 may
also communicate with a bank 21 of computer accelerators

65 24 by means of control lines 26 sending data that describe
a pattern of memory access for obtaining argument data for
the function of the computer accelerator 24 and a similar

US 11,151,077 B2
5 6

pattern for wntmg values back from the fixed-function
accelerators 24. The control lines 26 may also send timing
information initiating operation of the fixed-function accel­
erators 24. Control lines 26, as well as defining the memory
access pattern and timing signals may provide for some 5

limited configuration data, for example, selecting among
different fixed-function circuits available in the computer
accelerator 24.

around the fixed-function element 32. One or more indirect
transfer vector buffers 51 may also be present of comparable
size.

Referring now to FIG. 6, the fixed-function elements 32
provide a set of interconnected function primitives 33, for
example, but not limited to, those providing addition, mul­
tiplication, accumulation, and lookup tables. Each of these
function primitives 33 may receive data from a correspond­
ing input vector buffer 44 and provide results to correspond-As will be discussed in greater detail below, during

operation, the fixed-function accelerators 24, using the
memory data pattern provided by the higher complexity
general-purpose processor 12, may independently access the
memory system 16 at the L2 cache using similar address and
data lines 23 without further assistance of the higher com­
plexity general-purpose processor 12. This access may be
moderated by a load-balancing circuit to eliminate deadlock
by ensuring each computer accelerator 24 obtains sufficient
access to memory system 16, for example, using conven­
tional deadlock elimination techniques. During operation of
the fixed-function accelerators 24, the higher complexity
general-purpose processor 12 may shut down or be used for
other tasks during that calculation.

Referring now to FIG. 2, each computer accelerator 24
includes a lower complexity general-purpose processor 30,
a fixed-function element 32, a memory interface 34, scratch­
pad memory 36 and a stream processor 38, the latter
including a stream dispatcher 40 and a stream engine 42.

Lightweight Processor

During operation, the lower complexity general-purpose
processor 30 communicates with the higher complexity
general-purpose processor 12 to receive instructions there­
from and issue stream instructions to the stream processor
38. The stream processor 38 in tum will control the memory
interface 34 to obtain information necessary for calculation
by the fixed-function element 32 (either directly or through
the scratchpad memory 36) and to return information after
that calculation to the memory interface 34 for storage
(again either directly or through the scratchpad memory 36).

In this regard lower complexity, general-purpose proces­
sor 30 may be less complicated and/or slower than the higher
complexity general-purpose processor 12 as is sufficient to
provide coordination of the other components of the com­
puter accelerator 24. For example, the lower complexity
general-purpose processor 30 may be a von Neumann,
single-issue, in-order core without speculative execution
executing basic arithmetic and logical functions. In this
regard, the lower complexity general-purpose processor 30
will require much less integrated circuit area than the higher
complexity general-purpose processor 12 and will use much
less power. In some embodiments, the lower complexity
general-purpose processor 30 may be implemented with
discrete circuitry and a fixed program and thus may not
necessarily employ programmable computer architecture.
The lower complexity general-purpose processor 30 and
memory interface 34 may share the same memory access or,
as depicted, may provide for separate memory access chan­
nels.

Fixed-Function Unit

The fixed-function element 32 may include multiple input
vector buffers 44, output vector buffers 46, and transfer
vector buffers 48 for communicating arguments to and
values from the fixed-function element 32 or in a loop

10 ing output vector buffers 46 with possible movement of data
through transfer vector buffer 48 in multiple cycles. Gener­
ally, the architecture of the fixed-function elements 32 will
be that of a dataflow architecture meaning that they begin
execution upon the availability of data in the input vector

15 buffers 44 using, for example, a circuit identifying whether
corresponding data is present at inputs of each of the
function primitives 33.

Data flows through the function primitives 33 in a deter­
ministic manner according to stages 66 eliminating race

20 conditions which may be enforced either by a clocking
mechanism or by providing similar delays (for example,
enforced through no operation function primitives which
perform no operation but delay) along each data path 68
between the function primitives 33. By operating without a

25 program counter, extremely high-speed performance can be
obtained providing calculations as fast as data is delivered to
the input vector buffers 44. In addition, it will be understood,
that the dataflow pathway between the function primitives
33 forms an effective pipeline so that early stages 66 of the

30 fixed-function element 32 may be receiving new data from
the input vector buffers 44 as data is being processed in the
later stages 66.

Generally, function primitives 33 will provide for predi­
cation, limiting the need for urmecessary control steps and

35 may operate in parallel on multiple data words concatenated
together to form a single argument passing through the
function primitives 33. Thus, for example, a function primi­
tive 33 having an argument width of 32 bits may simulta­
neously process four 8-bit arguments concatenated together,

40 for example, by performing saturation arithmetic in which
carries and overflows are handled, for example, by suppress­
ing the carry or overflow and setting the result to the highest
permissible value. A similar technique can be used with
underflows and borrows that setting the result to the lowest

45 permissible value.
Referring now to FIG. 7, an important fixed-function

element 32 may provide for a map reduce or multiply
add-reduction function. In such a function, arguments at
pairs of input vector buffers 44 may be multiplied in a first

50 stage 66a by multiply function primitives 33 providing the
mapping. Output products from the multiply function primi­
tives 33 are then added pairwise together at a second stage
66b providing a first part of the reduction by additional adder
function primitives 33. Outputs from this second set of adder

55 function primitive 33 are then summed at a third stage 66c
by an additional adder primitive 33 which provides its
output to output vector buffer 46 completing the reduction.
It will generally be understood that the map-reduce function
may implement a variety of different mapping procedures

60 including, for example, multiplication, absolute difference,
and the like, and may provide a variety of different reduction
functions including, for example, addition, maximum, and
minimum functions, and the like.

Alternatively, or in addition, as shown in FIG. 8, fixed-
65 function element 32 may provide for a map unit or multiply­

and-accumulate function. In such a function, arguments at
pairs of input vector buffers 44 may be summed at a first

US 11,151,077 B2
7

stage 66a by adder function primitives 33a. Outputs of these
adder function primitives 33a are provided to accumulator
function primitives 33b at a second stage 66b which sums
each current output to a running total of previous outputs for

8
predefined pattern. In this regard, the stream processor 38
may provide for three separate circuits, one for memory, one
for scratchpad, and one for controlling re-cycling of data

a predetermined number of arguments. The accumulator 5

function primitives 33b then provide outputs to output
vector buffers 46.

from output port to input port and also the generation of
constant values. These three circuits may operate indepen­
dently (but for synchronization through the memory inter-
face 34) for high-speed operation.

Alternatively, or in addition, as shown in FIG. 9, the
fixed-function element 32 may provide for a nonlinear
transformation or piecewise linear approximation. At a first
stage 66a values from input vector buffers 44 are split into
high-order bits 69 used to determine base values and low­
order bits 71 used for interpolation. The high-order bits 69
are received by a base lookup table 72 which converts the
high-order bits 69 to a base value 73 of the transformation
according to a transformation function embedded in the
lookup table 72, for example, at the time of manufacture or
configuration. The high-order bits 69 are also sent to second
lookup table 74 producing a slope value 75 for the trans­
formation function. The slope value 75 is multiplied by
low-order bits 71 at a next stage 66b and the resulting
interpolated value 77 is then summed to the base value at a
succeeding stage 66c to provide an output to output vector
buffer 46.

Generally, the fixed-function element 32 does not provide
a program counter and may or may not require control-flow
instructions. For example, control-flow may be implicit in
the interconnection 68 of the function primitives 33. Alter­
natively, or in addition, control-flow may be provided by the
fixed-function elements 32, for example, internally imple­
menting branch instructions and selecting among physical
interconnections. Calculations occur as soon as operands are
available within the constraint of the regular sequencing
through the fixed-function elements 32 which may occur at
high speed. The fixed-function elements 32 may receive
data, for example, configuring the lookup table 74 but do not
receive instructions providing an ordered set of execution
steps according to instruction type.

Stream Processor

Referring to FIGS. 2 and 6, each of the input vector
buffers 44 and output vector buffers 46 of the fixed-function
element 32 provide first-in, first-out buffers that may be
filled asynchronously or emptied asynchronously to the
processing performed by the fixed-function element 32
under the control of the stream processor 38. The vector
buffers thus provide for independent but parallel data acqui­
sition and data processing. In one embodiment, each buffer
may provide eight, sixty-four bit words, thus being 8x64
wide, and have an arbitrary depth, for example, greater than
10 and optionally 100. Additional similar indirect transfer
vector buffers 51 of similar construction and independent of
input vector buffers 44 and output vector buffers 46 may be
used for storing streaming addresses for indirect loads and
stores if required.

Referring now to FIG. 3, more specifically, the stream
processor 38 may include a stream dispatcher 40 and stream

10 engine 42. The stream dispatcher 40 receives a set of stream
instructions at a stream queue 50 from the lower complexity
general-purpose processor 30, these instructions defining a
pattern of access of the memory system 16 to obtain data
elements to be processed by the fixed-function element 32

15 (shown in FIG. 2). These queued stream instructions will
ultimately be sent to one of a set of stream engines 52 in the
stream engine 42 for concurrent execution.

Each stream engine 42 may handle the necessary protocol
for communicating (reading or writing data) with the

20 memory system 16 and provides the ability to calculate a set
of addresses to obtain a stream of such data according to the
stream instructions for processing by the fixed-function
element 32. To the extent that the accelerator 24 may
communicate directly with an L2 cache 18 (as shown in FIG.

25 1) the stream engine 42 may handle memory coherence
problems, for example, by sending a tag invalidation to the
lower complexity general-purpose processor 30 whenever a
stream crosses a page boundary. The Ll cache 14 and L2
cache 18 may be assumed to be using virtual addresses when

30 virtualization is employed. Necessary address translation
using a translate lookaside buffer of an MMU is accom­
plished according to techniques understood in the art.

Stream instructions from the stream queue 50 will only be
dispatched to the stream engines 52 by a dispatcher 55 when

35 the necessary resources needed for the stream are available
and according to the program order of program 22. The
critical resources needed for a stream include availability of
the input vector buffer 44 and output vector buffer 46 or of

40

the scratchpad memory 36.
The dispatcher 55 determines availabilities of resources

using a scoreboard 54 which provides a state of each stream
resource as either "taken" "free," or "all requests in flight"
which may be updated by the dispatcher 55, A critical
resource moves from "free" to "taken" when the stream

45 instructions are enrolled in the stream engines 52. The given
stream of those instructions then logically owns the resource
while in flight. When the stream is finished, the associated
stream engine 52 in the stream engine 42 notifies the stream
dispatcher 40 to update the scoreboard 54 to show the

50 resource is in the free state. The "all requests in flight state"
indicates that all requests for the memory stream are com­
pletely sent to the memory system 16 but have not arrived.
This state allows scheduling of another conflicting stream
enabling two stream engines 52 to use the same critical

55 resources in overlapping configuration for additional efli-
ciency.

In essence, the stream processor 38 provides a state
machine that can move data autonomously between the
memory system 16 and another storage location once it
receives program instructions from the lower complexity 60

general-purpose processor 30. Generally, the stream proces­
sor 38 will move input data from the memory system 16 to
either the scratchpad memory 36 or from the scratchpad
memory 36 to the input vector buffers 44, or may move
output data from the scratchpad memory 36 to the memory 65

system 16, or from output vector buffers 46 to the scratchpad
memory 36 or the memory system 16 according to a

The stream processor 38 may also control the forwarding
of streams to the stream engines 52 according to barrier
instructions that may be issued by the lower complexity
general-purpose processor 30. Barrier instructions prevent
the issuance of new stream instructions to the stream pro­
cessors until a given stream identified by the barrier instruc­
tion is complete. Thus, barrier instructions provide a method
of ensuring proper execution order of the calculations per­
formed by the fixed-function elements 32.

Generally, then, stream instructions will include: stream
instructions for providing a stream of data to or from the

US 11,151,077 B2
9

fixed-function element 32 without involvement of the lower
complexity general-purpose processor 30 or the higher com­
plexity general-purpose processor 12; and barrier instruc­
tions used to enforce some degree of serialization of access
of data by the stream processor 38 as will be discussed
below. Examples of these stream instructions (shown in
Table I) provided by the lower complexity general-purpose
processor 30 to the stream processor 38 generally identify a
source of data, destination data, and the data pattern as
follows:

TABLE I

Example Stream Instructions

Command Name Parameters Description

SD_Mem_Scr Source Memory Read from memory system
Address, Access Size, 16 to the scratchpad
Stride Length, memory 36 using the
Number of Strides, indicated access pattern
Destination Scratchpad
Address

SD _Scr_Port Source Scratchpad Read from scratchpad
Address, Access Size, memory 36 to the
Stride Length, Number designated input vector
of Strides, Input buffer 44 using to the
Port Number indicated pattern

SD_Mem_Port Source Memory Read from memory system
Address, Access Size, 16 to the designated input
Stride Length, Number vector buffer 44 using the
of Strides, Input indicated pattern
Port Number

SD_ Const_Port Constant Value, Send a series of constant
Number of Elements, values to the designated
Destination Port input vector buffer 44
Number

SD_Chuck_Port Number of Elements, Eject a defined series of
Source Port Number values from a queue 50 of

the designated transfer
vector buffer 48

SD _Port_Port Source Port Nwnber, Recirculate a defined series
Number of Elements, of values from the
Destination Port designated transfer vector
Number buffer 48 to the designated

input vector buffer 44.
SD _Port_Scr Source Port Nwnber, Write a defined series of

Number of elements, values from the designated
Destination Scratchpad transfer vector buffer 48 to
Address. scratchpad memory 36

SD_Port_Mem Source Port Nwnber, Write from the designated
Access Size, Stride transfer vector buffer 48 to
Length, Number of memory system 16 using
Strides, Destination the indicated pattern
Memory Address.

SD _IndPort_Port Indirect Port Number, Indirect load from memory
Offset Address, system 16 based on address
Destination Port data in designated indirect
Number transfer vector buffer 51 for

storage in designated
destination port

SD _IndPort_Mem Indirect Port Number, Indirect store to memory
Offset Address, system 16 based on address
Destination Port in indirect port from
Number designated output port

These instructions transfer data between storage locations
autonomously using a designated pattern as will be dis­
cussed below.

Indirect addressing of data by the stream engine 52 is
possible using stored data (for example, in an indirect
transfer vector buffer 51) as an address value. In indirect
addressing, data, for example, from the streaming pattern, is
used as the address to obtain further data that is operated on
by the fixed-function element 32. This indirect addressing
effects pointers, useful, for example, when accessing the
rows of a sparse matrix. The stream processor 38 may

10
provide capability to facilitate indirect access by chaining
two streams together, the first stream for accessing a con­
tiguous or strided pattern of pointers, and subsequent
streams to load those pointers' values from the memory

5 system 16 and deliver them to the reconfigurable faxed­
function element 32. Additional instructions are provided to
generate constant values (rather than loading these from
memory) and to discard unused output values (as opposed to
loading them into nonfunctional memory areas).

10 Generally, each of these instructions may be optionally

15

20

25

30

35

40

45

50

55

issued directly by the higher complexity general-purpose
processor 12 as part of the instruction set architecture of the
accelerator and the data in these instructions used with
minimal processing by the lower complexity general-pur­
pose processor 30 to control other components of the
accelerator.

Referring now to FIG. 10, using data from the above
instructions, the stream processor 38 provides a state
machine for autonomous loading or writing data between
storage locations using predefined patterns of memory
access. The simplest pattern is a linear pattern 80 that reads
(or writes) sequentially every memory address between a
starting address 82 and ending address 84 designated by the
instruction. This pattern is indicated by setting the stride
length equal to zero. The starting address is designated in the
above instructions as the source address for reads and the
destination address for writes while the ending address is
indicated either by providing an actual ending address or the
necessary data to calculate an ending address for example
the number of elements when the source is a port or a
product of the access size times the stride length times the
number of strides added to the starting address when the
source is the memory or scratchpad.

Alternatively, the stream processor 38 may be pro­
grammed to use a strided pattern 85 by setting the stride
length equal to a nonzero value which describes a gap or
stride 86 in addresses between access portions 87 defined by
the access size.

Similarly, an overlapped axis pattern 88 may be invoked
by setting the access size to greater than the stride size which
signals an overlapping pattern. A repeated pattern 89 is
easily obtained by setting the stride length to zero with the
repetition being provided by the number of strides.

As used herein, predefined memory access pattern means
a limited number of patterns that may be defined by a
discrete set of pattern instructions providing a pattern type
and delimiter values where the pattern may be defined prior
to the calculation for which the memory access is required
to be performed as opposed to memory access patterns that
are a function of calculations made on the data being
accessed. Autonomous as is used herein means without
necessary further guidance by the processors 12 or 30.

As noted above, the lower complexity general-purpose
processor 30 may also provide for barrier instructions to the
stream processor 38, such instructions which block the
issuance of new memory access instructions until certain
previous instructions associated with a data storage resource
are complete. For example, a barrier instruction (shown in

60 Table II above) associated with a writing to the scratchpad
memory 36 will block subsequent writing to the scratchpad
memory 36 until all writings to the scratchpad memory 36
before the barrier instruction are completed. Barriers can
also be used to signal completion of the calculation to the

65 lower complexity general-purpose processor 30 to the extent
that they indicate completion of a previous stream upon
satisfaction.

US 11,151,077 B2
11

TABLE II

Example Barrier Instructions

12
plexity. The term "fixed program functional element" refers
to functional elements receiving numeric values to execute
a function on those values to produce a numeric result where
the function is not altered by the general-purpose processor

Command Name Parameters Description
5 associated with the accelerator.

SD Bar_Scr_Rd

SD Bar_Scr_ Wr

SD Bar_All

Barrier for Scratchpad
Reads
Barrier for Scratchpad
Writes

When introducing elements or features of the present
disclosure and the exemplary embodiments, the articles "a",
"an", "the" and "said" are intended to mean that there are
one or more of such elements or features. The terms "com-Barrier to wait for all

commands completion

It will be appreciated that in the absence of barrier
instructions all streams would be allowed to execute con­
currently. Therefore, if two streams command read and write
of the same scratchpad or memory address, the semantics of
that operation would be undefined. Barrier instructions
allow enforcement of the memory dependencies and can be
implemented by the compiler and provided in the stream
instructions. This is independent of resource contention.

10 prising", "including" and "having" are intended to be inclu­
sive and mean that there may be additional elements or
features other than those specifically noted. It is further to be
understood that the method steps, processes, and operations
described herein are not to be construed as necessarily

15 requiring their performance in the particular order discussed
or illustrated, unless specifically identified as an order of
performance. It is also to be understood that additional or
alternative steps may be employed.

References to microcontroller should be understood to

The lower complexity general-purpose processor 30 may
also expose hardware parameters of the computer accelera­
tor 24 including a number and type of fixed-function ele­
ments 32 and a depth of stream queue 50 for use by a
compiler as is generally understood in the art.

20 include any circuit capable of executing the functions
described herein including but not necessarily limited to
VonNeuman architectures.

It is specifically intended that the present invention not be
limited to the embodiments and illustrations contained

25 herein and the claims should be understood to include
Referring now to FIG. 4, in this architecture, a fixed­

function element 32 will be associated with a single stream
processor 38 and vice versa; however, the invention con­
templates that the accelerator 24 may be configured to select
among different fixed-function elements 32 in a configura- 30

tion step using a configuration multiplexer 56 and demulti­
plexer 58, for example, set at time of manufacture or in a
configurations step, for example, by a system driver, to
select one of the fixed-function elements 32 and leave the
others idle or to be used by other stream processors. In other 35

respects, this embodiment operates identically to that
described with respect to FIG. 2.

This principle can be extended, as shown in FIG. 5, by
pooling the fixed-function elements 32 in a separate pool 60
that may be connected, for example, so that any fixed- 40

function element 32 in the pool 60 may be connected by a
crossbar switch 62 to any of the different accelerators 24
which do not include internal fixed-function elements 32. In
this way, improved utilization of a variety of different
functional units may be had by allocating them freely among 45

accelerators 24. Again, this configuration may be accom­
plished at the factory or during a configuration of the
accelerators 24 prior to use and after the configuration
operates essentially as the architecture of FIG. 2.

Certain terminology is used herein for purposes of refer- 50

ence only, and thus is not intended to be limiting. For
example, terms such as "upper", "lower", "above", and
"below" refer to directions in the drawings to which refer­
ence is made. Terms such as "front", "back", "rear", "bot­
tom" and "side", describe the orientation of portions of the 55

component within a consistent but arbitrary frame of refer­
ence which is made clear by reference to the text and the
associated drawings describing the component under dis­
cussion. Such terminology may include the words specifi­
cally mentioned above, derivatives thereof, and words of 60

similar import. Similarly, the terms "first", "second" and
other such numerical terms referring to structures do not
imply a sequence or order unless clearly indicated by the
context.

The terms "lower complexity" and "higher complexity" 65

refer only to relative complexity of the lower complexity
and higher complexity processors and not absolute com-

modified forms of those embodiments including portions of
the embodiments and combinations of elements of different
embodiments as come within the scope of the following
claims. All of the publications described herein, including
patents and non-patent publications, are hereby incorporated
herein by reference in their entireties.

What we claim is:
1. A computer accelerator architecture comprising:
(1) a first von Neumann processor adapted to receive

stream instructions from a second von Neumann pro­
cessor, the stream instructions describing a logical
stream of multiple data elements to be exchanged with
a memory as input data elements and resultant output
data elements;

(2) a fixed program functional element, distinct from the
first von Neumann processor, to process successive of
the input data elements of the logical stream, as initi­
ated by availability of each of the input data elements,
to provide the resultant output data elements of the
logical stream, the fixed program functional element
having fixed-function primitives interconnected in a
predetermined fixed topology to provide a predeter­
mined fixed program for processing of the input data
elements to produce the resultant output data elements;
and

(3) a stream processor, distinct from the first von Neu­
mann processor and the fixed program functional ele­
ment, receiving the stream instructions from the first
von Neumann processor to autonomously read the
input data elements of the logical stream from the
memory according to the stream instructions and to
autonomously write the resultant output data elements
of the logical stream to the memory according to the
stream instructions; and

wherein a pair consisting of only the stream processor and
only the fixed program functional element operates to
intercommunicate the input and the resultant output
data elements of the logical stream;

wherein the second von Neumann processor has at least
one of greater integrated circuit area and greater power
consumption than the first von Neumann processor.

US 11,151,077 B2
13

2. The computer accelerator architecture of claim 1
wherein the fixed program functional element does not
include a program counter.

3. The computer accelerator architecture of claim 1 hav­
ing multiple fixed program functional elements including the 5

fixed program functional element and a switch assigning a
single of the multiple fixed program functional elements at
a time to the stream processor.

4. The computer accelerator architecture of claim 3 fur­
ther including multiple stream processors including the 10

stream processor and a switch switchably assigning a single
of the fixed program functional elements to a single stream
processor of the multiple stream processors.

5. The computer accelerator architecture of claim 1
wherein the fixed program functional element provides for 15

processing at least thirty-two bit arguments.

14
tion primitives interconnected in a predetermined fixed
topology to provide a predetermined fixed program for
processing of the input data elements to produce the
resultant output data elements;

(4) a plurality of stream processors, distinct from each
other and from the second von Neumann processor and
the fixed program functional elements, receiving the
stream instructions from the second von Neumann
processor to autonomously read the input data elements
of the logical stream from the memory according to the
stream instructions and to autonomously write the
resultant output data elements of the logical stream to
the memory according to the stream instructions; and

(5) an electronically controlled switch pairing a single
stream processor with only a single functional element,
the pair operating to intercommunicate at least some of
the data elements of the logical stream.

6. The computer accelerator architecture of claim 5
wherein the fixed program functional element can process in
parallel separate data words having a length smaller than an
argument length of the fixed program functional element by
concatenating the separate data words together and process­
ing the separate data words as concatenated as an argument.

12. The computer architecture of claim 11 wherein the
20 fixed program functional elements do not include program

7. The computer accelerator architecture of claim 1
wherein the stream processor simultaneously exchanges
multiple streams with the fixed program functional element. 25

8. The computer accelerator architecture of claim 7
wherein the first von Neumann processor is further adapted

counters.
13. The computer architecture of claim 12 wherein the

plurality of fixed program functional elements provide mul­
tiply add-reduction functions having at least one output that
is a first sum of a pair of second sums, each second sum
being a sum of a pair of products, the products being
products of a pair of input arguments.

to receive instructions and data from the second von Neu­
mann processor to execute logical and arithmetic instruc­
tions in response to the instructions and data to return data
to the second von Neumann processor without involvement
of the stream processor and the fixed program functional
element.

9. The computer accelerator architecture of claim 1
wherein the stream instructions received from the first von
Neumann processor by the stream processor may be
received asynchronously with respect to an operation of the
fixed program functional element and provide for autono­
mous reading of the input data elements stored in the
memory or an autonomous writing of the resultant output
data elements from the computer accelerator architecture
according to different predefined memory access patterns.

14. The computer architecture of claim 12 wherein the
plurality of fixed program functional elements provide a

30 multiply accumulate function having at least one output that
is a running total of a product of a pair of input arguments.

15. The computer architecture of claim 12 wherein the
plurality of fixed program functional elements provide a
nonlinear transformation function having an output that is a

35 base value summed to an interpolated value, where the base
value is obtained from a first lookup table from most
significant bits of an input argument and the interpolated
value is a slope value obtained from a second lookup table
from the most significant bits of the input argument times

40 least significant bits of the input argument.

10. The computer accelerator architecture of claim 1
wherein the stream processor provides pre-defined memory
access patterns including a linear access pattern of contigu- 45

ous addresses between two memory addresses and a strided
access pattern of regularly spaced discontiguous addresses
between two memory addresses.

11. A computer architecture comprising the following
distinct elements:

(1) a first von Neumann processor communicating with a
memory for receiving instructions and reading and
writing data;

50

(2) a second von Neumann processor being distinct from
and having a different design than the first von Neu- 55

mann processor and adapted to receive stream instruc­
tions from the first von Neumann processor, the stream
instructions describing a logical stream of multiple data
elements to be exchanged with the memory as input
data elements and resultant output data elements; 60

(3) a plurality of fixed program functional elements,
distinct from the second von Neumann processor, each
to sequentially process successive input data elements
of the logical stream, as initiated by availability of each
successive input data element, to provide the resultant 65

output data elements of the logical stream, each of the
fixed program functional elements having fixed-func-

16. A computer accelerator architecture comprising:
(1) a first von Neumann processor adapted to receive

stream instructions from a second von Neumann pro­
cessor, the stream instructions describing a logical
stream of multiple data elements to be exchanged with
a memory as input data elements and resultant output
data elements;

(2) a fixed program functional element, distinct from the
first von Neumann processor, to process successive of
the input data elements of the logical stream, as initi­
ated by availability of each of the input data elements,
to provide the resultant output data elements of the
logical stream, the fixed program functional element
having fixed-function primitives interconnected in a
predetermined fixed topology to provide a predeter­
mined fixed program for processing of the input data
elements to produce the resultant output data elements;
and

(3) a stream processor, distinct from the first von Neu­
mann processor and the fixed program functional ele­
ment, receiving the stream instructions from the first
von Neumann processor to autonomously read the
input data elements of the logical stream from the
memory according to the stream instructions and to
autonomously write the resultant output data elements
of the logical stream to the memory according to the
stream instructions; and

US 11,151,077 B2
15

wherein a pair consisting of only the stream processor and
only the fixed program functional element operates to
intercommunicate the input and resultant output data
elements of the logical stream;

wherein the second von Neumann processor has greater 5

power consumption than the first von Neumann pro­
cessor.

17. The computer accelerator architecture of claim 16
wherein the second von Neumann processor has greater
integrated circuit area than the first von Neumann processor. 10

* * * * *

16

