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DEEP LEARNING BASED DATA-DRIVEN 
APPROACH FOR ATTENUATION 

CORRECTION OF PET DATA 

2 
pseudo-CT images. For example, one approach for PET-MR 
attenuation correction is to segment a magnetic resonance 
image volume into different tissue classes and then assign 
the corresponding attenuation coefficients to the segmented 

STATEMENT REGARDING FEDERALLY 
SPONSORED RESEARCH 

5 tissue classes to create a µ-map. Thus, using MR for attenu
ation correction is complicated, as well as computationally 
intensive and relatively slow. 

This invention was made with government support under 
AR068373 awarded by the National Institutes of Health. The 
government has certain rights in the invention. 

CROSS-REFERENCE TO RELATED 
APPLICATIONS 

In a manner similar to CT-PET systems, some have 
manufactured MRI-PET systems that arrange the PET sys-

IO tern about the bore of an MRI system. Of course, these 
combined systems are extremely expensive and result in an 
overall system that is not effective at operating as just one of 
the modalities (i.e., the MRI system in the MRI-PET system 

Not Applicable 

BACKGROUND 

15 
is limited relative to a stand-alone MRI system, and the CT 
system in the CT-PET system is limited relative to a stand
alone CT system). 

Thus, despite the exceptional utility of PET as a clinical 
imaging modality for physiological studies, such as cancer The field of the disclosure relates to systems and methods 

for positron emission tomography. More particularly, the 
present disclosure relates to systems and methods for attenu
ation correction of data acquired with positron emission 
tomography. 

20 localization, function, etc., it continues to be limited in 
clinical applicability due to these complexities. Therefore, 
there continues to be a need for an improved attenuation 
correction system and method for reconstructing PET data. 

Positron emission tomography (PET) is a non-invasive 
imaging modality that provides direct imaging of molecular 25 

processes through the use of radio labeled molecules, such as 
18F-fluorodeoxyglucose (FDG) for glucose metabolism. 
PET activity is observed by detecting pairs of coincident 
gamma rays emitted from the PET tracer, sorted into sino
grams, and reconstructed into a volumetric image. Know!- 30 

edge about attenuation (typically Compton scatter) that 
gamma rays undergo is crucial to achieve quantitatively 
accurate PET reconstruction. To this end, PET reconstruc
tion requires an attenuation correction of the raw PET data. 
In traditional PET reconstruction techniques, an attenuation 35 

map (or µ-map) is obtained by performing additional imag
ing acquisition via computed tomography (CT) system. CT 
systems are highly-accurate anatomical imaging modalities 
that provide ready attenuation information due to the use of 
x-ray attenuation as the mechanism for determining contrast. 40 

While attenuation correction using CT data is well estab
lished and highly effective, it carries the drawback of relying 
on an imaging modality that utilizes ionizing radiation to 
acquire data. The additional dose of ionizing radiation is 
undesirable. For example, when using CT imaging, the 45 

attenuation coefficients are measured with x-rays (with 
energies often in the neighborhood of 100 keV) and are 
remapped to estimate the attenuation coefficients for the 511 
keV photons encountered in PET. Using CT for attenuation 
correction exposes patients to radiation, usually solely for 50 

creating the attenuation map or µ-map. Furthermore, acquir
ing the CT data requires an entirely separate imaging acqui
sition using a CT system abutted to the PET system. As such, 
image registration can be problematic. 

In an attempt to overcome these problems with using CT 55 

data to perform attenuation correction, some have tried to 
use other imaging modalities that provide robust and accu
rate anatomical images, but without the need for the unde
sired ionizing radiation. Specifically, some have used mag
netic resonance imaging (MRI) systems to acquire 60 

anatomical images of the patient to be examined using PET 
imaging. While MRI favorable foregoes use of any ionizing 
radiation, it does not carry with it the inherent attenuation 
information available in CT imaging data. As such, some 
have developed techniques to elicit attenuation information 65 

from MRI data or, more accurately, to create attenuation 
maps from the MRI data, e.g., through the creation of 

SUMMARY 

The present disclosure overcomes the foregoing draw
back by providing systems and methods for attenuation 
correction of PET data without requiring additional imaging 
data from a secondary imaging modality to perform attenu
ation correction of PET data. That is, the present disclosure 
facilitates performing attenuation correction of PET data 
using the PET data and without relying on complex physics 
models that are not adaptable and include assumptions and 
tradeoffs that can undermine attenuation correction of the 
PET data, not to mention become computational over
whelming and clinically infeasible. 

In accordance with one aspect of the present disclosure, a 
method is provided for attenuation correction of positron 
emission tomography (PET) data. The method includes 
receiving at least one PET image of a subject created from 
PET data acquired from the subject, creating an attenuation 
correction map using the at least one PET image, and 
reconstructing PET data using the attenuation correction 
map and the at least one PET image to generate an attenu
ation corrected PET image. 

In accordance with another aspect of the present disclo
sure, a method is provided for correcting positron emission 
tomography (PET) data for attenuation effects. The method 
includes receiving a first data set of raw PET data of a 
subject, generating at least one PET image from the first data 
set, and generating at least one pseudo-CT image from the 
at least one PET image. The method also includes perform
ing an attenuation correction of the first data set using the at 
least one pseudo-CT image to generate a corrected first data 
set and generating a corrected PET image from the corrected 
first data set. 

In accordance with yet another aspect of the present 
disclosure, a system is provided for generating positron 
emission tomography (PET) images of a subject. The system 
includes a data acquisition system configured to obtain raw 
PET data of a subject and a data processing system config
ured to receive the raw PET data from the data acquisition 
system, generate pseudo-CT data from the raw PET data, 
correct attenuation corresponding to the raw PET data using 
the pseudo-CT data, and generate at least one attenuation
corrected PET image of the subject. 
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The foregoing and other aspects of the invention will 
appear from the following description. In the description, 
reference is made to the accompanying drawings which 
form a part hereof, and in which there is shown by way of 
illustration a preferred aspect of the invention. Any particu- 5 

lar aspect does not necessarily represent the full scope of the 
invention, however, and reference is made therefore to the 
claims and herein for interpreting the scope of the invention. 

coincidence events that are "lost" due to excessive scatter. 
On the other hand, scatter correction rejects measured coin
cidences whose lines of responses were altered due to 
Compton scattering, and are thus no longer spatially related 
to the annihilation event. 

The present disclosure provides systems and methods for 
reconstructing PET data without the need for data from 
additional imaging modalities or physics models. In some 
aspects, attenuation correction may be performed using PET 

BRIEF DESCRIPTION OF THE DRAWINGS 

The present disclosure will hereafter be described with 
reference to the accompanying drawings, wherein like ref
erence numerals denote like elements. 

FIG. 1 is a block diagram of an example of a PET system 
that can be configured as a stand-alone PET system or as part 
of an integrated system, according to the present disclosure. 

FIG. 2A is a block diagram of a conventional PET 
attenuation correction system and method. 

10 data. In some non-limiting examples, an attenuation correc
tion map may be generated from a pseudo-CT image that is 
derived via one or more algorithms from the PET data. As 
used herein, the term "pseudo-CT" can be used to refer to 
data and/or images that has properties often attributed to CT 

15 images, such attenuation information, but are derived with
out the use of a CT imaging system. In some aspects, a deep 
learning framework may be trained from existing PET-CT 
data sets. 

FIG. 2B is a block diagram of another conventional PET 20 

attenuation correction system and method. 

Before the systems and methods of the present disclosure 
are described in further detail, it is to be understood that the 
disclosure is not limited to the particular aspects described. 

FIG. 3 is a block diagram of a PET attenuation correction 
system and method, according to the present disclosure. 

FIG. 4 is a flowchart illustrating an example method of 
correcting PET data, according to the present disclosure. 

FIG. 5 is a flowchart illustrating another example method 
of correcting PET data, according to the present disclosure. 

FIG. 6 is a diagram of an example machine-learning 
system, according to the present disclosure. 

It is also to be understood that the terminology used herein 
is for the purpose of describing particular aspects only, and 
is not intended to be limiting. The scope of the present 

25 invention will be limited only by the claims. As used herein, 
the singular forms "a", "an", and "the" include plural aspects 
unless the context clearly dictates otherwise. 

FIG. 7 is a block diagram of an example PET attenuation 30 

correction system and method, according to the present 
disclosure. 

It should be apparent to those skilled in the art that many 
additional modifications beside those already described are 
possible without departing from the inventive concepts. In 
interpreting this disclosure, all terms should be interpreted in 
the broadest possible manner consistent with the context. 
Variations of the term "comprising", "including", or "hav
ing" should be interpreted as referring to elements, compo-

FIG. SA is a set of example PET images without attenu
ation correction. 

FIG. SB is a set of example real CT images. 
FIG. SC is a set of example pseudo-CT images, according 

to the present disclosure. 
FIG. SD is an example PET surface image with traditional 

CT-based attenuation correction (using real CT images). 

35 nents, or steps in a non-exclusive manner, so the referenced 
elements, components, or steps may be combined with other 
elements, components, or steps that are not expressly refer
enced. Aspects referenced as "comprising", "including", or 

FIG. SE is an example PET surface image with deep- 40 

learning attenuation correction, according to the present 
disclosure (using pseudo-CT images). 

"having" certain elements are also contemplated as "con
sisting essentially of' and "consisting of' those elements, 
unless the context clearly dictates otherwise. It should be 
appreciated that aspects of the disclosure that are described 
with respect to a system are applicable to the methods, and 
vice versa, unless the context explicitly dictates otherwise. 

FIG. SF is an example PET bone image with traditional 
CT-based attenuation correction (using real CT images). 

FIG. 8G is an example PET bone image with deep- 45 

learning attenuation correction, according to the present 
disclosure (using pseudo-CT images). 

Aspects of the present disclosure are explained in greater 
detail in the description that follows. Aspects of the disclo
sure that are described with respect to a method are appli
cable to aspects related to systems and other methods of the 
disclosure, unless the context clearly dictates otherwise. 
Similarly, aspects of the disclosure that are described with 
respect to a system are applicable to aspects related to 

FIG. 9A is a set of example PET images with traditional 
CT-based attenuation correction (using real CT images). 

FIG. 9B is a set of example PET images with deep- 50 

learning attenuation correction, according to the present 
disclosure (using pseudo-CT images). methods and other systems of the disclosure, unless the 

context clearly dictates otherwise. FIG. 9C is a set of example images showing percent-error 
of the images of FIG. 9B compared to the images of FIG. 
9A, according to the present disclosure. 

FIG. 10 is a set of example images comparing PET 
reconstruction with traditional CT-based attenuation correc
tion and PET reconstruction with deep-learning attenuation 
correction, according to the present disclosure. 

DETAILED DESCRIPTION 

Described herein are systems and methods for performing 
attenuation correction on positron emission tomography 
(PET) data using an attenuation correction map (µ-map) 
created from the PET data. As described herein, attenuation 
correction is generally used to adjust pixel intensity for 

Referring now to FIG. 1, an example of a positron 
55 emission tomography ("PET") system 100 is illustrated. The 

PET system 100 generally includes an imaging hardware 
system 102, a data acquisition system 104, a data processing 
system 106, and an operator workstation 108. In some 
configurations, the PET system 100 corresponds to a stand-

60 alone PET system; however, it will be appreciated by those 
skilled in the art that the PET system 100 can also be 
integrated in a combined imaging system, such as a com
bined PET and x-ray computed tomography ("CT") system, 
or a combined PET and magnetic resonance imaging 

65 ("MRI") system. 
The imaging hardware system 102 generally includes a 

PET scanner having a radiation detector ring assembly 110 
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After sorting, the sinograms are provided to the data 
processing system 106 for processing and image reconstruc
tion. The data processing system 106 may include a data 
store 128 for storing the raw sinogram data. Before image 

that is centered about the bore 112 of the PET scanner. The 
bore 112 of the PET scanner is sized to receive a subject 114 
for examination. Prior to imaging, the subject 114 is admin
istered a radioisotope, such as a radionuclide or radiotracer. 
Positrons are emitted by the radioisotope as it undergoes 
radioactive decay. These positrons travel a short distance 
before encountering electrons at which time the positron and 
electron annihilate. The positron-electron annihilation event 
116 generates two photons that travel in opposite directions 
along a generally straight line 118. 

5 reconstruction, the sinograms generally undergo preprocess
ing to correct the sinograms for random and scatter coinci
dence events, attenuation effects, and other sources of error. 
The stored sinogram data may thus be processed by a 
processor 130 located on the data processing system 106, by 

10 the operator workstation 108, or by a networked workstation 
132. The radiation detector ring assembly 110 is formed of 

multiple radiation detectors 120. By way of example, each 
radiation detector 120 may include one or more scintillators 
and one or more photodetectors. Examples of photodetectors 

15 
that may be used in the radiation detectors 120 include 
photomultiplier tubes ("PMTs"), silicon photomultipliers 
("SiPMs"), or avalanche photodiodes ("APDs"). The radia
tion detectors 120 are thus configured to produce a signal 
responsive to the photons generated by annihilation events 20 

116. The signal responsive to the detection of a photon is 
communicated to a set of acquisition circuits 122. The 
acquisition circuits 122 receive the photon detection signals 
and produce signals that indicate the coordinates of each 
detected photon, the total energy associated with each 25 

detected photon, and the time at which each photon was 
detected. These data signals are sent the data acquisition 
system 104 where they are processed to identify detected 
photons that correspond to an annihilation event 116. 

The data acquisition system 104 generally includes a 30 

coincidence processing unit 124 and a sorter 126. The 
coincidence processing unit 124 periodically samples the 
data signals produced by the acquisition circuits 122. The 
coincidence processing unit 124 assembles the information 
about each photon detection event into a set of numbers that 35 

indicate precisely when the event took place and the position 

The operator workstation 108 typically includes a display 
134; one or more input devices 136, such as a keyboard and 
mouse; and a processor 138. The processor 138 may include 
a commercially available programmable machine running a 
commercially available operating system. The operator 
workstation 108 provides the operator interface that enables 
scan prescriptions to be entered into the PET system 100. In 
general, the operator workstation 108 may be in communi
cation with a gantry controller 140 to control the positioning 
of the detector ring assembly 110 with respect to the subject 
114 and may also be in communication with the data 
acquisition system 104 to control operation of the imaging 
hardware system 102 and data acquisition system 104 itself. 

The operator workstation 108 may be connected to the 
data acquisition system 104 and data processing system 106 
via a communication system 142, which may include any 
suitable network connection, whether wired, wireless, or a 
combination of both. As an example, the communication 
system 142 may include both proprietary or dedicated 
networks, as well as open networks, such as the internet. 

The PET system 100 may also include one or more 
networked workstations 132. By way of example, a net
worked workstation 132 may include a display 144; one or 
more input devices 146, such as a keyboard and mouse; and 
a processor 148. The networked workstation 132 may be 
located within the same facility as the operator workstation 
108, or in a different facility, such as a different healthcare 

in which the event was detected. This event data is then 
processed by the coincidence processing unit 124 to deter
mine if any two detected photons correspond to a valid 
coincidence event. 

The coincidence processing unit 124 determines if any 
two detected photons are in coincidence as follows. First, the 
times at which two photons were detected must be within a 
predetermined time window, for example, within 6-12 nano
seconds of each other. Second, the locations at which the two 
photons were detected must lie on a line 118 that passes 
through the field of view in the PET scanner bore 112. Each 
valid coincidence event represents the line 118 connecting 
the two radiation detectors 120 along which the annihilation 
event 116 occurred, which is referred to as a line-of-response 
("LOR"). The data corresponding to each identified valid 
coincidence event is stored as coincidence data, which 
represents the near-simultaneous detection of photons gen
erated by an annihilation event 116 and detected by a pair of 
radiation detectors 120. 

40 institution or clinic. Like the operator workstation 108, the 
networked workstation 132 can be programmed to imple
ment the methods and algorithms described here. 

The networked workstation 132, whether within the same 
facility or in a different facility as the operator workstation 

45 108, may gain remote access to the data processing system 
106 or data store 128 via the communication system 142. 
Accordingly, multiple networked workstations 132 may 
have access to the data processing system 106 and the data 
store 128. In this manner, sinogram data, reconstructed 

50 images, or other data may exchanged between the data 
processing system 106 or the data store 128 and the net
worked workstations 132, such that the data or images may 
be remotely processed by a networked workstation 132. This 
data may be exchanged in any suitable format, such as in 

55 accordance with the transmission control protocol ("TCP"), 
the internet protocol ("IP"), or other known or suitable 
protocols. 

The coincidence data is communicated to a sorter 126 
where the coincidence events are grouped into projection 
images, which may be referred to as sinograms. The sorter 
126 sorts each sinogram by the angle of each view, which 
may be measured as the angle, 8, of the line-of-response 118 60 

from a reference direction that lies in the plane of the 
detector ring assembly 102. For three-dimensional images, 
the sorter 126 may also sort the sinograms by the tilt of each 
view. The sorter 126 may also process and sort additional 
data corresponding to detected photons, including the time 65 

at which the photons were detected and their respective 

As described above, PET reconstruction requires an 
attenuation correction of the raw PET data. In traditional 
PET scanners, an attenuation map ( or µ-map) is obtained by 
performing additional imaging via CT ( e.g., a PET-CT 
system) or via MR (e.g., a PET-MR system). However, 
PET-CT systems expose the patient to radiation to create the 
attenuation map, and PET-MR systems are computationally 
intensive and time consuming to use. 

In addition to the radiation exposure, PET-CT systems 
estimate the attenuation map using a single snapshot in time, energies. 
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which does not reflect motion of a patient during a PET scan 
or between the PET and CT acquisitions. 

In simultaneous PET/MR systems, an attenuation map is 
estimated based on MR images, which is particularly chal
lenging because bone (the tissue with the largest attenuation 5 

coefficient) is not visible with positive contrast under typical 
MR acquisition. Consequently, bone is often ignored or 
estimated using atlas registration methods. 

Attenuation correction is beneficial in producing clini
cally-useful PET images. Loss of counts due to attenuation 10 

increases image noise, image artifacts, and image distortion. 
Without attenuation correction, significant artifacts may 
occur on PET scans, including: prominent activity at body 
surface edges due to relative lack of attenuation at the 

15 
surfaces compared to deeper structures, distorted appearance 
of areas of intense activity (e.g. urinary bladder) due to 
variable degrees of attenuation in different directions of 
activity originating from these areas, and diffuse, relatively 
increased activity in tissues of relatively low attenuation 20 

(e.g. lungs). Accordingly, attenuation correction of data is 
generally necessary for accurate qualitative and quantitative 
measurements of radiolabeled molecule activity. 

Referring to FIG. 2A, a conventional method for attenu
ation correction of PET data is shown. Process 200 includes 25 

an input 202, and the input 202 is generally acquired PET 
data from a subject. A second input 204 includes acquired 
CT or MR data, from the same subject, and is then used for 
attenuation correction at process block 206. At process block 
208, additional analysis may be done to correct the acquired 30 

PET data to produce an output 210. The output 210 of the 
process 200 corresponds to attenuation-corrected PET data. 
Accordingly, conventional systems and methods use CT or 
MR data to correct for attenuation in acquired PET data. 

35 
Referring to FIG. 2B, another method for attenuation 

correction of PET data is shown. Process 212 includes an 
input 214, and the input is generally acquired PET data from 
a subject. The acquired PET data is then used in a physics
based algorithm at process block 216. The physics-based 40 

algorithm may be based on MR or other data, and is used to 
estimate an attenuation map. At process block 218, addi
tional analysis may be done to correct the acquired PET data 
based on the estimated attenuation map. At process block 
220, an output corresponds to attenuation-corrected PET 45 

data. The use of physics-based algorithms to create the 
attenuation map introduces assumptions and estimations that 
may lead to increased error in the corrected PET data. 
Specifically, assumptions regarding the non-movement of 
subjects during the acquiring of PET data and what con- 50 

straints can be deemed "constant" may introduce error into 
the attenuation-corrected PET data. As will be described, the 
systems and methods of the present disclosure are superior 
for a variety of reasons, including that do not rely on data 
from other imaging modalities and do not require man-made 55 

physics models that are built upon assumptions that are not 
adaptable and may include errors or be ill fit to a given 
situation. 

8 
learning or machine-learning algorithms may be used to 
transform the acquired raw PET data to attenuation cor
rected PET data. 

Referring to FIG. 4, a method 400 is shown. The method 
400 may be used to correct attenuation of PET data to 
produce meaningful PET data and images. At process block 
404, PET data may be received. In some situations, the PET 
data may be raw PET data. In some non-limiting configu
rations, the PET data may be received from an imaging 
system, such as FIG. 1 as previously described. In some 
situations, it may be beneficial to modify the PET data prior 
to processing for attenuation correction. Specifically, it may 
be beneficial to segment PET data and/or generate PET 
images from the raw PET data. In some non-limiting con
figurations, the raw PET data may not be modified prior to 
attenuation correction. 

At process block 406, an attenuation correction (AC) map 
may be created, using the modified PET data. The AC map 
may be created directly from the modified PET data. In some 
situations, the AC map may be created using the modified 
PET data and a reference data set. The reference data set 
may not be from the same subject that the PET data was 
acquired from. In some situations however, existing refer
ence data from the same subject may be used ( e.g., from 
previous imaging). Next, at process block 408, the PET data 
may be reconstructed using the AC map. The PET data may 
include a PET image. 

Referring to FIG. 5, a method 500 is shown. The method 
500 may be used to correct attenuation of PET data to 
produce meaningful PET data and images. At process block 
502, PET data may be received. In some situations, the data 
may be raw PET data. In some non-limiting configurations, 
the PET data may be received from an imaging system, such 
as FIG. 1 as previously described. 

At process block 504, the PET data may be used to create 
pseudo-CT data. The pseudo-CT data may be created using 
a combination of the received PET data and reference CT 
data or CT images. At process block 506, an attenuation 
correction (AC) map may be created using the pseudo-CT 
data. Next, at process block 508, the PET data may be 
reconstructed using the AC map. The PET data may include 
a PET image. 

Now referring to FIG. 6, a diagram of an example 
machine-learning system is shown. A machine learning 
system 600 may be used to generate pseudo-CT data using 
reference CT images and PET images. The machine learning 
system 600 may include a deep convolutional auto-encoder 
(CAE) or convolutional encoder-decoder (CED) network 
602. The CED network 602 may include an encoder network 
604 and a decoder network 606. The encoder network 604 
may include a start layer (SL) 610. Each SL 610 may 
correspond to an insert layer (IL) 612 within the decoder 
network 606. 

Still referring to FIG. 6, the SL 610 and the IL 612 may 
include a convolution layer 614, a batch normalization (BN) 
layer 616, a rectified-linear unit (ReLU) activation layer 
618, a pooling layer 620, and/or an upsampling layer 622. 

The deep convolutional encoder-decoder (CED) network 
602, may be configured to map a non-attenuation corrected FIG. 3 is a process 300 for correcting PET data without 

additional imaging of the subject, such as with MR or CT 
imaging. In this non-limiting implementation, one input 302 
may be used to produce an output 304. The input 302 may 
include raw PET data, and the output 304 may include 
attenuation corrected PET data and no man-made physics 
model is used to generate the output 304. Rather, in some 
situations, data-driven correction may be used to alter the 
raw PET data to correct for attenuation. Further, deep-

60 (NAC) PET image into a pixel-wise continuously valued CT 
image. The encoder network 604 may be designed to com
press input image data while detecting robust and spatially 
invariant features. As one non-limiting example, the encoder 
network 604 may be a VGG 16 network, as described by 

65 Simonyan K, Zisserman A. (Simonyan K, Zisserman A. 
Very Deep Convolutional Networks for Large-Scale Image 
Recognition. arXiv Prepr. 2014; 1-10). In particular, the 
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VGG 16 network has been proven to be efficient in capturing 
image features in object recognition, and to be effective in 
CED based medical image applications. 

Each unit layer of the encoder network 604 may include 
a 2D convolution layer 614 with a set of 2D filters, batch 5 

normalization (BN) layer 616, rectified-linear unit (ReLU) 
activation layer 618, followed by a max-pooling layer (the 
pooling layer 620) for reduction of data dimensions. The 
unit layer may be repeated multiple times to achieve suffi-
cient data compression. 10 

To reconstruct pixelwise continuously-valued CT images, 
the decoder network 606 may be applied directly after the 
encoder network 604. This decoder network 606 may be the 
reverse process of the encoder network 604, and may 

15 
include "mirrored" layers from the encoder network 604. 
Specifically, the pooling layer 620 in the decoder network 
606 may be replaced by an un-pooling layer (i.e., upsam
pling) where the image features may be upsampled using a 
bilinear interpolation method. At the end of the decoder 20 

network 606, an additional 2D convolutional layer 614 with 
one 2D filter may be added to synthesize output pseudo-CT 
images based on the decoded image features from the 
upstream decoder network 606. 

According to the present disclosure, the CED network 25 

602 may also feature shortcut connections (SC) which may 
be used to forwardly pass image features from the encoder 
network 604 to the decoder network 606. Notably, synthesis 
of continuously valued CT images may benefit from pres
ervation of richer image features, for which the added 30 

shortcut connection may valuable in maintaining. As shown 
in FIG. 6, the shortcut connections may occur symmetrically 
in multiple layers in the networks and link feature maps by 
adding ones from the encoder network 604 to the ones in the 
decoder network 606 element-wise. As shown, for example, 35 

a total of 4 shortcut connections may be created between the 
network layers and one additional shortcut connection may 
also be generated from input image directly to output image. 
For each shortcut connection, the insertion of the layer may 
follow the strategy described by He K, Zhang X, Ren S, Sun 40 

J. (He K, Zhang X, Ren S, Sun J. Identity Mappings in Deep 
Residual Networks. 2016). 

The CED network 602 may be used within a deep 
attenuation correction system 700, as shown, for example, in 
FIG. 7. The deep attenuation correction system 700 may 45 

include a training phase 704 and a reconstruction phase 702. 
Some aspects of the training phase 704 and the reconstruc
tion phase 702 may be similar. 

Regarding the training phase 704, raw PET data 706 may 

10 
Still referring to the deep attenuation correction system 

700, the output of the CED network 602 may be input into 
decision block 720. If still within the training phase 704, the 
CED output may be compared to the reference CT images 
712, at process block 714. If the training phase 704 is 
complete, the CED output may be used as a pseudo-CT 
image 716. 

Referring to the reconstruction phase 702, the raw PET 
data 706 may be used as a direct input to process block 718. 
The generated pseudo-CT image 716 may be used as a 
second input to process block 718. At process block 718, the 
pseudo-CT image 716 may be used to reconstruct PET data, 
via an AC map. The raw PET data 706 may be mapped using 
the pseudo-CT image 716. Subsequently, process block 718 
may output reconstructed PET data that has undergone 
attenuation correction. The reconstruction phase 702 may 
therefore output an attenuation corrected (AC) PET image 
722, using just PET data from the imaged subject. 

The present disclosure includes systems and methods for 
producing attenuation corrected PET images. In some con
figurations, the corrected PET images may be obtained in 
less than one minute. The speed of producing the corrected 
images may be very beneficial in clinical settings. The 
present disclosure may produce quantitative PET imaging 
without any application of CT, which may have a substantial 
impact on CT dose reduction and resilience to patient motion 
in PET studies. 

In some configurations, the present disclosure may be 
implemented in software and may be applied to existing 
systems. In addition, it may result in significantly less 
expensive equipment (e.g., a PET-only system). 

Overall, the present disclosure may improve the accuracy 
of PET, PET/CT and PET/MR as well as have potential 
applications for treatment planning for radiation therapy. 

Experiments 

In one non-limiting example, two independent phases for 
training retrospective data and reconstructing new data were 
implemented. In the training phase, the training data for the 
CED network included NAC PET images as inputs, as well 
as reference non-contrast enhanced CT data. 

For each training dataset, NAC PET and co-registered CT 
images were scaled by pixel intensity of 6000 (Bq/ml) and 
2000 (HU), respectively, which were determined empiri
cally and used for all data. 

3D NAC PET and CT images were cropped to enclose the 
image object and remove redundant background prior to 
deep learning training. 2D axial slices from the 3D volu
metric NAC and CT images were used as inputs to the deep 
learning network. 

All 2D input images were first transformed pixel-wise 
using a Softsign activation function and then resampled to a 
matrix of size 200x180 using bilinear interpolation before 

be used as an input to process block 708. Process block 708 50 

may be configured to reconstruct a PET image 710 without 
attenuation correction (i.e. non-attenuation corrected (NAC) 
PET images). The PET image 710 may then be used as an 
input to the CED network 602. The CED network 602 may 
function as described with respect to FIG. 6. 55 being used as input to the CED. The encoder and decoder 

network weights were initialized using an initialization 
scheme described by He K, Zhang X, Ren S, Sun J. (He K, 
Zhang X, Ren S, Sun J. Delving Deep into Rectifiers: 

A second input may be used for the training phase 704. 
Reference CT images 712 may be used as an input to process 
block 714. The reference CT images 712 may come from a 
database of CT images. Process block 714 may provide an 
input to the CED network 602. The CED network 602 may 60 

iteratively estimate and output continuous CT images, and 
compare them to the reference CT images 712. The data 
consistency between each estimated and reference CT image 
712 may be ensured by using Mean Squared Error (MSE) as 
an image loss objective function where the loss may be 65 

calculated in a mini-batch images in each iteration (at 
process block 714). 

Surpassing Human-Level Performance on ImageNet Clas
sification. ArXiv e-prints. 2015.) and updated using an 
gradient-based optimization algorithm based on adaptive 
estimates of lower-order moments with a fixed learning rate 
of 0.001. 

The CED network iteratively estimated outputs of con
tinuous CT images, and compared them to the reference CT 
data (i.e. real CT data). The data consistency between 
estimated and real CT image was ensured by using Mean 
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Squared Error (MSE) as an image loss objective function 
where the loss was calculated in a mini-batch of 12 images 
in each iteration. 

Once the training phase was complete, the CED network 
at the epoch with least image loss was fixed and was used for 5 

generating continuous pseudo-CT for new PET data, which 
were subsequently used for PET reconstruction. 

In this non-limiting example, the CED network was coded 
with Tensorflow deep learning libraries, as discussed by 
Abadi M, Agarwal A, Barham P, et al. (Abadi M, Agarwal 10 

A, Barham P, et al. TensorFlow: Large-Scale Machine 
Learning on Heterogeneous Distributed Systems. 2016). 

Results 

12 
Referring to FIG. 10, images are shown to a subject 

having significant right and frontal skull abnormality. Image 
800 shows a pseudo-CT image, according to the present 
disclosure. Image 802 shows a reconstructed PET image, 
using the image 800 for attenuation correction. In contrast, 
image 806 shows a real CT image from the subject, and 
image 808 shows a reconstructed PET image using the 
image 806 for attenuation correction. 

Still referring to FIG. 10, image 804 shows the PET error 
percentage when comparing image 802 to image 808. The 
average reconstructed PET error for the subject is 1.51 %. 
Notably, the generated pseudo-CT was able to predict parts 
of missing skull in the forehead which were apparent in the 
real CT image (indicated by arrows). Accordingly, despite 

Several non-limiting examples of acquired NAC PET 
images, real CT images, and deepAC pseudo CT images for 

15 significant skull abnormalities relative to typical subjects, 
PET reconstruction error was maintained at low level uti
lizing the methods of the present disclosure. 

a subject are shown in FIGS. SA through 8G. Referring to 
FIG. SA, several NAC PET images are shown. FIG. SB 
shows several real CT images and FIG. SC shows several 
pseudo-CT images, according to the present disclosure. 

Referring to FIG. SD, a surface image is shown that was 
generated using the NAC PET images from FIG. SA, and 
corrected for attenuation using the real CT images from FIG. 
SB. 

As described, the systems and methods of the present 
disclosure can be utilized to perform attenuation correction. 

20 However, the µ-maps or other means for performing cor
rections described herein can be used for additional correc
tions beyond attenuation corrections. 

The foregoing merely illustrates the principles of the 
disclosure. Various modifications and alterations to the 

25 described aspects will be apparent to those skilled in the art 
in view of the teachings herein. It will thus be appreciated 
that those skilled in the art will be able to devise numerous 
systems, arrangements and methods which, although not 

In comparison, FIG. SE shows a surface image that was 
generated using the NAC PET images from FIG. SA, and 
corrected for attenuation using the pseudo-CT images from 
FIG. SC, according to the present disclosure. It may be 
appreciated that the surface images of FIG. SD and FIG. SE 30 

are substantially similar, however the resulting surface 
image of FIG. SE (using the pseudo-CT images) was created 
without additional imaging (i.e. CT imaging) of the subject. 

Referring to FIG. SF, a bone image is shown that was 
generated using the NAC PET images from FIG. SA, and 35 

corrected for attenuation using the real CT images from FIG. 
SB. 

In comparison, FIG. 8G shows a bone image that was 
generated using the NAC PET images from FIG. SA, and 
corrected for attenuation using the pseudo-CT images from 40 

FIG. SC, according to the present disclosure. Notably, the 
bone images of FIG. SF and FIG. 8G are substantially 
similar. As previously indicated, however, the resulting bone 
image of FIG. 8G (using the pseudo-CT images) was created 
without additional imaging (i.e. CT imaging) of the subject. 45 

Still referring to FIGS. SA through 8G, the total training 
phase took approximately 23 hours, whereas generating a 
single pseudo-CT image using the trained model took 
approximately 0.5 minutes. It may be appreciated that the 
generation of the pseudo-CT image was substantially less 50 

than the time required to obtain real CT images from the 
subject. As shown, the deep attenuation correction system 
was able to identify air, sknll, and soft tissue in the NAC 
PET images and synthesize continuous CT values for dis
tinct tissue types. 55 

Referring to FIGS. 9A through 9C, output PET images 
were compared to determine percent error. FIG. 9A shows 
resulting PET reconstructed images that were corrected for 
attenuation using real CT images from the subject. In 
contrast, FIG. 9B shows resulting PET reconstructed images 60 

that were corrected for attenuation using pseudo-CT images, 
according to the present disclosure. FIG. 9C provides 
images illustrating the pixel-wise PET error percentage 
when comparing the images of FIG. 9B to the images of 
FIG. 9A. As shown, the PET images reconstructed via 65 

pseudo-CT images result in PET error of less than 1 % in 
most of the subject's brain regions. 

explicitly shown or described herein, embody the principles 
of the disclosure and are thus within the spirit and scope of 
the present disclosure. Further, the exemplary aspects 
described herein can operate together with one another and 
interchangeably therewith. In addition, to the extent that the 
prior art knowledge has not been explicitly incorporated by 
reference herein above, it is explicitly being incorporated 
herein in its entirety. All publications referenced herein 
above are incorporated herein by reference in their entireties. 

We claim: 
1. A method for correcting positron emission tomography 

(PET) data for attenuation effects, the method comprising 
the steps: 

(a) receiving at least one PET image of a subject created 
from PET data acquired from the subject; 

(b) creating an attenuation correction map using the at 
least one PET image and a reference data set, wherein 
the reference data set includes data from at least a 
second subject using another imaging modality and 
wherein the reference data set does not include imaging 
data acquired from the subject; and 

( c) reconstructing PET data using the attenuation correc
tion map and the at least one PET image to generate an 
attenuation corrected PET image. 

2. The method of claim 1, wherein creating the attenuation 
correction map includes generating pseudo-CT data. 

3. The method of claim 2, further comprising generating 
the pseudo-CT data using the reference data set. 

4. The method of claim 3, wherein the reference data set 
includes CT data from at least a second subject. 

5. The method of claim 4, wherein the reference data set 
includes CT data from a database of subjects. 

6. The method of claim 3, further comprising comparing 
the pseudo-CT data to the reference data set and calculating 
a loss value of the pseudo-CT data. 

7. The method of claim 1, wherein steps (a) and (b) occur 
in less than 1 minute. 

8. The method of claim 1, wherein steps (a) and (b) occur 
in 30 seconds or less. 
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9. A method for correcting positron emission tomography 
(PET) data for attenuation effects, the method including 
steps comprising: 

(a) receiving a first data set of raw PET data of a subject; 
(b) generating at least one PET image from the first data 5 

set; 
( c) generating at least one pseudo-CT image from the at 

least one PET image, wherein the at least one pseudo
CT image is generated without imaging data acquired 
from the subject, and wherein the at least one pseudo- 10 

CT image is generated using data from another imaging 
modality; 

( d) performing an attenuation correction of the first data 
set using the at least one pseudo-CT image to generate 
a corrected first data set; and 15 

( e) generating a corrected PET image from the corrected 
first data set. 

10. The method of claim 9, wherein step (c) includes 
applying the at least one PET image to a machine-learning 
module to generate the at least one pseudo-CT image, 20 

the machine-learning module comprising a processor. 
11. The method of claim 9, wherein step (c) further 

comprises: 
(i) receiving reference CT data; 
(ii) generating a pseudo-CT image from the at least one 25 

PET image; 
(iii) comparing the pseudo-CT image to the reference CT 

data and determining a loss value; 
(iv) determining if the loss value is within a predeter-

mined range; and 30 

(v) repeating steps (ii)-(iv) until the loss value is within 
the predetermined range. 

12. The method of claim 11, wherein the reference CT 
data does not correspond to the subject. 

13. The method of claim 11, wherein step ( c) is performed 35 

in less than 24 hours. 
14. The method of claim 9, wherein step (d) further 

comprises creating an attenuation correction map using the 
first data set and the at least one pseudo-CT image. 

14 
15. The method of claim 9, wherein step ( c) is performed 

in less than 1 minute. 
16. -~ system for generating (PET) data, the system 

compnsmg: 
a data acquisition system comprising a processor and 

configured to obtain raw PET data of a subject; and 
a data processing system comprising a processor and 

configured to: 
receive the raw PET data from the data acquisition 

system; 
generate pseudo-CT data from the raw PET data 

wherein the at least one pseudo-CT image is gener~ 
ated without imaging data acquired from the subject, 
and wherein the at least one pseudo-CT image is 
generated using data from another imaging modality; 

correct attenuation corresponding to the raw PET data 
using the pseudo-CT data; and 

generate at least one attenuation-corrected PET image 
of the subject. 

17. The system of claim 16, further comprising a 
machine-learning module comprising a processor and con
figured to generate the pseudo-CT data. 

18. The system of claim 16, further comprising a 
machine-learning module comprising a processor and con
figure~ t_o generate the pseudo-CT data by performing steps 
compnsmg: 

(i) generating a pseudo-CT image from the raw PET data· 
(ii) comparing the pseudo-CT image to reference data and 

determining a loss value; 
(iii) determining if the loss value is within a predeter

mined range; and 
(iv) repeating steps (i)-(iii) until the loss value is within 

the predetermined range. 
19. The system of claim 18, wherein the reference data is 

accessed from a database and corresponds to CT data from 
a plurality of subjects. 

20. The system of claim 18, wherein steps (i)-(iv) are 
performed in less than 24 hours. 

* * * * * 


