

US011028402B2

(12) United States Patent

Hittinger et al.

(54) POLYPEPTIDE AND YEAST CELL COMPOSITIONS AND METHODS OF USING THE SAME

- (71) Applicant: Wisconsin Alumni Research Foundation, Madison, WI (US)
- (72) Inventors: Chris Todd Hittinger, Madison, WI (US); EmilyClare Patricia Baker, Madison, WI (US)
- (73) Assignee: WISCONSIN ALUMNI RESEARCH FOUNDATION, Madison, WI (US)
- (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.
- (21) Appl. No.: 16/378,106
- (22) Filed: Apr. 8, 2019

(65) **Prior Publication Data**

US 2019/0315815 A1 Oct. 17, 2019

Related U.S. Application Data

- (60) Provisional application No. 62/654,021, filed on Apr. 6, 2018.
- (51) Int. Cl.

C12N 1/14	(2006.01)
C12N 15/00	(2006.01)
C12N 15/81	(2006.01)
C07K 14/395	(2006.01)
C12N 1/16	(2006.01)
C12G 1/022	(2006.01)
C12G 3/02	(2019.01)
C12C 11/00	(2006.01)

(52) U.S. Cl. CPC C12N 15/81 (2013.01); C07K 14/395 (2013.01); C12C 11/00 (2013.01); C12G

(10) Patent No.: US 11,028,402 B2

(45) **Date of Patent:** Jun. 8, 2021

1/0203 (2013.01); *C12G 3/02* (2013.01); *C12N 1/16* (2013.01); *C12N 2500/34* (2013.01)

(58) **Field of Classification Search** CPC C12N 15/81; C12N 1/16 See application file for complete search history.

(56) **References Cited**

U.S. PATENT DOCUMENTS

:	8,053,224	B2 *	11/2011	Hatanaka	 C07K 14/395
					435/254.2

2016/0046952 A1 2/2016 Hittinger (Continued)

OTHER PUBLICATIONS

Studer. Residue mutations and their impact on protein structure and function: detecting beneficial and pathogenic changes. Biochem. J. (2013) 449, 581-594.*

(Continued)

Primary Examiner — Yong D Pak (74) Attorney, Agent, or Firm — Quarles & Brady LLP

(57) **ABSTRACT**

Polypeptides comprising maltose/maltotriose transporters are provided. Additionally, polynucleotides, DNA constructs, and vectors encoding a maltose/maltotriose transporter, or yeast cells harboring such polynucleotides are provided. The yeast cell may be a *Saccharomyces eubayanus* cell modified to increase the expression or transport activity of a maltose/maltotriose transporter at the plasma membrane of the cell. Further, methods are provided for making a fermentation product by culturing any one of the yeast cells described herein with a fermentable substrate. Finally, methods are provided to select for and isolate maltotriose-utilizing strains of *Saccharomyces eubayanus*.

12 Claims, 9 Drawing Sheets

Specification includes a Sequence Listing.

(56) References Cited

U.S. PATENT DOCUMENTS

2016/0340698 A	A1* 11/2016	Jung	C12N 9/1205
2018/0127784 A	A1 5/2018	Alexander	
2018/0155732 A	A1 6/2018	Hittinger	

OTHER PUBLICATIONS

A0A0L8RLD5_SACEU. UnitProtKB Database. Feb. 15, 2017.* Alves SL, et al. Molecular analysis of maltotriose active transport and fermentation by *Saccharomyces cerevisiae* reveals a determinant role for the AGT1 permease. Appl Environ Microbiol. 2008;74(5):1494-501. pmid:18203856.

Barnett J. A., 1992 Some controls on oligosaccharide utilization by yeasts: The physiological basis of the Kluyver effect. FEMS Microbiol. Lett. 100: 371-378.

Barrett M. P., et al., 1999 Structure and function of facultative sugar transporters. Curr. Opin. Cell Biol. 11: 496-502.

Bilinski CA, et al. Developments in sporulation and breeding of brewer's yeast. Yeast. 1989;5(6):429-38.

Blount Z. D., et al., 2012 Genomic analysis of a key innovation in an experimental *Escherichia coli* population. Nature 489: 513-518. Brickwedde A, et al. Structural, Physiological and Regulatory Analysis of Maltose Transporter Genes in *Saccharomyces eubayanus* CBS 12357T. Front Microbiol. 2018;9: 1786. pmid:30147677.

Brickwedde A, et al. Evolutionary Engineering in Chemostat Cultures for Improved Maltotriose Fermentation Kinetics in *Saccharomyces pastorianus* Lager Brewing Yeast. Front Microbiol. 2017;8:1690. pmid:28943864.

Briggs De, et al. Metabolism of wort by yeast. Brewing: science and practice. Chapter 12. Abington Hall, Abington Cambridge CB1 6AH, England: Woodhead Publishing Limited; 2004.

Brouwers N, et al. In vivo recombination of *Saccharomyces eubayanus* maltose-transporter genes yields a chimeric transporter that enables maltotriose fermentation. bioRxiv. 2018; 428839.

Charron MJ, et al. The naturally occurring alleles of MAL1 in *Saccharomyces* species evolved by various mutagenic processes including chromosomal rearrangement. Genetics. 1988;120(1):83-93. pmid:2851483.

Cheng Q, et al. The maltose permease encoded by the MAL61 gene of *Saccharomyces cerevisiae* exhibits both sequence and structural homology to other sugar transporters. Genetics. 1989;123(3):477-84. pmid:2689282.

Cousseau F. E. M., et al., 2013 Characterization of maltotriose transporters from the *Saccharomyces eubayanus* subgenome of the hybrid *Saccharomyces pastorianus* lager brewing yeast strain Weihenstephan 34/70. Lett. Appl. Microbiol. 56: 21-29.

Day RE, et al. Characterization of the putative maltose transporters encoded by YDL247w and YJR160c. Yeast. 2002;19(12):1015-27. pmid:12210897.

Day RE, et al. Molecular analysis of maltotriose transport and utilization by *Saccharomyces cerevisiae*. Appl Environ Microbiol. 2002;68(11):5326-35. pmid:12406721.

Dietvorst J, et al. Maltotriose utilization in lager yeast strains: MTT1 encodes a maltotriose transporter. Yeast. 2005;22(10):775-88. pmid:16088872.

Gibson B. R., et al., 2013 Comparative physiology and fermentation performance of Saaz and Frohberg lager yeast strains and the parental species *Saccharomyces eubayanus*. Yeast 30: 255-266.

Han E, et al. Characterization of AGT1 encoding a general a-glucoside transporter from *Saccharomyces*. Mol Microbiol. 1995;17(6):1093-107. pmid:8594329.

Horák J. Regulations of sugar transporters: insights from yeast. Curr Genet. 2013;59(1-2):1-31. pmid:23455612.

Jansen MLA, et al. Prolonged maltose-limited cultivation of *Sac-charomyces cerevisiae* selects for cells with improved maltose affinity and hypersensitivity. Appl Environ Microbiol. 2004;70(4):1956-63. pmid:15066785.

Krogerus K, et al. Inheritance of brewing-relevant phenotypes in constructed *Saccharomyces aerevisiae* x *Saccharomyces eubayanus* hybrids. Microb Cell Fact. 2017;16(1):66. pmid:28431563.

Magalhães F, et al. Maltose and maltotriose utilisation by group I strains of the hybrid lager yeast *Saccharomyces pastorianus*. FEMS Yeast Res. 2016;16(5). pmid:27364826.

Nikulin J, et al. Alternative *Saccharomyces* interspecies hybrid combinations and their potential for low-temperature wort fermentation. Yeast. 2018;35: 113-127. pmid:28755430.

Rautio J., et al., 2003 Maltose Transport by Brewer's Yeasts in Brewer's Wort. J. Inst. Brew. 109: 251-261.

Salema-Oom M, et al. Maltotriose utilization by industrial *Sac-charomyces* strains: characterization of a new member of the alpha-glucoside transporter family. Appl Environ Microbiol. 2005;71(9):5044-9. pmid:16151085.

Smit A, Dissertation. Maltotriose Transport in Yeast [Internet]. Stellenbosch University. 2007. Available: http://scholar.sun.ac.za/ bitstream/handle/10019.1/21760/Smit_Maltotriose_1007.pdf?sequence= 1&isAllowed=v.

Smit A, et al. The Thr505 and Ser557 residues of the AGT1-encoded alpha-glucoside transporter are critical for maltotriose transport in *Saccharomyces cerevisiae*. J Appl Microbiol. 2008;104: 1103-11. pmid:18179544.

Stambuk B. U., et al., 2006 Improvement of maltotriose fermentation by *Saccharomyces cerevisiae*. Lett. Appl. Microbiol. 43: 370-376.

Vidgren V, et al. Improved fermentation performance of a lager yeast after repair of its AGT1 maltose and maltotriose transporter genes. Appl Environ Microbiol. 2009;75(8):2333-45. pmid:19181838. Vidgren V, et al. Characterization of the *Saccharomyces bayanus*type AGT1 transporter of lager yeast. J Inst Brew. 2012;118(2):148-51.

Vidgren V, et al. The temperature dependence of maltose transport in ale and lager strains of brewer's yeast. FEMS Yeast Res. 2010;10(4):402-11. pmid:20402791.

Vidgren V, et al. Characterization and functional analysis of the MAL and MPH Loci for maltose utilization in some ale and lager yeast strains. Appl Environ Microbiol. 2005;71(12):7846-57. pmid:16332759.

Wang J.-J., et al., 2010 Construction of an industrial brewing yeast strain to manufacture beer with low caloric content and improved flavor. J. Microbiol. Biotechnol. 20: 767-74.

Wang X., et al., 2002 Intracellular maltose is sufficient to induce MAL gene expression in *Saccharomyces cerevisiae*. Eukaryot. Cell 1: 696-703.

Yamakawa S, et al. Repeated batch fermentation from raw starch using a maltose transporter and amylase expressing diploid yeast strain. Appl Microbiol Biotechnol. 2010;87(1):109-15. pmid:20180115.

* cited by examiner

FIG. 1B

FIG. 1A

FIG. 3E

Strain	Description	Initial OD	Day 3
yHKS210*	Wild admixture strain	0.22 (+/-0.01)	0.68 (+/-0.06)
yHKS210	Wild admixture strain	0.14 (+/-0.02)	0.39 (+/- 0.01)
yHEB1505	Single-colony isolate of yHKS210 evolved in maltotriose	0.16 (+/-0.02)	1.46 (+/- 0.01)
yHEB1593	yHKS210 x yHEB1505	0.12 (+/-0.01)	1.24 (+/- 0.02)
yHEB1854	yHEB1593 MALT4/malt434Δ	0.13 (+/-0.01)	0.39 (+/- 0.01)
yHEB1853	yHEB1593 malt4Δ/MALT434	0.11 (+/-0.01)	1.33 (+/- 0.04)

FIG. 3F

FIG. 4

FIG. 5D

Strain	Plasmid	Initial OD	Day 6
yHKS210*		0.19 (+/-0.04)	0.52 (+/-0.03)
yHKS210		0.14 (+/-0.02)	0.39 (+/-0.05)
yHEB1881	MALT434	0.11 (+/- 0.01)	1.31 (+/- 0.05)
yHRVM108*	***	0.16 (+/-0.05)	0.48 (+/-0.01)
yHRVM108	***	0.12 (+/-0.03)	0.46 (+/-0.03)
yHEB1878	MALT434	0.12 (+/-0.01)	1.46 (+/-0.04)

15

POLYPEPTIDE AND YEAST CELL **COMPOSITIONS AND METHODS OF USING** THE SAME

CROSS-REFERENCE TO RELATED APPLICATIONS

This patent application claims the benefit of priority of U.S. Provisional Patent Application No. 62/654,021, filed Apr. 6, 2018, which is incorporated herein by reference in its ¹⁰ entirety.

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH

This invention was made with government support under awarded by the USDA/NIFA, 17-CRHF-0-6055 DEB1253634 awarded by the National Science Foundation and DE-FC02-07ER64494 awarded by the US Department of Energy. The government has certain rights in the inven-20 tion.

SEQUENCE LISTING

This application includes an electronically submitted 25 Sequence Listing in .txt format. The .txt file contains a sequence listing entitled "2019-06-19 960296-02391 SEQ-Listing.txt" and was created on Jun. 19, 2019 and is 73,337 bytes in size. The Sequence Listing contained in this .txt file is part of the specification and is hereby incorporated herein 30 in its entirety.

INTRODUCTION

and yeast cells comprising such polypeptides are provided. The resultant yeast cells are capable of growing on maltose and/or maltotriose which has wide-ranging applications.

Brewing yeasts operate at the nexus of science and industry, and there is considerable interest in the discovery 40 and/or development of new strains of Saccharomyces (both pure species and hybrids) for commercial brewing and biofuel production (Gibson and Liti 2015; Krogerus et al. 2017a; Gibson et al. 2017; Peris et al. 2017; Hittinger et al. 2018; Denby et al. 2018). Special interest has been given to 45 the development of Saccharomyces eubayanus for commercial brewing (Hebly et al. 2015; Krogerus et al. 2015, 2017a; Hittinger et al. 2018). As a hybrid with S. cerevisiae, S. eubayanus forms lager-brewing yeasts (Libkind et al. 2011), accounting for more than 90% of the total market and the 50 emphasis on commercial development of this newly discovered addition to the genus Saccharomyces (Libkind et al. 2011). Most work in this area has focused on producing synthetic lager-brewing hybrids by mating S. eubayanus with S. cerevisiae (Hebly et al. 2015; Krogerus et al. 2015, 55 2016, 2017b; Mertens et al. 2015; Alexander et al. 2016; Nikulin et al. 2018), but there is considerable interest in developing brewing strains of pure S. eubayanus as well (Gibson et al. 2017; Hittinger et al. 2018).

A key consideration for any new brewing strain is its 60 ability to rapidly and completely use brewing-related sugars, the most important being maltose, followed by maltotriose and glucose. Of these sugars, maltotriose is by far the most difficult to ferment (Briggs D. E., Brookes P. A., Stevens R. 2004; Eβlinger 2009), even though is comprises around 20% 65 of fermentable sugars in wort (Meussdoerffer and Zarnkow 2009). Maltotriose is poorly utilized or completely unuti-

lized by some brewing strains (Stambuk et al. 2006; Wang et al. 2010; Gibson et al. 2013; Magalhães et al. 2016), leading to large amounts of unconsumed sugar, lower amounts of ethanol, and a cloying flavor that is regarded as undesirable in most beer styles. So far, no strain of S. eubavanus isolated from nature has been reported to consume maltotriose (Gibson et al. 2013, 2017; Bing et al. 2014; Hebly et al. 2015; Peris and Langdon et al. 2016; Peris et al. 2014). Accordingly, there is a need in the art for new molecular tools that confer maltotriose utilization in, for example, yeast cells. Additionally, there is a need for new yeast strains, such as in S. eubayanus, which are capable of consuming maltotriose as the sole carbon source in a growth media.

SUMMARY

In one aspect, the present invention relates to polypeptides. The polypeptides may include at least 60%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% or more sequence identity to SEQ ID NO: 4 (MALT4) and include at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or 11 amino acid substitution(s) to SEQ ID NO: 4 (MALT4) at position(s) S468, I503, G504, N505, V508, I512, N522, F534, L536, V538, or I540; or a functional fragment of the polypeptide thereof. Suitably, the polypeptide may include at least 60%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% or 100% sequence identity to either SEQ ID NO: 1 (MALT434) or SEQ ID NO: 2 (MALT433 Chimeric Protein), or a functional fragment of the polypeptide thereof.

In another aspect, polynucleotides encoding any of the polypeptides disclosed herein are provided.

In still another aspect, DNA constructs are provided. The Polypeptides capable of acting as maltotiose transporters 35 DNA constructs may include a promoter operably linked to any one of the polynucleotides described herein. Alternatively, the DNA constructs may include a heterologous promoter operably linked to a polypeptide having at least 60%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% or 100% sequence identity to SEQ ID NO: 6 (lgAGT1), SEQ ID NO: 7 (ncAGT1), SEQ ID NO: 8 (AGT1), or SEQ ID NO: 15 (scAGT1), or a functional fragment of the polypeptide thereof.

> In a further aspect, vectors, including any one of the DNA constructs or polynucleotides described herein, are provided. The vectors may include vectors for YACs, plasmids, or vectors for homologous recombination.

> In another aspect, yeast cells are provided. The yeast cells may include any one of the polypeptides described herein, any one of the polynucleotides described herein, any one of the DNA constructs described herein, or any one of the vectors described herein. Additionally, yeast cells of the present invention may include yeast cells modified to increase, as compared to a control yeast cell, the expression or maltose/maltotriose transport activity of a maltose/ maltotriose transporter polypeptide. In some embodiments, the yeast cell may be a Saccharomyces eubayanus cell modified to increase, as compared to a control Saccharomyces eubayanus cell, the expression or maltose/maltotriose transport activity of a maltose/maltotriose transporter polypeptide at the plasma membrane of the Saccharomyces eubayanus cell.

> In still another aspect, the present invention relates to methods for making a fermentation product. The methods may include culturing any one of the yeast cells described herein with a fermentable substrate to produce the fermentation product.

In yet another aspect, methods are provided to select for and isolate maltotriose-utilizing strains of Saccharomyces eubavanus.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1A shows tables highlighting the nucleotide (nuc) and amino acid (aa) percent identities between members of the AGT1 family. Darker colors indicate greater sequence similarity. FIG. 1B shows multiple sequence alignment 10 between tbAGT1, lgAGT1, and ncAGT1. Black lines indicate nucleotide differences.

FIG. 2 shows a ML phylogenetic tree of MALT genes described in S. cerevisiae, S. eubayanus, and lager-brewing hybrids. The scale bar equals the number of nucleotide 15 substitutions per site.

FIG. 3A is a schematic of the directed evolution of yHKS210, which was originally unable to use maltotriose (MalTri-). After continuous culturing on maltotriose with a small amount of added glucose, yHKS210 evolved the 20 ability to consume maltotriose (MalTri+). FIG. 3B is a schematic depicting the origins of strain yHEB1593, which is a backcross between yHKS210 and yHEB1505, was also MalTri+. FIG. 3C shows how yHEB1593 was sporulated to test the inheritance of maltotriose utilization. The panel 25 constructs the change in OD 600 over 7 days of growth of shows a subset of tetrads screened growing on SC+2% maltotriose. Examples of MalTri- spores in Tetrad 1 are circled in red (Left top row), and MalTri+ examples are circled in green (right top row). Whole genome sequencing of MalTri+ and MalTri- pools showed that maltotriose 30 utilization perfectly correlated with the presence/absence of MALT434. FIG. 3D is a schematic of the reciprocal hemizygosity test of the MALT4/MALT434 locus in the backcross strain yHEB1593. FIG. 3E is a table of initial and day-three OD600 (OD) readings of yHKS210, yHEB1505, 35 yHEB1593, yHEB1853, and yHEB1854 on SC+2% maltotriose as the sole carbon source. N=3, standard deviation in parentheses. The control was grown in SC+0.04% glucose to reflect the approximate amount of growth expected from contamination with other carbon sources 40 when using 98% pure maltotriose. FIG. 3F shows pairwise alignments between MALT3, MALT4, and MALT434. The highlighted region indicates the sequence that was exchanged in MALT4. MALT3 and MALT4 sequences are from strain FM1318, while MALT434 sequences are from 45 strain yHEB1505, an evolved MalTri+ descendent of vHKS210: differences outside of the chimeric region existed in the yHKS210 parent strain. FIG. 3G shows a schematic of the origin of MALT434. FIG. 3H shows tables highlighting the percent nucleotide and amino acid identities between the 50 whole protein-coding sequences of MALT3, MALT4, and MALT434, only the chimeric region, and the non-chimeric part of the protein. FIGS. 3I-3J show segments of the alignment of the chimeric region between Malt3 (SEQ ID NO: 5), Malt4 (SEQ ID NO: 4), Malt434 (SEQ ID NO: 1), 55 scAgt1 (SEQ ID NO: 15), and lgAgt1 (SEQ ID NO: 6). The region highlighted in yellow in the Malt434 sequence indicates the chimeric region. The regions underlined with a red dashed line are predicted transmembrane domains. The amino acids highlighted in red are predicted maltose binding 60 residues. The residues highlighted in blue were experimentally found to be important for maltotriose transport by Smit et al. 2008.

FIG. 4 shows a protein structural alignment between Malt3, Malt4, Malt434, scAgt1, and lgAgt1. The purple 65 blocks represent predicted alpha helices, and the orange lines represent predicted beta strands. Red ticks mark pre-

dicted maltose binding sites. Blue ticks mark residues found to be important for maltotriose transport by Smit et al. 2008. Green ticks mark the location of the single non-synonymous substitution between lgAGT1 and tbAGT1. Arrows point to alpha helices in Malt434, whose predicted sizes are reduced compared to other transporters in the alignment.

FIG. 5A is a schematic of the directed evolution of non-maltotriose utilizing strain (MalTri-), yHKS210, to maltotriose utilizing (MalTri+) strain, yHEB1505, by serial passing on maltotriose containing media (same as FIG. 3A). FIG. 5B is a schematic of the insertion of MALT434 into vector pBM5155 for doxycycline-inducible heterologous expression in MalTri- strains. FIG. 5C is a schematic of the transformation of MALT434 expression plasmid in MalTri-S. eubayanus strains yHKS210 and yHRVM108. FIG. 5D is a table of initial and day-six OD₆₀₀ (OD) measurements of parent strains and strains carrying the MALT434 expression plasmid grown in SC media with maltotriose as the sole carbon and doxycycline to induce plasmid expression. N=3, standard deviation in parentheses. The control was grown in SC+0.04% glucose+doxycycline to reflect the approximate amount of growth expected from contamination with other carbon sources when using 98% pure maltotriose.

FIG. 6 is a graph showing growth of the chimeric MALT S. eubayanus strains expressing MALT434 (yHEB1878), MALT334 (yHJC1-2), or MALT433 (yHJC3-4) from an inducible vector in 2% maltotriose medium, compared to S. eubayanus lacking heterologous transporter expression (yHKS210) grown in 2% maltotriose and 0.04% glucose. Points and bars show the mean +/- standard error of three technical replicates randomly distributed on a 96-well plate. p-values from two-sided t test.

DETAILED DESCRIPTION

Here, the present inventors in the non-limiting Examples used directed evolution to identify strains of S. eubayanus that can consume maltotriose or maltose as the sole carbon source in a growth media. The present inventors repeatedly passaged wild strains of S. eubayanus for hundreds of generations in 0.1% glucose (so that cells would divide and accumulate mutations) and 2% maltotriose or 2% maltose (to select for advantageous mutations). After directed evolution, the inventors identified strains that evolved the ability to consume maltotriose as the sole carbon source. They further show that in one of their evolved strains this trait is stable, genetically inherited, and maps to a single genetic locus that encodes a novel chimeric MALT3/MALT4 protein. This strain is descended from a wild isolate from Sheboygan, Wis. (yHKS210) that could not originally consume maltotriose, but could consume maltose.

The present inventors also identified six S. eubayanus strains (yHEB1585-90) that evolved the ability to consume both maltose and maltotriose. These strains are descended from strain yHRVM108, a wild isolate from Durham, N.C., that could not originally consume either maltose or maltotriose. By identifying these strains and demonstrating that the parent strain contains a gene encoding a maltotriose transporter capable of conferring maltotriose transport when overexpressed in S. eubavanus, the inventors have discovered that increasing the expression of AGT1 (alpha-glucoside transporter) or AGT1-related proteins in, for example, S. eubayanus cells, confers the ability to consume maltotriose or maltose as the sole carbon source.

Based on their directed evolution studies, the present inventors demonstrate that increasing the expression or

maltose/maltotriose transport activity of maltose/maltotriose transporter proteins in yeast cells, such as *S. eubayanus* cells, is sufficient to allow those yeast cells to consume maltotriose or maltose as the sole carbon source. Polypeptides

In one aspect, the present invention relates to polypeptides. The polypeptides may include at least 60%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% or more sequence identity to SEQ ID NO: 4 (MALT4) and include at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or 11 amino acid 10 substitution(s) to SEQ ID NO: 4 (MALT4) at position(s) S468, 1503, G504, N505, V508, 1512, N522, F534, L536, V538, or 1540; or a functional fragment of the polypeptide thereof.

The polypeptides may include at least 60%, 70%, 75%, 15 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% or more sequence identity to SEQ ID NO: 4 (MALT4) and include at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or 11 amino acid substitution(s) to SEQ ID NO: 4 (MALT4) selected from the group consisting of S468F, S468Y, S468W, I503M, I503S, 20 I503C, I503T, G504A, G504V, G504L, G504I, N505C, N505S, N505T, N505M, V508T, V508S, V508C, V508M, I512T, I512S, I512C, I512M N522D, N522E, F534L, F534I, F534V, F534G, F534A, L536F, L536Y, L536W, V538T, V538S, V538C, V538M, I540V, I540G, I540A, I540L, and 25 I540I.

In some embodiments, the polypeptide may include at least 60%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% or more sequence identity to SEQ ID NO: 4 (MALT4) and may include at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 30 or 11 amino acid substitution(s) to SEQ ID NO: 4 (MALT4) selected from the group consisting of S468F, I503M, G504A, N505C, V508T, I512T, N522D, F534L, L536F, V538T, and I540V.

Suitably, the polypeptide may include at least 60%, 70%, 35 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% or 100% sequence identity to any one of SEQ ID NO: 1 (MALT434), SEQ ID NO: 2 (MALT433 Chimeric Protein), or SEQ ID NO: 3 (MALT334 Chimeric Protein), or a functional fragment of the polypeptide thereof. 40

As used herein, the terms "protein" or "polypeptide" or "peptide" may be used interchangeably to refer to a polymer of amino acids. A "polypeptide" as contemplated herein typically comprises a polymer of naturally occurring amino acids (e.g., alanine, arginine, asparagine, aspartic acid, cys- 45 teine, glutamine, glutamic acid, glycine, histidine, isoleucine, leucine, lysine, methionine, phenylalanine, proline, serine, threonine, tryptophan, tyrosine, and valine). The proteins contemplated herein may be further modified in vitro or in vivo to include non-amino acid moieties. These 50 modifications may include but are not limited to acylation (e.g., O-acylation (esters), N-acylation (amides), S-acylation (thioesters)), acetylation (e.g., the addition of an acetyl group, either at the N-terminus of the protein or at lysine residues), formylation, lipoylation (e.g., attachment of a 55 lipoate, a C8 functional group), myristoylation (e.g., attachment of myristate, a C14 saturated acid), palmitoylation (e.g., attachment of palmitate, a C16 saturated acid), alkylation (e.g., the addition of an alkyl group, such as an methyl at a lysine or arginine residue), isoprenylation or prenylation 60 (e.g., the addition of an isoprenoid group such as farnesol or geranylgeraniol), amidation at C-terminus, glycosylation (e.g., the addition of a glycosyl group to either asparagine, hydroxylysine, serine, or threonine, resulting in a glycoprotein). Distinct from glycation, which is regarded as a nonenzymatic attachment of sugars, enzymatic addition such as polysialylation (e.g., the addition of polysialic acid), glypi-

ation (e.g., glycosylphosphatidylinositol (GPI) anchor formation, hydroxylation, iodination (e.g., of thyroid hormones), and phosphorylation (e.g., the addition of a phosphate group, usually to serine, tyrosine, threonine or histidine) are also contemplated.

The polypeptides provided herein are evolved polypeptides representing substitution mutants of the wild-type polypeptide. The polypeptides disclosed herein may include "mutant" polypeptides and variants thereof. As used herein the term "wild-type" is a term of the art understood by skilled persons and means the typical form of an organism, strain, gene or characteristic as it occurs in nature as distinguished from mutant or variant forms. As used herein, a "variant" refers to a polypeptide molecule having an amino acid sequence that differs from a reference protein or polypeptide molecule. A variant may have one or more insertions, deletions, or substitutions of an amino acid residue relative to a reference molecule. A variant may include a fragment of a reference molecule. For example, a polypeptide variant molecule may have one or more insertions. deletions, or substitution of at least one amino acid residue relative to the mutant polypeptides described herein.

The amino acid sequence of the "wild-type" proteins from yeast are presented as SEQ ID NO: 4 (MALT4), SEQ ID NO: 5 (MALT3), SEQ ID NO: 6 (lgAGT1), SEQ ID NO: 7 (ncAGT1), SEQ ID NO: 8 (AGT1), and SEQ ID NO: 15 (scAGT1). Some of the amino acid sequences for evolved mutant polypeptides disclosed herein are provided as SEQ ID NO: 1 (MALT434), SEQ ID NO: 2 (MALT433 Chimeric Protein), and SEQ ID NO: 3 (MALT334 Chimeric Protein). These sequences may be used as reference sequences.

The polypeptides provided herein may be full-length polypeptides (i.e., SEQ ID NOS: 1-8, 15) or may be functional fragments of the full-length polypeptide. As used herein, a "fragment" or "functional fragment" is a portion of an amino acid sequence that is identical in sequence to but shorter in length than a reference sequence. A fragment may comprise up to the entire length of the reference sequence, minus at least one amino acid residue. For example, a fragment may comprise from 5 to 155 contiguous amino acid residues of a reference polypeptide, respectively. In some embodiments, a fragment may comprise at least 5, 10, 15, 20, 25, 30, 40, 50, 60, 70, 80, 90, 100, or 150 contiguous amino acid residues of a reference polypeptide. Fragments may be preferentially selected from certain regions of a molecule. The term "at least a fragment" encompasses the full-length polypeptide. A fragment of a polypeptide may comprise or consist essentially of a contiguous portion of an amino acid sequence of the full-length polypeptide (SEQ ID NOS: 1-8, 15). A fragment may include an N-terminal truncation, a C-terminal truncation, or both truncations relative to the full-length polypeptide. Preferably, a fragment of a polypeptide includes amino acid residues corresponding to amino acid residues 468, 503, 504, 505, 508, 512, 522, 534, 536, 538, or 540 of SEQ ID NO: 4 (MALT4).

The polypeptides disclosed herein may be useful for a variety of reasons. For example, polypeptides which contain the substitutions noted above can be used inter alfa for raising antibodies. Such polypeptides are typically less than full-length proteins. Preferably such residues are at least 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 19, 21, 23, 25, 30, 40, 50 or more residues in length. As an example, if the polypeptide is 6 residues in length, than it can comprise residues including the substitution site. Sufficient residues are desired to form a good immunogen or blocking antigen for use in assays. It may be desirable to conjugate or genetically fuse additional sequences to the polypeptide, for example, to

boost immunogenicity, to enhance purification, to facilitate production or expression, or to facilitate detection. Any sequences as are convenient may be used for these or other purposes. The size of these additional sequences may vary greatly, but typically will be at least 2, 4, 6, or 8 amino acid 5 residues in length. Suitably the additional sequences will be less than 100, 90, 80, 70, 60, 50, 40, 30, 20, or 10 amino acids in length.

The polypeptides are also useful for conferring maltotriose utilization to yeast cells such as, without limitation, *S.* 10 *eubayanus* cells.

A "deletion" in a polypeptide refers to a change in the amino acid sequence that results in the absence of one or more amino acid residues. A deletion may remove at least 1, 2, 3, 4, 5, 10, 20, 50, 100, 200, or more amino acids residues. 15 A deletion may include an internal deletion and/or a terminal deletion (e.g., an N-terminal truncation, a C-terminal truncation or both of a reference polypeptide).

"Insertions" and "additions" in a polypeptide refer to changes in an amino acid sequence resulting in the addition 20 of one or more amino acid residues. An insertion or addition may refer to 1, 2, 3, 4, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 150, 200, or more amino acid residues. A variant of a polypeptide may have N-terminal insertions, C-terminal insertions, internal insertions, or any combination of N-ter- 25 minal insertions, C-terminal insertions, and internal insertions.

Regarding polypeptides, the phrases "percent identity," "% identity," and "% sequence identity" refer to the percentage of residue matches between at least two amino acid 30 sequences aligned using a standardized algorithm. Methods of amino acid sequence alignment are well-known. Some alignment methods take into account conservative amino acid substitutions. Such conservative substitutions, explained in more detail below, generally preserve the 35 charge and hydrophobicity at the site of substitution, thus preserving the structure (and therefore function) of the polypeptide. Percent identity for amino acid sequences may be determined as understood in the art. (See, e.g., U.S. Pat. No. 7,396,664, which is incorporated herein by reference in 40 its entirety). A suite of commonly used and freely available sequence comparison algorithms is provided by the National Center for Biotechnology Information (NCBI) Basic Local Alignment Search Tool (BLAST), which is available from several sources, including the NCBI, Bethesda, Md., at its 45 website. The BLAST software suite includes various sequence analysis programs including "blastp," that is used to align a known amino acid sequence with other amino acids sequences from a variety of databases.

As described herein, variants of the polypeptides disclosed herein may have 60%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% amino acid sequence identity relative to a reference molecule (e.g., relative to SEQ ID NOS: 1-8, 15). Suitably the MALT protein variants include the MALT4 substitution mutations identified herein. 55

Polypeptide sequence identity may be measured over the length of an entire defined polypeptide sequence, for example, as defined by a particular SEQ ID number, or may be measured over a shorter length, for example, over the length of a fragment taken from a larger, defined polypeptide 60 sequence, for instance, a fragment of at least 15, at least 20, at least 30, at least 40, at least 50, at least 70, or at least 150 contiguous residues. Such lengths are exemplary only, and it is understood that any fragment length supported by the sequences shown herein, in the tables, figures, or Sequence 65 Listing, may be used to describe a length over which percentage identity may be measured. 8

The amino acid sequences of the polypeptide variants as contemplated herein may include conservative amino acid substitutions relative to a reference amino acid sequence. For example, a variant or derivative polypeptide may include conservative amino acid substitutions relative to a reference molecule. "Conservative amino acid substitutions" are those substitutions that are a substitution of an amino acid for a different amino acid where the substitution is predicted to interfere least with the properties of the reference polypeptide. In other words, conservative amino acid substitutions substantially conserve the structure and the function of the reference polypeptide. Conservative amino acid substitutions generally maintain (a) the structure of the polypeptide backbone in the area of the substitution, for example, as a beta sheet or alpha helical conformation, (b) the charge or hydrophobicity of the molecule at the site of the substitution, and/or (c) the bulk of the side chain.

The amino acid sequences of the polypeptide variants as contemplated herein may include modifications made apparent by a sequence alignment of the polypeptides disclosed herein and other polypeptides. A person of ordinary skill in the art may easily align the polypeptides disclosed herein with other polypeptides from, for example, other species to determine what additional variants (i.e. substitutions, insertions, deletions, etc.) could be made to the polypeptides. For example, a person of ordinary skill in the art would appreciate that modifications in a reference polypeptide (i.e., SEQ ID NOS: 1-8, 15) could be based on alternative amino acid residues that occur at the corresponding position in other homologous polypeptides from other species or strains.

The disclosed polypeptides, mutants, or variants described herein may have one or more functional or biological activities exhibited by a reference polypeptide (e.g., one or more functional or biological activities exhibited by SEQ ID NOS: 1-8). For example, the disclosed polypeptides, mutants, variants, or derivatives thereof may have increased maltotriose transport activity or localization to a particular part a cell.

Polynucleotides

In another aspect, polynucleotides encoding any of the polypeptides disclosed herein are also provided. The terms "polynucleotide," "polynucleotide sequence," "nucleic acid," and "nucleic acid sequence" refer to a nucleotide, oligonucleotide, polynucleotide (which terms may be used interchangeably), or any fragment thereof. These phrases also refer to DNA or RNA of genomic, natural, or synthetic origin (which may be single-stranded or double-stranded and may represent the sense or the antisense strand).

Isolated polynucleotides homologous to the polynucleotides described herein are also provided. Those of skill in the art also understand the degeneracy of the genetic code and that a variety of polynucleotides can encode the same polypeptide. In some embodiments, the polynucleotides may be codon-optimized for expression in a particular cell such as, without limitation, a yeast cell. While particular nucleotide sequences, which are found in yeasts, are disclosed herein any nucleotide sequences may be used which encode a desired form of the substituted polypeptides described herein. Thus non-naturally occurring sequences may be used. These may be desirable, for example, to enhance expression in heterologous expression systems of polypeptides or proteins. Computer programs for generating degenerate coding sequences are available and can be used for this purpose as well as other means.

In some embodiments, the polynucleotide may include at least 60%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% or 100% to SEQ ID NO: 9 (MALT434 polynucleotide sequence).

The isolated polynucleotides or polypeptides provided 5 herein may be prepared by methods available to those of skill in the art. Isolated indicates that the polynucleotides or proteins are not in their naturally occurring state. Such preparations may be cell-free preparations. The polynucleotide or polypeptides may be extracted from the cells by 10 breaking the cell membrane and optionally removing nondesired components. The polypeptides may be made as secreted polypeptides and further isolated using means known to those of skill in the art. Alternatively, desired proteins or nucleic acids can be purified using sequence- 15 specific reagents, including but not limited to oligonucleotide probes, primers, and antibodies. Techniques for isolating cell-free preparations are well known in the art, and any that are convenient can be used. The term "substantially isolated or purified" refers to polypeptides or polynucle- 20 otides that are removed from their natural environment, and are at least 60% free, preferably at least 75% free, and more preferably at least 90% free, even more preferably at least 95% free from other components with which they are naturally associated.

DNA Constructs

In still another aspect, DNA constructs are provided. The DNA constructs may include a promoter operably linked to any one of the polynucleotides described herein. The promoter may be a heterologous promoter or an endogenous 30 promoter associated with the polypeptide described herein.

Additionally, the DNA constructs may include a heterologous promoter operably linked to a polypeptide having at least 60%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% or 100% sequence identity to SEQ ID NO: 6 35 (lgAGT1), SEQ ID NO: 7 (ncAGT1), SEQ ID NO: 8 (AGT1), or SEQ ID NO: 15 (scAGT1), or a functional fragment of the polypeptide thereof.

As used herein, the term "DNA construct" refers to recombinant DNA polynucleotides which may be single- 40 stranded or double-stranded and may represent the sense or the antisense strand. Recombinant polynucleotides are polynucleotides formed by laboratory methods that include polynucleotide sequences derived from at least two different natural sources or they may be synthetic. Constructs thus 45 may include new modifications to endogenous genes introduced by, for example, genome-editing technologies. Constructs may also include recombinant polynucleotides created using, for example, recombinant DNA methodologies.

The DNA constructs provided herein may be prepared by 50 methods available to those of skill in the art. Notably each of the DNA constructs claimed are recombinant molecules and as such do not occur in nature. Generally, the nomenclature used herein and the laboratory procedures utilized in the present invention include molecular, biochemical, and 55 recombinant DNA techniques that are well known and commonly employed in the art. Standard techniques available to those skilled in the art may be used for cloning, DNA and RNA isolation, amplification, and purification. Such techniques are thoroughly explained in the literature.

As used herein, the terms "heterologous promoter," "promoter," "promoter region," or "promoter sequence" refer generally to transcriptional regulatory regions of a gene, which may be found at the 5' or 3' side of the polynucleotides described herein, or within the coding region of the polynucleotides, or within introns in the polynucleotides. Typically, a promoter is a DNA regulatory region capable of

binding RNA polymerase in a cell and initiating transcription of a downstream (3' direction) coding sequence. The typical 5' promoter sequence is bounded at its 3' terminus by the transcription initiation site and extends upstream (5' direction) to include the minimum number of bases or elements necessary to initiate transcription at levels detectable above background. Within the promoter sequence is a transcription initiation site (conveniently defined by mapping with nuclease S1), as well as protein binding domains (consensus sequences) responsible for the binding of RNA polymerase.

In some embodiments, the disclosed polynucleotides are operably connected to the promoter. As used herein, a polynucleotide is "operably connected" or "operably linked" when it is placed into a functional relationship with a second polynucleotide sequence. For instance, a promoter is operably linked to a polynucleotide if the promoter is connected to the polynucleotide such that it may effect transcription of the polynucleotides. In various embodiments, the polynucleotides may be operably linked to at least 1, at least 2, at least 3, at least 4, at least 5, or at least 10 promoters.

Heterologous promoters useful in the practice of the present invention include, but are not limited to, constitutive, inducible, temporally-regulated, developmentally regu-25 lated, chemically regulated, tissue-preferred and tissue-specific promoters. The heterologous promoter may be a yeast, fungal, or bacterial promoter. In yeast cells, typical promoters include, without limitation, galactose inducible promoters (i.e., GAL1) and doxycycline-inducible promoters. Other promoters include the T3, T7, and SP6 promoter sequences, which are often used for in vitro transcription of RNA. Those of skill in the art are familiar with a wide variety of additional promoters for use in various cell types. Vectors

In a further aspect, vectors, including any one of the DNA constructs or polynucleotides described herein, are provided. The term "vector" is intended to refer to a polynucleotide capable of transporting another polynucleotide to which it has been linked. In some embodiments, the vector may be a "plasmid," which refers to a circular doublestranded DNA loop into which additional DNA segments may be ligated. Certain vectors are capable of autonomous replication in a host cell into which they are introduced (e.g., yeast vectors having an origin of replication). Other vectors can be integrated into the genome of a host cell upon introduction into the host cell, and thereby are replicated along with the host genome, such as some viral vectors or transposons. Yeast artificial chromosomes or YACS represent another suitable vector for use herein. Vectors may carry genetic elements, such as those that confer resistance to certain drugs or chemicals.

Yeast Cells

65

In another aspect, yeast cells are provided. The yeast cells may include any one of the polypeptides described herein, any one of the polynucleotides described herein, any one of the DNA constructs described herein, or any one of the vectors described herein.

The "yeast cells" disclosed herein may be, without limitation, ascomycetes and fungi that lack fruiting bodies or 60 experience yeast phases of their life cycles. Suitable yeast species may be from the family Saccharomycetaceae. In some embodiments, the yeast species are from the genus Saccharomyces. Suitable Saccharomyces species may include, without limitation, Saccharomyces eubayanus, Saccharomyces cerevisiae, Saccharomyces paradoxus, Saccharomyces mikatae, Saccharomyces arboricola, Saccharomyces kudriavzevii, Saccharomyces jurei, and Saccharomyces

uvarum. Suitable *Saccharomyces* species may also include any taxonomic synonyms of these species or any newly discovered species to be members of the genus *Saccharomyces*.

In some embodiments, the yeast cell may be selected from 5 unevolved yeast strains such as, without limitation, yHKS210, yHRVM108, FM1318, CRUB 1568^T=PYCC 6148^T=CBS 12357^T. These strains may be modified with the compositions and according to the methods disclosed herein.

In some embodiments, the yeast cell may be an evolved 10 yeast strain such as, without limitation, yHEB1505, yHEB1506, yHEB1585, yHEB1586, yHEB1587, yHEB1588, yHEB1589, or yHEB1590.

The yeast cells of the present invention may be modified to increase, as compared to a control yeast cell, the expression or maltose/maltotriose transport activity of a maltose/ maltotriose transporter polypeptide. Based on their directed evolution studies, the present inventors demonstrate that increasing the expression or maltose/maltotriose transport activity of maltose/maltotriose transporter proteins in yeast 20 cells is sufficient to allow those yeast cells to consume maltotriose or maltose as the sole carbon source.

The present inventors conjecture that the findings from their directed evolution studies suggest that increasing the expression or maltose/maltotriose transport activity of a 25 maltose/maltotriose transporter protein at the plasma membrane of a yeast cell would allow the yeast cell to consume maltotriose or maltose as the sole carbon source. In other words, yeast cells have the enzymes and other proteins necessary to use maltotriose or maltose as a carbon source 30 internally, but some yeast cells may lack the ability to grow on maltotriose or maltose because the cells lack the ability to transport the maltotriose or maltose across the plasma membrane of the yeast cell. Accordingly, in some embodiments, the modified yeast cells may have increased expres- 35 sion or increased maltose/maltotriose transport activity of the maltose/maltotriose transporter polypeptide, as compared to a control yeast cell, at the plasma membrane of the yeast cell.

The increased maltose/maltotriose transport activity or 40 expression of the maltose/maltotriose transporter polypeptide is relative to a "control yeast cell." A "control yeast cell" is a yeast cell that has not been modified as described herein. Exemplary control yeast cells may include, without limitation, the unevolved yeast strains used by the inventors in the 45 non-limiting Examples, such as FM1318, CRUB 1568^{T} =PYCC 6148^{T} =CBS 12357^{T} , yHKS210, or yHRVM108.

As used herein, "maltose/maltotriose transport activity" refers to the ability of a maltose/maltotriose transporter ⁵⁰ polypeptide to transport maltose or maltotriose across a membrane. In some embodiments, the maltose/maltotriose transport activity of the maltose/maltotriose transporter polypeptide is increased by at least 30%, 40%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 100%, 150%, 55 200%, 300%, 500% or 1000% as compared to a control yeast cell.

As used herein, the term "expression" may refer either to the levels of an RNA encoding a protein in a cell or the levels of the protein in a cell. In some embodiments, the expression 60 of the maltose/maltotriose transporter polypeptide is increased by at least 30%, 40%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 100%, 150%, 200%, 300%, 500% or 1000% as compared to a control yeast cell.

The yeast cells may be modified to increase as compared 65 to a control yeast cell the maltose/maltotriose transport activity or expression of a maltose/maltotriose transporter

polypeptide. As used herein, the terms "modified" or "modifying" refer to using any laboratory methods available to those of skill in the art including, without limitation, directed evolution, genetic engineering techniques (i.e. CRISPR/Cas techniques or gene overexpression technologies), traditional breeding/selection techniques, or forward genetic techniques to affect the maltose/maltotriose transport activity or expression of a maltose/maltotriose transporter polypeptide. It will be readily apparent to one of ordinary skill in the art that there are multiple potential ways to increase the maltose/maltotriose transport activity or expression of a maltose/ maltotriose transporter polypeptide, by modifying the gene encoding the maltose/maltotriose transporter polypeptide, for example, introducing targeted mutations, by modifying a mRNA (or levels thereof) encoding the maltose/maltotriose transporter polypeptide, for example, gene overexpression techniques.

In some embodiments, the yeast cell may be modified to increase the expression or maltose/maltotriose transport activity of a maltose/maltotriose transporter polypeptide by introducing into the yeast cell, using for example techniques known in the art, any one of the polypeptides described herein, any one of the polynucleotides described herein, any one of the DNA constructs described herein, or any one of the vectors described herein or via combinations thereof. For example the expression of the maltose/maltotriose transporter may be increased and the activity of the maltose/ maltotriose transporter may also be increased by combining the mutations in the polypeptides described herein.

The yeast may also be modified to introduce a hypermorphic mutation(s) in a polynucleotide (i.e., gene) encoding the maltose/maltotriose transporter polypeptide. A "hypermorphic mutation" is an alteration in a gene that results in an increased level of activity, or in which the wild-type gene product is expressed at an increased level. It will be readily apparent to those of skill in the art that a variety of hypermorphic mutations may be introduced (using, for example, directed evolution, CRISPR/Cas or other genome engineering techniques) into a polynucleotide encoding the maltose/maltotriose transporter polypeptide described herein to arrive at embodiments of the present invention. For example, a person of ordinary skill may introduce alterations (i.e., substitutions or deletions) into the promoter of a gene encoding a maltose/maltotriose transporter polypeptide described herein that result in additional expression of the maltose/maltotriose transporter polypeptide. Still further modifications contemplated herein include mutations that impact one or more of the domains of the maltose/maltotriose transporter polypeptide.

As used herein, a "maltose/maltotriose transporter polypeptide" may include any polypeptide that can transport maltose or maltotriose across a membrane. Suitable maltose/ maltotriose transporter polypeptides may include, without limitation, AGT1 or AGT-like (alpha-glucoside transporter), MTT1/MTY1, or MPH polypeptides. In some embodiments, the maltose/maltotriose transporter protein may include a polypeptide having at least 60%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% or 100% sequence identity to SEQ ID NO: 6 (lgAGT1), SEQ ID NO: 7 (ncAGT1), SEQ ID NO: 8 (AGT1), or SEQ ID NO: 15 (scAGT1), or a functional fragment of the maltose/maltotriose transporter protein thereof.

In some embodiments, the yeast cell may be a *Saccharomyces eubayanus* cell modified to increase, as compared to a control *Saccharomyces eubayanus* cell, the expression or maltose/maltotriose transport activity of a maltose/

maltotriose transporter polypeptide at the plasma membrane of the Saccharomyces eubayanus cell.

Methods for Making a Fermentation Product

In a still further aspect, the present invention relates to methods for making a fermentation product. The methods 5 may include culturing any one of the yeast cells described herein with a fermentable substrate to produce the fermentation product.

As used herein, "culturing" refers to mixing the yeast cells into any medium including a fermentable substrate.

The fermentable substrate may include maltose or maltotriose. In some embodiments, the fermentable substrate may include wort or malt extract.

The fermentation product may be a beer product, a wine 15 product, an alcoholic beverage, a biochemical, or a biofuel. In some embodiments, the fermentation product is a lager beer.

The present disclosure is not limited to the specific details of construction, arrangement of components, or method 20 steps set forth herein. The compositions and methods disclosed herein are capable of being made, practiced, used, carried out and/or formed in various ways that will be apparent to one of skill in the art in light of the disclosure that follows. The phraseology and terminology used herein 25 is for the purpose of description only and should not be regarded as limiting to the scope of the claims. Ordinal indicators, such as first, second, and third, as used in the description and the claims to refer to various structures or method steps, are not meant to be construed to indicate any specific structures or steps, or any particular order or con- 30 figuration to such structures or steps. All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (e.g., "such as") provided herein, is intended 35 merely to facilitate the disclosure and does not imply any limitation on the scope of the disclosure unless otherwise claimed. No language in the specification, and no structures shown in the drawings, should be construed as indicating that any non-claimed element is essential to the practice of 40 the disclosed subject matter. The use herein of the terms "including," "comprising," or "having," and variations thereof, is meant to encompass the elements listed thereafter and equivalents thereof, as well as additional elements. Embodiments recited as "including," "comprising," or "having" certain elements are also contemplated as "consisting 45 essentially of" and "consisting of" those certain elements.

Recitation of ranges of values herein are merely intended to serve as a shorthand method of referring individually to each separate value falling within the range, unless otherwise indicated herein, and each separate value is incorpo- 50 rated into the specification as if it were individually recited herein. For example, if a concentration range is stated as 1% to 50%, it is intended that values such as 2% to 40%, 10% to 30%, or 1% to 3%, etc., are expressly enumerated in this specification. These are only examples of what is specifically intended, and all possible combinations of numerical values between and including the lowest value and the highest value enumerated are to be considered to be expressly stated in this disclosure. Use of the word "about" to describe a particular recited amount or range of amounts is meant to indicate that values very near to the recited amount are included in that amount, such as values that could or naturally would be accounted for due to manufacturing tolerances, instrument and human error in forming measurements, and the like. All percentages referring to amounts are by weight unless indicated otherwise.

No admission is made that any reference, including any non-patent or patent document cited in this specification, constitutes prior art. In particular, it will be understood that, unless otherwise stated, reference to any document herein does not constitute an admission that any of these documents forms part of the common general knowledge in the art in the United States or in any other country. Any discussion of the references states what their authors assert, and the applicant reserves the right to challenge the accuracy and pertinence of any of the documents cited herein. All references cited herein are fully incorporated by reference, unless explicitly indicated otherwise. The present disclosure shall control in the event there are any disparities between any definitions and/or description found in the cited references.

Unless otherwise specified or indicated by context, the terms "a", "an", and "the" mean "one or more." For example, "a protein" or "an RNA" should be interpreted to mean "one or more proteins" or "one or more RNAs," respectively.

The following examples are meant only to be illustrative and are not meant as limitations on the scope of the invention or of the appended claims.

EXAMPLES

Example 1

Old and New Maltotriose Transporters in Saccharomyces eubayanus

Previous studies have shown that the primary hindrance to maltotriose utilization in Saccharomyces is the inability of cells to transport the sugar across the plasma membrane (Wang et al. 2002; Rautio and Londesborough 2003). In yeasts that are capable of maltotriose consumption, the sugar is taken up by a small number maltose transporters encoded by genes in the MALT family (Han et al. 1995; Dietvorst et al. 2005; Salema-Oom et al. 2005; Brown et al. 2010). While a number of transporters in this family have been characterized that can carry maltose and other sugars (Brown et al. 2010), maltotriose transporters are more rare, reflecting the general difficultly of transporting higher molecular weight sugars, such as dextrins and starch (Barnett 1992; Briggs D. E., Brookes P. A., Stevens R. 2004 p. 123,125). Here we characterize native MALT genes found in S. eubavanus for their ability to enable the transport of maltotriose and describe a novel chimeric maltotriose transporter that resulted from directed evolution of S. eubayanus for maltotriose consumption.

Materials and Methods

Strains

65

All strains discussed in this paper are listed in Table 1. Briefly, FM1318 is a monosporic derivative of the type strain of S. eubayanus (CRUB 1568^T=PYCC 6148^T=CBS 12357^{T}), which was isolated from Patagonia (Libkind et al. 2011). yHRVM108 was isolated from Durham, N.C. and is closely related to the S. eubayanus strains that hybridized with S. cerevisiae to give rise to lager-brewing yeasts (Pens & Langdon et al., 2016). yHKS210 was isolated from Sheboygan, Wis. and is an admixture between populations A and B of S. eubayanus (Peris et al. 2014). Of these strains, FM1318 and yHKS210 grew well on maltose, but did not grow on maltotriose. yHRVM108 grew sluggishly on maltose and did not grow on maltotriose (Table 1). yHAB47 is synonymous with Weihenstephan 34/70 (Peris & Langdon et al., 2016), a representative of the Frohberg or Group II (Magalhães et al. 2016) lineage of lager-brewing hybrids. CDFM21L.1 is a strain of S. eubayanus isolated from Tibet (Bing et al. 2014) and closely related to yHRVM108. Of known S. eubavanus strains, CDFM211-1 is the most genetically similar to the S. eubayanus parents of lager-brewing hybrids.

TABLE 1

Strain	Species	Background	Relavent genotype	MAL	MalTri	Description	Source
FM1318	S. eubayanus	_	_	+	-	monosporic derivative of the type strain of <i>S. eubayanus</i>	Libkind & Hittinger et al. (<i>PNAS</i> , 2011)
yHRVM108	S. eubayanus	_	_	(+/-)	-	Member of the holoartic subpopulation population of isolated from Durham, North Carolina	Peris & Langdon et al. (PLOS Genetics, 2016)
yHKS210	S. eubayanus	_	MALT4/ MALT4	+	-	Admixture of <i>S. eubayanus</i> populations A and B isolated from Sheboygan, Wisconsin	Peris et al. (<i>Molecular</i> <i>Ecology</i> , 2014)
yHEB1403	S. eubayanus	yHKS210		+	+	Sample taken from the 86th passage of yHKS210.	This study
yHEB1505	S. eubayanus	yHKS210	MALT434/ MALT434	+	+	single colony isolate taken from the evolution of yHKS210 in maltotriose after 86 passages.	This study
yHEB1506	S. eubayanus	yHKS210	_	+	+	single colony isolate taken from the evolution of yHKS210 in maltotriose after 86 passages.	This study
yHEB1593	S. eubayanus	yHKS210 × yHEB1505	MALT434/ MALT4	+	+	Backcross between yHEB1505 and yHKS210	This study
yHEB1853	S. eubayanus	yHKS210 × yHEB1505	MALT434/ malt4∆:: NatMX	+	+	yHEB1593 with original MALT4 allele replaced with NatMX marker	This study
yHEB1854	S. eubayanus	yHKS210 × yHEB1505	malt434 ∆∷NatMX/ MALT4	+	-	yHEB1593 with chimeric MALT434 allele replaced with NatMX marker	This study
yHEB1881	S. eubayanus	yHKS210	MALT4/ MALT4 [pBM5155- MALT434]	+	+	yHKS210 with pBM5155 based plasmid for MALT434 expression	This study
yHEB1878	S. eubayanus	yHRVM108	[pBM5155- MALT434]	+	+	yHRVM108 with pBM5155 based plasmid for MALT434	This study
yHEB1870	S. eubayanus	yHRVM108	[pBM5155- MALT1]	(+/-)	-	yHRVM108 with pBM5155 based plasmid for MALT1 expression	This study
yHEB1872	S. eubayanus	yHRVM108	[pBM5155- MALT3]	(+/-)	-	yHRVM108 with pBM5155 based plasmid for MALT3 expression	This study
yHEB1877	S. eubayanus	yHRVM108	[pBM5155- MALT2/4]	(+/-)	-	yHRVM108 with pBM5155 based plasmid for MALT2/4 expression	This study
yHEB1885	S. eubayanus	yHRVM108	[pBM5155- IgAGT1]	+	+	yHRVM108 with pBM5155 based plasmid for AGT1 from lager brewing yeast expression	This study
yHEB1882	S. eubayanus	yHKS210	[pBM5155- IgAGT1]	+	+	yHKS210 with pBM5155 based plasmid for expression of the lager allele of AGT1	This study

TABLE 1-continued

		SUB	mə anu piasiili	us uscu l	n uns EX	minple	
Strain	Species	Background	Relavent genotype	MAL	MalTri	Description	Source
yHEB1883	S. eubayanus	yHRVM108	[pBM5155- ncAGT1]	+	+	yHRVM108 with pBM5155 based plasmid for expression of the North Carolinian allele of AGT1	This study
yHEB1884	S. eubayanus	yHRVM108	[pBM5155- IgAGT1]	+	+	yHRVM108 with pBM5155 based plasmid for expression of the lager brewing yeast allele of AGT1	This study
yHAB47	S. eubayanus × S. cerevisiae	_	_	+*	+*	Weihenstephan 34/70; Frohberg lineage of lager brewing yeast hybrids *(Magalhaes et al. 2016)	Peris & Langdon et al. (<i>PLOS</i> <i>Genetics</i> , 2016)
yHEB1585	S. eubayanus	yHRVM108	_	+	+	single colony isolate taken from replicate A of the evolution of yHRVM108 in maltose after 86 passages.	This study
yHEB1586	S. eubayanus	yHRVM108	_	+	+	single colony isolate taken from replicate A of the evolution of yHRVM108 in maltose after 86 passages.	This study
yHEB1587	S. eubayanus	yHRVM108	_	+	+	single colony isolate taken from replicate A of the evolution of yHRVM108 in maltose after 86 passenge	This study
yHEB1588	S. eubayanus	yHRVM108	_	+	+	single colony isolate taken from replicate B of the evolution of yHRVM108 in maltose after 86 passages	This study
yHEB1589	S. eubayanus	yHRVM108	_	+	+	single colony isolate taken from replicate B of the evolution of yHRVM108 in maltose after 86 passages	This study
yHEB1590	S. eubayanus	yHRVM108		+	+	single colony isolate taken from replicate B of the evolution of yHRVM108 in maltose after 86	This study
yHEB1778	S. eubayanus	yHRVM108	_	+	_	passages. Single-colony isolate taken from replicate C of the evolution of yHRVM108 in maltose after 86	This study
yHEB1779	S. eubayanus	yHRVM108		+	_	Single-colony isolate taken from replicate C of the evolution of yHRVM108 in maltose after 86 passages.	This study
yHEB1780	S. eubayanus	yHRVM108	_	+	-	Single-colony isolate taken from replicate C of the evolution of yHRVM108 in maltose after 86 passages.	This study

			Delement				
Strain	Species	Background	genotype	MAL	MalTri	Description	Source
pBM5155	plasmid	_	_	na	na	plasmid for doxycycline inducible gene expression (GenBank KT725304 1)	Alexander et al. 2016 (Fungal Genet. Biol)
pHEB7	plasmid	—	_	na	na	pBM5155 with ncAGT1 gap repaired into the Notl site	This study
pHEB11	plasmid	_	_	na	na	pBM5155 with IgAGT1 gap repaired into the Notl site	This study
pHEB16	plasmid	_	_	na	na	pBM5155 with MALT1 gap repaired into the Notl site	This study
pHEB17	plasmid	—	_	na	na	pBM5155 with MALT3 gap repaired into the Notl site	This study
pHEB18	plasmid	_	_	na	na	pBM5155 with MALT4 gap repaired into the Notl site	This study
pHEB19	plasmid		_	na	na	pBM5155 with MALT434 gap repaired into the Notl site	This study

TABLE 1-continued

19

Identification of MALT Genes

Previously, we identified four genes with homology to the genes encoding the maltose transporters of S. cerevisiae and lager-brewing hybrids in the genome assembly of FM1318 published by Baker et al. 2015. These genes were previously designated MALT1-4. Only a partial contig was available ³⁵ for MALT4 in this assembly, but a BLAST (Altschul et al. 1997) search of the Okuno et al. 2016 assembly of the type strain of S. eubayanus (of which FM1318 is a monosporic derivative) allowed us to annotate the full-length sequence of MALT4. MALT4 has 99.7% identity to MALT2 at the nucleotide level and 100% identity at the amino acid level. The regions from 900 bp downstream of MALT2 and MALT4 and upstream to the ends of chromosomes V and XVI (regions of approximately 12 kb in the Okuno et al. 45 2016 assembly), respectively, share 99.1% nucleotide identity. The 10 kb outside of this region only share 49.8%

30 nucleotide identity. Thus, MALT2 and MALT4 are close paralogs that are likely related by a recent subtelomeric duplication and/or translocation event.

Reads for homologs of AGT1 were retrieved using the functional AGT1 sequence from lager yeast (lgAGT1) as the query sequence (Nakao et al. 2009) in a BLAST search of the SRA databases of NCBI for yHRVM108 (SRR2586159) and CDFM21L.1(SRR1507225). All reads identified in the BLAST searches were downloaded and assembled using the de novo assembler in Geneious v. 9.0.3 (http://www.geneious.com, Kearse et al., 2012). The homologs identified in yHRVM108 and CDFM21L.1 were designated ncAGT1 (for North Carolinian AGT1) and tbAGT1 (for Tibetan AGT1) respectively. The presence and sequence of ncAGT1 in yHRVM108 was further verified by PCR amplification and Sanger sequencing (Table 2). CDFM21L.1 was not available at the time of this work for further verification of the presence of tbAGT1.

TABLE 2

4∩

	Oligonucleotides used	l in this Example
Name	Sequence	Description
OHECPB75	TATAGACACGCAAACACAAATACACACACA AAATTAATGAAGGGATTATCCTCATTAATA (SEQ ID NO: 17)	amplifies MTT1 for cloning into pBM5155 over NotI site by gap repair
OHECPB76	TCAAGAAATTCGCTTATTTAGAAGTGGCGC GAATTCACTATCATTTGTTCACAACAGATG (SEQ ID NO: 18)	amplifies MTT1 for cloning into pBM5155 over NotI site by gap repair
OHECPB77	CACGCAAACACAAAATACACACACTAAATTA ATGAAAAATATACTTTCGCTGGTAGGAAGA (SEQ ID NO: 19)	amplifies IgAGT1 for cloning into pBM5155 over NotI site by gap repair
OHECPB78	CAAGAAATTCGCTTATTTAGAAGTGGCGCG AATTCACTATCATAACGCCTGTTGACTCGC (SEQ ID NO: 20)	amplifies IgAGT1 for cloning into pBM5155 over NotI site by gap repair

TABLE 2 -continued

Oliqonucleotides used in this Example						
Name	Sequence	Description				
OHECPB104	ACACGCAAACACAAATACACACACACAAATT AATGAAGAATATCATTTCGCTGGTAAGAA G (SEQ ID NO: 21)	amplifies ncAGT1 for cloning into pBM.5155 over NotI site by gap repair				
OHECPB105	GAAATTCGCTTATTTAGAAGTGGCGCGAAT TCACTATTATAATGCCTGCTGACTCATGCT (SEQ ID NO: 22)	amplifies ncAGT1 for cloning into pBM.5155 over NotI site by gap repair				
OHECPB124	CCTATGCTTCTGAAGTTTGC (SEQ ID NO: 23)	primer to confirm sequence of IgAGT1 and ncAGT1 in pBM5155				
OHECPB125	CCTGCCAAACCAAGACAG (SEQ ID NO: 24)	primer to confirm sequence of IgAGT1 and ncAGT1 in pBM5155				
OHECPB128	GCTTGTTTATGTTGGGTCGGTC (SEQ ID NO: 25)	primer to confirm sequence of MTT1 in pBM5155				
OHECPB129	GACCGACCCAACATAAACAAGC (SEQ ID NO: 26)	primer to confirm sequence of MTT1 in pBM5155				
OHECPB138	ACACGCAAACACAAATACACACACATAAATT AATGAAGGGTCTATCCTCAATGATAAATAG (SEQ ID NO: 27)	amplifies MALT4 (and or MALT2) from <i>S. eubayanus</i> for cloning into pBM5155 over NotI site by gap repair				
OHECPB139	CGCTTATTTAGAAGTGGCGCGAATTCACTA TCAATCCATTAGAGATGGGGGGGGGTGCTTTGCTC (SEQ ID NO: 28)	amplifies MALT4 (and or MALT2) from <i>S. eubayanus</i> for cloning into pBM5155 over NotI site by gap repair				
OHECPB140	CACGCAAACACAAATACACACACTAAATTA ATGAAGGGTCTATCTTCAATATTGAATAGA (SEQ ID NO: 29)	amplifies MALT1 from <i>S. eubayanus</i> for cloning into pBM5155 over NotI site by gap repair				
OHECPB141	CGCTTATTTAGAAGTGGCGCGAATTCACTA TCAAATCGTAAGAGATGGGGTAGTTAATTC (SEQ ID NO: 30)	amplifies MALT1 from <i>S. eubayanus</i> for cloning into pBM5155 over NotI site by gap repair				
OHECPB142	CACGCAAACACAAATACACACACTAAATTA ATGAAGGGCTTATCCTCACTGATAAACAGA (SEQ ID NO: 31)	amplifies MALT3 from <i>S. eubayanus</i> for cloning into pBM5155 over NotI site by gap repair				
OHECPB143	CGCTTATTTAGAAGTGGCGCGAATTCACTA TCATAAATTCGTAATAGATGGTGTGCTTCG (SEQ ID NO: 32)	amplifies MALT3 from <i>S. eubayanus</i> for cloning into pBM5155 over NotI site by gap repair				
OHECPB156	ATATTATGGTAGATATGACCTTTACG (SEQ ID NO: 33)	primer to confirm sequence of MALT2/4 in pBM5155				
OHECPB157	GGTTGATTTCATCAGAGATTGCTTTGG (SEQ ID NO: 34)	primer to confirm sequence of MALT2/4				
OHECPB158	CGTAAAGGTCATATCTACCATAATAT (SEQ ID NO: 35)	primer to confirm sequence of MALT2/4 in pBM5155				
OHECPB159	CCAATGTCTGACTGTGTCTTATGCCTC (SEQ ID NO: 36)	primer to confirm sequence of MALT2/4 in pBM5155				
OHECPB160	GAGGCATAAGACACAGTCAGACATTGG (SEQ ID NO: 37)	primer to confirm sequence of MALT2/4 in pBM5155				
OHECPB161	CTGTCTTGGTTTGGCAGG (SEQ ID NO: 38)	primer to confirm sequence of IgAGT1 and ncAGT1 in pBM5155				
OHECPB162	CTGTGAAAGTTTAGGGATGATTGCGG (SEQ ID NO: 39)	primer to confirm sequence of MALT1 in pBM5155				
OHECPB163	CCGCAATCATCCCTAAACTTTCACAG (SEQ ID NO: 40)	primer to confirm sequence of MALT1 in pBM5155				
OHECPB164	CCTGTATATGTTGGATCGGTCAAAC (SEQ ID NO: 41)	primer to confirm sequence of MALT1 in pBM5155				
OHECPB165	GTTTGACCGATCCAACATATACAGG (SEQ ID NO: 42)	primer to confirm sequence of MALT1 in pBM5155				

	Oligonucleotides used	In this Example
Name	Sequence	Description
OHECPB166	CCTTTGGCTTTAAGATACTACC (SEQ ID NO: 43)	primer to confirm sequence of MALT3 in pBM5155
OHECPB167	GGTAGTATCTTAAAGCCAAAGG (SEQ ID NO: 44)	primer to confirm sequence of MALT3 in pBM5155
OHECPB168	GGATGCTCTGATACTCACGG (SEQ ID NO: 45)	primer to confirm sequence of MALT3 in pBM5155
OHECPB169	CCGTGAGTATCAGAGCATCC (SEQ ID NO: 46)	primer to confirm sequence of MALT3 in pBM5155
OHECPB170	GGARAGTGATACCTTATCATCTGCTGCGCT AAGAGTCAAGATCTGTTTAGCTTGCCTT (SEQ ID NO: 47)	amplifies MX-driven drug markers with overhangs to the MALT4 and MALT2 loci for allele replacement
OHECPB171	ACTCAAAAAAAATTCCAAAAGCTATTAGGT AACTGAGCTCGTTTTCGACACTGGAT (SEQ ID NO: 48)	by homologous recombination with overhangs to the MALT4 and MALT2 loci for allele replacement by homologous recombination
OHECPB172	CGATATTTCCGCCGCAGCCCGAG (SEQ ID NO: 49)	specifically amplifies the MALT2 locus when used with primers oHECPB159 or oHECPB156
OHECPB173	CTTAGTAGCAGCGACATATTCAAG (SEQ ID NO: 50)	specifically amplifies the MALT4 locus when used with primers oHECPB159 or oHECPB156
oHCT770	AACTCTTGTTTTCTTCTTTTCTCTAAA (SEQ ID NO: 51)	amplifies genes inserted over NotI site in pBM5155
oHCT771	GGGACCTAGACTTCAGGTTGTC (SEQ ID NO: 52)	amplifies genes inserted over NotI site in pBM5155

Directed Evolution

Directed evolution was initiated by growing parent strains overnight in liquid YPD medium (1% yeast extract, 2% peptone, 2% glucose). One mL of maltotriose or maltose medium was inoculated with enough overnight culture to 40 give an OD_{600} reading of ~0.1 as measured with an IMPLEN OD600 DiluPhotometerTM. Evolution in maltotriose was conducted in synthetic complete (SC) medium (0.17% yeast nitrogen base, 0.5% ammonium sulfate, 0.2% complete drop out mix) with 2% maltotriose and 0.1% glucose. The addi- 45 tion of 0.1% glucose ensured enough growth that mutations could occur and be selected for through the ensuing generations. Directed evolution of yHRVM108 in maltose was carried out in SC with 2% maltose. Because yHRVM108 grew so poorly in maltose alone, an additional 0.1% glucose 50 was supplemented into its medium; after increased growth was observed around generation 110 for replicate A, from which strains yHEB1585-1587 are derived, and around generation 80 for replicate B, from which strains yHEB1588-90 were derived, subsequent generations of 55 vHRVM108 directed evolution in maltose for these replicates was conducted with 2% maltose only. The directed evolution of each strain was carried out in triplicate. Samples were grown on a culture wheel at room temperature (22° C.) and diluted 1:10 into fresh media every 3-4 days. 60 Samples of each evolution replicate were taken every other passage and placed into long-term storage by mixing 700 uL of culture with 300 uL of 50% glycerol in a cryotube and storing it at -80° C. The number of doublings between passages was estimated from cell counts during the second 65 and third passages. Evolution was carried out for a total of 100 passages. Strains that could not use the primary carbon

source in adaptive evolution medium underwent approximately one cell division per day on average.

Sporulation and Backcrossing

To induce sporulation, strains were grown to saturation, washed twice, and then resuspended in 200 μ L liquid sporulation (spo) medium (1% potassium acetate, 0.5% zinc acetate). 30 μ L of this suspension was added to 1.5 mL of spo medium and incubated on a culture wheel at room temperature. Cultures were checked for sporulation after 2-5 days. Tetrads were dissected using a Singer SporePlay. For backcrossing, tetrads of the strains to be crossed were dissected on a single YPD plate. A spore from one parent was placed in close proximity to a spore from the other parent; they were observed over several hours for mating and zygote formation. Transformations of the diploid F_1 backcross strain for gene knockouts were carried out as described below in the section describing the construction of gene expression plasmids.

Construction of Gene Expression Plasmids

Genes encoding transporters of interest were cloned via gap repair into the NotI site of plasmid pBM5155 (GenBank KT725394.1), which contains the complete machinery necessary for doxycycline induction of genes cloned into this site (Alexander et al. 2016). Transformation was carried out using standard lithium acetate transformation (Daniel Gietz and Woods 2002) with modifications to optimize transformation in *S. eubayanus*. Specifically, transformation reactions were heat shocked at 34° C. After 55 minutes, 100% ethanol was added to 10% total volume, and the reactions heat shocked for another 5 minutes before they were allowed to recover overnight and plated to selective media the next day. When necessary, plasmids were recovered and amplified in *Escherichia coli* for transformation into multiple strains. The sequences of genes encoding transporters cloned into pBM5155 were verified by Sanger sequencing. *S. eubayanus* MALT1, MALT3, and MALT4 were amplified from FM1318, lgAGT1 was amplified from yHAB47, and 5 ncAGT1 was amplified from yHRVM108. Primers used for plasmid construction and sequence verification are listed in Table 2.

Growth Assays

Growth was measured in liquid media in 96-well plates 10 using OD₆₀₀ measurements on a FLUOstar Omega microplate reader. To test the abilities of single-colony isolates of yHKS210 evolved in maltotriose to grow in maltotriose, strains were grown overnight in liquid YPD and washed. Yeast was inoculated into wells to give an initial OD₆₀₀ 15 reading of ~0.1-0.2. To test the ability of single-colony isolates of yHRVM108 evolved in maltose to use maltose and maltotriose, a single colony was used to inoculate both SC+2% maltose and SC+2% maltotriose media. For assays testing the growth of strains carrying MALT genes 20 expressed on an inducible plasmid, strains were grown to saturation, washed twice, resuspended in liquid SC without added carbon, and starved for 24 hours. The next day, strains were diluted in SC without added carbon to $OD_{600}=1.9+/-$ 0.05 to ensure that all cultures had approximately the same 25 starting concentration. 15 µL of each diluted culture was added to 235 μL of the test medium. Three technical replicates, randomly distributed on a 96-well plate to control for position effects, were carried out for each strain. Strains were tested in SC with 2% added carbon source and 50 30 ng/mL doxycycline to induce plasmid gene expression. To control for growth from the small amount of non-maltotriose sugar in 98% pure maltotriose, the parent strains of vHRVM108 and vHKS210 were also tested in SC medium+ 0.04% glucose, reflecting the approximate amount of other 35 carbon sources expected in SC medium+2% maltotriose. Bulk-Segregant Analysis

As described above, 60 spores from 15 fully viable tetrads of strain yHEB1593 (F1 of yHKS210×yHEB1505) were dissected and individually screened for their ability to grow 40 in SC+2% maltotriose. F2 segregants that could grow in maltotriose were classified as MalTri+, and those that could not were classified as MalTri⁻. Each F₂ segregant was then individually grown to saturation in liquid YPD. The saturated cultures were spun down, the supernatant removed, 45 and enough cells resuspended in liquid SC medium to give an OD₆₀₀ measurement of between 1.9 and 1.95. Strains were pooled based on their ability to grow in maltotriose, leading to a MalTri⁺ pool and a MalTri⁻ pool. To pool, 1 mL of each strain dilution was added to the appropriate pool of 50 cells and vortexed to mix. A phenol-chloroform extraction was used to isolate gDNA from the segregant pools. The gDNA was sonicated and ligated to Illumina TruSeq-style dual adapters and index sequencing primers using the NEB-Next® DNA Library Prep Master Mix Set for Illumina® kit 55 following the manufacturer's instructions. The paired-end libraries were sequenced on an Illumina MiSeq instrument, conducting a 2×250 bp run.

Analysis of Bulk-Segregant Whole-Genome Sequencing Reads

60

To identify fixed differences between the meiotic segregant pools, whole-genome assemblies were made for the MalTri⁻ group of segregants using the meta-assembler iWGS with default settings (Zhou et al. 2016). The final de novo genome assembly of the MalTri⁻ pool was made by 65 DISCOVAR (Weisenfeld et al. 2014) in iWGS. This assembly was used for reference-based genome assembly and

variant calling using reads from the MalTri⁺ pool following the protocol described in Peris and Langdon et al. 2016. Assemblies of the putative chimeric maltotriose transporter were retrieved from the MalTri⁺ pool of reads using the program HybPiper (Johnson et al. 2016). Briefly, HybPiper uses a BLAST search of read sequences to find reads that map to a query sequence; it then uses the programs Exonerate (Slater and Birney 2005) and SPAdes (Bankevich et al. 2012) to assemble the reads into contigs. The sequence and genomic location of the chimeric transporter was further verified by PCR amplification and Sanger sequencing (Table 2).

Phylogenetic and Protein Mutation Prediction Analyses

Multiple sequence alignments between the proteins encoded by the MALT genes were carried out using MUSCLE (Edgar 2004), as implemented in Geneious v.9.0.3 (http://www.geneious.com, Kearse et al., 2012). Phylogenetic relationships were determined using codon alignments. Codon alignments were made using PAL2NAL (Suvama, Torrents, & Bork, 2006; http://www.bork.embl.de/ pal2nal/) to convert the MUSCLE alignments of amino acid sequences to nucleotide alignments. A phylogenetic tree of nineteen MALT genes from S. eubayanus, S. cerevisiae, and lager-brewing yeasts was made as described in Baker et al. 2015 using MEGA v.6. All genes used in the phylogenetic analysis are as follows. MAL21, MAL31, and MAL61 from S. cerevisiae; MALT1 and MALT3 from S. eubayanus; MALT1, MALT2 and MPH from lager-brewing yeast; MPH2 and MPH3 from S. cerevisiae; AGT1 (MAL11 in Baker et al. 2015) from S. cerevisiae; scAGT1 (Weihen-MAL11-CB in Baker et al. 2015); and lgAGT1 (Weihen-MAL11-CA in Baker et al. 2015) were retrieved as previously described in Baker et al. 2015. Sequences for MALT2 and MALT4 were retrieved from the genome assembly of CBS12357 from Okuno et al. 2016. MAL11 was retrieved from the genome assembly of S. cerevisiae strain YJM456 (Strope et al. 2015). Sequences for tbAGT1 and ncAGT1 were retrieved as described above. MAL11 and AGT1 are both α -glucoside transporters located at the MAL1 locus in S. cerevisiae and as such are considered alleles of each other (Charron and Michels 1988; Han et al. 1995). Their shared genomic location notwithstanding, MAL11 and AGT1 are not phylogenetically closely related, with MAL11 clustering with other MAL×1 type transporters (FIG. 2). In addition, while AGT1 can support maltotriose transport, MAL11, like other MAL×1 genes, cannot (Han et al. 1995; Brown et al. 2010). Despite their dissimilarity, AGT1 is recorded in the Saccharomyces Genome Database as MAL11 since the reference strain carries the AGT1 allele at the MAL1 locus (Vidgren et al. 2005, 2009). For this reason MAL11 is often used to refer to AGT1 (Brown et al. 2010; Baker et al. 2015; Brickwedde et al. 2017). For clarity, here we use MAL11 to only refer to the MAL×1 like allele and AGT1 to the distinct maltotriose transporting allele.

Protein structure predictions for MALT3, MALT4, lgAGT1, and scAGT1 were carried out using the I-TASSER server, and the structure prediction of MALT434 was carried out using the command line version of I-TASSER (https:// zhanglab.ccmb.med.umich.edu/I-TASSER/,Roy, Kucukural, & Zhang, 2010; Yang et al., 2015; Zhang, 2008). The potential impact of the single residue difference between lgAGT1 and tbAGT1 was analyzed by two different methods. Prediction of the change in free energy ($\Delta\Delta$ G) was carried out using the STRUM server (Quan et al. 2016). A $\Delta\Delta$ G score of <+-0.5 was considered to be unlikely to affect function (Bromberg and Rost 2009). Homology-based predictions were made using SIFT (Ng and Henikoff 2001a,

2002, 2003, 2006; Kumar et al. 2009). The SIFT Related Sequences analysis was done using the amino acid sequences of MALT genes in the phylogenetic analysis above. Several SIFT analyses were also carried out using the SIFT Sequence analysis program. This analysis operates using the same principle as the SIFT Related Sequences analysis, but rather than being supplied by the user, homologous sequences were provided by a PSI-BLAST search of the indicated protein database. The SIFT Sequence analyses were carried out using default settings and the following 10 databases NCBI nonredundant 2011 Mar, 2UniRef90 2011 Apr, 3UniProt-SwissProt 57.15 2011 Apr. Results

Maltotriose Transporters in S. eubayanus

Previously, we identified four genes in the S. eubavanus 15 genome assembly with homology to genes encoding known maltose transporters (MALT genes) (Baker et al. 2015). The complete sequence of one transporter, MALT4, was not present in the Baker et al. assembly but was found in another assembly for the type strain of S. eubayanus (Okuno et al. 20 2016). MALT4 encodes an identical amino acid sequence to MALT2, and these genes are likely related by a recent subtelomeric duplication and/or translocation event (see Material and Methods). Because of their identical amino acid sequences, we refer to these genes jointly as MALT2/4. 25 To determine if they could enable maltotriose transport, MALT1, MALT3, and MALT2/4 were individually overexpressed using an inducible promoter in the S. eubayanus strain yHRVM108, a strain of S. eubavanus isolated from North Carolina that is unable to grow on maltotriose and, 30 unlike other strains of S. eubayanus, has sluggish growth on maltose. None of these genes were able to confer growth on maltotriose when overexpressed (Table 3).

TABLE 3

etvorst et al. 2005; Vidgren et al. 2009; Vidgren and Londesborough 2012; Cousseau et al. 2013). Thus far, full-length sequences closely related to this lgAGT1 have not been described in any strain of S. eubayanus, but contigs containing the partial sequence of a gene with high similarity to lgAGT1 were recovered from an assembly of the genome of CDFM21L. 1, a Tibetan isolate of S. eubayanus (Hebly et al. 2015).

To recover a full-length sequence of lgAGT1 from S. eubayanus genome sequence, the nucleotide sequence of lgAGT1 was used as query sequence in an SRA-BLAST against Illumina reads deposited in NCBI for CDFM21L.1 (Bing et al. 2014) and the closely related strain yHRVM108 (Peris and Langdon et al. 2016). Both CDFM21L.1 and yHRVM108 belong to the Holarctic subpoptilation of S. eubayanus and are close relatives of the strains of S. eubayanus that hybridized with S. cerevisiae to form lagerbrewing yeasts (Peris and Langdon et al 2016). From the reads that mapped to IgAGTI, two full-length genes with high sequence identity to lgAGT1 were assembled and designated tbAGT1 and ncAGT1, for Tibetan-AGT1 and North Carolinian-AGT1, respectively (FIGS. 1A-1B).

There are two single nucleotide polymorphisms (SNPs) between the full-length sequence of tbAGT1 and lgAGT1, one of which results in a non-synonymous substitution (FIG. 1B). This single-residue change probably has no impact on the function of tbAGT1 compared to lgAGT1 since it occurs near the N-terminus and outside of any predicted transmembrane domains (FIG. S1). In addition, analyses of the predicted effect of this substitution in lgAGT1 using STRUM and SIFT mutant protein prediction software (Ng and Henikoff 2001b; Quan et al. 2016) suggest that this single substitution is unlikely to significantly impact the structure or function of the protein (Table 4).

Strain	Background	Transporter	Initial OD	Day 3	Day 6
yHRVM108* yHRVM108 yHEB1870 yHEB1877 yHEB1872 yHEB1883 yHEB1884	North Carolinian strain North Carolinian strain yHRVM108 yHRVM108 yHRVM108 yHRVM108 yHRVM108	— MALT1 MALT2/4 MALT3 ncAGT1 IgAGT1	0.16 (+/-0.05) 0.12 (+/-0.03) 0.13 (+/-0.03) 0.11 (+/-0.00) 0.13 (+/-0.01) 0.11 (+/-0.01) 0.10 (+/-0.00)	0.39 (+/-0.02) 0.47 (+/-0.00) 0.43 (+/-0.04) 0.39 (+/-0.01) 0.41 (+/-0.00) 0.54 (+/-0.07) 0.42 (+/-0.07)	0.48 (+/-0.01) 0.46 (+/-0.03) 0.58 (+/-0.04) 0.57 (+/-0.02) 0.62 (+/-0.5) 1.34 (+/-0.10) 0.94 (+/-0.09)

Growth on SC + 2% maltotriose (98% pure) of strains expressing MALT genes on a doxycycline-inducible plasmid. N = 3, x = 0.000 min of x = 0.000

Although none of the transporters found in the type strain of S. eubavanus were able to support growth on maltotriose, 50 there is compelling evidence from lager-brewing yeasts for the existence of maltotriose transporters within the greater S. eubayanus population (Dietvorst et al. 2005; Nakao et al. 2009; Vidgren et al. 2010; Cousseau et al. 2013; Baker et al. 2015). Of particular interest are the alleles of AGT1. Two 55 versions of AGT1 are present in the genomes of lagerbrewing yeasts. One, which we call scAGT1 (S. cerevisiae-AGT1), was donated by the S. cerevisiae parent of lager yeasts but is probably non-functional due to a nonsense mutation early in its sequence (Vidgren et al. 2005; Nakao 60 et al. 2009; Magalhãs et al. 2016). The other AGT1, which we call lgAGT1 (lager-AGT1), was proposed to be of S. eubayanus origin based on its sequence divergence from scAGT1 and its location near S. eubayanus genomic regions (Nakao et al. 2009). Both lgAGT1 and scAGT1, like other 65 AGT1 alleles(Han et al. 1995; Day et al. 2002b; Vidgren et al. 2005), can transport both maltose and maltotriose (Di-

TABLE 4

		SI	FT ^b	
	Related		Sequence	1
STRUM ^a	Sequences ^c	NCBI1	UniRef90 ²	SwissProt ³
-0.4 # of sequences analyzed	1.00 19	1.00 59	0.57 18	1.00 8

Results of mutation prediction analyses for E18V, the sole non-synonymous substitution in the IgAGT1 protein-coding sequence, relative to tbAGT1. "predicted $\Delta\Delta G$ (<0.5 likely no change in function, Bromberg and Rost 2009)

^bprovides amino acid probability score (<0.5 predicted to be deleterious)

sequences used for for SIFT analysis are the same as used for the phylogenetic analysis (FIĜ. 2) sequences used for analysis provided by a PSI-BLAST of the indicated protein database

Protein Databases:

¹NCBI nonredundant 2011 March, ²UniRef90 2011 April,

³UniProt-SwissProt 57.15 2011 April

In contrast to tbAGT1, ncAGT1 has 95% sequence identity with lgAGT1, with non-synonymous differences distrib-

uted throughout the sequence (FIGS. 1A-1B). Despite the presence of ncAGT1, the yHRVM108 wild type strain grows poorly on maltose and is unable to grow in maltotriose, raising the question of whether the ability to transport maltotriose has been conserved between ncAGT1 and lgAGT1. Interestingly, and in contrast to all MALT genes found in the Patagonian type strain of *S. eubayanus*, over-expression of ncAGT1 in yHRVM108 conferred growth in maltotriose (Table 3), suggesting that insufficient ncAGT1 gene expression, rather than protein function, is likely the main reason for the inability of yHRVM108 to grow on maltotriose.

Phylogenetic Relationship Among Maltose Transporters

Lager-brewing yeasts inherited maltose/maltotriose transporters from both their *S. cerevisiae* and their *S. eubayanus* parents. To put the relationship between *S. eubayanus*, *S. cerevisiae*, and lager transporters into a phylogenetic perof these strains can grow on maltotriose, a small amount of glucose was also added to the media to permit a limited number of cell divisions to allow for mutation and selection to occur. Each strain was setup in triplicate and evolved by serial passaging in liquid media. Strains that could not use the primary carbon source in the directed evolution medium underwent approximately one cell division per day on average.

Over the course of 100 passages, representing approximately 3,150 cell divisions in total between all the strains and replicates, only a single replicate evolved the ability to grow in maltotriose. Surprisingly, it was not a replicate of yHRVM108, but one of yHKS210 that evolved maltotriose consumption. Two single-colony isolates (yHEB1505-6) from this replicate were isolated and confirmed to be able to grow on maltotriose without added glucose (FIG. **3**A, Table 5).

TABLE 5

Strain	Background	Evolved in	Initial OD	Day 3	Day 6
vHKS210*	Admixture strain	_	0.22 (+/-0.01)	0.68 (+/-0.07)	0.60 (+/-0.04)
vHKS210	Admixture strain		0.14 (+/-0.02)	0.41 (+/-0.01)	0.39(+/-0.05)
yHEB1505	vHKS210	maltotriose	0.16 (+/-0.01)	1.46 (+/-0.01)	1.82 (+/-0.03)
vHEB1506	vHKS210	maltotriose	0.15(+/-0.01)	1.44 (+/-0.02)	1.76 (+/-0.09)
yHRVM108*	North Carolinian strain	_	0.22 (+/-0.01)	0.47 (+/-0.01)	0.48 (+/-0.03)
vHRVM108	North Carolinian strain		0.12 (+/-0.03)	0.47 (+/-0.00)	0.46 (+/-0.03)
yHEB1585	vHRVM108	maltose	0.12(+/-0.00)	0.79(+/-0.01)	1.28(+/-0.06)
yHEB1586	vHRVM108	maltose	0.12(+/-0.01)	0.81 (+/-0.05)	1.31(+/-0.07)
, vHEB1587	vHRVM108	maltose	0.11(+/-0.01)	0.77(+/-0.01)	1.32 (+/-0.06)
yHEB1588	vHRVM108	maltose	0.13 (+/-0.00)	0.44 (+/-0.01)	0.82(+/-0.10)
, yHEB1589	vHRVM108	maltose	0.12(+/-0.01)	0.56(+/-0.01)	0.87(+/-0.05)
yHEB1590	yHRVM108	maltose	0.11 (+/-0.03)	0.58 (+/-0.01)	1.00 (+/-0.03)

Growth on maltotriose of single-colony isolates from adaptive evolution experiments. Strains were evolved with either maltotriose or maltose as the primary carbon source (2%) with 0.1% added glucose. N = 3. *Control grown in SC + 0.04% glucose to reflect the approximate amount of growth expected from contamination with other carbon sources when using 98% pure maltotriose.

spective, a gene tree was constructed for these three groups of MALT genes (FIG. 2). Consistent with previous analyses of MALT genes in Saccharomyces (Brown et al. 2010), the current set of MALT genes analyzed fell into 3 major clades. 40 MPH genes, encoding maltose transporters native to S. cerevisiae but also present in some lager yeasts (Day et al. 2002a; Vidgren et al. 2005), formed their own small clade. The clade containing the largest number of genes was made up of MALT1-4 from S. eubayanus, MAL×1 genes from S. 45 cerevisiae, and the lager-specific gene MTT1 (Dietvorst et al. 2005; Salema-Oom et al. 2005; Baker et al. 2015). This clade was further subdivided into a group containing only S. eubayanus transporter genes and their closely related lager homologs, as well as a second group consisting of MAL×1 50 genes, MTT1, and MALT3.

The final major clade was significantly divergent from the other two groups. This clade consisted of the AGT1 genes and was further split between the AGT1 genes from *S. cerevisiae* and the AGT1 genes from *S. eubayanus*. AGT1 55 genes isolated from lager yeasts were found in both sub-clades.

Evolution of Maltotriose Consumption

Since yHRVM108 already contains a functional maltotriose transporter, we decided to see if it could readily evolve ⁶⁰ maltotriose consumption. We also decided to try to evolve maltotriose utilization in FM1318 (Libkind et al. 2011) and in yHKS210 (Peris et al. 2014), strains that lack transporters capable of conferring maltotriose utilization, even when overexpressed (Table 3). A search of the available genome ⁶⁵ sequence reads for FM1318 and yHKS210 indicated that neither of these strains contain AGT1 homologs. Since none

To determine the genetic architecture of maltotriose utilization, we setup an F1 backcross between yHEB1505 and the parent strain (yHKS210), producing strain yHEB1593, a putative heterozygote capable of growth on maltotriose (FIGS. 3B and 3E). In a test of 15 fully viable tetrads, maltotriose utilization segregated in a perfect 2:2 manner (FIG. 3C). These results suggest that the ability of the evolved strain to use maltotriose was conferred by a dominant mutation at a single genetic locus. We performed bulk-segregant analysis (Brauer et al. 2006; Segre et al. 2006; Ehrenreich et al. 2010) using strains derived from the F_2 spores, dividing them between those that could (MalTri⁺) and those that could not (MalTri⁻) use maltotriose (FIG. 3C), with a total of 30 strains in each category. Twelve 1-kb regions were identified as containing fixed differences between the MalTri⁺ and MalTri⁻ strains. Of these regions, eight mapped to genes encoding ribosomal proteins and most likely represent assembly artefacts due to the presence of many closely related paralogs. Three other regions contained fixed changes between the MalTri+ and MalTrigroups but had no clear relationship to carbon metabolism. The final 1-kb region mapped to the MALT4 locus of FM1318. The coding sequence of MALT4 from the MalTri⁺ group contained 54 SNPs relative to the MALT4 allele found in FM1318. Four of these SNPs were synonymous differences that were present in yHKS210 before the start of directed evolution. The remaining 50 SNPs occurred within a single 230-bp region. Of these, 11 were predicted to lead to non-synonymous changes (FIGS. 3F and 3H). Closer inspection revealed that the changes within the 230-bp region were the result of a recombination event between

MALT4 and MALT3, creating a chimeric gene (FIGS. 3F-H), likely through ectopic gene conversion. We call this chimeric MALT4 gene MALT434 after the arrangement of sequences from its parent genes. The sequence of MALT3 was not impacted by this mutation event.

To confirm that MALT434 was the causative locus of maltotriose utilization, we replaced MALT434 with the NatMX marker in the heterozygous Fibackcross strain (FIG. 3D), leaving only the original non-chimeric MALT4 gene. This knockout eliminated that strain's ability to utilize 10 maltotriose (FIG. 3E), demonstrating that MALT434 is required for maltotriose utilization. Conversely, replacing the parental, non-chimeric allele of MALT4 in the heterozygous F_1 backcross strain had no impact on maltotriose utilization. Furthermore, overexpression of MALT434 in 15 both the unevolved parent, yHKS210, and in the yHRVM108 background (FIG. 5) supported growth in maltotriose, demonstrating that its overexpression is sufficient to confer maltotriose utilization (Table 3). These results confirm that the mutant MALT434 gene encodes a 20 functional maltotriose transporter.

It was surprising that a sequence from MALT3 permitted MALT4 to now encode a maltotriose transporter because neither MALT3 nor MALT4 supported maltotriose utilization on their own (Table 3). Malt3 and Malt4 share about 25 80% amino acid identity overall and 85% amino acid identity in the chimeric region specifically (FIG. 3H). Most residues in the chimeric region had high similarity between Malt3 and Malt4, as measured by Blosum62 similarity matrix (FIG. 3I) (Henikoff and Henikoff 1992), but there 30 were a handful of low similarity amino acids as well. To gain insight into what changes may be driving the new functionality of MALT434, we used I-TASSER (Zhang 2008; Roy et al. 2010; Yang et al. 2015) to predict the protein structure of Malt3, Malt4, and Malt434. I-TASSER predicts a proteins' 35 structure based on its homology to proteins whose structures have already been solved. I-TASSER determined that Malt3, Malt4, and Malt434 all had homology with members of the Major Facilitator Superfamily (MFS) of transporters, consistent with other studies on the structure of maltose trans- 40 porters in Saccharomyces (Cheng and Michels 1989; Han et al. 1995; Barrett et al. 1999; Yan 2015). Based on these protein structure predictions, the structure of the chimeric region is likely conserved between Malt3 and Malt4. I-TASSER predicted that the chimeric region encompasses 45 one full transmembrane domain and parts of two other transmembrane domains (FIG. 3J). I-TASSER also predicted that this region contains four maltose-binding sites. These same domains and predicted binding residues were identified within Malt434 as well. Interestingly, I-TASSER 50 predicted that two of the alpha helices in the chimeric region were shorter in Malt434 than in the parent proteins. Towards the N-terminal end of the protein, another two alpha helices were also predicted to be shortened in Malt434 relative to its parents (FIG. 4). The regions covered by these alpha helices 55 were otherwise predicted to be conserved between both Malt3 and Malt4, as well as the phylogenetically more distant maltotriose transporters lgAgt1 and scAgt1 (FIG. 3J, FIG. 4). Slightly decreasing the amount of structure in the protein by shortening these key alpha helices could have 60 increased the overall flexibility of the protein, potentially making it easier to accommodate maltotriose, which contains an extra glucose moiety relative to maltose.

In a further attempt to define the portion of MALT434 that is critical for growth on maltotriose, we tested a further set 65 of strains expressing MALT434 (yHEB1878), MALT334 (yHJC1-2) and MALT 433 (yHJC3-4). The results are

shown in FIG. **6**. Strain yHKS210 served as the wild-type control which was unable to grow on maltotrise. These strains allow a direct comparison between the MALT434 which confers maltotriose transport and allows for growth on maltotriose with the related chimeric proteins all having the same region from MALT 3 that MALT 434 has. The MALT334 strain was not capable of growing on or utilizing maltotriose any better than the wild-type strain, whereas the MALT433 strain was capable of utilizing maltotriose similar to MALT434. Thus the N-terminal portion of MALT4 seems necessary for maltotriose utilization. The C-terminus can be derived from either parent polypeptide.

A Chimeric Path to Novel Substrate Utilization

We found that a chimeric protein constituted a novel maltotriose transporter, despite the fact that neither of the parent proteins was able to transport maltotriose. Since the MALT3 region recombined into MALT4 was not able to support maltotriose in its native background, epistatic interactions with other sequence(s) in MALT4 must be important for this gain of function. Comparison of predicted protein structures suggested that several alpha helixes may be shortened in Malt434 compared to the parent proteins. The regions covered by these helixes were otherwise predicted to be conserved, even out to the distantly related Malt transporters lgAgt1 and scAgt1 (FIG. 2, FIG. 3J, FIG. 4). The predicted shortening of some alpha helixes within the chimeric protein compared to both its parents suggests that recombining the MALT3 region into MALT4 may have decreased the overall rigidity of the encoded chimeric protein, allowing it to accommodate bulkier substrates, such as maltotriose.

A previous study characterizing residues important for transporting maltotriose in scAgt1 found two residues that were important for its ability to transport maltotriose, while not affecting its ability to transport maltose (Smit et al. 2008). One of these residues lies within the chimeric region we observed in Malt434, and the other is 10 amino acid residues downstream (FIG. **3**J). As the overall structure of maltose/maltotriose transporters is conserved (Cheng and Michels 1989; Han et al. 1995; Barrett et al. 1999; Yan 2015), the area in and around the chimeric region in Malt434 may itself be important for substrate specificity.

Replacement of the MALT4 sequence in this region with sequence from MALT3 may then have facilitated maltotriose transport in two ways. First, the mutation may have increased the overall flexibility of the encoded transporter, allowing it to accommodate the larger maltotriose molecule. Second, it could also have specifically altered an important substrate interface for better interaction with maltotriose, possibly by also making this region more flexible. Testing these biophysical and structural models will require future experiments, such as solving the crystal structures for Malt3, Malt4, and Malt434 as complexes with maltose and/or maltotriose.

Challenges of Evolving Maltotriose Utilization

Based on the results of our directed evolution experiments, which led to a single novel maltotriose transporter, the evolution of a protein that can transport maltotriose seems to be relatively rare, much rarer than one would expect if it could have been achieved with a single point mutation. The drastic mutation required to convert MALT4 into a gene encoding a maltotriose transporter and the phylogenetic placement of the rare known maltotriose transporters suggest that maltotriose transporters are generally difficult to evolve. Of the known MALT genes, only MTT1 and the AGT1 clade encode maltotriose transporters (Han et al. 1995; Dietvorst et al. 2005; Salema-Oom et al. 2005; Vidgren and Londesborough 2012). Other MALT genes described in S. eubayanus were not found to be able to encode maltotriose transporters (Table 3), and no MAL×1type genes are known to encode maltotriose transporters 5 (Horak 2013). MAL11 is sometimes described as being able to transport maltotriose (Brown et al. 2010; Baker et al. 2015; Brickwedde et al. 2017), but this discrepancy is the result of confusion over the naming of AGT1 in S288C and has been noted before (see Materials and Methods and 10 Vidgren et al. 2005, 2009).

But what of the evolution of expression of a maltotriose transporter that was already present? Initially, we anticipated that it would be simple for yHRVM108 to evolve the ability to utilize maltotriose because we knew it already contained 15 a transporter whose expression allows for strong maltotriose utilization in the parent background (Table 3). However, over the course of 100 passages, representing around 1,050 generations in yHRVM108, no maltotriose-utilizing lineage of vHRVM108 arose. While evolving vHRVM108 under our 20 maltotriose selection regime was not successful, we were surprised to find an alternative and indirect selection regime could evolve maltotriose utilization in this background. When we began directed evolution of S. eubayanus to maltotriose, we also started another directed evolution 25 experiment to try and improve yHRVM108's sluggish growth in maltose. Here, all three replicates of yHRVM108 eventually evolved the ability to grow rapidly on maltose. On average, single-colony isolates from these replicates grew four times as fast as the unevolved parent over two days in maltose (Table 6). Interestingly, isolates from the first two replicates that gained the ability to grow on maltose also gained the ability to utilize maltotriose (Table 5), despite never being exposed to maltotriose during the course of directed evolution.

Strain	Background	Evolved in	Initial OD	Day 2
yHRVM108* yHRVM108 yHEB1585 yHEB1586 yHEB1587 yHEB1588 yHEB1589 yHEB1590	North Carolinian strain North Carolinian strain yHRVM108 yHRVM108 yHRVM108 yHRVM108 yHRVM108 yHRVM108	maltose maltose maltose maltose maltose maltose	$\begin{array}{c} 0.22 \ (+/-0.01) \\ 0.15 \ (+/-0.03) \\ 0.16 \ (+/-0.02) \\ 0.14 \ (+/-0.01) \\ 0.16 \ (+/-0.01) \\ 0.17 \ (+/-0.01) \\ 0.18 \ (+/-0.01) \\ 0.18 \ (+/-0.01) \end{array}$	$\begin{array}{c} 0.43 \ (+/-0.00) \\ 0.37 \ (+/-0.02) \\ 1.49 \ (+/-0.01) \\ 1.48 \ (+/-0.01) \\ 1.48 \ (+/-0.02) \\ 1.40 \ (+/-0.02) \\ 1.40 \ (+/-0.03) \\ 1.43 \ (+/-0.04) \end{array}$

TABLE 6

Growth on maltose of single-colony isolates. Isolated from adaptive evolution of yHRVM108 on 2% maltose + 0.1% glucose. N = 3. *Control grown in SC + 0.04% glucose to reflect the approximate amount of growth expected from contamination with other carbon sources when using 98% pure maltotriose.

50

The fact that maltotriose consumption independently evolved at least twice under directed evolution for maltose utilization suggests that our maltotriose selection regime

itself may have played a role in restraining evolution. In other experiments to evolve Saccharomyces yeasts to carbon 55 limitation or maltotriose consumption, the parent strains already had some capacity to use the supplied carbon source (Dunham et al. 2002; Brickwedde et al. 2017). For our experiments, this was true for directed evolution for maltose utilization, but it was not the case for directed evolution for 60 maltotriose utilization.

Upregulation of MAL genes first requires maltose (or presumably maltotriose) to enter the cell (Wang et al. 2002). In the absence of glucose, at least one of the MALT transporters is ostensibly expressed at some level to allow 65 Bing J., Han P.-J., Liu W.-Q., Wang Q.-M., Bai F.-Y., 2014 this to occur (Wang et al. 2002). As yHRVM108 is unable to grow in maltotriose (Table 5), it seems unlikely that appre-

34

ciable ncAGT1 is expressed. Nonetheless, under the maltose evolution conditions, cells started with some limited capacity to take up maltose, presumably from another MALT that was expressed, and thereby likely induced expression of MAL genes. Any regulatory mutations that loosened negative regulation or enhanced induction of ncAGT1 and other MALT genes in the absence of glucose and the presence of maltose would have been favored by selection (Horak 2013). As a result, relatively simple changes may have been sufficient to allow for ncAGT1 expression during evolution in maltose. Such changes would have been selected for since expression of ncAGT1 could help increase maltose uptake. However, during evolution in maltotriose, the MAL genes would have remained repressed since no maltose was present in the culture medium. As a consequence, rarer (and never observed) mutations might have been necessary to achieve expression of ncAGT1 in maltotriose. In retrospect, what appeared to be a simple request, to turn on the ncAGT1 gene in the condition being selected for, may in fact have been quite difficult by simple mutations, whereas our indirect selection regime on maltose proved more effective.

REFERENCES

- Alexander W. G., Peris D., Pfannenstiel B. T., Opulente D. A., Kuang M., et al., 2016 Efficient engineering of marker-free synthetic allotetraploids of Saccharomyces. Fungal Genet. Biol. 89: 10-17.
- 30 Altschul S., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., et al., 1997 Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25: 3389-3402.
 - Baker E., Wang B., Bellora N., Peris D., Hulfachor A. B., et al., 2015 The Genome Sequence of Saccharomyces

eubayanus and the Domestication of Lager-Brewing Yeasts. Mol. Biol. Evol. 32: 2818-2831.

- Bankevich A., Nurk S., Antipov D., Gurevich A. A., Dvorkin M., et al., 2012 SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing. J. Comput. Biol. 19: 455-477.
- Barnett J. A., 1992 Some controls on oligosaccharide utilization by yeasts: The physiological basis of the Kluyver effect. FEMS Microbiol. Lett. 100: 371-378.
- Barrett M. P., Walmsleyt A. R., Gould G. W., 1999 Structure and function of facultative sugar transporters. Curr. Opin. Cell Biol. 11: 496-502.
- Evidence for a Far East Asian origin of lager beer yeast. Curr. Biol. 24: R380-1.

- Brauer M. J., Christianson C. M., Pai D. A., Dunham M. J., 2006 Mapping novel traits by array-assisted bulk segregant analysis in *Saccharomyces cerevisiae*. Genetics 173: 1813-6.
- Brickwedde A., Broek M. van den, Geertman J.-M. A., 5 Magalhãs F., Kuijpers N. G. A., et al., 2017 Evolutionary Engineering in Chemostat Cultures for Improved Maltotriose Fermentation Kinetics in Saccharomyces pastorianus Lager Brewing Yeast. Front. Microbiol. 8: 1690.
- Briggs D. E., Brookes P. A., Stevens R. B. C. A., 2004 *Brewing: science and practice.* Woodhead Publishing Limited, Abington Hall, Abington Cambridge CB1 6AH, England.
- Bromberg Y., Rost B., 2009 Correlating protein function and stability through the analysis of single amino acid sub- 15 stitutions. BMC Bioinformatics 10 Suppl 8: S8.
- Brown C. a, Murray A. W., Verstrepen K. J., 2010 Rapid Expanion and Functional Divergence of Subtelomeric Gene Families in Yeasts. Curr. Biol. 20: 895-903.
- Charron M. J., Michels C. A., 1988 The naturally occurring ²⁰ alleles of MAL1 in *Saccharomyces* species evolved by various mutagenic processes including chromosomal rearrangement. Genetics 120: 83-93.
- Cheng Q., Michels C. A., 1989 The maltose permease encoded by the MAL61 gene of *Saccharomyces cerevisiae* exhibits both sequence and structural homology to other sugar transporters. Genetics 123.
- Cousseau F. E. M., Alves S. L., Trichez D., Stambuk B. U., 2013 Characterization of maltotriose transporters from the Saccharomyces eubayanus subgenome of the hybrid 30 Saccharomyces pastorianus lager brewing yeast strain Weihenstephan 34/70. Lett. Appl. Microbiol. 56: 21-29.
- Daniel Gietz R., Woods R. A., 2002 Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. Methods Enzymol. 350: 87-96. 35
- Day R. E., Higgins V. J., Rogers P. J., Dawes I. W., 2002a Characterization of the putative maltose transporters encoded by YDL247w and YJR160c. Yeast 19: 1015-1027.
- Day R. E., Rogers P. J., Dawes I. W., Higgins V. J., 2002b 40 Molecular analysis of maltotriose transport and utilization by *Saccharomyces cerevisiae*. Appl. Environ. Microbiol. 68: 5326-35.
- Denby C. M., Li R. A., Vu V. T., Costello Z., Lin W., et al., 2018 Industrial brewing yeast engineered for the production of primary flavor determinants in hopped beer. Nat. Commun. 9: 965.
- Dietvorst J., Londesborough J., Steensma H. Y., 2005 Maltotriose utilization in lager yeast strains: MTT1 encodes a maltotriose transporter. Yeast 22: 775-788.
- Dunham M. J., Badrane H., Ferea T., Adams J., Brown P. O., et al., 2002 Characteristic genome rearrangements in experimental evolution of *Saccharomyces cerevisiae*. Proc. Natl. Acad. Sci. 99: 16144-16149.
- Edgar R. C., 2004 MUSCLE: multiple sequence alignment 55 with high accuracy and high throughput. Nucleic Acids Res. 32: 1792-1797.
- Ehrenreich I. M., Torabi N., Jia Y., Kent J., Martis S., et al., 2010 Dissection of genetically complex traits with extremely large pools of yeast segregants. Nature 464: 60 1039-1042.
- Εβlinger H. M., 2009 Fermentation, Maturation and Storage. In: Εβlinger H M (Ed.), *Handbook of brewing* processes, technology, markets, Weinheim (Germany), p. 209.
- Gibson B. R., Storgårds E., Krogerus K., Vidgren V., 2013 Comparative physiology and fermentation performance

of Saaz and Frohberg lager yeast strains and the parental species *Saccharomyces eubayanus*. Yeast 30: 255-266.

- Gibson B., Liti G., 2015 *Saccharomyces pastorianus:* genomic insights inspiring innovation for industry. Yeast 32: 17-27.
- Gibson B., Geertman J.-M. A., Hittinger C. T., Krogerus K., Libkind D., et al., 2017 New yeasts-new brews: modern approaches to brewing yeast design and development. FEMS Yeast Res. 17.
- Han E., Cotty F., Sottas C., Jiang H., Michels C. A., 1995 Characterization of AGT1 encoding a general α-glucoside transporter from *Saccharomyces*. Mol. Microbiol. 17: 1093-1107.
- Hebly M., Brickwedde A., Bolat I., Driessen M. R. M., Hulster E. A. F. de, et al., 2015 Saccharomyces cerevisiae x Saccharomyces eubayanus interspecific hybrid, the best of both worlds and beyond. FEMS Yeast Res.
- Henikoff S., Henikoff J. G., 1992 Amino acid substitution matrices from protein blocks. Biochemistry 89: 10915-10919.
- Hittinger C. T., Steele J. L., Ryder D. S., 2018 Diverse yeasts for diverse fermented beverages and foods. Curr. Opin. Biotechnol. 49: 199-206.
- 25 Horák J., 2013 Regulations of sugar transporters: insights from yeast. Curr. Genet. 59: 1-31.
 - Johnson M. G., Gardner E. M., Liu Y., Medina R., Goffinet B., et al., 2016 HybPiper: Extracting coding sequence and introns for phylogenetics from high-throughput sequencing reads using target enrichment. Appl. Plant Sci. 4.
 - Kearse M., Moir R., Wilson A., Stones-Havas S., Cheung M., et al., 2012 Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28: 1647-1649.
 - Krogerus K., Magalhãs F., Vidgren V., Gibson B., 2015 New lager yeast strains generated by interspecific hybridization. J. Ind. Microbiol. Biotechnol. 42: 769-778.
 - Krogerus K., Arvas M., Chiara M. De, Magalhãs F., Mattinen L., et al., 2016 Ploidy influences the functional attributes of de novo lager yeast hybrids. Appl. Microbiol. Biotechnol. 100: 7203-22.
 - Krogerus K., Magalhãs F., Vidgren V., Gibson B., 2017a Novel brewing yeast hybrids: creation and application. Appl. Microbiol. Biotechnol. 101: 65-78.
 - Krogerus K., Seppanen-Laakso T., Castillo S., Gibson B., 2017b Inheritance of brewing-relevant phenotypes in constructed Saccharomyces cerevisiae x Saccharomyces eubayanus hybrids. Microb. Cell Fact. 16: 66.
- 50 Kumar P., Henikoff S., Ng P. C., 2009 Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm.
 - Libkind D., Hittinger C. T., Valério E., Gonçalves C., Dover J., et al., 2011 Microbe domestication and the identification of the wild genetic stock of lager-brewing yeast. Proc. Natl. Acad. Sci. U.S.A. 108: 14539-14544.
 - Magalhãs F., Vidgren V., Ruohonen L., Gibson B., 2016 Maltose and maltotriose utilisation by group I strains of the hybrid lager yeast *Saccharomyces pastorianus*. FEMS Yeast Res. 16.
 - Mertens S., Steensels J., Saels V., Rouck G. De, Aerts G., et al., 2015 A large set of newly created interspecific Saccharomyces hybrids increases aromatic diversity in lager beers. Appl. Environ. Microbiol. 81: 8202-14.
- 65 Meussdoerffer F., Zarnkow M., 2009 Starchy Raw Materials. In: *Handbook of brewing processes, technology, markets,* Weinheim (Germany), p. 58.

15

40

- Nakao Y., Kanamori T., Itoh T., Kodama Y., Rainieri S., et al., 2009 Genome sequence of the lager brewing yeast, an interspecies hybrid. DNA Res. an Int. J. rapid Publ. reports genes genomes 16: 115-129.
- Ng P. C., Henikoff S., 2001a Predicting deleterious amino 5 acid substitutions. Genome Res. 11: 863-74.
- Ng P. C., Henikoff S., 2001b Predicting deleterious amino acid substitutions. Genome Res. 11: 863-74.
- Ng P. C., Henikoff S., 2002 Accounting for human polymorphisms predicted to affect protein function. Genome Res. 12: 436-46.
- Ng P. C., Henikoff S., 2003 SIFT: Predicting amino acid changes that affect protein function. Nucleic Acids Res. 31: 3812-4.
- Ng P. C., Henikoff S., 2006 Predicting the Effects of Amino Acid Substitutions on Protein Function. Annu. Rev. Genomics Hum. Genet 7: 61-80.
- Nikulin J., Krogerus K., Gibson B., 2018 Alternative Saccharomyces interspecies hybrid combinations and their 20 Vidgren V., Ruohonen L., Londesborough J., 2005 Characpotential for low-temperature wort fermentation. Yeast 35: 113-127.
- Okuno M., Kajitani R., Ryusui R., Morimoto H., Kodama Y., et al., 2016 Next-generation sequencing analysis of lager brewing yeast strains reveals the evolutionary history of 25 interspecies hybridization. DNA Res. 23: dsv037.
- Peris D., Sylvester K., Libkind D., Goncalves P., Sampaio J. P., et al., 2014 Population structure and reticulate evolution of Saccharomyces eubayanus and its lager-brewing hybrids. Mol. Ecol. 23: 2031-2045.
- Peris D., Langdon Q. K., Moriarty R. V., Sylvester K., Bontrager M., et al., 2016 Complex Ancestries of Lager-Brewing Hybrids Were Shaped by Standing Variation in the Wild Yeast Saccharomyces eubayanus (J C Fay, Ed.). PLOS Genet. 12: e1006155.
- Peris D., Moriarty R. V., Alexander W. G., Baker E., Sylvester K., et al., 2017 Hybridization and adaptive evolution of diverse Saccharomyces species for cellulosic biofuel production. Biotechnol. Biofuels 10: 78.
- Quan L., Lv Q., Zhang Y., 2016 STRUM: structure-based prediction of protein stability changes upon single-point mutation. Bioinformatics 32: 2936-2946.
- Rautio J., Londesborough J., 2003 Maltose Transport by Brewer's Yeasts in Brewer's Wort. J. Inst. Brew. 109: 45 251-261.
- Roy A., Kucukural A., Zhang Y., 2010 I-TASSER: a unified platform for automated protein structure and function prediction. Nat. Protoc. 5: 725-738.
- 50 Salema-Oom M., Valaddo Pinto V., Goncalves P., Spencer-Martins I., 2005 Maltotriose utilization by industrial Saccharomyces strains: characterization of a new member of the alpha-glucoside transporter family. Appl. Environ. Microbiol. 71: 5044-9.
- Segrè A. V, Murray A. W., Leu J.-Y., 2006 High-Resolution Mutation Mapping Reveals Parallel Experimental Evolution in Yeast (K Wolfe, Ed.). PLoS Biol. 4: e256.

- Slater G., Birney E., 2005 Automated generation of heuristics for biological sequence comparison. BMC Bioinformatics 6: 31.
- Smit A., Moses S. G., Pretorius I. S., Cordero Otero R. R., 2008 The Thr505 and Ser557 residues of the AGT1encoded alpha-glucoside transporter are critical for maltotriose transport in Saccharomyces cerevisiae. J. Appl. Microbiol. 104: 1103-11.
- Stambuk B. U., Alves S. L., Hollatz C., Zastrow C. R., 2006 Improvement of maltotriose fermentation by Saccharomyces cerevisiae. Lett. Appl. Microbiol. 43: 370-376.
- Strope P., Skelly D., Kozmin S., Mahadevan G., Stone E., et al., 2015 The 100-genomes strains, an S. cerevisiae resource that illuminates its natural phenotypic and genotypic variation and emergence as an opportunistic pathogen. Genome Biol. Evol.
- Suyama M., Torrents D., Bork P., 2006 PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Res. 34: W609-W612
- terization and functional analysis of the MAL and MPH Loci for maltose utilization in some ale and lager yeast strains. Appl. Environ. Microbiol. 71: 7846-57.
- Vidgren V., Huuskonen A., Virtanen H., Ruohonen L., Londesborough J., 2009 Improved fermentation performance of a lager yeast after repair of its AGT1 maltose and maltotriose transporter genes. Appl. Environ. Microbiol. 75: 2333-45.
- Vidgren V., Multanen J.-P., Ruohonen L., Londesborough J., 2010 The temperature dependence of maltose transport in ale and lager strains of brewer's yeast. FEMS Yeast Res. 10: 402-411.
- Vidgren V., Londesborough J., 2012 Characterization of the Saccharomyces bayanus-type AGT1 transporter of lager yeast. J. Inst. Brew. 118: 148-151.
- 35 Wang X., Bali M., Medintz I., Michels C. A., 2002 Intracellular maltose is sufficient to induce MAL gene expression in Saccharomyces cerevisiae. Eukaryot. Cell 1: 696-703.
 - Wang J.-J., Wang Z.-Y., Liu X.-F., Guo X.-N., He X.-P., et al., 2010 Construction of an industrial brewing yeast strain to manufacture beer with low caloric content and improved flavor. J. Microbiol. Biotechnol. 20: 767-74.
 - Weisenfeld N. I., Yin S., Sharpe T., Lau B., Hegarty R., et al., 2014 Comprehensive variation discovery in single human genomes. Nat. Genet. 46: 1350-5.
 - Yan N., 2015 Structural Biology of the Major Facilitator Superfamily Transporters. Annu. Rev. Biophys. 44: 257-283.
 - Yang J., Yan R., Roy A., Xu D., Poisson J., et al., 2015 The I-TASSER Suite: protein structure and function prediction. Nat. Methods 12: 7-8.
 - Zhang Y., 2008 I-TASSER server for protein 3D structure prediction. BMC Bioinformatics 9: 40.
 - Zhou X., Peris D., Kominek J., Kurtzman C. P., Hittinger C. T., et al., 2016 in silico Whole Genome Sequencer & amp; Analyzer (iWGS): A Computational Pipeline to Guide the Design and Analysis of de novo Genome Sequencing Studies. G3 (Bethesda). 6: 3655-3662.

SEQUENCE LISTING

<160> NUMBER OF SEQ ID NOS: 52

<210> SEO ID NO 1 <211> LENGTH: 613 <212> TYPE: PRT

-continued

<213	3 > OI	RGAN:	ISM:	Art	ific	ial S	Seque	ence							
<220 <223)> F1 3> 0:	CHER	KE: INF(ORMA'	FION	: MAI	LT434	1 Pol	Lype	ptid	e Sec	quen	ce M2	ALT4	+ MALT3
	po	ortio	on												
<400)> SH	EQUEI	NCE :	1											
Met 1	Lys	Gly	Leu	Ser 5	Ser	Met	Ile	Asn	Arg 10	Lys	Lys	Сүз	Asn	Gly 15	Asn
Ser	Ser	Ser	Ile 20	Glu	Thr	Glu	Gly	Gly 25	Phe	Gly	Ala	Ala	Glu 30	Суз	Asn
Ser	Ile	Glu 35	Leu	Glu	Glu	Gln	Gly 40	Lys	Lys	Thr	Asp	Phe 45	Aab	Leu	Ala
His	Leu 50	Glu	Tyr	Gly	Gln	Gly 55	Pro	Ala	Ala	Leu	Ser 60	Glu	Asn	Asp	Glu
Val 65	Thr	Pro	Asn	Ile	Leu 70	Asp	Ala	Ala	Gln	Asp 75	Ala	ГЛа	Glu	Ala	Asp 80
Asp	Ser	Glu	Arg	Glu 85	Met	Pro	Leu	Met	Thr 90	Ala	Leu	ГЛа	Thr	Tyr 95	Pro
Lys	Ala	Ala	Ala 100	Trp	Ser	Leu	Leu	Val 105	Ser	Thr	Thr	Leu	Ile 110	Gln	Glu
Gly	Tyr	Asp 115	Thr	Ala	Ile	Leu	Gly 120	Ser	Phe	Tyr	Ala	Leu 125	Pro	Val	Phe
Gln	Lys 130	Lys	Tyr	Gly	Ser	Leu 135	Asn	Ala	Arg	Thr	Gly 140	Glu	Trp	Glu	Ile
Ser 145	Val	Ser	Trp	Gln	Ile 150	Gly	Leu	Cys	Leu	Cys 155	Tyr	Met	Ala	Gly	Glu 160
Ile	Val	Gly	Leu	Gln 165	Leu	Thr	Gly	Pro	Ser 170	Val	Asp	Leu	Met	Gly 175	Asn
Arg	Tyr	Thr	Leu	Ile	Met	Ala	Leu	Met	Phe	Leu	Thr	Ala	Phe	Ile	Phe
Ile	Leu	Tyr	Phe	Суз	Lys	Ser	Leu	Gly	Met	Ile	Ala	Ala	Gly	Gln	Ala
Leu	Cvs	195 Glv	Met	Pro	Tro	Glv	ZUU Cvs	Phe	Gln	Cvs	Leu	205 Thr	Val	Ser	Tvr
	210	<u>1</u>		<i>G</i>	<u>r</u>	215	-2		7	- 1	220		m)	m]	- <u>7</u> -
A1a 225	ser	GIU	шe	сув	230	Met	AIa	Leu	Arg	1yr 235	Tyr	Leu	Inr	Inr	1yr 240
Ser	Asn	Leu	Суз	Trp 245	Leu	Phe	Gly	Gln	Leu 250	Phe	Ala	Ala	Gly	Ile 255	Met
ГЛа	Asn	Ser	Gln 260	Asn	ГЛа	Tyr	Ala	Asp 265	Ser	Asp	Leu	Gly	Tyr 270	Thr	Leu
Pro	Phe	Ala 275	Leu	Gln	Trp	Ile	Trp 280	Pro	Val	Pro	Leu	Ala 285	Ile	Ala	Ile
Phe	Phe 290	Ala	Pro	Glu	Ser	Pro 295	Trp	Trp	Leu	Val	Lуз 300	Lys	Gly	Arg	Leu
Glu 305	Gln	Ala	Lys	Arg	Ser 310	Leu	Glu	Arg	Thr	Leu 315	Ser	Gly	Lys	Gly	Ala 320
Glu	Гла	Glu	Ser	Leu 325	Val	Ala	Met	Glu	Leu 330	Asp	Гла	Ile	Lys	Met 335	Thr
Ile	Glu	Lys	Glu 340	ГЛа	ГЛа	Leu	Ser	Asp 345	Asp	Glu	Gly	Ser	Tyr 350	Leu	Asp
Суз	Leu	Arg 355	Gly	ГЛа	Val	Asn	Arg 360	Arg	Arg	Thr	Arg	Ile 365	Ala	Суз	Leu
Суз	Trp 370	Ala	Gly	Gln	Thr	Val 375	Сүз	Gly	Ala	Ser	Leu 380	Ile	Gly	Tyr	Ser

-continued

Thr 385	Tyr	Phe	Tyr	Glu	Lys 390	Ala	Gly	Val	Ser	Thr 395	Glu	Thr	Ala	Phe	Thr 400
Phe	Ser	Ile	Ile	Gln 405	Tyr	Сүз	Leu	Gly	Ile 410	Ala	Ala	Thr	Phe	Leu 415	Ser
Trp	Trp	Ala	Ser 420	Lys	Tyr	Tyr	Gly	Arg 425	Tyr	Asp	Leu	Tyr	Ala 430	Cys	Gly
Leu	Ala	Phe 435	Gln	Thr	Val	Ile	Leu 440	Phe	Ile	Ile	Gly	Gly 445	Leu	Gly	Суз
Ser	Asp 450	Thr	His	Gly	Ala	Lys 455	Met	Gly	Ser	Gly	Ala 460	Leu	Leu	Met	Val
Val 465	Ala	Phe	Phe	Tyr	Asn 470	Leu	Gly	Ile	Ala	Pro 475	Val	Val	Phe	Cys	Leu 480
Val	Ser	Glu	Ile	Pro 485	Ser	Ser	Arg	Leu	Arg 490	Thr	Lys	Ser	Ile	Ile 495	Leu
Ala	Arg	Asn	Ala 500	Tyr	Asn	Met	Ala	Cys 505	Ile	Val	Thr	Ala	Val 510	Leu	Thr
Leu	Tyr	Gln 515	Leu	Asn	Ser	Glu	Lys 520	Trp	Asp	Trp	Gly	Ala 525	Lys	Ser	Gly
Phe	Phe 530	Trp	Gly	Gly	Leu	Cys 535	Phe	Ala	Thr	Leu	Val 540	Trp	Ala	Val	Phe
Asp 545	Leu	Pro	Glu	Thr	Ala 550	Gly	Arg	Thr	Phe	Ile 555	Glu	Ile	Asn	Glu	Leu 560
Phe	Arg	Leu	Gly	Val 565	Pro	Ala	Arg	Lys	Phe 570	Lys	Ser	Thr	Lys	Val 575	Asp
Pro	Phe	Ala	Ala 580	Ala	Lys	Ala	Ile	Ser 585	Asp	Glu	Ile	Asn	His 590	Lys	Asp
Pro	Lys	Glu 595	Asp	Met	Lys	Ala	Ser 600	Ala	Glu	Glu	Arg	Glu 605	Gln	Ser	Thr
Pro	Ser 610	Leu	Met	Asp											
<210 <211 <212 <213 <220 <223)> SH L> LH 2> TY 3> OF 0> FH 3> OT ar	EQ II ENGTH (PE: RGANJ EATUF THER 1d C-	D NO H: 61 PRT ISM: RE: INFC -tern	2 13 Art: DRMAT	ific: TION S MAI	ial s : MAI ST3	Seque LT433	ence 3 Ch:	imer:	Lc Pi	rote:	in w:	ith 1	N-tei	minus MALT4
<400)> SH	EQUE	ICE :	2											
Met 1	Lys	Gly	Leu	Ser 5	Ser	Met	Ile	Asn	Arg 10	Lys	Lys	Суз	Asn	Gly 15	Asn
Ser	Ser	Ser	Ile 20	Glu	Thr	Glu	Gly	Gly 25	Phe	Gly	Ala	Ala	Glu 30	Суз	Asn
Ser	Ile	Glu 35	Leu	Glu	Glu	Gln	Gly 40	Lys	Гла	Thr	Asp	Phe 45	Asp	Leu	Ala
His	Leu 50	Glu	Tyr	Gly	Gln	Gly 55	Pro	Ala	Ala	Leu	Ser 60	Glu	Asn	Asp	Glu
Val 65	Thr	Pro	Asn	Ile	Leu 70	Asp	Ala	Ala	Gln	Asp 75	Ala	Lys	Glu	Ala	Asp 80
Asp	Ser	Glu	Arg	Glu 85	Met	Pro	Leu	Met	Thr 90	Ala	Leu	Lys	Thr	Tyr 95	Pro
Lys	Ala	Ala	Ala 100	Trp	Ser	Leu	Leu	Val 105	Ser	Thr	Thr	Leu	Ile 110	Gln	Glu
Gly	Tyr	Asp 115	Thr	Ala	Ile	Leu	Gly 120	Ser	Phe	Tyr	Ala	Leu 125	Pro	Val	Phe

-continued

Gln Lys Lys Tyr Gly Ser Leu Asn Ala Arg Thr Gly Glu Trp Glu Ile Ser Val Ser Trp Gln Ile Gly Leu Cys Leu Cys Tyr Met Ala Gly Glu Ile Val Gly Leu Gln Leu Thr Gly Pro Ser Val Asp Leu Met Gly Asn Arg Tyr Thr Leu Ile Met Ala Leu Met Phe Leu Thr Ala Phe Ile Phe Ile Leu Tyr Phe Cys Lys Ser Leu Gly Met Ile Ala Ala Gly Gln Ala Leu Cys Gly Met Pro Trp Gly Cys Phe Gln Cys Leu Thr Val Ser Tyr 210 215 220 Ala Ser Glu Ile Cys Pro Met Ala Leu ArgTyr Tyr Leu Thr Thr Tyr225230235240 Ser Asn Leu Cys Trp Leu Phe Gly Gln Leu Phe Ala Ala Gly Ile Met Lys Asn Ser Gln Asn Lys Tyr Ala Asp Ser Asp Leu Gly Tyr Thr Leu Pro Phe Ala Leu Gln Trp Ile Trp Pro Val Pro Leu Ala Ile Ala Ile Phe Phe Ala Pro Glu Ser Pro Trp Trp Leu Val Lys Lys Gly Arg Leu Glu Gln Ala Lys Arg Ser Leu Glu Arg Thr Leu Ser Gly Lys Gly Ala Glu Lys Glu Ser Leu Val Ala Met Glu Leu Asp Lys Ile Lys Met Thr Ile Glu Lys Glu Lys Lys Leu Ser Asp Asp Glu Gly Ser Tyr Leu Asp Cys Leu Arg Gly Lys Val Asn Arg Arg Arg Thr Arg Ile Ala Cys Leu Cys Trp Ala Gly Gln Thr Val Cys Gly Ala Ser Leu Ile Gly Tyr Ser Thr Tyr Phe Tyr Glu Lys Ala Gly Val Ser Thr Glu Thr Ala Phe Thr Phe Ser Ile Ile Gln Tyr Cys Leu Gly Ile Ala Ala Thr Phe Leu Ser Trp Trp Ala Ser Lys Tyr Tyr Gly Arg Tyr Asp Leu Tyr Ala Cys Gly Leu Ala Phe Gln Thr Val Ile Leu Phe Ile Ile Gly Gly Leu Gly Cys Ser Asp Thr His Gly Ala Lys Met Gly Ser Gly Ala Leu Leu Met Val Val Ala Phe Phe Tyr Asn Leu Gly Ile Ala Pro Val Val Phe Cys Leu Val Ser Glu Ile Pro Ser Ser Arg Leu Arg Thr Lys Ser Ile Ile Leu Ala Arg Asn Ala Tyr Asn Met Ala Cys Ile Val Thr Ala Val Leu Thr Leu Tyr Gln Leu Asn Ser Glu Lys Trp Asp Trp Gly Ala Lys Ser Gly Phe Phe Trp Gly Gly Leu Cys Phe Ala Thr Leu Val Trp Ala Val Ile

-continued

Asp Leu Pro Glu Thr Ala Gly Arg Thr Phe Met Glu Met Asn Glu Leu Phe Arg Leu Gly Ile Pro Ala Arg Lys Phe Lys Thr Thr Lys Val Asp Pro Phe Ala Ala Val Lys Ala Ala Lys Glu Ile Ala His Asn Asp Pro Lys Glu Asp Met Glu Thr Ser Met Val Glu Glu Gly Arg Ser Thr Pro Ser Ile Thr Asn Leu <210> SEQ ID NO 3 <211> LENGTH: 614 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: MALT334 Chimeric Protein with N-terminus MALT3 <400> SEOUENCE: 3 Met Lys Gly Leu Ser Ser Leu Ile Asn Arg Lys Lys Asn Lys Ile Asp Ser Asn Ser Asn Glu Ile Glu Asn Gly Met Asn Ser Thr Asp Leu Asn Ser Ile Glu Met Gln Glu Gln Gly Lys Lys Ser Asp Phe Asp Leu Ser His Ile Glu Tyr Gly Gln Asp Ser Arg Val Pro Lys Asp Asp Asp Glu Glu Val Pro Asp Leu Leu Asp Glu Ala Met Gln Asp Ala Lys Glu Ala Asp Glu Ser Glu Arg Gly Met Pro Leu Leu Gln Ala Leu Lys Thr Tyr Pro Lys Ala Ala Ala Trp Ser Leu Leu Val Ser Thr Thr Leu Ile Gln Glu Gly Tyr Asp Thr Ala Ile Leu Gly Ser Phe Tyr Ala Leu Pro Val Phe Gln Lys Glu Tyr Gly Ser Leu Asn Ser Lys Thr Gly Glu Tyr Glu Ile Ser Val Ser Trp Gln Ile Gly Leu Ser Leu Cys Ile Val Ala Gly Glu Ile Val Gly Leu Gln Met Thr Gly Pro Phe Val Asp Tyr Met Gly Asn Arg Tyr Thr Leu Ile Val Ala Leu Phe Phe Leu Ala Ala Phe Thr Phe Ile Leu Tyr Phe Cys Lys Ser Leu Gly Met Ile Ala Val Gly Gln 195 200 205 Val Leu Cys Gly Met Pro Trp Gly Cys Phe Gln Cys Leu Thr Val Ser Tyr Ala Ser Glu Ile Cys Pro Leu Ala Leu Arg Tyr Tyr Leu Thr Thr Tyr Ser Asn Leu Cys Trp Thr Phe Gly Gln Leu Phe Ala Ala Gly Ile Met Lys Asn Ser Gln Asn Lys Tyr Pro Asp Ser Asp Leu Gly Tyr Lys Leu Pro Phe Ala Leu Gln Trp Ile Trp Pro Leu Pro Leu Ala Ile Gly

-continued

Ile	Phe 290	Phe	Ala	Pro	Glu	Ser 295	Pro	Trp	Trp	Leu	Ile 300	Lys	Lys	Gly	Arg
Met 305	Glu	Gln	Ala	Lys	Lys 310	Ser	Leu	Glu	Arg	Thr 315	Leu	Ser	Gly	Lys	Gly 320
Pro	Glu	Lys	Glu	Leu 325	Leu	Val	Ser	Met	Glu 330	Leu	Asp	Lys	Ile	Lys 335	Val
Thr	Ile	Glu	Lys 340	Glu	Gln	Lys	Met	Ser 345	Asp	Ser	Glu	Gly	Ser 350	Tyr	Trp
Asp	Суз	Val 355	Lys	Asp	Суз	Ile	Asn 360	Arg	Arg	Arg	Thr	Arg 365	Ile	Ala	Суз
Leu	Cys 370	Trp	Ile	Gly	Gln	Thr 375	Thr	Суз	Gly	Thr	Gln 380	Leu	Ile	Gly	Tyr
Ser 385	Thr	Tyr	Phe	Tyr	Glu 390	Lys	Ala	Gly	Val	Ser 395	Thr	Glu	Thr	Ala	Phe 400
Thr	Phe	Ser	Ile	Ile 405	Gln	Tyr	Cys	Leu	Gly 410	Ile	Val	Ala	Thr	Leu 415	Leu
Ser	Trp	Trp	Ala 420	Ser	Гла	Tyr	Phe	Gly 425	Arg	Phe	Asp	Leu	Tyr 430	Ala	Phe
Gly	Leu	Ala 435	Ile	Gln	Thr	Val	Leu 440	Leu	Phe	Ile	Ile	Gly 445	Gly	Leu	Gly
Сүз	Ser 450	Asp	Thr	His	Gly	Ala 455	Gln	Met	Gly	Ser	Gly 460	Ala	Leu	Leu	Met
Val 465	Val	Ala	Phe	Phe	Tyr 470	Asn	Leu	Gly	Ile	Ala 475	Pro	Val	Val	Phe	Сув 480
Leu	Val	Ser	Glu	Ile 485	Pro	Ser	Ser	Arg	Leu 490	Arg	Thr	Lys	Ser	Ile 495	Ile
Leu	Ala	Arg	Asn 500	Ala	Tyr	Asn	Met	Ala 505	Сув	Ile	Val	Thr	Ala 510	Val	Leu
Thr	Leu	Tyr 515	Gln	Leu	Asn	Ser	Glu 520	Lys	Trp	Asp	Trp	Gly 525	Ala	Lys	Ser
Gly	Phe 530	Phe	Trp	Gly	Gly	Leu 535	Cys	Phe	Ala	Thr	Leu 540	Val	Trp	Ala	Val
Phe 545	Asp	Leu	Pro	Glu	Thr 550	Ala	Gly	Arg	Thr	Phe 555	Ile	Glu	Ile	Asn	Glu 560
Leu	Phe	Arg	Leu	Gly 565	Val	Pro	Ala	Arg	Lys 570	Phe	ГЛа	Ser	Thr	Lys 575	Val
Asp	Pro	Phe	Ala 580	Ala	Ala	Lys	Ala	Ile 585	Ser	Asp	Glu	Ile	Asn 590	His	ГЛа
Asp	Pro	Lys 595	Glu	Asp	Met	Lys	Ala 600	Ser	Ala	Glu	Glu	Arg 605	Glu	Gln	Ser
Thr	Pro 610	Ser	Leu	Met	Asp										
<210 <211 <212 <212 <220 <221 <222 <222	0> SP L> LP 2> TY 3> OP 0> FP L> NP 2> LC 3> OT	EQ II ENGTH PE: RGANI EATUH AME/H DCATI FHER	D NO H: 6: PRT ISM: RE: KEY: ION: INF(4 13 Saco (1) DRMA	charo C_FEA (63	omyce ATURE L3) : FM1	es eu ∑ 1318	ıbaya Malt	anus						
<400)> SH	EQUEI	NCE :	4											
Met 1	Lys	Gly	Leu	Ser 5	Ser	Met	Ile	Asn	Arg 10	Lys	ГЛа	Суа	Asn	Gly 15	Asn
Ser	Ser	Ser	Ile	Glu	Thr	Glu	Gly	Gly	Phe	Gly	Ala	Ala	Glu	Cys	Asn

-continued

Ser	Ile	Glu 35	Leu	Glu	Glu	Gln	Gly 40	Lys	Lys	Thr	Asp	Phe 45	Asp	Leu	Ala
His	Leu 50	Glu	Tyr	Gly	Gln	Gly 55	Pro	Ala	Ala	Leu	Ser 60	Glu	Asn	Asp	Glu
Val 65	Thr	Pro	Asn	Ile	Leu 70	Asp	Ala	Ala	Gln	Asp 75	Ala	Lys	Glu	Ala	Asp 80
Asp	Ser	Glu	Arg	Glu 85	Met	Pro	Leu	Met	Thr 90	Ala	Leu	Lys	Thr	Tyr 95	Pro
LÀa	Ala	Ala	Ala 100	Trp	Ser	Leu	Leu	Val 105	Ser	Thr	Thr	Leu	Ile 110	Gln	Glu
Gly	Tyr	Asp 115	Thr	Ala	Ile	Leu	Gly 120	Ser	Phe	Tyr	Ala	Leu 125	Pro	Val	Phe
Gln	Lys 130	Lys	Tyr	Gly	Ser	Leu 135	Asn	Ala	Arg	Thr	Gly 140	Glu	Trp	Glu	Ile
Ser 145	Val	Ser	Trp	Gln	Ile 150	Gly	Leu	Суз	Leu	Cys 155	Tyr	Met	Ala	Gly	Glu 160
Ile	Val	Gly	Leu	Gln 165	Leu	Thr	Gly	Pro	Ser 170	Val	Asp	Leu	Met	Gly 175	Asn
Arg	Tyr	Thr	Leu 180	Ile	Met	Ala	Leu	Met 185	Phe	Leu	Thr	Ala	Phe 190	Ile	Phe
Ile	Leu	Tyr 195	Phe	Сув	ГЛа	Ser	Leu 200	Gly	Met	Ile	Ala	Ala 205	Gly	Gln	Ala
Leu	Cys 210	Gly	Met	Pro	Trp	Gly 215	Сув	Phe	Gln	Сув	Leu 220	Thr	Val	Ser	Tyr
Ala 225	Ser	Glu	Ile	Сув	Pro 230	Met	Ala	Leu	Arg	Tyr 235	Tyr	Leu	Thr	Thr	Tyr 240
Ser	Asn	Leu	Суз	Trp 245	Leu	Phe	Gly	Gln	Leu 250	Phe	Ala	Ala	Gly	Ile 255	Met
Lys	Asn	Ser	Gln 260	Asn	Lys	Tyr	Ala	Asp 265	Ser	Asp	Leu	Gly	Tyr 270	Thr	Leu
Pro	Phe	Ala 275	Leu	Gln	Trp	Ile	Trp 280	Pro	Val	Pro	Leu	Ala 285	Ile	Ala	Ile
Phe	Phe 290	Ala	Pro	Glu	Ser	Pro 295	Trp	Trp	Leu	Val	Lys 300	Гла	Gly	Arg	Leu
Glu 305	Gln	Ala	Lys	Arg	Ser 310	Leu	Glu	Arg	Thr	Leu 315	Ser	Gly	Гла	Gly	Ala 320
Glu	Lys	Glu	Ser	Leu 325	Val	Ala	Met	Glu	Leu 330	Asp	Гла	Ile	Гла	Met 335	Thr
Ile	Glu	Lys	Glu 340	Lys	Гла	Leu	Ser	Asp 345	Asp	Glu	Gly	Ser	Tyr 350	Leu	Asp
Суз	Leu	Arg 355	Gly	Lys	Val	Asn	Arg 360	Arg	Arg	Thr	Arg	Ile 365	Ala	Cys	Leu
Суа	Trp 370	Ala	Gly	Gln	Thr	Val 375	Сув	Gly	Ala	Ser	Leu 380	Ile	Gly	Tyr	Ser
Thr 385	Tyr	Phe	Tyr	Glu	Lуя 390	Ala	Gly	Val	Ser	Thr 395	Glu	Thr	Ala	Phe	Thr 400
Phe	Ser	Ile	Ile	Gln 405	Tyr	Сүз	Leu	Gly	Ile 410	Ala	Ala	Thr	Phe	Leu 415	Ser
Trp	Trp	Ala	Ser 420	Lys	Tyr	Tyr	Gly	Arg 425	Tyr	Asp	Leu	Tyr	Ala 430	Суз	Gly
Leu	Ala	Phe 435	Gln	Thr	Val	Ile	Leu 440	Phe	Ile	Ile	Gly	Gly 445	Leu	Gly	Суз

-continued

Ser	Asp 450	Thr	His	Gly	Ala	Lys 455	Met	Gly	Ser	Gly	Ala 460	Leu	Leu	Met	Val
Val 465	Ala	Phe	Ser	Tyr	Asn 470	Leu	Gly	Ile	Ala	Pro 475	Val	Val	Phe	Суз	Leu 480
Val	Ser	Glu	Ile	Pro 485	Ser	Ser	Arg	Leu	Arg 490	Thr	Lys	Ser	Ile	Ile 495	Leu
Ala	Arg	Asn	Ala 500	Tyr	Asn	Ile	Gly	Asn 505	Ile	Val	Val	Ala	Val 510	Leu	Ile
Leu	Tyr	Gln 515	Leu	Asn	Ser	Glu	Lys 520	Trp	Asn	Trp	Gly	Ala 525	Lys	Ser	Gly
Phe	Phe 530	Trp	Gly	Gly	Phe	Суя 535	Leu	Ala	Val	Leu	Ile 540	Trp	Ala	Val	Phe
Asp 545	Leu	Pro	Glu	Thr	Ala 550	Gly	Arg	Thr	Phe	Ile 555	Glu	Ile	Asn	Glu	Leu 560
Phe	Arg	Leu	Gly	Val 565	Pro	Ala	Arg	Lys	Phe 570	Lys	Ser	Thr	Lys	Val 575	Asp
Pro	Phe	Ala	Ala 580	Ala	ГЛа	Ala	Ile	Ser 585	Asp	Glu	Ile	Asn	His 590	Lys	Asp
Pro	Lys	Glu 595	Asp	Met	Lys	Ala	Ser 600	Ala	Glu	Glu	Arg	Glu 605	Gln	Ser	Thr
Pro	Ser 610	Leu	Met	Asp											
010	רידי כ	ZDF.	DDM												
<212 <213 <220 <221 <221 <222 <223	2 > 1 3 > OF 0 > FF 1 > N 2 > L 3 > O 3 > O	RGANI EATUR AME/R DCATI THER	ISM: RE: KEY: ION: INF(Saco MISO (1) DRMAT	char C_FEZ (6: TION	omyce ATURE 14) : FM:	es ei : 1318	ıbaya Malt	anus :3						
<211 <211 <220 <221 <222 <222 <222 <223 <400 Met	2> 1 3> OF 0> FI 1> NA 2> L(3> O 3> O 5 0> SI Lys	GAN RGAN EATUF AME/I DCAT THER EQUE Gly	ISM: SE: EY: ION: INF(NCE: Leu	Saco MISO (1) DRMAT 5 Ser	charo C_FEA (6: FION Ser	omyce ATURE 14) : FM: Leu	es eu 2 L318 Ile	ıbaya Malt Asn	anus :3 Arg	Гуз	Гуз	Asn	Lys	Ile	Азр
<211 <211 <220 <221 <222 <222 <222 <400 Met 1	2> 1 3> OF 0> FF 1> NA 2> LC 3> O 3> O 5 1> SF Lys	RGANI EATUR AME/I DCATI THER EQUER Gly	ISM: ESM: EY: CON: INF(ICE: Leu	Saco MISC (1) DRMAT 5 Ser 5	charc C_FEZ (6: TION Ser	omyce ATURE 14) : FM: Leu	es et 2 L318 Ile	ıbaya Malt Asn	Arg 10	Lys	Гуз	Asn	Lys	Ile 15	Asp
<212 <213 <220 <222 <222 <222 <222 <400 Met 1 Ser	2> 1 3> OF 0> FI 1> NA 2> L(3> O 3> O SI Lys Asn	Gly Ser	Asn 20	Saco (1) DRMA 5 Ser 5 Glu	Charo C_FEZ (6: TION Ser Ile	omyce ATURE 14) : FM: Leu Glu	es eu 2 1318 Ile Asn	Malt Malt Asn Gly 25	Arg 10 Met	Lys Asn	Lys Ser	Asn Thr	Lys Asp 30	Ile 15 Leu	Asp Asn
<212 <212 <221 <222 <222 <222 <400 Met 1 Ser Ser	2> 01 3> 04 0> FI 1> NZ 2> LC 3> 07 0> SI Lys Asn Ile	Glu Glu Glu Glu	Asn 20 Met	Saco (1) DRMA 5 Ser 5 Glu Gln	Charo C_FEZ (61 FION Ser Ile Glu	ATURE 14) : FM: Leu Glu Gln	es ev 1318 Ile Asn Gly 40	Malt Malt Asn Gly 25 Lys	Anus 3 Arg 10 Met Lys	Lys Asn Ser	Lys Ser Asp	Asn Thr Phe 45	Lys Asp 30 Asp	Ile 15 Leu Leu	Asp Asn Ser
<211 <221 <221 <222 <222 <222 <400 Met 1 Ser Ser His	23 11 33 07 54 55 55 12 12 11 11 11 11 11 11 11 11	GAN: CGAN: EATUH ME/H COCAT: FHER EQUEN Gly Ser Glu 35 Glu	ISM: ISM: RE: ION: INFC INFC INFC Leu Asn 20 Met Tyr	Sacc (1) DRMA: 5 Ser 5 Glu Gln Gly	C_FEA (62 TION Ser Ile Glu Gln	ATURF 14) 14: FM: Leu Glu Gln Asp 55	es eu 2 1318 Ile Asn Gly 40 Ser	Nalt Malt Asn Gly 25 Lys Arg	Anus 23 Arg 10 Met Lys Val	Lys Asn Ser Pro	Lys Ser Asp Lys	Asn Thr Phe 45 Asp	Гла Уар Уар	Ile 15 Leu Leu Asp	Asp Asn Ser Glu
<211 <221 <222 <222 <222 <200 Met 1 Ser His Glu 65	23) OF 30) OF 30) FF 10 NA 22 LC 33 0' 10 > SH Lys Asn Ile 50 Val	GAU: RGAN: REATU AME/I OCAT: THER Gly Ser Glu 35 Glu Pro	INF(ISM: RE: (CY:: INF(INF(INF(Leu Asn 20 Met Tyr Asp	Saco MISC (1) DRMA 5 Ser 5 Glu Glu Gln Gly Leu	Charo C_FEZ (6: TION Ser Ile Glu Glu Leu 70	ATURE 14) : FM: Glu Glu Gln Asp 55 Asp	es eu 3 1318 Ile Asn Gly 40 Ser Glu	Malt Asn Gly 25 Lys Arg Ala	Anus 23 Arg 10 Met Lys Val Met	Lys Asn Ser Pro Gln 75	Lys Ser Asp 60 Asp	Asn Thr Phe 45 Asp Ala	Lys Asp Asp Lys	Ile 15 Leu Leu Asp Glu	Asp Asn Ser Glu Ala 80
<211 <222 <222 <222 <222 <400 Met 1 Ser His Glu 65 Asp	23 01 33 05 35 07 15 NA 22 LC 33 07 12 NA 23 07 10 SI 45 07 11 e 50 Val Glu	Glu Ser Glu Ser Glu Ser Glu Ser Ser	ISM: ISM: EX: CEY: INFC INFC INFC INFC INFC INFC ICE: Leu Asn 20 Met Tyr Asp Glu	Saco MISC (1) DRMA: 5 Ser 5 Glu Glu Glu Leu Arg 85	Chard C_FEZ (6: TION Ser Ile Glu Glu Cln Cln Cly Gly	ATURE 14) : FM: Leu Glu Glu Asp 55 Asp Met	es et 2 1318 Ile Asn Gly 40 Ser Glu Pro	Malt Asn Gly 25 Lys Arg Ala Leu	Anus .3 Arg 10 Met Lys Val Met Leu 90	Lys Asn Ser Pro Gln 75 Gln	Lys Ser Lys 60 Asp Ala	Asn Thr Phe 45 Asp Ala Leu	Lуа Аар Аар Lyа Lyа	Ile 15 Leu Asp Glu Thr 95	Asp Asn Ser Glu Ala 80 Tyr
<211 <221 <222 <222 <222 <222 <222 <20 Ser His Glu 65 Asp Pro	23 01 33 01 35 01 37 07 12 12 22 L(33 07 23 07 25 L(33 07 25 L(35 107 25 L(35 L(35 107 25 L(35	RAE REGAN: EATUR AME/J OCAT: THER Gly Ser Glu 35 Glu Pro Ser Ala	INFC (EY: CEY: CON: INFC NCE: Leu Asn 20 Met Tyr Asp Glu Ala 100	Sacc MISC (1) DRMA: 5 Ser 5 Glu Gln Gly Leu Arg 85 Ala	Charo C_FEZ (6 FION Ser Ile Glu Glu Glu Clu Trp	ATURF 14) : FM: Leu Glu Glu Gln Asp 55 Asp Met Ser	es eu 2 1318 Ile Asn Gly 40 Ser Glu Pro Leu	Malt Asn Gly 25 Lys Arg Ala Leu Leu	Arg 10 Met Lys Val Met Leu 90 Val	Lys Asn Ser Pro Gln 75 Gln Ser	Lys Ser Asp Lys 60 Asp Ala Thr	Asn Thr Phe 45 Asp Ala Leu Thr	Lys Asp 30 Asp Lys Lys Lys Leu 110	Ile 15 Leu Leu Glu Thr 95 Ile	Asp Asn Ser Glu Ala 80 Tyr Gln
<211 <222 <222 <222 <222 <222 <200 Met 1 Ser His Glu 65 Asp Pro Glu	23 > 01 33 > 01 35 > 02 35 > 01 35 > 02 37 > 02 37 > 02 37 > 02 37 > 02 37 > 02 37 > 02 48 > 02 50 50 Val Glu Lys Gly	Glu Ser Glu Ser Glu Ser Ala Tyr 115	INFC (EY: CON: CON: CON: CON: CON: CON: CON: CON	Saco MISC (1) DRMAT 5 Ser 5 Glu Glu Glu Leu Arg 85 Ala Thr	Charo C_FEZ (6 FION Ser Ile Glu Gln Leu 70 Gly Trp Ala	ATURE 14) : FM: Leu Glu Glu Glu Asp 55 Asp Met Ser Ile	es et 3 1318 Ile Asn Gly 40 Ser Glu Pro Leu Leu 120	Nalu Asn Gly 25 Lys Arg Ala Leu Leu 105 Gly	Arg 10 Met Lys Val Met Leu 90 Val Ser	Lys Asn Ser Pro Gln Ser Ser Phe	Lys Ser Asp Lys 60 Asp Ala Thr Tyr	Asn Thr Phe 45 Asp Ala Leu Thr Ala 125	Lys Asp 30 Asp Lys Lys Lys Leu 110 Leu	Ile 15 Leu Leu Asp Glu Thr 95 Ile Pro	Asp Asn Ser Glu Ala 80 Tyr Gln Val
<pre><211 <211 <222 <222 <222 <400 Met 1 Ser His Glu 65 Asp Pro Glu Phe</pre>	23) 05 35) 05 35) 05 37) 12 12 NZ 22 L(2 33) 07 12) 12 43 43 50 Val Glu Lys Gly Gln 130	RAFING REGAN: EATUHAME// DOCAT: THER Gly Ser Glu 35 Glu 35 Glu Pro Ser Ala Tyr 115 Lys	INFC (EY: 1 CON:	Sacco MISC (1) DRMA: 5 Ser 5 Glu Glu Glu Leu Leu Arg 85 Ala Thr Tyr	Chard C_FEZ JEZ Ser Ile Glu Glu Glu Clu Trp Ala Gly	Dmyco ATUREA 14) : FM: Leu Glu Glu Glu Glu Glu Scr Scr 11e Scr 135	es et 3 1318 Ile Asn Gly 40 Ser Glu Pro Leu Leu 120 Leu	Nalt Asn Gly 25 Lys Arg Ala Leu Leu 105 Gly Asn	Anus Arg 10 Met Lys Val Leu 90 Val Ser Ser	Lys Asn Ser Pro Gln Ser Ser Phe Lys	Lys Ser Asp Lys 60 Asp Ala Thr Tyr Thr 140	Asn Thr Phe 45 Asp Ala Leu Thr Ala 125 Gly	Lys Asp 30 Asp Lys Lys Leu 110 Leu Glu	Ile 15 Leu Asp Glu Thr 95 Ile Pro Tyr	Asp Asn Ser Glu Ala 80 Tyr Gln Val Glu

Glu Ile Val Gly Leu Gln Met Thr Gly Pro Phe Val Asp Tyr Met Gly 165 170 175

-continued

Ası	n Arg	Tyr	Thr 180	Leu	Ile	Val	Ala	Leu 185	Phe	Phe	Leu	Ala	Ala 190	Phe	Thr
Phe	e Ile	Leu 195	Tyr	Phe	Сув	Lys	Ser 200	Leu	Gly	Met	Ile	Ala 205	Val	Gly	Gln
Va	. Leu 210	Суз	Gly	Met	Pro	Trp 215	Gly	Сүз	Phe	Gln	Cys 220	Leu	Thr	Val	Ser
Тул 229	r Ala	Ser	Glu	Ile	Cys 230	Pro	Leu	Ala	Leu	Arg 235	Tyr	Tyr	Leu	Thr	Thr 240
Туз	: Ser	Asn	Leu	Cys 245	Trp	Thr	Phe	Gly	Gln 250	Leu	Phe	Ala	Ala	Gly 255	Ile
Met	: Lys	Asn	Ser 260	Gln	Asn	Lys	Tyr	Pro 265	Asp	Ser	Asp	Leu	Gly 270	Tyr	Lys
Lei	ı Pro	Phe 275	Ala	Leu	Gln	Trp	Ile 280	Trp	Pro	Leu	Pro	Leu 285	Ala	Ile	Gly
Ile	e Phe 290	Phe	Ala	Pro	Glu	Ser 295	Pro	Trp	Trp	Leu	Ile 300	ГЛа	Lys	Gly	Arg
Met 305	Glu	Gln	Ala	Lys	Lys 310	Ser	Leu	Glu	Arg	Thr 315	Leu	Ser	Gly	Lys	Gly 320
Pro	Glu	Lys	Glu	Leu 325	Leu	Val	Ser	Met	Glu 330	Leu	Asp	Lys	Ile	Lys 335	Val
Th	: Ile	Glu	Lys 340	Glu	Gln	ГÀа	Met	Ser 345	Asp	Ser	Glu	Gly	Ser 350	Tyr	Trp
Aal	сув	Val 355	Lys	Asp	Суа	Ile	Asn 360	Arg	Arg	Arg	Thr	Arg 365	Ile	Ala	Сүз
Lei	1 Cys 370	Trp	Ile	Gly	Gln	Thr 375	Thr	Сүз	Gly	Thr	Gln 380	Leu	Ile	Gly	Tyr
Sei 385	Thr	Tyr	Phe	Tyr	Glu 390	Lys	Ala	Gly	Val	Ser 395	Thr	Glu	Thr	Ala	Phe 400
Th	: Phe	Ser	Ile	Ile 405	Gln	Tyr	Cys	Leu	Gly 410	Ile	Val	Ala	Thr	Leu 415	Leu
Sei	Trp	Trp	Ala 420	Ser	Гла	Tyr	Phe	Gly 425	Arg	Phe	Asp	Leu	Tyr 430	Ala	Phe
Gl	/ Leu	Ala 435	Ile	Gln	Thr	Val	Leu 440	Leu	Phe	Ile	Ile	Gly 445	Gly	Leu	Gly
СУ	Ser 450	Asp	Thr	His	Gly	Ala 455	Gln	Met	Gly	Ser	Gly 460	Ala	Leu	Leu	Met
Va 469	. Val	Ala	Phe	Phe	Tyr 470	Asn	Leu	Gly	Ile	Ala 475	Pro	Val	Val	Phe	Cys 480
Lei	ı Val	Ser	Glu	Ile 485	Pro	Ser	Ser	Arg	Leu 490	Arg	Thr	Lys	Ser	Ile 495	Ile
Leu	ı Ala	Arg	Asn 500	Ala	Tyr	Asn	Met	Ala 505	Сүз	Ile	Val	Thr	Ala 510	Val	Leu
Th	: Leu	Tyr 515	Gln	Leu	Asn	Ser	Glu 520	Lys	Trp	Asp	Trp	Gly 525	Ala	Lys	Ser
Gl	7 Phe 530	Phe	Trp	Gly	Gly	Leu 535	Суз	Phe	Ala	Thr	Leu 540	Val	Trp	Ala	Val
Ile 549	e Asp	Leu	Pro	Glu	Thr 550	Ala	Gly	Arg	Thr	Phe 555	Met	Glu	Met	Asn	Glu 560
Lei	ı Phe	Arg	Leu	Gly 565	Ile	Pro	Ala	Arg	Lys 570	Phe	Lys	Thr	Thr	Lys 575	Val
Aal) Pro	Phe	Ala 580	Ala	Val	Lys	Ala	Ala 585	Lys	Glu	Ile	Ala	His 590	Asn	Asp
Pro) Lys	Glu	Asp	Met	Glu	Thr	Ser	Met	Val	Glu	Glu	Gly	Arg	Ser	Thr

55

-continued

		595					600					605			
Pro	Ser	Ile	Thr	Asn	Leu										
	610														
<21	0> SI 1> TI	EQ II	DNO	6 10											
<21	2 > T	YPE :	PRT	10											
<21	3> 01 0 > F1	RGAN:	ISM:	Unki	nown										
<22	3 > 0	THER	INF	ORMA	TION	: yh	AB47	lage	er h	ybri	d lg.	AGT1			
< 40	0 5 51	TOUE	NCE	6											
< 10	0 > 0.	10011	ле <u>н</u> .	Ū											
Met 1	Lys	Asn	Ile	Leu 5	Ser	Leu	Val	Gly	Arg	Lys	Glu	Asn	Thr	Pro 15	Glu
-				5					10					10	
Asp	Val	Thr	Ala 20	Asn	Leu	Ala	Asp	Thr 25	Ser	Ser	Thr	Thr	Val 30	Met	Gln
			20					20					55		
Ala	Lys	Asp 35	Leu	Val	Ile	Glu	Asp 40	Phe	Glu	Glu	Arg	Lys 45	Lys	Asn	Asp
		55					10					чЭ			
Ala	Phe	Glu	Leu	Asn	His	Leu 55	Glu	Leu	Thr	Thr	Asn	Ala	Thr	Gln	Leu
	50					55					6U				
Ser	Aab	Ser	Aab	Glu	Asp	Lys	Glu	Asn	Val	Ile	Arg	Val	Ala	Glu	Ala
65					/0					/5					80
Thr	Asp	Asp	Ala	Asn	Glu	Ala	Asn	Asn	Glu	Glu	Lys	Ser	Met	Thr	Leu
				85					90					95	
Arg	Gln	Ala	Leu	Arg	Lys	Tyr	Pro	Lys	Ala	Ala	Leu	Trp	Ser	Ile	Leu
			100					105					110		
Val	Ser	Thr	Thr	Leu	Val	Met	Glu	Gly	Tyr	Asp	Thr	Ala	Leu	Leu	Ser
		115					120					125			
Ala	Leu	Tyr	Ala	Leu	Pro	Val	Phe	Gln	Arg	Lys	Phe	Gly	Thr	Met	Asn
	130					135					140				
Ala	Glu	Gly	Ser	Tyr	Glu	Ile	Thr	Ser	Gln	Trp	Gln	Ile	Gly	Leu	Asn
145		-		-	150					155			-		160
Met	Cys	Val	Leu	Cys	Gly	Glu	Met	Ile	Gly	Leu	Gln	Ile	Thr	Thr	Tyr
	- ···			165	.7				170					175	1 -
Met	Val	Glu	Phe	Met	Glv	Asn	Ara	Tvr	Thr	Met	Ile	Thr	Ala	Leu	Ser
			180		1		9	185					190	~u	
Len	Leu	Thr	ما∆	Tvr	TIP	Phe	TIP	Leu	Tvr	Tvr	Cue	Ive	Ser	Leu	دا∆
Leu	Leu	195	mrd	тут	116	1 118	200	Leu	тут	тут	Cyb	205	Der	neu.	тa
Mot	T1~	<u>7</u> 7~	Vol	C1	C1r	T1~	Lor	Sor	71~	Mot	Dro	Trr	G1	Cure	Dho
met	210	нца	vai	өтү	GTU	11e 215	ьeu	ser	ыâ	met	220	тр	σтγ	cys	гле
C1	a	T -	7.7	17-7	m1-	m	7.7	c -	~	۲ <i>7</i> - ٦	<u> </u>	D	T	77	T
Gln 225	Ser	Leu	Ala	Val	Thr 230	Tyr	Ala	Ser	GLu	Va1 235	Сүз	Pro	Leu	Ala	Leu 240
Arg	Tyr	Tyr	Met	Thr 245	Ser	Tyr	Ser	Asn	11e 250	Суз	Trp	Leu	Phe	Gly 255	Gln
				210					200					100	
Ile	Phe	Ala	Ser	Gly	Ile	Met	Lys	Asn 265	Ser	Gln	Glu	Asn	Leu 270	Gly	Asn
			200					200					210		
Ser	Asp	Leu	Gly	Tyr	Lys	Leu	Pro	Phe	Ala	Leu	Gln	Trp	Ile	Trp	Pro
		275					280					285			
Ala	Pro	Leu	Ile	Ile	Gly	Ile	Phe	Phe	Ala	Pro	Glu	Ser	Pro	Trp	Trp
	290					295					300				
Leu	Val	Ara	Lys	Asn	Lys	Ile	Val	Glu	Ala	Lys	Lys	Ser	Leu	Asn	Ara
305		5	-		310					315	-				320
م T	Leu	Ser	Glv	Thr	Val	Thr	Glu	Lave	Glu	TI۵	Glr	Val	Aer	T10	Thr
- <u>-</u>	Jou	COL	υrγ	325	* 97		JIU	-y o	330	- <u>-</u>	J 11	* 01 1	• 10 P	335	
_	_								_		_	_	_		
Leu	Lys	Gln	Ile	Glu	Met	Thr	Ile	Glu	Lys	Glu	Arg	Leu	Arg	Ala	Ser

375

455

535

550

470

390

345

340

Lys Ser Gly Ser Phe Phe Ser

Thr Arg Leu Ala Cys Leu Thr

Val Leu Leu Gly Tyr Ser Thr

Thr Asp Lys Ala Phe Thr Phe 405

Ala Gly Thr Leu Gly Ser Trp 420 Thr Ile Leu Thr Tyr Gly Leu

Ile Gly Gly Met Gly Phe Ala

Gly Gly Leu Leu Leu Ala Leu

Ala Val Val Tyr Cys Ile Val 485

Thr Lys Thr Ile Val Leu Ala 500 Phe Asn Ala Ile Leu Thr Pro 515

Trp Gly Ala Lys Thr Gly Leu

Leu Ala Trp Val Ile Ile Asp

Ser Glu Ile Asn Glu Leu Phe 565

Ala Ser Thr Val Val Asp Pro 580 Pro Gln Val Asp Asn Ile Ile

595

Ala Leu 610

355

435

450

530

545

465

370

385

TrpValAlaGlnAsnSerSerGlyAlaTyrPhePheGluArgAlaGlyMetAlaSerLeuAlloGlyTyrCysLeuGlyLeuAlaAlaGlySerGlyArgCysLeuGlyLeuValAlaSerGlyArgValGlyArgTrpValAlsSerGlyArgValGlyArgTrpSerPheGlnMetValCysLeuPheIleSerPhePheArgAsnAlaGlyAlaSerPhePheArgAsnAlaGlyAsnAlaGluHenTyrAsnAlaGlyIleSerPhePheSerAlaCysPheIleSerPhePheSerAlaGlyIleAlaSerPhePheSerAlaGlyIleIleSerPhePheTyrAsnAlaGlyIleAlaAlaGluIleSerAlaGlyIleAlaSerPhePheTyrAsnAlaGlyIleAlaAlaGluIleSerAsnKalGlyAsnValSerMetSerSerAsnSerAsnSerSer <th>Cys 360</th> <th>Phe</th> <th>Lys</th> <th>Gly</th> <th>Val</th> <th>Asp 365</th> <th>Gly</th> <th>Arg</th> <th>Arg</th> <th></th> <th></th>	Cys 360	Phe	Lys	Gly	Val	Asp 365	Gly	Arg	Arg		
TyrPheRheGluArgAlaGlyMetAla 400SerLeuIleGlnTyrCysLeuGlyLeuValIleSerGlyArgValGlyArgTrpYanIleSerGlnMetValCysLeuPheIleSerPheGlnMetValCysLeuPheIleSerGlySerArgArgArgAlaSerPhePheTyrAsnAlaGlyIleGluSerSerAlaSerAsnAlaAnaGluSerSerAlaGlyIleAnaGluSerAsnAsnAlaAlaSerGlySerAsnAsnGlyIleAnaGluFreSerAlaGlyIleGlyAnaGluFreSerAsnAlaGlyIleAnaGluFreSerAsnGlyIleGlyAnaGluFreSerAsnGlyIleGlyAnaGluFreFreSerAsnSerFreAnaGluFreFreSerAsnFreFreAnaGluFreFreFreFreFreAnaGluFreFreFreFreFreAnaGluFreFre	Trp	Val	Ala	Gln	Asn 380	Ser	Ser	Gly	Ala		
SerLeuIleGluTyrCysLeuGlyArgTrpValILeSerGlyArgGlyArgTrpSerPheGlnMetValCysLeuPheIleSerGlySerSerAlaCysLeuAlaAlaSerPhePheTyrAsnAlaGlyIleGlyArgGluIleTyrAsnAlaGlyIleGlyAlaGluIleFroSerAlaGlyIleGlyArgGluIleTyrAsnAlaGlyIleGlyArgGluSerSerAlaGluLeuArgTyrMetLeuAsnValSerAspTrpSooMetLeuAsnValSerAspTrpTyrTrpGluGluPheThrAlaLeuLeuProGluThrAlaSerThrPheSerGluGluThrGluArgSeoSeoFroGluGluThrThrAlaLeuThrLeuProGluThrAlaArgLysPheSeoGluGluThrAlaLeuThrFroGluSeoGluAlaSeoPheSeoGluSeoSeoSeoSeo	Tyr	Phe	Phe	Glu 395	Arg	Ala	Gly	Met	Ala 400		
ValIleSerGlyArgValGlyArgTrpSerPheGlnMetValCysLeuPheIleSerGlySerSerAlaCysLeuPheIleSerGlySerSerAlaSerAsnAlaAlaSerPheTyrAsnAlaGlyIleGlyAsoAlaGluIleTyrAsnAlaGlyIleGlyAlaGluIleTyrAsnAsiGluLeuArgAlaGluIleAsnValSerAsoGluAsiTyrGlyGlyTyrAsnLeuMetAlaValTyrTrpGlyGlyPheThrAlaLeuThrLeuProGlyGlyPheThrAlaLeuThrLeuProGluThrThrAlaLeuThrLeuProGluThrThrAlaLeuThrSerGlnGlyValProAlaArgLysPheGlyValProAlaArgLysPheSerGluSerGluSerGluSerSerAspArgFueSerGluSerGluSerGluSerSerSerGluSerGluSerGlu	Ser	Leu	Ile 410	Gln	Tyr	Сүз	Leu	Gly 415	Leu		
SerPheGlnMetValCysLeuPheIleSerGlySerSerAlaSerAsnAlaAlaSerPhePheTyrAsnAlaGlyIleGlyArePheTyrAsnAlaGlyIleGlyAlaGluIleProSerAlaGlyIleAreGluIleProSerAlaGlyIleArgGlyGysTyrAsnSerAsnAlaSooCysTyrAsnSerAsnAlaAndTyrMetLeuAsnValSerAsnAsnTyrTrpGlyGlyPheThrAlaLeuThrLeuProGluThrSerAsnAsnSeoSerGlnGlyValProAlaArgLysPheGlyLysArgChyThrPheSerGlnGlyValProAlaArgSerGlyLysProAlaArgLysPheGlyLysArgGlyAsnArgSerGlySerSerAlaArgLysSerGlySerSerGlyArgProSerGlySerSerGlyArgSerSerGlySerSerGlySer <td< td=""><td>Val</td><td>Ile 425</td><td>Ser</td><td>Gly</td><td>Arg</td><td>Val</td><td>Gly 430</td><td>Arg</td><td>Trp</td><td></td><td></td></td<>	Val	Ile 425	Ser	Gly	Arg	Val	Gly 430	Arg	Trp		
SerGlySerSerAlaSerAsnAlaAlaSerPhePheTyrAsnAlaGlyIleGlyAlaGluIleMayProSerAlaGluLeuArgAlaGluIleYroSerAlaGluLeuArgArgIleCysTyrAsnLeuMetAlaValTyrMetLeuAsnValSerAspTrpAsnTyrTrpGlyGlyPheThrAlaLeuThrLeuProGluThrThrGlyArgThrSerGlnGlyValProAlaArgLysPheGlyLysArgGlyLeuGlnArgAspArgPheSerSerAlaSerGlnGluSerSerSerGluSerGluSerSerGluSerSerSerGluSerSerGluSerSerSerGluSerSerSerSerSerSerGluSerSerSerSerSerSerGluSerSerSerSerSerSerGluSerSerSerSerSerSerSerSerSerSerSerSerSerSerSerSerSer <td< td=""><td>Ser 440</td><td>Phe</td><td>Gln</td><td>Met</td><td>Val</td><td>Cys 445</td><td>Leu</td><td>Phe</td><td>Ile</td><td></td><td></td></td<>	Ser 440	Phe	Gln	Met	Val	Cys 445	Leu	Phe	Ile		
Ser Phe Tyr 475 Asn Ala Gly Ile Gly 480 Ala Glu Ile Yen Ser Ala Glu Leu Arg Ala Glu Ile Yen Ser Ala Glu Leu Arg Arg Ile Gy Tyr Asn Leu Met Ala Val Tyr Met Leu Asn Val Ser Asp Trp Asn Tyr Trp Gly Gly Phe Thr Ala Leu Thr Leu Pro Gly Gly Phe Thr Asp Asp Thr Leu Pro Gly Thr Thr Ala Arg Thr Leu Pro Gly Thr Thr Seo Seo Ser Gln Gly Val Pro Ala Arg Lys Seo Gly Val Pro Ala Arg Lys Phe Seo Gly Val Pro Ala Arg Lys Phe Seo Fro Seo Seo Seo Seo Seo Seo <td>Ser</td> <td>Gly</td> <td>Ser</td> <td>Ser</td> <td>Ala 460</td> <td>Ser</td> <td>Asn</td> <td>Ala</td> <td>Ala</td> <td></td> <td></td>	Ser	Gly	Ser	Ser	Ala 460	Ser	Asn	Ala	Ala		
AlaGluIleProSerAlaGluLeuArgArgIleCysTyrAsnLeuMetAlaValTyrMetLeuAsnValSerAspTrpAsnTyrTrpGlyGlyPheThrAlaLeuThrLeuProGluThrThrGlyArgThrPheSerGlnGlyValProAlaArgLysPhePheGlyLysArgGlyLeuGlnAsnArgAspArgPheSerSerAlaSerGlnGln	Ser	Phe	Phe	Tyr 475	Asn	Ala	Gly	Ile	Gly 480		
ArgIleCysTyrAsnLeuMetAlaVal5yoMetLeuAsnValSerAspTrpAsn5yoMetLeuAsnValSerAspTrpAsnTyrTrpGlyGlyPheThrAlaLeuThrLeuProGluThrThrGlyArgThrPheSerGlnGlyValProAlaArgLysPhePheGlyLysArgGlyLeuGlnAspArgAspArgPheSerSerAlaGlnGln	Ala	Glu	Ile 490	Pro	Ser	Ala	Glu	Leu 495	Arg		
TyrMetLeuAsnValSerAspTrpAsn520TrpGlyGlyPheFhrAlaLeuThrTyrTrpGlyGlyPheFhrAlaLeuThrLeuProGluThrThrGlyArgThrPheSerGlnGlyValProAlaArgLysPheSerGlyLysArgGlyLeuGlnAsnArgAspArgPheSerSerAlaSerGlnGln	Arg	Ile 505	Суз	Tyr	Asn	Leu	Met 510	Ala	Val		
TyrTrpGlyGlyPheThrAlaLeuThrLeuProGluThrThrGlyArgThrPheSerGlnGlyValProAlaArgLysPheSerGlyLysArgGlyLeuGlnAsnArgPheGlyLysArgGlyLeuGlnAsnArgAspArgPheSerSerAlaSerGlnGln	Tyr 520	Met	Leu	Asn	Val	Ser 525	Asp	Trp	Asn		
Leu Pro Glu Thr Thr Gly Arg Thr Phe 555 Thr Gly Arg Thr Phe 560 Ser Gln Gly Val Pro Ala Arg Lys Phe 575 Thr Phe Gly Lys Arg Gly Leu Gln Asn Arg 585 Arg Phe Ser Ser Ala Ser Gln Gln	Tyr	Trp	Gly	Gly	Phe 540	Thr	Ala	Leu	Thr		
Ser Gln Gly Val Pro Ala Arg Lys Phe 570 Phe Gly Lys Arg Gly Leu Gln Asn Arg 585 Asp Arg Phe Ser Ser Ala Ser Gln Gln	Leu	Pro	Glu	Thr 555	Thr	Gly	Arg	Thr	Phe 560		
Phe Gly Lys Arg Gly Leu Gln Asn Arg 585 590 Asp Arg Phe Ser Ser Ala Ser Gln Gln	Ser	Gln	Gly 570	Val	Pro	Ala	Arg	Lys 575	Phe		
Asp Arg Phe Ser Ser Ala Ser Gln Gln	Phe	Gly 585	Lys	Arg	Gly	Leu	Gln 590	Asn	Arg		
800 805	Asp 600	Arg	Phe	Ser	Ser	Ala 605	Ser	Gln	Gln		

<210> SEQ ID NO 7 <211> LENGTH: 610 <212> TYPE: PRT <213> ORGANISM: Saccharomyces eubayanus <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <222> LOCATION: (1)..(610) <223> OTHER INFORMATION: yHRVM108 ncAGT1 <400> SEQUENCE: 7 Met Lys Asn Ile Ile Ser Leu Val Arg Arg Lys Gly Asn Thr Pro Glu 1 5 10 15 Asp Glu Thr Glu Asn Leu Glu Asp Thr Ser Ser Thr Thr Val Met Gln 25 30 20 Ala Lys Asp Leu Asp Ile Glu Asp Phe Glu Glu Arg Lys Lys Asn Asp 35 40 45 Ala Phe Glu Leu Asn His Met Glu Leu Thr Thr Asn Ala Thr Gln Leu 50 55 60 Gly Asp Ser Asp Gly Asp Asn Asp Asn Ala Ile Arg Val Ala Glu Ala 65 70 75 80

-continued

Thr Asp Asp Ala Asn Glu Ala Asn Asn Glu Glu Lys Ser Met Thr Leu Arg Gln Ala Leu Arg Lys Tyr Pro Lys Ala Ala Leu Trp Ser Ile Leu Val Ser Thr Thr Leu Val Met Glu Gly Tyr Asp Thr Ala Leu Leu Ser Ala Leu Tyr Ala Leu Pro Val Phe Gln Arg Lys Phe Gly Thr Met Asn Ala Glu Gly Ser Tyr Glu Ile Thr Ser Gln Trp Gln Ile Gly Leu Asn Met Cys Val Leu Cys Gly Glu Met Ile Gly Leu Gln Met Thr Thr Tyr Met Val Glu Phe Met Gly Asn Arg Tyr Thr Met Ile Met Ala Leu Phe Leu Leu Thr Ala Tyr Ile Phe Ile Leu Tyr Tyr Cys Lys Ser Leu Ala Met Ile Ala Val Gly Gln Ile Leu Ser Ala Met Pro Trp Gly Cys Phe Gln Ser Leu Ala Val Thr Tyr Ala Ser Glu Val Cys Pro Leu Ala Leu Arg Tyr Tyr Met Thr Ser Tyr Ser Asn Ile Cys Trp Leu Phe Gly Gln Ile Phe Ala Ser Gly Ile Met Lys Asn Ser Gln Glu Asn Leu Gly Asp Ser Asp Leu Gly Tyr Lys Leu Pro Phe Ala Leu Gln Trp Ile Trp Pro Ala Pro Leu Ile Ile Gly Ile Phe Phe Ala Pro Glu Ser Pro Trp Trp Leu Val Arg Lys Asn Lys Ile Val Glu Ala Lys Lys Ser Leu Asn Arg Ile Leu Ser Gly Thr Ala Thr Glu Lys Glu Ile Gln Val Asp Ile Thr Leu Lys Gln Ile Glu Met Thr Ile Glu Lys Glu Arg Leu Arg Ala Ser Glu Ser Gly Ser Phe Phe Ser Cys Phe Lys Gly Val Asp Gly Arg Arg Thr Arg Leu Ala Cys Leu Thr Trp Val Ala Gln Asn Ser Ser Gly Ala Val Leu Leu Gly Tyr Ser Thr Tyr Phe Phe Glu Arg Ala Gly Met Asp Thr Asp Lys Ala Phe Thr Phe Ser Leu Ile Gln Tyr Cys Leu Gly Leu Ala Gly Thr Leu Cys Ser Trp Val Ile Ser Gly Arg Val Gly Arg Trp Thr Ile Leu Thr Tyr Gly Leu Ser Phe Gln Met Val Cys Leu Phe Ile Ile Gly Gly Met Gly Phe Ala Ser Gly Ser Ser Ala Ser Asn Ala Ala Gly Gly Leu Leu Ala Leu Ser Phe Phe Tyr Asn Ala Gly Ile Gly Ala Val Val Tyr Cys Ile Val Ala Glu Ile Pro Ser Ala Glu Leu Arg

-continued

Thr	Lys	Thr	Ile 500	Val	Leu	Ala	Arg	Ile 505	Сүз	Tyr	Asn	Leu	Met 510	Ala	Val
Phe	Asn	Ala 515	Ile	Leu	Thr	Pro	Tyr 520	Met	Leu	Asn	Val	Ser 525	Asp	Trp	Asn
Trp	Gly 530	Ala	Lys	Thr	Gly	Leu 535	Tyr	Trp	Gly	Gly	Phe 540	Thr	Ala	Leu	Thr
Leu 545	Ala	Trp	Val	Ile	Ile 550	Asp	Leu	Pro	Glu	Thr 555	Thr	Gly	Arg	Thr	Phe 560
Ser	Glu	Ile	Asn	Glu 565	Leu	Phe	Asn	Gln	Gly 570	Val	Pro	Ala	Arg	Lys 575	Phe
Ala	Ser	Thr	Val 580	Val	Asp	Pro	Phe	Gly 585	Гла	Ser	Gly	Leu	Lys 590	Asn	Leu
Pro	Gln	Val 595	Asp	Asp	Ile	Ile	Asp	Arg	Ser	Ser	Ser	Met	Ser	Gln	Gln
Ala	Leu	555										005			
<210 <211)> SH L> LH	EQ II ENGTH) NO 4: 6: DDT	8 16											
<212 <213 <220	3> 0F 3> 0F 0> FF	RGANI EATUF	ISM: RE:	Saco	charo	omyce	∋s ce	erev:	isia	9					
<221 <222	L> NA 2> LC	AME/H CATI	CEY: ION:	MISC (1)	C_FEA	ATURE	2			in 7.	- <u>-</u>				
< 400	> 0	. dek EQUEI	1CE :	8 8	TON	. AG	. I I I		ətra:	. II S.	208C				
Met 1	Lys	Asn	Ile	Ile 5	Ser	Leu	Val	Ser	Lys 10	Lys	Гла	Ala	Ala	Ser 15	Lys
Asn	Glu	Asp	Lys 20	Asn	Ile	Ser	Glu	Ser 25	Ser	Arg	Asp	Ile	Val 30	Asn	Gln
Gln	Glu	Val 35	Phe	Asn	Thr	Glu	Asp 40	Phe	Glu	Glu	Gly	Lys 45	Lys	Asp	Ser
Ala	Phe 50	Glu	Leu	Asp	His	Leu 55	Glu	Phe	Thr	Thr	Asn 60	Ser	Ala	Gln	Leu
Gly 65	Asp	Ser	Asp	Glu	Asp 70	Asn	Glu	Asn	Val	Ile 75	Asn	Glu	Met	Asn	Ala 80
Thr	Asp	Asp	Ala	Asn 85	Glu	Ala	Asn	Ser	Glu 90	Glu	ГЛа	Ser	Met	Thr 95	Leu
Lys	Gln	Ala	Leu 100	Leu	Lys	Tyr	Pro	Lys 105	Ala	Ala	Leu	Trp	Ser 110	Ile	Leu
Val	Ser	Thr 115	Thr	Leu	Val	Met	Glu 120	Gly	Tyr	Asp	Thr	Ala 125	Leu	Leu	Ser
Ala	Leu 130	Tyr	Ala	Leu	Pro	Val 135	Phe	Gln	Arg	Lys	Phe	Gly	Thr	Leu	Asn
Gly 145	Glu	Gly	Ser	Tyr	Glu 150	Ile	Thr	Ser	Gln	Trp 155	Gln	Ile	Gly	Leu	Asn 160
Met	Cys	Val	Leu	Cys	Gly	Glu	Met	Ile	Gly	Leu	Gln	Ile	Thr	Thr	Tyr
M	17-7	C1	יח	165 M	<u></u>	N	7	m	170	M	T] -	m1	7 -	175	01
met	val	GIU	180	met	σιλ	ASU	ыğ	19r 185	mr	met	тте	1111	лта 190	цец	стү
Leu	Leu	Thr 195	Ala	Tyr	Ile	Phe	Ile 200	Leu	Tyr	Tyr	Сүз	Lys 205	Ser	Leu	Ala
Met	Ile 210	Ala	Val	Gly	Gln	Ile 215	Leu	Ser	Ala	Ile	Pro 220	Trp	Gly	Cys	Phe
Gln	Ser	Leu	Ala	Val	Thr	Tyr	Ala	Ser	Glu	Val	Cys	Pro	Leu	Ala	Leu

-continued

225					230					235					240
Arg	Tyr	Tyr	Met	Thr 245	Ser	Tyr	Ser	Asn	Ile 250	Сүз	Trp	Leu	Phe	Gly 255	Gln
Ile	Phe	Ala	Ser 260	Gly	Ile	Met	Lys	Asn 265	Ser	Gln	Glu	Asn	Leu 270	Gly	Asn
Ser	Asp	Leu 275	Gly	Tyr	Lys	Leu	Pro 280	Phe	Ala	Leu	Gln	Trp 285	Ile	Trp	Pro
Ala	Pro 290	Leu	Met	Ile	Gly	Ile 295	Phe	Phe	Ala	Pro	Glu 300	Ser	Pro	Trp	Trp
Leu 305	Val	Arg	ГЛа	Asp	Arg 310	Val	Ala	Glu	Ala	Arg 315	ГЛа	Ser	Leu	Ser	Arg 320
Ile	Leu	Ser	Gly	Lуа 325	Gly	Ala	Glu	Lys	Asp 330	Ile	Gln	Val	Asp	Leu 335	Thr
Leu	Lys	Gln	Ile 340	Glu	Leu	Thr	Ile	Glu 345	Lys	Glu	Arg	Leu	Leu 350	Ala	Ser
Гла	Ser	Gly 355	Ser	Phe	Phe	Asn	Суз 360	Phe	Lys	Gly	Val	Asn 365	Gly	Arg	Arg
Thr	Arg 370	Leu	Ala	Суз	Leu	Thr 375	Trp	Val	Ala	Gln	Asn 380	Ser	Ser	Gly	Ala
Val 385	Leu	Leu	Gly	Tyr	Ser 390	Thr	Tyr	Phe	Phe	Glu 395	Arg	Ala	Gly	Met	Ala 400
Thr	Asp	Lys	Ala	Phe 405	Thr	Phe	Ser	Leu	Ile 410	Gln	Tyr	СЛа	Leu	Gly 415	Leu
Ala	Gly	Thr	Leu 420	Сув	Ser	Trp	Val	Ile 425	Ser	Gly	Arg	Val	Gly 430	Arg	Trp
Thr	Ile	Leu 435	Thr	Tyr	Gly	Leu	Ala 440	Phe	Gln	Met	Val	Cys 445	Leu	Phe	Ile
Ile	Gly 450	Gly	Met	Gly	Phe	Gly 455	Ser	Gly	Ser	Ser	Ala 460	Ser	Asn	Gly	Ala
Gly 465	Gly	Leu	Leu	Leu	Ala 470	Leu	Ser	Phe	Phe	Tyr 475	Asn	Ala	Gly	Ile	Gly 480
Ala	Val	Val	Tyr	Cys 485	Ile	Val	Ala	Glu	Ile 490	Pro	Ser	Ala	Glu	Leu 495	Arg
Thr	Lys	Thr	Ile 500	Val	Leu	Ala	Arg	Ile 505	Сүз	Tyr	Asn	Leu	Met 510	Ala	Val
Ile	Asn	Ala 515	Ile	Leu	Thr	Pro	Tyr 520	Met	Leu	Asn	Val	Ser 525	Asp	Trp	Asn
Trp	Gly 530	Ala	Lys	Thr	Gly	Leu 535	Tyr	Trp	Gly	Gly	Phe 540	Thr	Ala	Val	Thr
Leu 545	Ala	Trp	Val	Ile	Ile 550	Asp	Leu	Pro	Glu	Thr 555	Thr	Gly	Arg	Thr	Phe 560
Ser	Glu	Ile	Asn	Glu 565	Leu	Phe	Asn	Gln	Gly 570	Val	Pro	Ala	Arg	Lys 575	Phe
Ala	Ser	Thr	Val 580	Val	Asp	Pro	Phe	Gly 585	Lys	Gly	ГЛа	Thr	Gln 590	His	Asp
Ser	Leu	Ala 595	Asp	Glu	Ser	Ile	Ser 600	Gln	Ser	Ser	Ser	Ile 605	Lys	Gln	Arg
Glu	Leu 610	Asn	Ala	Ala	Asp	Lys 615	Cys								

<210> SEQ ID NO 9 <211> LENGTH: 1842 <212> TYPE: DNA <213> ORGANISM: Saccharomyces eubayanus

65

-continued

<220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)..(1842) <223> OTHER INFORMATION: yHEB1505 MALT434 <400> SEOUENCE: 9 atgaagggtc tatcctcaat gataaataga aagaagtgca acggtaactc gagttcaata 60 gagaccgaag gtggcttcgg cgccgctgaa tgcaactcga tagagttgga ggagcaaggc 120 aaaaaaactg attttgatct tgcccatctt gagtatggtc agggcccagc agcattaagc 180 gagaatgatg aagtaacgcc aaatattctc gacgctgcgc aggatgctaa ggaggccgac 240 gatagtgaaa gagagatgee geteatgaea getttgaaaa egtateeeaa ageagegget 300 tggtcgttgt tggtttccac aacgctgatc caggaaggtt atgacaccgc catcctcggc 360 tetttetatg ecetaecegt ettteagaag aagtaegget etetaaatge eegtaeagga 420 gaatgggaga tttcggtatc ttggcagatt gggctgtgtt tatgctacat ggcaggagag 480 atcgtgggtt tacagttgac aggtccctcg gtggatttga tgggtaaccg ctacacattg 540 attatggcgt tgatgttctt aactgccttc atttttattc tgtatttctg taaaagttta 600 qqqatqatcq ctqcqqqaca qqcattqtqc qqtatqccat qqqqttqttt ccaatqtctq 660 actgtgtett atgeetetga aatetgteet atggegetga ggtaetaeet gaegaeatat 720 togaatotgt gotggttgtt tggtoagott tttgotgoag goatoatgaa aaattoocaa 780 aacaaatacg cagactcgga cttaggatat acgctacctt ttgctttaca gtggatctgg 840 cctgttcctc tagcaatagc gatattcttt gcacctgaat ccccatggtg gttagtcaag 900 960 aaaggaagac tagagcaggc aaagaggtcg ctcgaaagaa cactaagcgg taagggagcc gagaaagaat cactggtggc catggaactg gataaaatca aaatgactat agagaaggag 1020 aagaagctgt cagacgatga aggctcctat ttggattgtc tgaggggcaa ggttaatcgg 1080 aggagaacga gaatagcctg tctgtgctgg gccggtcaaa ctgtttgtgg tgcgtcacta 1140 ataggttact caacttactt ctacgagaaa gccggtgtta gcacggaaac agcattcact 1200 tttagtatca ttcaatactg tctcggtatt gctgcaacat ttttatcctg gtgggcctca 1260 aaatattatg gtagatatga cctttacgct tgtggactgg ccttccagac cgttatactg 1320 ttcattatag gcggtttggg atgctccgac actcacggtg ccaaaatggg aagtggcgct 1380 cttctaatgg tggtcgcctt cttttacaac ctggggattg ctcccgttgt cttttgctta 1440 gtttctgaaa taccatcctc gaggctaaga actaaatcaa ttattctggc tcgtaacgcc 1500 tataatatgg catgtatcgt aactgctgtc ctgacattgt accaattgaa ttcagaaaaa 1560 tgggattggg gtgcaaagtc aggcttcttc tggggggggac tatgttttgc gacgttagta 1620 tgggctgtct ttgatctgcc cgaaaccgca ggtagaacct ttattgaaat aaatgaacta 1680 tttagacttg gagttccagc aagaaaattc aagtcaacaa aagtggaccc atttgccgcc 1740 gccaaagcaa tctctgatga aatcaaccat aaagatccca aggaagatat gaaagcttcc 1800 gccgaggaga gagagcaaag caccccatct ctaatggatt ga 1842

<210> SEQ ID NO 10
<211> LENGTH: 1842
<212> TYPE: DNA
<211> ORGANISM: Saccharomyces eubayanus
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (1)...(1842)
<223> OTHER INFORMATION: FM1318 Malt4

67

-continued

<400> SEQUI	ENCE: 10									
atgaagggtc	tatcctcaat	gataaataga	aagaagtgca	acggtaactc	gagctcaata	60				
gagaccgaag	gcggcttcgg	cgccgctgaa	tgcaactcga	tagagttgga	ggagcaaggc	120				
aaaaaactg	attttgatct	tgcccatctt	gagtatggtc	agggcccagc	agcattaagc	180				
gagaatgatg	aagtaacgcc	aaatattctc	gacgctgcgc	aggatgctaa	ggaggcagac	240				
gatagtgaaa	gagagatgcc	gctcatgaca	gctttgaaaa	cgtatcccaa	agcagcggct	300				
tggtcgttgt	tggtttccac	aacgctgatc	caggaaggtt	atgacaccgc	catcctcggc	360				
tctttctatg	ccctacccgt	ctttcagaag	aagtacggct	ctctaaatgc	ccgtacagga	420				
gaatgggaga	tttcggtatc	ttggcagatt	gggctgtgtt	tatgctacat	ggcaggagag	480				
atcgtgggtt	tacagttgac	aggtccctcg	gtggatttga	tgggtaaccg	ctacacattg	540				
attatggcgt	tgatgttctt	aactgctttc	atttttattc	tgtatttctg	taaaagttta	600				
gggatgatcg	ctgcgggaca	ggcattgtgc	ggtatgccat	ggggttgttt	ccaatgtctg	660				
actgtgtctt	atgcctctga	aatctgtcct	atggcgctga	ggtactacct	gacgacatat	720				
tcgaatctgt	gctggttgtt	tggtcagctt	tttgctgcag	gcatcatgaa	aaattcccaa	780				
aacaaatacg	cagactcgga	cttaggatat	acgctacctt	ttgctttaca	gtggatctgg	840				
cctgttcctc	tagcaatagc	gatattcttt	gcacctgaat	ccccatggtg	gttagtcaag	900				
aaaggaagac	tagagcaggc	aaagaggtcg	ctcgaaagaa	cactaagcgg	taagggagcc	960				
gagaaagaat	cactggtggc	catggaactg	gataaaatca	aaatgactat	agagaaggag	1020				
aagaagctgt	cagacgatga	aggctcctat	ttggattgtc	tgaggggcaa	ggttaatcgg	1080				
aggagaacga	gaatagcctg	tctgtgctgg	gccggtcaaa	ctgtttgtgg	tgcgtcacta	1140				
ataggttact	caacttactt	ctacgagaaa	gccggtgtta	gcacggaaac	agcattcact	1200				
tttagtatca	ttcaatactg	tctcggtatt	gctgcaacat	ttttatcctg	gtgggcctca	1260				
aaatattatg	gtagatatga	cctttacgct	tgtggactgg	ccttccagac	cgttatactg	1320				
ttcattatag	gcggtttggg	atgctccgac	actcacggtg	ccaaaatggg	aagtggcgct	1380				
cttctaatgg	tcgttgcgtt	ctcatacaac	ctggggattg	cccctgtcgt	tttttgctta	1440				
gtctctgaaa	taccatcgtc	gaggctgaga	actaaatcga	tcattttagc	tcgtaatgcg	1500				
tacaacatag	gaaatatcgt	agttgctgtt	ttgattttgt	accaactgaa	ctctgagaaa	1560				
tggaactggg	gtgccaagtc	aggettttte	tggggaggat	tctgcctggc	tgttttaatt	1620				
tgggctgtct	ttgatctgcc	cgaaaccgca	ggtagaacct	ttattgaaat	aaatgaacta	1680				
tttagacttg	gagttccagc	aagaaaattc	aagtcaacaa	aagtggaccc	atttgccgcc	1740				
gccaaagcaa	tctctgatga	aatcaaccat	aaagatccca	aggaagatat	gaaagcttcc	1800				
gccgaggaga	gagagcaaag	caccccatct	ctaatggatt	ga		1842				
<pre><210> SEQ : <211> LENG <212> TYPE <213> ORGAI <220> FEATU <221> NAME; <222> LOCA <223> OTHEI <400> SEQUI</pre>	<pre>:210> SEQ ID NO 11 :211> LENGTH: 1845 :212> TYPE: DNA :213> ORGANISM: Saccharomyces eubayanus :220> FEATURE: :221> NAME/KEY: misc_feature :222> LOCATION: (1)(1845) :223> OTHER INFORMATION: FM1318 Malt3</pre>									

atgaaggget tateeteact gataaacaga aaaaaaaaca agattgaete taatteaaat 60 gagategaga acggeatgaa cagtaeegat eteaactega tegagatgea ggaacaagge 120

69

-continued

aagaaatctg	actttgatct	ttcccatatt	gagtacggtc	aagattcacg	agtaccaaaa	180			
gatgatgatg	aggaagtccc	agatettete	gatgaggcta	tgcaggatgc	gaaggaggca	240			
gacgaaagtg	aaaggggggat	gccacttctg	caagctttga	aaacgtatcc	caaagctgct	300			
gcttggtcgc	tattagtete	cacaacgctg	attcaagaag	gttatgatac	tgccatcctc	360			
ggatctttct	atgctttgcc	cgttttccag	aaggaatatg	gttctctgaa	tagcaagaca	420			
ggagaatatg	aaatttcagt	ttcttggcag	attggtttat	ctttatgtat	tgtggcaggt	480			
gagattgttg	gtttacaaat	gactggtcct	tttgtagatt	acatgggtaa	tcgttacaca	540			
ttgattgtgg	cgttgttctt	tttagccgct	ttcactttta	ttctgtattt	ttgcaaaagt	600			
ttgggtatga	ttgccgtggg	acaagtactg	tgtggtatgc	catggggttg	tttccaatgt	660			
ttgacagtct	catatgette	cgaaatctgt	cctttggctt	taagatacta	cctgacaact	720			
tattcaaact	tgtgctggac	ttttggccaa	ctttttgctg	ctggtattat	gaaaaattcc	780			
caaaacaagt	acccagactc	ggatttggga	tataagctac	catttgcttt	acagtggatt	840			
tggcctcttc	ccctggcaat	agggatattc	tttgcacctg	aatctccatg	gtggttgatc	900			
aagaaaggga	gaatggaaca	ggcgaagaaa	tcacttgaaa	gaacattgag	tggcaaggga	960			
cctgagaaag	aactgctggt	gagtatggaa	ctagataaaa	tcaaagtgac	tattgaaaaa	1020			
gaacaaaaaa	tgtcagattc	agaagggtca	tactgggatt	gtgtgaagga	ctgtatcaac	1080			
cggagaagaa	caagaatagc	ttgtttatgt	tggattggtc	aaaccacttg	tggtacacaa	1140			
ctgataggat	attcaaccta	ttttacgaa	aaggctggtg	ttagcactga	aacagcattc	1200			
acttttagta	ttattcaata	ctgtcttggt	attgttgcaa	cacttctatc	ctggtgggct	1260			
tcaaagtatt	ttgggagatt	tgacctttac	gcgttcggac	tggccattca	gactgtttta	1320			
ctgtttatta	taggaggtct	gggatgctct	gatactcacg	gtgcccaaat	gggaagtggc	1380			
gctcttctaa	tggtggtcgc	cttctttac	aacctgggga	ttgctcccgt	tgtcttttgc	1440			
ttagtttctg	aaataccatc	ctcgaggcta	agaactaaat	caattattct	ggctcgtaac	1500			
gcctataata	tggcatgtat	cgtaactgct	gtcctgacat	tgtaccaatt	gaattcagaa	1560			
aaatgggatt	ggggtgcaaa	gtcaggcttc	ttctgggggg	gactatgttt	tgcgacgtta	1620			
gtatgggctg	tcattgattt	acccgaaact	gccggtagaa	cctttatgga	aatgaacgaa	1680			
ctatttagac	tcggtattcc	agcaagaaag	ttcaagacga	ctaaagtgga	cccatttgcg	1740			
gctgtcaaag	cggctaaaga	aattgctcat	aatgatccca	aggaagatat	ggaaacttcc	1800			
atggtggaag	aagggcgaag	cacaccatct	attacgaatt	tatga		1845			
<210> SEQ ID NO 12 <211> LENGTH: 1833 <212> TYPE: DNA <213> ORGANISM: Unknown <220> FEATURE: <223> OTHER INFORMATION: yHAB47 lager hybrid lgAGT1 <400> SEQUENCE: 12									
atqaaaaata	tactttcoct.	qqtaqqaaqa	aaqqaaaata	ccccaqaaqa	tqtqacqqcq	60			
aatetteege	acadeticaad	cactacact+	atgcaagcaa	aggadttoot	tattgaggag	120			
tttgaagaag	gaaagaaaaa	cgatggatt+	gagttgaatg	acttoraget	cactactaat	190			
	yaaayaaadd	testa	yayıtyaatt	teeta-	actactaat	100			
ycaacacagt	LAAYCGATTC	ugaugaagad	aaayaaaatg	caaccagagt	yycagaaget	240			
actgatgatg	cgaacgaagc	taataacgaa	gagaagagca	tgactttaag	acaagctttg	300			

71

-continued

cgaaaatatc caaaggcagc gctatggtct attttggtat ctactacgct tgttatggaa 360							
ggttatgata ctgcactttt aagtgcactt tatgcattgc cagtttttca gaggaagttt 420							
gggactatga atgcggaagg ctcctacgaa atcacttcgc agtggcaaat tggcttgaac 480							
atgtgtgttc tttgtggtga aatgattggt ctacagataa ccacttacat ggtcgagttc 540							
atgggtaatc gttatacaat gattacggcg ctttctcttt tgactgctta tatctttatc 600							
ctttactatt gcaagagttt ggccatgatt gctgtaggac aaattctttc ggctatgcca 660							
tggggttget tecagagtet ggetgttace tatgettetg aagtttgeee eetggeattg 720							
agatattaca tgaccagtta ctccaacatt tgttggttgt ttggtcaaat ttttgcttct 780							
ggaatcatga aaaattccca ggagaatttg ggaaactccg acttaggtta caagttacca 840							
ttcgccttac aatggatctg gcctgcaccc ttaattattg gtatcttttt cgctcctgag 900							
tcgccttggt ggttggtaag aaagaataag atcgtggaag ccaaaaagtc tttgaacaga 960							
attetgagtg geaetgttae eggaaggag ataeaagtgg atattaettt gaageaaatt 1020							
gaaatgacca ttgagaagga aagacttcgg gcatccaaat cggggtcatt tttcagctgt 1080							
ttcaagggag ttgatggaag aagaacgagg cttgcgtgtt tgacttgggt tgctcagaac 1140							
agtagtggtg cagtattact tggttattcg acgtacttct ttgaaagagc aggcatggcc 1200							
actgacaagg cetteaettt etegetaatt caataetgte ttggtttgge aggeaegett 1260							
ggtteetggg taatatetgg eegtgttggt agatggaeta taetgaeeta tggtetttea 1320							
ttccaaatgg tttgtctatt tatcattggc ggaatgggtt ttgcatccgg aagcagtgct 1380							
agtaacgctg ctggtggcct actgcttgct ttatctttct tctataacgc gggtatcgga 1440							
gctgtcgttt actgtattgt tgcagaaatc ccatccgcag aattaaggac caagaccatt 1500							
gtgetggeee gtatttgeta caatetaatg geegtettea atgetattet aaegeeetat 1560							
atgettaacg tgagegaetg gaactggggt gecaaaaetg gtetatattg gggtggettt 1620							
accgcactca ctctggcttg ggtcattatt gatttgcccg agacaactgg cagaaccttt 1680							
agcgaaatca atgaactttt cagtcaaggt gtccctgcta gaaaatttgc atctacagta 1740							
gttgatccct ttggaaagag agggctacaa aatcgtccgc aagttgataa cattattgac 1800							
cggttctcaa gcgcgagtca acaggcgtta tga 1833							
<pre><210> SEQ ID NO 13 <211> LENGTH: 1833 <212> TYPE: DNA <211> ORGANISM: Saccharomyces eubayanus <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)(1833) <223> OTHER INFORMATION: yHRVM108 ncAGT1</pre>							
<400> SEQUENCE: 13							
atgaagaata tcatttcgct ggtaagaaga aagggaaata ctccagaaga tgagacagaa 60							
aatcttgaag acacttcaag cactacagtt atgcaagcaa aggacttgga tattgaggac 120							
tttgaagaac ggaagaaaaa cgatgcattt gagttaaatc acatggagct cactactaat 180							
gcaacacagt taggcgattc tgatggagac aacgataatg caatcagagt ggcagaagct 240							
actgatgatg cgaacgaagc taacaacgaa gagaaaagca tgactttaag acaagctttg 300							
cgaaaatatc caaaggcagc gctatggtct attttggtat ctactacgct tgttatggaa 360							
ggttatgata cegcacttet aagtgegett tatgeattge caqtttttea qaqqaaqtte 420							
gogactatga atgoggaagg ctcctacgaa atcacttcgc agtggcaaat tggcttgaac 480							

73

-continued

atgtgtgttc tttgtggtga aatgattggt ttacagatga ccacttacat ggtcgagttc	540							
atgggcaatc gttatacaat gattatggcg ctttttcttt tgactgctta tattttatc	600							
ctttactatt gcaagagttt agccatgatt gctgtaggac aaattctttc ggctatgcca	660							
tggggttget tecagagtet ggetgttace tatgettetg aagtttgeee eetggetttg	720							
agatattaca tgaccagtta ctccaacatt tgttggttat ttggtcaaat ttttgcttct	780							
ggaatcatga aaaattctca ggagaatttg ggagactccg acttgggtta caagttacca	840							
ttcgccttac aatggatctg gcctgcaccc ttaattattg gtatcttctt cgctcctgag	900							
tcgccatggt ggttagtaag aaagaataag atcgtggagg ccaaaaagtc tttgaacaga	960							
attetgagtg geactgetae eggaaggag atacaagtgg atattaettt gaageaaatt	1020							
gaaatgacca ttgagaagga aagacttcgt gcatccgaat cggggtcatt tttcagctgt	1080							
ttcaagggag ttgatggaag aagaacgaga cttgcgtgtt tgacttgggt tgctcagaac	1140							
agtagtggtg cagttttact tggttattcg acctatttct ttgaaagagc aggcatggac	1200							
actgacaagg ctttcacttt ctcgcttatt cagtactgtc ttggtttggc aggcactctt	1260							
tgttcttggg taatttctgg ccgtgttggt agatggacta tactgaccta tggtctttca	1320							
ttccaaatgg tttgtctatt tatcattggc ggaatgggtt ttgcatccgg aagcagtgct	1380							
agtaacgctg ctggtggcct actgcttgcg ttatcttttt tctataacgc gggtatcgga	1440							
gctgtcgttt actgtattgt tgcagagatc ccatccgcgg aattaaggac caagactatt	1500							
gtgctggctc gtatttgcta caatctaatg gccgtcttca atgctattct aacgccctat	1560							
atgettaacg tgagegaetg gaaetggggt geeaaaaetg gtetatattg gggtggette	1620							
accgcactca ctctcgcttg ggtcattatt gatttgcccg agacaactgg cagaaccttt	1680							
agcgaaatca atgaactttt caatcaaggt gtccctgcta gaaaatttgc atctacagta	1740							
gttgatcctt ttggaaagag cgggttaaag aatcttccgc aagttgatga cattattgac	1800							
cggtcctcaa gcatgagtca gcaggcatta taa	1833							
<pre><210> SEQ ID NO 14 <211> LENGTH: 1851 <212> TYPE: DNA <213> ORGANISM: Saccharomyces cerevisiae <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)(1851) <223> OTHER INFORMATION: AGT1 from strain S288c</pre>								
<400> SEQUENCE: 14								
atgaaaaata tcatttcatt ggtaagcaag aagaaggctg cctcaaaaaa tgaggataaa	60							
aacatttetg agtetteaag agatattgta aaccaacagg aggtttteaa taetgaagat	120							
tttgaagaag ggaaaaagga tagtgcettt gagetagaee aettagagtt caecaacaat	180							
tcagcccagt taggagattc tgacgaagat aacgagaatg tgattaatga gatgaacgct	240							
actgatgatg caaatgaagc taacagcgag gaaaaaagca tgactttgaa gcaggcgttg	300							
ctaaaatatc caaaagcagc cctgtggtcc atattagtgt ctactaccct ggttatggaa	360							
ggttatgata ccgcactact gagcgcactg tatgccctgc cagtttttca gagaaaattc	420							
ggtactttga acggggaggg ttcttacgaa attacttccc aatggcagat tggtttaaac	480							
atgtgtgtcc tttgtggtga gatgattggt ttgcaaatca cgacttatat ggttgaattt	540							
atggggaatc gttatacgat gattacagca cttggtttgt taactgctta tatctttatc	600							

75

-continued

ctctactact gtaaaagttt	agctatgatt gctgtgggac	aaattetete agetataeea	660
tggggttgtt tccaaagttt	ggctgttact tatgcttcgg	aagtttgccc tttagcatta	720
agatattaca tgaccagtta	ctccaacatt tgttggttat	ttggtcaaat cttcgcctct	780
ggtattatga aaaactcaca	agagaattta gggaactccg	acttgggcta taaattgcca	840
tttgctttac aatggatttg	gcctgctcct ttaatgatcg	gtatcttttt cgctcctgag	900
tcgccctggt ggttggtgag	aaaggatagg gtcgctgagg	caagaaaatc tttaagcaga	960
attttgagtg gtaaaggcgc	cgagaaggac attcaagttg	atcttacttt aaagcagatt	1020
gaattgacta ttgaaaaaga	aagactttta gcatctaaat	caggatcatt ctttaattgt	1080
ttcaagggag ttaatggaag	aagaacgaga cttgcatgtt	taacttgggt agctcaaaat	1140
agtagcggtg ccgttttact	tggttactcg acatatttt	ttgaaagagc aggtatggcc	1200
accgacaagg cgtttacttt	ttetetaatt cagtactgte	ttgggttagc gggtacactt	1260
tgctcctggg taatatctgg	ccgtgttggt agatggacaa	tactgaccta tggtcttgca	1320
tttcaaatgg tctgcttatt	tattattggt ggaatgggtt	ttggttctgg aagcagcgct	1380
agtaatggtg ccggtggttt	attgetgget ttatcattet	tttacaatgc tggtatcggt	1440
qcaqttqttt actqtatcqt	tgctgaaatt ccatcagcgg	aqttqaqaac taaqactata	1500
gtgctggccc gtatttgcta	caatctcatg gccgttatta	acgctatatt aacgccctat	1560
atgetaaacg tgagegattg	gaactggggt gccaaaactg	atctatacta gagtagtttc	1620
acagcagtea etttagettg	gatcatcatc gatctacctg	agacaactog tagaacette	1680
adtgaaatta atgaactttt	caaccaagg gttcctgcca	gaaaatttgc atctactgtg	1740
attgatgat tagaaaaaga		tagatgatga gagtatgagt	1900
gergateat reggaaaggg		ataaatatta a	1051
Cagleeleaa gealaaaaca	gegagaatta aatgeagetg	alaalylla a	1001
<pre><210> SEQ ID NO 15 <211> LENGTH: 616 <212> TYPE: PRT <213> ORGANISM: Unknow <220> FEATURE: <223> OTHER INFORMATIC</pre>	m DN: YHAB47 lager hybri	d scAGT1	
<400> SEQUENCE: 15			
Met Lys Asn Ile Ile Se	er Leu Val Ser Lys Lys	Lys Ala Ala Ser Lys	
I S	IU Io Cor Clu Cor Cor Arg	Lo Man Ilo Vol Man Cln	
20	25	Asp file val Ash Gin 30	
Gln Glu Val Phe Asn Th 35	nr Glu Asn Phe Glu Glu 40	Gly Lys Lys Asp Ser 45	
Ala Phe Glu Leu Asp Hi 50	s Leu Glu Phe Thr Thr 55	Asn Ser Ala Gln Leu 60	
Gly Asp Ser Asp Glu As	sp Asn Glu Asn Met Ile	Asn Glu Met Asn Ala	
65 70	5	80	
Thr Asp Glu Ala Asn Gl 85	lu Ala Asn Ser Glu Glu 90	Lys Ser Met Thr Leu 95	
Lys Gln Ala Leu Leu Ly 100	vs Tyr Pro Lys Ala Ala 105	Leu Trp Ser Ile Leu 110	
Val Ser Thr Thr Leu Va	al Met Glu Gly Tyr Asp	Thr Ala Leu Leu Asn	
115	120	125	
Ala Leu Tyr Ala Leu Pr 130	to Val Phe Gln Arg Lys	Phe Gly Thr Leu Asn 140	

-continued

_																
Gly 145	Glu	Gly	Ser	Tyr	Glu 150	Ile	Thr	Ser	Gln	Trp 155	Gln	Ile	Gly	Leu	Asn 160	
Met	Суз	Val	Gln	Сув 165	Gly	Glu	Met	Ile	Gly 170	Leu	Gln	Ile	Thr	Thr 175	Tyr	
Met	Val	Glu	Phe 180	Met	Gly	Asn	Arg	Tyr 185	Thr	Met	Ile	Thr	Ala 190	Leu	Gly	
Leu	Leu	Thr 195	Ala	Tyr	Ile	Phe	Ile 200	Leu	Tyr	Tyr	Суз	Lys 205	Ser	Leu	Ala	
Met	Ile 210	Ala	Val	Gly	Gln	Val 215	Leu	Ser	Ala	Met	Pro 220	Trp	Gly	Суз	Phe	
Gln 225	Gly	Leu	Thr	Val	Thr 230	Tyr	Ala	Ser	Glu	Val 235	Сүз	Pro	Leu	Ala	Leu 240	
Arg	Tyr	Tyr	Met	Thr 245	Ser	Tyr	Ser	Asn	Ile 250	Суз	Trp	Leu	Phe	Gly 255	Gln	
Ile	Phe	Ala	Ser 260	Gly	Ile	Met	Lys	Asn 265	Ser	Gln	Glu	Asn	Leu 270	Gly	Asn	
Ser	Asp	Leu 275	Asp	Tyr	Lys	Leu	Pro 280	Phe	Ala	Leu	Gln	Trp 285	Ile	Trp	Pro	
Ala	Pro 290	Leu	Met	Ile	Gly	Ile 295	Phe	Phe	Ala	Pro	Glu 300	Ser	Pro	Trp	Trp	
Leu 305	Val	Arg	ГÀа	Asp	Arg 310	Val	Ala	Glu	Ala	Arg 315	ГЛа	Ser	Leu	Ser	Arg 320	
Ile	Leu	Ser	Gly	Lys 325	Gly	Ala	Glu	ГЛЗ	Asp 330	Ile	Gln	Val	Asp	Leu 335	Thr	
Leu	Lys	Gln	Ile 340	Glu	Leu	Thr	Ile	Glu 345	Lys	Glu	Arg	Leu	Leu 350	Ala	Ser	
ГЛЗ	Ser	Gly 355	Ser	Phe	Phe	Asp	Сув 360	Phe	Lys	Gly	Val	Asn 365	Gly	Arg	Arg	
Thr	Arg 370	Leu	Ala	Сүз	Leu	Ala 375	Trp	Val	Ala	Gln	Asn 380	Thr	Ser	Gly	Ala	
Суз 385	Leu	Leu	Gly	Tyr	Ser 390	Thr	Tyr	Phe	Phe	Glu 395	Arg	Ala	Gly	Met	Ala 400	
Thr	Asp	Lys	Ala	Phe 405	Thr	Phe	Ser	Val	Ile 410	Gln	Tyr	Сүз	Leu	Gly 415	Leu	
Ala	Gly	Thr	Leu 420	Сүз	Ser	Trp	Val	Ile 425	Ser	Gly	Arg	Val	Gly 430	Arg	Trp	
Thr	Ile	Leu 435	Thr	Tyr	Gly	Leu	Ala 440	Phe	Gln	Met	Val	Cys 445	Leu	Phe	Val	
Ile	Gly 450	Gly	Met	Gly	Phe	Gly 455	Ser	Gly	Ser	Gly	Ala 460	Ser	Asn	Gly	Ala	
Gly 465	Gly	Leu	Leu	Leu	Ala 470	Leu	Ser	Phe	Phe	Tyr 475	Asn	Ala	Gly	Ile	Gly 480	
Ala	Val	Val	Tyr	Суз 485	Ile	Val	Ala	Glu	Ile 490	Pro	Ser	Ala	Glu	Leu 495	Arg	
Thr	Lys	Thr	Ile 500	Val	Leu	Ala	Arg	Ile 505	Суз	Tyr	Asn	Leu	Met 510	Ala	Val	
Ile	Asn	Ala 515	Ile	Leu	Thr	Pro	Tyr 520	Met	Leu	Asn	Val	Ser 525	Asp	Trp	Asn	
Trp	Gly 530	Ala	Lys	Thr	Gly	Leu 535	Tyr	Trp	Gly	Gly	Phe 540	Thr	Ala	Val	Thr	
Leu 545	Ala	Trp	Val	Ile	Ile 550	Asp	Leu	Pro	Glu	Thr 555	Thr	Gly	Arg	Thr	Phe 560	
Ser	Glu	Ile	Asn	Glu	Leu	Phe	Asn	Gln	Gly	Val	Pro	Ala	Arg	Lys	Phe	

				001101		
	565		570		575	
Ala Ser Thr	Val Val As 580	sp Pro Phe (Gly Lys Gly 585	Lys Thr Gl 59	n His Asp 0	
Ser Leu Ala 595	Asp Glu Se	er Ile Ser (600	Gln Ser Ser	Ser Ile Ly 605	s Gln Arg	
Glu Leu Asn 610	Ala Ala As	зр Lys Cys 615				
<210> SEQ ID <211> LENGTH <212> TYPE: <213> ORGANI <220> FEATUR <223> OTHER	NO 16 : 1851 DNA SM: Unknow E: INFORMATIC	vn DN: yHAB47]	lager hybrid	l scAGT1		
<400> SEQUEN	CE: 16					
atgaaaaata t	catttcatt	ggtaagcaag	aagaaggctg	cctcaaaaaa	tgaggataaa	60
aacatttctg a	gtcttcaag	agatattgta	aaccaacagg	aggttttcaa	tactgaaaat	120
tttgaagaag g	gaaaaagga	tagtgccttt	gagctagacc	acttagagtt	caccaccaat	180
tcagcccagt t	aggagattc	tgacgaagat	aacgagaata	tgattaatga	gatgaacgct	240
actgatgaag c	aaatgaagc	taacagcgag	gaaaaaagca	tgactttaaa	gcaggcgttg	300
ctaaaatatc c	aaaagcagc	cctgtggtcc	atattagtgt	ctactaccct	ggttatggaa	360
ggttatgata c	cgcactact	gaacgcactg	tatgccctgc	cagtgtttca	gagaaaattc	420
ggtactttga a	cggggaggg	ttcttacgaa	attacttccc	aatggcagat	tggtttaaac	480
atgtgtgtcc a	atgtggtga	gatgattggt	ttgcaaatca	cgacttatat	ggttgaattt	540
atggggaatc g	ttatacgat	gattacagca	cttggtttgt	taactgctta	tatctttatc	600
ctctactact g	taaaagttt	agctatgatt	gctgtgggac	aagttetete	agctatgcca	660
tggggttgtt t	ccagggttt	gactgttact	tatgcttcgg	aagtttgccc	tttagcatta	720
agatattaca t	gaccagtta	ctccaacatt	tgttggttat	ttggtcaaat	ettegeetet	780
ggtattatga a	aaactcaca	agagaattta	gggaactctg	acttggacta	taaattgcca	840
tttgctttac a	atggatttg	geetgeteet	ttaatgatcg	gtatctttt	cgctcctgag	900
tcgccctggt g	gttggtgag	aaaggatagg	gtcgctgagg	caagaaaatc	tttaagcaga	960
attttgagtg g	taaaggege	cgagaaggac	attcaagttg	atcttacttt	aaagcagatt	1020
gaattgacta t	tgaaaaaga	aagactttta	gcatctaaat	caggatcatt	ctttgattgt	1080
ttcaagggag t	taatggaag	aagaacgaga	cttgcatgtt	tagettgggt	agctcaaaat	1140
actageggtg e	ctgtttact	tggttactcg	acatatttt	ttgaaagagc	aggtatggcc	1200
accgacaagg c	gtttacttt	ttctgtaatt	cagtactgtc	ttgggttagc	gggtacactt	1260
tgeteetggg t	aatatetgg	ccgtgttggt	agatggacaa	tactgaccta	tggtcttgca	1320
tttcaaatgg t	ctgcttatt	tgttattggt	ggaatgggtt	ttggttdtgg	aagcggcgct	1380
agtaatggtg c	cggtggttt	attgetgget	ttatcattct	tttacaatgc	tggtatcggt	1440
gcagttgttt a	ctgtatcgt	agctgaaatt	ccatcagcgg	agttgagaac	taagactata	1500
gtgctggccc g	tatttgcta	caatctcatg	gccgttatca	acgctatatt	aacgccctat	1560
atgctaaacg t	gagcgattg	gaactggggt	gccaaaactg	gtctatactg	gggtggtttc	1620
acagcagtca c	tttagettg	ggtcatcatc	gatctgcctg	agacaactgg	tagaaccttc	1680
agtgaaatta a	tgaactttt	caaccaaggg	gttcctgcca	gaaaatttgc	atctactgtg	1740

ο	1
о	1

-continued

gttgatccat tcggaaaggg aaaaactcaa catgattcgc tagctgatga gagtatcagt	1800
cagtcctcaa gcataaaaca gcgagaatta aatgcagctg ataaatgtta a	1851
<210> SEQ ID NO 17 <211> LENGTH: 60 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: oHECPB75 primer	
<400> SEQUENCE: 17	
tatagacacg caaacacaaa tacacacact aaattaatga agggattatc ctcattaata	60
<210> SEQ ID NO 18 <211> LENGTH: 60 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: oHECPB76 primer	
<400> SEQUENCE: 18	
tcaagaaatt cgcttattta gaagtggcgc gaattcacta tcatttgttc acaacagatg	60
<210> SEQ ID NO 19 <211> LENGTH: 60 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: oHECPB77 primer	
<400> SEQUENCE: 19	
cacgcaaaca caaatacaca cactaaatta atgaaaaata tactttcgct ggtaggaaga	60
<210> SEQ ID NO 20 <211> LENGTH: 60 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: oHECPB78 primer <400> SEQUENCE: 20	
caagaaatte gettatttag aagtggegeg aatteactat cataacgeet gttgactege	60
<pre><210> SEQ ID NO 21 <211> LENGTH: 60 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: oHECPB104 primer</pre>	
<400> SEQUENCE: 21	
acacgcaaac acaaatacac acactaaatt aatgaagaat atcatttcgc tggtaagaag	60
<210> SEQ ID NO 22 <211> LENGTH: 60 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: oHECPB105 primer	
< TOP SEQUENCE: 22	
gaaattogot tatttagaag tggogogaat toaotattat aatgootgot gaotoatgot	6 U
<210> SEO ID NO 23	

<211> LENGTH: 20

-continued

<212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: oHECPB124 primer <400> SEQUENCE: 23 cctatgcttc tgaagtttgc 20 <210> SEQ ID NO 24 <211> LENGTH: 18 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: oHECPB125 primer <400> SEQUENCE: 24 18 cctgccaaac caagacag <210> SEQ ID NO 25 <211> LENGTH: 22 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: oHECPB128 primer <400> SEQUENCE: 25 22 gcttgtttat gttgggtcgg tc <210> SEQ ID NO 26 <211> LENGTH: 22 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: oHECPB129 primer <400> SEQUENCE: 26 gaccgaccca acataaacaa gc 22 <210> SEQ ID NO 27 <211> LENGTH: 60 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: oHECPB138 primer <400> SEQUENCE: 27 acacgcaaac acaaatacac acactaaatt aatgaagggt ctatcctcaa tgataaatag 60 <210> SEQ ID NO 28 <211> LENGTH: 60 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: oHECPB139 primer <400> SEQUENCE: 28 cgcttattta gaagtggcgc gaattcacta tcaatccatt agagatgggg tgctttgctc 60 <210> SEQ ID NO 29 <211> LENGTH: 60 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: oHECPB140 primer

<400> SEQUENCE: 29

86

-continued

cacgcaaaca caaatacaca cactaaatta atgaagggtc tatcttcaat attgaataga 60 <210> SEQ ID NO 30 <211> LENGTH: 60 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: oHECPB141 primer <400> SEQUENCE: 30 cgcttattta gaagtggcgc gaattcacta tcaaatcgta agagatgggg tagttaattc 60 <210> SEQ ID NO 31 <211> LENGTH: 60 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: oHECPB142 primer <400> SEQUENCE: 31 cacgcaaaca caaatacaca cactaaatta atgaagggct tatcctcact gataaacaga 60 <210> SEQ ID NO 32 <211> LENGTH: 60 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: oHECPB143 primer <400> SEQUENCE: 32 cgcttattta gaagtggcgc gaattcacta tcataaattc gtaatagatg gtgtgcttcg 60 <210> SEQ ID NO 33 <211> LENGTH: 26 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: oHECPB156 primer <400> SEQUENCE: 33 atattatggt agatatgacc tttacg 26 <210> SEQ ID NO 34 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: oHECPB157 primer <400> SEQUENCE: 34 27 ggttgatttc atcagagatt gctttgg <210> SEQ ID NO 35 <211> LENGTH: 26 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: oHECPB158 primer <400> SEOUENCE: 35 cgtaaaggtc atatctacca taatat 26 <210> SEQ ID NO 36 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence

o	-
ð	1

continued

	-concinued
<220> FEATURE: <223> OTHER INFORMATION: oHECPB159 primer	
<400> SEQUENCE: 36	
ccaatgtctg actgtgtctt atgcctc	27
<210> SEQ ID NO 37 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: oHECPB160 primer	
<400> SEQUENCE: 37	
gaggcataag acacagtcag acattgg	27
<210> SEQ ID NO 38 <211> LENGTH: 18 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: oHECPB161 primer	
<400> SEQUENCE: 38	
ctgtcttggt ttggcagg	18
<pre><210> SEQ ID NO 39 <211> LENGTH: 26 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: oHECPB162 primer</pre>	
<400> SEQUENCE: 39	
ctgtgaaagt ttagggatga ttgcgg	26
<pre><210> SEQ ID NO 40 <211> LENGTH: 26 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: oHECPB163 primer <400> SEQUENCE: 40</pre>	
cogcaatcat coctaaactt toacag	26
<210> SEQ ID NO 41 <211> LENGTH: 25 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: oHECPB164 primer	
<400> SEQUENCE: 41	
cctgtatatg ttggatcggt caaac	25
<210> SEQ ID NO 42 <211> LENGTH: 25 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: oHECPB165 primer <400> SEQUENCE: 42	

89

<210> SEQ ID NO 43 <211> LENGTH: 22 <212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<223> OTHER INFORMATION: oHECPB166 primer	
<400> SEQUENCE: 43	
cctttggctt taagatacta cc	22
<210> SEQ ID NO 44	
<211> BENGIR: 22 <212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<pre><220> FEATURE: <223> OTHER INFORMATION: OFFCPR167 primer</pre>	
<400> SEQUENCE: 44	
ggtagtatct taaagccaaa gg	22
<210> SEQ ID NO 45	
<211> LENGTH: 20	
<212> TYPE: DNA	
<213> ORGANISM: ATTIICIAI Sequence <220> FEATURE:	
<223> OTHER INFORMATION: oHECPB168 primer	
<400> SEQUENCE: 45	
qqatqctctq atactcacqq	20
<210> SEO ID NO 46	
<211> LENGTH: 20	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<pre><223> OTHER INFORMATION: oHECPB169 primer</pre>	
<400> SEQUENCE: 46	
	20
	20
010. GEO TE NO 47	
<210> SEQ 1D NO 47 <211> LENGTH: 58	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE: <223> OTHER INFORMATION: oHECPB170 primer	
<400> SEQUENCE: 47	
	E 9
ggaragtgat accitateat etgetgeget aagagteaag atetgittag ettgeett	58
<210> SEQ ID NO 48	
<211> LENGIH: 56 <212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: OHECPB171 primer	
<400> SEQUENCE: 48	
actcaaaaaa aattccaaaa gctattaggt aactgagctc gttttcgaca ctggat	56
<210> SEQ 1D NO 49 <211> LENGTH: 23	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	

- <220> FEATURE:
- <223> OTHER INFORMATION: oHECPB172 primer

-cont	inued	

_

We claim:

1. A polynucleotide encoding a polypeptide comprising at least 95% sequence identity to SEQ ID NO: 4 and comprising at least six amino acid substitutions to SEQ ID NO: 4 at positions selected from the group consisting of S468, I503, G504, N505, V508, I512, N522, F534, L536, V538, and I540; or a functional fragment of the polypeptide thereof, wherein the polypeptide or functional fragment thereof has 45 maltotriose transporter activity.

2. The polynucleotide of claim **1**, wherein the polynucleotide comprises SEQ ID NO: 9.

3. A DNA construct comprising a promoter operably linked to the polynucleotide of claim **1**.

4. A vector comprising the DNA construct of claim 3.5. A *Saccharomyces* yeast cell comprising the polynucleotide of claim 1.

6. A *Saccharomyces* yeast cell modified to increase as compared to a control yeast cell the expression or maltose/ 55 maltotriose transport activity of a maltose/maltotriose transporter polypeptide, wherein the yeast cell comprises a polynucleotide encoding a polypeptide having at least 95% sequence identity to SEQ ID NO: 4 and comprising at least six amino acid substitutions to SEQ ID NO: 4, wherein the 60 amino acid substitutions are at positions selected from the group consisting of S468, I503, G504, N505, V508, I512,

N522, F534, L536, V538, and I540, or a functional fragment thereof having maltotriose transporter activity.

92

7. The yeast cell of claim 6, wherein the increased expression or increased maltose/maltotriose transport activity of the maltose/maltotriose transporter polypeptide is at the plasma membrane of the yeast cell.

8. The yeast cell of claim **6**, wherein the expression or maltose/maltotriose transport activity of the maltose/ maltotriose transporter polypeptide is increased by at least 30% as compared to the control yeast cell.

9. The yeast cell of claim **6**, wherein the yeast cell is selected from the species consisting of *Saccharomyces* eubayanus, *Saccharomyces* cerevisiae, *Saccharomyces* paradoxus, *Saccharomyces mikatae*, *Saccharomyces arboricola*, *Saccharomyces kudriavzevii*, *Saccharomyces jurei*, and *Saccharomyces uvarum*.

10. A method for making a fermentation product comprising culturing the yeast cells of claim **5** with a fermentable substrate to produce the fermentation product.

11. The method of claim 10, wherein the fermentable substrate comprises wort or malt extract.

12. The method of claim **10**, wherein the fermentation product is selected from the group consisting of a beer product, a wine product, an alcoholic beverage, a biochemical, and a biofuel.

* * * * *