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(57) ABSTRACT 

Systems and methods for identifying sequence information 
from measurements made on single nucleic acid molecules 
are disclosed. The systems and methods can include binding 
portions of nucleic acid molecules with marker molecules, 
such as fluorescent molecules and/or intercalating mol­
ecules. The marker molecules provide a detectable signal 
that includes information about the underlying genomic 
information of the location on the nucleic acid molecule 
where a given marker molecule is bound. A profile of the 
detectable signal along a position of the nucleic acid is 
acquired for multiple different nucleic acid molecules. The 
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PRIMR algorithm processes the data to provide a consensus 
profile from which a consensus underlying genomic infor­
mation can be determined. 
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SYSTEMS AND METHODS FOR 
IDENTIFYING SEQUENCE INFORMATION 

FROM SINGLE NUCLEIC ACID MOLECULE 
MEASUREMENTS 

CROSS-REFERENCE TO RELATED 
APPLICATIONS 

2 
of each of the plurality of nucleic acid molecules, thereby 
resulting in a data set comprising profiles of the detectable 
fluorescence signal versus position; c) identifying outliers of 
the profiles of the detectable signal versus position, thereby 

5 producing outlier profiles; d) computing a median profile 
from the profiles of the detectable signal versus position that 
were not identified as outlier profiles in step c ); e) computing 
a weighted mean profile by estimating a similarity index 

This application is related to, claims priority, and incor­
porates herein by reference in its entirety U.S. Provisional 10 

Patent Application No. 62/594,385, filed Dec. 4, 2017. 

between the profiles of the detectable signal versus position 
that were not identified as outlier profiles in step c) and the 
median profile of step d), then taking a weighted average of 

STATEMENT REGARDING FEDERALLY 
FUNDED RESEARCH 

This invention was made with govermnent support under 
CA182360 and HG000225 awarded by the National Insti­
tutes of Health. The government has certain rights in the 
invention. 

BACKGROUND 

Nucleic acid molecule analysis is of significant important 
to the biological sciences. New methods are needed to 
quickly and effectively analyze the underlying genomic 
information in nucleic acid molecules. It would be beneficial 
to provide methods that can analyze single nucleic acid 
molecules or groups of single nucleic acid molecules and 
provide relevant information about the underlying genomic 
information. 

SUMMARY 

In one aspect, the present disclosure provides a method of 
acquiring data associated with a nucleic acid molecule. The 
method includes the following steps: a) binding a plurality 
of marker molecules to at least a portion of the nucleic acid 
molecule, each of the plurality of marker molecules provid­
ing a detectable signal, the detectable signal including 
underlying genomic information about the nucleic acid 
molecule; b) acquiring the detectable signal from a plurality 
of locations along the at least a portion of the nucleic acid 
molecule; and c) generating an output signal or a report 
including the detectable signal. 

In another aspect, the present disclosure provides a 
method of analyzing detectable signals acquired from a 
plurality of nucleic acid molecules. The method includes the 
following steps: a) receiving a data set comprising profiles 
of detectable signal intensity versus position, the detectable 
signal intensity acquired from a plurality of marker mol­
ecules bound to substantially identical portions of the plu­
rality of nucleic acid molecules; b) extracting underlying 
genomic information from the data set; and c) generating an 
output signal or a report including the underlying genomic 
information. 

In yet another aspect, the present disclosure provides a 
method including the following steps: a) binding at least a 
portion of each of a plurality of nucleic acid molecules with 
a plurality of fluorescent molecules, the plurality of fluo­
rescent molecules providing a detectable fluorescence sig­
nal, the detectable fluorescence signal comprising underly­
ing genomic information about a given portion of a nucleic 
acid molecule to which a given fluorescent molecule is 
bound, the at least a portion of each of the plurality of 
nucleic acid molecules having overlapping regions with 
substantially identical features; b) acquiring the detectable 
fluorescence signal versus position for the at least a portion 

the profiles of the detectable signal versus position that were 
not identified as outlier profiles in step c) by weighting 

15 according to the similarity index, thereby producing a tem­
plate; f) registering the profiles of the detectable signal 
versus position to the template, thereby producing registered 
profiles of the detectable signal versus position; g) identi­
fying outliers of the registered profiles of the detectable 

20 signal versus position, thereby producing outlier registered 
profiles; h) computing a median registered profile from the 
registered profiles of the detectable signal versus position 
that were not identified as outlier registered profiles in step 
g); i) computing an updated weighted mean profile by 

25 estimating a registered similarity index between the regis­
tered profiles of the detectable signal versus position that 
were not identified as the outlier registered profiles in step g) 
and the median registered profile, then taking a weighted 
average of the registered profiles of the detectable signal 

30 versus position that were not identified as outlier registered 
profiles in step g) by weighting according to the registered 
similarity index, thereby producing a registered template; i) 
registering the registered profiles of the detectable signal 

35 
versus position to the registered template, thereby producing 
second registered profiles of the detectable signal versus 
position, the registering of step i) a lower penalty parameter 
than the registering of step f); j) computing an average 
similarity between the registered profiles of the detectable 

40 signal versus position and the registered template; k) repeat 
steps g), h), i), and j) using a second penalty parameter that 
is lower than the lower penalty parameter until a difference 
between the average similarity for consecutive iterations of 
the repeating is lower than a threshold value, thereby pro-

45 ducing final registered profiles of the detectable signal 
versus position; 1) identifying outliers of the final registered 
profiles of the detectable signal versus position from the 
final iteration of step k), thereby producing outlier final 
registered profiles; m) computing a median final registered 

50 profile from the final registered profiles of the detectable 
signal versus position that were not identified as outlier final 
registered profiles in step l); and n) computing a final 
weighted mean profile by estimating a final registered simi­
larity index between the final registered profiles of the 

55 detectable signal versus position that were not identified as 
the final outlier registered profiles in step 1) and the median 
final registered profile, then taking a final weighted average 
of the final registered profiles of the detectable signal versus 
position that were not identified as outlier final registered 

60 profiles in step 1) by weighting according to the final 
registered similarity index, thereby producing a consensus 
profile of the detectable signal versus position. 

In a further aspect, the present disclosure provides a 
non-transitory computer readable medium having stored 

65 thereon instructions that, when executed by a processor, 
cause the processor to execute one of the methods described 
herein. 
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In yet a further aspect, the present disclosure provides a 
system including a processor and the non-transitory com­
puter-readable medium described elsewhere herein. 

In an additional aspect, the present disclosure provides a 
system including a fluorescence microscope, a processor, 
and a memory. 

BRIEF DESCRIPTIONS OF THE DRAWINGS 

4 

FIG. 1 is a flowchart showing the steps of a method, in 
accordance with an aspect of the present disclosure. 

binding at least a portion of the nucleic acid molecule with 
a plurality of marker molecules. Each of the plurality of 
marker molecules provides a detectable signal that includes 
underlying genomic information about the nucleic acid 
molecule. At process block 104, the method 100 includes 
acquiring the detectable signal from a plurality of locations 
along the at least a portion of the nucleic acid molecule. At 
process block 106, the method 100 can include generating an 
output signal or a report including the detectable signal. 

10 At optional process block 108, the method 100 can 

FIG. 2 is a flowchart showing the steps of a method, in 
accordance with an aspect of the present disclosure. 

include binding at least a second portion of the nucleic acid 
molecule with a second plurality of marker molecules. Each 
of the second plurality of marker molecules provide the FIG. 3 is a flowchart showing the steps of a method, in 

accordance with an aspect of the present disclosure. 
FIG. 4 is a schematic representation of a system, in 

accordance with an aspect of the present disclosure. 

15 detectable signal. At optional process block 110, the method 
100 can include receiving the detectable signal at a second 
plurality of locations along the at least a second portion of 
the nucleic acid molecule. 

DETAILED DESCRIPTION In some cases, the method 100 can include repeating 

Before the present invention is described in further detail, 
it is to be understood that the invention is not limited to the 
particular embodiments described. It is also understood that 

20 process blocks 102 and 104 a second time replacing the 
nucleic acid molecule with a second nucleic acid molecule. 
The nucleic acid molecule and the second nucleic acid 
molecule can have substantially the same sequence. The 
nucleic acid molecule and the second nucleic acid molecule the terminology used herein is for the purpose of describing 

particular embodiments only, and is not intended to be 25 

limiting. The scope of the present invention will be limited 
only by the claims. As used herein, the singular forms "a", 
"an", and "the" include plural embodiments unless the 
context clearly dictates otherwise. 

Specific structures, devices and methods relating to modi- 30 

fying biological molecules are disclosed. It should be appar-
ent to those skilled in the art that many additional modifi­
cations beside those already described are possible without 
departing from the inventive concepts. In interpreting this 
disclosure, all terms should be interpreted in the broadest 35 

possible manner consistent with the context. Variations of 
the term "comprising" should be interpreted as referring to 
elements, components, or steps in a non-exclusive manner, 
so the referenced elements, components, or steps may be 
combined with other elements, components, or steps that are 40 

not expressly referenced. Embodiments referenced as "com­
prising" certain elements are also contemplated as "consist-
ing essentially of' and "consisting of' those elements. When 
two or more ranges for a particular value are recited, this 
disclosure contemplates all combinations of the upper and 45 

lower bounds of those ranges that are not explicitly recited. 
For example, recitation of a value of between 1 and 10 or 
between 2 and 9 also contemplates a value of between 1 and 
9 or between 2 and 10. 

can have different sequences. As used herein, "substantially 
the same sequence" refers to nucleic acid sequences that are 
indistinguishable using the methods of the present disclo­
sure. Nucleic acid molecules having substantially the same 
sequence can harbor the following differences: (a) single 
nucleotide polymorphisms (SNPs) or single nucleotide 
varrnt10ns (SNVs)-a single basepair difference in 
sequence; (2) small insertions and delections (INDELs)­
short 1-100 bp insertions or deletions; and (3) methylations, 
such as C-me and A-me. As used herein, "different 
sequence" refers to nucleic acid sequences that are distin­
guishable using the methods of the present disclosure. 

In some cases, the method 100 can include repeating 
process blocks 102 and 104 a plurality of additional times 
replacing the nucleic acid molecule with a different one of 
a plurality of additional nucleic acid molecules each of the 
plurality of additional times. The nucleic acid molecule and 
the plurality of additional nucleic acid molecules can have 
substantially the same sequence. The at least a portion of the 
nucleic acid molecule and the at least a portion of the 
different one of the plurality of additional nucleic acid 
molecules can at least partially overlap. 

Referring to FIG. 2, the present disclosure provides a 
method 200 of analyzing detectable signals acquired from a 
plurality of nucleic acid molecules. At process block 202, 

The various aspects may be described herein in terms of 
various functional components and processing steps. It 
should be appreciated that such components and steps may 
be realized by any number of hardware components config­
ured to perform the specified functions. 

50 the method 200 includes receiving a data set. The data set 
includes profiles of detectable signal intensity versus posi­
tion. The detectable signal intensity is acquired from a 
plurality of marker molecules bound to substantially iden­
tical portions of the plurality of nucleic acid molecules. At 

Methods 55 process block 204, the method 200 includes extracting 
underlying genomic information from the data set. At pro­
cess block 206, the method 200 includes generating an 
output signal or a report including the underlying genomic 
information. 

This disclosure provides a variety of methods. It should be 
appreciated that various methods are suitable for use with 
other methods. Similarly, it should be appreciated that 
various methods are suitable for use with the systems 
described elsewhere herein. When a feature of the present 60 

disclosure is described with respect to a given method, that 
feature is also expressly contemplated as being useful for the 
other methods and systems described herein, unless the 
context clearly dictates otherwise. 

Referring to FIG. 1, the present disclosure provides a 
method 100 of acquiring data associated with a nucleic acid 
molecule. At process block 102, the method 100 includes 

In any of the methods, the detectable signal can contain 
the underlying genomic information as a result of the marker 
molecules preferentially binding to one sequence relative to 
another. For example, a marker molecule or fluorescent 
molecule that preferentially binds to GC-rich segments 

65 relative to AT-rich segments can provide information regard­
ing the amount of GC versus AT in the underlying genomic 
information. 
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The plurality of marker molecules can comprise a plural-
ity of fluorescent molecules. In cases involving fluorescent 
molecules, the fluorescent molecule can be a fluorescent 
molecule capable of binding a nucleic acid molecule, includ-

6 
At process block 306, the method 300 includes identify­

ing outliers of the profiles of the detectable signal versus 
position, thereby producing outlier profiles. A person having 
ordinary skill in the imaging arts would appreciate a variety 
of methods exist for eliminating images of poor quality. In 
one non-limiting example, a sophisticated image quality 
assessment method was developed, to identify high quality 
images for subsequent analysis. This image quality assess­
ment method includes the following steps: 1. For each 

ing but not limited to, {1,1'-(4,4,8,8-tetramethyl-4,8-diaz­
aundecamethylene )bis[ 4-[ (3-methylbenzo-1,3-oxazol-2-yl) 
methylidene ]-1,4-dihydroquinolinium] tetraiodide} 
(YOYO-1) ethidium bromide, oxazole yellow (YOYO fluor 
monomer), SYTOX Orange, SYTOX green, SYBR gold, 
YO-Pro-1, POPO-3, DAPI, or the like. 

The plurality of marker molecules can include a plurality 
10 molecule in an image frame we analyzed the integrated 

fluorescence intensity measurements (IFI) of up to three 
pixels surrounding the molecule. 2. Bayesian Information 
Criteria (BIC) and Gaussian mixture model (GMM) to 
cluster the IFI's. In good quality molecule images had one 

of first fluorescent molecules and plurality of second fluo­
rescent molecules. The plurality of marker molecules can 
also include a plurality of third fluorescent molecules, a 
plurality of fourth fluorescent molecules, a plurality of fifth 
fluorescent molecules, and so on, up to a plurality of nth 
fluorescent molecules. Each of these different fluorescent 
molecules can interact with one another to provide the 
detectable signal. Each of these different fluorescent mol­
ecules can have different emission characteristics, such as 
emission wavelength, emission waveform, and the like. 
Each of these different fluorescent molecules can have 
different absorption characteristics, such as absorption 
wavelength, absorption coefficient, and the like. Each of 
these different fluorescent molecules can have different 25 

binding characteristics. 
The methods described herein can also include binding 

any of the nucleic acid molecules or at least a portion of any 
of the nucleic acid molecules with a plurality of quencher 
molecules. The quencher molecules can modulate emission 
from the plurality of marker molecules to provide the 
detectable signal. 

The plurality of marker molecules can include a plurality 
of donor molecules and a plurality of acceptor molecules. 
The plurality of marker molecules can include a plurality of 
protein markers, including intercalating fluorescent proteins, 
such as those described in Lee, S., Oh, Y., Lee, J., Choe, S., 
Lim, S., Lee, H. S., ... Schwartz, D. C. (2016). DNA 
binding fluorescent proteins for the direct visualization of 
large DNA molecules. Nucleic Acids Research, 44(1), e6. 
doi:10.1093/nar/gkv834, the entire contents of which are 
incorporated herein by reference. 

Referring to FIG. 3, the present disclosure provides a 
method 300. The method 300 is one specific implementation 
of a combination of methods 100 and 200. The description 

15 cluster of IFI's. 3. In case of multiple clusters, distance 
between the centers of farthest centroids of clusters was used 
as one of the factors to build the quality score. The other 
factors were cluster quality measures such as Durm index 
and Connectivity Index (see Brock, Guy, Vasyl Pihur, 

20 Susmita Datta, Sonmath Datta, et al. 2011. clvalid, an r 
package for cluster validation. Journal of Statistical Soft­
ware (Brock et al., March 2008), the entire contents of which 
are incorporated herein by reference). 4. A training set of300 
images was manually labeled as "high" and "low" quality. A 
logistic regression model was fit using the factors described 
in step (3). 5. Using cross-validation an optimal probability 
cutoff was obtained, to detect an image as "high" quality by 
minimizing type-II error. 

Additional data processing can be performed. For 
30 instance, the profiles can be normalized. As another 

example, the profiles can be selected to ensure that data for 
DNA molecules fall within a given range of stretch values 
(such as +/-10% of the median stretch). AS yet another 
example, the scans can be smoothed using methods known 

35 to those having ordinary skill in the art, such as B-spline De 
Boor (De Boor, Carl. 1978. A practical guide to splines, vol. 
27. Springer-Verlag New York, the entire contents of which 
are incorporated herein by reference) smoothing methods. 
Some pre-processing steps are described in greater detail 

40 below in Example 1. 
At process block 308, the method 300 includes computing 

a median profile from the profiles of the detectable signal 
versus position that were not identified as outlier profiles in 
process block 306. The median profile can be computed 

45 using functional data depth measures that are understood to 
those having ordinary skill in the art, including but not 
limited to, the Fraiman and Muniz depth, the h-modal depth, 
the random projection depth, the random Tukey depth, and 
the like. 

of method 300 should not be interpreted as limiting the 
interpretation of the methods 100 and 200. Aspects of the 
method 300 can utilize aspects of the methods 100 and 200 
and vice versa. At process block 302, the method 300 
includes binding at least a portion of each of a plurality of 50 

nucleic acid molecules with a plurality of fluorescent mol­
ecules. It should be appreciated that the exemplary fluores­
cent molecules are merely one example of the marker 
molecules described above and other marker molecules are 
contemplated. The plurality of fluorescent molecules pro- 55 

vide a detectable fluorescence signal that includes underly-

At process block 310, the method 300 includes computing 
a weighted mean profile, thereby producing a template 
including the weighted mean profile. The weighted mean 
profile is computed by estimating a similarity index between 
the profiles of the detectable signal versus position that were 
not identified as outlier profiles in process block 306 and the 
median profile of process block 308, then taking a weighted 

ing genomic information about a given portion of a nucleic 
acid molecule to which a given fluorescent molecule is 
bound. The at least a portion of each of the plurality of 
nucleic acid molecules have overlapping regions with sub- 60 

stantially identical features. 
At process block 304, the method 300 includes acquiring 

the detectable fluorescence signal versus position for the at 
least a portion of each of the plurality of nucleic acid 
molecules. The acquiring of process block 304 results in a 65 

data set including profiles of the detectable fluorescence 
signal versus position. 

average of the profiles of the detectable signal versus 
position that were not identified as outlier profiles in process 
block 306 by weighting according to the similarity index. 

At process block 312, the method 300 includes registering 
the profiles of the detectable signal versus position to the 
template, thereby producing registered profiles of the detect­
able signal versus position. In some cases, the registering of 
process block 312 can include curve registration, described 
as follows. Let n functions ( or curves) fr, ... , fn be defined 
on a close real interval [0,S]. Let h,(x) be a transformation 
of the abscissa x for curve i. Without amplitude noise, let the 
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observed functions f,(x) be a result of warping a true curve 
f/x) as f,(x)=fJh,(x)]. The warping function is often 
referred to as 'time warping' as time is a common abscissa 

8 
3. For each bootstrap set b=l, ... , B, obtain C6 as the 

empirical 1 % percentile of the distribution of the 
depths, D(f/). 

in problems with phase noise, In the context of the present 
disclosure, the abscissa is DNA molecule backbone. The 5 

warping functions should satisfy the following: 

4. Take C as the median of the values of Cb, b=l, ... , B. 
The level a used can be chosen as the proportion of 

suspicious outliers in the sample. In the Fscan data sets, 
a=0.15 since around 15% of images were expected to have 
unusable intensity profiles, based on quality score measure­
ment. 

h,(0)=0 and h,(S)=S, i=l, ... , n, 
The timings of events remain in the same order regardless 

of the timescale entails that h,, the time-warping func­
tion, should be strictly increasing, i.e., h,(x1)>h,(x2) for 10 

x1>x2 , where Xi, x2 E[0,S]. 
Selecting a function data depth measure can be done by 

simulating noisy curves and outliers and selecting the mea­
sure that best identifies outliers. In some cases, the func­
tional data depth measure can be a combination of FM-depth 
and RP-depth, as discussed below. 

11,-1=[h,(x)]=l, ... , n 
The objective of curve registration is that the registered 
functions f/h1- 1(x)), ... , fn(hn -lex)) will have no phase 15 

noise. 
At process block 314, the method 300 includes identify­

ing outliers of the registered profiles of the detectable signal 
versus position, thereby producing outlier registered pro­
files. Identifying outliers of the registered profiles can 
include functional data depth measures. Examples of suit­
able functional data depth measures include, but are not 
limited to, the Fraiman and Muniz depth, the h-modal depth, 
the random projection depth, the random Tukey depth, and 
the like. 

Depth and outlyingness are inverse notions, so that if an 
outlier is in the data set, the corresponding curve will have 
a significantly low depth. One exemplary procedure for 
functional outlier detection in a data set of curves f1, ... , 
fn is as follows: 

1. Obtain the function depths Dn(f1), ... , Dn(fn), (This 
could be any depth defined above: FMD, MD, RPD or 
RTD) 

2. Let fil, ... , flk be the k curves such that Dn(f,k)sC, for 
a given cutoff C. Then assume that fw . . . , f,k are 
outliers and delete them from sample. 

3. Then, come back step 1 with the new data set after 
deleting the outliers found in step 2. Repeat this until no 
mere outliers found. 

To ensure type-I error of detecting outliers is under some 
small threshold a, C is chosen such that 

.. ,n 

However, since the distribution of the functional depth 
statistics are usually unknown, they are estimated using a 
bootstrap procedure introduced in Febrero et al. (Febrero, 
Manuel, Pedro Galeano, and Wenceslao Gonzalez-Man­
teiga. 2008. Outlier detection in functional data by depth 
measures, with application to identify abnormal nox levels. 
Environmetrics 19(4):331-345, the entire contents of which 
are incorporated herein by reference) and implemented in 
R-packagefda.usc (Febrero-Bande, M, and M Oviedo de la 
Fuente. 2012a. fda.usc: Functional data analysis and utilities 
for statistical computing (fda.usc). Rpackage version 0.9 7, 
and Febrero-Bande, Manuel, and Manuel Oviedo de la 
Fuente. 2012b. Statistical computing in functional data 
analysis: the r package fda. usc. Journal of Statistical 
Software 51(4):1-28, the entire contents of both are incor­
porated herein by reference). The smoothed bootstrap pro­
cedure based on trimming runs as follows: 

Obtain the functional depths Dn(f1), ... , Dn(fn), for any 
one of the functional depths. 

Obtain B standard bootstrap samples of size n from the 
data set of curves obtained after deleting the a% least 
deepest curves. The bootstrap samples are denoted by 
f/, for i=l, ... , n and b=l ... , B. 

At process block 316, the method 300 includes computing 
a median registered profile from the registered profiles of the 
detectable signal versus position that were not identified as 
outlier registered profiles in process block 314. The com-

20 puting of process block 316 can be achieved by the same or 
similar methods as described above with respect to the 
computing of process block 308. 

At process block 318, the method 300 includes computing 
an updated weighted mean profile, thereby producing a 

25 registered template including the weighted mean profile. 
The updated weighted mean profile is computed by estimat­
ing a registered similarity index between the registered 
profiles of the detectable signal versus position that were not 
identified as the outlier registered profiles of process block 

30 314 and the median registered profile, then taking a 
weighted average of the registered profiles of the detectable 
signal versus position that were not identified as outlier 
registered profiles in process block 314 by weighting 
according to the registered similarity index. The computing 

35 of process block 318 can be achieved by the same or similar 
methods as described above with respect to the computing of 
process block 310. 

At process block 320, the method 300 includes registering 
the registered profiles of the detectable signal versus posi-

40 tion to the registered template, thereby producing second 
registered profiles of the detectable signal versus position. 
The registering of process block 320 can be achieved by the 
same or similar methods as described above with respect to 
the registering of process block 312. The registering of 

45 process block 320 has a lower penalty parameter than the 
registering of process block 312. 

At process block 322, the method 300 includes computing 
an average similarity between the registered profiles of the 
detectable signal versus position and the registered template. 

50 The computing of process block 322 can be achieved using 
the same or similar methods as described below with respect 
to the PRIMR algorithm. 

At process block 324, the method 300 includes repeating 
process blocks 316, 318, 320, and 322 using a second 

55 penalty parameter that is lower than the lower penalty 
parameter. The repeating of process block 300 continues 
until a difference between the average similarities for con­
secutive iterations of the repeating is lower than a threshold 
value. The products of the repeating of process block 300 are 

60 the final registered profiles. 
At process block 326, the method 300 includes identify­

ing outliers of final registered profiles of the detectable 
signal versus position from the final iteration of process 
block 324, thereby producing outlier final registered profiles. 

65 The identifying of process block 326 can be achieved using 
the same or similar methods as described above with respect 
to the computing of process block 314. 
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At process block 328, the method 300 includes computing 
a median final registered profile from the final registered 
profiles of the detectable signal versus position that were not 
identified as outlier final registered profiles at process block 
326. 5 

At process block 330, the method 300 includes computing 
a final weighted mean profile, thereby producing a consen-
sus profile of the detectable signal versus time. The final 
weighted mean profile is computed by estimating a final 
registered similarity index between the final registered pro- 10 

files of the detectable signal versus position that were not 
identified as the final outlier registered profiles in process 
block 326 and the median final registered profile, then taking 
a final weighted average of the final registered profiles of the 15 
detectable signal versus position that were not identified as 
the final outlier registered profiles in process block 326 by 
weighting according to the final registered similarity index. 
Individual profiles are sometimes referred to as Fscans 
herein. The consensus profile is also sometimes referred to 20 

as a cFscan herein. 
One example of the steps of process blocks 306 to 330 is 

the PRIMR algorithm. The PRIMR algorithm described 
herein iteratively uses minimum second eigenvalue method 
(MSEV) to register noisy Fscans. PRIMR differs from 25 

MSEV in three aspects. First, PRIMR uses outlier detection 
using Fraiman and Muniz (FM) depth and Random projec­
tion (RP) depth, discussed below. Second, PRIMR estimates 
the consensus (or average) of Fscans by first estimating an 
Ll-Median and then estimating a weighted average of the 30 

Fscans. The Ll-Median is estimating by the algorithm 
proposed by Vardi and Zhang in Vardi and Zhang (2000), 
"The multifvariate Ll-median ans associated data depth," 
Proceedings of the national Academy of Sciences 97(4): 35 
1423-1426, the entire contents of which are incorporated 
herein by reference, implemented in R-package robustX 
(Stahel, Werner, Martin Maechler, Maintainer Martin 
Maechler, and MASS Suggests. 2009, the entire contents of 
which are incorporated herein by reference) where 40 

~Ill,- fmll where J, ER", i = 1, ... , n and llull = ✓ ~u7 

(1) 

45 

Finally, in PRIMR, we use three values of the penalty 
parameter A. We start at 0.001, lower it to 0.0005 after first 
iteration and then to 0.0001 for all subsequent iterations. A 
plays an important role in registering nearby features of the 50 

Fscans. For a higher value of A, distant features will get 
registered, and for lower values of A only the features that 
are close by will be registered. The lowering of A in PRIMR 
ensures that we gradually increase our confidence in the 
consensus estimation. 

After convergence (iteration T) the registered 
curves r/D, ... , rn (Dare run through steps 1 and 2, to update 

55 

10 
the Fscans in pixels. Let the registered Fscans at iteration t 
be represented as r/'l(x), ... , rn('l(x). At t=0, r/°l(x)=f;(x), 
i=l, ... , n. 

At iteration t, t:2:1, do 

Step 1: Outlier detection For the Fscans r/'-1l(x), ... , 
rn (t-Il(x), detect outliers using FM-depth and RP-depth 
and tag the union of two sets as the outliers of this set 
of Fscans. 

Step 2: Template compute/update: When t=l, compute the 
template f/'l. For t>l, update the template (f/'l). To 
compute/update the template, we employ a 2-step 
approach. Do 

1. Median: Here we ensure that the L1-Median, fm (tl is 
estimated only from the Fscans not tagged as "func­
tional outliers" in Step 1. 

2. Weighted mean: Estimate the similarity index 
between the Fscans and the median p/'l=p(r/'-1l, 
fm Ul, i=l, ... , n aid estimate the template fc (tl as the 
weighted average of the Fscans, with the weights 
being these similarity indices. 

Step 3: Registration: We use the MSEV method to register 
the original Fscans f1, ... , fn to template fc (tl and obtain 
registered Fscans rtl, ... , rn (rJ_ The penalty parameter 
is A(oJ=0.001, A( 1l=0.0005, l('l=0.0001 Vt:2:2. 

Step 4: Convergence of iteration: The objective of iterated 
registration is to maximize the average similarity to the 
consensus 

We iterate steps 1-4, until 

for some predetermined 17. We use 17=0.001. 

Fraiman and Muniz were among the first to introduce a 
functional data depth. Let F n x(f;(x)) be the empirical cumu­
lative distribution function· of the values of the curves 
f1(x), ... , fn(x) at any XE [a,b], given by 

1" 
F",xWx)) =-;; I fi {Ji(x) ,s: J,(x)) 

(2) 

k=l 

the template one last time to f/T+Il(x) which serves as the 
consensus Fscan (or cFscan) of this set of Fscans. The 
average similarity pf'"n (T+Il is a measure of the quality of 
registration. Higher values of Pf,.n imply less noise in the 
registered Fscans. 

60 
and, the univariate depth of a point f1 (x) is given by 

Algorithm Partial Re-Weighted Iterated MSEV Registration 
(PRIMR) for cFscans 
For any genomic interval where there are n molecular 65 

intervals aligned, let the preprocessed Fscans be represented 
as f1(x), ... , fn(x), XE [l,p], where p denotes the stretch of 

(3) 

Then, the Fraiman and Muniz functional depth (FMD), or a 
curve f; with respect to the set f1 (x), ... , fn(x) is given by 
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b (4) 

F MD"(!,)= f D"(f;(x))dx 

b 

= f 1 -I~ -F",xCf;(x))I 

Higher values of FMD implies deeper curve; lower values of 
FMD implies more distant from the deepest curve. 

Random projection depth is based on measuring the depth 
of the functional data and their derivatives under projec­
tions. The basic idea is to project each curve and its first 
derivative along a random direction, and defining a point in 

22
. Now, a data depth in 22 provides an order of the 

projected points. Using a large number of random projects, 
the mean value of the depths of the projected points defines 
a depth for functional data. Given the set of curves 
f1, ... , fn and a direction v that belongs to an independent 
direction process 

V( • ), = T;,v = (v, J,) = [ v(x)f;(x)dx. 

Similarly, T; ;-d., v, f;') is the project of the first derivative 
f;'(x) in the direction v. Therefore, the pair (Ti,v' Tv,J is a 

12 
emitters (fluorescent dyes intercalated with bases). Conse­
quently, contribution from two additional 206 bp subse­
quences on each side of a pixel was incorporated, accounting 
for a total of -1 kb genomic subsequence contributing to the 

5 integrated fluorescence intensity measurement of one pixel. 
The Gaussian kernel was incorporated as additional features. 
The total number of features was 6,820 (l,364x5). The 
length of the response vector was 1,528,000 pixels (30,560 
intervalsx50). Corresponding to a pixel point j on the cFscan 

10 the counts of k-mers in window j, along with counts of 
k-mers in windows j+ and j++ are used as features. Each 
window is of 206 bp. For example, the feature at is counts 
of the 2-mer "at" in corresponding windows, the feature at+ 

15 
is counts of "at" in windows j+ and the feature at++ is counts 
of "at" in windows j++. 

RF is a relatively recent tree-based machine learning tool 
that has enjoyed increasing popularity with the proliferation 
of big data analytics. Ever since its introduction (Breiman, 

20 L. 2001. Random forests. Machine learning 45(1):5-32, the 
entire contents of which are incorporated herein by refer­
ence), RF has been increasingly used in regression and 
classification settings (Efron, Bradley, and Trevor Hastie. 
2016. Computer age statistical inference, vol. 5. Cambridge 

25 University Press, the entire contents of which are incorpo­
rated herein by reference). RF is particularly appealing in 
high-dimensional settings and in prediction involving fea­
tures with multicollinearity. RF combines the concepts of 
adaptive nearest neighbors and bagging (Breiman, Leo. 
1996. Bagging predictors. Machine learning 24(2):123-140, 
the entire contents of which are incorporated herein by 

30 
point in lR2

. Now, if v 1, ... , vP are p independent random 
directions, then the random projection depth of a curve f; is 
defined as: 

reference) for effective data-adaptive prediction and infer­
ence (Chen, Xi, and Hemant Ishwaran. 2012. Random 
forests for genomic data analysis. Genomics 99(6):323-329, 

For example, Dn(•) could be modal depth in li\2
. 

35 the entire contents of which are incorporated herein by 
(S) reference). "Boosting" methods were originally used for 

improving performance of "weak learners" in binary clas­
sification problems Efron and Hastie (2016), by re-sampling 
training point, and giving more weight to the misclassified 

The method 300 can further include generating a pre­
dicted consensus profile. The predicted consensus profile 
can be generating by the SUBAGGING algorithm described 
below. The predicted consensus profile can be generated by 
varying the underlying predicted genomic information. The 
predicted genomic information can be varied to minimize 
the difference between the predicted consensus profile and 
the consensus profile. Generating the predicted consensus 
profile can use random forest (RF), gradient boosting (GF), 
or both. 

In the MM Fscan datasets discussed below in Example 1, 
there were 30,560 intervals, each 50 pixels long, that satis­
fied the selection criteria of PRIMR. cFscans of all the 

40 ones. Friedman in Friedman, Jerome H. 2001. Greedy 
function approximation: a gradient boosting machine. 
Annals of statistics 1189-1232, the entire contents of which 
are incorporated herein by reference, proposed "gradient 
boosting machine" for additive expansions based on several 

45 different fitting criteria. Boosting iteratively adds basis func­
tions in a greedy fashion such that each additional basis 
function reduces the selected loss function. In the context of 
trees, boosting involves repeatedly growing shallow trees, 
each growing on the residuals of the previous tree and build 

50 up an additive model consisting of a sum of trees Efron and 
Hastie (2016). Balmann and Yu in Balmann Peter, and Bin 
Yu. 2003. Boosting with the 1 2 loss: regression and classi­
fication. Journal of the American Statistical Association 
98(462):324-339, the entire contents of which are incorpo-intervals were estimated using PRIMR. For each interval, its 

cFscan is a smooth curve over 50 data points, each data point 
corresponding to the expected fluorescence intensity mea­
surements of 206 bp of genomic subsequence. The counts of 
genomic elements in these 206 bp subsequences are used as 
features and the cFscans as the responses of the prediction 
models. The features were counts of nucleotides G, C, A, 60 

T's, counts of all possible 2-mers GG, GC, GA, ... , TT's, 

55 rated herein by reference, investigate boosting with L2 loss. 
We used random forest and stochastic gradient boosting 
assuming Gaussian distribution of the error, minimizing 
squared-error loss and built a prediction model between 
sequence compositions and cFscans. 

RF models were fit using R-package "randomForest" 
(Liaw, Andy, and Matthew Wiener. 2002. Classification and 
regression by randomforest. R news 2(3):18-22), the entire 
contents of which are incorporated herein by reference. GB 
models were fit using R-package "gbm" (Ridgeway, Greg, et 

all possible 3-mers, 4-mers and 5-mers in 206 bp subse­
quences. There are 16 (42) 2-mers, 64 (43) 3-mers, 256 (44) 
4-mers and 1,024 (45) 5-mers. Including the counts of G, C, 
A, and T's this adds up to 1,364 features. Additionally, a 
Gaussian kernel was used along the backbone of a DNA 
molecule, to account for the point spread function of the 

65 al. 2006. gbm: Generalized boosted regression models. R 
package version 1(3):55), the entire contents of which are 
incorporated herein by reference. 
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In one non-limiting example, the model in the following 
equation was fit: 

h.-lRd➔ IR, where, d=6,820 (6) 

based on the data (X, Y), where X is the d-dimensional 5 

predictor variable (genomic sequence composition counts) 
and Y is univariate response of length (N=l,528,000). To 
avoid overfitting, and to fit the models efficiently (compu­
tational efficiency) using the parallelized framework of 
CHTC running HTCondor 2, a Subagging algorithm was IO 

implemented (3) to fit the prediction function h. Subagging 
is a sobriquet for subsample aggregating, where sub-samples 
of the data are used instead of bootstrap for aggregation (in 
Bagging). Bi.ichlmann and Yu (2002) argue in favor of 
subagging since it is computationally economical while still 15 

being approximately as accurate as bagging. The subagging 
algorithm developed for predicting pFscans is described 
below. 

After fitting prediction models, the relative importance of 
features can be analyzed using methods known to those 20 

having ordinary skill in the art. For example, for RF models, 
the total decrease in node implurities from splitting on a 
features, averages over all trees, gives a notion of feature 
important. Node impurity can be measured by residual sum 
of squares. The higher decrease in node impurity of a 25 

feature, the more important it is for prediction. As another 
example, to estimate feature importance from GB models, 
the definition approximate measure of relative influence in 
decision trees, from Breiman, et al. (Breiman, Leo, Jerome 
Friedman, Charles J Stone, and Richard A Olshen. 1984. 30 

Classification and regression trees. CRC press, the entire 
contents of which are incorporated herein by reference) can 
be used. 

14 
Step 4: Average than sub-sampled predictions 

' j T ' 
Y,,(j) = T If (X,) 

k=l 

prediction using random forest only 

prediction using gradient boosting only 

prediction using both 
In any of the methods, any nucleic acid molecule(s) can 

be linearly stretched. In any of the methods, at least a portion 
of any of the nucleic acid molecule(s) can be confined within 
a nanoslit. 

The binding of process block 102 or process block 302 
can be via various types of bonds, including but not limited 
to, covalent bonds, ionic bonds, polar bonds, hydrogen 
bonds, or a combination thereof. The binding of process 
block 102 or process block 302 can involve intercalating the 
marker molecules between bases of the nucleic acid mol-
ecule. For example, YOYO-1 intercalates itself between 
DNA bases. The binding of process block 102 or process 
block 302 can utilize YOYO-1 or other similar dyes, as Algorithm SUBAGGING for pFscan Prediction Using RF 

and GB 
Separate the data into training (90%) (Xr, Yr) and testing 
sets ( 10%) (Xs, Y s) 

35 would be appreciated by a person having ordinary skill in the 
art. 

Step 1: For k=l, ... , K (e.g. K=lO00), do 
Generate a random sample (X/, Y /), by randomly 

drawing without replacement p columns and 20p 
rows from Xr. Xt(px20p), Y/:(lx20p) 

Compute the sub-sampled estimator using random for-
est, on (X/, Y /) 

!'(•): IRP ➔ IR 

Compute the sub-sampled estimator using gradient 
boosting, (X/, Y /) 

YOY0-1 (oxazole yellow) exhibits a very large degree of 
fluorescence enhancement on binding to nucleic acids. Pre­
vious studies have observed a 2-fold quantum yield increase 

40 
when switching from AT-rich regions to GC-rich regions. 
Other studies observe that fluorescence intensity depends on 
the base sequence. This suggests that quantum yield and 
fluorescence lifetime for YOYO complexed with GC-rich 
DNA sequences are about twice as large as those complexed 
with AT-rich sequences. As a result, the probability of dye 

45 molecules intercalating between DNA bases and fluorescing 
is non-uniform. 

The detectable signals described herein can be optical 

Step 2: Average the sub-sampled estimators to approxi- 50 

signals. The optical signals can be optical fluorescence 
signals. The detectable signals can be initiated by an external 
stimulus, such as electromagnetic radiation. Detectable sig­
nals could be: (1) speech patterns or other sound waves; (2) mate 

Step 3: For prediction using sub-sampled estimators, for 
j=l, ... , T, T:s;K, do 
Ys.(t/=f\Xs) prediction using random forest only 
Ys_(gf=g'(Xs) prediction using gradient boosting only 

prediction using both 

any dynamical process evolving over time; (3) 2-D images; 
or other signals sharing relevant characteristics with those 
listed. The detectable signals can include electrical signals, 

55 such as changes in local electrical polarizability, magnetic 
fields (i.e., ferromagnetic nanoparticles conjugated to dyes 
or other binding moieties), or the like. 

The receiving the detectable signal of process block 104 
and/or the acquiring the detectable fluorescence signal ver-

60 sus position of process block 304 can include acquiring an 
image, such as a fluorescence image, of a nucleic acid 
molecule that has been bound by the marker molecules 
and/or the fluorescent molecule. The receiving the detect­
able signal of process block 104 and/or the acquiring the 

65 detectable fluorescence signal versus position of process 
block 304 is described at pages 1-10 of Nandi, Subrangshu 
(submitted 2007, publication embargoed), "Statistical 
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Learning Methods for Fluoroscanning", doctoral disserta­
tion, University of Wisconsin-Madison, which is incorpo­
rated herein in its entirety by reference. 

16 
feature of the present disclosure is described with respect to 
a given system, that feature is also expressly contemplated 
as being combinable with the other systems and methods 

One example of extracting the underlying genomic infor­
mation of process block 204 can be found at pages 11-114 5 

ofNandi, Subrangshu (submitted 2007, publication embar­
goed), "Statistical Learning Methods for Fluoroscanning", 
doctoral dissertation, University of Wisconsin-Madison, 
which is incorporated herein in its entirety by reference. In 
some cases, the extracting of process block 204 can include 10 

the same or similar steps as those described in process 
blocks 306 to 330. 

described herein, unless the context clearly dictates other­
wise. 

Referring to FIG. 4, a system 400 can include a computer 
402 with a processor 404 and/or a CPU and a memory 406. 
The system 400 can also include a spectroscopy system 408. 
The spectroscopy system 408 can include a fluorescence 
microscope 410. The computer 402 can be configured to 
control the spectroscopy system 408 and/or the fluorescence 
microscope 410. 

In some cases, the extracting of process block 204 can 
include eliminating outliers from the data set. Eliminating 
outliers in process block 204 and other places described 
herein can use Fraiman and Muniz (FM) depth and random 
projection (RP) depth. 

In some cases, the extracting of process block 204 can 
include normalizing the profiles of detectable signal inten­
sity versus position. The extracting of process block 204 can 
include excluding the profiles of detectable signal intensity 
versus position corresponding to nucleic acid molecules that 
have a stretch falling outside a predetermined range of 
acceptable stretch values. The extracting of process block 
204 can include smoothing the profiles of detectable signal 
intensity versus position. The smoothed profiles can be 
renormalized following smoothing. 

The processor 404 and/or CPU can be configured to read 
and perform computer-executable instructions stored in the 

15 memory 406. The computer-executable instructions can 
include all or portions of the methods described herein. 

The memory 406 can include one or more computer 
readable and/or writable media, and may include, for 
example, a magnetic disc (e.g., a hard disk), an optical disc 

20 (e.g., a DVD, a Blu-ray, a CD), a magneto-optical disk, 
semiconductor memory (e.g., a non-volatile memory card, 
flash memory, a solid state drive, SRAM, DRAM), an 
EPROM, an EEPROM, and the like. The memory can store 
the computer-executable instructions for all or portions of 

25 the methods described herein. 

EXAMPLE 1 
The extracting of process block 204 can include gener­

ating a consensus profile of detectable signal intensity versus 
position. A consensus profile is also sometimes referred to as 30 

a cFscan herein. Generating the consensus profile can 
include correcting for amplitude variability between the 
profiles of detectable signal intensity versus position. Gen­
erating the consensus profile can include correcting for 
phase variability between the profiles of detectable signal 35 

M. forum are members of the class Mollicutes, a large 
group of bacteria that lack a cell wall and have a charac­
teristically low GC content). These diverse organisms are 
parasites in a wide range of hosts, including humans, ani­
mals, insects, plants, and cells grown in tissue culture). 
Aside from their role as potential pathogens, M. forum are of 
interest because of their extremely small genome size. The 

intensity versus position. 
Generating the consensus profile can include an iterated 

registration process. Generating the consensus can include 
an iterative process having the following steps: (i) detecting 
outliers; (ii) computing a template on a first iteration and 
updating the template on subsequent iterations; (iii) register 
the profiles of detectable signal intensity versus position to 
the template; and (iv) compute an average similarity 
between the profiles of detectable signal intensity versus 
position and the template, wherein the iterative process is 
repeated until the average similarity is maximized, the 
registered profiles from step (iii) of the final iteration of the 
iterative process are subjected to steps (i) and (ii) and the 
updated template of step (ii) is the consensus profile. 

M. forum genome is 793 kb. 
DNA samples were prepared from purified CD138 plasma 

cells (MM-S and MM-R sample) and paired cultured 
stromal cells (normal) from a 58-year old male Multiple 

40 Myeloma (MM) patient with International Staging System 
(ISS) Stage IIIb disease. MM is the malignancy of B 
lymphocytes that terminally differentiate into longlived, 
antibody-producing plasma cells. Although it is a cancer 
genome, substantial portions of it are still identical to the 

45 reference human genome. This genome was comprehen­
sively analyzed to characterize its structure and variation by 
integrating findings from optical mapping with those from 
DNA sequencing-based genomic analysis (see Gupta et al. 
(2015)). 

High molecular weight DNA ( 500 ng) was extracted from 
washed cells by embedding in a 20 µl agarose gel insert; 
followed by dialysis in a mix comprising 1 0xNEB3 buffer 
(4.0 µl), (each, 100 µm final concentration: dATP, dCTP, 
dGTP and dTTP) on ice for 1 hr. Endogenous nicks were 

The methods described herein can include correlating the 50 

consensus profile to one or more features of the underlying 
genomic information. As used herein, a feature of the 
underlying genomic information can include any smallest 
detectable unit of underlying genomic information. In some 
cases, this smallest detectable unit can be a 2-mer, a 3-mer, 55 then healed by addition of: 1 µl of 10 U/µl E. coli ligase (10 

U/µl NEB E. coli ligase) for 2 hrs (16° C.). Followed by 
addition of 1 µl of Pol I (5 U/µl Roche E. coli DNA Pol I 
nuclease free) for 4 hrs (16° C.); total volume=40 µI. 
Reaction was stopped by decanting solution and adding 930 

a 4-mer, or a 5-mer. 
In some cases, the extracting of process block 204 can 

include generating a predicted data set using predicted 
underlying genomic information, and minimizing a differ­
ence between the data set and the predicted data set by 
varying the predicted underlying genomic information, 
wherein the underlying genomic information is the predicted 
underlying genomic information that minimizes the differ-
ence. 
Systems 

This disclosure also provides systems. The systems can be 
suitable for use with the methods described herein. When a 

60 µl lxTE and 70 µl of 0.5 M EDTA (pH 8) with overnight 
incubation at 4° C. Solution was decanted, followed by 
insert dialysis steps (2x): 1 hr, against lxTE (1.0 ml) and 0.5 
M EDTA (70 µl; pH=8.0). Insert was then transferred for 
additional pre-treatment: 10.7 µl H2O, 4 µl NEB3 buffer, 0.8 

65 µl (1 mM) Alexafluor 64 7-dUTP (20 µm final concentration; 
Molecular Probes) 0.8 µl (1 mM each: dATP, dCTP, dGTP; 
20 µMeach final concentration), and 2.7 µl dTTP (1.5 µM; 
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0.1 µm final concentration-placed on ice for 1 hr. Treated elsewhere herein, the Fscan lengths to not perfectly math 
insert DNA was then labeled by adding 1 µI Pol I (5 U/µl); that of the reference. Table 1 shows the variability oflengths 
incubated at 16° C. for 1 hr; stopped with 930 µI lxTE and of Fscans aligned to same reference intervals. For example, 
70 µI EDTA (0.5 M; pH=8.0). Nanocode labeled DNA was in interval 19 if M.forum dataset, the longest Fscan is 13.6% 
electroluted and diluted for imaging. longer and the shortest Fscan is 21.6% shorter than the 

Fluorochrome-labeled nucleotides at cognate nick sites average length of all Fscans aligned to that interval. Table 1 

placed fluorescent tags on the genomic DNA, which were also shows the depth of M.forum dataset. For example, there 

then imaged and analyzed using in-house image processing are 1,200 Fscans for interval 7 of M. forum. On an average, 

software INCA. The DNA backbones were tracked by there are 626 Fscans per M. forum interval. The sheer size 

detecting the pixel with maximum intensity in a one pixel 10 
of the M. forum dataset is encouraging for any statistical 
analysis. At the same time, it also presents unique challenges 

wide vertical window of predefined size and linking these with regards to the different types of variability. 
pixels via a standard shortest path algorithm. Punctate 
"blobs" were detected using the ratio of the eigenvalues of 

TABLE 1 the local 2-by-2 Hessian matrix. The punctates were local-
ized on the backbone using the registration information 15 Nma:12 Coverage of the M Florum Genome 
between the backbone and punctate images. The Nmaps 
were extracted as an ordered sequence of distances (along Nt.Bs12QI Reference Intervals M (lorum Nma12 dataset 

the backbone) between adjacent punctates. In addition to Interval pixels size (kb) molecules min (kb) avg (kb) max (kb) 
obtaining Nmaps, INCA provides the integrated fluores-
cence intensities of image pixels along the DNA backbone, 20 0 391 81.62 66 65.67 81.07 92.79 

or Fscans. 89 18.68 208 13.27 18.64 21.55 

To obtain the M. forum dataset, single-molecule Nmaps 
2 284 59.4 467 43.92 59.24 69.39 

67 13.94 734 9.59 13.86 17.34 
were aligned to an in silica restriction map derived from M. 4 43 9.03 895 6.47 8.99 11.48 

forum reference sequence 3 and to obtain the MM dataset, 24 5.04 849 2.14 5.02 5.9 

single-molecule Nmaps were aligned to an in silica restric- 25 
59 12.34 939 6.58 12.29 15.55 

7 49 10.24 1200 6.74 10.2 12.22 
tion map derived from human reference sequence (NCBI 72 15.02 965 11.13 15 19.48 
Build 37) using an in-house alignment software called 9 122 25.45 751 20.52 25.45 30.91 

Software for Optical Mapping Analysis (SOMA). SOMA 10 19 3.89 784 2.4 3.9 4.94 

grouped similar Nmaps to the genomic regions where they 11 100 20.89 898 14.35 20.83 26.42 
12 75 15.57 883 9.97 15.43 19.24 

aligned. Single Nmaps usually have experimental errors 30 13 49 10.21 855 6.21 9.98 13.72 
comprising false extra cuts, false missing cuts, and sizing 14 45 9.47 731 6.84 9.19 12.79 

issues, which were modeled with different probabilistic error 15 53 11.12 631 5.69 10.42 13.94 

models. 16 24 4.99 203 1.46 4.24 7.99 

Acquired images were processed using the image quality 
17 66 13.73 151 8.29 12.97 16.76 
18 126 26.28 377 21.17 25.66 31.02 

assessment method described above to eliminate outliers. 35 19 183 38.28 551 29.91 38.14 43.33 

The cross validation average type-II error was 3.52%. 20 10 2.11 488 1.46 2.14 3.18 

Two large data-sets were prepared from samples of (1) M. 21 148 31.02 572 18.48 31.12 35.62 
22 91 19.1 712 14.66 19.12 24.44 

forum, and (2) Human genome. Each dataset clearly iden- 23 17 3.62 918 1.04 3.61 6.37 
tified groups of Fscans that aligned to the same reference 24 154 32.19 947 25.89 32.24 37.16 

intervals. While the M. forum Fscan data-sets provided 40 25 198 41.3 876 30.39 41.2 48.77 

depth (large number ofFscans aligned to the same reference 26 47 9.76 824 4.62 9.74 13.15 
27 78 16.38 835 10.5 16.34 20.35 

interval), the human Fscan data-sets provided width (large 28 75 15.69 666 11.18 15.96 18.9 
number of intervals) but not as deep as M. forum. 29 30 6.28 653 4.07 5.86 7.36 

The M. forum genome presents 39 intervals, which ranged 30 175 36.5 881 29.11 36.34 42.61 

in size from 2.111 kb to 81.621 kb. AM. florum Nmap 45 31 88 18.31 795 12.95 18.24 21.9 
32 153 32.07 668 25.75 31.81 38.11 

dataset was created using previously described protocols and 33 100 20.95 431 15.15 20.86 23.97 
image analysis (see Jo, Kyubong, Dalia M Dhingra, Theo 34 16 3.28 334 1.25 3.03 4.6 

Odijk, Juan J de Pablo, Michael D Graham, Rod Runnheim, 35 68 14.26 295 11.32 14.16 16.37 

Dan Forrest, and David C Schwartz. 2007. A single-mo!- 36 245 51.31 191 36.6 50.81 59.52 
37 77 15.99 103 12.06 15.9 18.12 

ecule barcoding system using nanoslits for dna analysis. 50 38 86 17.88 68 15.04 17.68 20.14 
Proceedings of the National Academy of Sciences 104(8): 
2673-2678 and Kounovsky-Shafer, Kristy L, Juan P Hernan-

While the M. forum genome only had 39 Nmap intervals, dez-Ortiz, Kyubong Jo, Theo Odijk, Juan J de Pablo, and 
David C Schwartz. 2013. Presentation of large dna mo!- the human MM genome had thousands. Table 2.2 lists the 

ecules for analysis as nanoconfined dumbbells. Macromol- 55 
number of intervals in each chromosome as part of the MM 
dataset. Each of these intervals had a minimum depth of 15 

ecules 46(20):8356-8368, the entire contents of which are Fscans, i.e., the number of genomic DNA molecules aligned 
incorporated herein by reference). The reference interval to these intervals. And, each reference interval was at least 
lengths are calculated in image pixels: 1 pixel=209 bp of 50 pixels long ("" 10.3 kb). Chromosome 1 had the largest 
YOYO-1 stained, B-DNAat 0.34 mn/bp. Interval sizes (kb) number of intervals (1,880) and chromosome 13 had the 
are calculated from the Nt.BspQI in silica digest of the 60 fewest (148). In all, there were 21,972 intervals in the MM 
genome sequence. dataset. The average lengths of the intervals were 22.15 kb 

Fluorescence intensity profiles (or Fscans) of 12 DNA (std. dev. 7.911 kb), the longest being 110.60 kb (between 
molecular intervals that were aligned to interval 15 of the M. base pairs 183,309,223 and 183,419,842 in chromosome 3) 
forum genome. The reference interval is 11.119 kb long and and the shortest being 14.32 kb (between base pairs 43,855, 
each pixel of the captured images correspond to 209 base 65 328 and 43,869,645 in chromosome 5). The MM dataset that 
pairs on the genome. So, we expect each of these Fscans to was analyzed covered 486.66 Mb (or 15.04%) of the human 
be 53 pixels long. However, due to reasons described genome. 
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TABLE 2 

Number of Intervals in MM Dataset 

Number of 
Chromosome Intervals 

chrl 1880 
chr2 1702 
chr3 1851 
chr4 1484 
chr5 1264 
chr6 1740 
chr7 1169 
chr8 1051 
chr9 787 
chrl0 1074 
chrll 1290 
chr12 1000 
chr13 148 
chr14 796 
chr15 819 
chr16 838 
chrl 7 727 
chr18 826 
chr19 326 
chr20 574 
chr21 334 
chr22 292 

The scans were subjected to the following pre-processing 
steps: 1. normalizing; 2. limiting stretch; and 3. smoothing. 

Normalizing: The intensity values of the scans ranged 
between 6,000 and 20,000. Some of them are not of the best 
image quality. They are removed by the quality score 
thresholding. Then, we divide each Fscan intensity by the 
median value of an interval after truncating 10 pixels from 
either end of the Fscan intervals for excluding molecule 
regions surrounding labeled nick sites. By design, these 
regions support FRET (Fluorescence Resonance Energy 
Transfer) excitation of the labeled nick sites and conse­
quently present attenuated pixel grey levels. 

Limiting stretch: Images of molecules aligned to the same 
location on the genome were of different lengths ( or stretch). 

20 
sub-interval with the larger count was withdrawn to match 
the count of the sub-interval with the smaller count. Then 
pairwise tests were conducted between these two sets of 
same Fscan counts. For interval pairs with mismatch, ran­
dom matching was repeated 50 times and the p-values were 
averaged. 

A non-parametric permutation t-type test was conducted 
pairwise, to test the null hypothesis that Fscans from two 
distinct genomic sub-intervals were from the same distribu-

10 tion. 
A functional Anderson-Darling test (FAD-test) was con­

ducted pairwise on the same sub-intervals. 
The p-values from both these tests are close to zero. Since 

FAD-Test has more power, the p-values are smaller and 
15 discernible differences between Fscans are detected. From 

the results of FT-Test and FAD-Test we conclude that 
preprocessed Fscans belonging to the same sub-intervals 
have higher resemblance to each other and less so with 
Fscans belonging to other sub-intervals. This is evidence 

20 that Fscans represent signature profiles of genomic regions. 
The methods described above including the PRIMR algo­

rithm were implemented on the acquired Fscans to produce 
cFscans. PRIMR successfully reduced noise in the Fscan 
datasets and more accurately estimated the cFscans of 

25 genomic intervals. cFscans exhibited striking similarity with 
QC-profiles. Using two different statistical methods it is 
confirmed that cFscans were strongly associated with QC­
profiles, in the sense that intervals with dissimilar QC­

profiles have dissimilar cFscans and intervals with similar 
30 QC-profiles have similar cFscans. This allowed us to verify 

the fluoroscanning hypothesis that fluorescence intensity 
signals were strongly associated with genomic sequence 
composition. 

Analysis of differentially stretched Fscans of the M. 
35 florum datasets revealed that cFscans are reasonably robust 

to stretch. 
While the above detailed description has shown, 

We ensured uniform stretch in final Fscan data-sets by 40 

constraining Nmap aligmnents by length to be within 
+/-10% of the median stretch. 

described, and pointed out novel features as applied to 
various embodiments, it will be understood that various 
omissions, substitutions, and changes in the form and details 
of the devices or algorithms illustrated can be made without 
departing from the spirit of the disclosure. As will be 
recognized, certain embodiments of the disclosures 
described herein can be embodied within a form that does 

Smoothing: We used B-spline De Boor (1978) to smooth 
each of intensity profile individually. For Fscan f(x), with p 
observed points xi, ... , xp, we used p/3 breakpoints, with 45 

4th order basis functions. We used generalized cross vali­
dation (QCV) measure to estimate the roughness penalty A* 
for each Fscan f. A *=arg minx QCV(A *), for e-5 se5

. This 
way, we retained maximum signal-to-noise information. 
Smoothing serves dual purpose. First, it reduces the mea- 50 

surement noise at the pixels and second, it allows interpo­
lation of Fscans at regular intervals ensuring they are all of 

not provide all of the features and benefits set forth herein, 
as some features can be used or practiced separately from 
others. The scope of certain disclosures disclosed herein is 
indicated by the appended claims rather than by the fore­
going description. All changes which come within the mean-
ing and range of equivalency of the claims are to be 
embraced within their scope. 

What is claimed is: 
the same length as the reference interval, in terms of pixels. 
After smoothing, all curves are normalized so they have a 
mean zero for subsequent analysis. 

1. A method of analyzing detectable signals acquired from 
a plurality of nucleic acid molecules, the method compris-

55 ing: 
After preprocessing, the M. forum Fscans were analyzed 

to confirm that Fscans reflect underlying genomic sequence 
compositions. To do this, we first identified a set of equi­
length (50 pixels) sub-Nmap-intervals fromM.forum. There 
are 19 Nmap intervals in the M. forum genome that were at 60 

least 50 pixels long. Two separate statistical methods: one 
non-parametric, one parametric were employed. There were 
between 42 and 516 Fscans in these 19 sub-intervals, the 
average being 258. When two sub-intervals with different 
Fscan counts were compared, to reduce bias in favor of the 65 

sub-interval with more Fscans, a random matching step was 
added. In this step, a random set of Fscans from the 

a) receiving a data set comprising profiles of detectable 
signal intensity versus position, the detectable signal 
intensity acquired from a plurality of marker molecules 
bound to substantially identical portions of the plurality 
of nucleic acid molecules and generating a consensus 
profile of detectable signal intensity versus position, 
wherein the generating the consensus profile comprises 
an iterative process comprising the following steps: (i) 
detecting outliers; (ii) computing a template on a first 
iteration and updating the template on subsequent itera­
tions; (iii) register the profiles of detectable signal 
intensity versus position to the template; and (iv) 
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compute an average similarity between the profiles of 
detectable signal intensity versus position and the tem­
plate, wherein the iterative process is repeated until the 
average similarity is maximized, the registered profiles 
from step (iii) of the final iteration of the iterative 
process are subjected to steps (i) and (ii) and the 
updated template of step (ii) is the consensus profile; 

b) extracting underlying genomic information from the 
data set; and 

c) generating an output signal or a report comprising the 10 

underlying genomic information. 
2. The method of claim 1, wherein the extracting of step 

22 
were generated by a method of acquiring data associated 
with a nucleic acid molecule, the method comprising: 

a) binding a plurality of marker molecules to at least a 
portion of the nucleic acid molecule, each of the 
plurality of marker molecules providing a detectable 
signal, the detectable signal comprising underlying 
genomic information about the nucleic acid molecule; 

b) acquiring the detectable signal from a plurality of 
locations on the at least a portion of the nucleic acid 
molecule; and 

c) generating an output signal or a report comprising the 
detectable signal. 

b) comprises eliminating outliers from the data set. 
3. The method of claim 2, wherein the eliminating outliers 

uses Fraiman and Muniz (FM) depth and random projection 
(RP) depth. 

17. A method of analyzing detectable signals acquired 

15 from a plurality of nucleic acid molecules, the method 

4. The method of claim 1, wherein the extracting of step 
b) comprises normalizing the profiles of detectable signal 
intensity versus position. 

5. The method of claim 1, wherein the extracting of step 
b) comprises excluding the profiles of detectable signal 
intensity versus position corresponding to nucleic acid mol­
ecules that have a stretch value falling outside a predeter­
mined range of acceptable stretch values. 

6. The method of claim 1, wherein the extracting of step 
b) comprises smoothing the profiles of detectable signal 
intensity versus position. 

7. The method of claim 6, wherein the extracting of step 

20 

25 

b) comprises renormalizing the smoothed profiles of detect- 30 

able signal intensity versus position. 

comprising: 
a) receiving a data set comprising profiles of detectable 

signal intensity versus position, the detectable signal 
intensity acquired from a plurality of marker molecules 
bound to substantially identical portions of the plurality 
of nucleic acid molecules; 

b) extracting underlying genomic information from the 
data set, the extracting comprising generating a pre­
dicted data set using predicted underlying genomic 
information, and minimizing a difference between the 
data set and the predicted data set by varying the 
predicted underlying genomic information, wherein the 
underlying genomic information is the predicted under­
lying genomic information that minimizes the differ­
ence; and 

c) generating an output signal or a report comprising the 
underlying genomic information. 8. The method of claim 1, wherein the generating the 

consensus profile comprises correcting for amplitude vari­
ability between the profiles of detectable signal intensity 
versus position. 

18. A method of analyzing detectable signals acquired 
from a plurality of nucleic acid molecules, the method 

35 comprising: 
9. The method of claim 1, wherein the generating the 

consensus profile comprises correcting for phase variability 
between the profiles of detectable signal intensity versus 
position. 

10. The method of claim 1, wherein the generating the 40 

consensus profile comprises an iterated registration process. 
11. The method of claim 1, the method further comprising 

correlating the consensus profile to a feature of the under­
lying genomic information. 

12. The method of claim 1, wherein the plurality of 45 

marker molecules comprises a plurality of fluorescent mol­
ecules. 

13. The method of claim 12, wherein the plurality of 
marker molecules comprises a plurality of {1,1'-(4,4,8,8-
tetramethyl-4,8-diazaundecamethylene )bis[ 4-[ (3-methyl­
benzo-1,3-oxazol-2-yl)methylidene ]-1,4-dihydroquino­
linium] tetraiodide} (YOY0-1) molecules. 

50 

14. The method of claim 1, wherein the plurality of 
nucleic acid molecules is a plurality of single-stranded DNA 
molecules, a plurality of double-stranded DNA molecules, a 55 

plurality of single-stranded RNA molecules, or a plurality of 
double-stranded RNA molecules. 

15. The method of claim 1, wherein the extracting of step 
b) comprises generating a predicted data set using predicted 
underlying genomic information, and minimizing a differ- 60 

ence between the data set and the predicted data set by 
varying the predicted underlying genomic information, 
wherein the underlying genomic information is the predicted 
underlying genomic information that minimizes the differ­
ence. 65 

16. The method of claim 1, wherein the data set compris­
ing the profiles of detectable signal intensity versus position 

a) receiving a data set comprising profiles of detectable 
signal intensity versus position, the detectable signal 
intensity acquired from a plurality of marker molecules 
bound to substantially identical portions of the plurality 
of nucleic acid molecules, wherein the data set com­
prising the profiles of detectable signal intensity versus 
position were generated by a method of acquiring data 
associated with a nucleic acid molecule, the method 
comprising: 
i) binding a plurality of marker molecules to at least a 

portion of the nucleic acid molecule, each of the 
plurality of marker molecules providing a detectable 
signal, the detectable signal comprising underlying 
genomic information about the nucleic acid mol-
ecule; 

ii) acquiring the detectable signal from a plurality of 
locations on the at least a portion of the nucleic acid 
molecule; and 

iii) generating an output signal or a report comprising 
the detectable signal; 

b) extracting underlying genomic information from the 
data set; and 

c) generating an output signal or a report comprising the 
underlying genomic information. 

19. The method of claim 17, wherein the extracting of step 
b) comprises eliminating outliers from the data set. 

20. The method of claim 17, wherein the eliminating 
outliers uses Fraiman and Muniz (FM) depth and random 
projection (RP) depth. 

21. The method of claim 17, wherein the extracting of step 
b) comprises normalizing the profiles of detectable signal 
intensity versus position. 
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22. The method of claim 17, wherein the extracting of step 
b) comprises excluding the profiles of detectable signal 
intensity versus position corresponding to nucleic acid mol­
ecules that have a stretch value falling outside a predeter-
mined range of acceptable stretch values. 5 

23. The_ method ofc!aim 17, wherein the extracting of step 
b) compnses smoothing the profiles of detectable signal 
intensity versus position. 

24. The method of claim 17, wherein the extracting of step 
b) comprises renormalizing the smoothed profiles of detect- 10 

able signal intensity versus position. 

24 
36. The method of claim 18, wherein the extracting of step 

b) comprises normalizing the profiles of detectable signal 
intensity versus position. 

37. The method of claim 18, wherein the extracting of step 
b) comprises excluding the profiles of detectable signal 
intensity versus position corresponding to nucleic acid mol­
ecules that have a stretch value falling outside a predeter­
mined range of acceptable stretch values. 

38. The method of claim 18, wherein the extracting of step 
b) comprises smoothing the profiles of detectable signal 
intensity versus position. 

39. The method of claim 18, wherein the extracting of step 
25. The method of claim 17, wherein the generating the 

consensus profile comprises correcting for amplitude vari­
ability between the profiles of detectable signal intensity 
versus position. 

b) comprises renormalizing the smoothed profiles of detect-
15 able signal intensity versus position. 

40. The method of claim 18, wherein the generating the 
consensus profile comprises correcting for amplitude vari­
ability between the profiles of detectable signal intensity 
versus position. 

26. The method of claim 17, wherein the generating the 
consensus profile comprises correcting for phase variability 
bet~~en the profiles of detectable signal intensity versus 
pos1t10n. 

27. The method of claim 17, wherein the generating the 20 

consensus profile comprises an iterated registration process. 
28. The method of claim 17, the method further compris-

ing correlating the consensus profile to a feature of the 
underlying genomic information. 

29. The method of claim 17, wherein the plurality of 25 

marker molecules comprises a plurality of fluorescent mol­
ecules. 

41. The method of claim 18, wherein the generating the 
consensus profile comprises correcting for phase variability 
between the profiles of detectable signal intensity versus 
position. 

42. The method of claim 18, wherein the generating the 
consensus profile comprises an iterated registration process. 

43. The method of claim 18, the method further compris­
ing correlating the consensus profile to a feature of the 
underlying genomic information. 30. The method of claim 29, wherein the plurality of 

marker molecules comprises a plurality of {1,1'-(4,4,8,8-
tetramethyl-4,8-diazaundecamethylene )bis[ 4-[ (3-methyl­
benzo-1,3-oxazol-2-yl)methylidene ]-1,4-dihydroquino­
linium] tetraiodide} (YOY0-1) molecules. 

44. The method of claim 18, wherein the plurality of 

30 
marker molecules comprises a plurality of fluorescent mol­
ecules. 

31._ Th~ method of claim 17, wherein the plurality of 
nucleic acid molecules is a plurality of single-stranded DNA 
molecules, a plurality of double-stranded DNA molecules a 35 

plurality of single-stranded RNA molecules, or a plurality 'of 
double-stranded RNA molecules. 

32. The method of claim 17, wherein the extracting of step 

45. The method of claim 44, wherein the plurality of 
marker molecules comprises a plurality of {1,1'-(4,4,8,8-
tetramethyl-4,8-diazaundecamethylene )bis[ 4-[ (3-methyl­
benzo-1,3-oxazol-2-yl)methylidene ]-1,4-dihydroquino­
linium] tetraiodide} (YOY0-1) molecules. 

46. The method of claim 18, wherein the plurality of 
nucleic acid molecules is a plurality of single-stranded DNA 
molecules, a plurality of double-stranded DNA molecules a 
plurality of single-stranded RNA molecules, or a plurality 'of 
double-stranded RNA molecules. 

47. Th~ method of ~!aim 18, wherein the extracting of step 
b) compnses generatmg a predicted data set using predicted 
underlying genomic information, and minimizing a differ-

b) comprises generating a predicted data set using predicted 
underlying genomic information, and minimizing a differ- 40 

ence_ between the. data set and the predicted data set by 
varymg the predicted underlying genomic information 
wherein the underlying genomic information is the predicted 
underlying genomic information that minimizes the differ­
ence. 45 

ence_ between the. data set and the predicted data set by 
varymg the predicted underlying genomic information 
wherein the underlying genomic information is the predicted 
underlying genomic information that minimizes the differ­
ence. 

33. The method of claim 17, wherein the data set com­
prising the profiles of detectable signal intensity versus 
position were generated by a method of acquiring data 
associated with a nucleic acid molecule, the method com­
prising: 50 

a) binding a plurality of marker molecules to at least a 
portion of the nucleic acid molecule, each of the 
plurality of marker molecules providing a detectable 
signal, the detectable signal comprising underlying 
genomic information about the nucleic acid molecule· 55 

b) acquiring the detectable signal from a plurality of 
locations on the at least a portion of the nucleic acid 
molecule; and 

c) generating an output signal or a report comprising the 
detectable signal. 

34. The method of claim 18, wherein the extracting of step 
b) comprises eliminating outliers from the data set. 

35. The method of claim 18, wherein the eliminating 
outliers uses Fraiman and Muniz (FM) depth and random 
projection (RP) depth. 

60 

48. The method of claim 18, wherein the data set com-
pris_i~g the profiles of detectable signal intensity versus 
pos1t10n were generated by a method of acquiring data 
associated with a nucleic acid molecule, the method com­
prising: 

a) binding a plurality of marker molecules to at least a 
portion of the nucleic acid molecule, each of the 
plurality of marker molecules providing a detectable 
signal, the detectable signal comprising underlying 
genomic information about the nucleic acid molecule· 

b) acquiring the detectable signal from a plurality of 
locations on the at least a portion of the nucleic acid 
molecule; and 

c) generating an output signal or a report comprising the 
detectable signal. 
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