
c12) United States Patent
Li et al.

(54) COMPUTER ARCHITECTURE FOR
HIGH-SPEED, GRAPH-TRAVERSAL

(71) Applicant: Wisconsin Alumni Research
Foundation, Madison, WI (US)

(72) Inventors: Jing Li, Madison, WI (US); Jialiang
Zhang, Middleton, WI (US)

(73) Assignee: Wisconsin Alumni Research
Foundation, Madison, WI (US)

(*) Notice: Subject to any disclaimer, the term ofthis
patent is extended or adjusted under 35
U.S.C. 154(b) by 278 days.

(21) Appl. No.: 15/901,376

(22) Filed:

(65)

Feb. 21, 2018

Prior Publication Data

(51)

(52)

(58)

US 2019/0258401 Al

Int. Cl.
G06F 16100
G06F 3/06
G06F 161901
H03M 7/40
H03M 7/30

U.S. Cl.

Aug. 22, 2019

(2019.01)
(2006.01)
(2019.01)
(2006.01)
(2006.01)

CPC G06F 3/0604 (2013.01); G06F 3/068
(2013.01); G06F 3/0655 (2013.01); G06F
1619024 (2019.01); H03M 7/40 (2013.01);

H03M 7/6005 (2013.01)

Field of Classification Search
None
See application file for complete search history.

I 1111111111111111 1111111111 111111111111111 IIIII IIIII IIIII IIIIII IIII IIII IIII
US010747433B2

(IO) Patent No.: US 10,747,433 B2
Aug. 18, 2020 (45) Date of Patent:

(56) References Cited

U.S. PATENT DOCUMENTS

8,484,607 Bl * 7/2013 Tang G03F 7 /70466
716/136

9,922,376 Bl * 3/2018 Wang . G06Q 40/123
10,432,639 Bl* 10/2019 Bebee G06T 1/20

2008/0218518 Al* 9/2008 Zhou G06F 17/11
345/440

2011/0080947 Al * 4/2011 Chen. H04N 19/13
375/240.12

2016/0378791 Al* 12/2016 Daga G06F 16/24569
707/769

2018/0137155 Al* 5/2018 Majumdar G06F 16/2228

FOREIGN PATENT DOCUMENTS

WO 2011032077 A2 3/2011

OTHER PUBLICATIONS

Naumov et al., "Parallel Depth-First Search for Directed Acyclic
Graphs", 2017, all pages.*

(Continued)

Primary Examiner - Son T Hoang
(74) Attorney, Agent, or Firm - Boyle Fredrickson, S.C.

(57) ABSTRACT

A computer architecture for graph-traversal provides a pro­
cessor for bottom-up sequencing through the graph data
according to vertex degree. This ordered sequencing reduces
redundant edge checks. In one embodiment, vertex adja­
cency data describing the graph may be allocated among
different memory structures in the memory hierarchy to
provide faster access to vertex data associated with vertices
of higher degree reducing data access time. The adjacency
data also may be coded to provide higher compression in
memory of vertex data having high vertex degree.

20 Claims, 5 Drawing Sheets

~-~..::::-.:::::::::::::.,:r~=~ ,,,,,,,,,,,,.,,, .. ,,,,
~==-'-~~-,--✓-

54

54

(56) References Cited

OTHER PUBLICATIONS

US 10,747,433 B2
Page 2

Hiragushi et al. ("Efficient Hybrid Breath-First Search on GPUs"),
all pages. (Year: 2013).*
Beamer et al.; "Direction-Optimizing Breadth-First Search"; Sci­
entific Prograrmning 21, No. 3-4 (2013): 1 pp. 137-148. US.
Beamer et al.; "Distributed memory breadth-first search revisited:
Enabling bottom-up search." In 2013 IEEE International Sympo­
sium on Parallel & Distributed Processing, Workshops and Phd
Forum, pp. 1618-1627. IEEE, 2013. US.
International Search Report of International Application No. PCT/
US2019/017227 dated May 27, 2019.
Beamer et al.; "Direction-Optimizing Breadth-First Search"; Sci­
entific Prograrmning 21, No. 3-4 (2013): pp. 137-148. US.

* cited by examiner

U.S. Patent

44

32

Aug. 18, 2020

26a
24

12

3t

30

34

3f

Sheet 1 of 5

t

30

33'

FIG. 1

US 10,747,433 B2

\
~10

20

46

33

31

U.S. Patent Aug. 18, 2020

48a

47a

r- --- -----,
L ---- --- _I

Sheet 2 of 5 US 10,747,433 B2

47b

FIG. 2

U.S. Patent Aug. 18, 2020 Sheet 3 of 5 US 10,747,433 B2

34
/

"' / ,,
/

;I'

" 74 ' ' ' 66 COMPRESS ADJACENCY ' ' DATA BY DEGREE

78
LOAD COM PRESSED

DATA INTO MEMORY
HIERARCHY BY DEGREE / ,,,..,,,.

,,,..,, ...
,.,,.. ... ,, .,..,,.

EXECUTE ON TOP-
DOWN PROCESSOR

80
... , 54

.... ,
.... , ...

...........
........

NO DONE

? ,,,.,,.
REVERSE ,. -... -

,,,.-"' 56 54
EXECUTE ON BOTTOM

UP PROCESSOR BY
VERTEX DEGREE 54

.............
........... ... ,

............

DONE 56

FIG. 3

~28 0 ENCODED

~ DATA
I 101

77 u I 10110

2s I
I J2

10101101

/
u l76

20

72

76 34

FIG. 4

VERTEX
DATA
70a

70b

70c

-

-

..
ACCESS

FREQUENCY

-+--1 /

VERTEX
I I ' DEGREE

69

------1-1

34

e
•
00
•
~
~
~
~ = ~

> =
~
'"CIO
N
0
N
0

rJJ
=-('D
('D
.i;...

0
Ul

d
r.,;_

"'""' '"= -....l
~
-....l
~
w
w

= N

U.S. Patent

OF

VERTICES

Aug. 18, 2020 Sheet 5 of 5

~52

--54

FIG. 5

VERTEX DEGREE

FIG. 7

US 10,747,433 B2

FIG. 6

US 10,747,433 B2
1

COMPUTER ARCHITECTURE FOR
HIGH-SPEED, GRAPH-TRAVERSAL

2
A description of this hybrid search strategy is found, for

example, in Scott Beamer, Aydin Buluc, Krste Asanovic, and
David Patterson, 2013, distributed memory breadth-first
search revisited: Enabling Bottom-Up Search, in Parallel STATEMENT REGARDING FEDERALLY

SPONSORED RESEARCH OR DEVELOPMENT 5 and Distributed Processing Symposium Workshops & PhD
Forum (IPDPSW), 2013 IEEE 27th International, IEEE,
1618-1627 (the Beamer reference) hereby incorporated by
reference.

Graph data structures can quickly become large making CROSS REFERENCE TO RELATED
APPLICATION 10 graph-traversal slow even with such hybrid search strate­

gies. Currently, the social networking site of Facebook is
described by a graph with over 1 billion vertices and more
than 1 trillion edges.

BACKGROUND OF THE INVENTION

The present invention relates generally to computer archi­
tectures, and in particular to an architecture providing
improved speed in traversing graph data.

15

A graph is a data structure describing a set of vertices
(nodes) interconnected by edges to form a network. Graphs 20

provide a useful model of many real-world structures, for
example, relationships between webpages (where the verti­
ces describe webpages and the edges describe links between
webpages) or individuals in a social network (where the
vertices describe individuals and the edges describe their 25

friends or interests). Graphs are also used in the fields of
neural networks and bioinformatics.

Computers are often called upon to process graph data by
means of a "graph-traversal" operation where each vertex of
the graph is visited and data is collected, for example, to 30

produce a minimum sparming tree, or otherwise characterize
the graph or the relationships of the vertices.

SUMMARY OF THE INVENTION

The present invention provides an improved computer
architecture that exploits an awareness of vertex degree in
implementing the graph-traversal. First, during the bottom­
up portion of the traversal, the architecture sequences
through the vertex data according to vertex degree. As will
be discussed in the application, the inventors have deter­
mined that this sequencing can greatly reduce unproductive
edge checks. Second, during access to the vertex data, access
time is reduced by loading the data with greatest access
frequency in the fastest memory of the memory hierarchy. In
this regard, the inventors have determined that high index
vertices data is accessed more frequently. Third, when the
data is compressed to allow greater data storage in fast
memory, storage footprint is reduced by associating the
vertex data for high-degree vertices with shorter codewords
improving the representation of this data in the smaller,
faster memory structures.

Specifically, in one embodiment, the present invention
provides computer architecture for graph-traversal having a
memory holding an adjacency list describing vertices of the
graph and their connections through edges to other vertices
and a processor communicating with the memory system
and operating in a bottom-up mode traversing from unvis­
ited vertices toward a frontier of visited vertices by exam­
ining unvisited vertices to find connections to a vertex of the
frontier using the adjacency list and moving to a next vertex
when a connection to a vertex of the frontier is found. The

The vertices of a graph can be characterized according to
"degree" indicating how many edges connect to that vertex.
"Scale-free graphs" are a class of graphs where the distri- 35

bution of vertex degrees follows a power-law distribution.
Typically, such scale-free graphs have a small number of
vertices with a large number of connections and many more
vertices (a long-tale) with very few connections. During a
graph-traversal, such scale-free graphs produce large num- 40

bers of redundant edge checks (investigating vertices that
have already been visited). These edge checks require inef­
ficient, irregular access to the memory holding the graph
data. architecture operates to explore the unexamined vertices in

45 the bottom-up direction in order of vertices degree being the
number of edges connecting to the vertex.

Improved efficiency in graph-traversal can been accom­
plished through the use of a hybrid traversal strategy
employing a "top-down" traversal followed by a "bottom­
up" traversal. In an example top-down traversal (in this case
a breadth-first search), a conventional CPU or GPU-based
system executes the program to review the graph data 50

outward from a starting vertex to find its neighbors (edges
leading to other vertices) which establish a frontier. The
vertices in this frontier are marked as visited and then edges
from these vertices investigated in turn to establish a new
frontier. When after multiple iterations the frontier has 55

reached a critical size, the search strategy shifts to a "bot­
tom-up" traversal. In this mode, the computer looks at the
remaining un-visited vertices to check to see if they have a
connection to the existing frontier. If so, that vertex is
marked as visited and added to the frontier and the strategy 60

immediately stops searching the other edges of that vertex,
greatly saving processing time.

The top-down and bottom-up search strategies can be
both executed using parallel processors; however, the "top­
down" traversal requires an atomic updating of the frontier. 65

This atomic updating is not required for the bottom-up
strategy which investigates each vertex separately.

It is thus a feature of at least one embodiment of the
invention to increase the rate of graph-traversal by ordering
the traversal by vertex degree in a bottom-up search. Pro­
jections based on experimentation suggests graph-traversal
speeds of 45.8 billion edges per second can be obtained with
this architecture.

The adjacency list may be arranged in memory by vertices
degree.

It is thus a feature of at least one embodiment of the
invention to simplify traversal by vertex degree by pre­
sorting the adjacency list before graph-traversal. This pre­
sorting can be accomplished in stream fashion at high speed.

The memory may provide a memory hierarchy beginning
with smaller, high-access speeds and progressing to larger,
low-access speed memory circuits, and the adjacency list
may be organized to place the vertices of the adjacency list
so that higher vertices degrees are toward the beginning of
the memory hierarchy relative to vertices of the adjacency
list having lower vertices degree.

It is thus a feature of at least one embodiment of the
invention to exploit the inventor's empirical determination

US 10,747,433 B2
3

that vertices of higher degree have more frequent memory
access, by allocating information of those high-degree ver­
tices in memory structures having lower access latency.

The memory hierarchy may include on-chip memory on
the same integrated circuit as processors and off-chip hybrid 5

memory cube memory.
It is thus a feature of at least one embodiment of the

invention to greatly increase the ability to store frequently
accessed graph data on-chip memory in graph-traversal.

The computer architecture may further include a decom- 10

4
The processor may be FPGA.
It is thus a feature of at least one embodiment of the

invention to permit effective implementation of a special­
purpose processor.

The adjacency list may be arranged in memory by vertices
degree.

It is thus a feature of at least one embodiment of the
invention to presort the adjacency list for higher-speed
processing.

The computer architecture may include a sorting proces-
sor executing a stored program and receiving an unsorted
adjacency list describing vertices of the graph and their
connections through edges to other vertices and sorting that
list according to vertices degree.

It is thus a feature of at least one embodiment of the
invention to provide off-line sorting to simplify the archi­
tecture.

pressor circuit positioned between the processor and the
memory decompressing the adjacency list according to a
codebook translating codewords representing the adjacency
list in memory into adjacency data, and wherein the smaller

15
codewords are associated with adjacency data associated
with vertices of higher vertices degree. The sorting processor may generate a mapping table

indicating a mapping from vertices indices identifying ver­
tices of the unsorted adjacency list to vertices indices of the

20 vertices list.

It is thus a feature of at least one embodiment of the
invention to provide greater compression to frequently
accessed vertex information allowing that information
greater representation in the fastest memory structures.

The memory decompressor may employ a decompression
approach called Exp-Golomb coding.

It is thus a feature of at least one embodiment of the
invention to easily translate the traversal information to the
original graph.

It is thus a feature of at least one embodiment of the
invention to employ an encoding system that minimizes
additional storage requirements for the decoder.

These particular objects and advantages may apply to
25 only some embodiments falling within the claims and thus

do not define the scope of the invention.
The computer architecture may further operate in a top­

down mode from the frontier to unvisited vertices by exam­
ining the frontier vertices and edges of the frontier vertices
to find connections to unvisited vertices using the adjacency 30

list and may include a mode switch switching the processor
system between the first mode and the second mode accord­
ing to parameters based on the progress of the traversal
through the graph.

It is thus a feature of at least one embodiment of the 35

invention to provide the benefits of hybrid graph-traversal
(both top-down and bottom-up graph-traversal) for
improved performance.

The computer architecture may include counters updated
by the processor during the traversal of the graph and 40

wherein the mode switch reads the counters to switch the
processor system between the first and second mode based
on counter values.

It is thus a feature of at least one embodiment of the
invention to provide runtime optimization of top-down or 45

bottom-up processing according to dynamically acquired
data.

The counters may indicate the size of the frontier.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of the architecture of the present
invention showing a general-purpose CPU or GPU commu­
nicating with a graph-traversal processor, the latter having a
dedicated top-down and bottom-up processor communicat­
ing with a memory hierarchy including on-chip memory, a
hybrid memory cube memory and other mass storage
memory or the like, FIG. 1 further showing an expanded
view of a switching mechanism for switching the top-down
and bottom-up processor;

FIG. 2 is an expanded diagram of the top-down and
bottom-up processor having multiple parallel processing
elements communicating atomically with a pipeline for the
top-down processor and non-atomically with a pipeline for
the bottom-up processor;

FIG. 3 is a block diagram of operation of the processor
system of FIG. 1 including an off-line portion sorting graph
vertex information and an online portion performing the
traversal, FIG. 3 further including diagrams showing graph
representation and top-down and bottom-up graph-traversal;

FIG. 4 is a dataflow diagram showing the translation of It is thus a feature of at least one embodiment of the
invention to measure quality of the traversal indicating
likely efficiencies in the top-down or bottom-up modes.

The processor provides a separate processing circuitry for
the first and second modes.

It is thus a feature of at least one embodiment of the
invention to provide optimized processors for top-down and
bottom-up operation.

50 sorted vertex data through a codebook and allocated
between various memory systems of the memory hierarchy;

FIG. 5 is a simplified diagram of a scale-free network;
FIG. 6 is a graph showing the power law distribution of

scale degree of the network of FIG. 5 accommodated by the
55 present invention; and

The separate processing circuitry may employ multiple
parallel processors providing atomic writing to memory for
the first processor but not for the second processor.

It is thus a feature of at least one embodiment of the 60

invention to permit parallel processing of the graph-traversal
problem.

The separate processing circuitry may have independent
pipelines.

It is thus a feature of at least one embodiment of the 65

invention to permit optimization of the pipelines for top­
down and bottom-up processing.

FIG. 7 is a diagram of a high-degree and low-degree
vertex during a bottom-up connection of vertices to a
frontier providing an intuitive framework for the speed gains
of the present invention.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

Hardware Overview

Referring now to FIG. 1, a computer system 10 may
provide for a general-purpose processor 12, for example, a

US 10,747,433 B2
5 6

Because the on-chip memory 30 carmot hold the entirety
of the visited bitmap 32, frontier bitmap 33 or adjacency list
34, on-chip portions of the structures are supplemented by
corresponding visited bitmap 32', frontier bitmap 33', and

von Neuman type architecture executing a general instruc­
tion set possibly using out of order and speculative execu­
tion or a so-called graphic processor unit (GPU) providing
multiple parallel operating cores. The general-purpose pro­
cessor 12 may communicate with a hierarchical memory 14
including, for example, on-chip cache memory 16, external
memory 18, for example, SRAM and DRAM and/or so­
called flash memory, and disk storage 20. The general­
purpose processor 12 may execute a program 22 stored in
the memory 14 whose operation will be described below.

5 adjacency list 34' in off-chip memory 31.
Referring still to FIG. 1, the graph-traversal processor 24

may include a processor controller 36 that may activate,
alternatively, one or the other of the top-down processor 26a
and bottom-up processor 26b during the graph-traversal.

10 Typically, the graph traversal starts from a particular graph
vertex using the top-down processor 26a, later switching to
the bottom-up processor 26b, and then often switching back
to the top-down processor 26a completing the final steps of

The general-purpose processor 12 may communicate, for
example, to a shared data bus with special-purpose, graph­
traversal processor 24. As will be discussed in more detail
below, the graph-traversal processor 24 may include dedi-

15
cated top-down processor 26a and bottom-up processor 26b.
The graph-traversal processor 24 may provide optimized
pipeline architecture for top-down and bottom-up graph­
traversal of the type described below, it is anticipated that
the special-purpose graph-traversal processor 24 will be a 20

special-purpose integrated circuit and in one embodiment
may be implemented using a field progranmiable gate array
(FPGA) executing a firmware program.

the graph-traversal process.
The processor controller 36 is controlled by a threshold

comparator 38 which analyzes the values of counters 40 and
counter 42 communicating, respectively, with the top-down
processor 26a and bottom-up processor 26b to collect sta-
tistics on the graph-traversal as will be discussed below.

Generally, each of the top-down processor 26a and bot-
tom-up processor 26b may communicate with the on-chip
memory 30 and off-chip memory 31 either directly as
indicated by arrows 44 or through a decompressor 46 whose
operation will be discussed in greater detail below. These The graph-traversal processor 24 may also communicate

with a memory hierarchy 28 including on-chip memory 30,
for example, being constructed on the same integrated
circuit substrate as the processors 26, with high-bandwidth,
off-chip memory 31 and with disk storage 20 either directly

25 decompressors 46 are shown separately but may in fact
share components.

or through general-purpose processor 12.

Referring now to FIG. 2 each of the top-down processor
26a and bottom-up processor 26b may include multiple
independently operating processing units 47a and 47b that

In one embodiment, the high-bandwidth, off-chip
memory 31 may be a Hybrid Memory Cube (HMC) memory
constructed according to the specifications of the Hybrid
Memory Cube Consortium being a joint collaboration
between Micron and Samsung working with a variety of
other manufacturers with components commercially avail­
able from Micron under the tradename HMC Gen2 (HMC-

30 may work in parallel on shared data in respective pipelines
48a and 48 to process different vertices of the graph at the
same time for high-speed operation. Generally, the process­
ing units 47a will write atomically to the pipeline 48a so as
to prevent race conditions with respect to identifying verti-

35 ces as visited. This atomic writing may be implemented by
a lockout system 50 of a type known in the art. In contrast,
the processing units 47b implementing the bottom-up pro­
cessor 26b need not be atomically locked as will be dis­
cussed below.

15 G-SR). This device generally provides extremely high
bandwidth (amount of data transfer per second) providing
two links (memory channels) of fill duplex communication
each consisting of eight, fifteen gigabits per second lanes 40

and providing a total bandwidth of thirty gigabytes per
second. Other HMC components can support up to four
links, each with sixteen, thirty gigabits per second lanes, and
an aggregated bandwidth of 240 gigabytes per second. The
general-purpose processor 12 may communicate with the 45

on-chip memory 30 and off-chip memory 31 to load data
into these memories related to a description of the graph to
be traversed, as will be discussed below, and to read data out
of the memories related to the results of graph-traversal.

The on-chip memory 30 may hold data structures used for 50

the graph-traversal including a "visited" bitmap 32. The
visited bitmap 32 (of which only a portion maybe held in
on-chip memory 30) provides an array of bits equal in
number to the vertices of the graph being traversed which
may be set or reset to indicate whether those vertices have 55

been visited.

Hardware Operation

Referring now momentarily to FIGS. 5 and 6, a simplified
graph 52 that may be traversed by the present invention may
provide for a set of vertices 54 interconnected by edges 56.
Generally, the graph 52 may be described by an adjacency
list 34 that lists each vertex 54 by a unique vertex index and
describes its direct connections with other vertices. Each
vertex may also include additional information that may be
accessed during the graph-traversal through a separate
indexing operation not discussed herein.

During a graph-traversal, a starting vertex 54 is selected
and the graph edges 56 are followed until every vertex in the
graph has been visited. During the traversal, data related to
the vertices 54 or their connections may be collected.
Graph-traversal is a foundational operation for the process-
ing of graphs 52 and can be used, for example, to develop
simplified depictions of the graph (e.g., minimum spanning
trees) sorting or identifying connections, for example, in

The on-chip memory 30 may also include a frontier
bitmap 33 (again, of which only a portion may be held in
on-chip memory 30) describing a subset of the visited
vertices of the graph describing a frontier of vertices that
may connect to other unvisited vertices. Typically, vertices
whose edges have all been explored are removed from the
frontier bitmap 33 during the top-down traversal.

60 social networks.

The on-chip memory 30 may also holds a portion of an
adjacency list 34 describing, for each vertex, edges that
connect to other vertices. The adjacency list 34 will be
discussed in more detail below.

In many important graph applications, the graph 52 will
approximate a so-called scale-free graph in which a small
number of vertices 54 (shown here in crosshatching) have a
high number of edges 56, much larger than the majority of

65 the remaining vertices 54. The number of edges 56 will be
referred to as vertex "degree," and in a scale-free graph, the
number of edges in the set of vertices 54 of the graph 52 is

US 10,747,433 B2
7

generally a power law distribution 58. As will be discussed
below, the present invention uses vertex degree to control
the order of vertex traversal in the bottom-up traversal to
improve the efficiency of the traversal and further uses
vertex degree to locate vertex data (primarily adjacency list 5

34) within the memory hierarchy and to compress that data.
Referring now to FIGS. 1 and 3, a graph-traversal execu­

tion may begin as indicated by process block 60 with the
sorting of the adjacency list 34 according to vertex degree so
that the vertices 54 associated with highest degrees are 10

positioned, for example, at the beginning of the adjacency
list 34. A typical adjacency list 34 may, for example, provide
a vertex index list 62 having one array element in an array
for each vertex index (here showing vertices 0-7) where the
vertex index is a unique number associated with each vertex 15

54 typically encoded in the address of the array elements.
The value in the array elements for each vertex 54 provides
a pointer 64 from a parent vertex 54 of the vertex index list
62 to the beginning of a range 66 in a corresponding
adjacency array 68. The values in the adjacency array 68 20

within the range 66 of that parent vertex 54 describe each of
the edges leading from the parent vertex 54 in terms of the
index numbers of the vertices 54 connected to that parent
vertex 54 by those edges. The end of the range 66 is
described by the beginning of the next range of the next 25

parent vertex 54 in the vertex index list 62.
The degree of a given vertex 54 is readily determined

from the adjacency list 34 by the length of the range 66.
Thus, referring to FIG. 3, vertex (0) has a degree of (3)
indicating that the parent vertex (0) connects to three other 30

vertices 54. Normally the vertices 54 will be arranged in the
vertex index list 62 and the adjacency list 34 in an arbitrary
order with respect to their degree, but they are sorted, for
example, using a general-purpose processor 12, into an order
according to degree so that the highest degree vertices 54 are 35

first in these data structures. Preferably, the sorting can be
strictly according to vertex degree; however, it will be
appreciated from the following description that the invention
works with lesser benefit if this sorting is observed gener­
ally, for example, through the ordered categories of high-, 40

medium-, and low-vertex degree or statistically trending
arrangements of vertex degree.

In the depicted example, the illustrated unsorted adja­
cency list 34 would be sorted by degree so that vertex (0) is
first (having a degree of 3) followed by vertex (2) and (3), 45

both having a degree of 2, finally followed by vertex (1)
having a degree of 1. In this sorting process, the order of the
vertices in the vertex index list 62 will be changed corre­
spondingly and a mapping table 23 (shown in FIG. 1) may
be developed by the general-purpose processor 12 to map 50

this new order to the original vertex numbering so that the
original vertex ordering can be reestablished. The values
held in each array element of the adjacency array 68 may be
updated to refer to the new index values of the sorted vertex
index lists 62. Generally, the visited bitmap 32 and frontier 55

bitmap 33 may be similarly sorted to promote localization of
this data for efficient access.

8
with, for example, the first bin 70a holding data of the
adjacency list 34 associated with vertices 54 having the
highest vertex degree that will match the size of and be
associated with on-chip memory 30. Similarly, the size of
bin 70b holding data of the adjacency list 34 associated with
vertices 54 having a lower vertex degree will match the size
of off-chip memory 31, and finally bin 70c will hold data of
the adjacency list 34 associated with the long-tail of vertices
54 having lowest vertex degree and will have a size suffi­
cient to be stored and will be stored in disk storage 20. In this
way, the most frequent memory accesses of data of vertices
54 having a higher vertex degree will be held in the faster
memory structures providing improved access speed.

This allocation of data of the vertices 54, for example,
from the adjacency list 34 to the memory hierarchy 28 may
be done directly, or alternatively this data may first be
compressed using code table 72 to produce encoded code­
words 76 which are then allocated to the memory hierarchy
28 per arrows 77. In this process, the vertex data of the bins
70a-c may be subject to different compression regimes
providing greater compression of data in the bin 70a to
permit greater storage in the small storage regions of the
on-chip memory 30. Similarly, the data in the bin 70b may
be subject to greater compression than the data in the bin 70c
to permit thrifty use of off chip memory 31. This variation
in net compression may be performed by assigning shorter
codewords 76 (of a range of codewords) to the more
frequently accessed data through proper construction of the
codebook 72 mapping the adjacency list 34 to codewords 76.
Generally, the length of the codewords 76 is set to be shorter
for vertex data of vertices of higher degree. This coding
process may make use of a variety of different known
compression techniques including Huffman encoding. In
one embodiment, the coding process may be Exp-Golomb
encoding, for example, described at Solomon Golomb,
Run-length encodings (Corresp.), IEEE Transactions on
Information Theory 12, 3 (1966), 399-401.

Referring again to FIG. 3, this compression process
shown by process block 74 and the loading of the codewords
into memory is indicated process block 78. These steps may
be performed "off-line" with respect to the processor 24 or
may be performed by dedicated hardware incorporated into
the processor 24 as mentioned below.

Once the vertex data is properly sorted, compressed, and
loaded into the processor 24, the processor 24 may be
activated in particular with the processor controller 36 by
enabling the top-down processor 26a (shown in FIG. 1) as
indicated by process block 80. In this process, starting at a
seed vertex 54' designated in configuration data for the
processor 24 by a user, the processor 24 will interrogate the
adjacency list 34 and identify those vertices 54 connected to
each of the edges of the seed vertex 54' to define a frontier
82. The processor 24 will then move through the vertices 54
of the frontier in sequence (for example, shown by the
numbers 1, 2, and 3) to identify further vertices 54 connected
to the vertices 54 of the frontier 82 thereby establishing a
new frontier (not shown) in an outward expansion of the

Referring now to FIG. 4, the present inventors have
determined that vertices of higher degree statistically expe­
rience larger numbers of memory accesses in a graph­
traversal than vertices 54 of lesser degree as indicated by
depicted asymptotically declining curve 69. Accordingly,
vertex data of the adjacency list 34 as sorted may be divided
into bins 70a-c associated with different memory structures
of the memory hierarchy 28 (shown in FIG. 1). Generally,
the size of the bins 70a-c will be equal to the size of the
different memory structures in the memory hierarchy 28,

60 frontier 82 indicated by arrow 85. During this process, the
bit arrays of the visited bitmap 32 (shown in FIG. 1) keep
track of those vertices 54 have been visited, and the frontier
bitmap 33 keeps track of those vertices within the frontier 82
and are updated accordingly. Generally, vertices 54 that have

65 had all edges investigated may be removed from the frontier
bitmap 33 but remain visited and thus remain in visited
bitmap 32.

US 10,747,433 B2
9

A simplified algorithm for a top-down traversal follows
the following steps:

for each frontier of vertices;
for each vertex in the frontier;

if an edge-connected vertex not been visited;
mark the vertex as visited;
move the marked vertex to the frontier and collect

other data;
next edge;

next vertex;
next frontier.

10
sor 26b (shown in FIG. 1) is begun as indicated by process
block 84. In bottom-up processing, the sequencing through
the vertices 54 of the frontier 82 is no longer performed and
the processing instead sequences through unvisited vertices

5 54 in an order according to vertex degree facilitated by the
sorting of the adjacency list 34. That is, the bottom-up
processor 26b starts with unvisited vertices of the highest
degree.

At each unvisited vertex 54, the edges are examined to see
10 if they connect to the frontier 82 (that is, if they connect to

a vertex 54 already in the frontier 82). If such a connection
exists, the unvisited vertex 54 is marked as visited and no
further edges of that vertex 54 need to be reviewed. This
ability to shortcut the review of edges is a significant benefit

It will be appreciated that multiple processing units 47 of
the top-down processor 26a may operate in parallel to
investigate different vertices 54 of the frontier 82 but that
when they find an un-visited vertex 54 they must atomically
mark it as read so there are not multiple processing units 47
writing to a given "child" vertex. Access of the necessary
data for this traversal may be obtained using pipeline 20

techniques communicating with the memory hierarchy 28
(shown in FIG. 1).

15 to the bottom-up approach.
A simplified algorithm for a bottom traversal follows the

following steps:

for each unvisited vertex;
for each edge;

if the edge connects to a vertex in the frontier;
mark unvisited vertex as visited;

As the frontier 82 expands, the efficiency of the search
process is reduced because of the increasing likelihood that
multiple given vertices 54 in the frontier 82 will connect to 25

a common vertex, for example, vertex 54". In those cases,
subsequent checking of other edges 56 to the common
vertex 54" will be a waste of processor resources entailing
unnecessary access to the adjacency list 34 in memory
hierarchy 28 for that edge and unnecessary consumption of 30

add vertex to frontier
break;

next edge;
next vertex;

The frontier 82 in this case continues to grow without
removal of vertices 54 because added vertices 54 do not
have all other edges explored such as would permit them to
be removed from the frontier 82, it will be appreciated that
review of the unvisited vertices 54 may be performed in
parallel by processing units 47b and no atomic writing by the
processing units 47b of the bitmaps associated with the

processor power.
To address this decreased efficiency caused by redun­

dancy of edge checking, after each frontier 82 is complete
(all of the contained vertices 54 have been scanned) as
indicated by decision block 88, a decision may be made as
to whether it is more efficient to begin a bottom-up process­
ing using bottom-up processor 26b.

This decision as to whether to begin bottom-up process­
ing, indicated by decision block 81, looks at counters 40 and
42 which may be updated concurrently. Counter 40 keeps
track of the number of edges that need to be checked in the
current frontier (mf) and the number of unexplored edges
(mu) while counter 42 keeps track of the size of the frontier
in vertices (nf). These counters 40 and 42 may be updated
during the traversal process in hardware eliminating the
need to scan through the frontier bitmap 33 or the adjacency
list 34.

Specifically, (mf) and (nf) are calculated by accumulating
the degrees and numbers of each vertex 54 as that vertex 54
is added to the frontier 82. The remaining value, mu, is
calculated by subtracting the sum of all degrees of all visited
vertices from the total number of edges.

The threshold determination as to when to switch between
top-down or bottom-up processing, indicated by decision
block 81, may employ the technique described in the above­
referenced Beamer paper as incorporated by reference. Pre­
liminary experimentation has suggested that the thresholds

35 unvisited arrays are necessary because no other processing
units 47b will be dealing with that unvisited vertex 54. Once
each unvisited vertex 54 has been visited, there will remain
some vertices 54 that are still not connected to the frontier
82 (and thus marked as visited). This process will then loop

40 through the unvisited vertices 54 again with the expectation
that some of these unvisited vertices will now connect to the
frontier 82 as the frontier 82 has expanded.

Referring momentarily to FIG. 7, an intuitive understand­
ing of the benefit of a bottom-up traversal using degrees-

45 sorted vertices 54 may be obtained by considering a high­
degree vertex 54a and a low-degree vertex 54b, each having
half of their edges connected to the frontier 82. Visiting
either of the vertices 54a and 54b presents an equal chance
of any given edge 56 connecting to the frontier 82 and

50 terminating the review of those edges. In that regard these
two vertices 54a and 54b are equally attractive as far as
avoiding the probability of quickly obtaining the "break"
state terminating review of that vertex. However, the high­
degree vertex 54a, when added to the frontier 82, greatly

55 increases the rate at which other vertices 54 will connect to
the frontier 82 because it presents a larger number of
frontier-unconnected edges presenting more opportunities
for the remaining vertices than the low-degree vertex 54b.
As a result, by starting with high-degree vertices 54a, the
unconnected edges of the frontier 82 increase more rapidly
increasing the chance of future vertices quickly terminating
compared to the reverse order. This in tum reduces the need
to repeatedly loop through the unvisited vertices.

of a=15 and ~=20 may be used. In this process, threshold
comparator 38 reviews the counters 40 and 42 and controls
the top-down processor 26a (in this case deactivating it) and 60

the bottom-up processor 26b (in this case activating it). The
same decision block 81 may also check at the conclusion of
each frontier 82 to see whether all vertices 54 have been
visited and if so the program terminates. Referring again to FIG. 3, as noted above, after each of the

65 unvisited vertices 54 has been reviewed there will be some Assuming that the traversal is not complete, if the deci­
sion at decision block 81 is to no longer use top-down
processing, bottom-up processing using bottom-up proces-

unvisited vertices that have not connected to the current
frontier, and this bottom-up sequencing will be repeated

US 10,747,433 B2
11

after passing through decision block $6 which again tests for
whether the traversal is complete and for whether it is
desirable to resume top-down processing per process block
80. Again, decision block 86 relies on an evaluation of 40
and 42 by the threshold comparator 38 and activation of the 5

processors 26 by processor controller 36.
Assuming that graph traversal is not complete, the pro­

cessing of the graph 52 continues moving between process­
ing by process blocks 80 and 84 according to the values of
counters 40 and 42 compared by threshold comparator 38. 10

While the above discussion considers performance of
process blocks 60, 74 and 78 as being done offline by a
separate general-purpose processor 12, it will be appreciated
that these steps may also be incorporated into the processor
24 by providing dedicated sorting and compression circuitry 15

that performs an initial scan through the necessary adjacency
list 34 to provide the sorting and compression described
above.

Certain terminology is used herein for purposes of refer­
ence only, and thus is not intended to be limiting. For 20

example, terms such as "upper", "lower", "above", and
"below" refer to directions in the drawings to which refer­
ence is made. Terms such as "front", "back", "rear", "bot­
tom" and "side", describe the orientation of portions of the
component within a consistent but arbitrary frame of refer- 25

ence which is made clear by reference to the text and the
associated drawings describing the component under dis­
cussion. Such terminology may include the words specifi­
cally mentioned above, derivatives thereof, and words of
similar import. Similarly, the terms "first", "second" and 30

other such numerical terms referring to structures do not
imply a sequence or order unless clearly indicated by the
context.

When introducing elements or features of the present
disclosure and the exemplary embodiments, the articles "a", 35

"an", "the" and "said" are intended to mean that there are
one or more of such elements or features. The terms "com­
prising", "including" and "having" are intended to be inclu­
sive and mean that there may be additional elements or
features other than those specifically noted. It is further to be 40

understood that the method steps, processes, and operations
described herein are not to be construed as necessarily
requiring their performance in particular order discussed or
illustrated, unless specifically identified as an order of per­
formance. It is also to be understood that additional or 45

alternative steps may be employed.
References to "a microprocessor" and "a processor" or

"the microprocessor" and "the processor," can be under­
stood to include one or more microprocessors that can
communicate in a stand-alone and/or a distributed environ- 50

ment(s) and can thus be configured to communicate via
wired or wireless communications with other processors,
where such one or more processor can be configured to
operate on one or more processor-controlled devices that can
be similar or different devices. Furthermore, references to 55

memory, unless otherwise specified, can include one or more
processor-readable and accessible memory elements and/or
components that can be internal to the processor-controlled
device, external to the processor-controlled device, and can
be accessed via a wired or wireless network. 60

It is specifically intended that the present invention not be
limited to the embodiments and illustrations contained
herein and the claims should be understood to include
modified forms of those embodiments including portions of
the embodiments and combinations of elements of different 65

embodiments as come within the scope of the following
claims. All of the publications described herein, including

12
patents and non-patent publications, are hereby incorporated
herein by reference in their entireties.

What we claim is:
1. A computer architecture for traversal of a graph com­

prising:
a memory holding an adjacency list describing vertices of

the graph and connections through edges to other
vertices from each of the vertices; and

a processor communicating with the memory and oper­
ating in a bottom-up mode from unvisited vertices
toward a frontier of visited vertices, by accessing the
adjacency list from the memory to examine the unvis­
ited vertices to find connections to any visited vertex of
the frontier using the accessed adjacency list and mov­
ing to a next unvisited vertex when a connection to a
visited vertex of the frontier is found;

wherein the unvisited vertices in the bottom-up mode are
are examined and traversed in an order of vertex degree
being a number of edges connecting to each unvisited
vertex; and

wherein the adjacency list indicates relative vertex degree
of the vertices permitting unproductive edge checks to
be produced by examining the vertices according to the
relative vertex degree.

2. The computer architecture of claim 1, wherein the
adjacency list is arranged in the memory by vertex degree.

3. The computer architecture of claim 1, wherein the
memory decompressor employs a decompression of Exp­
Golomb coding.

4. The computer architecture of claim 1, further including
a sorting processor executing a stored program and receiving
an unsorted adjacency list describing unsorted vertices of the
graph and connections through edges to other vertices of
each unsorted vertex and sorting that unsorted adjacency list
according to the order of vertex degree.

5. The computer architecture of claim 4, wherein the
sorting processor generates a mapping table indicating a
mapping from the unsorted vertices of the unsorted adja­
cency list to the vertices of the adjacency list.

6. A computer architecture for traversal of a graph com­
prising:

a memory holding an adjacency list describing vertices of
the graph and connections through edges to other
vertices from each of the vertices; and

a processor communicating with the memory and oper­
ating in a bottom-up mode from unvisited vertices
toward a frontier of visited vertices, by accessing the
adjacency list from the memory and examining the
unvisited vertices to find connections to any visited
vertex of the frontier using the accessed adjacency list
and traversing to a next unvisited vertex when a con­
nection to a visited vertex of the frontier is found;

wherein the unvisited vertices in the bottom-up mode are
examined and traversed in an order of vertex degree
being a number of edges connecting to each unvisited
vertex;

wherein the adjacency list is arranged in the memory by
the order of vertex degree;

wherein the memory provides a memory hierarchy begin­
ning with smaller, high-access speed memory circuits
and progressing to larger, low-access speed memory
circuits;

wherein the adjacency list is organized to place descrip­
tions of vertices of the adjacency list having a higher
vertex degree toward the beginning of the memory
hierarchy relative to descriptions of vertices of the
adjacency list having a lower vertex degree; and

US 10,747,433 B2
13

wherein the arrangement of the adjacency list reduces
memory access time for the vertices with the higher
vertex degree expected to have larger number of
memory accesses compared to the vertices with the
lower vertex degree. 5

7. The computer architecture of claim 6, wherein the
~emory hie:arc~y includes on-chip memory on a same
mtegrated cJrcmt as the processor and off-chip hybrid
memory cube memory.

_8: A computer architecture for traversal of a graph com-
pnsmg: 10

a memory holding an adjacency list describing vertices of
the _graph and connections through edges to other
vertices from each of the vertices; and

a proces~or ~ommunicating with the memory system and
operatmg ma bottom-up mode from unvisited vertices 15

toward a frontier of visited vertices, by accessing the
adjacency list from the memory and examining the
unvisited vertices to find connections to any visited
vertex of the frontier using accessed the adjacency list
and traversing to a next unvisited vertex when a con- 20

nection to a visited vertex of the frontier is found·
wherein the unvisited vertices in the bottom-up mod~ are

ex~mined and traversed in an order of vertex degree
bemg a number of edges connecting to each unvisited
vertex;

wherein the adjacency list is arranged in the memory by
the order of vertex degree; and

25

a decompressor circuit positioned between the processor
and the memory decompressing the adjacency list
according to a codebook translating codewords into the 30

adjacency list and wherein smaller codewords are asso­
ciated with data of the adjacency list for vertices of a
higher vertex degree, and

wherein the association of the smaller codewords for the
vertices of the higher expected to have larger numbers 35

of memory accesses compared to vertices with a lower
vertex degree.

14
wherein the adjacency list is arranged in the memory by

the order of vertex degree;
wherein the processor further operates in a top-down

mode from the frontier to the unvisited vertices by
examining edges of the visited vertices of the frontier
to find connections to the unvisited vertices using the
adjacency list;

wherein the computer architecture further comprises a
mode switch switching between the top-down mode
and the bottom-up mode according to parameters
describing progress of the traversal through the graph;
and

wherein the adjacency list indicates relative vertex degree
of the vertices permitting unproductive edge checks to
be produced by examining the vertices according to the
relative vertex degree.

11. The computer architecture of claim 10, further includ­
ing counters updated by the processor during the traversal of
the graph and wherein the mode switch reads the counters to
switch between the top-down and bottom-up modes based
on values of the counters.

12. The computer architecture of claim 11, wherein the
counters indicate a size of the frontier.

13. The computer architecture of claim 10, wherein the
processor provides a separate processing circuitry for each
of the top-down and bottom-up modes.

14. The computer architecture of claim 13, wherein the
separate processing circuitry employs multiple parallel pro­
cessors.

15. The computer architecture of claim 14, wherein the
memory hierarchy includes on-chip memory on a same
integrated circuit as the processor and off-chip hybrid
memory cube memory.

16. The computer architecture of claim 13, wherein the
separate processing circuitry has independent pipelines.

17. The computer architecture of claim 10, wherein the
processor is a field-programmable gate array (FPGA). 9. The computer architecture

memory decompressor employs
Golomb coding.

of claim 8, wherein the
a decompression of Ex-

10. A computer architecture for traversal of a graph
comprising:

18. The computer architecture of claim 1, wherein the
40 adjacency list is arranged in the memory by the order of

vertex degree.
19. The computer architecture of claim 10, wherein the

memory provides a memory hierarchy beginning with
smaller, high-access speed memory circuits and progressing

a memory holding an adjacency list describing vertices of
the graph and connections through edges to other
vertices from each of the vertices; and 45 to larger, low-access speed memory circuits and wherein the

adjacency list is organized to place descriptions of vertices
of the adjacency list having a higher vertex degree toward
t~e beginnin_g of the memory hierarchy relative to descrip­
tions of vertices of the adjacency list having a lower vertex

a processor communicating with the memory and oper­
ating in a bottom-up mode from unvisited vertices
toward a frontier of visited vertices, by accessing the
adjacency list from the memory and examining the
unvisited vertices to find connections to any visited 50

vertex of the frontier using the accessed adjacency list
and traversing to a next unvisited vertex when a con­
nection to a visited vertex of the frontier is found·

wherein the unvisited vertices in the bottom-up mod~ are
examined and traversed in order of a vertex degree 55

being a number of edges connecting to each unvisited
vertex;

degree.
20. The computer architecture of claim 10 further includ­

ing a decompressor circuit positioned betwe~n the processor
and the memory decompressing the adjacency list according
to a codebook translating codewords into the adjacency list
and wherein smaller codewords are associated with data of
the adjacency list for vertices of a higher vertex degree.

* * * * *

