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(57) ABSTRACT 

A neural net processor provides twin processing paths 
trainable using different moments of the input data, one 
moment providing a proxy for uncertainty. Subsequent 
operation of the trained neural net allows monitoring of the 
uncertainty proxy to provide real-time assessment of neural 
net model-based uncertainty. 
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NEURAL NETWORK ARCHITECTURE 
WITH CONCURRENT UNCERTAINTY 

OUTPUT 

STATEMENT REGARDING FEDERALLY 
SPONSORED RESEARCH OR DEVELOPMENT 

2 
differs fundamentally from the data used in training the 
neural net ("out-of-domain uncertainty"). 

This invention was made with government support under 
AG040396 awarded by the National Institutes of Health and 
IIS1252725 awarded by the National Science Foundation. 
The government has certain rights in the invention. 

The fact that a neural net is operating to produce an output 
prediction generally does not indicate how much uncertainty 
there is in the output prediction. Yet, having an understand­
ing of the uncertainty experience by the neural net is clearly 
important in many neural net applications. As one example, 
when such neural net systems are used in autonomous 
vehicle control, a measurement of uncertainty could indicate 

10 a risk of vehicle error such as failure to detect a pedestrian. 

CROSS REFERENCE TO RELATED 
APPLICATION 

BACKGROUND OF THE INVENTION 

15 

Similarly, when a neural net system is used for disease 
prediction, a measure of uncertainty might be necessary for 
regulatory approvals. 

Some work has been done in measuring the uncertainty of 
neural nets using "sampling." In sampling, in between each 
input, operation of the neural net is paused, and the hidden 
state of the neural net is investigated by probing the neural 
net with a set of randomly generated samples and measuring 

The present invention relates generally to computer archi­
tectures and, in particular, to a neural network architecture 
that can produce a concurrent output of uncertainty with 
respect to the prediction of the neural network. 

20 the statistical variation in the output. This approach may not 
be computationally feasible for many practical neural net­
work applications. 

Artificial neural networks (henceforth neural networks) 25 

are computing systems generally inspired by the brain. A 
common design of a neural net provides multiple layers of 
"neurons" where each layer has multiple connections to 
preceding and/or succeeding layers. Each of the multiple 
inputs to each neuron is associated with a weight, and the 30 

neuron provides an output that is a function of the weighted 
sum of the data from the input connections. 

SUMMARY OF THE INVENTION 

The present invention provides a way of evaluating a 
neural network uncertainty without sampling or interruption 
of the neural net processing. In the invention, the neural net 
is trained by input data represented as two different statistics 
from the distribution distributions (for example, mean and 
variance) of the training data, and the neural net circuitry is 
adjusted to preserve these distributions (within a family of 
distributions) as they are processed by the neural network. 
With properly trained neural net weights, during use of the 
neural net, output data from the neural net is accompanied 
by a statistical distribution that indicates uncertainty. 

More specifically, the present invention provides a neural 
network architecture having a first and second input channel 
and a first and second output channel. The neural network 

The final layer of the neural net may provide a classifi­
cation or prediction, for example, expressed as an output 
vector having elements associated with different classifica- 35 

tion or prediction possibilities. In a common example of a 
neural net that is trained to review image data and classify 
that image data, the output vector may classify the image 
according to whether it shows a particular object, for 
example, an automobile or a pedestrian. 

The weights of the neural network are obtained by a 
training process in which example data with known classi­
fication is provided in a "training set" to the neural network 
and the weights adjusted iteratively so that the output 
classification converges to the known classification of the 45 

training set data. This process may be conducted "off-line" 
before the neural network is used. 

40 provides a processing path from the first and second input 
channels to the first and second output channels through a set 
of units having weights trained with respect to data having 
different statistical moments as input on the first and second 

During use, a neural net processor is loaded with the 
trained weights and proceeds to categorize data using those 
weights by passing data through the connections between 50 

neurons to the final classification layer. A significant benefit 
to neural network architectures is that specific 

A variation in design of neural nets is a so-called "recur­
rent neural net" in which the multiple layers of the network 
are implemented by looping the data in multiple passes 55 

through the neuron-like "units". Such recurrent neural net­
works are particularly useful in sequence prediction tasks 
such as machine translation, speech recognition, and some 
medical applications. Example recurrent neural networks 
include the "Long- and Short-Term Memory" (LSTM) and 60 

the "Gated Recurrent Unit" (GRU) generally known in the 
art. 

input channels, the units providing interaction between data 
of the first and second input channels. The processing path 
provides an output on the second channel indicating an 
uncertainty of the results expressed on the first input chan­
nel. 

It is thus a feature of at least one embodiment of the 
invention to provide an uncertainty measurement for artifi­
cial intelligence devices such as neural networks that can be 
generated concurrently with the processed output of the 
neural network circuitry. In this respect, the invention can be 
distinguished from "sampling" type uncertainty systems that 
require, for example, time-consuming multiple Monte Carlo 
sampling of neural net hidden states. 

The set of units may be implemented with at least one 
recurrent unit. 

It is thus a feature of at least one embodiment of the 
invention to provide an uncertainty measurement system for 
an important class of neural networks providing recursion. 

In some embodiments, the recurrent neural net may be a 
gated recurrent unit. The prediction output of a neural network can have 

varying degrees of unpredictability produced by inaccura­
cies in the input data itself (e.g., noise), uncertainty intro­
duced by the neural net model itself ("model uncertainty"), 
or uncertainty because the data processed by the neural net 

It is thus a feature of at least one embodiment of the 
65 invention to provide an uncertainty measurement system 

that works with an important class of well-characterized and 
analyzed recurrent neural networks. 
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The gated recurrent unit may provide a set of functional 
elements implementing a linear transformation of an input to 
the unit by applying weights and offsets followed by a 
nonlinear transformer preserving a family of the moment 
distribution of the second input channel. 

It is thus a feature of at least one embodiment of the 
invention to provide neuron circuitry that preserves the 
distribution qualities of the moment used for uncertainty 
assessment as that moment passes through the units. The 
nonlinear transformer of the present invention may be 
distinguished from conventional sigmoid or hyperbolic tan­
gent functions which do not directly provide the same 
protection of the distribution. 

4 
FIG. 2 is a detailed block diagram of a units of FIG. 1 

showing twin paths through the unit for the different 
moments; 

FIG. 3 is a fragmentary view similar to FIG. 1 showing 
use of the neural network of FIG. 2 for processing non­
training data; and 

FIG. 4 is a phantom view of an autonomous automobile 
and its sensor system such as may employ the present 
invention to read in sensor data and provide output warnings 

10 or vehicle control based on uncertainty. 

DETAILED DESCRIPTION OF THE 
PREFERRED EMBODIMENT 

The weights may be obtained by training with inputs on 15 
the second input channel having a statistical moment 
selected from an exponential family of distributions. 

Referring now to FIG. 1, a neural network architecture 10 
may provide for a set of logical units 12a-12c ( only three 
shown for clarity) providing inputs 14 for receiving moment 
data (as will be discussed below) and producing outputs 16 

It is thus a feature of at least one embodiment of the 
invention to make use of the well-studied exponential family 
of distributions amenable to neuron-type transformations 
while remaining within the exponential family. 

The second input channel may have a statistical moment 
of variance. 

It is thus a feature of at least one embodiment of the 

20 for passing that moment data to a succeeding unit 12 or to 
a decoder network 18. For all neurons 12 except for the last, 
the outputs 16 are termed hidden or latent outputs. The 
decoder network 18 may provide user output 20 of the neural 

invention to make use of the statistical moment of variance 25 

which may be compressed by functions without causing the 
distribution to move outside of the exponential family. 

network architecture 10, this user output 20 including both 
prediction data and uncertainty data as will be discussed 
below. The uncertainty data may be further processed by a 
threshold detector 92 to provide an alarm output 24 indi­
cating that the prediction data is highly uncertain. The gated recurrent unit may provide a set of functional 

elements operating on inputs to the gated recurrent unit to 
produce outputs from the gated recurrent unit, and each 30 

functional element may have two halves processing signals 
associated respectively with the first output signal and the 
second output signal wherein each of the halves provides 
independent weight and bias factors, and wherein one half of 

35 
each functional element processes an input associated with 
the first output signal only and the other half processes 
inputs associated with both the first and second output 
signals. 

While each unit 12a-12c may be implemented as a 
separate circuit, the invention contemplates that the units 12 
may be recurrent units and hence implemented by a single 
unit that is "unrolled" in multiple layers 26a, 26b, and 26c 
(also denoted layers) shown separated by dotted lines pro­
viding sequential operation. In the sequential operation, the 
inputs of each succeeding instance of a unit 12 receive the 
outputs from the previous instance of the unit 12 as managed 
by clocking and buffering circuitry 28. The same clocking 
and buffering circuitry 28 may provide successive inputs 36 
to each instance 26 of the unit 12, for example, being part of 
a time series to be analyzed by the neural network archi­
tecture 10. 

It is thus a feature of at least one embodiment of the 40 

invention to provide twin paths of processing within the unit 
that allow concurrent neural net calculations and uncertainty 
calculations. 

Generally, the circuitry of the neural network architecture 

The neural network architecture may include a decoder 
neural network receiving signals from an output of each unit 45 

to provide further decoding of that output. 

10 may be implemented as one or more dedicated integrated 
circuits or in a high-speed processor such as a graphics 
processor or the like having a stored program communicat­
ing with a memory. 

It is thus a feature of at least one embodiment of the 
invention to permit arbitrary mapping of the output of the 
recurrent neural network including the uncertainty measure­
ment to a different domain for different applications. 

The neural network architecture may include a threshold 
detector monitoring the second output to indicate an uncer­
tainty beyond a predetermined threshold. 

It is thus a feature of at least one embodiment of the 
invention to provide a simple uncertainty signal that can be 
used for downstream control or to provide an indication to 
the user of neural network uncertainty. 

These particular objects and advantages may apply to 
only some embodiments falling within the claims and thus 
do not define the scope of the invention. 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1 is a block diagram of a neural network architecture 
per the present invention showing multiple units for receiv­
ing a training process processed to provide two different 
moments of the training data to the units; 

Referring now to FIGS. 1 and 2, each unit 12 may be 
associated with a moment extractor 32 which may extract 
statistical moments from a training set 40 as the inputs 36 

50 provided to the neural network architecture 10 during train­
ing as will be discussed below. 

Referring particularly to FIG. 2, each unit 12 may have an 
architecture similar to gated recurrent unit (GRU) neural 
network architectures but modified to provide twin data 

55 pathways for different moments of the inputs 36 as will now 
be discussed. These twin data pathways will loosely be 
associated with two different statistical moments of the 
training set 40 (in the preferred embodiment the mean (m) 
and the variance (s) of the training set 40), and generally 

60 each of the twin pathways will also be associated with a 
different one of the outputs 16 identified to the different 
statistical moments. 

Specifically, the inputs 14 of each unit 12 may include 
recursive inputs 34 labeled hm, hs associated with different of 

65 the twin pathways and corresponding with outputs 16 of any 
previous unit 12, these outputs similarly labeled hm, h

5
• The 

inputs 14 of the unit 12 may also include sequence data 
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inputs 36 labeled xm, x,, being either from the training set 40 
(through the moment extractor 32) or being data processed 
after training. 

Referring now to both FIGS. 1 and 2, the training set 40 
consists of a set of "examples" 42 represented by rows and 
each including ordered data elements 44, for example, being 
part of a time sequence. The data elements 44 of common 
columns (as depicted) have the same index, for example, the 
same time index. Each example 42 may, for example, be 
speech samples of the same sentence by different speakers, 10 

and each data element 44 is an audio waveform point or 
phoneme or other sequential elemental characteristic of 
speech. More generally, however, the invention is not lim­
ited to speech but will work with any orderable data set 
having different examples 42 including, for example, 15 

sequences of ordered image data. 
Associated with the examples 42 of the training set 40 is 

a target output 46 indicating a common desired classification 
or prediction of the examples 42, being an output which 
should be provided by the neural network architecture 10 on 20 

the input of any example 42. This target output 46 need not 
be in the same domain as the examples 42; for example, if 
the examples 42 are short sentences, the target output 46 
may be a classification of the sentences, for example, 
according to an arbitrary meaning domain. In this respect, in 25 

one example, the sentence examples 42 may be spoken 
commands to a virtual assistant and the target output 46 may 
be an extracted meaning of those spoken commands, for 
example, as a request to "tum the lights on." In other 
examples, the target output 46 may be expressed as a query 30 

input for a database extracted from spoken command 
examples 42. 

Referring to FIG. 1, the present invention trains the neural 
network architecture 10 not with the individual data ele-
ments 44 but instead with statistical moments taken across 35 

6 
variance of the trammg data. The word "twin" is used 
instead of "parallel" to the extent that these paths are not 
independent but interact with each other as will be discussed 
below in the detailed description of the paths. 

The first path in the unit 12 begins with the input value of 
hm as applied respectively to a first input of a first portion 
52a of an update gate 54 and the first input of a first portion 
56a of a reset gate 58. This value of hm is also received by 
one input of a first multiplier 60 and one input of a second 
multiplier 62. 

Similarly, the second path in the unit 12 begins with the 
value of hs as applied along the second path respectively to 
a first input of a second portion 52b of the update gate 54 and 
a second input of a second portion 56b of the reset gate 58. 
This value of hs is also received by one input of a third 
multiplier 64 and one input of fourth multiplier 66. 

Concurrently, the value of xm is applied respectively along 
the first path to a second input of first portion 52a of the 
update gate 54 and a second input of the first portion 56a of 
the reset gate 58. Similarly, the value of xs is applied 
respectively along the second path to a second input of the 
second portion 52b of the update gate 54 and a second input 
of the second portion 56b of the reset gate 58. 

The update gate 54 operates on its inputs to produce 
intermediate outputs oz.m' oz.s as follows: 

o~,m = Uz,mX~ + Wz,mh';;,l + bz,m (1) 

In the intermediate outputs oz m', oz/ and the right side 
equation components, the supe;script; indicate the index 
value of the column of training set 40 ( or the index value of 
a data element of the vector used in a non-training situation), 
and the subscripts simply indicate the mean and variance 

columns of the training set 40. Thus, for example, during a 
first step of the training, the input xm. may be provided to the 
neural network architecture 10 being a statistical mean taken 
along a first column of the training set 40 (at an index value 
0), and the input xs provided to the neural network archi­
tecture 10 may be a statistical variance extracted from that 
same column 0. Both the mean and the variance may be 
extracted by a moment extractor 32 discussed above. 

During this training, the unit 12 will operate recursively 
in each layer 26 so that at successive layers 26 in the 
recursion, new values of xm, xs are received at increasingly 
higher index numbers (leftward columns) of the training set 
40. In each layer 26, as mentioned before, the outputs hm, hs 
from the previous layer become the inputs for the current 
layer as shown generally in FIG. 2 as managed by the 
clocking and buffering circuitry 28 (which recycles this data 
around to the same hardware elements). 

40 parts of the update gate 54 associated with the first and 
second portions 52a and 52b, respectively, both also denoted 
by the subscript z, indicating the update gate 54. The values 
of U, W and b represent the weights of the unit 12 being 
trained and the offset, respectively, and follow the conven-

45 tions of standard gate recurrent neurons (GRU s) with respect 
to training. Elements within brackets in the form of [A] 2 

indicate a Hadamard product of, for example, the indicated 
weight vector. It will be appreciated that this is a linear 
transform. These intermediate outputs are further processed 

50 and compressed as follows to provide the output of the 
update gate 54: 

(2) 

A normal sigmoid function a will produce a transformation 
that does not necessarily result in a distribution within the 
exponential family. Accordingly, the activation outputs am, 
as which approximately follow a distribution using a closed 
form approximation of a may be used per the above equation 

At each iteration, the outputs hm, hs For that layer 26 are 
also provided to the decoder network 18 which produces 
outputs 20 associated with the mean and variance labeled am, 55 

as but in the domain of the target output 46. These outputs 
am, as are provided to a back-projection circuit 50 which 
computes the difference between the outputs am, as and the 
target output 46 to provide a back-projection delta value to 
the units 12, as is generally understood in the art of recurrent 60 

neural networks, to train the weights and offsets of the units 
12. Ultimately this process produces a set of trained weights 
and offsets within the units 12 that will provide the desired 
output am, as when the neural network architecture 10 
receives actual data for processing. 65 (2). The use of distributions in the exponential family for 

general neural networks are known but not in the context of Referring again to FIG. 2, as noted, within the unit 12 
there are twin paths associated generally with mean and uncertainty measurement. 
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Similarly, the reset gate 58 operates on its inputs as 
follows: 

(3) 

8 
The output of the first portion 74a of the state complement 

block 76 goes to the second input of fifth multiplier 80, and 
the output of the second portion 74b goes to the second input 
of a sixth multiplier 82. 

The outputs of multipliers 80 and 82 go to the second 
inputs of summing block 84 and summing block 86 respec­
tively. The first inputs of these summing box 84 and 86 
receive outputs of multipliers 60 and 64 respectively and the 
outputs of the summing box 84 and 86 provide the outputs 

Producing intermediate values orm',ors' are interpreted 
using the conventions discussed abo~e. These intermediate 
outputs are further processed and compressed as follows 
using the above described approximation of the sigmoid 
function of equation (2) to provide the output of the reset 
gate 58. 

lO hm, hm, respectively so that those outputs can be represented 
as a time series: 

It is noted that in each of these examples, and the example 
of the state output gate to be discussed below, the data from 15 

the mean and variance are not independently processed but 
rather the variance data is modified by the mean data. This 
modification, being an interaction between the first and 
second portions of each data, preserves the "distribution 
property" of the variance so that it remains in the exponen- 20 

tial family after modification by the unit 12. A similar 
approach is used with the decoder network 18. 

Continuing with the description of the processing path of 
each unit 12, the output of the first portion 52a of update gate 
54 goes to the first input of second multiplier 60 and to an 25 

input of a first portion 70a of a complementing block 72. The 
output of the second portion 56b of the update gate 54 goes 
to the second input of the third multiplier 64 and to the 
second portion 70b of complementing block 72. This 
complementing block 72 simply performs a complement 30 

(subtracting its input from one). 

(6) 

where 0 is the Hadamard product .... 
Referring now to FIG. 3, once the neural network archi­

tecture 10 has been trained, it may receive a standard 
sequence of data 90 to be analyzed also having data elements 
44 that are arranged in one-element colunms associated with 
an index variable used in sequences stated to the units 12 as 
discussed above with respect to the training set 40. This data 
90 is received by the clocking and buffering circuitry 28 and 
provided to the moment extractor 32 which provides each 
unit 12 with a mean equal to the value of the given data 
element 44 for the respective colunm and variance equal to 
zero. This input data 90 is processed by successive iterations 
of the units 12 as shown in FIG. 1. 

The results of the processing by the units 12 of the neural 
network architecture 10 produce values of hm and am pro­
viding the desired classification or prediction of the input 
data 90 by the neural network architecture 10. This process­
ing also provides values of hs and as which are nonzero 

The output of the first portion 70a of the complementing 
block 72 goes to the first input of fifth multiplier 80, and the 
output of the second portion 70b goes to the first input of a 
sixth multiplier 82. 

The output from the first portion 56a of reset gate 58 goes 
to the second input of second multiplier 62, and the output 

35 despite the input of zero values of variance to the first unit 
12 of the first layer 26a. These nonzero values provide 
measures of uncertainty. 

of second portion 56b of the gate 58 goes to the second input 
of fourth multiplier 66. 

The output of second multiplier 62 goes to a first portion 40 

74a of a state candidate block 76, and the output of fourth 
multiplier 66 goes to the second portion 74b of this state 
candidate block 76. The first portion 74a also receives input 
xm while the second portion 74b receives xs. The state 
candidate block 76 performs a linear transformation as 45 

follows: 

(4) 

Referring to FIG. 2, the output as may be received by a 
threshold comparator 92 that can provide an uncertainty 
output 24 if uncertainty in the operation of the neural 
network architecture 10 exceeds a certain value 93 which 
may be either empirically set to a constant value or may be 
adjusted according to the criticality of the processing 
derived from an alternative source. While the threshold 
comparator 92 may produce a binary value ( certain or 
uncertain) it will be understood that the threshold compara­
tor 92 may alternatively provide a continuous uncertainty 
output 24 where variations in uncertainty may be used to 
drive the process. For example, the uncertainty value 24 may + W1z,mh;;1 + bh,m 

+ W1z,sh:-1 + bh,s + 

[uh_m]2x; + Uh)x~f + [wh_m]21i;-1 + Wh)h;,;-1]2 

50 be used to override the output value am or otherwise modify 
that value when the uncertainty level is too high for reliance 
to be placed in the output value om. 

and a nonlinear transformation that approximates the hyper- 55 

bolic tangent function as follows to provide the output of the 
state candidate block 76: 

am= tanh,,,(om, o,) se 2CT( ~J-1 
,Y4+?"o, 

(5) 60 

Referring now to FIG. 4, in one example application, the 
neural network architecture 10 of the present invention may 
receive sensor data from sensors 100, for example, including 
any or multiple of radar, Lidar, camera data, GPS signals, or 
the like and may provide for output control signals 102 
controlling the vehicle engine and steering, for example, an 
autonomous vehicle control. In one application, uncertainty 
output 24 may be passively provided to the driver (for 
example, on a dashboard display) to indicate the certainty of 
the operation of the neural network architecture 10 so that 
the driver may assume control at points of high uncertainty. 
Alternatively, or in addition, the uncertainty signal 24 may 

65 modify the control signal 102, for example, to slow the 
vehicle or stop the vehicle completely when uncertainty 
levels rise beyond a predetermined amount. 
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In reviewing this description of the invention, it will be 
appreciated generally that the signals and data described 
herein are electrical signals and data processed by electronic 
hardware at high rates of speed beyond the speeds possible 
by any human being and further that the system cannot 
practically be practiced manually without such electronic 
circuitry. Generally, the invention will be executed on spe­
cial-purpose hardware, for example, including custom pro­
cessors or graphics processing engines. 

10 
a first and second output channel; and 
a processing path from the first and second input channels 

to the first and second output channels through units 
having weights trained with respect to data having 
different statistical moments with the different statisti­
cal moments input on the first and second input chan­
nels, the units providing interaction between data of the 
first and second input channels and at least one of the 
units providing a set of functional elements providing 
a linear transformation of an input to a neuron using 
weights and offsets followed by a nonlinear transformer 
preserving a family of a moment distribution of the 
second input channel; 

wherein the processing path provides an output on the 
second output channel indicating an uncertainty of 
results expressed on the first input channel. 

2. The neural network architecture of claim 1 wherein the 
units are implemented with at least one recurrent unit. 

3. The neural network architecture of claim 2 wherein the 

Certain terminology is used herein for purposes of refer- 10 

ence only, and thus is not intended to be limiting. For 
example, terms such as "upper", "lower", "above", and 
"below" refer to directions in the drawings to which refer­
ence is made. Terms such as "front", "back", "rear", "bot­
tom" and "side", describe the orientation of portions of the 15 

component within a consistent but arbitrary frame of refer­
ence which is made clear by reference to the text and the 
associated drawings describing the component under dis­
cussion. Such terminology may include the words specifi­
cally mentioned above, derivatives thereof, and words of 
similar import. Similarly, the terms "first", "second" and 
other such numerical terms referring to structures do not 
imply a sequence or order unless clearly indicated by the 
context. 

20 recurrent unit is a gated recurrent unit. 

When introducing elements or features of the present 25 

disclosure and the exemplary embodiments, the articles "a", 
"an", "the" and "said" are intended to mean that there are 
one or more of such elements or features. The terms "com­
prising", "including" and "having" are intended to be inclu­
sive and mean that there may be additional elements or 30 

features other than those specifically noted. It is further to be 
understood that the method steps, processes, and operations 
described herein are not to be construed as necessarily 
requiring their performance in the particular order discussed 
or illustrated, unless specifically identified as an order of 35 

performance. It is also to be understood that additional or 
alternative steps may be employed. 

References to a processor and the like can be understood 
to include one or more processors that can communicate in 
a stand-alone and/or a distributed environment(s), and can 40 

thus be configured to communicate via wired or wireless 
communications with other processors, where such one or 
more processor can be configured to operate on one or more 
processor-controlled devices that can be similar or different 
devices. Furthermore, references to memory, unless other- 45 

wise specified, can include one or more processor-readable 
and accessible memory elements and/or components that 
can be internal to the processor-controlled device, external 
to the processor-controlled device, and can be accessed via 
a wired or wireless network. The term "architecture" includ- 50 

ing "computer architecture" and "neural network architec­
ture" is not intended to be limited to VSLI or low-level 
architectures but generally embrace construction design of 
computers. 

4. The neural network architecture of claim 1 wherein the 
weights are obtained by training with inputs on the second 
input channel having a statistical moment selected from an 
exponential family of distributions. 

5. The neural network architecture of claim 4 wherein the 
second input channel has a statistical moment of variance. 

6. The neural network architecture of claim 3 wherein 
each gated recurrent unit provides a set of functional ele­
ments operating on inputs to the gated recurrent unit to 
produce outputs from the gated recurrent unit wherein each 
functional element provides two halves processing signals 
associated, respectively, with a first output signal on the first 
output channel and a second output signal on the second 
output channel wherein each of the two halves provides both 
independent weight and bias factors. 

7. The neural network architecture of claim 1 further 
includes a decoder neural network receiving signals from at 
least one output channel to provide further decoding of a 
signal on the at least one output channel. 

8. The neural network architecture of claim 1 further 
including a threshold detector implemented by the at least 
one integrated circuit and adapted for monitoring a signal on 
the second output channel to indicate an uncertainty beyond 
a predetermined threshold. 

9. The neural network architecture of claim 1 further 
including a clocking circuit for providing successive data 
elements from the first and second input channels of a unit 
and for conducting an output from the unit back to an input 
of the unit for a predetermined number of cycles to imple­
ment the neural network architecture. 

10. The neural network architecture of claim 1 further 
including a moment extractor implemented by the at least 
one integrated circuit and adapted for extracting a first and 
second moment from a teaching set having multiple 

It is specifically intended that the present invention not be 
limited to the embodiments and illustrations contained 
herein and the claims should be understood to include 
modified forms of those embodiments including portions of 
the embodiments and combinations of elements of different 

55 examples providing a series of data, wherein the moment 
extractor extracts two different moments across examples 
aligned with common indices of the series of data. 

embodiments as come within the scope of the following 60 

claims. All of the publications described herein, including 
patents and non-patent publications, are hereby incorporated 
herein by reference in their entireties. 

What we claim is: 
1. A neural network architecture comprising: 
at least one integrated circuit to implement: 
a first and second input channel; 

65 

11. A method of processing data with a neural network 
comprising: 

at least one integrated circuit to implement: 
a first and second input channel; 
a first and second output channel; and 
a processing path from the first and second input channels 

to the first and second output channels through units 
having weights trained with respect to data having 
different statistical moments input on the first and 
second input channels, the units providing interaction 
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between data of the first and second input channels and 
at least one of the units providing a set of functional 
elements providing a linear transformation of an input 
to a neuron using weights and offsets followed by a 
nonlinear transformer preserving a family of a moment 
distribution of the second input channel; 

the at least one integrated circuit further implements steps 
of: 

(a) training the units with a training set having multiple 
examples providing a series of data by extracting two 10 

different moments across the examples aligned with 
common indices of the series of data and providing the 
two different moments to the first and second input 
channels; 

(b) operating the neural network as trained in step (a) by 15 

providing a series of data to the first input channel; and 
( c) receiving from the second output channel an uncer­

tainty of results expressed on the first input channel. 
12. The method of claim 11 wherein the two different 

moments extracted from the training set are of an exponen- 20 

tial family. 
13. The method of claim 11 wherein the two different 

moments are mean and variance. 

* * * * * 

12 


