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Systems and methods for sorting T cells are disclosed. 
Autofluorescence data is acquired from individual cells. An 
activation value is computed using one or more autofluo­
rescence endpoints as an input. The one or more autofluo­
rescence endpoints includes NAD(P)H shortest fluorescence 
lifetime amplitude component (a1). 
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SYSTEMS AND METHODS FOR SORTING T 
CELLS BY ACTIVATION STATE 

CROSS-REFERENCE TO RELATED 
APPLICATIONS 

This application claims the benefit of U.S. Provisional 
Patent Application No. 62/724,428, filed Aug. 29, 2018, 
which is incorporated by reference herein in its entirety for 
all purposes. 

STATEMENT REGARDING FEDERALLY 
FUNDED RESEARCH 

This invention was made with govermnent support under 
CA205101 awarded by the National Institutes of Health. The 
govermnent has certain rights in the invention. 

BACKGROUND 

One new cancer treatment being studied is CAR T cell 
(Chimeric Antigen Receptor T cell) therapy. CAR T cell 
therapy uses a patient's own cells and "re-engineers" them 
to fight cancer. It is a very complex treatment. Collecting and 
altering the cells is difficult, and CAR T cell therapy often 
causes very severe side effects. At this time, it is only offered 
at a few major cancer centers. To date, most of the patients 
treated with CAR T cell have been people with blood 
cancers. 

2 
with the cell sorter and the single-cell autofluorescence 
detector. The non-transitory computer-readable medium has 
stored thereon instructions that, when executed by the pro­
cessor, cause the processor to: a) receive the autofluores-

5 cence data set; and b) provide the sorter signal to the cell 
sorter based on an activation value. The sorter signal directs 
the cell sorter to selectively direct the T cell to a first outlet 
of the at least two sorter outlets when the activation value 
exceeds a predetermined threshold and to a second outlet of 

10 the at least two sorter outlets when the activation value is 
less than or equal to the predetermined threshold. The 
activation value is computed using at least one metabolic 
endpoint of the autofluorescence data set for the T cell as an 
input. The at least one metabolic endpoint includes reduced 

15 nicotinamide adenine dinucleotide (phosphate) (NAD(P)H) 
shortest autofluorescence lifetime amplitude component 
(a1)-

In another aspect, the present disclosure provides a 
method of sorting T cells. The method includes: a) receiving 

20 a population of T cells having unknown activation status; b) 
acquiring an autofluorescence data set for each T cell of the 
population ofT cells, each autofluorescence data set includ­
ing autofluorescence lifetime information; and c) physically 
isolating a first portion of the population of T cells from a 

25 second portion of the population of T cells based on an 
activation value, wherein each T cell of the population of T 
cells is placed into the first portion when the activation value 
exceeds a predetermined threshold and into the second 
portion when the activation value is less than or equal to the 

30 predetermined threshold, wherein the activation value is 
computed using at least one metabolic endpoint of the 
autofluorescence data set for each T cell of the population of 
T cells as an input, wherein the at least one metabolic 

The procedure starts with removing the patient's own T 
cells from their blood and sending them to a lab where they 
are altered to produce proteins called chimeric antigen 
receptors ( CARs) on the surface of the cells. These special 
receptors allow the T cells to help identify and attack cancer 
cells. The "super-charged" T cells are multiplied and grown 35 

at the lab, then frozen and shipped back to Hospital, where 
they re-inject these treated CAR T cells back into the 
patient's blood. 

endpoint includes NAD(P)H a 1 . 

In a further aspect, the present disclosure provides a 
method of administering activated T cells to a subject in 
need thereof. The method includes: physical isolating a first 
portion of a population of T cells from a second portion of 
the population of T cells based on an activation value, Current methods to determine T cell activation include 

flow cytometry, immunofluorescence imaging, and immu­
nohistochemistry but these methods require contrast agents 
and may require tissue or cell fixation. A need exists for 
system and methods for sorting T cells by activation state in 
a fashion that allows the sorted T cells to be used m 
subsequent procedures, such as CAR T cell therapy. 

40 wherein each T cell of the population ofT cells is placed into 
the first portion when the activation value exceeds a prede­
termined threshold and into the second portion when the 
activation value is less than or equal to the predetermined 
threshold, wherein the activation value is computed using at 

SUMMARY 

45 least one metabolic endpoint of an autofluorescence data set 
for each T cell of the population of T cells as an input, 
wherein the at least one metabolic endpoint includes NAD 
(P)H a 1 ; and introducing the first portion of the population 
of T cells to the subject. The method can further include In one aspect, the present disclosure provides a T cell 

sorting device. The T cell sorting device includes a cell 
sorting pathway, a single-cell autofluorescence detector, a 
processor, and a non-transitory computer-readable medium. 
The cell sorting pathway includes an inlet, an observation 
zone, and a cell sorter. The observation zone is coupled to 
the inlet downstream of the inlet. The observation zone is 55 

configured to present T cells for individual autofluorescence 
interrogation. The cell sorter has a sorter inlet and at least 
two sorter outlets. The cell sorter is coupled to the obser­
vation zone via the sorter inlet downstream of the observa­
tion zone. The cell sorter is configured to selectively direct 60 

a cell from the sorter inlet to one of the at least two sorter 
outlets based on a sorter signal. The single-cell autofluores­
cence detector is configured to acquire an autofluorescence 
data set from a T cell positioned in the observation zone. The 
single-cell autofluorescence detector is configured to acquire 65 

autofluorescence lifetime information for each autofluores­
cence data set. The processor is in electronic communication 

50 modifying the first portion of the population of T cells prior 
to the introducing to the subject. The modification can be 
modification to include a chimeric antigen receptor. 

BRIEF DESCRIPTIONS OF THE DRAWINGS 

FIG. 1 is a flowchart illustrating a method, in accordance 
with an aspect of the present disclosure. 

FIG. 2 is a flowchart illustrating a method, in accordance 
with an aspect of the present disclosure. 

FIG. 3 is a block diagram of a device, in accordance with 
an aspect of the present disclosure. 

DETAILED DESCRIPTION 

Before the present invention is described in further detail, 
it is to be understood that the invention is not limited to the 
particular embodiments described. It is also understood that 
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the terminology used herein is for the purpose of describing 
particular embodiments only, and is not intended to be 
limiting. The scope of the present invention will be limited 
only by the claims. As used herein, the singular forms "a", 
"an", and "the" include plural embodiments unless the 
context clearly dictates otherwise. 

Specific structures, devices and methods relating to modi­
fying biological molecules are disclosed. It should be appar­
ent to those skilled in the art that many additional modifi­
cations beside those already described are possible without 
departing from the inventive concepts. In interpreting this 
disclosure, all terms should be interpreted in the broadest 
possible manner consistent with the context. Variations of 
the term "comprising" should be interpreted as referring to 
elements, components, or steps in a non-exclusive manner, 
so the referenced elements, components, or steps may be 
combined with other elements, components, or steps that are 
not expressly referenced. Embodiments referenced as "com­
prising" certain elements are also contemplated as "consist­
ing essentially of' and "consisting of' those elements. When 
two or more ranges for a particular value are recited, this 
disclosure contemplates all combinations of the upper and 
lower bounds of those ranges that are not explicitly recited. 
For example, recitation of a value of between 1 and 10 or 
between 2 and 9 also contemplates a value of between 1 and 
9 or between 2 and 10. 

As used herein, the terms "activated" and "activation" 
refer to T cells that are CD3+, CD4+, and/or CDS+. 

As used herein, the term "FAD" refers to flavin adenine 
dinucleotide. 

As used herein, the term "memory" includes a non­
volatile medium, e.g., a magnetic media or hard disk, optical 
storage, or flash memory; a volatile medium, such as system 
memory, e.g., random access memory (RAM) such as 
DRAM, SRAM, EDO RAM, RAMBUS RAM, DR DRAM, 
etc.; or an installation medium, such as software media, e.g., 
a CD-ROM, or floppy disks, on which programs may be 
stored and/or data communications may be buffered. The 
term "memory" may also include other types of memory or 
combinations thereof. 

As used herein, the term "NAD(P)H" refers to reduced 
nicotinamide adenine dinucleotide and/or reduced nicotina­
mide dinucleotide phosphate. 

4 
fluorescence lifetime decays are fit to a two component 
exponential decay, I(t)=a1 e-th;1 +a2e-th;2+C, where I(t) is the 
fluorescence intensity as a function of time, t, after the laser 
pulse, a 1 and a 2 are the fractional contributions of the short 

5 and long lifetime components, respectively (i.e., a 1 +a2 =1), 
i:1 and i:2 are the short and long lifetime components, 
respectively, and C accounts for background light. However, 
the lifetime decay can be fit to more components (in theory 
any number of components, although practically up to -5-6) 

10 which would allow quantification of additional lifetimes and 
component amplitudes. By convention lifetimes and ampli­
tudes are numbered from short to long, but this could be 
reversed. A mean lifetime can be computed from the lifetime 
components, (1:m=a11:1+a21:2 ... ). Fluorescence lifetimes 

15 and lifetime component amplitudes can also be approxi­
mated from frequency domain data and gated cameras/ 
detectors. For gated detection, a 1 could be approximated by 
dividing the detected intensity at early time bins by later 
time bins. Alternatively, fluorescence anisotropy can be 

20 measured by polarization-sensitive detection of the auto­
fluorescence, thus identifying free NAD(P)H as the short 
rotational diffusion time in the range of 100-700 ps. 

NAD(P)H a 1 refers to the contribution of free NAD(P)H 
and is the shortest lifetime that is not dominated (i.e., greater 

25 than 50%) by instrument response and/or scattering. NAD 
(P)H a 1 is the contribution associated with NAD(P)H life­
time values from 200-1500 ns, from 200-1000 ns, or from 
200-600 ns. For clarity, a claim herein including features 
related to a "shortest" lifetime cannot be avoided by defining 

30 the lifetime values to include a sacrificial shortest lifetime 
that is dominated by instrument response and/or scattering. 

The various aspects may be described herein in terms of 
various functional components and processing steps. It 
should be appreciated that such components and steps may 

35 be realized by any number of hardware components config­
ured to perform the specified functions. 
Methods 

This disclosure provides a variety of methods. It should be 
appreciated that various methods are suitable for use with 

40 other methods. Similarly, it should be appreciated that 
various methods are suitable for use with the systems 
described elsewhere herein. When a feature of the present 
disclosure is described with respect to a given method, that 

As used herein, the term "processor" may include one or 
more processors and memories and/or one or more program- 45 

mable hardware elements. As used herein, the term "pro­
cessor" is intended to include any of types of processors, 
CPUs, microcontrollers, digital signal processors, or other 
devices capable of executing software instructions. 

feature is also expressly contemplated as being useful for the 
other methods and systems described herein, unless the 
context clearly dictates otherwise. 

Referring to FIG. 1, the present disclosure provides a 
method 100 of sorting T cells. At process block 102, the 
method 100 includes receiving a population of T cells 
having unknown activation status. At process block 104, the 
method 100 includes acquiring an autofluorescence data set 

As used herein, the term "redox ratio" or "optical redox 50 

ratio" refers to a ratio ofNAD(P)H fluorescence intensity to 
FAD fluorescence intensity; a ratio of FAD fluorescence 
intensity to NAD(P)H fluorescence intensity; a ratio of 
NAD(P)H fluorescence intensity to any arithmetic combi­
nation including FAD fluorescence intensity; or a ratio of 55 

FAD fluorescence intensity to any arithmetic combination 
including NAD(P)H fluorescence intensity. 

Autofluorescence endpoints include photon counts/inten­
sity and fluorescence lifetimes. The fluorescence lifetime of 
cells can be a single value, the mean fluorescence lifetime, 60 

or compromised from the lifetime values of multiple sub­
species with different lifetimes. In this case, multiple life­
times and lifetime component amplitude values are 
extracted. Both NAD(P)H and FAD can exist in quenched 
( short lifetime) and unquenched (long lifetime) configura- 65 

tions; therefore, the fluorescence decays of NAD(P)H and 
FAD are fit to two components. Generally, NADH and FAD 

for each T cell of the population ofT cells. At process block 
106, the method 100 includes physically isolating a first 
portion of the population ofT cells from a second portion of 
the population of T cells based on an activation value. 

The autofluorescence data set acquired at process block 
104 includes lifetime information and can be acquired in a 
variety of ways, as would be understood by one having 
ordinary skill in the spectroscopic arts with knowledge of 
this disclosure and their own knowledge from the field. For 
example, the autofluorescence data can be acquired from 
fluorescence decay data. As another example, the autofluo­
rescence data can be acquired by gating a detector ( a camera, 
for instance) to acquire data at specific times throughout a 
decay in order to approximate the autofluorescence end­
points described herein. As yet another example, a frequency 
domain approach can be used to measure lifetime. Alterna-
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-cm; FAD first fluorescence lifetime or FAD i:1 ; FAD second 
fluorescence lifetime or FAD i:2 ; FAD third fluorescence 
lifetime or FAD i:3 ; FAD fourth fluorescence lifetime or 
FAD i:4 ; and FAD fifth fluorescence lifetime or FAD i:5 . 

In some cases, two, three, four, five, six, seven, eight, 
nine, ten, or more inputs are used. 

In cases where two inputs are used, those two inputs can 
be NAD(P)H a 1 and cell size. In cases where three inputs are 
used, those three inputs can be NAD(P)H a 1 , cell size, and 

tively, fluorescence anisotropy can be measured by polar­
ization-sensitive detection of the autofluorescence, thus 
identifying free NAD(P)H as the short rotational diffusion 
time in the range of 100-700 ps. The specific way in which 
autofluorescence data is acquired is not intended to be 5 

limiting to the scope of the present invention, so long as the 
lifetime information necessary to determine the autofluores­
cence endpoints necessary for the methods described herein 
can be suitably measured, estimated, or determined in any 
fashion. 10 redox ratio. In cases where four inputs are used, those four 

inputs can be NAD(P)H ai, cell size, redox ratio, and 
NAD(P)H i:1 . In cases where five or more inputs are used, 
those five or more inputs can be NAD(P)H a 1 , cell size, 
redox ratio, NAD(P)H i:1 , and one or more of the above-

The physically isolating of process block 106 is in 
response to an activation value determined from the 
acquired autofluorescence data. If the activation value 
exceeds a predetermined threshold for a given T cell, then 
that T cell is placed into the first portion. If the activation 
value is less than or equal to the predetermined threshold for 
the given T cell, then that T cell is placed into the second 
portion. The result of this physically isolating is that the first 
portion of the population of T cells is significantly enriched 
in activated T cells, whereas the second portion of the 
population of T cells is significantly depleted of activated T 
cells. 

15 referenced metabolic endpoints. 
When one endpoint is used, the activation value is simply 

the endpoint value, which is then compared to the threshold 
value for the purposes of the physically isolating step. When 
two more endpoints are used, a mathematical formula is 

20 used to provide the activation value. This formula is a 
multi-variable equation that produces a single activation 
value. The multi-variable equation can be selected, deter­
mined, or otherwise calculated using classification and fea­
ture selection machine learning, including but not limited to, 

In some cases, the physically isolating of process block 
106 can include isolating cells into three, four, five, six, or 
more portions. In these cases, the different portions will be 
separated by a number of predetermined thresholds that is 
one less than the number of portions (i.e., three portions=two 
predetermined thresholds). The portion whose activation 
value exceeds all of the predetermined thresholds (i.e., 
exceeds the highest threshold) contains the greatest concen- 30 

tration of activated T cells. The portion whose activation 
value fails to exceed any of the predetermined thresholds 
(i.e., fails to exceed the lowest threshold) contains the lowest 
concentration of activated T cells. Using multiple predeter­
mined thresholds can afford the preparation of portions of 35 

the population of T cells that have extremely high or 
extremely low concentrations of activated T cells. 

25 linear regression, logistic regression, random forest, support 
vector machines, neural networks, quadratic regression, 
k-means clustering, and the like. 

The activation value is computed using at least one 
metabolic endpoint of the autofluorescence data set for each 
T cell of the population ofT cells as an input. The activation 40 

value is computed using an equation that is generated by a 
machine learning process on data for a population ofT cells 
having a known activation state using the at least one 
metabolic endpoint as a variable. In some cases, the activa­
tion value can have different predictability for the different 45 

kinds of activation (i.e., can be more predictive of CDS+ 
activation than CD4+ activation or vice versa). 

The at least one metabolic endpoint includes the NAD 
(P)H shortest lifetime amplitude component or NAD(P)H 
a 1 . The at least one metabolic endpoint can also optionally 50 

include one or more of the following: NAD(P)H fluores­
cence intensity; FAD fluorescence intensity; an optical redox 
ratio (i.e., a combination of NAD(P)H and FAD intensities 
such as NAD(P)H/FAD or FAD/NAD(P)H or FAD/[NAD 
(P)H+FAD] or NAD(P)H/[NAD(P)H+FAD], see definition 55 

above); NAD(P)H second shortest lifetime amplitude com­
ponent or NADPH a 2 ; NAD(P)H third shortest lifetime 
amplitude component or NADPH a 3 ; NAD(P)H mean fluo­
rescence lifetime or NAD(P)H -cm; NAD(P)H first fluores­
cence lifetime or NAD(P)H i:1 ; NAD(P)H second fluores- 60 

cence lifetime or NAD(P)H i:2 ; NAD(P)H third fluorescence 
lifetime or NAD(P)H i:3 ; NAD(P)H fourth fluorescence 
lifetime or NAD(P)H i:4 ; NAD(P)H fifth fluorescence life­
time or NAD(P)H i:5 ; FAD first amplitude component or 
FAD a 1 ; FAD second shortest lifetime amplitude component 65 

or FAD a 2 ; FAD third shortest lifetime amplitude compo­
nent or FAD a 3 ; FAD mean fluorescence lifetime or FAD 

The method 100 can sort T cells based on CD4+, CD3+, 
and/or CDS+ activation status. 

The method 100 can provide surprising accuracy of 
classifying T cells as activated. The accuracy can be at least 
75%, at least SO%, at least S5%, at least 90%. 

Referring to FIG. 2, the present disclosure provides a 
method 200 of administering activated T cells to a subject in 
need thereof. At process block 202, the method 200 includes 
the method 100 described above, which results in a first 
portion of the population of T cells enriched for activation. 
At optional process block 204, the method 200 optionally 
includes modifying the first portion of the population of T 
cells. At process block 206, the method 200 includes admin­
istering the first portion of the population of T cells to the 
subject. 

The T cells can be harvested from the subject to which 
they are administered prior to sorting. The sorted T cells can 
be either directly introduced to the subject or can undergo 
additional processing prior to introduction to the subject. In 
one case, the sorted T cells can be modified to contain 
chimeric antigen receptors (CARs). 

The methods described herein provided surprising results 
to the inventors in at least three ways. First, it was not clear 
at the outset whether the methods would be effective at 
distinguishing activated versus quiescent T cells, so the 
efficacy itself was surprising and the quality of the classi­
fication achieved by the methods was even more surprising. 
Second, the inventors expected different endpoints to pro­
vide the strongest classification results and were surprised 
when the NAD(P)H shortest lifetime amplitude component 
(i.e., NAD(P)H a 1 ) proved to be the strongest classification 
endpoint. Existing methods emphasize cell size in order to 
determine activation state, so one might have expected cell 
size to play a more significant part in classification than it 
does in the methods described herein. To be clear, including 
cell size as one of the endpoints in the methods described 
herein does improve classification, but the inventors antici­
pated cell size being a larger contributor to classification 
accuracy. With respect to the fluorescence endpoints them-
selves, the inventors anticipated that the redox ratio would 
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the detector 310 and receives the signals) or indirectly (i.e., 
the processor 312 communicates with a sub-controller that is 
specific to the detector 310 and the signals from the detector 
310 can be modified or urnnodified before sending to the 

be the strongest contributor to classification accuracy, but 
surprisingly discovered that the NAD(P)H shortest lifetime 
amplitude component was the strongest contributor. Third, 
the degree of classification accuracy achieved by any single 
endpoint, let alone the surprising NAD(P)H shortest lifetime 
amplitude component, was surprising. The classification 
accuracy of upward of 80-90% that is achieved using only 
the NAD(P)H first amplitude component could not have 
been predicted. 

5 processor 312) controlled by the processor 312. Fluores­
cence lifetime information can be obtained using time­
domain (time-correlated single-photon counting, gated 
detection) or frequency-domain methods. The device 300 
can include various optical filters tuned to isolate autofluo-

Systems 
This disclosure also provides systems. The systems can be 

suitable for use with the methods described herein. When a 
feature of the present disclosure is described with respect to 

10 rescence signals of interest. The optical filters can be tuned 
to the autofluorescence wavelengths of NAD(P)H and/or 
FAD. 

a given system, that feature is also expressly contemplated 
as being combinable with the other systems and methods 15 

described herein, unless the context clearly dictates other-
wise. 

The device 300 can optionally include a light source 320 
for optically exciting the cells to initiate autofluorescence. 
Suitable light sources 320 include, but are not limited to, 
lasers, LEDs, lamps, filtered light, fiber lasers, and the like. 
The light source 320 can be pulsed, which includes sources 
that are naturally pulsed and continuous sources that are 
chopped or otherwise optically modulated with an external 

Referring to FIG. 3, the present disclosure provides a T 
cell sorting device 300. The device 300 includes a cell 
sorting pathway 302. The cell sorting pathway 302 includes 
an inlet 304, an observation zone 306, and a cell sorter 308. 
The observation zone 306 is coupled to the inlet 304 
downstream of the inlet 304. The device 300 also includes 
a single-cell autofluorescence detector 310. The device 300 
includes a processor 312 and a non-transitory computer­
readable medium 314, such as a memory. 

20 component. The light source 320 can provide pulses oflight 
having a full-width at half maximum (FWHM) pulse width 
of between 1 fs and 10 ns. In some cases, the FWHM pulse 
width is between 30 fs and 1 ns. The light source 320 can 
emit wavelengths that are tuned to the absorption of NAD 

25 (P)H and/or FAD. 

The inlet 304 can be any nanofluidic, microfluidic, or 
other cell sorting inlet. A person having ordinary skill in the 

The single-cell autofluorescence detector 310 can be 
configured to acquire the autofluorescence data set at a 
repetition rate of between 1 kHz and 20 GHz. In some cases, 
the repetition rate can be between 1 MHz and 1 GHz. In art of fluidics has knowledge of suitable inlets 304 and the 

present disclosure is not intended to be bound by one 
specific implementation of an inlet 304. 

30 other cases, the repetition rate can be between 20 MHz and 
100 MHz. The light source 320 can be configured to operate 
at these repetition rates. The observation zone 306 is configured to present T cells 

for individual autofluorescence interrogation. A person hav­
ing ordinary skill in the art has knowledge of suitable 
observation zones 306 and the present disclosure is not 35 

intended to be bound by one specific implementation of an 
observation zone 306. 

The cell sorter 308 has a sorter inlet 316 and at least two 
sorter outlets 318. The cell sorter is coupled to the obser­
vation zone 306 via the sorter inlet 316 downstream of the 40 

observation zone 306. The cell sorter 308 is configured to 
selectively direct a cell from the sorter inlet 316 to one of the 
at least two sorter outlets 318 based on a sorter signal. 

The inlet 304, observation zone 306, and cell sorter 308 
can be components known to those having ordinary skill in 45 

the art to be useful in flow sorters, including commercial 
flow sorters. The cell sorting pathway can further optionally 
include a flow regulator, as would be understood by those 
having ordinary skill in the art. The flow regulator can be 
configured to provide flow of cells through the observation 50 

zone at a rate that allows the single cell autofluorescence 
detector 310 to acquire the autofluorescence lifetime infor­
mation. A useful review of the sorts of fluidics that can be 
used in combination with the present disclosure is Shields et 
al., "Microfluidic cell sorting: a review of the advances in 55 

the separation of cells from debulking to rare cell isolation," 
Lab Chip, 2015 Mar. 7; 15(5): 1230-49, which is incorpo­
rated herein by reference in its entirety. 

The single-cell autofluorescence detector 310 can be any 
detector suitable for measuring single-cell autofluorescence 60 

as understood by those having ordinary skill in the optical 
arts. Examples of suitable single-cell autofluorescence 
detectors 310 include, but are not limited to, a photomulti­
plier tube, a camera, a photodiode, an avalanche photodiode, 

The device 300 can optionally include a cell size mea­
surement tool 322. The cell size measurement tool 322 can 
be any device capable of measuring the size of cells, 
including but not limited to, an optical microscope. In some 
cases, the single-cell autofluorescence detector 310 and the 
cell size measurement tool 322 can be integrated into a 
single optical subsystem. 

The processor 312 is in electronic communication with 
the detector 310 and the cell sorter 308. The processor 312 
is also in electronic communication with, when present, the 
optional light source 320 and the optional cell size mea-
surement tool 322. 

The non-transitory computer-readable medium 314 has 
stored thereon instructions that, when executed by the pro­
cessor, cause the processor to execute at least a portion of the 
methods described herein. 

Example 1 

Peripheral blood was drawn from healthy donors into 
sterile syringes containing heparin. CD3+, CD4+, or CDS+ 
T cells were extracted from whole blood (RosetteSep, Stem­
Cell Technologies) and cultured in T cell activation media 
(StemCell Technologies). Twenty-four hours post-isolation, 
a tetrameric antibody for CD2/CD3/CD28 was added to the 
culture media to activate the T cells. Activation state 
(CD69+) and T cell subtype (CD4+, CDS+) was verified 
with antibody immunofluorescence. Fluorescence intensity 
and lifetime images were acquired using a custom-built 
multiphoton fluorescence microscope (Bruker Fluorescence 
Microscopy, Middleton, Wis.) adapted for fluorescence life­
time imaging with time-correlated single photon counting 

a streak camera, a charge capture device, and the like. 
The single-cell autofluorescence detector 310 can be 

directly (i.e., the processor 312 communicates directly with 

65 electronics. T cells were imaged with a l00x objective 
(NA=l.3). A tunable titanium:sapphire laser provided the 
excitation light at 750 nm for NAD(P)H excitation and 890 
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run for FAD excitation. The laser power at the sample was 
3.0-3.5 mW for NAD(P)H and 5.3-5.7 mW for FAD. A 
bandpass filters, 440/80 run and 550/100 run, were used to 
filter NAD(P)H and FAD fluorescence emission, respec­
tively. Fluorescence emission was detected by GaAsP PMTs, 5 

and fluorescence lifetime decays with 256 time bins were 
acquired for each pixel by time correlated single photon 
counting electronics (SPC-150, Becker & Hick!, Berlin, 
Germany). The second harmonic generation from red blood 
cells was used as the instrument response function and had 10 

a full width at half maximum of 240 ps. Fluorescence 
lifetime decays were deconvolved from the instrument 
response function and fit to a 2 component exponential 
decay model, I(t)=a1 *exp(-th:1)+a2 *exp(-th:2 )+C, where 
I(t) is the fluorescence intensity as a function of time, t, after 15 

the laser pulse, a 1 and a 2 are the fractional contributions of 
the short and long lifetime components, respectively (i.e., 
a 1 +a2 =1), i:1 and i:2 are the short and long lifetimes, respec­
tively, and C accounts for background light. NAD(P)H 
intensity images were segmented into cytoplasm, mitochon- 20 

dria, and nucleus using edge detect and thresholding meth­
ods in CellProfiler using a customized image processing 
routine. Images of the optical redox ratio (fluorescence 
intensity of NAD(P)H divided by the summed intensity of 
NAD(P)H and FAD) and mean fluorescence lifetime 25 

(-cm =a1 *1:1 +a2 *1:2 ) of NAD(P)H and FAD were computed 
(Matlab). OMI endpoints, including the optical redox ratio, 
NAD(P)H -cm, NAD(P)H 1:1 , NAD(P)H 1:2 , NAD(P)H a 1 , 

FAD -cm, FAD "ti, FAD i:2 , and FAD i:1 were averaged across 
all pixels within a cell for each segmented cell. Cell size in 30 

µm2 was also computed from the number of pixels within the 
cell. 

10 
ai, redox ratio, NAD(P)H -cm, cell size, NAD(P)H i:2 , FAD 
1:1 , FAD -cm, FAD 1:2 , NAD(P)H 1:1 , and FAD a 1 . A logistic 
regression classification model, yielded accuracies of 
97.5%, 70.8%, 96.5%, 90.1%, 97.1%, and 93.9% for the 
classification ofCD3+ T cells as activated or quiescent when 
trained on all 10 features; cell size only; NAD(P)H a 1 only; 
redox ratio and cell size; redox ratio, cell size and NAD(P)H 
a 1 ; and redox ratio, NAD(P)H -cm and NAD(P)H a 1 . A 
logistic regression classification model yielded accuracies of 
99.6%, 68.7%, 99.4%, 95.7%, 99.9%, and 98.4% for the 
classification of CDS+ T cells as activated or quiescent when 
trained on all 10 features; cell size only; NAD(P)H a 1 only; 
redox ratio and cell size; redox ratio, cell size and NAD(P)H 
a 1 ; and redox ratio, NAD(P)H -cm and NAD(P)H a 1 . Similar 
accuracies (-94-99%) were achieved with different classi­
fication models including random forest and support vector 
machines when trained with all 10 features. No improve­
ment in classification accuracy was achieved by training and 
testing with donor normalized data. 

All prior results were for quiescent and activated T cells 
grown in isolated dishes. To ensure this method is robust at 
distinguishing activated from not activated T cells in mixed 
populations, we evaluated quiescent and activated T cells 
that were cultured separately for 48 hours and then mixed 
into co-culture one hour before imaging. Mixed co-culture 
of quiescent and activated T cells causes some changes in 
the autofluorescence endpoints. For example, the redox ratio 
was significantly decreased in activated CD3+ T cells in 
mixed co-cultures of activated and quiescent T cells as 
compared to that of activated CD3+ T cells cultured without 
quiescent T cells. NAD(P)H a 1 was significantly increased 
in activated CD3+ T cells in mixed cultures of activated and 
quiescent T cells and remained the most important feature 
(-0.35 normalized weight) for classification, as determined 

35 by random forest feature selection methods. NAD(P)H -cm 
and NAD(P)H i:2 were the second and third most important 
features with normalized weights of -0.22 and -0.1. Logis­
tic regression classification of quiescent and activated T cells 
within mixed cultures yielded accuracies of 95.5%, 76.6%, 

The results show a significant increase (p<0.001) in cell 
size, optical redox ratio, NAD(P)H a 1 , FAD ai, and NAD 
(P)H i:1 between quiescent and activated CD3+ and CDS+ T 
cells across 6 donors. NAD(P)H -cm, and FAD i:1 were 
significantly (p<0.001) decreased in activated CD3+ and 
CDS+ T cells as compared to quiescent T cells. FAD -cm was 
significantly decreased in activated CD3+ T cells as com­
pared with quiescent CD3+ T cells, but no significant 
difference in FAD -cm was observed between quiescent and 
activated CDS+ T cells. NAD(P)H i:2 was significantly 
increased in activated CD3+ T cells as compared to quies­
cent CD3+ T cells and significantly decreased in activated 
CDS+ T cells as compared to quiescent CDS+ T cells. FAD 45 

i:2 was significantly increased in activated CD3+ T cells as 
compared to quiescent CD3+ T cells, and no significant 
difference was observed in FAD i:2 between quiescent and 
activated CDS+ T cells. Similar results were obtained for T 
cells cultured with the activation antibodies for 24 hours. 50 

Consistent results were obtained from a repeat experiment 

40 100%, and 72.7% when trained on all 10 features, cell size 
only, NAD(P)H a 1 only, and redox ratio and cell size, 
respectively. 

on the T cells of one donor 
The CD3+ and CDS+ quiescent and activated data sets 

were divided into training and testing data for classification: 
cells from 4 donors known to be quiescent or activated by 55 

culture conditions were used to train the models (n=4131 
CD3+ cells, 2655 CDS+ cells) and cells from 3 donors with 
same-cell CD69 validation of activation state were used to 
test the models (n=696 CD3+ cells, 595 CDS+ cells). Gain 
ratio, random forest, and Chi-squared methods for weighting 60 

features revealed NAD(P)H a 1 as the most important feature 
for classification of activation state of CD3+ and CDS+ T 
cells. For CD3+ T cells, the gain ratio determined order of 
importance of features was NAD(P)H ai, cell size, redox 
ratio, NAD(P)H 1:1 , FAD a 1 , NAD(P)H -cm, FADi:2 , FADi:1 , 65 

NAD(P)H 1:2 , and FAD -cm. For CDS+ T cells, the gain ratio 
determined order of importance of features was NAD(P)H 

The present disclosure also includes the following state-
ments: 
1. A T cell sorting device comprising: 

a cell sorting pathway comprising: 
(i) an inlet; 
(ii) an observation zone coupled to the inlet downstream 

of the inlet, the observation zone configured to present 
T cells for individual autofluorescence interrogation; 
and 

(iii) a cell sorter having a sorter inlet and at least two 
sorter outlets, the cell sorter coupled to the observation 
zone via the sorter inlet downstream of the observation 
zone, the cell sorter configured to selectively direct a 
cell from the sorter inlet to one of the at least two sorter 
outlets based on a sorter signal; 

a single-cell autofluorescence detector configured to 
acquire an autofluorescence data set from a T cell positioned 
in the observation zone, the single-cell autofluorescence 
detector configured to acquire autofluorescence lifetime 
information for each autofluorescence data set; 

a processor in electronic communication with the cell 
sorter and the single-cell autofluorescence detector; and 

a non-transitory computer-readable medium having 
stored thereon instructions that, when executed by the pro­
cessor, cause the processor to: 
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a) receive the autofluorescence data set; and 
b) provide the sorter signal to the cell sorter based on an 

activation value, wherein the sorter signal directs the 
cell sorter to selectively direct the T cell to a first outlet 

12 
16. The T cell sorting device of any one of the preceding 

statements, the single-cell autofluorescence detector com­
prising a detector-side filter configured to transmit fluo­
rescence signals of interest. 

5 17. The T cell sorting device of the immediately preceding 
statement, wherein the detector-side filter is configured to 
transmit NAD(P)H fluorescence. 

of the at least two sorter outlets when the activation 
value exceeds a predetermined threshold and to a 
second outlet of the at least two sorter outlets when the 
activation value is less than or equal to the predeter­
mined threshold, wherein the activation value is com­
puted using at least one metabolic endpoint of the 10 

autofluorescence data set for the T cell as an input, 
wherein the at least one metabolic endpoint includes 
reduced nicotinamide adenine dinucleotide (NAD(P) 
H) shortest fluorescence lifetime amplitude component 

15 
(a1)-

2. The T cell sorting device of statement 1, wherein the cell 
sorting pathway comprises a microfluidic pathway or a 
nanofluidic pathway. 

3. The T cell sorting device of statement 1 or 2, the T cell 20 

sorting device further comprising a flow regulator coupled 
to the inlet. 

4. The T cell sorting device of any one of the preceding 
statements, wherein the flow regulator is configured to 
provide flow of cells through the observation zone at a 25 

rate that allows the single-cell autofluorescence spectrom­
eter to acquire the autofluorescence lifetime information 
for each autofluorescence data set. 

18. The T cell sorting device of any one of the preceding 
statements, the T cell sorting device further comprising a 
cell size measurement tool configured to measure cell size 
and to communicate the cell size to the processor. 

19. The T cell sorting device of any one of the preceding 
statements, the T cell sorting device further comprising a 
cell imager configured to acquire an image of a cell 
positioned within the observation zone and to communi-
cate the image to the processor. 

20. A method of characterizing T cell activation state, the 
method comprising: 
a) optionally receiving a population of T cells having 

unknown activation status; 
b) acquiring an autofluorescence data set for a T cell of the 

population of T cells, the autofluorescence data set option­
ally including autofluorescence lifetime information; 

c) identifying an activation status of the T cell based on 
an activation value, wherein the activation value is com­
puted using at least a portion of the autofluorescence data 
set, wherein the activation value is optionally computed 
using at least one metabolic endpoint of the autofluorescence 5. The T cell sorting device of any one of the preceding 

statements, the T cell sorting device further comprising a 
light source. 

6. The T cell sorting device of any one of the preceding 
statements, wherein the light source is a pulsed light 

30 data set for the T cell as an input, wherein the at least one 
metabolic endpoint optionally includes NAD(P)H a 1 . 

source. 
7. The T cell sorting device of any one of the preceding 35 

statements, wherein the pulsed light source is a Ti:sap­
phire laser. 

8. The T cell sorting device of any one of the preceding 
statements, wherein the light source emits light having a 
wavelength tuned to excite fluorescence from NAD(P)H. 40 

9. The T cell sorting device of any one of the preceding 
statements, the single-cell autofluorescence spectrometer 
comprising a pulsed light source having a full width at 
half maximum pulse width of between 1 fs and 10 ns. 

10. The T cell sorting device of any one of the preceding 45 

statements, the single-cell autofluorescence spectrometer 
comprising a pulsed light source having a full width at 
half maximum pulse width of between 30 fs and 1 ns. 

11. The T cell sorting device of any one of the preceding 
statements, wherein the single-cell autofluorescence 50 

detector is configured to acquire the autofluorescence data 
set at a repetition rate of between 1 kHz and 20 GHz. 

12. The T cell sorting device of any one of the preceding 
statements, wherein the single-cell autofluorescence 
detector is configured to acquire the autofluorescence data 55 

set at a repetition rate of between 1 MHz and 1 GHz. 
13. The T cell sorting device of any one of the preceding 

statements, wherein the single-cell autofluorescence 
detector is configured to acquire the autofluorescence data 
set at a repetition rate of 20 MHz and 100 MHz. 

14. The T cell sorting device of any one of the preceding 
statements, wherein the single-cell autofluorescence 
detector is configured to acquire the autofluorescence data 
set via time-correlated single photon counting. 

60 

15. The T cell sorting device of any one of the preceding 65 

statements, wherein the single-cell autofluorescence 
detector is a photomultiplier tube or a photodiode. 

21. A method of sorting T cells, the method comprising: 
a) receiving a population of T cells having unknown 

activation status; 
b) acquiring an autofluorescence data set for each T cell 

of the population of T cells, each autofluorescence data set 
including autofluorescence lifetime information; and 

c) physically isolating a first portion of the population of 
T cells from a second portion of the population of T cells 
based on an activation value, wherein each T cell of the 
population ofT cells is placed into the first portion when the 
activation value exceeds a predetermined threshold and into 
the second portion when the activation value is less than or 
equal to the predetermined threshold, wherein the activation 
value is computed using at least one metabolic endpoint of 
the autofluorescence data set for each T cell of the popula­
tion ofT cells as an input, wherein the at least one metabolic 
endpoint includes NAD(P)H a 1 . 

22. The T cell sorting device or the method of any one of the 
preceding statements, wherein the at least one metabolic 
endpoint further includes an endpoint selected from the 
group consisting of NAD(P)H fluorescence intensity, 
FAD fluorescence intensity, optical redox ratio defined as 
NAD(P)H/FAD or FAD/NAD(P)H or NAD(P)H/[FAD+ 
NAD(P)H] or FAD/[FAD+NAD(P)H], NAD(P)H mean 
fluorescence lifetime C-tm), NAD(P)H first fluorescence 
lifetime component (t1), NAD(P)H second fluorescence 
lifetime component (t2 ), flavin adenine dinucleotide 
(FAD) -cm, FAD ai, FAD -i:1 , FAD -i:2 , and combinations 
thereof. 

23. The T cell sorting device or the method of any one of the 
preceding statements, wherein the at least one metabolic 
endpoint includes the optical redox ratio. 

24. The T cell sorting device or the method of any one of the 
preceding statements, wherein the at least one metabolic 
endpoint includes NAD(P)H -i: 1 . 
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25. The T cell sorting device or the method of any one of the 
preceding statements, wherein the at least one metabolic 
endpoint includes NAD(P)H -cm. 

26. The T cell sorting device or the method of any one of the 
preceding statements, wherein the at least one metabolic 5 

endpoint includes NAD(P)H i:2 . 

27. The T cell sorting device or the method of any one of the 
preceding statements, wherein the at least one metabolic 
endpoint includes FAD -cm. 

28. The T cell sorting device or the method of any one of the 10 

preceding statements, wherein the at least one metabolic 
endpoint includes FAD a 1 . 

29. The T cell sorting device or the method of any one of the 
preceding statements, wherein the at least one metabolic 
endpoint includes FAD i:1 . 

30. The T cell sorting device or the method of any one of the 
preceding statements, wherein the at least one metabolic 
endpoint includes FAD i:2 . 

15 

31. The T cell sorting device or the method of any one of the 
preceding statements, wherein the activation value is 20 

computed using cell size for each T cell of the population 
of T cells as an input. 

32. The T cell sorting device or the method of any one of the 
preceding statements, wherein the predetermined thresh­
old is selected via classification and feature selection 25 

machine learning on a control population ofT cells having 
known activation states. 

14 
b) acquiring an autofluorescence data set for each T cell 

of the population ofT cells, each autofluorescence data 
set including autofluorescence lifetime information; 
and 

c) physically isolating a first portion of the population of 
T cells from a second portion of the population of T 
cells based on an activation value, wherein each T cell 
of the population of T cells is placed into the first 
portion when the activation value exceeds a predeter­
mined threshold and into the second portion when the 
activation value is less than or equal to the predeter­
mined threshold, wherein the activation value is com­
puted using at least one metabolic endpoint of the 
autofluorescence data set for each T cell of the popu­
lation of T cells as an input, wherein the at least one 
metabolic endpoint includes reduced nicotinamide 
adenine dinucleotide (NAD(P)H) shortest fluorescence 
lifetime amplitude component (a1). 

2. The method of claim 1, wherein the at least one 
metabolic endpoint further includes an endpoint selected 
from the group consisting of NAD(P)H fluorescence inten­
sity, FAD fluorescence intensity, optical redox ratio, NAD 
(P)H mean fluorescence lifetime (-cm), NAD(P)H first fluo­
rescence lifetime component (i:1), NAD(P)H second 
fluorescence lifetime component (i:2), flavin adenine 
dinucleotide (FAD) -cm, FAD a 1 , FAD "ti, FAD 1:2 , and 
combinations thereof, wherein the optical redox ratio is a 
ratio of NAD(P)H fluorescence intensity to FAD fluores-

33. The T cell sorting device or the method of any one of the 
preceding statements, wherein the predetermined thresh­
old is donor-normalized. 

34. The T cell sorting device or the method of any one of the 
preceding statements, wherein the T cells whose activa­
tion value exceeds the predetermined threshold are CD3+, 
CD4+ or CDS+ T cells. 

30 cence intensity; a ratio of FAD fluorescence intensity to 
NAD(P)H fluorescence intensity; a ratio of NAD(P)H fluo­
rescence intensity to an arithmetic combination including 
FAD fluorescence intensity; or a ratio of FAD fluorescence 

35. The T cell sorting device or the method of any one of the 
preceding statements, wherein an accuracy of classifying 
T cells as activated is at least 75%. 

35 
intensity to an arithmetic combination including NAD(P)H 
fluorescence intensity. 

3. The method of claim 1, wherein the activation value is 
computed using cell size for each T cell of the population of 
T cells as an input. 

36. The T cell sorting device or the method of the immedi­
ately preceding statement, wherein the accuracy of clas­
sifying T cells as activated is at least 80%. 40 

4. The method of claim 1, wherein the predetermined 
threshold is selected via classification and feature selection 37. The T cell sorting device or the method of the immedi­

ately preceding statement, wherein the accuracy of clas­
sifying T cells as activated is at least 90%. 

38. The T cell sorting device or the method of the immedi­
ately preceding statement, wherein the accuracy of clas- 45 

sifying T cells as activated is at least 95%. 

machine learning on a control population of T cells having 
known activation states. 

5. The method of claim 1, wherein the predetermined 
threshold is donor-normalized. 

6. The method of claim 1, wherein the T cells whose 
activation value exceeds the predetermined threshold are 
CD3+, CD4+, or CDS+ T cells. 

39. A method of administering activated T cells to a subject 
in need thereof, the method comprising: 
a) the method of any one of statements 21 to the imme­

diately preceding statement; and 

7. The method of claim 1, wherein an accuracy of 

50 
classifying T cells as activated is at least 75%. 

8. A method of administering activated T cells to a subject 
in need thereof, the method comprising: 

b) introducing the first portion of the population of T cells 
to the subject. 
40. The method of statement 39, wherein the first portion of 

the population of T cells is modified prior to step b ). 
41. The method of statement 40, wherein the first portion of 55 

the population ofT cells is modified to include a chimeric 
antigen receptor prior to step b). 
We claim: 
1. A method of sorting T cells, the method comprising: 
a) receiving a population of T cells having unknown 60 

activation status; 

a) the method of claim 1; and 
b) introducing the first portion of the population of T cells 

to the subject. 
9. The method of claim 8, wherein the first portion of the 

population of T cells is modified prior to step b ). 
10. The method of claim 9, wherein the first portion of the 

population of T cells is modified to include a chimeric 
antigen receptor prior to step b ). 

* * * * * 


